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ABSTRACT 
 
Due to their structural dynamics, rotationally periodic structures (RPS) have always been an 

area of interest for engineers and scientists. RPS is found in almost all industries and could be 

as large as jet turbines to as small as hard disk drives. We come across with RPS on daily 

routine like washing machine tub, small gears in home appliances and brakes in automobile 

etc. With such an influence in our life, an RPS dynamic response to the environment is 

crucial to keep them working and hence is the focus of the thesis. The research involves three 

major responses on rotationally periodic structures (RPS) namely vibration, thermal and 

shock. Hard disk drives and integrally bladed rotors (IBR) has been selected as research 

models. 

On vibratory response in rotationally periodic structures, effects on structural designs and 

free vibrations of integrated bladed rotor (IBR) have been investigated in this research. The 

migration of natural frequencies is characterized through parametric studies considering 

changes in blade angle and blade thickness of an underlying uniform axis-symmetric rotor. 

Recurring coupled repeated doublet modes, defined as replica modes, have been observed in 

this study by characterizing blade vibrations in-phase or out-of-phase to disk vibrations. 

Veering and clustering of replica modes’ natural frequencies are observed with respect to the 

blade design parameters. Existence of replica modes has been verified via experimental 

studies. Fourier content for the low frequency replica component is found to be sensitive and 

tuneable to blade angle design.  

For the thermal response of RPS, structural thermal analysis of spindle disk assembly used in 

hard disk drives (HDDs) was adopted. With the view toward understanding the underlying 

physics and to minimize the corresponding repeatable run-out (RRO) of track following 

position error signal (PES) in high track per inch (TPI) magnetic disk drives, analytical 

representations of thermal expansion mismatch between disk and spindle hub structure 

formulated in form of operators and finite element analysis (FEA) are employed. Parametric 

studies with analysis taken at different operational temperatures suggested that RRO can be 

minimized significantly when location of spindle notch is properly located. RRO harmonics 

resulted from the thermal expansion mismatch and structure misalignments are studied and 

concluded with simple algebraic expression related to number of fasteners used in the disk-

spindle assembly.  
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On shock response of RPS, head gimbal assembly (HGA) in HDD was analysed. 

Experimental observation of de-bonding phenomena between head gimbal assembly (HGA) 

and suspension for a commercial 3.5-inch enterprise HDD under non-operational 250G shock 

test was performed. In this research the experimental observation and numerical finite 

element studies were conducted to understand the effect on the mechanical failure of HGA 

when it is subjected to non-operational shock in the parked position on the ramp. Different 

design modifications were adapted to withstand shock waves. It was observed that by 

changing flexure angle in HGA, shock stress can be reduced. FEA simulation results have 

been presented to verify the findings. 

The research findings in this thesis can be implemented in the industry where RPS has been 

widely used, as for example the new replica modes discovery in bladed rotors can also been 

applied on small scales like as on hard drive, where no. of blades can be replaced by no. of 

fasteners and the spinning hard drive will be benefited by studying its vibrations with 

concentration on replica modes. Furthermore, the serendipitous finding of HDD platters 

expansion under thermal stress can be beneficial in actually storing more data per inch as it 

has been recently used in TAMR (thermally assisted magnetic recording) technology. Gears, 

brakes, washing machines to name a few can get supported from the findings in the thesis 

where controlling vibrations, shock and heat is crucial. 
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