Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Comparative genomics of *Butyrivibrio* and *Pseudobutyrivibrio* from the rumen

A dissertation presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Microbiology and Genetics

at Massey University, Manawatū, New Zealand.

Nikola Palevich 2016

Abstract

Determining the role of rumen microbes in plant polysaccharide breakdown is fundamental to understanding digestion, and maximising productivity, in ruminant animals. Rumen bacterial species belonging to the genera Butyrivibrio and Pseudobutyrivibrio are important degraders of plant hemicellulose, an abundant heterogeneous, branched polymer, involved in crosslinking cellulose microfibrils to lignin. To investigate their genes required for hemicellulose degradation, the genomes of 40 Butyrivibrio and 6 Pseudobutyrivibrio strains isolated from the plant-adherent microbiome of New Zealand bovine ruminants, were sequenced, and their CAZymeencoding genes compared. Within the Butyrivibrio and Pseudobutyrivibrio pan-genomes, respectively, there were a total of 4,421 and 441 glycoside hydrolases, as well as 1,283 and 122 carbohydrate esterases with predicted activities involved in the degradation of the insoluble plant polysaccharides such as xylan and pectin. To examine species differences, the genes of the previously characterised bacterium B. proteoclasticus B316 were compared in detail with those from the newly sequenced B. hungatei MB2003. B316 was found to encode a much more developed polysaccharide-degrading repertoire and it was thus hypothesised that B316 would out-compete MB2003 when grown in co-culture on the insoluble hemicellulose substrate, xylan. To test this hypothesis, the two strains were grown on xylan and pectin, either alone in mono-cultures, or in direct competition in a co-culture. The results showed that MB2003 had little ability to utilise xylan or pectin alone, but was capable of significant growth when co-cultured with B316. This indicates a commensalistic interaction between these species, in which B316 initiates the primary attack on the insoluble substrate, while MB2003 has a secondary role, competing for the released soluble sugars. This work provides the first systematic phenotypic, comparative genomic and functional analysis of ruminal Butyrivibrio and Pseudobutyrivibrio species, which not only defines their conserved features involved in hemicellulose degradation, but is also beginning to differentiate their unique gene complements and growth characteristics that separate them as discrete species.

ii

Acknowledgements

To my supervisors Dr Graeme Attwood, Dr Bill Kelly and Dr Jasna Rakonjac, thank you for taking me on first as a Masters and Doctorate student. Thank you for your encouragement, patience, wisdom and support throughout this journey and hope that you have enjoyed teaching me as I have enjoyed learning from all of you.

I wish to gratefully acknowledge AgResearch and the New Economy Research Fund (NERF) for funding this project and the research facilities that have allowed me to complete this study. I wish to thank Massey University and the Institute of Fundamental Sciences (IFS) for financial support. I would like to express my gratitude to the NZ Microbiological Society, also the IFS and NZ Society for Biochemistry and Molecular Biology for financial assistance to present this thesis work at the Australian Society for Microbiology annual meeting in 2015.

Thank you to the Rumen Microbiology team for all the assistance and support. I would like to extend my sincere gratitude to the following people for all their help: Dr Sinead Leahy, Dr Eric Altermann and Roger Moraga for your guidance with the bioinformatics and all things computational. Dr Peter Janssen, Dr Gemma Henderson, Dr Adrian Cookson and Dr Christina Moon for providing input and feedback throughout this project. Sarah Lewis and Bryan Treloar for help with VFA analysis. Dr Don Otter and Cornelis van Dijk for help with HPIC analysis. Siva Ganesh for guidance and support with the statistical analyses of the RNA-seq data. Joy Dick for help with referencing. I also wish to thank Dr Stuart Denman for collaborative efforts with the CAZyme analyses.

I have been blessed with a very loving and supportive family, for this I am the most grateful and thankful. My mum, Desanka Palevich, has always stressed the importance of education and I know that this respect for education has, in some unconscious way, shaped my values and made me the person that I am today. I am forever grateful to you for all of the sacrifices that you have made for me. My baba, Ruzica Radulovic, has been a source of constant and unconditional love for as long as I can remember. You have taught me about what it means to be both a "good person" and the "bigger person", figuratively speaking. To my mother and father-in-law, Marilyn and Tom Cox, thank you for all the love and support over the past few years.

Finally, to my beautiful and loving wife Faith Palevich. You have encouraged me from the beginning and your support in harsh times is what got me to the end. For this you have my deepest gratitude.

iv

Dedication

To the most beautiful woman in the world, Faith Palevich, I find it difficult to express into words my appreciation because it is so boundless. You are my best friend, my most enthusiastic cheerleader and an amazing wife. It has been an absolute privilege to work along side you over these past few years and you have undoubtedly matured me into the person I am today. You continually inspire me to work hard in all aspects of the game and to stand up for myself. I sincerely appreciate all of the sacrifices that you have made to make my career a priority in our lives. Without your love and support, I would be lost. You have shared this entire amazing journey with me and seen me through the ups and downs. So without question in my mind, I dedicate this dissertation to you.

Abstract	i
Acknowledgements	iii
Dedication	V
Table of Contents	vii
List of Figures	xi
List of Tables	xvii
Non-Standard Abbreviations	XX
Chapter 1 Introduction and Literature Review	1
1.1 Introduction	2
1.2 The ruminant digestive system	4
1.3 Forage composition	6
1.4 Plant fibre degradation	
1.5 Rumen microbial diversity and the fibre degrading rumen microbiome	
1.6 Diversity of rumen <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i>	
1.7 Butyrivibrio proteoclasticus B316	25
1.8 Thesis aims	
Chapter 2 Materials and Methods	
2.1 Materials	
2.1.1 Bacterial strains	
2.1.2 Buffers, reagents and solutions	
2.1.3 Media components	
2.1.4 Media	
2.1.5 Enzymes, butters and reagents	
2.1.6 General laboratory equipment	
2.1.7 Bioinformatic resources and software	
2.2 Methods	47
2.2.1 Origin and selection of <i>Butyrivibrio</i> isolates	47
2.2.2 Bacterial culture revival and growth	47
2.2.3 Wet mounts and Gram staining	
2.2.4 Long-term culture storage	
2.2.5 Agarose gel-electrophoresis	

Table of Contents

2.2.6	DNA extractions	
2.2.7	Nucleic acid extractions	51
2.2.8	Nucleic acid quantity and quality analysis	53
2.2.9	Sanger sequencing	54
2.2.10	Polymerase chain reaction (PCR)	55
2.2.11	Phylogenetic analysis of full-length 16S rRNA gene sequences	
2.2.12	PCR amplification of enolase genes	58
2.2.13	Cloning Butyrivibrio marker genes	
2.2.14	qPCR	60
2.2.15	Carbon source utilisation	
2.2.16	Fermentation end product analysis	62
2.2.17	High-pressure ion chromatography (HPIC)	64
2.2.18	Electron microscopy	65
2.2.19	Cell motility assay	66
2.2.20	Pulsed-field gel electrophoresis (PFGE)	66
2.2.21	Whole-Genome Sequencing (WGS)	67
2.2.22	Butyrivibrio co-culture growth experiment	68
2.2.23	In silico analyses	70
	2.2.23.1 Butyrivibrio hungatei MB2003 genome project	70
	2.2.23.2 Comparative analysis of the pan-genome datasets	73
	2.2.23.3 RNA sequencing analysis	78
Chapter 3	8 Selection and characterisation of candidate <i>Butyrivibrio</i> strains	s 85
3.1 Intro	duction	
3.2 Selec	ction and taxonomic assignment of <i>Butyrivibrio</i> strains	
3.3 Mor	phological characterisation	
3.4 Geno	ome size estimation and ApaI restriction fragment length	
poly	norphism (RFLP) assessed by PFGE	
3.5 Cell	motility	101
3.6 Carb	on source utilisation by <i>Butyrivibrio</i> strains	106
3.7 Anal	ysis of fermentation end products after growth on cellobiose	112
3.8 Disc	ussion	

Chapter 4 Butyrivibrio and Pseudobutyrivibrio pan-genome analyses	
4.1 Introduction	
4.2 Genomic features of Butyrivibrio and Pseudobutyrivibrio	
4.3 Genome-based reconstruction of phylogeny	
4.4 Synteny, amino acid and codon usage comparison	
4.5 Pan-genome analysis	
4.6 Glycobiomes of Butyrivibrio and Pseudobutyrivibrio	
4.6.1 Carbohydrate-Binding Modules (CBMs)	143
4.6.2 Glycoside Hydrolases (GHs)	147
4.6.3 Carbohydrate Esterases (CEs)	160
4.6.4 Polysaccharide Lyases (PLs)	161
4.6.5 Glycosyl Transferases (GTs)	169
4.7 Genotypic variation associated with selected phenotypes	
4.7.1 Cell motility and flagellum-encoding loci	173
4.7.2 Lactate production	
4.7.3 Enolase genes	
4.8 Discussion	
4.8.1 Proteins and domains involved in xylan and pectin breakdown	
4.8.2 Enolase and the glycolytic pathway	
4.8.3 Flagellar operons and motility	
Chapter 5 Xylan and pectin utilisation by <i>B. hungatei</i> MB2003 and	
B. proteoclasticus B316	
5.1 Introduction	
5.2. Putuninihnia humantai MP2002	202

5.1 Introduction	202
5.2 Butyrivibrio hungatei MB2003	202
5.2.1 B. hungatei MB2003 genome properties and comparison to	
B. proteoclasticus B316	203
5.3 Mono- and co-culture growth experiments	206
5.3.1 Quantitative PCR assays	206
5.3.2 Butyrivibrio co-culture growth on xylan and pectin	206
5.4 Transcriptome profiling of mono- and co-cultures of <i>B. hungatei</i> MB2003	
and B. proteoclasticus B316 grown on xylan or pectin	214
5.4.1 Global transcriptome dynamics	215
5.4.2 Transcriptome assembly and differential gene expression	223

5.4.3 Biological processes associated with differentially expressed gene	es230
5.5 Carbohydrate degradation and metabolism	
5.6 Oligosaccharide transport and assimilation	
5.7 Discussion	
Chapter 6 General discussion, conclusions and future directions	
6.1 Introduction	
6.2 Differentiation of the <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i> genera	
6.3 Butyrivibrio and Pseudobutyrivibrio genome features	
6.4 Cell motility and operons encoding flagella genes	
6.5 Plant fibre degradation by <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i>	
6.6 Proposed models for degradation of xylan and pectin by Butyrivibrio.	
6.6.1 Proposed model for GAX degradation	
6.6.1.1 Extracellular GAX degradation	
6.6.1.2 Transport of xylo-oligosaccharides and monosaccharid	les 264
6.6.1.3 Cytosolic degradation of xylo-oligosaccharides	
6.6.2 Proposed model for XGA and RG-I degradation	
6.6.2.1 Extracellular XGA and RG-I degradation	
6.6.2.2 Transport of pectic-oligosaccharides and monosacchar	rides271
6.6.2.3 Cytosolic degradation of pectic-oligosaccharides	
6.7 Conclusions	
6.8 Future perspectives	
Appendices	279
Appendix I	
Appendix II	
Appendix III	
References	387

List of Figures

Figure 1.1. Simplified diagram of the ruminant digestive tract.	5
Figure 1.2. Generalised structure of the primary plant cell wall	8
Figure 1.3. Simplified chemical structures of cellulose, hemicellulose and pectin	11
Figure 1.4. Enzymes involved in plant fibre-degradation	16
Figure 1.5. Bacterial diversity of the rumen microbial ecosystem	18
Figure 1.6. Phylogeny of Clostridial Cluster I and subcluster XIVa strains based	
on near full-length 16S rRNA gene sequences	26
Figure 1.7. Ultrastructure of <i>B. proteoclasticus</i> B316 cells	27
Figure 1.8. Genome atlas of <i>Butyrivibrio proteoclasticus</i> B316	29
Figure 2.1. Preparation pipeline used for prokaryotic strand-specific transcriptome	
analysis	54
Figure 2.2. Overview of B. hungatei MB2003 and B. proteoclasticus B316 co-cultur	re
growth experiment	69
Figure 2.3. Equations for calculation of ANI and AF	73
Figure 2.4. Overview of the workflow for RNA-seq in silico analysis	79
Figure 3.1. Phylogenetic tree of <i>Butyrivibrio</i> strains based on 16S rRNA full-length	
gene sequence data	89
Figure 3.2. Light micrographs of Gram-stained B. fibrisolvens strains grown on RM	02
media containing cellobiose	93
Figure 3.3. Light micrographs of Gram-stained Butyrivibrio sp. 2 strains grown on	
RM02 media containing cellobiose	94
Figure 3.4. Light micrographs of Gram-stained Butyrivibrio sp. 3 strains grown on	
RM02 media containing cellobiose	95
Figure 3.5. PFGE profiles of uncut <i>B. fibrisolvens</i> genomic DNAs	98
Figure 3.6. PFGE profiles of uncut Butyrivibrio sp. 2 genomic DNAs	99
Figure 3.7. PFGE profiles of uncut Butyrivibrio sp. 3 genomic DNAs	.100
Figure 3.8. Motility assays of control strains	.101
Figure 3.9. Motility assays of <i>B. fibrisolvens</i> strains	.102
Figure 3.10. Motility assays of <i>Butyrivibrio</i> sp. 2 strains	. 103
Figure 3.11. Motility assays of <i>Butyrivibrio</i> sp. 3 strains	.104
Figure 3.12. End product analysis of Butyrivibrio strains grown on insoluble	
carbon sources	.110

Figure 4.1. Pfam analyses of Butyrivibrio and Pseudobutyrivibrio genomes	127
Figure 4.2. Prokaryotic COGs analyses of Butyrivibrio and Pseudobutyrivibrio	
genomes	129
Figure 4.3. FGD of <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i> genomes	131
Figure 4.4. Genome clustering comparison of Pfam and COG domains from	
Butyrivibrio and Pseudobutyrivibrio	133
Figure 4.5. ANI and AF analyses of Butyrivibrio and Pseudobutyrivibrio	
genomes	134
Figure 4.6. Core- and pan-genomes of Butyrivibrio and Pseudobutyrivibrio	
defined using BLAST analysis	137
Figure 4.7. Flowerplot diagram of unique, group-specific and core gene families	
in the Butyrivibrio and Pseudobutyrivibrio genomes	138
Figure 4.8. CAZyme composition of Butyrivibrio and Pseudobutyrivibrio	
genomes and cluster groups	140
Figure 4.9. Comparative analysis of annotated Butyrivibrio and	
Pseudobutyrivibrio CAZymes	141
Figure 4.10. The distribution of each CAZyme class and family in <i>Butyrivibrio</i>	
and Pseudobutyrivibrio genomes	142
Figure 4.11. Heatmap of normalised relative abundances for CAZyme families	
determined for Butyrivibrio and Pseudobutyrivibrio genomes	145
Figure 4.12. Heatmap showing the abundances of CBM families in <i>Butyrivibrio</i>	
and Pseudobutyrivibrio genomes	146
Figure 4.13. Heatmap showing the abundances of GH families in <i>Butyrivibrio</i>	
and Pseudobutyrivibrio genomes	148
Figure 4.14. Predicted Pfam domains of GH5 endoglucanases	153
Figure 4.15. Predicted Pfam domains of GH51 α-L-arabinofuranosidases	155
Figure 4.16. Predicted Pfam domains of GH10 xylanases	159
Figure 4.17. Predicted Pfam domains of GH11 endo-xylanases	159
Figure 4.18. Heatmap showing the abundances of CE and PL families in	
Butyrivibrio and Pseudobutyrivibrio genomes	162
Figure 4.19. Predicted Pfam domains of CE1 acetyl-xylan and ferulic acid	
esterases	165
Figure 4.20. Predicted Pfam domains of CE4 polysaccharide deacetylases	168

Figure 4.21. Heatmap showing the abundances of GT families in <i>Butyrivibrio</i>	
and Pseudobutyrivibrio genomes	170
Figure 4.22. Predicted Pfam domains of GTs	172
Figure 4.23. Motility assays and flagellar biosynthesis operons of control strains	174
Figure 4.24. Motility assays and flagellar biosynthesis operons of <i>B. fibrisolvens</i>	
strains	175
Figure 4.25. Motility assays and flagellar biosynthesis operons of <i>Butyrivibrio</i>	
sp. 2 strains	177
Figure 4.26. Motility assays and flagellar biosynthesis operons of <i>Butyrivibrio</i>	
sp. 3 strains	179
Figure 4.27. Comparison of <i>ldh</i> Pfam domains in <i>Butyrivibrio</i> genome sequences	182
Figure 4.28. Phylogenetic tree of <i>ldhs</i> encoded in <i>Butyrivibrio</i> genomes	184
Figure 4.29. Enolases from <i>Butyrivibrio</i> genome sequences	186
Figure 4.30. Overview of possible carbohydrate metabolic pathways in	
Butyrivibrio leading to the formation of butyrate, formate, acetate	
and lactate from cellobiose	197
Figure 5.1. Transmission electron micrograph of a negatively stained	
B. hungatei MB2003 cell	203
Figure 5.2. Genome atlas of <i>B. hungatei</i> MB2003	205
Figure 5.3. qPCR of <i>B. proteoclasticus</i> B316 and <i>B. hungatei</i> MB2003	
co-cultures grown on xylan and pectin	207
Figure 5.4. Mono- and co-culture growth of <i>B. hungatei</i> MB2003 and	
B. proteoclasticus B316 grown on xylan and pectin as determined	
by qPCR	208
Figure 5.5. pH measurements of mono- and co-cultures of <i>B. hungatei</i> MB2003	
and B. proteoclasticus B316 grown on xylan and pectin	210
Figure 5.6. Monosaccharides released by B. hungatei MB2003 and	
B. proteoclasticus B316 in mono- and co-cultures grown on xylan	212
Figure 5.7. Monosaccharides released by B. hungatei MB2003 and	
B. proteoclasticus B316 in mono- and co-cultures grown on pectin	213
Figure 5.8. NMDS ordination showing transcriptional similarity between	
B. proteoclasticus B316 samples	216
Figure 5.9. NMDS ordination showing transcriptional similarity between	
B. hungatei MB2003 samples	217

Figure 5.10. Permutation-based test of multivariate homogeneity of group
dispersions and variances
Figure 5.11. Network analysis of the subset <i>B. proteoclasticus</i> B316 dataset
Figure 5.12. CIM analysis of genes significantly up-regulated in
B. proteoclasticus B316
Figure 5.13. CIM analysis of genes significantly up-regulated in
<i>B. hungatei</i> MB2003
Figure 5.14. Network analysis of genes significantly up-regulated in
B. proteoclasticus B316
Figure 5.15. COG classifications of DEGs from <i>B. proteoclasticus</i> B316 and
B. hungatei MB2003 grown in mono- and co-culture on xylan231
Figure 5.16. COG classifications of DEGs from <i>B. proteoclasticus</i> B316 and
B. hungatei MB2003 grown in mono- and co-culture on pectin232
Figure 5.17. CAZyme encoding DEGs up-regulated in xylan-grown cultures
Figure 5.18. CAZyme encoding DEGs up-regulated in pectin-grown cultures
Figure 5.19. GTs up-regulated during mono-culture growth on pectin
Figure 5.20. Functional domains of DEGs encoding carbohydrate transport
proteins and surrounding CAZymes identified in xylan- or
pectin-grown cultures
Figure 6.1. Schematic diagrams of the structures of the main classes of xylan
and pectin
Figure 6.2. Model for the degradation of GAX by <i>B. proteoclasticus</i> B316 and
<i>B. hungatei</i> MB2003
Figure 6.3. Model for the degradation of XGA and RG-I by <i>B. proteoclasticus</i>
B316 and <i>B. hungatei</i> MB2003269
Figure A1.1. PFGE ApaI restriction profiles of B. fibrisolvens genomic DNAs
Figure A1.2. PFGE ApaI restriction profiles of Butyrivibrio sp. 2 genomic DNAs281
Figure A1.3. PFGE ApaI restriction profiles of Butyrivibrio sp. 3 genomic DNAs282
Figure A1.4. PFGE I-CeuI restriction profiles of B. fibrisolvens genomic DNAs 283
Figure A1.5. PFGE I-CeuI restriction profiles of Butyrivibrio sp. 2 genomic
DNAs
Figure A1.6. PFGE I-CeuI restriction profiles of Butyrivibrio sp. 3 genomic
DNAs
Figure A2.1. TIGR fam analyses of <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i> genomes 291

Figure A2.2. KEGG pathway analyses of <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i>	
genomes	293
Figure A2.3. Genome clustering comparison of TIGR fam and KO domains from	
Butyrivibrio and Pseudobutyrivibrio	295
Figure A2.4. MUMmer plots of <i>B. fibrisolvens</i> draft genomes versus	
B. proteoclasticus B316 as the reference genome	296
Figure A2.5. MUMmer plots of Butyrivibrio sp. 2 draft genomes versus	
B. proteoclasticus B316 as the reference genome	297
Figure A2.6. MUMmer plots of Butyrivibrio sp. 3 draft genomes versus	
B. proteoclasticus B316 as the reference genome	298
Figure A2.7. Amino acid usage heatmap of the 40 Butyrivibrio and 6	
Pseudobutyrivibrio based on their protein content	299
Figure A2.8. Codon usage heatmap of the 40 Butyrivibrio and 6	
Pseudobutyrivibrio based on their protein content	300
Figure A2.9. Predicted Pfam domains of GH67 α-glucuronidases	308
Figure A2.10. Predicted Pfam domain of GH8 oligosaccharide reducing-end	
xylanases	309
Figure A2.11. PCR amplification of enolase genes from Butyrivibrio and	
Pseudobutyrivibrio strains	310
Figure A3.1. PCR amplification of <i>Butyrivibrio</i> strain DNAs using <i>Taq</i> Man	
primer/probe assay oligonucleotides	318
Figure A3.2. Standard curves derived from simplex real time PCR reactions	319
Figure A3.3. Distribution of all genes in <i>B. proteoclasticus</i> B316 based on	
Q-value from Rockhopper transcriptome assembly	334
Figure A3.4. Distribution of all genes in <i>B. hungatei</i> MB2003 based on <i>Q-value</i>	
from Rockhopper transcriptome assembly	335
Figure A3.5. CA plots showing transcriptional homogeneity in <i>B. proteoclasticus</i>	
B316 at different treatment groups	336
Figure A3.6. CA plots showing transcriptional homogeneity in <i>B. hungatei</i>	
MB2003 at different treatment groups	337
Figure A3.7. CA bi-plots showing transcriptional homogeneity at different	
treatment groups for <i>B. proteoclasticus</i> B316	338
Figure A3.8. CA bi-plots showing transcriptional homogeneity at different	
treatment groups for <i>B. proteoclasticus</i> B316 at $Q < 0.05$	339

Figure A3.9. CA bi-plots showing transcriptional homogeneity at different	
treatment groups for B. hungatei MB2003	340
Figure A3.10. CA bi-plots showing transcriptional homogeneity at different	
treatment groups for <i>B. hungatei</i> MB2003 at $Q < 0.05$	341
Figure A3.11. CIM analysis of the entire <i>B. proteoclasticus</i> B316 dataset	347
Figure A3.12. CIM analysis of the entire <i>B. hungatei</i> MB2003 dataset	348
Figure A3.13. CIM analysis of the subset <i>B. proteoclasticus</i> B316 dataset	349
Figure A3.14. CIM analysis of the subset <i>B. hungatei</i> MB2003 dataset	350
Figure A3.15. Ordinate plots comparing BH-adjusted ANOVA and BH-adjusted	
KW analyses	351

List of Tables

Table 1.1. Ruminant livestock numbers and product export value in New Zealand	2
Table 1.2. Composition of Type-I and Type-II primary and secondary plant cell	
walls	7
Table 1.3. Important fibre degrading enzymes involved in forage degradation in	
the rumen	13
Table 1.4. The major fibre degrading bacteria of the bovine rumen	20
Table 1.5. B. proteoclasticus B316 genome features and genes involved in	
polysaccharide breakdown	27
Table 2.1. Bacterial strains used in this thesis	33
Table 2.2. Anaerobic glycerol solution	
Table 2.3. GenRFV	
Table 2.4. Trace element solution	39
Table 2.5. Vitamin solution	40
Table 2.6. BY and RM02 media	41
Table 2.7. 16S rRNA gene primers	43
Table 2.8. TaqMan primers/probes	43
Table 2.9. Centrifuge specifications and suppliers	45
Table 2.10. Molecular weight size markers	45
Table 2.11. Bioinformatic resources and software used in this thesis	46
Table 2.12. Sampling times and isolate nomenclature	47
Table 2.13. Assembly of PCR reagents	55
Table 2.14. Thermal profile for PCR	56
Table 2.15. Assembly of reagents for LR-PCR	56
Table 2.16. Thermal profile for LR-PCR	56
Table 2.17. Reagents for PCR cloning	59
Table 2.18. Thermal profile of PCR for clone library	59
Table 2.19. Colony PCR reagents	60
Table 2.20. Thermal profile of the colony PCR reaction	60
Table 2.21. qPCR reagents	61
Table 2.22. qPCR thermal profile	62
Table 3.1. Taxonomic assignments and 16S rRNA gene sequence analyses of	
Butyrivibrio strains	88

Table 3.2. Growth and morphological characterisation of the Butyrivibrio strains	91
Table 3.3. Colony morphology of the Butyrivibrio strains	92
Table 3.4. Motility assay of <i>Butyrivibrio</i> strains	105
Table 3.5. Carbon source utilisation of the Butyrivibrio strains	107
Table 3.6. End product analysis of <i>Butyrivibrio</i> strains	113
Table 4.1. Additional strains for pan-genome analyses	121
Table 4.2. General features of Butyrivibrio and Pseudobutyrivibrio genomes	123
Table 4.3. Group specific CAZyme families	144
Table 4.4. Enolase gene occurrence in Butyrivibrio and Pseudobutyrivibrio	
genomes	185
Table 4.5. Summary of genes involved in the Methylglyoxyl Shunt pathway	188
Table 5.1. VFA analysis of mono- and co-cultures of <i>B. hungatei</i> MB2003 and	
B. proteoclasticus B316 grown on xylan and pectin	211
Table 5.2. List of <i>B. proteoclasticus</i> B316 subset genes from Network analysis	222
Table 5.3. Transcriptome assembly and differential gene expression analysis	
for growth on xylan	224
Table 5.4. Transcriptome assembly and differential gene expression analysis	
for growth on pectin	225
Table A1.1. Summary of the genomic properties based on PFGE	286
Table A2.1. Genome annotation features of <i>Butyrivibrio</i> and <i>Pseudobutyrivibrio</i>	
genomes	287
Table A2.2. CAZy families analysed and their known activities	301
Table A3.1. Classification and general features of <i>B. hungatei</i> MB2003	311
Table A3.2. Project information	312
Table A3.3. Genome statistics of <i>B. hungatei</i> MB2003	312
Table A3.4. Assignment of MB2003 protein coding genes to COG functional	
categories	313
Table A3.5. Comparison of MB2003 and B316 protein coding gene percentages	
to COG functional categories	314
Table A3.6. List of top 20 candidate gene targets for the universal mono- and	
co-culture qPCR assays based on DBA	315
Table A3.7. List of top 20 candidate gene targets for the <i>B. proteoclasticus</i> B316	
specific mono- and co-culture qPCR assays based on DBA	316

Table A3.8. List of top 20 candidate gene targets for the <i>B. hungatei</i> MB2003	
specific mono- and co-culture qPCR assays based on DBA	.317
Table A3.9. Quality of raw reads and FastQC results of trimmed reads	.320
Table A3.10. Alignment details of trimmed reads to the <i>B. proteoclasticus</i> B316	
genome	.322
Table A3.11. Alignment details of trimmed reads to the <i>B. hungatei</i> MB2003	
genome	.324
Table A3.12. Transcript abundance for <i>B. proteoclasticus</i> B316 grown in mono-	
and co-culture on xylan and pectin	. 326
Table A3.13. Transcript abundance for <i>B. hungatei</i> MB2003 grown in mono-	
and co-culture on xylan and pectin	.330
Table A3.14. List of <i>B. proteoclasticus</i> B316 subset genes from the network	
analysis	.342
Table A3.15. List of genes significantly up-regulated during mono- and co-culture	
growth of <i>B. proteoclasticus</i> B316 on xylan	.352
Table A3.16. List of genes significantly up-regulated during mono- and co-culture	
growth of <i>B. hungatei</i> MB2003 on xylan	.353
Table A3.17. List of genes significantly up-regulated during mono- and co-culture	
growth of <i>B. proteoclasticus</i> B316 on pectin	.362
Table A3.18. List of genes significantly up-regulated during mono- and co-culture	
growth of <i>B. hungatei</i> MB2003 on pectin	.364

Non-Standard Abbreviations

AA	Auxiliary Activities
aa	Amino acid(s)
ABC	ATP-binding cassette
ACS	American Chemical Society
AF	Alignment fraction
ANI	Average nucleotide identity
ANOVA	One-way analysis of variance
BCVFA	Branched chain volatile fatty acids
BLAST	Basic Local Alignment Sequence Tool
bp	Base pair(s)
CA	Correspondence analysis
CAZY	Carbohydrate-Active enZYmes
CBM	Carbohydrate-Binding Module(s)
CBP	Carbohydrate Binding Protein(s)
cDNA	Complementary DNA
CDS	Coding Sequences
CE	Carbohydrate Esterase(s)
CIM	Clustered Image Map
COG	Clusters of Orthologous Groups of proteins
CUT	Carbohydrate Uptake Transporter
DBA	Differential BLAST analysis
dbCAN	DataBase for automated Carbohydrate-active enzyme ANnotation
DEG	Differentially expressed genes
DEPC H ₂ O	Diethylpyrocarbonate-treated water
dH ₂ O	Distilled water
DNA	Deoxyribonucleic acid
DOE-JGI	United States Department of Energy's Joint Genome Institute
EC	enzyme Comission
EDTA	Ethylenediamine tetraacetic acid
EPS	Extracellular Polysaccharides
ER-IMG	Expert Review version of the IMG system
FGD	Functional genome distribution

FDR	False discovery rate
g	Gram(s)
Gb	Gigabase(s)
GB	Gigabyte(s)
GH	Glycoside Hydrolase(s)
GO	Gene Ontology
GT	Glycosyl Transferase(s)
h	Hour(s)
HMM	Hidden Markov models
HPIC	High-pressure ion chromatography
Hz	Hertz
IMG	Integrated Microbial Genomes
Interpro	Intergrative Protein Signature Database
JGI	Joint Genome Institute
Kb	Kilobase(s)
KB	Kilobyte(s)
KEGG	Kyoto Encyclopedia of Genes and Genomes
kg	Kilogram(s)
КО	KEGG Orthology
KW	Kruskal-Wallis
L	Litre(s)
LB	Luria-Bertani
MANOVA	Multivariate analysis of variance
Mb	Megabase(s)
MB	Megabyte(s)
μL	Microlitre(s)
М	Molar
MDS	Multidimensional scaling
mg	Milligram(s)
min	Minute(s)
mL	Millilitre(s)
mm	Millimeter(s)
mM	Millimolar
mRNA	Messenger RNA

mV	Millivolt(s)
ncRNA	Non-coding RNA
NDF	Neutral Detergent Fibre
NMDS	Non-metric multidimensional scaling
ng	Nanogram(s)
nm	Nanometer(s)
nt	Nucleotide(s)
OD	Optical density
ORF	Open reading frame(s)
OUT	Operational taxonomic unit(s)
PCoA	Principal component analysis
PCR	Polymerase chain reaction
Pfam	Protein families
PFGE	Pulsed-field gel electrophoresis
PL	Polysaccharide Lyase(s)
РР	Permease protein
PRIAM	PRofils pour l'Identification Automatique du Métabolisme
qPCR	Quantitative polymerase chain reaction
RE	Restriction endonuclease
RFLP	Restriction fragment length polymorphism
RIN	RNA Integrity Number
RNA	Ribonucleic acid
RPKM	Reads per kilobase of gene per million reads mapped
SBP	Substrate-binding protein
SCVFA	Short chain volatile fatty acids
sec	Second(s)
SEM/TEM	Scanning/Transmission electron microscopy
SLH	S-layer homology
TE	Tris-EDTA buffer
TIGRfam	The Institute for Genomic Research's database of protein families
tRNA	Transfer RNA
UNG	Uracil N-Glycosylase
UPGMA	Unweighted Pair Group Method with Arithmetic means
V	Volts

v/v	Volume per volume
v/v/v	Volume per volume per volume
VFA	Volatile fatty acid(s)
w/v	Weight per volume