Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A Longitudinal Study of *Campylobacter* Spp. on a New Zealand Dairy Farm

A dissertation presented in partial fulfilment of the requirements for the degree of Master of Veterinary Studies (Epidemiology)

at

Massey University

Pao-yin Wu 2001

ACKNOWLEDGEMENTS

I would like to thank the following people for the support and help they have given me over the last nineteen months.

At first I would like to thank my chief supervisor, Associate Professor Peter Davies for his guidance through this research project, my supervisor, Dr. Per Madie for his advice and helpful suggestions, and my supervisor, Dr. Stan Fenwick for his support and encouragement. I am also grateful to Professor Roger Morris, head of the EpiCentre, Dr. Nigel Perkins and Dr. Joanne Connolly for help for advice and encouragement.

I am grateful to Dr. David Lawton for his time and preparation of samples throughout this project. Thank you also to Daniel Russell for help and advice. Thank you also to all the staff members at the EpiCentre, the department of microbiology at the Institute of Veterinary, Animal and Biomedical Science at Massey University. Thanks to all the members for endless supply at the Massey No.4 Dairy Farm.

I thank Jianqing Liu and his parents for their time and additional support for giving consideration to my three children over the last year and a half.

Most important of all a special thanks to my husband Ping-Chang Shih for his continual support and encouragement he has given me over the years. Thanks to all people within my research period for their help and friendship.

Ĩ

ABSTRACT

Although *Campylobacter* is a common cause of gastroenteritis in humans in New Zealand, the source of infection usually remains unknown. However, the high frequency of human infection may be due to the relatively low infectious dose. *Campylobacter jejuni* and some other *Campylobacter* species are commonly found as commensals in livestock including cattle which may be reservoirs for a number of *Campylobacter species*.

The objective of this study was to estimate the prevalence of *Campylobacter* carriage in healthy dairy cows at the study farm. The combined epidemiological and microbiological investigation was useful in conducting a longitudinal study of Massey University No. 4 Dairy Farm in this project. The project surveyed cows of different ages in the herd at different times over the study period. In order to determine whether strains of *C. jejuni* isolated from the cows were identical, Pulse-Field Gel Electrophoresis was applied to examine the similarities among *C. jejuni* isolates.

Based on the results of an initial pilot study, selecting a suitable sample size of dairy cows for planned sampling events saved time and cost in estimating the *Campylobacter* prevalence. In this study, on a basis of the results of pilot study, a sample size of about 60 animals was selected in order to estimate 90 % confidence level within 10% accuracy. Finally, the results of prevalences of *Campylobacter* at different samplings were applied to calculate 95% confidence intervals for prevalences in different populations.

The survey of different age groups of the same herd at different times within the period 8/6/00 to 5/10/00, found significant differences in isolation rates. For example, the prevalences of both *C. jejuni* and other *Campylobacter* species during dry off period were higher than before calving and after calving. The prevalence of *Campylobacter* carriage by heifers had the highest ranges between 72.1% and 91.0% compared with other populations. Yearling group had relatively prevalence of *C. jejuni* infection but the

prevalence of other *Campyloabcter* species was 35%, but the reason is unclear. Moreover, *C. jejuni* strains 74 and 75 was isolated from the pond of this study farm display distinct restriction patterns and are different from the 15 strains from cattle. Although some identical strains occurred across the 1st and 2nd samplings, variation within and between sampling events was evident. In addition, wild birds may be important reservoirs of *C. jejuni* infection of cows. Thus, in this study *Campylobacter jejuni* has a very complex ecologic cycle involving water and animals. Another significant explanation is that some animals may be recovering or recovered carriers or *Campylobacter* may be present in only localized areas or shed intermittently in faeces. Table 10 shows the changes in *Campylobacter* status within different stages of sampling. However, from the present study, there is insufficient evidence to indicate which is a major contributory factor in the causation of infection with *Campylobacter*.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	ł
ABSTRACT	11
TABLE OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	
LIST OF FIGURES	IX
CHAPTER I:	1
LITERATURE REVIEW	1
1.1 INTRODUCTION	1
1.2 MICROBIOLOGY	3
1.2.1 CAMPYLOBACTER MORPHOLOGY AND TAXONOMY	3
1.2.1.1 MORPHOLOGY	3
1.2.1.2 TAXONOMY	3
1.2.1.3 ISOLATION AND IDENTIFICATION OF CAMPYLOBACTER	4
1.2.1.4 PCR DETECTION OF CAMPYLOBACTER	6
1.2.1.5 TYPING OF CAMPYLOBACTER JEJUNI BY PULSED-FIELD GEL	6
ELETROPHORESIS	
1.2.1.6 CAMPYLOBACTER JEJUNI	10
1.3 EPIDEMIOLGY	11
1.3.1 RESERVOIRS AND TRANSMISSION OF CAMPYLOBACTER	11
1.3.2 CAMPYLOBACTER IN HUMANS	12
1.3.3 CAMPYLOBACTER IN RUMINANT ANIMALS	15
1.3.3.1 CATTLE FAECES	16
1.3.3.2 EFFLUENT FROM DAIRY FARMS AND SLAUGHTER HOUSES	17
1.3.3.3 WATER	17
1.3.4 SEASONAL PREVALENCE OF CAMPYLOBACTER	18

1.4 OVERVIEW OF THE DAIRY INDUSTRY IN NEW ZEALAND	20
1.4.1 GENERAL DESCRIPTION	20
1.4.2 SEASONAL DAIRY MANAGEMENT IN NEW ZEALAND	21
1.4.2.1 MANAGEMENT OF FEEDS	21
1.4.2.2 WATER REQUIREMENTS	22
1.4.2.3 STOCKING DENSITY	23
1.5 SUMMARY	24
CHAPTER II:	25
LONGITUDINAL STUDY OF CAMPYLOBACTER IN CATTLE	25
2.1 INTRODUCTION	25
2.1.1 PROJECT BACKGROUND	25
2.1.1.1 HISTORY OF THE STUDY FARM	25
2.1.1.2 GENERAL MANAGEMENT	26
2.1.1.2.1 CALVING MANAGEMENT	27
2.1.1.2.2 CALF REARING	27
2.1.1.2.3 HEALTH MANAGEMENT IN YOUNG STOCK	28
2.1.1.2.4 GRAZING MANAGEMENT OF MILKING HERD	29
2.1.1.2.5 MILKING HERD MANAGEMENT	30
2.1.1.2.6 HEALTH MANAGEMENT IN MILKING HERD	30
2.1.1.2.7 WATER SUPPLY AND EFFLUENT DISPOSAL	32
2.1.2 OBJECTIVES OF THIS STUDY	34
2.2 MATERIALS AND METHODS	35
2.2.1 MATERIALS	35
2.2.2 METHODS	35
2.2.2.1 EPIDEMIOLOGICAL INVESTIGATIONS	35
2.2.2.2 BACTERIOLOGICAL METHODS	38
2.2.2.1 SAMPLES COLLECTION	38
2.2.2.2 CULTURE OF SAMPLES	39
2.2.2.3 IDENTIFICATION OF CAMPYLOBACTER SPP.	39
2.2.2.4 SUBTYPING OF CAMPYLOBACTER JEJUNI	41
2.3 RESULTS	46
2.3.1 RESULTS OF CAMPYLOBACTER IDENTIFICATION	46
2.3.2 DESCRIPTIVE STATISTICS STUDY	58

2.3.2.1 PREVALENCE	58
2.3.2.2 CHANGE IN CAMPYLOBACTER STATUS OF ADULT CATTLE	60
2.3.2.3 CONFIDENCE INTERVALS	64
2.4 DISCUSSION	66
2.5 CONCLUSION	69
REFERENCES	70
	84
	87
APPENDIX III	88

LIST OF TABLES

•

	Page
Table 1. <i>Campylobacter</i> species isolated at the 1 st sampling	48
(n=20) on May 25, 2000 from milking cows	
Table 2. <i>Campylobacter</i> species isolated at the 2 nd sampling (n=65) on June 21, 2000 from milking cows (before dry	49
off)	
Table 3. Campylobacter species isolated at the 3 rd sampling	50
(n=65) on June 23, 2000 from heifers	
Table 4. <i>Campylobacter</i> species isolated at the 4 th sampling	51
(n=65) on July 14, 2000 from dry cows	
Table 5. <i>Campylobacter</i> species isolated at the 5 th sampling	52
(n=60) on July 21, 2000 from yearlings	
Table 6. Campylobacter species isolated at the respective	53
6 th , 7 th , 8 th sampling (totally n=60) from calves	
Table 7. Campylobacter species isolated at the 9 th sampling	54
(n=59) on October 5, 2000 from milking cows (after calving)	
Table 8. The data of animal ID and Campylobacter isolations	55
in cows over the sampling period May-October, 2000	
Table 9. Number and Prevalence of Campylobacter spp. and	58
C. jejuni at each sampling period in the study	
Table10: Campylobacter status of individual cows sampled in	60
late lactation, during the dry period, and after calving.	

Table11: Calculating 95% confidence intervals for proportions (prevalence) in different populations

LIST OF FIGURES

	Page
Figure 1. Massey No.4 Dairy farm has characteristics typical of a temperate climate and pasture-grazed animal husbandry.	26
Figure 2. Aerial photograph of Massey No.4 Dairy Farm	32
Figure 3. Outline of the Massey No.4 Dairy Farm	33
Figure 4. Timeline for nine samplings of animals at this study farm	37
Figure 5. Flow diagram of examination procedures for Campylobacter jejuni and Campylobacter spp.	42
Figure 6. <i>Campylobacter</i> species grow as grey-white spreading colonies on MCCDA	43
Figure 7. <i>Campylobacter jejuni</i> from a culture. Gram stain, x1000.	43
Figure 8. TSA media is showing that a zone of inhibited bacterial growth around the Nalidixic acid disc indicated the sensitivity of the isolate to the antibiotic.	44
Figure 9. Nitrate test: a red colour indicated that the reaction is positive	44
Figure 10. Hippurate test: a positive test was recorded as a deep purple color.	45
Figure 11. Smal PFGE restriction patterns of C. jejuni genomic DNA.	56

Figure 12. Dendrogram determined by UPGMA cluster analysis of PFGE bands is showing the relationships of 15 <i>C. jejuni</i> strains.	57
Figure 13. The prevalence distribution of Campylobacter jejuni	59
and non- <i>jejuni Campylobacter</i> spp. at various samplings	
Figure 14. Count distribution of milking cows positive to Campylobacter	61
species compared with their lactation number and the frequency	
number of Campylobacter species isolated positive from the same	
milking cows (n=59)	
Figure 15. The variation of percentage positive about their total count of	62
Campylobacter-positive cows relative to their respective total	
count of cows under their respective lactation number condition.	
Figure 16. The prevalence distribution of Campylobacter jejuni and other	63
Campylobacter spp. within the milking herd before dry off, during	
dry off and after calving.	