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Abstract 

The perspective afforded by Euclidean geometry led to the rapid development of 

linear models in the early stages of the twentieth century: Fisher saw the data as 

a point in finite-dimensional Euclidean space, the model as a subspace and least 

squares fitting as projection of the observation vector onto the model space . From 

the late 1960s to early 1970s, Fienberg revealed geometry underlying loglinear models 

for two-way tables, while Haberman discussed geometry for the log-transformed case. 

Generalized linear models, however, have largely eluded geometers until recently. In 

1997 an extension of Fisher's view to generalized linear models was given by Kass 

and Vos ,  using the language of differential geometry. 

The aim of this work is to develop a simple, general geometric framework for 

generalized linear models, closely related to the thinking of Fienberg and Haberman. 

Whereas Kass and Vos developed a geometric view which leads to the usual scoring 

method, we develop geometry which leads to a new algorithm. A linearization of this 

new algorithm yields the scoring method. The geometry discussed by Kass and Vos 

is based on the log-likelihood function whereas the geometry developed here depends 

on sufficiency. 

In the geometry of generalized linear models, developed through chapters 1 to 

3, an observation with n values is viewed as a vector in Euclidian space Rn. This 

Euclidian space Rn is partitioned into two orthogonal spaces, the sufficiency space 

S and the auxiliary space A, with respect to a new basis. We focus on two mean 

sets relating to generalized linear models, one for the untransformed model space and 

another for the link-transformed model space. There are two critical properties of the 
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maximum likelihood estimate of the parameters of a generalized linear model with 

canonical link. The first property is that the coefficients of the basis of the sufficiency 

space, the sufficient statistics , are preserved in the untransformed model space in 

the fitting process. The second property is that the coefficients of the basis of the 

auxiliary space are zeroed in the link-transformed model space in the fitting process. 

Linear models and loglinear models serve as special cases of generalized linear models 

with identity and log link respectively. 

Based on the geometric framework discussed in the thesis, a new algorithm is 

constructed for fitting generalized linear models with canonical link in Chapter 4. This 

algorithm, which relies on sufficient statistics for the parameters in the model rather 

than the likelihood function, takes two projections alternately, orthogonal projection 

onto a sufficiency affine plane and non-orthogonal projection onto the transformed 

model space. In the process, we match the model space and sufficient statistics 

iteratively until convergence. Linearization of the new algorithm induces the scoring 

method. 

In Chapter 5 we pay special attention to a subset of loglinear models, graphical 

loglinear models, those which are the intersection of a finite set of conditional inde­

pendence statements. The model space of one conditional independence statement is 

described through the notions of "corresponding point convex hull" and "set convex 

hull" . The fitting of one conditional independence statement is considered geomet­

rically using a direct fitting method and the familiar iterative proportional fitting 

method. 
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