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ABSTRACT 

Quantitative markers of ontogenetic phase change were sought to track the 

restoration of the adult state in plants of Metrosideros excel'm (pohutukawa) that 

had been rejuvenated by micropropagation (plantlets) .  The potential markers of 

leaf carbon isotope discrimination and tree architecture were examined in 

association with leaf morphology for plantlets, and juvenile and adult plants at a 

range of temperatures (32/24, 241 1 6  and 1 6/8 °c day/night). Changes in leaf 

morphology of plantlets and juvenile plants that were indicative of vegetative 

phase change were associated with a decrease in carbon i sotope discrimination. 

Phase change, judged by these two markers, occurred most rapidly at 24/ 1 6  °c, 
and in plantIets faster than in j uvenile plants. Adult plants showed long-term 

stability. 

ii 

It was hypothesised that phase change could be quantified by changes in plant 

growth rate, expressed through canopy topological size and complexity 

parameters. A model of tree architecture (the Metrosideros Model) was developed 

that would allow tree size and 2D structural complexity to be recorded and 

analysed quantitatively. A further hypothesis was that j uvenile plants and plantlets 

must attain a certain size and/or structural complexity before passing to the adult 

state and this was evaluated using the Metrosideros Model. Dynamics of growth 

and structural change were examined using both non-linear and linear analyses .  

The Metrosideros Model was successfully tested, COnfil111ing the hypothesis of  

quantitative differences between juvenile plants, plantlets and adult plants in  

structural complexity and branching patterns. The model was able to separate 

parameters of plant size from those of structural complexity. Complexity was 

indicative of ontogenetic state, and tracked the progress of phase change in 

juvenile plants and plantlets independently of temperature. Adult p lant parameters 

of structural complexity, as Dl3C, also remained stable at all temperatures. On the 

other hand, the growth rate of size parameters was not associated with phase 

change, but was responsive to temperature. 

It was concluded that while leaf morphology, carbon isotope discrimination and 

crown architecture can be used to track phase change, each relates to a program of 
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change that might occur largely independently of others. Crown architecture was 

less affected by temperature than were leaf characteristics, and was, therefore, the 

most reliable marker of phase change of those studied. 
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