Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

EXPRESSION AND CHARACTERISATION OF THE N-TERMINAL HALF OF HUMAN LACTOFERRIN

his thesis is submitted to Massey University as partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biochemistry.

Catherine Louise Day

January, 1993

ACKNOWLEDGEMENTS

Throughout the duration of this thesis many people have offered help and listened to my problems. It is not possible to list everybody and I hope that if your name has been omitted you will accept my thanks here.

Firstly I would like to thank my two supervisors, Dr. John W. Tweedie and Prof. Ted N. Baker, for their encouragement, helpful discussions, patience and friendship. They have both shared the successes and failures of this work and for that I am grateful. I would especially like to thank them both for helping with the preparation of this thesis.

Others have also contributed significantly to the work presented in this thesis. In particular I would like to thank Kathryn Stowell who helped me with much of the molecular biology and provided the initial clones which made this work possible. Thank you for your help and friendship Kathryn. My thanks are also extended to Gill Norris who set up many of the preliminary crystallisation trials and helped with the characterisation of the crystals. Thank you also for always providing a sympathetic ear Gill. Bryan Anderson is thanked for his help with the computing, without your help I would have smashed the computer long ago!. I also wish to thank Clyde Smith for helping with processing the CAD4 data, preparation of the ESR figures and for many helpful discussions. My thanks are also extended to Heather Baker for her helpful suggestions in characterising the proteins, encouragement and cheerfulness.

I also appreciate the work of Ted, Bryan, Gill and Heather who collected data for me at the Photon Factory, Tskuba, Japan. The Molecular Structure Corporation (USA) is also acknowledged for collecting a data set.

My thanks are also extended to Dr. Ross T.A. MacGillivray (University of British Columbia) who allowed me to spend two months in his laboratory where I learnt the art of tissue culture.

I also wish to thank all past and present members of the Twilight Zone in particular Paul Mead, Bhav Sheth, Heather Bain, Joseph Bateson, Hale Nicholson, Cherie Stayner and Samantha Shaw who have shared their time with me and helped make life more enjoyable.

I am indebted to the University Grants Committee of New Zealand for awarding me a scholarship which made this work possible.

Lastly I would like to thank my family and friends for their support and encouragement. Thank you everybody.

> 547.72 Doy

Dido

CONTENTS

	Page
ABSTRACT	i
ABBREVIATIONS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi

Chapter One

INTRODUCTION

1 1 -	Distribution and regulation of lastafamin care companying	2
1.1	Distribution and regulation of lactolerrin gene expression	2
1.2	Biological roles of lactoferrin	3
1.2.1	Bacteriostatic and bactericidal properties of lactoferrin	4
1.2.2	Lactoferrin as an iron carrier	6
1.2.3	Lactoferrin as a growth promoter	8
1.2.4	Lactoferrin and inflammation	9
1.2.5	Lactoferrin: oxidant or antioxidant ?	10
1.2.6	Lactoferrin and myelopoiesis	10
1.2	Structure of lactoferrin	11
	Primary structure	11
	Tertiary structure	13
1.4	Binding properties of lactoferrin	16
1.5	Fragment studies of lactoferrin	19
1.6	Perspectives and aims of this project	21
	Perspectives	21
	Aims	22

Part A CLONING, CHARACTERISATION AND MUTAGENESIS OF THE N-TERMINAL HALF OF HUMAN LACTOFERRIN

Part A : Chapter One

MATERIALS AND METHODS

A1.1	Materials and Reagents	23
A1.2	General inethods for the manipulation of DNA and RNA	25
A1.2.1	General precautions for handling DNA and RNA	25
A1.2.2	Quantitation of DNA and RNA	25

		Page
A1.2.3	Phenol / chloroform extraction of DNA	. 25
A1.2.4	Ethanol precipitation of DNA	26
A1.2.5	Maintenance and storage of bacterial strains	26
A1.2.6	Preparation and transformation of competent cells	26
A1.2.7	Digestion of DNA with restriction endonucleases	26
A1.2.8	Agarose gel electrophoresis of DNA	27
A1.2.9	Autoradiography	27
A1.2.10	Preparation of plasmid DNA	27
	Small scale preparations	27
	Large scale preparations	28
	Isolation of phagemid ssDNA	28
A1.2.11	DNA Ligations	28
A1.2.12	Isolation of DNA fragments from agarose gels	28
A1.2.13	End filling of cohesive ends	29
A1.2.14	Phosphorylation of blunt ended DNA fragments	29
A1.2.15	Dephosphorylation of linearised plasmid DNA	29
A1.2.16	DNA sequencing	29
A1.2.17	Agarose gel electrophoresis of RNA	30
A1.2.18	Transfer of RNA to nitrocellulose (RNA blotting)	30
A1.2.19	Labelling of cDNA probes with ³² P	30
A1.2.20	Hybridisation using cDNA probes	30
	Prehybridisation	30
	Hybridisation	31
	Washing	31
A1.2.21	Preparation and purification of oligonucleotides	31
A1.2.23	Amplification of DNA sequences by PCR	31
A1.3	Mutagenesis of cloned cDNA	32
A1.3.1	Preparation of uracil-containing phagemids	32
A1.3.2	Extraction of phagemid DNA	32
A1.3.3	Phosphorylation of the oligonucleotides	33
A1.3.4	Annealing and extension of the primer	33
A1.4	Expression of cloned Lf _N cDNA	33
A1.4.1	Maintenance of cells in tissue culture media	33
	Preparation of tissue culture reagents	34
	Freezing and thawing of cells	34
	Passage of cells	34
A1.4.2	Transfection and selection of BHK cells	35
A1.4.3	Large scale growth of cells in roller bottles	35
A1.4.4	Preparation of DNA from BHK Cells	36

		Page
A1.4.5	Preparation of total cellular RNA from BHK cells	36
A1.5	Analysis of recombinant proteins	36
A1.5.1	SDS-polyacrylamide gel electrophoresis of proteins	36
A1.5.2	Staining and destaining polyacrylamide gels	36
A1.5.3	Preparation of antibodies against human lactoferrin	37
A1.5.4	Immunoprecipitation of human lactoferrin	37
A1.5.5	³⁵ S-Labelling of newly synthesised proteins	37
A1.5.6	Protein blotting	38
A1.5.7	Purification of recombinant lactoferrins	39
A1.5.8	Determination of protein concentration	39
A1.5.9	Concentration of protein samples	39
A1.5.10	Deglycosylation of lactoferrin	- 40
A1.5.11	Spectroscopy	40
A1.5.12	Iron release from lactoferrin	40

Part A : Chapter Two

CLONING AND EXPRESSION OF THE N-TERMINAL HALF OF HUMAN LACTOFERRIN

A2.1	INTRODUCTION	41
A2.2	RESULTS	42
A2.2.1	PCR synthesis and cloning of the 1.1 kb cDNA encoding	42
	Lf _N	
	Preparation of templates	42
	Synthesis of the cDNA by PCR	43
	Restriction enzyme analysis of the 1.1 kb PCR fragment	44
	Cloning of the 1.1 kb PCR product	45
	Preliminary sequence analysis of the 1.1 kb insert	47
A2.2.2	Cloning of Lf _N cDNA into the expression vector pNUT	48
÷	Preparation of pNUT for use as a vector	48
	Cloning of the Lf _N cDNA into pNUT	49
A2.2.3	Expression of Lf _N in transfected BHK cells	50
	Transfection and selection of BHK cells	50
	Analysis of BHK cell genomic DNA	51
	Analysis of BHK cell RNA	51
	Further analysis of the pNUT clones	54
	a sama and the carddlare second	

		1 age
A2.2.4	Construction of a new cDNA	54
	Synthesis and cloning of cDNA number 2!	55
	Reassessment of the results obtained so far	57
	Subcloning to remove the error	58
	Cloning into pNUT	59
	Transfection of BHK cells and analysis of the RNA	60
	Analysis of the cell media	61
A2.3	DISCUSSION	61

Dogo

Part A : Chapter Three

CHARACTERISATION OF LfN

A3.1	INTRODUCTION	63
A3.2	RESULTS	63
A3.2.1	Purification of recombinant Lf _N	63
A3.2.2	Characterisation of recombinant Lf _N	64
A3.2.2.1	Absorption spectrum	64
A3.2.2.2	N-terminal sequence analysis	65
A3.2.2.3	Glycosylation	66
A3.2.2.4	Spectroscopy	69
A3.2.2.5	Metal binding and release	71
A3.3	DISCUSSION	73

Part A : Chapter Four

MUTAGENESIS STUDIES ON HUMAN LACTOFERRIN

A4.1	INTRODUCTION	76
	Aspartic acid 60	76
	Arginine 121	77
	Glycosylation of lactoferrin	79
	Mutagenesis protocols	79
A4.2	RESULTS	80
A4.2.1	Production of a mutant	80
	Cloning into pTZ and preparation of the template phage	80
	Titration and extraction of the phage	80
	Synthesis of the complementary strand	81
	Analysis of the reaction products	82

	Selection and complete sequence analysis of the mutants	82
A4.2.2	Cloning and expression of the mutants	85
A4.2.3	Glycosylation site mutants	85
	Asparagine 137	85
	Asparagine 137 / asparagine 478 double mutant	87
A4.2.4	Binding site mutants	89
	Aspartic acid 60	89
	Arginine 121	91
	Arginine 121 / Aspartic acid 60	. 93
A4.3	DISCUSSION	94

Part B CRYSTALLOGRAPHIC ANALYSIS OF Lf_N

Part B : Chapter One

Page

METHODOLOGY AND PROGRAM DESCRIPTION

B1.1	Crystal growth	97
	Crystal growth	97
B1.2	Data collection	97
	CAD4 data collection	98
	Image plate data collection	98
	Rigaku - R axis axis data collection	98
B1.3	Data processing	99
B1.3.1	CAD4 data processing	99
	PREPRO	99
	FITC3	99
	REDUCER	100
B1.3.2	Image plate data processing	100
	Convmt	100
	Image	100
	Weis	101
	WeisdataJ	101
B1.4	Scaling and merging of data	102
	INTAV3	102
	INTAV4	102
B1.5	Structure solution	102
5.20	Multiple isomorphous replacement (MIR)	103

		Page
	Molecular replacement (MR)	103
	ALMN	103
	Tsearch	104
B1.6	Protein structure refinement	104
	TNT - the restrained least squares refinement package.	105
B1.7	Map calculations and model building	106
	2Fobs - Fcalc / Fobs - Fcalc	106
	FRODO - the model building package	106

Part B : Chapter Two

CRYSTALLISATION OF Lfn

INTRODUCTION	107
RESULTS	107
Crystallisation of native Lf _N	107
Crystallisation of deglycosylated Lf _N	109
FeLf _N	109
ApoLf _N	111
Characterisation of the $FeLf_N$ and DG $FeLf_N$ crystals	112
Photography of FeLf _N crystals	112
Photography of DG FeLf _N crystals	112
Photography of ApoLfN crystals	112
DISCUSSION	113
	INTRODUCTION RESULTS Crystallisation of native Lf _N Crystallisation of deglycosylated Lf _N FeLf _N ApoLf _N Characterisation of the FeLf _N and DG FeLf _N crystals Photography of FeLf _N crystals Photography of DG FeLf _N crystals Photography of ApoLf _N crystals DISCUSSION

Part B : Chapter Three

FeLf_N STRUCTURE SOLUTION AND ANALYSIS

1

B3.1	INTRODUCTION	114 •
B3.2	RESULTS	114
B3.2.1	CAD4 data collection and processing	114
	Data collection	114
	Data processing	116
B3.2.2	Structure solution in P1	117
	The models	117
	The rotation function	117
	The translation function	118
B3.2.3	Refinement of the structure in P1	119

		Page
	Rigid body refinement	119
B3.2.5	Determination of the correct space group	120
B3.2.5	Collection and processing of the high resolution data	122
	Collection of the data	122
	Processing the data	123
	Merging the image plate data	125
	Analysis of the C2 data set	126
B3.2.6	Structure solution in space group C2	126
B3.2.7	Refinement of the FeLf _N structure in space group C2	127
	Criteria for the inclusion of additional sidechains	128
	Positioning residues 313 - 333	129
	Solvent structure	130
B3.2.8	Quality of the refined model	131
	Accuracy of the structure	131
	Thermal parameters	134
	Dihedral angles	135
B3.2.9	Analysis of the refined structure	138
B3.2.9.1	General topology	138
B3.2.9.2	Analysis of the metal and anion binding sites in FeLf _N .	142
B3.2.9.3	Conformational changes in FeLf _N	146
	Residues 312 - 333	146
	Intermolecular interactions	151
B3.2.9.4	Solvent structure	153
B3.3	DISCUSSION	157

Part B : Chapter Four

Apolf_N DATA COLLECTION AND STRUCTURE SOLUTION

B4.1	INTRODUCTION	161
B4.2	RESULTS	162
B4.2.1	Data collection and processing	162
	Data collection	162
	Data processing	162
B4.2.2	Solution of the ApoLf _N structure	165
	The models	165
	The rotation function	166
×:	The translation function	166
	Rigid body refinement of the model in space group $P4_{1}2_{1}2$	167

		Page
B4.2.3	Partial refinement of the ApoLf _N structure	169
B4.2.4	Accuracy of the ApoLf _N structure	170
B4.2.5	Analysis of the ApoLf _N structure	173
	Conformation and crystal packing of ApoLf _N	173
	The binding site in ApoLf _N	174
B4.3	DISCUSSION	177

Chapter Two

CONCLUSIONS AND FUTURE DIRECTIONS

2.1	Conclusions and final discussion –	179
2.2	Future directions	182
2.2.1	Suggestions for future constructs	182
	Construction of an expression system for the C-terminal half of	182
	human lactoferrin	
	Other iron binding fragments	183
	Chimaeric fragments	184
2.2.2	Suggestions for other site specific mutants	185
	Glycosylation mutants	185
	Meanotransferrinmodel	186
	Complete removal of the iron binding capacity from lactoferrin	186
	Hinge movement	186
	Altered metal and anion binding capacity	186
2.2.3	Further crystallographic and analytical studies	187
	Crystallographic studies	187
	Functional studies	188
REFERENC	CES	189
÷		
APPENDIX	1	202
APPENDIX	2	205
APPENDIX	3	206
APPENDIX	4	207
APPENDIX	5	208
APPENDIX	6	inside back cover
APPENDIX	7	209

ABSTRACT

Lactoferrin is an 80 kDa iron binding protein which is found in human milk and other exocrine solutions. Each molecule contains two metal binding sites which each bind a single iron atom with high affinity. The properties of the two sites are slightly different. In an attempt to more fully understand the nature of these differences a construct for the high level expression of the N-terminal half of human lactoferrin (Lf_N) has been constructed and protein expressed from this construct has been purified and characterised. Characterisation of the recombinant protein has shown that the signal peptide is correctly removed from Lf_N and that an N-linked carbohydrate moiety is added to Lf_N. Lf_N has been shown to bind one iron atom and the spectral properties are very similar to those of Fe₂Lf. The most significant difference between hLf and Lf_N is in the pH stability of iron binding. Iron is released from Lf_N 2 pH units higher than from hLf.

In an attempt to understand the bases for this difference a structural analysis of Lf_N was initiated. Using deglycosylated protein high quality crystals of both iron free and iron saturated Lf_N have been grown. The structures of both FeLf_N and ApoLf_N have both been solved by molecular replacement using the coordinates from the N-lobe of Fe₂Lf as the starting model.

The structure of FeLf_N has been refined using data between 8.0 and 2.0 Å. The current model has good geometry and is believed to accurately represent the structure of FeLf_N. The structure of FeLf_N provides the highest resolution and most accurate structure of a member of the transferrin family. Analysis of the structure has shown that the folding pattern and the environment of the iron atom in FeLf_N are very similar to the N-lobe of Fe₂Lf although several differences exist. Most of the differences seen are due to the absence of the C-lobe and the rearrangement of residues 315 - 327. The altered conformation of residues 315 - 327 and the changes in the solvent accessibility to other residues are believed to be responsible for the different iron binding and release properties of Lf_N.

Although the structure of ApoLf_N is not complete analysis of this structure has shown that unlike the N-lobe of intact apo hLf the domains are closed in ApoLf_N. The structure of ApoLf_N is very similar to that of FeLf_N even though the crystal packing is quite different. In addition although the protein was believed to be iron free there is some density in the iron site which is unaccounted for at present. This study continues.

Several mutants of Lf_N have also been created. These mutants have shown that the carbohydrate groups attached to lactoferrin probably have a role in folding and secretion of lactoferrin by BHK cells. Several mutants involving changes to residues involved in metal and anion binding have also been created. These mutants have helped us begin to define the changes responsible for preventing iron binding in the C-lobe of melanotransferrin. In addition the role of arginine 121 has been investigated however further analysis of these mutants is required before the structural changes responsible for the different properties can be defined.

ABBREVIATIONS

A ₂₈₀	Absorbance at 280 nm
A406	Absorbance at 406 nm
A454	Absorbance at 454 nm
ApoLf	Iron free native lactoferrin
ApoLf _N	Iron free Lf _N
ATP	adenosine triphosphate
BG	background
BHK	baby hamster kidney
bLf	bovine lactoferrin
bp	base pair
BRL	Bethesda research laboratories
BSA	bovine serum albumin
cDNA	complementary DNA
cfu	colony forming units
CIF	colony inhibitory factor
CML	chronic myeloid leukaemia
CM-sephadex	c carboxymethyl sephadex
cpm	counts per minute
C-terminal	carboxy terminal
Cu ₂ Lf	copper saturated native lactoferrin
CuLf _N	copper saturated Lf _N
dATP	deoxyadenosine triphosphate
dCTP	deoxycytidine triphosphate
DEPC	diethylpyrocarbonate
DG	deglycosylated
DGLf _N	deglycosylated Lf _N
dGTP	deoxyguanosine triphosphate
DHFR	dihydrofolate reductase
DMEM	Dulbeco's modification of Eagle's medium
DMF	dimethylformamide
DMSO	dimethyl sulphoxide
DNA	deoxyribonucleic acid
DNase	deoxyribonuclease
DTT	dithiothreitol
dUTP	deoxyuridine triphosphate
EDTA	ethylene diamine tetra-acetate
EEO	electroendosmosis
ELISA	enzyme linked immunoabsorbant assay

ESR	electron spin resonance
F's	structure factors
Fcalc	calculated structure factors
Fobs	observed structure factors
F12	Hams-F12 medium
FCS	foetal calf serum
FeLf _N	iron saturated Lf _N
Fe ₂ Lf	iron saturated native lactoferrin
gDNA	genomic DNA
GF/A	glass fibre/A
GM	granulocyte macrophage
GM-CSF	granulocyte macrophage colony stimulating factor
HBS	HEPES buffered saline
HBV	hepatitis b virus
HEPES	N-2-hyroxethyl piperazine-N-2-ethane sulfonic acid
hGH	human growth hormone
hLf	human lactoferrin
hTf	human transferrin
Ι	intensities
IPA	isopropanol
IPTG	isopropyl β-D-thiogalactopyranoside
kb	kilobase
kDa	kilodalton
LB	Luria-Bertani
Lf	lactoferrin
Lf _N	the amino terminal half of human lactoferrin
LfC50	50 kDa carboxy terminal fragment from lactoferrin
Lf _{N30}	30 kDa amino terminal fragment from lactoferrin
LMP	low melting point
MEM	minimal essential medium
MES	2(N-morpholino) ethane sulfonic acid
MIR	multiple isomorphous replacement
MPD	2-methyl-2,3-pentanediol
MR	molecular replacement
MT-1	metallothionein-1
mtx	methotrexate
N-terminal	amino terminal
NTA	nitrilotriacetate
PAGE	polyacrylamide gel electrophoresis
PBS	phosphate buffered saline

PCR	polymerase chain reaction
pdb	protein data bank
PEG	polyethylene glycol
pfu	plaque forming units
PNGase	peptide:N-glycosidase
RIA	radio immunoassay
RNA	ribonucleic acid
RNase	ribonuclease
rRNA	ribosomal ribonucleic acid]
SDS	sodium dodecylsulphate
SDS-PAGE	sodium dodecylsulphate polyacrylamide gel electrophoresis
SSC	standard saline citrate
sTf	serum transferrin
sT _N	the amino terminal half of serum transferrin
sTf _{N35}	35 kDa fragment from the amino terminal half of human lactoferrin
SV-40	simian virus 40
TA	Tris acetate
TAE	Tris acetate EDTA
TCA	trichloroacetic acid
TE	10 mM Tris, 1 mM EDTA
Tris	Tris-(hydroxymethyl) aminomethane
U-DNA	uracil containing DNA
UV	ultraviolet
X-gal	5-bromo-4-chlor-3-indoyl β -D-galactopyranoside

LIST OF TABLES

۰.

		Page
Table 1	Transferrin genes sequenced to date.	/ 12
Table 2	Sequence alignment of the N-terminus of human lactoferrin	66
Table 3	Summary of the iron binding properties of the mutants.	94
Table 4	Crystallisation conditions for different lactoferrin species.	107
Table 5	Summary of the conditions used to obtain crystals of FeLf _N .	108
Table 6	Data collection parameters.	115
Table 7	CAD4 Data collection statistics.	116
Table 8	Summary of the CAD4 data processing statistics.	116
Table 9	Molecular Replacement search models for FeLf _N .	117
Table 10	Rotation function solutions for FeLf _N .	118
Table 11	Summary of P1 rigidbody refinement.	119
Table 12	Summary of P1 XYZ refinement (Round one).	120
Table 13	Summary of P1 XYZ refinement (Round two).	120
Table 14	Image plate data collection statistics.	122
Table 15	Data processing statistics for the FeLf _N image plates.	124
Table 16	Translation function results for space group C2.	127
Table 17	Progress of FeLf _N refinement in space group C2.	128
Table 18	Summary of the model used for refinement in space group C2.	129
Table 19	Comparison of the average B values for FeLf _N and Fe ₂ Lf.	134
Table 20	Summary of the α -helices and β -sheets in FeLf _N .	140
Table 21	Summary of the rms deviation between $FeLf_N$ and Fe_2Lf .	141
Table 22	Geometry of the iron site.	143
Table 23	Anion/protein hydrogen bonds.	143
Table 24	Comparison of the mainchain torsion angles for residues 315 to 326.	147
Table 25	Changes in solvent accessibility.	152
Table 26	Summary of the interactions between symmetry related molecules.	153
Table 27	Analysis of the contacts made by the common waters.	155
Table 28	Internal water molecules.	156
Table 29	Setting parameters used for collection of the ApoLf _N data in Japan.	162
Table 30	Data collection and processing statistics for the ApoLf _N images.	164
Table 31	Molecular Replacement search models for ApoLf _{N.}	165
Table 32	Rotation function solutions for ApoLf _N .	166
Table 33	Summary of the translation function results.	167
Table 34	Summary of ApoLf _N rigid body refinement.	168
Table 35	Progress of ApoLf _N refinement.	169
Table 36	Summary of the model used for refinement of ApoLf _N .	170
Table 37	Comparison of the deviations between the three closed N-lobe	174
	structures.	

LIST OF FIGURES

		Page
Fig. 1.	Ribbon structure of iron saturated lactoferrin.	13
Fig. 2.	Stylised representation of the iron binding site in lactoferrin.	14
Fig. 3	Model of the mechanism of iron binding and release.	16
Fig. 4	Comparison of Lf _{N30} and a fragment representing the entire N-lobe.	20
Fig. 5	Partial restriction map of pUC:hLf.	42
Fig. 6	Restriction map of pUC:hLf1.3.	43
Fig. 7	Sequence of JT30 and JT11.	43
Fig. 8	Analysis of the PCR products by agarose gel electrophoresis.	44
Fig. 9	Restriction analysis of the 1.1 kb PCR product.	45
Fig. 10	Restriction enzyme analysis of pUC:Lf _N 1.	46
Fig. 11	Sequence analysis of the 1.1 kb fragment.	47
Fig. 12	Restriction map of pNUT.	48
Fig. 13	Possible orientations of the Lf _N cDNA in pNUT.	49
Fig. 14	Restriction analysis of pNUT:Lf _N (for)1 and pNUT:Lf _N (rev)1.	50
Fig. 15	PCR analysis of genomic DNA isolated from BHK cells.	52
Fig. 16	Analysis of the RNA isolated from BHK cells.	53
Fig. 17	Sequence of the 3' primer used to construct the second Lf_N cDNA	55
Fig. 18	Partial restriction map of pGEM:hLf3.	56
Fig. 19	Strategy used for the construction of the Lf_N cDNA (version 2!).	56
Fig. 20	Strategy used for the construction of Lf _N cDNA (version 3!).	58
Fig. 21	Restriction analysis of pGEM:Lf _N 2.	59
Fig. 22	Analysis of the RNA isolated from BHK cells.	60
Fig. 23	Analysis of cell culture media.	62
Fig. 24	Purification of Lf _N by ion exchange chromatography.	64
Fig. 25	Comparison of the UV-visible spectra obtained from iron saturated	65
	Lf _N and hLf.	
Fig. 26	Deglycosylation of Lf _N .	67
Fig. 27	Identification of the lower 37 kDa band found in preparations of Lf_N	68
Fig. 28	Analysis of the variation in protein purity between different batches.	69
Fig. 29	ESR spectra of iron saturated Lf _N and hLf.	70
Fig. 30	Comparison of the copper UV-visible spectra obtained from Lf_N and	71
	hLf	
Fig. 31	ESR spectra of copper saturated Lf _N and hLf.	72
Fig. 32	Analysis of the pH dependent release of iron from Lf _N .	73
Fig. 33	Titration of Lf _N with iron at pH 7.8.	74

1

vi

		Page
Fig. 34	Environment of aspartic acid 60 in Fe ₂ Lf.	77
Fig. 35	Environment of arginine 121 in Fe ₂ Lf.	78
Fig. 36	Partial restriction map of pTZ:Lf _N .	81
Fig. 37	Analysis of the reaction products from a mutagenesis experiment.	83
Fig. 38	Summary of the sequencing strategy used to sequence the mutants.	84
Fig. 39	Sequence analysis of mutated clones.	84
Fig. 40	Comparison of the spectrum of N137A and Lf_N (400 nm to 500 nm).	86
Fig. 41	Analysis of the N137A/N478A mutant by PAGE and	88
	immunodetection.	
Fig. 42	Comparison of the spectral properties of D60S and Lf _N .	90
Fig. 43	Change in R121S λ_{max} with decreasing pH.	91
Fig. 44	Comparison of the iron binding properties of Lf _N and R121S.	92
Fig. 45	ESR spectra of iron saturated R121D.	• 93
Fig. 46	Crystals of DG FeLf _N .	110
Fig. 47	Crystals of DG ApoLf _N .	111
Fig. 48	Representation of the relationship between the space groups P1, I2	121
	and C2	
Fig. 49	Plot of resolution vs % of observed data with I greater than the	126
	specified sigma levels.	
Fig. 50	Examples of the fit of the atoms to the density.	132
Fig. 51	Luzzati plot for the refined FeLf _N structure.	133
Fig. 52	Plot of the mainchain real space correlation coefficients for FeLf _N .	134
Fig. 53	Analysis of the mainchain B values for the refined $FeLf_N$ structure.	135
Fig. 54	Comparison of the density and interactions for Lys 18 and Lys 100.	136
Fig. 55	Ramachandran plot for residues 4 to 327 in $FeLf_N$	137
Fig. 56	FeLf _N : ribbon and schematic diagrams.	138
Fig. 57	Stereoview of a C α plot of FeLf _N .	139
Fig. 58	Conformation of residues 316 to 327 in Fe ₂ Lf and FeLf _N .	140
Fig. 59	Comparison of $FeLf_N$ and Fe_2Lf after superposition using only	142
	domain 2.	
Fig. 60	The anion binding site: electron density and contacts.	144
Fig. 61	Superposition of the FeLf _N and Fe ₂ Lf iron binding sites.	144
Fig. 62	Schematic diagram of the hydrogen bonding network in and around	146
	the metal and anion binding sites of Lf _N .	
Fig. 63	Residues 320 - 326; atoms and density.	148
Fig. 64	Hydrogen bonding pattern involving β -strand l.	150

	Page
Helix 5: contacts due to the absence of Tyr 324 and presence of Phe 325.	150
Position of the common and unique waters in FeLf _N .	154
Position and electron density for some waters in the interdomain cleft.	156
Ribbon diagram of ApoLf	161
Analysis of the ApoLf _N data set collected in Japan.	165
Luzzati plot for the partially refined ApoLf _N structure.	171
Mainchain real space correlation coefficients for ApoLf _N .	171
Plot of average mainchain B values against residue number.	172
Ramachandran plot of mainchain phi/psi angles for ApoLf _N .	173
Cartoon diagram of ApoLf _N	174
Comparison of the crystal packing in ApoLf _N and FeLf _N .	175
ApoLf _N metal binding site showing the unassigned electron density.	177
Comparison of the position of the iron binding ligands in ApoLf _N and FeLf _N .	178
	 Helix 5: contacts due to the absence of Tyr 324 and presence of Phe 325. Position of the common and unique waters in FeLf_N. Position and electron density for some waters in the interdomain cleft. Ribbon diagram of ApoLf Analysis of the ApoLf_N data set collected in Japan. Luzzati plot for the partially refined ApoLf_N structure. Mainchain real space correlation coefficients for ApoLf_N. Plot of average mainchain B values against residue number. Ramachandran plot of mainchain phi/psi angles for ApoLf_N. Cartoon diagram of ApoLf_N Comparison of the crystal packing in ApoLf_N and FeLf_N. ApoLf_N metal binding site showing the unassigned electron density. Comparison of the position of the iron binding ligands in ApoLf_N and FeLf_N.