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Abstract

Current machine translation techniques were developed using predominantly rich resource lan-

guage pairs. However, there is a broader range of languages used in practice around the world.

For instance, machine translation between Finnish, Chinese and Russian is still not suitable for

high-quality communication. This dissertation focuses on building cross-lingual models to ad-

dress this issue. I aim to analyse the relationships between embeddings of different languages,

especially low-resource languages.

I investigate four phenomena that can improve the translation of low-resource languages.

The first study concentrates on the non-linearity of cross-lingual word embeddings. Cur-

rent approaches primarily focus on linear mapping between the word embeddings of different

languages. However, those approaches don’t seem to work as well with some language pairs,

mostly if the two languages belong to different language families, e.g. English and Chinese. I

hypothesise that linearity, which is often assumed in the geometric relationship between mono-

lingual word embeddings of different languages, may not hold for all language pairs. I focus

on investigating the relationship between word embeddings of languages in different language

families. I show that non-linearity can better describe the relationship in those language pairs

using multiple datasets.

The second study focuses on the unsupervised cross-lingual word embeddings for low-

resource languages. Conventional approach to constructing cross-lingual word embeddings

requires a large dictionary, which is hard to obtain for low-resource languages. I propose an

unsupervised approach to learning cross-lingual word embeddings for low-resource languages.

By incorporating kernel canonical correlation analysis, the proposed approach can better learn

high-quality cross-lingual word embeddings in an unsupervised scenario.

The third study investigates a dictionary augmentation technique for low-resource languages.
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A key challenge for constructing an accurately augmented dictionary is the high variance issue.

I propose a semi-supervised method that can bootstrap a small dictionary into a larger high-

quality dictionary.

The fourth study concentrates on the data insufficiency issue in speech translation. The

lack of training data availability for low-resource languages limits the performance of end-to-

end speech translation. I investigate the use of knowledge distillation to transfer knowledge

from the machine translation task to the speech translation task and propose a new training

methodology.

The results and analyses presented in this work show that a wide range of techniques can

address issues that arise with low-resource languages in the machine translation field. This

dissertation provides a deeper insight into understanding the word representations and structures

in low-resource translation and should aid future researchers to better utilise their translation

models.
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CHAPTER 1
Introduction

1.1 Machine Translation

Machine translation (MT) is a sub-field of natural language processing (NLP). It aims

to automatically translate language or speech from one to another without any manual

involvement (Yang et al., 2020a). The attainment of accurate machine translation has been

one of the primary objectives within the NLP field. It paves a path to fully establishing

the understanding of human language by artificial intelligence systems.

Machine translation has been under investigation since 1950s. Until 2010s, rule-based

machine translation (RBST) and statistical machine translation (SMT) dominated the

field (Forcada et al., 2011; Koehn et al., 2003). In recent years, neural machine trans-

lation (NMT) has become the primary research direction within the MT field (Cho et al.,

2014a).

1.1.1 Rule-based Machine Translation

Rule-based machine translation (RBST) was one of the initial approaches for MT. The

hypothesis of RBST is that most words in one language can find their corresponding

translated word (word with the same meaning) in another language. Based on this hy-

pothesis, the translation process of RBST can be seen as a replacement process: given

a sentence in one language, the translation could be achieved through a direct word-by-

word translation. Instead of directly translating a sentence word by word, the RBMT

additionally considers the syntax rules of different languages. For instance:

The lady has a blue hat.

La dama tiene un sombrero azul.

1
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These sentences are translated decently by considering the word syntax rules of two

languages. However, the weakness of RBST lies in its robustness. A translated sentence

with a correct syntax may not have a reasonable meaning. A famous example is given by

Bar-Hillel (1960) 1:

’The pen is in the box’

’The box is in the pen’

There is no difference in the syntax structure of those two sentences, but the first sen-

tence is more reasonable than the second one. This is because the word ’pen’ is a polyse-

mant and has multiple meanings, one of them also being ’fence’ in English. The inability

of computers to understand context, and thus have the ability to consistently make rea-

sonable translations using RBST, has rendered this approach insufficient.

1.1.2 Statistical Machine Translation

Statistical machine translation has played a significant role in MT over several decades. It

has been used widely and successfully across industry and real-world applications. SMT

aims to build a statistical model based on two parallel corpora. Given a source sentence S

and a target sentence T , the SMT model aims to maximise the probability of the correct

translation from S to T :

argmax
T

P(T |S) (1.1)

According to Bayes‘ rule, Equation 1.1 can be reformulated into:

argmax
T

P(S|T)P(S) (1.2)

In Equation 1.2, P(S) refers to the probability of a source sentence. In SMT, P(S) refers

to the "language model", which denotes the probability of a known (or fluent) source

sentence. The P(S|T) is the "translation model" in SMT, which indicates the probability

of the translation from S to T .

1.2 A Brief History of Neural Machine Translation

The Neural Machine Translation (NMT) model is the most popular model for MT. NMT

model provides robust and reliable translation results that are now at a level of quality
1 Yang et al. (2020a) claims that this example is provided by Marvin Minskey in 1966
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Figure 1: SMT model. The translation model and language model is trained by the parallel
corpora, and then the two models are used to decode a source sentence s into its target translation
sentence t̂.

sufficient enough to impact people’s everyday lives.

Earlier NMT models were encoder-decoder architectures based on recurrent neural net-

work (RNN). In this model, an RNN encoder encodes the input sentence into an interme-

diate representation, and the decoder decodes this intermediate representation to the tar-

get translation sentence (Cho et al., 2014a; Sutskever et al., 2014). The word embeddings

were first used in NMT models to represent words (Sutskever et al., 2014).

However, the key constraint of RNN-based models is their limitation at extracting long

dependencies of long sentences. This is because an RNN struggles to deal with the vanish-

ing gradient problem – when the number of time steps of an RNN increases, the gradient

becomes proportionally smaller, effectively preventing the weights update. Thus, the long

sentence translation had become a bottleneck in RNN-based NMT models. The attention-

based model is proposed to address the bottleneck. An attention-based model adds input

sequences’ positional information during its training process, helping the model extract

the sentence structure and long dependencies (Bahdanau et al., 2015).

Due to the success of the attention models, an increasing number of real-world trans-

lation applications have touched our daily lives. In order to be effective, NMT modes

require a large amount of data to obtain decent translation results, so a large and parallel

structure is required to model the data. However, there is another limitation of RNN: The

inner structure of RNN does not support parallel computing, which makes the computa-

tional cost of the RNN-based models expensive.

Nowadays, lower computational costs and faster computational speeds have become

more and more critical for NMT. Therefore, RNN-based models are not ideal for NMT

3
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Figure 2: A brief timeline of neural machine translation with key milestones. All of the models
are encoder-decoder-based-models.

systems. The Convolutional Neural Network (CNN)-based NMT models have been pro-

posed to mitigate the issue in RNN-based NMT structures (Gehring et al., 2017). There

are two advantages for modelling sentences using CNN: Firstly, the inner structure of

CNN is more suitable for parallel computing. Secondly, the CNN can be extended to

much larger input sizes to capture the long dependencies of sentences better.

Hence, CNN-based model has become popular in modelling sentences. Kalchbrenner

et al. (2016) used CNN to model sentences without any attention. (Bradbury et al., 2016)

tackle the issue for RNN by combining RNN and CNN together. (Gehring et al., 2017)

introduce attention in CNN-based NMT models to better extract the position information

in long sentences.

More recently, the transformer model has dominated the NMT models. Those models

are widely applied in a commercial setting. The transformer-based models depend only on

the attention mechanism (Vaswani et al., 2017), which offers the advantages of both CNN-

and RNN-based structures. Significantly, the transformer can handle a large amount of

data and effectively extract information from large corpora. Figure 2 shows the brief

historical progression and significant milestones in the evolution of NMT.

1.2.1 The Sequence-to-Sequence Model and the End-to-End NMT

The translation methods within MT can take different inputs and this is one of the key

differentiating factors between them. Some can take as inputs the entire document, a

paragraph or individual sentences.

End-to-end neural machine translation aims to directly learn the mapping between the

source sentence and the target sentence via neural networks. Given the success of this ap-

proach, NMT models rapidly superseded other conventional approaches in MT (Bahdanau
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et al., 2015; Kalchbrenner and Blunsom, 2013). This work focuses on sentence-level ma-

chine translation. Thus, the input of the NMT model is a sentence and the output is a

sentence. These NMT models are referred to as sequence-to-sequence models.

An important earlier work in modelling sentences is proposed by Cho et al. (2014b).

This work used the recurrent neural network (RNN) to model the time sequence informa-

tion. The encoder RNN encodes the input word sequence into a fixed length represen-

tation, and another decoder RNN, decodes this representation (which is the last hidden

state of the encoder RNN) into the target sequence. However, this approach suffered

from a weakness whereby RNN can not model long sequences with the effect of mak-

ing it unreliable for translating long sentences (Sutskever et al., 2014). Sutskever et al.

(2014) extended the initial approach to RNN with Long-Short-Term-Memory (LSTM)

units, which improved the ability to handle long sequence information.

In their work, given a sentence X = (x1, x2, ..., xT ), the encoder RNN was used to esti-

mate the probability of P(y1,y2, ...,yT |x2, ..., xS). Where Y ′ = (y1, ...,y ′T ) is the output of

the RNN. During training, the sequence model first receives the last hidden state h of the

encoder RNN and uses h to compute the conditional probability of P(y1,y2, ...,yT |x2, ..., xS)

with a following language modelling process:

P(y1,y2, ...,yT |x2, ..., xS) =
T∏
t=1

P(yt|y1, ...,yt−1,h) (1.3)

In Equation 1.3, each component P(yt) is modelled by a unit of RNN (or the LSTM-

based RNN). A significant feature of this work is the modelling process. Each sentence

must end with a same symbol <EOS>, which enables the sequence-to-sequence-model

to recognise the length of the sentence. For example, a sentence ’The price of this book

<EOS>’ is first encoded by the encoder RNN, and then the decoder RNN decodes this

into ’El precio de este libro <EOS>’. This method was found to be effective at translation

performance by Sutskever et al. (2014) and is illustrated in Figure 3.

1.2.2 Encoder-Decoder Model with Attention

RNN-based models suffer a limitation from the length of the sequence because the encoder-

decoder-based models compress the whole input sequence into a simple representation

which is the last hidden state of the encoder RNN. Therefore, the performance for trans-

lating long sentences has been an issue for sequence to sequence models. Bahdanau et al.

(2015) extend the traditional RNN-based approach to a new sequence-to-sequence struc-
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Figure 3: An example of sequence to sequence model for MT. The input word sequence is initially
encoded by the Encoder RNN to an intermediate representation h, then the decoder RNN decodes
h into the output sequence o1, .... The model is trained by minimising the distance between o1, ...
and y1, ... using a criterion like maximum likelihood estimation (MLE).

ture called the Attention-based model. Now, instead of using only the last hidden state,

each hidden state hi of the encoder is used. An attention ct is calculated when decoding

as follows:

p(yt|y1, ...,yt−1) = f(yt−1, st, ct) (1.4)

where st is the corresponding hidden state of decoder RNN. The st is calculated by Equa-

tion 1.5:

st = f(st−1,yt−1, ct) (1.5)

The attention ct is a weighted distribution of the hidden states of the encoder defined as:

ct =

S∑
s=1

astht (1.6)

where ast are the weight parameters of the each input token of the source sentence. The

weight ast is a measure of normalised similarity between the current decoding time step

and each encoding time step:

ast =
exp(est)∑S
k=1 esk

(1.7)
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Figure 4: The architecture of attention-based encoder-decoder model. In each time step t of
decoder RNN, the hidden state st is calculated using Equation 1.5. Each output Ot is supervised
by the corresponding target token yt.

where est is an similarity measure between the similarity of the hidden state of time step

t and the hidden state of encoder’s time step s. Bahdanau et al. (2015) parameterise the

est as a neural network λ to measure this similarity as:

est = λ(hs,ht) (1.8)

Equation 1.8 is also called the alignment model which measures the condition between the

source input and the target. Figure 4 summarises the attention model. With the attention

paradigm, each time step in the decoding process is additionally evaluated by a weighted

sum of the encoder inputs, which reflects the importance of each input to the current

output.

In addition, there are two types of attentions, soft attention and hard attention described
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Figure 5: Transformer architecture.

by Luong et al. (2015). The hard attention is the attention described before. The soft

attention method only uses small groups of positions in the encoder, instead of using all

of the encoder hidden layers to calculate the attention.

1.2.3 Transformer

Transformer, proposed by Vaswani et al. (2017), is an essential technique for NMT use

nowadays in both academia and industry. The transformer is appealing because of its

simplicity and efficiency compared to the traditional RNN-based models.

The high computational cost limits the traditional RNN-based models. This limitation

becomes a critical shortcoming when the data size increases, making it hard to deploy the

RNN-based model into a parallel training strategy like CNN. Inspired by the attention-

based models, Vaswani et al. (2017) propose the Transformer model, which eliminates

the recurrent model and instead is only based on attention mechanisms to describe the

mapping between the source and target sentences.

As illustrated in Figure 5, transformer is still an encoder-decoder model. The encoder

encodes the input embeddings into some intermediate representation and the decoder de-

codes it into the target language. The model is connected with normalisation layers and
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attention layers. The addition of attention in the transformer mechanism has also been

recently proposed and termed as multi-head self-attention mechanism or self attention for

simplicity.

In this approach, the encoder is an N stack of identical layers. For each layer, there

are two sub-layers. One sub-layer is the self attention, and the other sub-layer is a simple

feed-forward neural network. Each sub-layer has a residual connection (He et al., 2016).

The residual connection can be represented as:

output = x+ sublayer(x) (1.9)

The above means that the output of the layer is the sum of the sub-layer x’s output and

the input itself. Each sub-layer is fully connected with a normalisation layer. The decoder

consists of aN stack of identical blocks. Each block consist of three sub-layers. One sub-

layer is a self-attention layer, another is a multi-head attention layer, while the remaining

one is a feed-forward neural network. Similar to the encoder, each sub-layer is fully

connected with a normalisation layer and residual connection is applied.

The self-attention is a concatenation of multiple scaled-dot-product-attentions. The

input of scaled-dot-product-attentions consists of queriesQ, keys K, and values V . Given

this input < Q,K,V >, this attention is calculated by:

attention (Q,K,V) = softmax

(
QKᵀ +M√

dk
V

)
(1.10)

where d is the dimension of the key value K. For translation tasks,Q and K are identical,

which are input tokens. The V are the corresponding target tokens. The mask matrix M

is the padding mask which avoids the sequence pad information involved in the training

procedure. Figure 6 illustrates the scaled dot-product attention. If we concatenate mul-

tiple attentions, we use Equation 1.10, from which the output is the multi-head attention

described in Figure 7.

With the nature of parallel modelling, transformer trains much faster than traditional

RNN-based sequence models. Additionally, and surprisingly, the performance of the

transformer is much better than previous modelling approaches. Therefore, transformer

is widely used in many areas. In Chapter 6, this model is applied in conjunction with my

proposed method in this study.
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Figure 6: An example of a scaled dot-product attention.

Figure 7: A multi-head attention is a concatenation of multiple scaled dot-product attentions.

10
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Figure 8: Unsupervised neural machine translation model.

1.3 Unsupervised Neural Machine Translation and Cross-lingual Word
Embeddings

A critical bottleneck of NMT in recent years has been data insufficiency. This has es-

pecially been the case for low-resource language pairs when the parallel data is hard to

obtain. Therefore, some research efforts have focused on mitigating this issue. One partic-

ular research direction for tackling this challenge is called unsupervised neural machine

translation (UNMT). UNMT aims to translate languages based solely on monolingual

corpora. Artetxe et al. (2018c) demonstrates one of the earliest attempts to implement

UNMT showing that a reasonable translation performance is possible.

UNMT uses an essential technique called cross-lingual word embedding methods, which

maps monolingual word embeddings into a shared feature space. The obtained word rep-

resentation is cross-lingual word embedding that enables knowledge transfer to take place

via the shared feature space and significantly helps UNMT provide competitive transla-

tion results. Section 3.1 introduces this approach in detail. As shown in Figure 8, UNMT

has one shared encoder and two separate decoders. Each pair of encoder and decoder is

an RNN Encoder-Decoder model with attention, which I describe in greater detail in Sec-

tion 1.2.2. Instead of word sequences, the input of this model are fixed-size cross-lingual

word embeddings.

The training process consists of two parts: denoised auto-encoding and back transla-

tion. The denoised auto-encoding process feeds the system with noisy input and tries

to reconstruct the original sentence. For instance, given a sentence from language L1,

the model first shuffles the input sentence, and then attempts to reconstruct the sentence

into the original order using the shared encoder and L1 decoder. There are many noise-
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inducing strategies such as re-ordering of the words from input sentence; word deletions

or words-swapping. During the training process, all of those strategies are applied ran-

domly onto the input sentences.

Back-translation is a data augmentation method dealing with language pairs in the pres-

ence of inadequate data (Sennrich et al., 2016). In an UNMT model, the back-translation

serves as a training task, which can be divided into three steps:

1. The inference mode of the shared encoder and L2 decoder is used to translate a

source sentence into a pseudo translation. The source sentence and the generated

pseudo translation in target language together are called pseudo-translated sentence

pairs.

2. The pseudo translation is feed into the shared encoder and L2 decoder in training

mode, aiming to translate it into the source sentence.

3. A new language pair is generated: The pseudo translation and the source sentence.

This sentence pair can then be further used to train the shared encoder and L1

decoder system.

During the training process of UNMT, a source sentence S from the language L1 is

first translated into a target sentence T̂ in the language L2 using the inference mode of

the shared encoder and L2 decoder, then the shared encoder and L1 decoder are used to

translate T̂ to S. Figure 9 illustrates this process.

During the training process, the mini-batches of sentence data are used to train two

objectives described before in an alternative fashion: de-noising and back translation.

The training process of UNMT can be separated into four steps:

1. The L1 de-noising. The sentence mini-batches of L1 language is used to train the

shared encoder and L1 decoder with the de-noising task I described before.

2. The L2 de-noising.The sentence mini-batches of L2 language is used to train the

shared encoder and L1 decoder with the de-noising task.

3. Back-translate the sentences from L1 to L2.

4. Back-translate the sentences from L2 to L1.

Those four steps are trained iteratively until the model converges.

12
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Figure 9: Back-translation process.

1.3.1 Challenges with UNMT

Performance is a key challenge for UNMT when using cross-lingual word embeddings.

The accuracy of the cross-lingual word embeddings has a tendency to be weaker than

expected under certain specific circumstances. These circumstances are as follows:

• Learning cross-lingual word embeddings for languages in different language

families. Currently proposed cross-lingual word embeddings are mostly linear-

mapping-based methods. These kinds of methods follow a key assumption, which

is that words with similar meanings should share similar geometric arrangements

between their monolingual word embeddings. This suggests that there is a linear

relationship between languages. However, this assumption does not hold for all

language pairs, especially for those word pairs in different language families like

English-Chinese or English-Finnish.

• Learning cross-lingual word embeddings for low-resource languages. Current

word embeddings approaches require large parallel dictionaries as training data to

obtain reasonable results. However, those dictionaries are hard to obtain for low-

resource languages. This challenge makes it even harder to learn cross-lingual word

embeddings in low-resource languages.
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Some language pairs have both of those challenges (e.g., English-Finnish), which makes

the performance of the cross-lingual word embeddings worse than that of the rich-resource

language pairs.

1.4 The End-to-End Speech Translation

Speech Translation (ST) is a process of directly translating from spoken language into text

of another language. ST research dates back to 1990s, starting with the loosely coupled

models, which then moved to end-to-end models in recent years. ST has a wide range of

applications like travel assistance (Takezawa et al., 1998), video sub-titling (Saboo and

Baumann, 2019) and lesson translation (Fügen, 2009).

1.4.1 The Cascaded Model

The cascaded model was the only model in existence for speech translation until last

decade. In a cascaded model, an Automatic Speech Recognition (ASR) model and an

MT model are separately built and trained. Then the best result of an ASR model is used

as the input to the MT model. Earlier cascaded models had deficiencies where the ASR

model and the MT model were trained on different modality data. This posed an error

propagation issue since the output of the ASR would generate high levels of noise for

the MT system (Ruiz and Federico, 2014). Therefore, in recent years research focus has

turned to end-to-end models.

1.4.2 The End-to-End Model

Due to the success of the end-to-end MT models, the end-to-end ST approaches have

gained numerous research interests because both the ST and MT models have a similar

inner time and sequence structure. Therefore, there are some studies that attempted to

directly use the end-to-end MT models to run the ST tasks. Berard et al. (2016) adapt the

attention-based MT model to ST tasks and achieve reasonable results; Bérard et al. (2018)

extend the end-to-end model to a convolutional encoder in order to better extract the

voice features. Wang et al. (2020) adapt the state-of-the-art model of MT, the transformer

model, to ST tasks and gain a competitive result compared to cascaded models.

My work considers the end-to-end ST as a sub-field of NMT for three reasons:

1. It can be observed that the timeline of end-to-end ST model is similar with that of

NMT.
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Figure 10: The end-to-end speech translation research area.

2. The nature of NMT and end-to-end ST have both similar time sequence data and

language translation tasks.

3. The research direction of NMT and end-to-end ST are similar in design structure.

Transformer is the popular structure for both end-to-end MT and end-to-end ST

models.

I illustrate an overview of my field of research in this study in Figure 10. Chapter. 6

discusses these models in detail.

1.4.3 Challenges with End-to-End ST

The main challenge of end-to-end ST is data insufficiency. The speech and its corre-

sponding translated texts are difficult to obtain. The data scarcity issues lead to an im-

mense challenge in translating from speech to text, comparing to text-to-text translation,

as performed by the standard MT task. Therefore an important research direction for end-

to-end ST is transferring knowledge from the MT task to the ST task (Gaido et al., 2020a;

Liu et al., 2019). Additional alternative research direction aiming to alleviate this issue is

different data augmentation (Park et al., 2019).
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1.5 Contributions

I make four key contributions in this dissertation:

1. I investigated the non-linearity in cross-lingual word embeddings. The investi-

gation includes developing cross-lingual word embedding for languages within the

same language families and different language families. Non-linearity can better

describe the relationship between languages than linear approaches. I also provided

the English-Chinese dataset with pre-trained word embeddings, a dictionary, and

corresponding cross-lingual word embeddings.

2. I demonstrated how to improve the performance of low-resource cross-lingual

word embeddings. I propose a novel non-linearity-based unsupervised cross-lingual

word embedding approach, which learns cross-lingual word embeddings without

guidance from dictionaries. Principally, I provide a further non-linear mapping

in the current unsupervised cross-lingual word embedding approach. The learned

mapping can improve the performance of the cross-lingual word embeddings learned

by unsupervised methods, especially the cross-lingual word embeddings of low-

resource languages.

3. I developed the ensemble method in cross-lingual word embeddings. The inves-

tigation consists of two aspects. First, the approach of combining both linear and

non-linear methods demonstrates that the proposed ensemble method provides a ro-

bust and improved result. Secondly, I further extend the ensemble method to a new

word consistency-based strategy, extracting information more effectively through

different systems and ultimately achieve better word translation results.

4. I investigated how to more effectively transfer knowledge from an MT model

to a ST model. I propose a mutual-learning scenario where knowledge transfer

takes place in both directions (as opposed to one directional knowledge transfer

in traditional knowledge distillation approaches). My work finds that ST can learn

knowledge from MT, and vice-versa, utilising the proposed approach, MT can learn

knowledge from the ST model effectively. The experiments demonstrate that the

proposed approach is more beneficial for translation performance than the currently

popular teacher-student models.
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1.6 Dissertation Structure

The dissertation is composed of seven themed chapters.

• Chapter 1: This chapter describes the fundamental theory of machine translation

and its related topics.

• Chapter 2: This chapter contains the general explanation and definitions within my

field, covering deep learning, NLP and word representation technologies.

• Chapter 3: This chapter describes my work published in the 12th Language Re-

sources and Evaluation Conference (LREC 2020) (Zhao and Gilman, 2020). In

this chapter, I give a detailed review of mapping-based cross-lingual word embed-

ding methods. I describe my investigation of non-linearity to cross-lingual word

embeddings and provide corresponding experiments.

• Chapter 4: I present my proposed approach: non-linearity based unsupervised

cross-lingual word embedding. I describe the pipeline of the general unsupervised

method and that of my proposed strategy. I give the corresponding analysis and

experimental details2. The work in this chapter is submitted to ACM Transactions

on Asian and Low-Resource Language Information Processing (TALLIP) and it is

under review.

• Chapter 5: Here, I provide findings into the feasibility of ensembling linear and

non-linear methods. I define a new concept: word consistency, and provide a

word consistency-based method together with its corresponding experiments and

results. The work in this chapter is preparing to submit to 2021 Annual Confer-

ence of the North American Chapter of the Association for Computational Linguis-

tics (NAACL2021) and it is under review.

• Chapter 6: In this chapter, I present my proposed approach: mutual learning

improves end-to-end speech translation. I introduce the pipeline of the cascaded

and the end-to-end speech translation. I describe my investigation of the mutual-

learning-based speech translation. Also, I give the corresponding analysis and ex-
2Covid-19 emerged during my scholarly visit to Spain. The border of New Zealand was closed, so I

could only go back to China. The host institute in Spain and Massey University shut down during this pe-
riod. I had limited access to my data and could not fully incorporate the En-Zh dataset into the experiments
in Chapters 4 and 5 as planned. However, this does not impact the corresponding research conclusions.
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perimental results. This work is published in 2021 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP 2021) (Zhao et al., 2021b)

• Chapter 7: I conclude this dissertation by summarising all my work and discussing

future research directions arising from my study.
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CHAPTER 2
Background and Theoretical

Foundations

This chapter describes related work in the areas of machine learning, deep learning, neural

networks, language modelling and word embedding methods. It also discusses current

dominant technologies in language modelling and word embedding research.

2.1 Machine Learning

Machine learning can be defined as an algorithm that can learn how to perform a cer-

tain task from example data (Goodfellow et al., 2016). Applications driven by machine

learning algorithms greatly influence many aspects of our life, from social networks to e-

commerce. Its presence grows increasingly in human-machine interaction through smart

devices like smartphones and computers.

Machine learning has three key concepts: a task T , an experience E, and a performance

measure P. Machine learning aims to improve T ’s performance P through some experi-

ence E (Mitchell et al., 1997).

Generally speaking, machine learning algorithms can be categorised into those that

use supervised and unsupervised learning. A critical difference between them is whether

labelled data is required.

A supervised learning algorithm is a learning algorithm that requires both input and the

corresponding output, so that it can be trained in a supervised manner. For instance, an

image classification task could aim to classify whether an image is of a dog or a cat. The

input is an image and the associated output are two classes: ’dog’ or ’cat’. Another ex-

ample of supervised learning is NMT. For supervised NMT tasks (e.g. English translated

to Spanish), the input of an NMT system is a sentence from the source language, e.g.:
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Figure 11: A neuron of a neural network.

I like to play basketball.

and the associated output is a sentence in target language with the same meaning:

Me encanta jugar baloncesto.

An NMT system learns through a corpora, consisting of billions of those sentence pairs.

My proposed methods: the non-linear cross-lingual word embedding method, ensemble-

based cross-lingual word embedding method and mutual-learning ST method (see Chap-

ter 3, 5 and 6) can be considered as supervised algorithms.

Unlike supervised learning algorithms, unsupervised learning algorithms attempt to

learn knowledge from only inputs without any corresponding outputs. As a general con-

cept, unsupervised learning refers to learning algorithms that do not require manually

annotated training data (Goodfellow et al., 2016). Typical unsupervised learning algo-

rithms are principal components analysis (PCA) and k-means clustering. The UNMT and

my proposed unsupervised cross-lingual word embeddings (see Chapter 4) can be seen as

unsupervised learning algorithms.

2.2 Neural Networks

Neural networks, in particular ones labelled as ’deep learning’ (LeCun et al., 2015), are

an essential component of NMT systems. This section briefly introduces neural networks.

A neuron is the basis of a neural network. As shown in Figure 11, the input feature

vector x is linearly mapped before an activation function σ is applied to produce the

output vector y:

y = σ(wᵀx+ b) (2.1)

where w are the weights of each input feature and b are their corresponding biases. The

activation function is generally non-linear and some popular functions are Sigmoid (see
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Figure 12: The structure of a fully-connected feed-forward neural network.

Equation 2.2) and ReLU (see Equation 2.3) (Ergen and Pilanci, 2021).

σ(x) =
1

1+ e−x
(2.2)

σ(x) = max(0, x) (2.3)

Rectified Linear Unit activation function, also called ReLU, is a function of choice in

almost all recent architectures, as it helps to deal with vanishing gradients issue (Lu

et al., 2019): the gradients gradually become smaller and smaller as they are propagating

through multiple network layers during training and hence weight updates tend to zero,

making training extremely slow or even stall completely. This issue happens more often

when dealing with time sequence data like sentences and voice sequences in MT and ST

tasks. This activation function is used more often in current MT and ST tasks.

A basic neural network architecture, the so-called multi-layered perceptron (MLP),

consists of three components: the input, hidden, and output layers. The first layer of a

neural network is input layer. An output layer is the last layer of a neural network, and

other layers between the input and output layers are hidden layers. An MLP may have

multiple hidden layers. This network is fully connected, i.e. every neuron in a layer is

connected (i.e. takes input from) with every neuron in the previous layer (see Figure 12).
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Figure 13: The structure of a recurrent neural network.

2.2.1 Recurrent Neural Network

Recurrent Neural Networks (RNN) is naturally a better fit for modelling sequence data

than feed-forward networks due to their sequential nature. As shown in Figure 13, during

each time step, an RNN cell/neuron operates on an element of the input sequence, as

well as its own hidden state–this hidden state is the major difference to a fully-connected

feed-forward network.

A critical challenge for RNNs is handling long dependencies. When an input sequence

is too long (e.g. a long sentence or a long voice feature sequence), the gradients in the

back-propagation process may either vanish or explode (Goodfellow et al., 2016). Sev-

eral variants of RNN were proposed to address this issue. The most successful variants

are Long-Short-Term-Memory (LSTM)-based RNN (Hochreiter and Schmidhuber, 1997)

and Gated Recurrent Unit (GRU)-based RNN (Chung et al., 2014).

As discussed in the previous chapter, RNNs are a popular choice in modelling MT and

ST tasks. However, RNN-based models can not be easily sped-up through parallelisation,

due to their sequential computation (time-steps) nature. Thus, the current models for MT

and ST tasks are transformer-based models (see Section 1.2.3).

2.2.2 Other Variants of Neural Networks

Many other neural networks are used in the deep learning field, like Recursive Neural

Networks (Guo et al., 2019), Convolutional Neural Networks (CNN) (LeCun et al., 1995),

Spiking Neural Networks (SNN) (Ghosh-Dastidar and Adeli, 2009), Transformer (Vaswani

et al., 2017), etc.
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2.3 Language Modelling

Language modelling aims to estimate the probability of a sequence of words in a sentence,

and it is fundamental for many NLP tasks. For example, a language model (LM) can learn

word representations (Bengio et al., 2003) or serve as initialisation of other downstream

tasks like MT, NLI and NLU (Devlin et al., 2019). In fact, neural machine translation can

be seen as a direct extension of neural language modelling (see Section 2.3.2).

2.3.1 The N-gram Model

The N-gram model is a conventional method for learning LM. It performs a sliding win-

dow operation of size N over words in a text, forming sequences of word fragments of

length N.

Given a sentence with length m from a corpus: S = (w1,w2, ...,wm), where wi is a

word in this sentence, the probability of S can be estimated as P(S) = P(w1,w2, ...,wm).

According to Bayes’ rule, P(S) can be reformulated as:

P(w1,w2, ...,wm) = P(w1)P(w2|w1)P(w3|w1,w2)...P(wm|w1,w2, ...wm) (2.4)

However, using Equation 2.4 to calculate long sentence probability is complicated and

expensive. A common assumption used to simplify this is: a word is related to only n

previous words:

P(w1,w2, ...,wm) =
M∏
i=1

P(wi|wi−1,wi−2, ..wi−(n−1)) (2.5)

For instance, when n = 2, Equation 2.5 turns into:

P(w1,w2, ...,wm) =
M∏
i=1

P(wi|wi−1) (2.6)

and represents the bi-gram model.

The N-gram model is widely used in statistical methods for natural language process-

ing, for instance, statistical machine translation, speech recognition and text classification

(Liu and Yin, 2020; Koehn, 2009; Jelinek, 1997).

2.3.2 Neural Language Modelling

Neural Language Modelling (NLM) is effectively a combination of neural networks and

LM. Bengio et al. (2003) was the first to propose NLM, which uses a feed-forward neural
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Figure 14: Neural language model. The context words with one-hot vector form are first mapped
to word embedding vectors through a look-up table, then the word embeddings are used as input
to predict the next word.

network to predict the next word using previous n words.

For example, given a context word sequence (wi−4,wi−3,wi−2,wi−1), neural lan-

guage modelling aims to predict the next word wi of this context word sequence. As

illustrated in Figure 14, the words are represented as one-hot vectors. First, those vec-

tors are mapped into a continuous representation called word embedding by multiplying

them by the word embedding matrix. Subsequently, the word embeddings serve as the

input to a feed-forward neural network that predicts the next word wi of the context se-

quence. During training, the aim is to learn model parameters θ of f(wi−1, ...,wi−n+1; θ)

by minimising the log-likelihood:

L =
1

m

∑
i

log f(wi, ...,wi−n+1; θ) (2.7)

where f is a feed-forward neural network that maps the previousn context words in a word

sequence to the current wordwi andm is the length of the word sequence. Subsequently,

word embedding matrix can be seen as the part of the parameter set and also optimised as

a part of θ.

An exciting finding of this work is a new way to represent words. The result of multi-

plying a one-hot vector and the word embedding matrix can be seen as a word representa-

tion, often called word embeddings (words embedded in a vector space). These new word

representations, learnt by the NLM task are more effective than simple one-hot encoding

and have since been widely adopted in many NLP applications.

An alternative neural network architecture frequently used for NLM is the recurrent

neural network. The advantage of an RNN over a feed-forward neural network is that the
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Figure 15: Training process of the RNN neural language model at time step four with an input
sentence ’I like to play football’. The input of the RNN is one-hot vector representation of words
in the input sequence. The target y is also a one hot representation. In each time step, RNN
calculates the probability distribution of the next word.

RNN can model text sequences of any length. As illustrated in Figure 15, in each time

step of RNN, the input word wn−1 is used to predict its following word wn.

Interestingly, when predicting the next word of a sentence using an RNN, the hidden

layers of the RNN are able to ’remember’ information from all the previous steps. The last

hidden layer of RNN can be considered to be a compressed representation of the sentence

up to this point and used in downstream tasks, such as neural machine translation (that

was introduced in Chapter 1).

2.4 Word Representation

Word representation is a foundation of most NLP related tasks like MT, natural language

inference (NLI) and natural language understanding (NLU) (Devlin et al., 2019).
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2.4.1 One-hot Vector Representation

One-hot word representation often serves as the original input of an NLP model, turning

words into digital numbers in the first place. Specifically, a word is represented by a

dictionary-length vector. In this vector, the word’s corresponding index in the dictionary

is 1, and the remaining elements are 0. For example, given a corpora consisting of two

documents:

(a) Luke likes to play tennis. Mike likes to play tennis, too.

(b) Mikel likes to watch movies.

First a list of unique words is composed (the vocabulary). Each word can now be rep-

resented by its index in the vocabulary list, e.g. { ’Luke’:1, ’likes’:2, ’to’:3, ’play’:4,

’tennis’:5, ’Mike’:6, ’also’:7, ’too’:8, ’Mikel’:9, ’watch’:10, ’movies’:11 }. One-hot vec-

tor encoding of these indices now serves as the word representation e.g. the word ’Luke’

is represented by:

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Thus, document (b) can be represented by a matrix (where rows are word embeddings

that represent the words):


0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

 (2.8)

It can be observed that when the vocabulary of a corpus grows larger, the computational

complexity of working with these word representations grows exponentially, making it

difficult to use one-hot vector representation for large corpora.

2.4.2 Distributed Word Representation

Word embedding approaches started with an unexpected but exciting intermediate repre-

sentation that came out of a language modelling task proposed by Bengio et al. (2003).

This intermediate representation of a neural network helps represent words (Bengio et al.,

2003).

Inspired by Bengio et al. (2003), many neural network-based models were proposed

to learn word embeddings. The most successful work was conducted by Mikolov et al.

(2013b), which is called word2vec. Word2vec serves as one of the fundamental technolo-

gies used in the work described in Chapters 3, 4 and 5.
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Compared to traditional one-hot vector representation, the distributed representation

method has advantages:

1. Word embeddings are dense representations. Typical word representation methods,

e.g. one-hot vector representation, represent words in a much higher dimensional

space, making them impractical when dealing with large corpora.

2. Words with similar meanings are expected to have similar word embeddings - the

relationship among embedding pairs can be leveraged to qualify syntactic and se-

mantic relationships. This unique property allows us to measure word analogy

effectively.

Word2vec consists of two alternative models to learn the word embeddings, which are

called skip-gram model and continuous bag-of-words model (or CBOW in short).

Skip-gram model aims to learn a word’s representation by predicting its surrounding

words. As illustrated in Figure 16, one-hot representation of a wordwi is used as an input

and the objective is to predict its surrounding words (wi−2,wi−1,wi+1,wi+2). After

training the skip-gram model, the mapping matrix M ∈ RV×N between the input layer

and the hidden layer will serve as a word embedding matrix, where the ith entry of theM

represents the ith word.

CBOW model aims to learn a word embedding by predicting a word from its sur-

rounding words. Therefore in contrast with skip-gram model, the input is a specific word

wi’s surrounding words (wi−2,wi−1,wi+1,wi+2) and the wi is the target. Figure 16 il-

lustrates the CBOW model.

Both Skip-gram model and CBOW model are called word2vec. Word2vec is better

than the previous methods because:

• It belongs to the unsupervised learning paradigm. To learn word embeddings using

this method, no labelled data is required - just a monolingual corpora.

• Word analogies can be evaluated by vector arithmetic.

Mikolov et al. (2013b) give a famous example to exhibit word2vec’s property: Sub-

tracting the embedding that represents word ‘man’ from ‘king’ and adding an embedding

that represents the word ‘woman’ results in a vector whose nearest neighbour is an em-

bedding that represents the word ‘queen’:
−−−→
king−−−−→man+−−−−−→woman ≈ −−−−→queen
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Figure 16: Skip-gram model and CBOW model.

which suggests that word meaning is learnt from its context and can ‘be compared’ math-

ematically. It has been shown that if those learnt word embeddings are projected into a

two-dimensional space using some dimensionality reduction methods (e.g. PCA), words

with similar meanings share similar geometric arrangements (Mikolov et al., 2013a).

This finding is the underpinning concept of cross-lingual word embedding methods, and

I will further discuss it in the next chapter. The success of word2vec has driven the dis-

tributed representation of words to become the most effective method to represent words.

Global Vectors for Word Representation (GloVe) is an important improvement on

word2vec (Pennington et al., 2014). One of the word2vec model’s weaknesses is its

failure to extract global information from the context (Liu et al., 2020). GloVe captures

word features directly from the overall corpus statistics, which can better extract global

information.

Embeddings from Language Models (ELMo) is another popular word representation

method (Peters et al., 2018). It addresses two key challenges in representing words:

1. It is difficult to capture high quality word representation that contains syntax and

sentiment information

2. Adapting the word representation to various tasks in NLP is difficult.

ELMo model addresses these issues by learning knowledge from language modelling

tasks.
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2.4.3 Transformer-based Models

Thanks to the recent success of transformers, some new word embedding methods have

been proposed. The most successful model is proposed by Devlin et al. (2019) and is

called Bidirectional Encoder Representations from Transformers (BERT). It is also a

representation learning method through language modelling. Through pre-training using a

modified language modelling task, the word embedding matrix learnt by the transformer

can more effectively represent the words and obtain better performance in downstream

tasks.

Inspired by pre-trained transformer models, many similar works are proposed like

GPT2 (Radford et al., 2019). Nowadays, the word representation approaches are turn-

ing towards higher integration with downstream tasks. However, pre-train models are

criticised by their expensive cost and complicated structure (Dickson, 2020). The future

of learning word representations can benefit from the light and cheap models.
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CHAPTER 3
Non-Linearity in Cross-Lingual Word

Embeddings

3.1 Introduction

Word2vec has gained numerous successes in many NLP tasks. The word embeddings

learnt from a monolingual corpus are also called monolingual word embeddings. Mono-

lingual word embeddings widely serve as features in many NLP tasks such as machine

translation and text classification (Bengio et al., 2003).

Mikolov et al. (2013a) made an important observation: monolingual word embeddings

constructed from different languages have similar relative geometric arrangements for the

embeddings that represent similar concepts in the different languages (Mikolov et al.,

2013a). This finding makes it possible to find a transformation to map word embeddings

in different feature spaces (constructed from different languages independently) into a

shared feature space. The projected vectors are called cross-lingual word embeddings.

Compared to monolingual word embeddings, cross-lingual word embeddings poses a bet-

ter representation ability when applied in cross-lingual tasks, due to two advantages:

1. Cross-lingual word embeddings enable us to compare the contextual usage of words

from different languages. This is the key to NLP tasks like machine translation and

bilingual lexicon induction.

2. Cross-lingual word embeddings allow one to transfer knowledge between languages.

For instance, through the use of cross-lingual word embeddings one is able to trans-

fer knowledge from a high-resource language to a low-resource language. This

ability is important to knowledge transfer tasks like unsupervised neural machine

translation (Artetxe et al., 2017).
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Recent works on cross-lingual word embeddings have been mainly focused on linear-

mapping-based approaches, where pre-trained monolingual word embeddings are mapped

into a shared vector space using a linear transformation. The linear-mapping-based ap-

proaches follow a key assumption, first stated by Mikolov et al. (2013a): The monolin-

gual word embeddings in different languages are expected to share similar geometric

arrangements, in terms of the relative location of words that represent similar con-

cepts (in different languages). This assumption suggests that there is a linear relationship

between those word embeddings in different languages. However, this assumption may

not hold for all language pairs across all semantic concepts.

This chapter investigates whether the non-linear mapping can better describe the re-

lationship between different languages by utilising Kernel Canonical Correlation Analy-

sis (KCCA) and Deep Canonical Correlation Analysis (DCCA). I formally define cross-

lingual word embeddings and describe the pipeline used to construct them; then, I discuss

my proposed approach. I explain my experiments and experimental results, which show

an improvement over the current state-of-the-art in both supervised and self-learning sce-

narios, confirming that the use of a non-linear mapping can be a better alternative to

describe the relationship between languages.

3.2 Description of Notation

This section introduces several key concepts in cross-lingual word embeddings. But first,

I outline the notation used to describe the concepts. Table 3.1 summarises the notation

used throughout this chapter.

Vs and Vt represent the vocabularies of the source and target languages, respectively,

with Ñs and Ñt words each. A matrix whose rows are word embeddings is referred to as

the word embedding matrix. The word embedding matrix of the source vocabulary is

denoted by X̃s ∈ RÑs×ds , in which each row is a word embedding representing one word

from the source vocabulary. Similarly, the word embedding matrix of the target language

is denoted by X̃t ⊂ RÑt×dt . The dimension of the source and target word embeddings

are denoted by ds and dt.

A bilingual dictionary D is two ordered lists of words, where for each word in the first

list, a word with the same index in the second list is its target language translation. A

sample dictionary is shown in Figure 17. From this dictionary, the source and target word

translations can obtained. Then the two word embedding matrices Xs ⊂ X̃s and Xt ⊂ X̃t
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Figure 17: A visual representation of the concepts used in this chapter. Vs is the vocabulary of
the source corpus. The X̃s is the word embedding matrix of the vocabulary. Each row of word
embedding matrix X̃s is a word vector representing a word in the vocabulary. Given a bilingual
dictionary D, the source words of the dictionary are used to formulate a word embedding matrix
Xs ∈ X̃s. Each row of Xs is a word embedding representing a source language word from the
dictionary.

can be formed. Each row of Xs or Xt represents its corresponding word in the given

dictionary. The relationships between X̃s, X̃t, Xs and Xt are illustrated in Figure 17.

3.3 Related Work: Mapping-based Approaches

One type of cross-lingual word embedding approaches, popular because of its simplicity,

is the mapping-based approach. It maps pre-trained monolingual word embeddings into

a shared vector space using a transformation (Artetxe et al., 2018a, 2016; Faruqui and

Dyer, 2014; Mikolov et al., 2013a). Existing methods are based on a key assumption:

embeddings of words with similar concept in different languages share similar geometric

arrangements (Mikolov et al., 2013a), which suggest that there is a linear relationship

between the word embeddings representing similar concepts in different languages. Fig-

ure 18 illustrates this approach, where the dimensions of the word embeddings have been

reduced to two for visualisation purposes. It can be observed that the word embeddings
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Table 3.1: Used notations of the cross-lingual word embeddings.

Symbol Meaning
s Source language
t Target language
Vs Vocabulary of the source language
Vt Vocabulary of the target language
D Bilingual dictionary of the source and target language
x Word embedding
ds Dimensionality of source language word embeddings
dt Dimensionality of target language word embeddings
Ñs Source language vocabulary size
Ñt Target language vocabulary size
Ns Source language dictionary size
Nt Target language dictionary size
X̃s Source language vocabulary word embedding matrix
X̃t Target language vocabulary word embedding matrix
Xs Source language dictionary word embedding matrix
Xt Target language dictionary word embedding matrix
W Transformation matrix
ws Projection vector of a source word embedding
wt Projection vector of a target word embedding

of the concepts ’dog’, ’cat’, and ’cow’ in English and Spanish have similar geometric

arrangements. Based on this finding, Mikolov et al. (2013a) conclude that there exists a

linear mapping that can project word embeddings from different languages into a shared

vector space.

Figure 18: Visual demonstration of words with similar meaning having similar geometric ar-
rangements (embeddings compressed to two dimensions for visualisation purposes). Linear trans-
formations, like rotation and stretching, can map word embeddings (from different feature spaces)
into a shared word embedding space.
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3.3.1 The Original Linear Mapping-based Method

The earliest and most influential approach for learning the linear mapping is proposed

by Mikolov et al. (2013a). In their work, a linear mapping is learnt to project a word

embedding x from the source language feature space to that of the target language. The

mapping W is learnt by minimising the mean square error (MSE) between the mapped

word embeddings matrixWXs and the target language word embedding matrix Xt:

W = argmin
W
‖XsW −Xt‖22 (3.1)

where Xs and Xt are the word embedding matrices of dictionary words in source and

target languages. The authors solve this minimisation problem using stochastic gradient

descent (SGD).

3.3.2 Orthogonal Methods

Xing et al. (2015) further improved the linear-mapping-based approach by constraining

the transformation matrixW to be orthogonal:

WᵀW = I (3.2)

where (·)ᵀ denotes the transpose operation. Under this constraint, an analytical solution

to Equation 3.1 can be derived:

W = argmin
W
‖XsW −Xt‖22 (3.3)

= argmin
W

(‖XsW‖22 −‖Xt‖
2
2 − 2XsWX

ᵀ
t ) (3.4)

Because‖Xt‖22 and‖XsW‖22 are independent of the value ofW, Equation 3.3 is equivalent

to:

W = argmax
W

XsWX
ᵀ
t (3.5)

Because W is an orthogonal matrix, based on the optimization rules of matrices, Equa-

tion 3.5 is equivalent to:

W = argmax
W

Tr(XsWX
ᵀ
t ) (3.6)

where Tr(·) denotes the trace operation. Based on the property of the matrix trace, Equa-

tion 3.6 is equivalent to:
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W = argmax
W

Tr(XᵀtXsW) (3.7)

Then singular value decomposition (SVD) is applied to XᵀtXs:

X
ᵀ
tXs = USV

ᵀ (3.8)

Therefore,

argmax
W

Tr(XᵀtXsW) = argmax
W

Tr(USVᵀW) (3.9)

= argmax
W

Tr(SVᵀWU) (3.10)

Since VᵀWU is an orthogonal matrix, this optimisation problem can be seen as maximis-

ing the trace of an orthogonal transformation of S. An orthogonal transformation of Swill

be maximised when VᵀWU = I. Thus, Equation 3.3 can be solved by:

W = VUᵀ (3.11)

Then the mapping of Xs is defined as Ws = U and the mapping of Xt is defined as

Wt = V . The projected word embedding matrices WsXs and WtXt are then in a shared

vector space. In the dissertation, I will refer to this kind of methods as the SVD-based

methods for simplicity.

3.3.3 The CCA-based Approach

Another linear-mapping-based approach utilises Canonical Correlation Analysis (CCA).

First, I briefly introduce CCA. Given two multivariate random variables x1 ∈ Rd1 , x2 ∈

Rd2 (i.e. two word embedding vectors), CCA aims to find basis vectors w1 and w2, such

that the correlation ρ, between the projections onto those basis vectors, wᵀ
1 x1 and wᵀ

2 x2,

are mutually maximised:

w1,w2 = argmax
w1,w2

ρ(wᵀ
1 x1,wᵀ

2 x2) (3.12)

= argmax
w1,w2

w1C12w
ᵀ
2√

w1C11w
ᵀ
1

√
w2C22w

ᵀ
2

(3.13)

whereC11 andC22 denotes the covariance of x1 and x2, andC12 denotes the cross-covariance

of x1 and x2. Since scaling w1 and w2 has no effect on the result of this maximisation

problem, its solution is equivalent to maximising just the the numerator of Equation 3.13,
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subject to an additional constraint
√
w1C11w

ᵀ
1 =

√
w2C22w

ᵀ
2 = 1. This constrained

optimisation can be solved through the use of Lagrange multiplier method (Lagrangian

relaxation). The w1 and w2 are also called the first canonical components. This maximi-

sation procedure can be repeated d times to find another set of basis functions wi1 and

wi2, orthogonal to the previous i− 1 basis vector pairs. Then two sets of basis vectors are

obtained. These two sets of new bases form vector spaces where x1 and x2 are maximally

correlated.

There are several solutions to CCA. This dissertation follows the solution provided

by Kent et al. (1979). Consider all pairs of basis vectors wi1 and wi2, the top k (k ≤

min (d1,d2)) basis vectors are assembled into columns as matrices A ∈ Rd1×k and

B ∈ Rd2×k. The overall objective of CCA is to obtain:

argmax
A,B

Tr(AᵀC12B) (3.14)

subject to:

AᵀC11A = BᵀC22B = I (3.15)

Where I is a k× k identity matrix. Let us define a matrix T , such that:

T = C
-12
11 C12C

-12
22 (3.16)

And apply singular value decomposition to T :

T = USVᵀ (3.17)

Let Uk and Vk be the first k basis vectors in U and V . The optimum is then transferred to

the sum of the top k singular values of T , and this optimum is attained when:

A = C
-12
11 Uk (3.18)

B = C
-12
22 Vk (3.19)

This solution assumes that the covariance matrices are non-singular. Which in practice

can be overcome with regularisation. Given a centred data matrix H1, the covariance

matrix can be estimated as:

Ĉ11 =
1

k− 1
H11 H

ᵀ
11 + r1I (3.20)
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In Equation 3.20, r1 > 0 is a regularisation parameter. The regularisation process aims

to guarantee the matrix is non-singular, and alleviate the overfitting problem (De Bie and

De Moor, 2003).

Faruqui and Dyer (2014) were the first to propose the CCA-based cross-lingual word

embeddings. They adopt CCA to learn cross-lingual word embeddings from two sets

of pre-trained monolingual word embeddings. This work demonstrates that cross-lingual

embeddings can improve the performance of several tasks compared to monolingual word

embeddings. The method applies CCA to findWs andWt projection matrices:

Ws,Wt = CCA (Xs,Xt) (3.21)

where Ws ∈ Rds×d and Wt ∈ Rdt×d contains the mapping vectors and the dimen-

sion of the projected vectors. The learnt mapping can then be used to project the whole

vocabulary embeddings X̃s and X̃t into the new shared embedding vector space:

X̃∗s =WsX̃s (3.22)

X̃∗t =WtX̃t (3.23)

Ammar et al. (2016) extend this work to a multi-lingual scenario, which can map word

embeddings from more than two languages into a shared embedding space.

3.4 Description of the Mapping-based Cross-Lingual Word Embeddings
Pipeline

The pipeline for creation of mapping-based cross-lingual word embeddings can be de-

composed into four separate steps: pre-processing, mapping, re-weighting and dimen-

sionality reduction. It has become fairly standard in the community and is described here

for completeness.

3.4.1 Pre-processing

Each column of the monolingual word embedding matrix X is mean-centred by subtract-

ing column mean from each element of that column. Then each row of the resulting

matrix is length normalised, by dividing each element of that row by the row’s squared

Euclidean norm.
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Figure 19: Visualisation of the cross-lingual word embeddings construction process using
mapping-based approaches.

As discussed before, this step ensures the projections computed in the following map-

ping process to be orthogonal. Artetxe et al. (2018a) also use additional whitening and

de-whitening process, aimed at making each dimension of word embeddings have a unit

variance.

3.4.2 Mapping

The mapping approaches described in Section 3.3 are applied to pre-processed word em-

bedding matrices in this step. The monolingual word embeddings from different lan-

guages are mapped into a shared embedding space. Either Equation 3.18 is used, for

the CCA-based mapping method, or Equation 3.11 for the orthogonal mapping-based

method.

3.4.3 Re-weighting

An experiment conducted by Artetxe et al. (2018a) shows that re-weighting yields bet-

ter results than a dimensionality reduction process. Re-weighting can smoothly re-scale

components of the produced embedding matrix. SVD-based methods re-weight the cross-

lingual word embeddings by:

X̃∗s = X̃
∗
sS (3.24)

X̃∗t = X̃
∗
tS (3.25)

where S refers to the singular values from the mapping step.
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The re-weighting process was initially proposed by Artetxe et al. (2018a) for use with

the SVD-based mapping methods. After mapping, the components of the mapped em-

bedding vectors are re-weighted based on their singular values, which produces stronger

cross-lingual embeddings. However, they failed to make re-weighing work with CCA-

based mapping. In my opinion, this was one of the reason for them to not include CCA

in their work. I successfully adopt the process and apply it to CCA and KCCA. The com-

ponents of the new embeddings are re-weighted based on their canonical correlations:

X̃∗s = X̃
∗
sρ
ζ (3.26)

X̃∗t = X̃
∗
tρ
ζ (3.27)

In Equation 3.26 and 3.27, ζ is a parameter with a default value of 1. Additionally,

different language pairs may require different values of this parameter to get optimal

results and ideally it shall be tuned.

3.4.4 Dimensionality Reduction

In this step, only the first k dimensions of the produced cross-lingual word embeddings

are preserved, with dimensions ranked either by decreasing correlation value ρ for CCA-

based methods or decreasing value of singular values for SVD-based methods. However,

Artetxe et al. (2018a) claim that the re-weighting and dimensionality reduction have an

overlapping effect. The dimensionality reduction process can be seen as a special case of

re-weighting, where the first i components are weighted by unity and the remaining com-

ponents are weighting by zero. Previous work has shown that re-weigthing outperforms

dimensionality reduction, so the dimensionality reduction process can be discarded in the

pipeline (Artetxe et al., 2018a).

3.5 Proposed Investigation: Non-Linear Methods in Cross-Lingual Word
Embeddings

Two novel methods of introducing non-linearity into mapping-based cross-lingual word

embedding approaches are described in this section: Kernel Canonical Correlation Anal-

ysis (KCCA) and Deep Canonical Correlation Analysis (DCCA). My investigation into

the use of non-linear methods had two objectives:
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1. Incorporate non-linearity into mapping-based cross-lingual word embeddings.

2. Investigate the performance of a deep learning method (DCCA) and a machine

learning method (KCCA) for this purpose under constrained amount of labelled

training data.

3.5.1 KCCA

The main limitation of CCA is its linearity. In contrast to CCA, KCCA enables non-

linear mapping, by projecting the data into a higher-dimensional space, using a mapping

functionφ (see Equation 3.28), before performing CCA in that higher-dimensional space.

φ : p = (p1, ...,pd)→ φ(p) = (φ1(p), ...,φD(p)) (3.28)

Equation 3.28 shows a random variable p from the original feature space Rd mapped by

function φ to a new feature space RD, where D � d. However, this new space may

be highly multi-dimensional (or even infinitely dimensional) and operating on it directly

is computationally expensive (or infeasible). Kernel methods offer a dual representation,

which allows to operate on data in a high-dimensional space while avoiding explicitly

mapping it into that space using φ. Kernel methods define a pair-wise similarity function,

called the kernel function, K, such that ∀pi,pj ∈ p:

k(pi,pj) = 〈φ(pi),φ(pj)〉 (3.29)

where 〈·, ·〉 is the inner product operation. Any machine learning algorithm that can be

expressed via such a similarity function of features, rather than the features themselves,

can utilise so called kernel trick and work with the new higher-dimensional features (ac-

tually their inner products) without ever computing them directly.

Kernelised CCA can be expressed in the following way. Let a,b ∈ Rd be two

multivariate random variables (e.g. word embeddings) and φ(a),φ(b) ∈ RD be the

projections of these into the new high-dimensional vector space. Consider data ma-

trices A ∈ RN×D and B ∈ RN×D, whose rows contain the sample vectors in the

new high-dimensional feature space (i.e. instances of φ(a) and φ(b)). Equation 3.12

can be rewritten by expressing the co-variance matrices in terms of these data matri-

ces (Caa = AᵀA,Cbb = BᵀB,Cab = AᵀB):

argmax
wa,wb

w
ᵀ
aA

ᵀBwb√
w

ᵀ
aAᵀAwa

√
w

ᵀ
bB

ᵀBwb

(3.30)
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If the basis wa and wb are expressed as linear combinations of data points using coeffi-

cients α ∈ RN and β ∈ RN:

wa = Aᵀα (3.31)

wb = B
ᵀβ (3.32)

Then the dual representation of the problem can be formulated by substituting Equa-

tions 3.31 and 3.32 into Equation 3.30:

argmax
α,β

αᵀAAᵀBBᵀβ√
αᵀAAᵀAAᵀα

√
βᵀBBᵀBBᵀβ

(3.33)

To solve Equation 3.33, it is not necessary to compute the data matrices in the high-

dimensional space, A and B, directly, only their inner products AAᵀ and BBᵀ, which in

turn can be expressed via the kernel matrices (Gram matrices) Ka = AAᵀ and Kb = BBᵀ:

argmax
α,β

αᵀKaKbβ√
αᵀK2aα

√
βᵀK2bβ

(3.34)

Hardoon et al. (2004) observed that KCCA frequently suffers over-fitting, especially when

dealing with high-dimensional data, and applied regularisation to control the over-fitting:

argmax
α,β

αᵀKaKbβ√(
αᵀK2aα+ κ ‖wa‖2

) (
βᵀK2bβ+ κ ‖wb‖2

)
)

(3.35)

It follows that:

argmax
α,β

αᵀKaKbβ√(
αᵀK2aα+ κα′Kaα

) (
βᵀK2bβ+ κβᵀKbβ

) (3.36)

where κ denotes a penalty term that can control regularisation strength. Similarly to

CCA, since the problem is not affected by scaling of α and β, it can be reformulated as a

maximisation of the numerator subject to the following constraints:(
αᵀK2aα+ καᵀKaα

)
= 1 (3.37)

(
βᵀK2bβ+ κβᵀKbβ

)
= 1 (3.38)
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Through the Lagrange formulation, this leads to a standard eigenproblem:

(Ka + κI)
-1 Kb (Kb + κI)

-1 Kaα = λ2α (3.39)

The eigenvalues of Equation 3.39 are the canonical correlations and the eigenvectors can

be used to calculate the projections. The problem can be solved in different ways; how-

ever, an effective algorithm (PGSO) proposed by Hardoon et al. (2004) is chosen and I

implement it in Python.

3.5.2 KCCA-based Cross-lingual Word Embedding

Let X̃s ∈ RÑs×ds and X̃t ∈ RÑt×dt be the monolingual word embeddings matrices of

source and target language vocabularies. In supervised scenario, a set of word embeddings

of translation pairs (i.e. a dictionary) is given: Let Xs ∈ RNs×ds contain a subset of word

embeddings from X̃s, and Xt ∈ RNt×dt contain their corresponding translation word

embeddings from X̃t. A pair of rows with the same index from each matrix represents

a translation pair. The proposed approach can be broken down into three steps: pre-

processing (described in Section 3.4.1), KCCA-projection and re-weighting (described in

Section 3.4.3) based on canonical correlations.

Given word embedding matrices Xs and Xt, as defined above, the KCCA implementa-

tion described in Section 3.5.1 is adopted in the following way. The projection matrix are

learnt using Equation 3.40:

α,β, ρ = KCCA(Xs,Xt) (3.40)

In Equation 3.40, α and β are components of projection matrix described in Equation 3.31

and Equation 3.32. In addition, ρ are the canonical correlations corresponding to each of

the projection directions. Radial basis function (RBF) kernel is used and the value of

parameter γ is tuned through cross-validation.

Given α and β calculated by KCCA, the vocabulary word embedding matrices X̃s and

X̃t are projected into the shared space:

X̃∗s = K(X̃s,X
ᵀ
s )α (3.41)

X̃∗t = K(X̃t,X
ᵀ
t )β (3.42)
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3.5.3 Deep Canonical Correlation Analysis

An alternative non-linear transformation is Deep Canonical Correlation Analysis (DCCA),

firstly proposed by Andrew et al. (2013). Similar to KCCA, DCCA is proposed to learn

non-linear mappings. In this section, I briefly introduce Deep Canonical Correlation Anal-

ysis (DCCA).

DCCA computes two new multivariate representations by feeding input features into a

feed-forward neural network, which enables non-linear transformations. For simplicity, I

only consider a two-view analysis with two inputs X1 and X2. An n layer neural network

with ci (i ∈ Rn) units in each layer is used. Assume the output layer has co units.

Consider an instance of X1 denoted by x1 ∈ RN1 , the first hidden layer’s output h1 ∈ Rc1

for x1 is:

h1 = f(W
1
1x1 + b

1
1) (3.43)

where W1
1 ∈ Rc1×n1 denotes the weight matrix between the first layer and the hidden

layer, b11 denotes the corresponding bias, and f : R → R denotes a non-linear activate

function. The h1 is then used to compute the next hidden state and so on until the final

output of the output layer is computed:

o1 = f(W
1
nhn−1 + b

1
n) (3.44)

where o1 ∈ Rco1 denotes the final non-linear projection of x1. Also DCCA compute the

final non-linear projection of x2 as o2 ∈ Rco2 in the same way. Based on this process,

those two neural networks are defined as two non-linear transformation F1(X1; θ1) and

F2(X2; θ2) which aims to map X1 and X2 into a shared space. The goal of DCCA is to

train those neural networks so that the Pearson correlation of the final projections of X1

and X2 are mutually maximised. Therefore, the loss function L is defined as:

L(θ1, θ2) = corr(F1(X1; θ1), F2(X2; θ2)) (3.45)

As discussed in Equation 3.16 to 3.20, the sum of correlation is equal to the sum of the

top k singular values of matrix T = USVᵀ. In DCCA, if the output layer unit number

o = k, A Pearson correlation can be obtained:

corr (H1,H2) =‖T‖tr = tr(T
ᵀT)

1
2 (3.46)

The Pearson correlation denotes the total loss function. H1 and H2 denotes the centered
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Figure 20: DCCA-based cross-lingual word embeddings.

data matrices. The gradient of DCCA model is expressed as Equation 3.47:

∂corr (H1,H2)
∂H1

=
1

m− 1
(2∇11H1 +∇12H2) (3.47)

The ∇12 , ∇11 and ∇22 can be calculated using Equation 3.48 to 3.50

∇12 = Ĉ
-12
11 UV

ᵀĈ
-12
22 (3.48)

∇11 = -
1

2
Ĉ
−1

2
11 USU

ᵀĈ
-12
11 (3.49)

∇22 = −
1

2
Ĉ

-12
22 USU

ᵀĈ
-12
22 (3.50)

Similar to Section 3.3.3, the Ĥ1 and Ĥ2 denote the regularised matrices upon centred

matrices.

3.5.4 DCCA-based Cross-lingual Word Embedding

As discussed before, given two dictionary word embedding matrices Xs and Xt. The

paired word vectors can be seen as training data for DCCA. Figure 20 summarises the

DCCA-based cross-lingual word embedding. Word pair (xis, x
i
t) ∈ (Xs,Xt) passes through

two separate neural networks Fs(θs) and Ft(θt), where θs and θt are parameters of the

corresponding neural networks. The output representations are the input data’s non-linear

transformations (learnt by the neural networks). Subsequently, those outputs are mutually
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maximised:

θs, θt = argmax
θs,θt

(corr(Fs(Xs; θs), Ft(Xt, θt))) (3.51)

After training process, the two trained neural networks map the two vocabulary word

embedding matrices X̃s and X̃t into a shared vector space:

X̃∗s = Fs(X̃s; θs) (3.52)

X̃∗t = Ft(X̃t, θt) (3.53)

3.6 Experiments

Experiments described in this section investigate whether non-linear mapping-based ap-

proaches are better than linear mapping-based approaches in learning cross-lingual word

embeddings. These experiments evaluate CCA-, DCCA- and KCCA-mapped word em-

beddings using the accuracy of a downstream task - word translation - as a proxy measure

of "better". This is a standard evaluation technique in cross-lingual word embedding

literature. Experimental results are also compared with other linear-mapping-based ap-

proaches.

3.6.1 Datasets

English-Italian (En-It) dataset provided by Dinu and Baroni (2015) is a commonly-used

dataset to learn cross-lingual word embeddings. Artetxe et al. (2017) further extend

this dataset to include English-German (En-De), English-Spanish (En-Es) and English-

Finnish (En-Fi) datasets. Each dataset includes 20,000 300-dimensional monolingual

word embeddings trained using word2vec, along with a bilingual dictionary with a stan-

dard split into a training and a test set. Those dictionaries were obtained from OPUS and

include 5000 most frequent word pairs as the training set and 1500 randomly picked word

pairs evenly distributed in 5 frequency bins (Tiedemann, 2012). In terms of monolingual

word embeddings, the English training corpora consists of 2.8 billion words and included

ukWaC, Wikipedia and BNC. The Italian training corpora included 1.8 billion words for

itWaC. German training corpora used SdeWac with 0.9 billion words, and Finnish train-

ing corpora used the Finnish WMT 2016 dataset (Common Crawl). The Spanish word

vectors were obtained by training WMT News Crawl 07 - 12, consisting of 386 million

words.
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3.6.2 A New Word Translation Corpora: English-Chinese Dataset

I hypothesised that non-linear mapping can better describe the relationship between word

embeddings of languages in different language families. In order to test this hypothesis, I

extended the dataset to include a pair of languages from different families: English paired

with Chinese, a Sino-Tibetan language. I trained the Chinese word embeddings on a 1.5

billion word subset of the WMT 2018 Common Crawl corpora. Unlike Western language

families, Chinese tokenisation needs a specific process to extract words from sentences. I

adopt the solution from an open project: Jieba31. The word embeddings are trained using

the same configuration as Dinu and Baroni (2015). As for the dictionary, the English-

Chinese dictionary provided by Lample et al. (2018) is used, consisting of 8728 training

word pairs and 2230 test word pairs. After removing out of vocabulary (OOV) words

from the dictionary, it is left with 8239 training word pairs and 1964 test word pairs. I

provide it as an open-source dataset2.

3.6.3 Evaluation

The accuracy of the word translation downstream task is used as a proxy to evaluate the

learnt cross-lingual word embeddings, in a similar fashion to other previous work in this

area (Artetxe et al., 2018b,a; Smith et al., 2017). The test word embedding matrices

are projected to the shared vector space using the learnt projection matrices during the

evaluation process. Then, a retrieval approach is used to find the nearest neighbour of

each source word embedding in the target language vocabulary word embedding matrix.

The word translation accuracy is defined as the percentage of correct matches from source

to target words in the test set.

There are many retrieval methods of finding nearest neighbours, like simply using a

distance measure (i.e. cosine similarity or Euclidean distance) or inverted softmax (Smith

et al., 2017). However, most retrieval methods suffer from hubness: Some vectors,

dubbed hubs, are the nearest neighbours of many other points, while others (so

called anti-hubs) are not nearest neighbours of any points. This issue has been ob-

served in many applications of information retrieval (i.e. image matching, translating

words). The hubness issue has a negative impact on downstream tasks such as classi-

fication (Radovanović et al., 2009). Cross-domain Similarity Local Scaling (CSLS) is
1https://github.com/fxsjy/jieba
2https://gitlab.com/zjw1990/kclwe
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an advanced retrieval method for mitigating problems caused by hubness (Lample et al.,

2018).

In this investigation, I choose CSLS as the retrieval method in word translation task.

Given a source language word embedding vector mapped into the shared vector space

x∗s , CSLS method finds x∗s ’s top K nearest neighbours amongst target word embeddings

mapped into the shared vector space using cosine similarity and averages them:

rt =
1

K

K∑
i=1

Sc(x
∗
s , x
∗
t [i]) (3.54)

where x∗t is one of the top K nearest neighbours amongst target language mapped word

embedings. Similarly, rs is defined as the mean similarity of a mapped target word vector

to its top K nearest neighbours in the mapped word embeddings of the source language.

Then the CSLS score is defined to measure two mapped embeddings’ distance:

CSLS(x∗s , x
∗
t ) = 2Sc(x

∗
s , x
∗
t ) − rt − rs (3.55)

where Sc is cosine similarity:

Sc(xs, xt) =
∑d
i=1 x

i
sx
i
t√∑d

i=1(x
i
s)
2

√∑d
i=1(x

i
t)
2

(3.56)

3.6.4 Experimental Setup

Two different kernel functions are evaluated for the proposed cross-lingual word embed-

dings: RBF kernel and polynomial kernel. Given two samples (x,y), the dual RBF kernel

in input space is defined as:

K(x,y) = exp(−
‖x− y‖2

2σ2
) (3.57)

For simplicity, a parameter γ = 1
2σ2

is defined. Substituting into Equation 3.57 we get:

K(x,y) = exp(−γ‖x− y‖2) (3.58)

This parameter γ is tuned in the range [0, 1.5]. The weight for re-weighting is tuned in

the range [0, 1] and the regularisation term κ is tuned in the range [0, 1]. For CCA, the

output dimension is tuned in the range from 150 to 300.

The polynomial kernel is defined as:

K(x,y) = (xᵀy+ c)d (3.59)
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In practice, the polynomial kernel is hard to tune. When d > 3 the computational com-

plexity grows proportionally. Therefore, I only tune parameter c in the experiments and

tune d in (1,2,3).

DCCA-based cross-lingual word embedding model proposed by Lu et al. (2015) is

adopted. However, their published model uses older count-based word representations,

and did not work very well with the distributed word embeddings used with other meth-

ods. I adapt the model by tuning a new parameter set with distributed word embed-

dings used as model input. I use two feed-forward neural networks with ReLU activa-

tion functions in hidden layers. The hidden layer size is tuned amongst a set of values

128, 256, 512, 1024, 2048, 4096 and the depth parameter is tuned amongst 1, 2, 3, 4. Pa-

rameters are tuned separately for each language. As for optimisation, the stochastic gra-

dient descent (SGD) is used. The regularisation terms rx and ry are tuned in the range

[1e-9, 1e-5]. All tuning is performed on the training set using 5-fold cross-validation.

CCA, as described in Section 3.3.3, is implemented. The final dimension is tuned

amongst 100, 150, 200, 250, 300. For the re-weighting process, the re-weighting parame-

ter is tuned in range [0, 1].

For SVD (Orthogonal), the open source software Vecmap3 is adopted, which also pro-

vides the standard pipeline for mapping-based methods. The experiments were imple-

mented in Python3 using an open source library Numpy4. The experiments were carried

out on AMD Threadripper 1950x 16-core CPU with 128Gb RAM.

3.7 Results and Analysis

3.7.1 Analysis Between Non-Linear Methods and Linear Methods

Table 3.2 shows that KCCA outperforms CCA- and SVD-based methods, which re-

veals the effectiveness of the non-linear method. KCCA outperforms CCA, giving a

6.29, 12.58, 10.66, 11.73 and 19.96 percentage points improvement in English-Italian,

English-German, English-Spanish, English-Finnish and English-Chinese datasets respec-

tively. KCCA also outperforms SVD-based method, providing a 1.1, 2.9, 0.7, 2.4 and 3.4

percentage points improvement word translation accuracy.

Also, the experiments show that DCCA-based non-linear mapping is better than CCA-

based linear mapping approach. The improvement in word translation task demonstrates
3https://github.com/artetxem/vecmap
4https://numpy.org/
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Table 3.2: A comparison of linear mapping with non-linear mapping using of word translation
accuracy %.

Method En-It En-De En-Es En-Fi En-Zh
Linear
CCA 42.1 37.6 28.2 25.7 32.6
SVD (Orthognal) 47.3 47.2 38.2 35.0 49.2
Non-linear
DCCA 43.5 43.1 34.9 25.3 45.3
KCCA 48.4 50.1 38.9 37.4 52.6

Table 3.3: A comparison of KCCA-based mapping with existing methods using word translation
accuracy (%). All existing results are from original papers, except results marked with a ?, which
were produced by me using authors’ original implementation.

Method En-It En-De En-Es En-Fi
Mikolov et al. (2013a) 34.93 35.00 27.73 25.91
Faruqui and Dyer (2014) 38.40 37.13 26.80 27.60
Artetxe et al. (2016) 39.27 41.87 31.40 30.62
Smith et al. (2017) 44.53 43.33 35.13 29.42
Artetxe et al. (2018a) (nn) 45.27 44.27 36.60 32.94
Artetxe et al. (2018a) (CSLS) 47.33? 47.20? 38.20? 34.97?

KCCA 48.33 50.13 38.86 37.43

that the use of a non-linear transformation outperforms a linear transformation, and serves

as further evidence to confirm the hypothesis that relationship between word embeddings

of different languages has a strong non-linear component.

3.7.2 Analysis Between Non-linear Methods

It is also worth noting that KCCA outperforms DCCA on all datasets, specifically it per-

forms better by 4.3, 7, 4, 12.15 and 7.22 percentage points in English-Italian, English-

German, English-Spanish, English-Finnish and English-Chinese respectively. This result

suggests that the neural network may be struggling to learn cross-lingual word embed-

dings from a fairly small training set, where as kernel-based methods can better deal with

data sparsity. Table 3.3 shows a comparison between the proposed approach and previous

popular works, including supervised, semi-supervised and fully unsupervised methods.

The best result of the supervised approaches is provided by Artetxe et al. (2018a); how-

ever, their retrieval approach is inverted softmax (Smith et al., 2017), which is not a fair

comparison with CSLS. Therefore, I also reproduce their result using CSLS and report it

in Table 3.3. It can be observed that my proposed framework gets the best result among

all supervised settings. Also, other than a close result in the English-Italian dataset, my

proposed approach achieves the best results in all language pairs compared with the un-
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(a) En-De dataset

(b) En-Es dataset

Figure 21: Word translation accuracy of test set dictionary versus different values of gamma on
En-De and En-Es dataset. x-axis is gamma, and y-axis is word translation accuracy of the test.

supervised setting proposed by Artetxe et al. (2018b), which is also the state-of-the-art of

existing cross-lingual word embedding approaches.

3.7.3 Further Analysis for KCCA

Analysis of KCCA-Mapping process: In my experiments, γ parameter is tuned using a

grid search. Figure 21 illustrates the effect of γ: when γ > 0.3, it has no effect on the

result. However, as γ decreases below 0.3, the performance of the produced cross-lingual

word embeddings is more likely to be worse - the results seem to be much more sensitive

to the exact value of γ at low values than at higher levels.
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(a) En-It dataset.

(b) En-Fi dataset.

Figure 22: Word translation accuracy of test set dictionary versus different values of gamma on
En-It and En-Fi dataset. x-axis is gamma, and y-axis is word translation accuracy of the test.
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(a) En-It dataset.

(b) En-De dataset.

Figure 23: Word translation accuracy of En-It and En-De test set dictionary versus different values
of weight w. x-axis is the weight parameter, and y-axis is word translation accuracy of the test.

Analysis of the re-weighting process: The re-weighting process is an important post

projection step to produce better cross-lingual word embeddings. Some previous analysis

showed that re-weighting outperforms dimensionality reduction (Artetxe et al., 2018a).

From Figure 24, a clear trend can be observed that the best results tend to be obtained

when w is around 0.4 for all language pairs.

Analysis of the dimensionality reduction process Due to limited computational re-

sources, I was able to investigate the effect of dimensionality reduction only on En-Es

dataset. The results are shown in Figures 25 and 26. Figure 25 shows that the best value

of the final dimension is around 300 - for values of d slightly higher or lower, the accuracy
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(a) En-Es dataset.

(b) En-Fi dataset.

Figure 24: Word translation accuracy of En-Es and En-Fi test set dictionary versus different values
of weight w. x-axis is the weight parameter, and y-axis is word translation accuracy of the test.
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Figure 25: Word translation accuracy of test set of En-Es dataset applying different dimensions.

Figure 26: Word translation accuracy comparison of CCA and KCCA when they have the same
dimension. The blue line is CCA and the red line represents KCCA.

sharply decreases. Figure 26 shows that KCCA outperforms CCA for all values of the fi-

nal projection dimension d, which serves as an additional confirmation of my hypothesis

that non-linearity can improve the performance of the cross-lingual word embeddings.

3.7.4 Ratio R

The results also lead to an interesting question: what kind of words are correctly trans-

lated when non-linear mapping-based approaches are used. I take the En-Fi dataset as an

example. Figure 29 illustrates that both CCA and KCCA correctly translate the same 320

English words (yellow points), KCCA can correctly translate 213 words that CCA fails
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Table 3.4: A comparison of correct translations by CCA- and KCCA-based methods.

Method En-It En-De En-Es En-Fi En-Zh
CCA only correct 60 46 41 46 25
Both Correct 572 517 382 320 395
KCCA only correct 154 235 200 213 282
Ratio, R 24.4% 41.7% 47.3% 58.2% 67.1%

to translate (orange points); however, CCA can translate only 46 words that KCCA fails

on (green points). I believe the words that are correctly translated by KCCA but incor-

rectly translated by CCA have a higher possibility of exhibiting non-linear relationships;

The number of those words is denoted as N. The word pairs correctly translated by CCA

have a higher possibility of sharing a linear relationship. The count of those word pairs is

denoted as L. Then define a ratio R:

R =
N

L
(3.60)

as a proxy measure to evaluate whether a relationship between word embeddings of two

languages has a more linear or non-linear tendency; Table 3.4 provides the results. It

shows that Italian words have the highest possibility to share linear relationships with En-

glish. Most German and Spanish words can map to English words with linear projections,

but a considerable number of words can not match with the projections. Non-linear re-

lationships have a significant impact on Finnish-English word pairs and Chinese-English

word pairs. In my opinion, this is because different languages have different grammars,

which leads to varying contexts for words with similar meanings in both languages. How-

ever, the better result on the En-De dataset seems to be not following this trend; it has a

lower R, but non-linearity based methods can learn better cross-lingual word embeddings

than the linear methods. The most important factor is the limited data. The trend for R

will be more clear clear if more language pairs are included in the experiment and this

will be part of my future works.

3.8 Conclusion

In this chapter, I investigated whether non-linear relationships exist between the word vec-

tor representations of different languages. Additionally, I posited that non-linear mapping

methods could produce better quality cross-lingual representations.

To confirm the proposed hypothesis, I investigated two non-linear methods: KCCA-

and DCCA- based cross-lingual word embedding approaches. I further described a pipeline
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of cross-lingual word embeddings and adapt my proposed approach to it.

The use of KCCA for mapping obtained the best result among all methods, confirm-

ing my hypothesis that non-linearity could better describe the relationship between two

languages, especially those not in the same language family. Also, I further measure

the relationships with a ratio R: the language pairs with a larger R indicates they have a

different relationship. Also, I provide state-of-the-art results on all language pairs.
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CHAPTER 4
Learning Unsupervised Cross-Lingual

Word Embeddings with Non-Linear
Mapping

4.1 Introduction

In recent years, there has been an increased interest in learning cross-lingual word em-

beddings. Those approaches can be generally classified into three types. These are

the: mapping-based approach, the joint model-based approach and the pseudo-bi-lingual-

based approach (Ruder et al., 2019; Adams et al., 2017; Kočiský et al., 2014; Mikolov

et al., 2013a).

The mapping-based approach is the most widely used method because of its simplicity

and the ease of use. It aims to map monolingual word embeddings into a shared vec-

tor space using a bi-lingual dictionary (also called word alignment) (Ruder et al., 2019;

Artetxe et al., 2018a).

A serious issue with the mapping-based approach, however, is its requirement for an

extensive dictionary, which is hard to obtain for low-resource languages (Artetxe et al.,

2018b; Lample et al., 2018; Artetxe et al., 2017). As illustrated in Table 4.1, there is a

sharp decline in the translation accuracy when the dictionary becomes smaller. Addition-

ally, compared to the high resource language pairs (e.g. English-Italian), the low-resource

Table 4.1: The word translation accuracy % of the En-It (high-resource) and the En-Fi (low-
resource) dataset with orthogonal mapping. The retrieval method is cosine similarity based nearest
neighbour.

Dictionary size 100 500 1000 2000 4000 5000
En-It 0.0 2.1 28.3 37.9 41.8 43.1
En-Fi 0.0 0.0 16.6 27.0 31.5 32.0
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language pairs (e.g. English-Finnish) are more sensitive to the size of the training dictio-

nary. The word translation accuracy declines even faster than that of the rich resource

language pairs. Therefore, a high-quality bi-lingual dictionary is useful to learn cross-

lingual word embeddings in low-resource languages.

A variety of studies have attempted to address the inadequate bi-lingual dictionary is-

sue for low resource languages (Artetxe et al., 2018b; Lample et al., 2018; Artetxe et al.,

2017). Most of these studies have only focused on linear mapping-based methods. How-

ever, the low-resource languages (e.g. Turkish, Finnish) and high-resource languages (e.g.

English, Spanish) are normally in different language families. For instance, heavily used

languages like English, German and Italian belong to the Indo-European language family,

while a typical low-resource language like Finnish belongs to the Uralic language family.

Many eastern languages like Chinese and Karenic languages belong to the Sino-Tibetan

language family (Thurgood and LaPolla, 2016). Members of the same language family

are likely to share similar syntax rules and alphabet. Those that are in different language

families are likely to share different syntax rules and alphabet. Therefore, the sentences

in the different language family tend to have similar meaning for a specific word, making

their word2vec word representations share geometric arrangements.

Thus, the word embeddings of a low-resource language are more likely to have a non-

linear relationship with that of high-resource languages. As discussed in Chapter 3, the

non-linear method can thus better describe such a relationship.

In this chapter, I discuss non-linear mapping in unsupervised cross-lingual word em-

beddings. I extend the proposed non-linear mapping based cross-lingual word embedding

to an unsupervised scenario. Without any manually created dictionary, an unsupervised

dictionary selection process is proposed to generate the dictionary automatically. The

proposed model can learn better cross-lingual word embeddings employing the mono-

lingual corpora, which is helpful for low-resource languages. Extensive experiments are

provided, and the results from the proposed approach achieve the state-of-the-art.

4.2 Related Works

4.2.1 Supervised Cross-Lingual Word Embedding Approaches

Mikolov et al. (2013a) were the first to propose the supervised cross-lingual word em-

bedding approach aiming to learn a mapping matrix by minimising the Euclidean distance

between the dictionary word embedding matrices Ws and Wt (See Section 3.3). Follow-
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ing on from this, Xing et al. (2015) found that the combination of word embeddings with

unit length, as well as constraining the mapping to be orthogonal, help to improve the per-

formance of cross-lingual word embeddings. Artetxe et al. (2016) further demonstrated

that the orthogonal mapping constraint is a preserve of monolingual invariance. Artetxe

et al. (2018a) formulate previous works and provide a general five-step pipeline for su-

pervised cross-lingual word embeddings.

An alternative objective is to maximise the cross-correlations between words in dic-

tionaries, which can be learned by Canonical Correlation Analysis (CCA). Faruqui and

Dyer (2014) were the first to apply CCA to construct cross-lingual word representations

from two sets of monolingual ones from two different languages, and demonstrated that

their use improves a number of tasks over monolingual representations, such as finding

word similarity and semantic as well as syntactic relations. They attribute the improved

performance to the idea that shared representation is able to incorporate lexicon-semantic

information from both languages. Ammar et al. (2016) extend this work to a multi-lingual

scenario, which is able to project word vectors from multiple languages into a same shared

word embedding space.

Previous works entail linear-mapping-based methods, while Zhao and Gilman (2020)

extend those approaches to a non-linear-mapping-based method. However, supervised

approaches require a large dictionary, which is hard to obtain in most language pairs.

4.2.2 Unsupervised Mapping-based Cross-Lingual Word
Embedding Approaches

Scarce availability of large dictionaries for many language pairs has spurred an interest in

alternative unsupervised approaches. Bootstrapping was proposed as one solution. The

bootstrapping-based unsupervised approach aims to bootstrap a high-quality bi-lingual

word embedding space from a tiny seed dictionary. Bootstrapping has been applied to

traditional count-based word vector space models to construct cross-lingual word embed-

dings in a weakly supervised fashion using only a small dictionary (Artetxe et al., 2017;

Peirsman and Padó, 2010).

Artetxe et al. (2017) extend this approach to word2vec, successfully bootstrapping a

cross-lingual word embedding space from a seed dictionary while preserving the perfor-

mance of the learned cross-lingual word embeddings. They also advanced a step further

and performed multiple iterations of bootstrapping, using the result of the previous itera-

tion to induce a new seed dictionary. They showed that this iterative process, which they
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dubbed self-learning, can significantly reduce the demand on the size of the initial seed

dictionary.

The self-learning scenario was further extended to a fully unsupervised setting through

an induction of the initial seed dictionary through unsupervised methods (Artetxe et al.,

2018b). Their self-learning approach can be used with any mapping-based cross-lingual

embedding construction method; however, there are no experiments to show this. There-

fore, the motivation of this work is to investigate whether CCA-based mapping can be

incorporated into the self-learning scenario.

Unsupervised mapping-based approaches have been proposed to relax the requirement

of large dictionaries in supervised mapping based approaches (Artetxe et al., 2017, 2016).

However, such efforts also rely on linear mapping-based methods, which raised my inter-

est in incorporating KCCA into the unsupervised scenario. Therefore, I also investigate

whether KCCA would improve the performance of existing linear-mapping-based unsu-

pervised methods.

4.2.3 Self-Learning

As discussed in Section 3.4, the supervised cross-lingual word embedding approach first

learns a mapping based on a dictionary, then uses the dictionary induction approach (See

Section 3.6) to induce a new dictionary, which is then evaluated by a gold standard. This

framework is formulated in Algorithm 1.

Algorithm 1 The supervised cross-lingual word embedding

Input: Dictionary D, source word embeddings X̃s, target word embeddings X̃t
Step 1: W = Learning mapping (D, X̃s, X̃t)
Step 2: Dnew = Learning dictionary (X̃s, X̃t,W)
Step 3: Evaluate(Dnew)

The self-learning scenario assumes that the training dictionary is used to learn a map-

ping, which induces a larger and better dictionary. Therefore, based on this assumption,

the output dictionary is used as the input of the same system in a self-learning fashion. If

the output dictionary is better than the previous one, it could hypothetically learn a better

mapping and, consequently, an even better dictionary in the next iteration. Algorithm 2

summarises this idea.

As shown in Figure 30, the dictionary is first used to learn a mapping (e.g. CCA). The

learned mapping is then maps the whole vocabulary of the two languages into a shared

embedding space. Subsequently, the nearest neighbours approach (e.g. CSLS) is applied
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Algorithm 2 Self-learning: an unsupervised cross-lingual word embedding

Input: Source word embeddings X̃s, target word embeddings X̃t
Step 0: Seed dictionary initialisation (or given a weakly-supervised seed dictionary)
repeat

Step 1: W = Learning mapping (D, X̃s, X̃t)
Step 2: Dnew = Learning dictionary (X̃s, X̃t,W)

until convergence
Step 3: Evaluate(Dnew)

Figure 30: CCA-based self-learning scenario. The seed dictionaryD is separated as two matrices
of word embeddings x and y. CCA is applied on x and y seeks to find two projection matriceswx
and wy. Then the whole vocabulary is projected into the new feature space. Nearest neighbours
are used to create a new dictionary and the whole operation is repeated.

to find the top K most similar word pairs from two languages to form a new dictionary.

If the new dictionary is better than the original dictionary, the new dictionary can then be

iteratively supplied into the system and deliver even better dictionaries at each step.

Based on this strategy, the model could run with a very small dictionary (even no dic-

tionary) to learn a better, more extensive dictionary when the system converges.

4.3 Pipeline

In practice, the unsupervised cross-lingual word embedding approaches consist of four

components:

1. The original seed dictionary — The seed dictionary is often given by some common

concept of all languages like numbers (0-9). But this is not a must for the scenario.

2. Mapping-based approach. This part is further discussed in Section 3.

3. Dictionary induction approach.

4. Final step embedding mapping. Normally, after the divergence is finished, the final

step, learning projection, is then applied to the dictionary finally learned.
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4.3.1 Unsupervised Dictionary Initialisation

As illustrated in Algorithm 2, self-learning start learning with a weak supervision seed

dictionary. Artetxe et al. (2017) use numerous dictionaries which consist of words match-

ing the [0-9]+ regular expression in both vocabularies. Also, there are experiments involv-

ing randomly picked word pairs from the original training dictionary, which can roughly

be used as a weakly-supervised dictionary.

The fully unsupervised dictionary initialisation approach assumes that the similarity

matrices of source word embedding matrix Ms and target word embedding matrix Mt

should be isometrically equivalent if the word embeddings are learned well. Also, the axis

permutation order of Ms and Mt should be equivalent. Therefore, there is a possibility

that, if the best matches of MsandMt can be found, those indices then can be used to

form a dictionary (at least a small dictionary in reality).

The model calculates similarity matrices with the word embedding matrices X̃s and X̃t.

The measure of similarity is the Euclidean distance:

Euc(x,y) =‖x− y‖2 (4.1)

Since the word embedding matrices are already length normalised, the Euclidean distance

is directly related to cosine distance:

cos(x,y) = 1−
‖x− y‖2

2
(4.2)

Hence, the cosine distance and Euclidean distance could be seen as the same measure. For

the similarity calculation, the cosine similarity is used to measure the distance between

the word embeddings. Therefore, the similarity matrices can be formulated as:

Ms = X̃sX̃
ᵀ
s (4.3)

Ms = X̃tX̃
ᵀ
t (4.4)

Since the permutation combination is too large, it is computationally expensive to find the

best matches. The value of each row is sorted, and obtain sort(Ms) and sort(Mt). In

theory, words with the same meanings should have the same vector across languages (Ruder

et al., 2019). Hence, given a word and its row in sorted(Ms), its nearest neighbour over

the rows of sorted(Mt) is its corresponding translation.
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Subsequently, the square root of the similarity matrix works better (Artetxe et al.,

2018b). In practice, SVD is applied to the original word embedding matrices. For sim-

plicity, I use source word embedding matrix Xs as an example:

X̃s = USV
ᵀ (4.5)

The similarity matrix could be expressed as follows:

Ms = US
2Uᵀ (4.6)

The square root ofMs is:
√
Ms = USU

ᵀ (4.7)

As described before, the top K nearest neighbours of
√
Ms and

√
Mt are selected as the

word pairs of the seed dictionary.

4.3.2 Embedding Mapping

There are many mapping-based approaches reviewed in Section 3.3. The pipeline is flex-

ible on all mapping-based methods. Artetxe et al. (2017) aims to map from source to

target language, Artetxe et al. (2018b) used an SVD-based approach to map both source

and target word embedding matrix into a shared embedding space.

4.3.3 Dictionary Induction

Dictionary induction means using the learned mapping to learn a new dictionary. Given

two word embedding matrices X̃s and X̃t, their mapped embeddings, denoted by X̃∗s =

X̃sWs and X̃∗t = X̃tWt, are used to find the nearest word pairs. These word pairs (denoted

by (xds , xdt ), d < min(length(X̃s), length(X̃t))) are obtained through some nearest

neighbour approaches.

xds , xdt = nn(X̃∗s , X̃
∗
t ) (4.8)

where nn represents a nearest neighbours approach. Then, the indices of those word pairs

in their corresponding vocabulary become the new dictionary, which is then used to find

the next (and a hopefully an improved) mapping.
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4.4 Proposed Investigation: Learning Unsupervised Cross-lingual Word
Embedding with Non-linear Mapping

In summary, the previous works were boosting-like methods, aiming to find a better dic-

tionary and a better mapping through iteratively linear mapping. This assumption is based

on the fact that the word embeddings learned by word2vec can perfectly represent all of

the words in languages; with the central concept being that the distance between lan-

guages should be isometric. However, this assumption does not hold for low-resource

languages (e.g. Russian) or languages that are not in the same language family (e.g. Indo-

European language family and Sino-Tibetan language family). The difference in gram-

mar, concepts, and the writing system dramatically impacts the word orders in sentences,

which may profoundly affect the word2vec representations. For example, Chinese, En-

glish and Spanish:

Chinese:

西汉所尊崇的儒家文化成为当时和日后的中原王朝以及东亚地区的社会主流文化。

English:

The Confucian culture respected by the Western Han Dynasty became the mainstream

social culture of the Central Plains Dynasty and East Asia at that time and in the future.

Spanish:

La cultura confuciana respetada por la dinastía Han Occidental se convirtió en la cultura

social principal de la dinastía de las Llanuras Centrales y el este de Asia en ese momento

y en el futuro.

This example shows that in a similar language family, languages have similar gram-

mar (English and Spanish are in the Indo-European language family), which suggest indi-

vidual words with similar concepts have a higher probability of sharing similar contexts.

However, words in a different language family (Chinese is in the Sino-Tibetan language

family), words with similar concepts (denoted with the same colour), have a higher prob-

ability of having a different context. The diversity in grammar causes different word

arrangements, which potentially further affects the word2vec representation. Previous

linear-mapping-based boosting-like approaches may not work for the following two rea-
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sons:

1. Linear mapping approaches are based on a concept that words with the same con-

cept shall have the same geometric arrangement across-languages, but this assump-

tion may not hold for many language pairs.

2. Iterative mapping assumes that, in every loop, a better mapping can lead to a better

dictionary.

However, based on the first reason, the mapping of word embeddings from languages

in different language families can possibly be non-linear.

Motivated by those reasons, I proposed to investigate whether non-linear mappings

could learn a better dictionary in unsupervised self-learning settings. In addition, I pro-

posed to further investigate whether different linear mapping approaches could affect the

final dictionary quality.

The three key steps in the unsupervised mapping-based approaches are unsupervised

dictionary initialisation, self-learning and the final projection. The initial goal was to

investigate KCCA as the projection method in self-learning. However, I was unable to

implement KCCA on tbe GPU, due to the very high memory requirements of the algo-

rithm, while the CPU implementation was too slow to investigate the method in detail

within the given hardware and time constraints. I opted to investigate the following ap-

proach instead. Since CCA can be run on the GPU efficiently, CCA was chosen as the

projection method in the self-learning iterations (see Figure 30). Once CCA-based iter-

ative mapping step converged, the KCCA was applied as the final projection step using

the dictionary induced by the last step of CCA, to produce the new shared representation.

The overall process is summarised below.

4.4.1 Step One: Unsupervised Dictionary Initialisation:

The unsupervised dictionary initialisation described in 4.3.1 is employed.

4.4.2 Step Two: Self-learning

The first iteration of self-learning uses the seed dictionary produced in Step one. The other

steps use the dictionary that is induced in the previous step. In each iteration, the model

learns a mapping using the dictionary in the Step one; Step two maps the two vocabulary

embedding matrices into the shared embedding space; The nearest neighbours approach
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is then used to induce a new dictionary (See Section 4.3.3. The dictionary is then used in

step one of the next iteration. The proposed model uses the CSLS (See Equation 3.55) to

measure the similarity.

In practice, there are also some additional tricks which can further improve the dictio-

nary induction process:

• Iteratively CCA-based mapping. The self-learning is adapted to SVD-based ap-

proaches, but not CCA. Therefore, one motivation of this research is to investigate

whether CCA can achieve comparable or even better results in a self-learning sce-

nario

• Stochastic Dictionary Induction. The mapping-based approaches tend to eas-

ily fall into local optima. Therefore, I adapt an element drop-out trick described

in Artetxe et al. (2018b): During retrieval in every iteration, part of the element

in the similarity matrices Ms and Mt are randomly selected, and those elements

remain unchanged. Then the left elements are changed to 0. A probability p is set

to describe how many elements are changed or kept unchanged. As the iteration

grows, p is increased starting from 0.1, and the value is doubled when the objec-

tive function stops increasing for n loops. A mask is defined and initialised as an

identity matrix m = I. In an iteration, each component of M will change to 0

with a probability p, and the new mask m∗is obtained. Then given the similarity

matrix M between X̃s and X̃t, a masked similarity matrix is then used in the fol-

lowing dictionary induction process, M = M ∗m. The probability p changes to

(0.1, 0.2, 0.4, 0.8, 1) when a convergence criterion is reached. Figure 31 illustrate

the stochastic dictionary induction process. In the start, the quality of the learned

dictionary gradually improves but it tends to fall in local optima soon. After p is set

gradually larger, the proposed model jumps out of the local optima, and the model

has a another chance to find a better optimum.

• Bi-Directional Dictionary Induction. In practice, the single direction (from source

to target) dictionary induction process tends to ignore words in target languages,

which may cause the model to quickly fall into local optima during iterations.

Therefore, the bi-lingual dictionary induction process is proposed. As described

in Equation 3.55, the top 1 translation from source to target is selected and then

appended to a new dictionary Ds→t. The dictionary Dt→s from target to source is
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Figure 31: Word translation accuracy of unsupervised CCA-Based cross-lingual word embedding
on the test set of En-Es dataset.

obtained using the same approach. Finally, concatenating Dt→s and Ds→t and a

new dictionary D is obtained as the learned dictionary, which is then used to learn

mapping for the next iteration.

• Vocabulary Cutoff. The similarity matrix between Xs and Xt is large, so it is com-

putationally expensive to calculate it in each loop. In addition, some low-frequency

words are not ideal for mapping. Therefore, I only use top K words from the source

and target words in terms of word frequency to learn new mappings in each loop

iteratively.

4.4.3 Step Three: Final Projection

KCCA, as described in Section 3.5, is applied to learn the final shared embedding space.

It uses the output dictionary of the final self-learning step. However, this dictionary can be

fairly large due to the significant size of the vocabularies. Since the size of the kernel ma-

trix is the same as the number of elements in the dictionary squared, it is impractical to use

the whole dictionary. I propose using the mutual nearest neighbour method for producing

this final dictionary which reduces dictionary entries to a more manageable number, mak-

ing KCCA faster and reducing memory requirements. In the experiments, it is also found

that the mutual nearest neighbour criterion enhances the quality of the dictionary, making

KCCA more effective. The proposed work is summarised in Algorithm 3.
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Algorithm 3 Proposed: KCCA-based unsupervised cross-lingual word embedding
Input: Source word embeddings XS, target word embeddings XT
Step 0: Seed dictionary initialisation (or given a weakly-supervised seed dictionary)
repeat

Step 1: W = CCA (D, X̃s, X̃t)
Step 2: Dnew = Dictionary Induction (X̃s, X̃t,W)

until convergence
Step 3: Dfinal = KCCA(Dnew, X̃s, X̃t)
Step 4: Evaluate(Dfinal)

4.4.4 Convergence Criterion

The convergence criterion, also described as the global objective, is used to describe the

distance of the cross-lingual word embeddings from different languages. Given two dic-

tionary embedding matrices Xs and Xt, and learned mapping Ws and Wt, the learned

cross-lingual word embedding of the words in the dictionary can be obtained using Equa-

tion 4.9 and 4.10:

X∗s = XsWs (4.9)

X∗t = XtWt (4.10)

Then the convergence criterion is defined as the sum of its similarity matrix. For compu-

tational simplicity, the cosine similarity is used instead of CSLS for measuring distance

in the convergence criterion:

J =
∑

X∗sX
∗
t
ᵀ (4.11)

When J stops increasing for several iterations (I set a patience parameter q), or J is smaller

than a number ε, the system is deemed to have stopped improving and the proposed model

ceases updating.

4.5 Experiments

4.5.1 Dataset

The dataset described in Section 3.6 is used, which includes two parts:

1. The English-Italian (En-It) dataset proposed by Dinu and Baroni (2015), which

includes the 300-dimensional pre-trained monolingual word embeddings of English

and Italian, a training dictionary and a test dictionary.
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2. The English-German (En-De), English-Spanish (En-Es), English-Finnish (En-Fi)

dataset proposed by Artetxe et al. (2017). This dataset is an extension of Dinu

and Baroni (2015), with the same word2vec training process and training & testing

dictionary selection process.

However, since the proposed approach is unsupervised, only the monolingual corpora

are available. This means the training dictionaries of all datasets mentioned are not ac-

cessible to the proposed model. The test dictionary is only used for the evaluation.

4.5.2 Experiment Details

The experiment investigates the benefits of CCA in the fully unsupervised scenario. First,

CCA is implemented as the word embedding mapping method in each iteration of self-

learning. It is evaluated against the best existing mapping approach - SVD - that is applied

to the same unsupervised seed dictionary. The evaluation uses the same task and test set

as the first experiment. Second, KCCA is investigated as the final step projection method

and compared to the last step projection method used by Artetxe et al. (2018a). This en-

tailed, Whitening, re-weighting, SVD-based projection, de-Whitening and dimensionality

reduction (or simply multi-step mapping), which has been shown to improve accuracy by

about 1 percentage point. For completeness, KCCA is also applied as the final step pro-

jection to both CCA- and SVD- based self-learning to investigate whether there is an

advantage in using both methods.

In stochastic dictionary induction, ε = 0.006. An patience parameter q = 10, when the

performance of the model stop growing for q loops, the model is considered to be conver-

gence and stop updating. The vocabulary cutoff parameter n = 20000 for computational

simplicity.

The implementation uses NumPy1. Experiments for the self-learning part make use

of CuPy2 to accelerate the algorithm using CUDA. All experiments were carried out on

AMD Threadripper 1950x 16-core CPU with 128Gb RAM. CUDA-accelerated code was

executed on Nvidia RTX 2080 Ti GPU using CUDA 10.

4.5.3 Evaluation

The word translation accuracy (also known as precision @1) is used to measure the per-

formance of the final learned dictionary.
1https://numpy.org/
2https://cupy.dev/
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4.6 Result Analysis

4.6.1 CCA-based Self-learning Iterations

Figure 32 shows that the SVD-mapping-based self-learning model has longer training

iterations than the CCA-mapping-based model. CCA achieves a better local optimum

and has a shorter training iteration. In En-De dataset, the CCA-mapping-based system

has more training iterations but finds better local optima.

Table 4.2 shows the results of using CCA- based mapping in self-learning iterations.

The model is evaluated straightly after self-learning iterations without any additional pro-

jection steps. The result is compared to Artetxe et al. (2018a). The results show that CCA

outperforms SVD by 3.0 and 2.7 percentage points for English- German and English-

Spanish language pairs; however, it under-performs by 0.6 and 0.76 points for English-

Italian and English-Finnish language pairs.

The results confirm that CCA can be successfully used in the self-learning framework.

Although it cannot be conclusively claimed that it is better than the traditional SVD ap-

proach for all languages, the results indicate that it is advantageous for some language

pairs. It is an approach that should be considered especially considering that a gener-

alised version of CCA can produce a shared embedding for more than two languages.

Figure 32: Word translation accuracy of test set during iterations on En-It dataset. Using CCA-
based mapping in self-learning process. The final step mapping is KCCA mapping.
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Figure 33: Word translation accuracy of test set during iterations on En-De dataset. Using CCA-
based mapping in self-learning process. The final step mapping is KCCA mapping.

4.6.2 Final Projection Step

The proposed approach is compared with an orthogonal-mapping based final step pro-

jection proposed by Artetxe et al. (2018b), who adapted the Whitening, reweighing and

de-Whitening process in the final projection process. Figure 35 and Figure 34 show the

reproduction of this final mapping. Figure 32 and Figure 33 show the proposed KCCA-

based final projection step.

Table 4.3 shows the detailed results of applying either KCCA or orthogonal multi-step

mapping or both as the final projection step after CCA-based self-learning. The appli-

cation of KCCA alone produces the largest improvement over the self-learning baseline

of 1.3, 2.0, 3.1 and 2 percentage points for English-Italian, English-German, English-

Spanish and English-Finnish language pairs respectively in terms of word translation ac-

curacy. At the same time, multi-step mapping produces almost no improvement or even

degrades the accuracy. Table 4.4 shows the results of applying either KCCA or multi-

step mapping as the final projection step after traditional SVD-based self-learning. The

application of KCCA alone improves the accuracy more than the conventional multi-step

mapping alone for all language pairs. However, for English-Italian and English-Spanish,

applying them together improves results even further, although only slightly. Figure 36

and Figure 37 illustrate the final step’s improvement. The non-linear-based final step

projection has a significant performance jump for all language pairs.
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Figure 34: Word translation accuracy of test set during iterations on En-It dataset. The CCA-
based mapping approach is used in self-learning process. The final step mapping is orthogonal
mapping.

Figure 35: Word translation accuracy of test set during iterations on En-De dataset. The CCA-
based mapping approach is used in self-learning process. The final step mapping is orthogonal
mapping.

It is also worth noting that the experiment on the En-Fi dataset required more time than

other datasets on finding the best matches. The proposed model takes about 50, 80, 200

iterations to find the initial reasonable dictionary (refer to the first stage) of En-Es, En-De,

En-It dataset. However, the proposed approach takes nearly 2000 iterations to find this

feasible initial dictionary. This is because the Finnish corpus is inadequate, making the
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Figure 36: Word translation accuracy of test set during iterations on En-De, En-Es, En-It dataset.

monolingual word embeddings of Finnish perform worse than that of English, Spanish,

French or Italian. Therefore, the quality of the monolingual word embeddings highly

impacts the unsupervised methods. The data scarcity issue can lead to a sub-optimal

result in the unsupervised models.

Figure 37: Word translation accuracy of test set on En-Fi dataset. The proposed system spend
much more time on finding the first reasonable local optima.
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Table 4.2: Accuracy(%) comparison of the different mapping based approaches in self-learning
process.

CCA SVD En-It En-De En-Es En-Fi

X 47.20 48.10 36.4 31.40
X 47.80 45.10 33.7 32.16

Table 4.3: Accuracy(%) analysis on the final step projection in CCA-based self-learning process.

Typical Mapping KCCA En-It En-De En-Es En-Fi

47.20 48.10 36.4 31.40
X 47.00 47.40 37.0 31.60

X 48.53 50.13 39.47 33.50
X X 48.40 49.86 38.93 32.93

Table 4.4: Accuracy(%) analysis on the final step projection in SVD-based self-learning process.

Typical Mapping KCCA En-It En-De En-Es En-Fi

45.10 47.80 33.7 32.16
X 47.80 48.26 36.5 32.30

X 48.46 49.06 37.46 32.79
X X 48.93 48.80 37.93 32.79

4.6.3 Comparison with State-of-the-art

Table 4.5 shows a comparison between the proposed approach and prior unsupervised or

weakly supervised methods. The works conducted by Artetxe et al. (2018b) and Lample

et al. (2018) are fully supervised cross-lingual word embedding approaches. The proposed

model obtains the best result, offering a translation accuracy increase of 0.4, 1.7, 1.9 and

0.0 percentage points on English-Italian, English-German, English-Spanish and English-

Finnish language pairs and achieves the state-of-the-art amongst existing approaches.

As shown in Table 4.5, I provide the best result reported in previous works.The work

conducted by Artetxe et al. (2017) has two scenarios: The [25] means they used a manu-

ally selected dictionary of size 25; The [num] means they selected some number, which

appears in all language pairs. Those numbers are chosen from different corpora and for-

mulated as the seed dictionary.

4.7 Conclusion & Future Works

This chapter discusses learning cross-lingual word embeddings in an unsupervised sce-

nario. I demonstrate that CCA can be successfully used as the projection method in the
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Table 4.5: Accuracy(%) comparison of the previous unsupervised methods.

Method En-It En-De En-Es En-Fi

Artetxe et al. (2017) [num] 37.27 39.60 - 28.16
Artetxe et al. (2017) [25] 39.40 40.27 - 26.47
Lample et al. (2018) 45.40 47.27 36.20 1.62
Artetxe et al. (2018b) 48.53 48.47 37.60 33.50

Proposed 48.93 50.13 39.47 33.50

self-learning scenario and that it performs approximately on par with the current state-

of-art SVD-based mapping. I also show that existing SVD-based self-learning methods

could benefit from KCCA as the final projection step, either alone or combined with the

existing multi-step mappings.

In the future, I am planning to extend the proposed work to other language pairs that

may benefit even more from non-linear mappings, such as Chinese and Japanese. More-

over, I plan to investigate multi-lingual word embeddings by applying generalised KCCA.
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CHAPTER 5
Consistency-based Cross-Lingual Word

Embeddings

The training dictionary plays an essential role in learning mapping-based cross-lingual

word embedding methods (this is referred to as mapping-based methods from now on).

The proposed investigation illustrates that a more extensive dictionary leads to better

cross-lingual word embeddings. However, an extensive dictionary is often hard to ob-

tain (Artetxe et al., 2018b; Lample et al., 2018; Artetxe et al., 2017). This chapter de-

scribes a semi-supervised method that can bootstrap a small dictionary into a more exten-

sive and high-quality dictionary.

A crucial challenge that underlies the process of constructing an accurately augmented

dictionary, is found in the high variance issue. An ensemble-like approach referred to

as the word consistency-based model is proposed to address the challenge. The ensem-

ble model attempts to control the high variance by generating multiple weak estimators

and thereby introducing diversity into each estimator. The estimators are used to learn

an augmented dictionary separately. Then a robust estimator is subsequently ensembled

through a voting procedure termed as the model agreement from the weak estimators. The

robust estimator built through the ensembling process is then used to learn a new dictio-

nary. Extensive experiments using the ensembling approach are presented on a popular

cross-lingual word embedding dataset, and the results illustrate the efficacy of the pro-

posed method in comparison to existing state-of-the-art approaches (Lubin et al., 2019;

Doval et al., 2018; Artetxe et al., 2017; Dinu and Baroni, 2015).
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Figure 38: A brief summary of the dictionary augmentation models.

5.1 Introduction

5.1.1 Bias-Variance Tradeoff in the Mapping-based Methods

The mapping-based methods often suffer from the data insufficiency problem. This issue

arises for two reasons as follows.

• Inadequate training data for the monolingual word embeddings. Low-resource

languages (e.g., Finnish or Turkish) often lack monolingual training corpora, which

further degrades the quality of the monolingual word embeddings. Monolingual

word embeddings of low-resource languages also contain noise, so they are impre-

cise at describing the feature of words.

• Insufficient training word pairs. Low-resource language pairs (e.g., Chinese-

Russian) are often language pairs with scarce parallel corpora. This issue leads to

limited training dictionaries for mapping-based methods.

Both of the above issues lead to inadequate and low-quality dictionaries for effective

use of mapping-based methods. Data augmentation is one option to mitigate these chal-

lenges. Several data augmentation methods have been proposed in recent years to address

this. Artetxe et al. (2017) use a bootstrap-like method to generate a larger dictionary

utilising a small seed dictionary. This method provides competitive results compared to

the typical methods using manually generated dictionaries. Artetxe et al. (2018b) further

extend this method which is fully exempted from the requirement of paired signals.

As illustrated in Figure 38, the above-mentioned approaches have a similar paradigm

that generates a more extensive dictionary as a first step, and then uses the generated

dictionary to map the monolingual word embeddings into a shared vector space. How-

ever, those methods only focus on the generated dictionary’s quantity, i.e. they ignore
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the quality of the dictionary. The augmented dictionary can only provide a very close (or

slightly better) result than the manually generated training dictionary. Based on my re-

search findings, I hypothesize that this is caused by poor handling of the variance-bias

tradeoff. The noisy original training dictionary leads to high variance, high bias models.

The augmented dictionary indeed has a larger size, proving to help deal with high bias

issues (Yang et al., 2020b); however, the poor quality of the training dictionary still leads

to a high variance issue.

5.1.2 The Ensemble Model

The intuitive scenario of dealing with the high variance issue is to use an ensemble (D’Ascoli

et al., 2020). Briefly speaking, an ensemble-based approach relies on generating many

separate models (weak estimators) using different methods like variations in the training

datasets which enforce the necessary diversity of models; then, the outputs of those sep-

arate models are aggregated to produce a final result (Kuwabara et al., 2020; Hansen and

Salamon, 1990).

The ensemble-based methods are able to alleviate the high variance issue because:

• The averaging of different models can mitigate poorly performing models. Due

to the large amount of noise that may exist in the original training data, there is a

high possibility that some of the training word pairs may have a disproportionately

large negative impact on the final mapping step.

• The ensemble model can effectively deal with high-dimensional data. Simple

mapping has difficulty in handling high dimensional training word embeddings.

Figure 39 illustrates an intuitive ensemble model for the cross-lingual word embed-

dings.

In summary, the key goal of this chapter is to develop techniques that address the bias-

variance tradeoff of the mapping-based methods. The crux of this strategy centres on

leveraging an ensemble-like model.The main contributions of this chapter are listed be-

low:

• This chapter provides one of the first investigations into dealing with the trade-off

between variance and bias in mapping-based cross-lingual word embedding mod-

els.
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Figure 39: An ensemble-like dictionary augmentation model.

• I provide a robust and effective way to augment training data. The augmented high-

quality dictionary can be used in mapping-based methods, which is vital for many

low-resource languages.

• The performance of the learned cross-lingual word embeddings achieves the state-

of-art among the mapping-based methods.

5.2 Bagging

Bootstrap aggregating (refer to as bagging in short) (Breiman, 1996) describes the foun-

dations of my initial experiments with ensemble-based approaches. The bagging model

works by randomly picking different subsets from training data with replacement. The

different training subsets are then used to learn different variations of mapping. Since the

training subset is a fraction of the superset, the learned mappings can be seen as ’weak’

mappings. Once the ensemble has been created, a fusing method is used to find a final

aggregated mapping. In this section, I focus on the first step and illustrate the result in

Figure 40.

The investigation into the learned mappings has revealed an interesting phenomenon

that points to some words tending to be translated into the same word in another language

regardless of the underlying training set or the mapping methods used. I refer to those
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(a) En-It dataset.

(b) En-De dataset.

(c) En-Es dataset.

(d) En-Fi dataset.

Figure 40: Consistent word pairs of test sets in a different number of models. The y-axes represent
how many models are used. The x-axes represent the number of word pairs. The blue bars are
the consistent pairs and the orange bars represent the correctly translated word pairs that are in the
consistent pairs.
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words as consistent words. As shown in Figure 40, the word translation accuracy, or the

number of correctly translated word pairs, is higher in the group of consistent words. I

hypothesize that the consistent words, which can accurately be extracted from two mono-

lingual corpora, can be used to augment the training dictionary reliably.

The experiments are conducted on four language translation datasets. English-Finnish,

English-German, English-Spanish and English-Italian. The experimental design consists

of re-initializing the training dictionary for each language pair by sampling it n times with

replacement. This sampled dictionary is used as the new dictionary and is applied to the

cross-lingual word embedding pipeline. The resulting pipeline, described in Section 3.3.2,

is implemented using the same settings described in Artetxe et al. (2018a).

I sample new dictionaries from the original training dictionary with replacement and

generate {10, 12, 14, 16, 18, 20} sub-training sets. A "weak" mapping is then learned

from those training subsets. Subsequently, two types of result outputs are collected for

testing as follows.

• The number of English words translated to the identical target translation by mul-

tiple ensembles. Those word pairs are defined as consistent pairs, denoted as blue

lines in Figure 40.

• The correctly translated word pairs within the set of consistent pairs, denoted by

orange lines. Results from the four language-pair translations are illustrated in Fig-

ure 40.

A deeper analysis into the translation quality of cross-lingual word embeddings uncov-

ered a noteworthy pattern. It was observed that numerous words tend to be translated into

the same results despite the differences in the training dictionary. Additionally, it can be

seen from Figure 40 that as the ensemble size grows, two properties emerge: The number

of consistent pairs decreases; The proportion of the correctly translated pairs in consistent

pairs increases. I define this phenomenon as consistency.

This reveals two attributes regarding these types of words: First, they have strongly cor-

related nearest neighbours; Second, they share similar geometric arrangements. Based on

these two attributes, I hypothesise that, as the frequency of a word translated by different

weak mappings to the same translation increases, the probability, in turn, increases that

this consistent word pair is the ground truth, which can then be appended to the original

dictionary.
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This hypothesis provides a mechanism for constructing language-pair dictionaries in

a semi-supervised manner. As more consistent pairs are generated within all cross-

lingual word embeddings in a language pair, it turns out that those language pairs

can be used to construct a larger and a higher-quality dictionary. This approach is

termed as Consistency-based cross-lingual word embeddings.

Intuitively, the word consistency has two forms, cross-consistency and self-consistency.

Cross-consistency indicates the consistency between different mapping-based methods

(KCCA-SVD, CCA-SVD). Self-consistency reflects the word consistency in an identical

model with varying samples of training (KCCA-KCCA, SVD-SVD).

In order to develop this concept, the translation result of different models are analysed.

The translation result of different models are separated into six groups listed below.

• Consistent and correct. The number of words that are correctly translated by

both methods. This means the words have very strong relationships (A very high

similarity) in a different feature space.

• Consistent but incorrect. The number of words that are incorrectly translated by

both methods. This means the words have a very strong relationships (A very high

similarity) in a different feature space.

• Inconsistent-1-correct & Inconsistent-2-correct. The word pairs that are only

correctly translated by a specific model (e.g., only correctly translated in KCCA-

based method but incorrectly translated by CCA)

• Inconsistent-1-incorrect & Inconsistent-2-incorrect. The word pairs that are

only incorrectly translated by a specific model (e.g., only incorrectly translated in

KCCA-based method but correctly translated by CCA).

The possible outcome categories are a helpful lens for conducting a deeper analysis

of mapping-based methods. This is especially relevant for consistent word pairs because

if it can be determined what kinds of words tend to have a higher similarity among all

languages, then potentially a better dictionary can be generated.

5.2.1 Cross-Consistency

The word cross-consistency approach is a practical analytical approach for evaluating

the performance of different methods. I am interested in knowing what kind of words

turn out to be correctly translated by various mapping approaches. Suppose KCCA can
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correctly translate a word pair. In that case, it can be assumed that this word pair has

a high possibility of sharing a non-linear relationship and vice versa. If both linear and

non-linear methods can correctly translate a word pair, it is reasonable to believe this word

pair may share a very high geometric similarity.

Figure 41a and 41b shows the distribution of correctly and incorrectly translated words

among consistent and inconsistent word pairs in the En-Zh dataset. The correctly trans-

lated word pairs occupy a considerable proportion among all consistent word pairs, and

the incorrectly translated words occupy a larger proportion among all inconsistent word

pairs. Figure 41c and 41d also reveal a similar trend that many words in the test set can

be mapped correctly by both linear and non-linear methods. I hypothesize that this kind

of word pairs has a stable relationship that can be easily aligned regardless of linear or

non-linear mapping.

Additionally, incorrectly translated words (red bar) appear resistant to a correct trans-

lation by linear or non-linear methods. Two possible factors may cause this phenomenon:

Those word pairs are noise, so the test set contains outliers and needs improvement; The

evaluation method is not robust and also needs to be modified.

Figure 41a and 41c also reveals that there are more inconsistent pairs in the En-Zh test

set than in the En-Es dataset. This also further supports the assumption in Section 3.3 that

non-linear methods perform better in the En-Zh dataset.

5.2.2 Self-Consistency

Based on the ensemble theory, the different training subsets can provide diversity in each

weak model and improve the robustness of the final ensemble model. Self-consistency

offers insight into the robustness of an identical method by training with different data

subsets.

Figure 42 and 43 shows that separate sub-models can yield similar self-consistency

results in different datasets. The correctly translated word pairs among consistent word

pairs are proportionally larger than those of inconsistent ones in both datasets. This prop-

erty is of interest as it may indicate that, if the same method can provide different

results with different training inputs, then it could be possible to ensemble those

models (same method, different training subset) to learn a better mapping, as well

as a better dictionary.

Subsequently, Figure 42 and 43 illustrate that the inconsistent but correctly translated

pairs (green bar of inconsistent-1 or 2-wrong) occupy a sizable proportion of the total
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(a) Cross-consistency between KCCA- and SVD- based
methods on En-Zh dataset. Parameter set one.

(b) Cross-consistency between KCCA- and SVD- based
methods on En-Zh dataset. Parameter set two.

(c) Cross-consistency between KCCA- and SVD- based
methods on En-Es dataset. Parameter set one.

(d) Cross-consistency between KCCA- and SVD- based
methods on En-Es dataset. Parameter set two.

Figure 41: The cross-consistency on En-Zh and En-Es dataset. The figures show the result of two
sets of parameters of KCCA- and SVD- based mapping.
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translation results. Those words are often treated as noise in the previous works. I hy-

pothesise that if a model has a low self-consistency, noise can be alleviated by an en-

semble with the same model trained by different training sets. Therefore, I posit a self-

consistency-based ensemble model which aims to generate a better dictionary.

5.3 Consistency-based Cross-Lingual Word Embeddings

Based on the hypothesis mentioned above, a consistency-based model is designed, which

is used to generate a large and high quality dictionary. As shown in Figure 44, the pro-

posed approach can be formulated into four steps.

1. Sub-training set sampling. n translation word pairs from the original training set

are sampled for each weak model, thus obtaining I training sets.

2. Linear mapping. For each weak model, a linear mapping is applied to the mono-

lingual word embeddings and from this, the cross-lingual word embeddings are

obtained.

3. Model agreement. In each generated weak model, the word pairs that are nearest

neighbours are selected using a dictionary induction method. In order to do this, a

similarity matrixM is calculated:

M = O(X̃, Ỹ) (5.1)

Next, word pairs that appear in all I weak models are collected. This process is

defined as the model agreement, signifying that the selected word pairs are consis-

tent word pairs across all weak models. Subsequently, if two different dictionaries

produced by different models have the same word pair, those models agree this

word pair is consistent. If a word pair is agreed by all I models, the final model

considers this word pair an accurate translation. Figure 45 depicts this process.

4. Combining. Finally, the consistent word pairs obtained in step four and the original

training dictionary are concatenated to form a larger new dictionary.

Algorithm 4 outlines the proposed method and Table 5.2 exhibits the experimental

results. Figure 40 demonstrates that if more models agree on a word pair, this word pair

tends to be accurate. This result supports the stated hypothesis. Also, Table 5.2 further
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(a) KCCA’s self-consistency

(b) CCA’s self-consistency.

(c) Vecmap’s self-consistency.

Figure 42: Self-consistency on the En-Zh dataset. ’1’ and ’2’ means two training subsets.
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(a) The self-consistency in KCCA-based mapping.

(b) The self-consistency in CCA-based mapping.

(c) The self-consistency in SVD-based mapping.

Figure 43: Self-consistency of different mapping-based methods on the En-Es dataset. ’1’ and
’2’ means two training subsets.
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Figure 44: An example of my proposed consistency-based model between English and German
words.
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Figure 45: An illustration of the model agreement process.

indicates that the agreement model is more robust and achieves better results compared

with a single model trained by the original training dictionary.

Algorithm 4 Agreement model
Dictionary d, monolingual word embeddings Xs, Xt
repeat

1. Samplem entries from d, obtain word embedding matrices xi,yi(i ∈ (1, I)).
2. Find projection matricesWx andWt.
3. Obtain bilingual word embeddings X̃is, X̃

i
t.

4. Obtain similarity matrixMi using a similarity metric described in Equation 5.1.
5. Generate a new dictionary di with size R by calculating the topK similar nearest
neighbours:

di = topK(Mi) (5.2)

until i == I
6. Calculate the intersection of all L models and origin dictionary d and cut it to size r:

dunion = d1 ∩ d2 ∩ ...∩ dL ∩ d (5.3)

7. Find the final projection.

However, the preliminary experiments show Algorithm 4 is not good enough to find

the best local optima. Therefore, I next propose a further investigation, aiming to improve

Algorithm 4.

• RANSAC Initialisation. The proposed model is affected by outliers in both the

training dictionary and the word embedding matrices. The words that do not appear
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typically have a strong influence on the model. Therefore, I propose to incorporate

Random Sample Consensus (RANSAC) into the dictionary initialisation process.

RANSAC is a parameter-ensemble method that can mitigate the influence of the

outliers on the model. The training dictionary sampling process induces noise. The

original training dictionary is noised with mismatched word pairs. Then some word

pairs are sampled from this noised dictionary, and a new dictionary dnew can be

learned with this training dictionary. Then this process iterates multiple times and

finds the best-learned dictionary. Subsequently, the union of this dictionary and the

original training dictionary is used as the final dictionary to learn the mapping. The

Algorithm 5 summarises the proposed idea.

• Mutual Nearest Neighbours. To better deal with the Hubness (See Section. 3.6.3),

I proposed a new dictionary induction method called the Mutual Nearest Neighbour.

This approach considers the nearest neighbour not from one direction (from source

to target), but both directions. Suppose a word embedding pair (xs, xt) is the nearest

neighbour from the source to the word embedding matrix and from the target to the

source direction. In that case, the word embeddings (xs, xt) are the mutual nearest

neighbours.

• Frequency-based Dictionary Cutoff. The low-frequency words in the vocabulary

are noisier than the high-frequency words (Artetxe et al., 2018b). In practice, the

low-frequency words tend to damage the performance of the learned mapping ma-

trix. Therefore, I proposed to limit the dictionary size to the top k frequent word

pairs.

5.4 Experiments

5.4.1 Dataset

The widely known cross-lingual word embedding datasets developed by Dinu and Baroni

(2015), together with its subsequent extension by Artetxe et al. (2017), are used in the ex-

periments. The chosen datasets consist of five language pairs. English-German (En-De),

English-Italian (En-It), English-Finnish (En-Fi), and English-Spanish (En-Es). Each Eu-

ropean language dataset includes 20k, 300-dimensional monolingual word embeddings

trained by CBOW. The English, Italian, and German word embeddings are trained on
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Algorithm 5 The word consistency based model with RANSAC initialisation
Dictionary d, monolingual word embeddings X, Y
1. Inducem noise pairs (mismatched pairs) to the original dictionary.
repeat

2. Sample n pairs of words from the nosied dictionary.
3. Find projection matrices.

Wi
s, r

i,Wi
t = F

i(Xs,Xt) (5.4)

4. Obtain bilingual word embeddings X̃i, Ỹi :
5. Obtain similarity matrixMi using a similarity metric described in Equation 5.1.
6. Generate a new dictionary di with size R by calculating the topK similar nearest
neighbours:

di = topK(Mi) (5.5)

7. Evaluate this dictionary using training set.
until i == I
8. Find the di with highest translation accuracy.
9. Calculate the intersection of di and the origin dictionary d:

dunion = di ∩ d (5.6)

10. Find final projection.

Wacky crawling corpora. The Finish monolingual word embeddings are trained on Com-

mon Crawl, while WMT News Crawl is used to generate the Spanish word embeddings.

The dictionaries are built from OPUS (Tiedemann, 2012). For each language pair, there

are 1500 test pairs and 5000 training pairs.

5.4.2 Experimental Details

Three experiments are designed to evaluate the proposed approaches. The first experi-

ment uses the vanilla settings outlined in Algorithm 4. The second experiment utilizes the

vanilla method plus the dictionary induction approach, while the last experiment uses the

RANSAC initialisation outlined in Algorithm 5. Two projection metrics are used in the

experiments. The linear projection method is used, which is the orthogonal method pro-

posed by Artetxe et al. (2018a) and the non-linear method KCCA, proposed by Zhao and

Gilman (2020). For the parameters described in Algorithm 4, the L = 20, 100, 200, 300,

m = 5000 , R = 40000 and r = 20000 values are used. For the Ransac initialisation,

1000 pairs are randomly re-ordered and set as noise and the remaining 4000 pairs as the

ground truth. The experiments were implemented in Python3 using an open source library
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CuPy1. All experiments were carried out on two 11GB Nvidia 1080 Ti GPUs on a PC with

64 GB RAM. The weight parameters are set in the ensemble method as a hyper-parameter

and a grid search algorithm is applied to find the best hyper-parameter set.

The open-source framework Vecmap2 is utilised to implement the pipeline of the mapping-

based cross-lingual word embeddings. It has two settings. The supervised setting and the

unsupervised setting. For the supervised setting, Vecmap provides a generalized five-step

mapping which contains normalisation, whitening, re-weighting, de-whitening, and di-

mensionality reduction (Artetxe et al., 2018a). I follow the default settings provided by

Artetxe et al. (2018a). Both source and target word embeddings apply length normalisa-

tion, mean centering, whiting and de-whitening; the reweighing parameter r is set to 0.5.

There is an inner similarity between re-weighting and dimensionality reduction based on

the finding in Artetxe et al. (2018a). Therefore, following this work, I only adopt the

re-weighting process and ignore the dimensionality reduction process.

For the unsupervised setting, an iterative two-step procedure is implemented to avoid

the necessity for an extensive dictionary. Additionally, an initialisation of a start-up dic-

tionary is created. The linear mapping is first estimated using this dictionary, and then this

dictionary is augmented by applying the nearest neighbour of the projected cross-lingual

word embeddings. Those two steps repeat until the convergence of a specified criterion. In

the proposed experiment, we follow the default setting provided by Artetxe et al. (2018b).

The results from both supervised and unsupervised approaches are provided.

The RANSAC initialisation process set the sampling number n = 2000 and the itera-

tion number I = 200. The experiments on RANSAC are on the En-Es and En-It datasets.

5.4.3 Ensemble Model

The naive bagging-based ensemble is adapted for the pipeline of the mapping-based

method (Orthognal method). For this, I first define m = (2, 3, 4, 5) models. In each

model where n = (2500, 3000, 3500, 4000, 4500), the training dictionaries are first sam-

pled and applied to the linear mapping.

There are naturally two ensemble aggregation strategies that can be applied:

1. Average similarity. This is the most used ensemble strategy (Tsoumakas and Vla-

havas, 2007). Under this approach, during the dictionary induction process, the
1https://cupy.dev/
2https://github.com/artetxem/vecmap
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similarity matrix of both models is averaged and this averaged similarity matrix is

then used to find the nearest neighbours of a specific word.

2. Average rank. After the dictionary induction process, a list of rankings of the simi-

larities of each word can be then be obtained. For instance, given a word embedding

wis, first, calculate the similarity between wis and word embeddings in the target

word embedding matrix Xt and obtain a similarity vector wisXt. Then formulate a

rank order list based on this similarity vector. Based on this process, two rank order

lists can be obtained using two mapping-based approaches, such as KCCA and the

orthogonal method. This strategy averages those two rank order lists and selects the

nearest neighbours as the top one of this averaged rank list.

5.5 Result Analysis

5.5.1 Comparing to the Pipeline of Mapping-based Method

Table 5.1: The size of the learned dictionary in the proposed model.

Learned Dictionary Union Dictionary Cut Dictionary
En-It 16573 18923 18774
En-De 15222 17895 17529
En-Es 14324 16784 16529
En-Fi 11353 14680 13687
En-Zh 11392 17653 16584

Table 5.1 shows the size of the augmented dictionary is larger than the size of the

original dictionary (the original dictionary size is 5000). The dictionary augmentation

approach can provide additional training data in an unsupervised scenario. This experi-

ment aims to evaluate the performance of the augmented dictionary. Table 5.2 confirms

that the proposed augmentation approach has a better performance in all language pairs

than other individual mapping-based methods. The proposed model achieves 0.9, 3.1, 1.0,

1.7 percentage point improvements in terms of word translation accuracy on the En-Es,

En-De, En-It, and En-Fi datasets respectively. This result indicates that the proposed dic-

tionary augmentation process is more efficient than the original dictionary using the same

orthogonal model.
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Table 5.2: A comparison of results (accuracy) of the proposed model.

Method En-Es En-De En-It En-Fi Average accuracy (%)
Unsupervised 37.3 48.1 48.2 32.6 41.6
Supervised 38.2 47.2 47.3 35.0 41.9
The proposed
Ensemble 39.5 48.7 48.5 36.3 43.3
Proposed model 39.1 50.3 48.3 36.7 43.6

5.5.2 Compare to Naive Bagging

Table 5.2 shows that the proposed approach outperforms the ensemble method by 1.6,

0.4 percentage points in the En-De and En-Fi datasets. Additionally, Table 5.2 shows the

results of the two baseline models (supervised and unsupervised). Both ensemble models

outperform the single mapping-based model. The result confirms one of my hypotheses

that the training dictionary contains noises and redundancy. The findings indicate that

both ensemble models can effectively alleviate the impact of the outliers and provide

robust and more accurate results.

5.5.3 Analysis of the RANSAC Initialisation

Table 5.3: The word translation accuracy comparison of the RANSAC Initialisation and the
vallina mapping-based method.

Method En-Es En-It
Training set result
RANSAC (best result) 80.59 82.39
Test set result
RANSAC 37.73 47.20
Orthogonal 38.20 47.30
Consistency 39.13 48.26

Figure 46 shows the track of the training process of Algorithm 5. In the experiment, I

record the training set word translation accuracy in each loop. The result shows there is

no visible relationship between the training iteration and the word translation accuracy.

Table 5.3 illustrates the adoption of the RANSAC initialisation does not substantially

impact the word translation accuracy of the test sets - it slightly degrades the performance

of the learned mapping. The result has is 0.9, 0.1 percentage points drop than the orthog-

onal method on En-Es, En-It test set.
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(a) The training set accuracy distribution on the En-It dataset.

(b) The training set accuracy distribution on the En-Es dataset.

Figure 46: The accuracy evaluated on training set using the learned dictionary.

5.5.4 Analysis of the Mutual Nearest Neighbours Dictionary
Induction

The proposed experiment aims to investigate whether mutual nearest neighbours could

provide improvements to the final results. For simplicity, the mapping process and the

dictionary induction process are only executed once, which is the same with the pipeline

of linear mapping (See Section.3.4). I only changed the dictionary induction process to

the proposed mutual nearest neighbours process. The result is illustrated in Table 5.4.

Table 5.4: Word translation accuracy (%) of different dictionary induction process.

En-It En-De En-Es En-Fi En-Zh Average accuracy
Nearest neighbours 47.46 47.46 39.00 36.16. 49.14 43.90
Mutual nearest neighbours 48.06 49.00 38.53 36.65 49.00 44.25

The proposed dictionary induction process provides competitive results on the En-It,

En-Es and En-Fi datasets. Table 5.4 shows the mutual nearest neighbours dictionary

induction gains an averagely 0.35 percentage point increase in terms of word translation
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accuracy. The result confirms that the mutual nearest neighbour can effectively perform a

dictionary induction process that aims to find a better dictionary.

5.5.5 Analysis on the Frequency-based Dictionary Cutoff Strategy

Table 5.5 shows that the frequency-based dictionary-pruning process provides a better re-

sult than simply using the learned dictionary. This is possibly due to the outliers being

mostly distributed amongst low-frequency words. The dictionary cutoff process provides

an average 0.1 percentage point improvement across all datasets in terms of word transla-

tion accuracy.

Table 5.5: Word translation accuracy (%) of baseline and the model with the dictionary-pruning
process.

En-It En-De En-Es En-Fi En-Zh Average accuracy
Baseline 47.73 50.80 39.33 37.00 49.14 44.80
Dictionary Cutoff 47.73 50.87 39.40 36.86 49.61 44.89

However, some low-frequency words can contribute to the final projection. The dictio-

nary cutoff process harms the proposed model’s performance in the En-Fi dataset, causing

a 0.14 percentage point drop. This accuracy decrease is caused by the data insufficiency

issue found in the En-Fi dataset. The En-Fi dataset is much smaller than rich-resource

datasets like En-It and En-Es. Therefore the word embeddings appear to be more sensi-

tive to the inadequate information. The trade-off between the size of the dictionary and

the quality of the cross-lingual word embeddings still needs to be further studied.

5.5.6 Model Number’s Impact

This experiment develops the relationship between the dictionary quality and the weak

model size in the augmentation approach. The word translation accuracy of the training

set is used to evaluate this relationship. Figure 47 shows that when the number of the

weak models rises, the translation accuracy of the training pairs also improves. The word

translation accuracy increases to 80% when 20 models are combined. The result illustrates

that an ensemble of more models provides a higher translation accuracy in the test set.

The result confirms the above mentioned hypothesis that the multiple weak models offer

diversity, and an ensemble of them can generate a robust and better local optima.

Figure 48 indicates that the correctly translated word pairs decrease when more models

are incorporated. The result confirms the hypothesis in Section 5.2 that the consistent

word embeddings are strongly correlated and share similar geometric arrangements. Ad-
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Figure 47: The word translation accuracy of training word pairs with a different number of
models.

ditionally, in the experiment, only the word pairs agreed by all sub-models can be seen

as consistent word pairs. This strong constraint, also called "unanimity", often applies in

ensemble medical models like heart attack prediction (Raza, 2019), which can generate

the strongest and the most reliable model. Therefore, those corresponding word pairs can

be considered as a reliable training dictionary.

5.5.7 Analysis of the Ensemble Strategy

Table 5.6 manifests the result using different ensemble strategies. The average strategy

works better on the En-Fi dataset, and the average rank strategy works better on other

datasets. In total, the rank strategy works better for ensemble models. This is probably

because the ranking strategy only focuses on the significance of each word and disregards

the effect of real features, making the model more robust.

Table 5.6: Word translation accuracy (%) of different ensemble strategies.

En-It En-De En-Es En-Fi
Average Similarity 47.80 47.78 39.13 36.86
Rank 48.26 49.60 39.13 36.44
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Figure 48: Number of the correctly translated word pairs within consistent word pairs when
different number the models are combined.

5.6 Conclusion & Future work

An essential challenge of the cross-lingual word embedding approach is the limitation

of the training dictionary. The noise of the training dictionary leads to the high variance

issue.

In this chapter, I introduce my investigation on dealing with the issue mentioned above.

First, I adapt the ensemble model to the cross-lingual word embedding approaches. The

proposed method ensembles the orthogonal and KCCA models to leverage the diversity

in linearity and non-linearity. Additionally, to address the inadequate data issue in the

training dataset, I introduce a word consistency-based dictionary augmentation method

that improves the mapping-based cross-lingual word embeddings by enlarging the train-

ing dictionary in a semi-supervised scenario. I further develop the effect of the detailed

strategies of the proposed model, including the RANSAC initialisation, the frequency-

based dictionary pruning and the rank-based ensemble strategy.

I designed extensive experiments to evaluate the proposed approach. The performance

of the bagging-based ensemble model is better than the individual models, and the pro-

posed consistency-based ensemble model also provides better results. The result confirms

two hypotheses mentioned in this chapter: 1. The training dataset contains noise, and the

noise has a negative affecting on the learned mapping. 2. The diversity of different weak
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models contributes to the final ensembled model.

In the investigation of the RANSAC initialisation, the result shows the strategy does

not benefit the proposed model. I also experimented with the frequency-based dictionary

cutoff strategy, which helps mitigate the outliers’ adverse effects. Additionally, the ex-

perimental result confirms that the rank-based process can effectively ensemble the two

models.
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CHAPTER 6
Mutual Learning for Speech

Translation

A popular research area in end-to-end speech translation is distilling knowledge from a

machine translation model to a speech translation model. This transfer paradigm views

a trained machine translation model as the teacher and a non-trained speech translation

model as the student. A limitation in this approach, however, is that it only allows for the

one-way transfer, which raises two issues and these two tasks can not be accommodated

into a teacher-student paradigm.

1. The performance of the teacher framework limits the one-way transfer paradigm.

The one-way transfer paradigm is based on the assumption that the performance of

the teacher model outperforms the student model so that the teacher model can

guide the student model in the training process. Therefore, the performance of the

teacher model highly impacts the performance of the student model. However, the

teacher model limits the student model by fixing the training target, which leads to

a constraint on the search space of the student model.

2. The different nature of voice and text input makes speech and machine trans-

lation naturally fit with different models. In an ideal teacher-student scenario, the

teacher and student models are trained to solve identical tasks. However, under the

circumstance in this chapter, the teacher model (MT) and the student model (ST)

have a considerably different structure and are not comparable.

In order to address the issues mentioned above, a trainable mutual learning-based end-

to-end speech translation paradigm is designed instead of conventional one-way training.

The proposed training paradigm effectively improves the translation performance of the
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end-to-end speech translation model. The proposed model contains two separate training

components: an end-to-end speech translation model and a machine translation model.

Additionally, a proposed mutual learning scenario trains those two models collaboratively.

This simple training paradigm improves the performance of both models. Experimental

results show that the proposed model can efficiently explore the auxiliary information

from peer models and improve both of them. In the same setting, the proposed model

exceeds the baseline model by on the En-Fr, En-Es, and the En-De MuST-C datasets by

2.4, 1.8, 0.1 BLEU score, and the best result achieves state-of-the-art in this field.

6.1 Introduction

Speech translation (ST) aims to translate speech signals into a foreign language. It is a

multi-modality task, closely related to automatic speech recognition (ASR) and machine

translation (MT). ST has a wide range of applications, such as video subtitling (Saboo

and Baumann, 2019), real-time lecture translation (Müller et al., 2016), and protection of

endangered languages (Bansal et al., 2017).

Despite recent successes in end-to-end (E2E) models, currently, those systems still

face the issue of data insufficiency (Sperber and Paulik, 2020). A widely used recent

advance in E2E ST is knowledge distillation (KD), which provides an effective paradigm

for transferring knowledge from rich-resource to low-resource tasks (Liu et al., 2019;

Gaido et al., 2020b). These models consider the MT model as teacher to guide the ST

model, which is regarded as a student. I hypothesise that a strict teacher-student scenario

may be sub-optimal for the following reasons:

• The MT model freezes (only used in an inference scenario, meaning that the model

is not jointly trained) in this one-way knowledge transfer scenario, the success of

knowledge transfer and hence the performance of the ST task is constrained by the

performance of the pre-trained MT model (See details in Section 6.2.4).

• There exists a modality gap between speech and text inputs of the two models, with

speech input also containing inherent speaker variability.

Motivated to address the issues mentioned above, I set out to improve ST and MT

tasks by training them jointly. Instead of freezing the teacher model, a mutual-learning

paradigm is proposed, which regards ST and MT models as peers that learn collabora-

tively, aiming to share the knowledge between the two models iteratively. Mutual learn-
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ing has been proposed to leverage information from multiple models and allows effec-

tive dual knowledge transfer in image processing tasks (Zhang et al., 2018; Zhao et al.,

2021a). This idea is leveraged and adapted to sequence tasks. This chapter describes the

main contributions listed below:

• I propose a jointly-trainable mutual-learning paradigm, which improves the distil-

lation method by training them together. MT and ST’s search spaces are enlarged,

providing the potential for more robust local optima.

• I further improve the proposed mutual-learning method by integrating the cyclical

annealing schedule, which alleviates the KL vanishing problem from which many

time-series tasks suffer. (Fu et al., 2019; Bowman et al., 2016; Higgins et al., 2016)

• Extensive experiments on MuST-C En-Fr, En-Es datasets are implemented. The

experimental results illustrate the advantage of the proposed model by empirically

comparing it with a cascaded model, a knowledge distillation (KD) model and a

multi-task learning (MTL) model. The experimental results show that the proposed

model can effectively leverage the transcript (source speech text) and the auxiliary

MT task and obtain competitive results in all experiments. In addition, as a side

benefit, the performance of the MT model also improves.

6.2 Background

6.2.1 Definition of Speech Translation

Given the speech feature X from one language, and corresponding ground truth translation

text T from another language, the speech translation model aims to maximise the posterior

probability of X given T :

T̂ = argmax
T

P(T |X) (6.1)

6.2.2 Cascaded Model

Earlier cascaded models integrate two loosely coupled models: an ASR model and a MT

model. In cascaded models, the speech features and their corresponding source texts are

first used to train an ASR model. The ASR model can transfer source speech features

to source speech texts (also called transcripts). Additionally, an MT model is followed
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to transfer the source speech texts into target speech texts. Figure 49 illustrates cascaded

model.

Figure 49: Cascaded model.

Based on Bayes’ theorem, the Equation 6.1 can be reformulated by Equation 6.2:

T̂ = argmax
T

P(T |S,X)P(S|X) (6.2)

In Equation 6.2, S represents the corresponding source transcript. The second component

can be seen as an ASR model PASR(S|X). Given a speech feature, the ASR model provides

the hypothesis of its transcript texts. In general, the first component can be roughly seen

as an MT model (Sperber and Paulik, 2020).

P(T |S) ≈ PMT (T |S,X) (6.3)

Therefore Equation 6.1 can be decomposed as:

T̂ = argmax
T

PMT (T |S)PASR(S|X) (6.4)

where T̂ is the hypothesis for the final translation of the cascaded model.

The cascaded model has two challenges:

1. The ASR Model inference result is not reliable enough to be passed to the MT

model.

2. Source language mismatches between ASR and MT model. ASR’s training data

contains more informal language texts and interjection words, and those data often

come from daily spoken languages; the MT training data contains more formal

language texts like news and reviews as well as Wikipedia articles.

Due to the above, recent research efforts have started to focus on direct models which

try to build a direct model using Equation 6.1.

6.2.3 The Vanilla Model of End-End Speech Translation

E2E ST learns a single model which directly maps speech features to a target language

text sequence (Weiss et al., 2017; Duong et al., 2016). Given a sample pair (x,y) from
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the training set D corresponding to speech signal and translated target sentence, the ST

model is trained by minimising:

L = −
∑

(x,y)∈D
logP(y|x; θ) (6.5)

where L is the negative log likelihood (NLL) loss. E2E models consist of an encoder

that encodes speech input as an intermediate representation, and a decoder that decodes

this intermediate representation to a probability distribution over the target text feature

space. Previous work on E2E ST have been developed using recurrent neural network-

based models, but since has moved on to Transformer-based models (Gangi et al., 2019b;

Zhang et al., 2019; Vila et al., 2018; Weiss et al., 2017; Berard et al., 2016). Figure 50

shows the general framework for end-to-end speech translation models.

Figure 50: The end-to-end speech translation model.

6.2.4 The Knowledge Distillation for End-to-End Speech
Translation

A typical teacher-student framework is knowledge distillation (Hinton et al., 2015), which

transfers knowledge from a large model to a smaller model. The knowledge distillation

approach is widely used in model compressing, knowledge transfer and dealing with data

scarcity issues (Zhao et al., 2021a; Liu et al., 2019; Zhang et al., 2018).

MT model is generally used as a teacher model to transfer knowledge to the speech

translation model to deal with data scarcity. Knowledge distillation loss consists of the

re-construction loss and the distillation loss. Denote Lst as the log-likelihood loss for the

ST model:

Lst = −
∑

logP(y|x; θ) (6.6)

where parallel data (x, s,y) comes from speech feature X, transcript S and target text Y,

and the Lst is the reconstruction loss.

In the distillation model, the distillation loss Lkd is normally the cross-entropy between

the output distributions of the ST and MT model. Given a token yi, the distribution can
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be expressed as Q(yi|y<i, x). Then the distillation loss can be defined:

Lkd =

N∑
i=1

|V |∑
k=1

Q(yi = k|y<i, x; θq) logP(yi = k|y<i, x; θ) (6.7)

where θ is the parameter set of the student model and θ is the parameter set of the teacher

model. Finally, the loss of the knowledge distillation model L is defined as:

L = (1− λ)Lst + λLkd (6.8)

The MT model is pre-trained and frozen in the knowledge distillation scenario for the

end-to-end speech translation. During the training process, the distribution Q is obtained

by the inference mode of the machine translation model. Then the knowledge can be

transferred from the MT to ST model through this scenario. As discussed before, the KD

scenario is challanging to adopt between the ST and MT models because of the modality

gap and the performance constraint of the MT model.

6.3 Proposed Mutual-Learning-based Speech Translation

6.3.1 Model Description

Model definition: Given parallel data (xi, si,yi) from speech feature X, transcript S and

target text Y, and an ST model Mst and an MT model Mmt, the output probabilities are

given by:

pst =Mst(xi) (6.9)

pmt =Mmt(si) (6.10)

The training loss has two components: a traditional supervised reconstruction loss and a

mimicry loss that aligns the output posterior distributions between the models. The Kull-

back–Leibler (KL) divergence (Kullback and Leibler, 1951) is adapted as the mimicry

loss, aiming to reduce the distance of outputs of ST and MT systems, effectively encour-

aging them to mimic each other. Since KL divergence is asymmetric. It is calculated in

both directions as follows:

KL1 = KL(pmt||pst) =

N∑
j

p
j
mt ln

p
j
mt

p
j
st

(6.11)
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KL2 = KL(pst||pmt) =

N∑
j

p
j
st ln

p
j
st

p
j
mt

(6.12)

where N represents the length of the output sentence. The NLL loss is used as the recon-

struction loss, denoted by LCst for ST and LCmt for MT:

LCst = −

N∑
i

yi ln (pist|yi) (6.13)

LCmt = −

N∑
i

yi ln (pimt|yi) (6.14)

Lastly, a weighting term is assigned to the mimicry loss and combined with the recon-

struction losses to produce the mutual learning loss, as described by Equation 6.15:

Lml = β(KL1 +KL2) + LCst + LCmt (6.15)

Figure 51 illustrates the proposed mutual learning scenario.

Figure 51: The proposed deep mutual learning scenario. The training objective contains four
separate components, the reconstruction losses of ST and MT (LCst and LCmt) and KL divergence
between outputs of ST and MT (KL1 and KL2).

6.3.2 Training Strategy

As shown in Algorithm 6, ST and MT models are trained iteratively until convergence.

In each iteration, there are two steps: 1. the MT model is frozen and the parameters of ST

model are updated; 2. ST model is frozen and the parameters of MT model are updated.

Figure 51 illustrates the training process.

KL vanishing issue: In the proposed mutual learning strategy, leveraging KL diver-

gence as a loss suffers from the vanishing issue, which can be alleviated by adopting a

cyclical annealing schedule for βt. The cyclical annealing schedule was proposed to mit-
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Algorithm 6 Training Strategy
Input: training set, ST network parameters θst (with ASR pre-trained encoder), pre-
trained MT network parameters θmt
repeat
t = t+ 1
1. Compute pst and pmt for one minibatch
2. Freeze θmt, compute the gradient and update θst

θst −→ θst + lr ∗
∂Lml
∂θst

(6.16)

3. Upate pst and pmt
4. Freeze θst, compute the gradient and update θmt

θmt −→ θmt + lr ∗
∂Lml
∂θmt

(6.17)

until convergence

igate similar KL vanishing issue in variational auto-encoders (Fu et al., 2019). In this

case, βt in Equation 6.15 changes periodically during training iterations, as described by

Equation 6.18:

βt =

{
r
RC , r <= RC
1, r > RC

(6.18)

where t represents the current iteration and r is defined as:

r = mod(t− 1,C) (6.19)

The training process is effectively split into many cycles with each cycle lasting C itera-

tions. In each cycle βt progressively increases from 0 to 1 during RC iterations and then

stays at 1 for the remaining (1− R)C iterations. Also, R = 0.5 and C = 5000. With this

trick the model can be trained and the KL vanishing issue can be mitigated.

6.4 Experiments

6.4.1 Dataset

I evaluate the proposed framework on the popular MuST-C multilingual speech translation

dataset1 (Gangi et al., 2019a), using the two most used language pairs: English-to-French

(En-Fr) and English-to-Spanish (En-Es). En-Fr dataset contains 500 hours of training

voice clips and 280K pairs of parallel sentences. En-Es dataset contains 504 hours of
1https://ict.fbk.eu/must-c/
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training voice clips and 270K pairs of parallel sentences. Table 6.1 shows the detail

statistic of the two datasets.

Table 6.1: The MuST-C dataset statistics used in the experiments.

Language pairs En-Fr En-Es
Hours of Speech 492 504
Sentence pairs 280K 270K
Source tokens 5.2M 5.3M
Target tokens 5.4M 5.1M

Pre-processing The same data pre-processing steps are implemented as described in

the fairseq speech-to-text framework (Wang et al., 2020). The pre-processing step extracts

80-channel log Mel-filterbank features and removes the training samples that are larger

than 3000 frames. For both transcripts and target texts, the newly proposed subword

regularisation method proposed by (Kudo, 2018) is employed to build a vocabulary with

the size of 8000. A jointly-trained shared vocabulary of size 8000 is also used as an

additional experiment.

6.4.2 Training Details

A stack of 2 1D convolutional layers (kernel size 5, stride 2) is used for the ST task,

followed by 12 Transformer layers of size 2048 as the encoder. Six stacked Transformer

layers with size 512 are used as the decoder. For the MT task, 12 stacked Transformer

layers with size 2048 are used as the encoder, and six stacked transformer layers with

size 2048 are used as the decoder. Evaluation is based on the standard implementation of

BLEU score, SACREBLEU (Post, 2018), with a beam size of 5. The maximum number

of tokens in each batch is 40000. Figure 52 illustrates the proposed structure.

The experiments were implemented using on open-source library PyTorch2 and open-

source package fairseq3. All experiments were carried out on Nvidia A100 GPU (40GB

VRAM) on a PC with 128G RAM.

6.5 Results and Analysis

6.5.1 Cascaded Model Comparison

First, the cascaded model pre-trains a transformer-based E2E ASR model using speech

input and English transcripts in the cascaded setting. Then it pre-trains an MT model using
2https://pytorch.org/
3https://github.com/pytorch/fairseq
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Figure 52: Mutual-Learning model detail. The structure of my mutual learning paradigm is two
stacked transformer.

English transcripts and target sentences. In inference mode, the ASR model generates an

intermediate text representation. The representation is passed to the MT model, and the

model calculates and obtains the output probabilities.

As shown in table 6.2, the mutual-learning-based ST model provides competitive re-

sults compared to the cascaded model. The proposed model achieves 0.6 and 0.5 BLEU

score improvement in En-Fr and En-Es datasets, respectively. The results illustrate that

the mutual-learning paradigm provides an effective method for leveraging the additional

information available via transcript.

The Vanilla E2E ST model uses different vocabularies for source and target languages.

A jointly-trained byte pair encoding (BPE) is also utilised to build the vocabulary to better

align those two feature spaces. Leveraging this vocabulary achieves a surprising improve-

ment on the state-of-the-art result, shown in the last row of Table 6.2.

6.5.2 Knowledge Distillation Model Comparison

Knowledge distillation (KD) is a conceptually similar approach to the proposed frame-

work. KD provides a one way transfer from a trained teacher model to a student model.

The following is a comparison of work in this study with the KD-based method. An MT

model is pre-trained using transcripts and target sentences. Then the model is frozen and
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Table 6.2: A comparison of results for different ST models: Cascaded, vanilla end-to-end, end-to-
end with multi-task learning, end-to-end with knowledge distillation, and end-to-end with mutual
learning. "?" denotes training with a joint vocabulary.

Method En-Fr En-Es
Cascaded 34.9 28.0
E2E 32.8 27.2
E2E + MTL 33.5 27.5
E2E + KD 34.5 27.9
E2E + ML 35.5 28.5
E2E + ML? 36.3 28.7

used to guide an ST model by minimising Equation 6.20:

Loss = β ∗ (KL1 +KL2) + LC (6.20)

where KL1 and KL2 are described by Equations 6.11 - 6.12 and LC is the reconstruction

loss (Equation 6.13). The difference between KD and the proposed approach is that MT

model is frozen and used in an inference mode and only the ST model parameters are

updated during the training process. Table 6.2 illustrates the proposed mutual training

outperforms one way training strategy by 1.0, 0.6 BLEU score in En-Fr, En-Es dataset,

respectively.

6.5.3 Multi-Task Learning Model Comparison

Multi-Task Learning (MTL) is also a collaborative learning strategy. In contrast to the

proposed mutual-learning scenario, the MTL trains the ST model and MT model sepa-

rately with the average of the NLL loss from MT and ST models:

Loss =
1

2
∗ (LCst + LCmt) (6.21)

ST task results of using the MTL scenario are show in Table 6.2. These results show that

the mutual-learning scenario is a more effective way of joint learning: gaining 0.7, 0.3

BLEU score increase comparing to MTL in ST task.

MT task results of using the MTL scenario are shown in Table 6.3. It can be observed

that the mutual-learning scenario is more effective for this task as well.

6.5.4 Performance of the MT System

In the proposed mutual-learning scenario, the models are trained collaboratively. The ST

model and MT model share knowledge through the training process. Therefore, it is in-

teresting to evaluate not only the performance of the ST model, but also the performance
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Table 6.3: mutual-learning system comparing to independently trained MT system on MuST-C
dataset.

Method En-Fr En-Es
MT 45.1 35.4
MT+MTL 45.6 35.3
MT+ML 45.8 35.7

of the MT model. In the proposed experiment, the performance of MT model in the pro-

posed mutual-learning scenario is evaluated and compared with an independently trained

MT model which is also trained on MuST-C script-target text pairs. Both MT models

have an identical configuration and the same hyper-parameters and training strategy are

used, which are described in Section 6.4.2.

From the results in Table 6.3 it can be concluded that mutual-learning also improves the

MT model’s performance. The proposed model gains 0.7, 0.3 BLEU score in En-Fr and

En-Es dataset comparing to the independently trained MT system. The proposed model

also exceeds a typical MTL learning model by 0.2, 0.4 BLEU score in the MT task. This

result shows that the mutual-learning leads to a more robust minima than that of the MTL

paradigm.

6.5.5 Analysis of the Cycling Annealing Schedule

Figure 53 illustrates the KL loss, ST loss (reconstruction loss) and the total loss change

during the training process on the En-Fr dataset. KL loss gets smaller gradually during

the training process. The trend is similar to that of ST loss. This trend indicates that

the cycling annealing schedule successfully mitigates the KL vanishing issue, making it

possible to use KL distance as the additional mimicry loss to train the system.

6.6 Conclusion & Future Works

This chapter discusses the end-to-end speech translation. I review the current approaches

of cascaded speech translation and end-to-end speech translation. I describe the key chal-

lenge in the speech translation area, which is data insufficiency. I presented my proposed

mutual-learning paradigm for end-to-end speech translation to address the low-resource

issue. Another contribution described in this chapter is that I addressed the KL vanishing

problem by introducing cycling annealing schedule to the training process.

Experimental results demonstrate that the proposed approach outperforms the typi-

cal one-way transfer paradigm KD, as well as typical dual knowledge transfer paradigm
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Figure 53: The loss for cycling annealing schedule on En-Fr dataset.

MTL. Also, competitive results are obtained compared to cascaded model which has in

the past been outperforming E2E ST models. Additional experiments also show that the

KL vanishing issue is addressed.

I also further investigated the machine translation model in the proposed scenario. I

hypothesised that mutual-learning could benefit both models in the proposed dual knowl-

edge distillation process. The experimental result indicates that MT model can also benefit

from the knowledge of ST model.

My future research interest in this area will pursue two topics:

1. The multi-lingual speech translation. Since the inner structure of ST and MT model

are similar, it may be possible to design a unified structure that can handle all kinds

of languages. This idea has been suggested in MT models but ST models are yet to

be covered.

2. Speech translation in extreme low-resource situations. The data insufficiency issue

for low-resource languages are hard to deal with. The advances in Meta-learning

and Zero-shot learning provide some possible avenues for further exploration.
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Conclusion

In this dissertation, I proposed a series of novel techniques for addressing challenges in

the area of cross-lingual word embeddings and speech translation modelling.

In Chapter 3, I demonstrated how my proposed method obtains improvements in mapping-

based cross-lingual word embedding methods. In that chapter, I outlined my research into

whether non-linearity could better describe the relationships between word embeddings

of languages in the different language families which challenges the current hypotheses.

There are several key contributions that emerged from this chapter:

• I proposed two non-linear mapping-based methods, KCCA and DCCA, as the mapping-

based methods to learn cross-lingual word embeddings. The experimental work

revealed that the proposed approach works better on most datasets than the bench-

marked approaches.

• I provided a new Chinese-English dataset which contains the pre-trained word em-

beddings and a dictionary and corresponding parameter-sets. This dataset is the

first Chinese dataset in this area which contains language pairs that are not in the

same language family.

In Chapter 4, I proposed my unsupervised cross-lingual word embedding approach. I

achieved two objectives:

• In this chapter, I developed the CCA-based mapping for unsupervised cross-lingual

word embeddings and proved that CCA-based mapping can also provide competi-

tive results.

• I demonstrated a non-linearity-based unsupervised cross-lingual word embedding

approach through a last step of non-linear mapping.
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By incorporating KCCA into the mapping process, my proposed method achieves an

improvement in results on all language pairs. The improvement on the English-Chinese

dataset is worth highlighting since these two languages are not in the same language

family, and the En-Zh dataset has a low-resource issue. The improvement also proves that

my proposed method can effectively address both of the central issues in this field.

In Chapter 5, I further discussed the relationship between languages from the perspec-

tive of linearity and non-linearity. Given that linearity can offer competitive word trans-

lation result in languages that are in the same language family, and that non-linearity

can provide competitive result in languages that are not in the same language family, I

ask weather combining the two approaches together could provide a robust and overall a

better result. Through my investigation in this topic, I made two contributions:

• I provide an ensemble-based method for cross-lingual word embeddings. I ensem-

bled different linear and non-linear methods by combining their similarity matri-

ces and rank order. I propose an ensemble-based cross-lingual word embedding

method that achieves an improved result across all datasets utilised by Dinu and

Baroni (2015).

• In the process of my work on this topic, I propose a new concept: Word consistency.

By investigating the word consistency in different language pairs, I found that the

some word pairs can be correctly translation through all experiments within word

consistent pairs. I hypothesise that those word pairs could be used as new word

pairs. I designed a consistency-based model which can effectively generate new

word pairs from monolingual corpora. The generated word pairs could then be

used for further learning high quality cross-lingual word embeddings.

I conducted numerous experiments on the consistency-based model. I found that newly

generated word pairs can learn better cross-lingual word embeddings and provide a better

result than individual models.

The focus of my research in Chapter 6 was speech translation. Current ST models suf-

fer from data insufficiency. Multiple attempts exist to distil from rich-resource models

to low-resource models like machine translation to speech translation model. Knowledge

distillation methods are a popular way of transferring knowledge. However, in my in-

vestigation, I find that the teacher/student scenario does not fit MT and ST models. This

chapter provides a new knowledge transfer scenario: mutual learning. Instead of one-
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way learning from teacher to student, my proposed model can learn knowledge in both

directions. Two contributions arise from this chapter. Firstly, I propose a mutual-learning

scenario that simultaneously allows both MT and ST models to acquire knowledge. The

proposed model can relax the searching space and provide better results on the MuST-C

speech translation dataset. Secondly, The original mutual-learning model suffers from

the KL vanishing issue. To mitigate this issue, the proposed model utilises the cycling

annealing schedule. The experiments show that the proposed approach can successfully

alleviate the KL vanishing issue.

There are numerous future research opportunities that this work has opened up, which

I would like to continue investigating further. There are four topics:

• The deep learning technologies for cross-lingual word embedding: The focus of

current studies has been to move from machine learning methods to deep learning

methods. Pre-trained models like BERT or MUSE have offered competitive results

in recent years. However, those models are costly to train or need tremendous data.

Therefore, a light, efficient pre-train model for low-resource languages is would

be beneficial. My future work will upgrade existing pre-trained transformer-based

models by relaxing their requirement for extensive data and expensive resources.

• Zero-shot cross-lingual word embeddings for extreme low-resource language

or endangered languages. Current advances for cross-lingual word embeddings

provide optimism for translating endangered languages such as Maori or languages

that have already become extinct, e.g. Tangut script. My future work will conclude

the existing methods and link those languages with rich resource languages like

English or French.

• An end-to-end speech translation model for multi language speech translation.

A current advance in MT has been the extension from one-to-one machine transla-

tion to many-to-many translation. A single many-to-many model can translate lan-

guages effectively instead of training separate models for different language pairs.

The many-to-many model can save training time and computational resources.

• Zero-shot speech translated through meta-learning. Meta-learning is the newest

technology to deal with data insufficiency issues. Meta-learning provides impres-

sive results in zero-shot image classification tasks and is now starting to be applied
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in the NLP field. Meta-learning delivers the possibility of translating speech in

low-resource languages, which would also be my subsequent research focus.

Current studies have tended to focus on rich-resource languages and supervised learn-

ing approaches. However, researchers have to face unlabelled, uncleaned data having a

limited size in real-world applications. Therefore, most of my work has focused on un-

supervised learning and mitigating data insufficiency issues. My overarching goal in this

study is to tackle this complex challenge that is highly relevant to industry and real-world

applications involving low-resource languages.
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