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ABSTRACT

Starch is a major component of many of the world's food
supplies. 1In order to utilise these supplies effectively
the properties of starch must be fully understood.
Although starch systems have been investigated quite
extensively, there is relatively little information
concerning the physico-chemical behaviour of starch

under conditions relevant to food processing.

[

The texture of many fabricated foodstuffs is regulated
by adding starch. 1In many cases the addition of starch
causes food systems to behave as visctoelastic pastes.
In Australasia, wheat starches are generally used to
control texture. However starches from some wheat
cultivars do not impart the desired rheological
characteristics to foodstuffs and this thesis concerns
an investigation into this phenomenon which was

investigated in three sections.

In section I, a fundamental study of the rheological
properties of wheat starch pastes was performed.
Measurements were made of the flow behaviour of pastes

under both oscillatory and steady shear conditions.

Pastes formed under a range of experimental conditions

from various wheat varieties were studied. Both wheat
varieties and paste preparation conditions were found

to influence rheological behaviour. The results show

that differences in the pasting properties of starch

pastes may be attributed to two factors, namely the

swelling capacity of the starch (the volume which the starch
gel particles would occupy when close packed if excess solvent

were present) and the size distribution of the granules.
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The rheological properties depend on the source of starch
since this effects particle swelling capacities and size
distributions. Paste preparation conditions influence
rheological properties since they alter the volume

occupied by gelatinised granules.

The rheological behaviour of starch pastes changes with
time when the pastes are stored. The effect of storage
on dynamic rigidity was investigated and the results '
suggested that a crystallisation process is responsible
for the increase in dynamic rigidity with time. The

results were therefore evaluated using the Avrami equation.

In section II, an investigation was made of the degree

of crystallinity, that is the proportion of polymer chains
that are in an ordered state, in a number of wheat starch
varieties that have different swelling capacities.
Measurements of the X-ray crystallinity index, enthalpy
change and specific volume were used to investigate
crystallinity. The results show that higher swelling
capacities are associated with relatively disordered
arrangements of polymer chains within granules. The
crystallinity results for the various starch fractions
with narrow size ranges confirm previous studies showing
that small granules tend to be more crystalline. However
small granules were found to have higher swelling
capacities than large granules. In this instance the
increased swelling capacity of small granules as compared
to large is probably due to the decreased amount of lipid

per unit area at the surface of the small particles.



In section III, Proton (lH) and Carbon-13 (13

C) NMR were
used to investigate starch pastes made from different
wheat varieties that have different pasting properties.
lH spin-lattice (Tl) relaxation times, "H spin-spin
(Tz)lrelaxation times, polymer hydration coefficients (h)
and "H diffusion coefficients (D) of starch-water systems
were determined. Line-widths at half-heights (AV%) of
peak intensities at various carbon positions and total

13C liguid signals were also obtained.

In all cases the NMR parameters were not found to be -

dependent on wheat variety.

The polymer hydration coefficient, that is the amount of -
water molecules that are in the bound state, was
estimated from the ratio of the amplitude of the lH
signal due to unfrozen water at 258K to the amplitude of
the lH signal at 303K. A value of 0.34 gH20/g dry starch

was obtained.

The T, and T2 magnetisation recovery curves for starch
pastes were found to be single exponential functions.

This suggests a fast molecular exchange of water molecules
between different sites in the system. A two-state model
based on exchange between bulk and bound water was shown
to be adequate in describing the relaxation behaviour

of water protons in the system.

Diffusion measurements of water molecules show that there
is no restricted or barrier limited diffusion occuring in

starch pastes. The diffusion coefficients were interpreted
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using various models. The best model was found to be

one which takes into account both the obstruction and
hydration effects. This gives a shape factor for the
suspended gel particles which indicates that water is
diffusing through oblate ellipsoids. These are probably
amylopectin molecules present in the starch pastes. 1In

an attempt to confirm this possibility, lH NMR measurements
were repeated on a pure amylopectin-water svstem. The
diffusion coefficients of the amylopectin-water system were
interpreted using the same model and similar result was

obtained for the shape factor of amylopectin molecules.

The 13C liquid signal results confirm that sharp

resonances, which correspond to liquid-like behaviour on
the NMR time-scale of the polysaccharide chains, are only
observed when the starch is gelatinised. The decrease in
the line-widths at half heights of the peak resonances

at various carbon positions when the pasting temperature
is increased is probably due to an increase in mobility

of the polymer chains. In the various wheat starch pastes

13C liquid

studied, a loss of about one-third of the total
signal was observed. This was attributed to the
crystallisation of polymeric material, lipid-amylose
complexes and remnants of ordered structures in the

starch pastes.
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