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Errata
to the thesis by J.P.Koolaard entitled “Some Aspects of Covariance

Regularisation in Discriminant Analysis”.

Page 1, line -10 ‘Prostrate’ should be prostate.

Page 3, line 5 After the words “...for group £.” add the sentence: “It is evident
from expression (1.3) that all vectors in the thesis are considered as column

vectors, unless stated otherwise.”

Page 4, line 6 Sentence beginning on this line should read:“In effect, the S, are
replaced by the pooled covariance matrix, and the variance of the elements

of S, are smaller ...”

Page 15, line -11 “...where the pooled sample estimate...” should read: “...where

the inverse pooled sample estimate...”.

Page 56, lines -6 to -4 Rewrite these three lines as: “It should be noted that in
his article, Friedman used robust covariance estimators in place of S and S,

in expressions (3.6) and (3.7). The resulting robustification of (3.6) is written

»

as ...
Page 76, lines -9, -8, -5 In these lines replace S, with S, and 5,, with S,.
'3

Page 3, line 14 Change “... expression (1.9) ...” to “... expressions (1.9) and

(1.10) ...

Page 5, line 12 To avoid any possible confusion, change “(z,7 = 1,...,K(: #
7)) to “(for all j(#1i) =1,2,...,K)".

Page 5, line 15 Remove the word “directly”.

Page 12, line 1 Change “mean” to “mean vector”.
Page 14, line 8 Change “off diagonal” to “off-diagonal”.
Page 17, line 10 Cha.nge_ “(1993)” to “(1993))".

Page 21, line 14 Change “samples of” to “samples of size”.
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Abstract

Statistical discriminant analysis and classification are multivariate techniques con-
cerned with separating distinct set of objects, and with allocating new objects to pre-
viously defined populations or groups. In this process the covariance matric plays
an important role, and usually this matric has to be estimated from sample data.
In this thesis, attention is focussed on investigating the problem of (poor) estima-
tion of the covariance structure and its effects in statistical discriminant analysis.
The quality or statistical properties of these estimates usually affect the resultant
classification rules which are constructed using them.

Reasons for the (usually, consistent) estimators of the covariance matrices be-
ing poor are mainly to do with the quality and/or size of the training sample in
relation to the number of parameters which have to be estimated. In this thesis,
we are interested in investigating this problem as it occurs in the small sample,
high-dimensional situation. In particular, we are interested in the problem of co-
variance esttmation in the situations when the sample size to dimension ratios are
relatively small. The criterion used to determine the success or otherwise of vari-
ous methods used to address this problem is the estimated (overall) error rate. One
method of dealing with a situation which potentially results in poor estimation of
the covariance matriz is to impose a prescribed (simple) structure on the covariance
matriz, such as the identity matriz, or multiple of it. Another method is to make
the assumption that all the groups have the same covariance matriz. The effect of
such simplifying assumptions is to reduce the number of parameters to be estimated.
Consequently, the (fewer) parameters are estimated with higher precision. It has
been demonstrated that this may result in better statistical discriminant analysis,
even if the simplifying assumptions may not be entirely correct.

Of the classtfication rules based on the normal distribution, the quadratic dis-
criminant function (QDF) makes no restrictions on the population parameters,
and as such is the most general of this class of classification rules. However, it
is also the one most affected by poor population parameter estimates. The two
common simplifying techniques mentioned earlier (i.e. imposing an identity matriz
structure on the covariance matriz, or assuming a common covariance among all
populations) lead to two other discriminant rules, namely, the Euclidean distance

function (EDF, based on the Euclidean distance between the group means) and the
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popular linear discriminant function (LDF, based on the Mahalanobis distance be-
tween the groups) respectively. The sample-based versions of these two classifiers
are compared using ezpected error rates (conditional on a set of training data),
and these ezpected error rates are obtained through the derivation of asymptotic
ezpansions. The ezpansions are evaluated under a range of settings, defined by
employing combinations of various values of dimension, group separation, and co-
variance structure. It is shown that the simpler sample Fuclidean distance function
(SEDF) performs as well as or better than the sample linear discriminant function
(SLDF) under most of the settings used. Ezceptions occurred when the Mahalanobis
distance between populations was much greater than the FEuclidean distance.

A flexible discrimination model, or rather, class of models, was developed by
Friedman (1989), and called the regularised discriminant function (RDF). The
sample version of the RDF (i.e. SRDF) model incorporates the general sample
quadratic discriminant function (SQDF), the two previously-mentioned restricted
models (SEDF and SLDF), as well as a wide range of models intermediate to these,
through the use of additional “regularisation” parameters. The method employs two
types of shrinkage of the covariance estimates - towards the pooled estimate on one
hand, and towards a multiple of the identity matriz on the other. A separate reqular-
i1sation parameter controls shrinkage to each. The training data is used in the model
selection process to determine appropriate values for the reqularisation parameters,
through the use of cross-validation. The quality of model selection procedure which
specifies a discriminant model is a cructal factor, since if it is performing well, it
will result in a classification rule close to the optimal one from the class of models
available.

Through large-scale simulation studies, the performance of the sample regu-
larised discriminant function (SRDF) is investigated and it is shown that the SRDF
generally leads to lower overall error rates than the standard classification rules.
This is found to be largely due to the facility which allows shrinkage of the covari-
ance matrices to sphericity, or eigenvalue regularisation. It is also found that the
SEDF performs very well in relation to the SRDF for a variety of settings. Further
simulation studies show that the performance of the SRDF is more sensitive to the
parameter controlling shrinkage to sphericity than the one controlling covariance
mizing. Also, it is found that under some circumstances, the SRDF performs better

than the other classifiers even for quite large sample size to dimension ratios.
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A crucial negative feature of the SRDF is its lack of scale itnvariance. The cause
of this is eigenvalue reqularisation. A modified classification rule is developed which
is scale invariant, and is compared to the SRDF and the other classifiers via sim-
ulation. The modified rule omits eigenvalue regularisation, but otherwise increases
sensitivity to the data by allowing for varying degrees of shrinkage to the pooled
covariance for each group. It is shown that eigenvalue regularisation is generally
beneficial for discrimination in medium to large dimensional problems, through its
variance-reduction effect which stabilises the covariance estimates. Thus, the study
concludes that scale invariance must be sacrificed in order to achieve reductions in
error rate, in the absence of a suitable replacement for eigenvalue regularisation.

The use of cross-validation in the model selection process of the SRDF is also
investigated, for several reasons: the computational effort involved, and the fact
that it rarely leads to a unique choice of model, and often uses only a small subset
of the available observations, in the model selection process. Consequently, another
method for determining the optimal reqularisation parameters is investigated. In
particular, it is investigated whether appropriate values for the reqularisation pa-
rameters can be indicated from a measure of the distance between the groups. For
this purpose, the Bhattacharyya distance is chosen since it comprises a term pri-
marily pertaining to the difference between group means, and a further term which
indicates the level of disparity between group covariance structures. It is shown
that the magnitudes of the various components of the Bhattacharyya distance, when
considered on their own and in relation to each other, do give information as to
appropriate values for the reqularisation parameters. A new simulation study, as
well as various case studies are presented to assess the performance of a new reg-
ularised discrtminant function which uses the Bhattacharyya distance estimates
between groups to select regularisation parameters for given training data. This
classifier is shown to perform as well as the SRDF, and is computationally much
faster since it avoids any re-sampling methods.

It is clear that most of the investigations and assessments of the various reg-
ularised discriminant rules have to be undertaken using Monte-Carlo simulation
techniques, especially to estimate error rates. This ts because ezact analytical ez-
pressions for the unconditional error rate of the SRDF do not ezist, ercept in
certain limited circumstances. It has not been possible to obtain asymptotic expan-

stons or some form of approzimations of these error rates in a general contert.



However, an approzimation which can be used to calculate algebraically the error
rate of the SQDF, assuming known population parameters under (other) strict con-
ditions, is available in the literature. This approrimation is used in this thesis to
further ezamine the effects (observed in earlier simulation work) of the covariance
reqularisation parameters on error rates. This is the last piece of work in the thesis
and, in spite of its limited extent (because of the restricted conditions of the approz-
imations given), it largely confirms the results which were obtained from simulation

ezperiments in the previous parts of the thesis.
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Chapter 1

INTRODUCTION

1.1 GENERAL FRAMEWORK

Discriminant analysis and classification are multivariate techniques concerned with
separating distinct sets of objects (or observations) and with allocating new ob-
servations to previously defined groups. As a separatory procedure, it is often
employed on a one-time basis in order to investigate observed differences when
casual relationships are not well understood. Classification procedures are less ex-
ploratory in the sense that they lead to well defined rules, which can be used for
assigning new ob jects.

An assumption underlying the use of discriminant analysis is that there is a
way of correctly classifying the initial data. In other words, there must exist some
variable or variables which allow the different groups to be established and defini-
tively identified. For example, in a study of prostrate cancer, measurements from
a biopsy would be used to define the groups “cancer” and “non-cancer”. Or, in
a study to determine if the New Zealand kiwi bird will be susceptible to rabbit
calicivirus disease (RCD), a virus which kills rabbits in large numbers (to attempt
to control the rabbit plague in some parts of New Zealand), tissue culture from
various organs of a kiwi which has been exposed to the virus are taken and ex-
amined for the presence or absence of antibodies against the disease, and various
measurements are taken.

These variables cannot be used directly to predict the group to which an indi-

vidual belongs. In many instances these variables are difficult to obtain. In the
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prostrate cancer example, a biopsy is not always practical (for reasons of expense
and discomfort) for all patients. Rather, only those who are very likely to have
the disease will be operated on. In the kiwi example, the destruction of the bird
is necessary to obtain the required tissue samples which will indicate conclusively
whether antibodies against the disease have been produced, and thus indicate how
susceptible the kiwi is to the disease. Since the kiwi is the national emblem of New
Zealand and its population is extremely small, any such experimentation would
have to be limited to just one or two birds. Thus in most problems, other variables
will be used which are more readily available, or less invasive and destructive. It is
hoped that these variables will be sufficiently sensitive and indicatory to allow an
accurate assignment to be made.

The formal purpose of discriminant analysis is to assign objects to one of several
(K) populations or groups defined a priori. The assignment is based on a set of p
measurements € = (z;, Ty, - . ., Tp) obtained from p variables from each object. If
each variable is thought of as an axis in a metric space, the observations, «, are
points in p—dimensional measurement space. Different groups would ideally occupy
different regions in the measurement space as this would allow allocation methods
to assign observations based on their locations in the space. Often the different
regions overlap, and correct allocation is not possible every time. Nevertheless, it
is important that the assignment of an unknown observation to a group be carried
out with a small probability of misclassification (often referred to as the “error
rate”).

The measurements associated with the population of observations in the k**
group comprise a distribution of values with probability density function (pdf)
fe(x), k=1,...,K. The optimal (Bayes) rule for allocating an observation z is
arrived at through minimising the total probability of misclassification under the
assumption that all group parameters are known (see for example, Seber (1984),

Section 6.2.2). The rule may be written as: choose group k such that

mifi(x) = max {mfi(x)}, (1.1)
1<k<K

where 7, is the a priori probability that = belongs to the k* group.

Given the commonly used assumption that the groups are normally distributed,
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the following rule is obtained: assign x to group k such that

di(z)= min {di()} (1.2)
1<k<K
where
dk(ﬂ?) == (fB = p.k)'Ek'l(m - ,u,k) + ln|2k| — 2lnm, (13)

and p, and X, represent the mean vector and covariance matrix for group k. The
quantity dx(x) is often called the discriminant score for allocation of observation x
to the k" group, but is sometimes referred to as the generalised distance between
xz and pg. The first term of di(x) is the square of the well known Mahalanobis
distance between = and pk, while the other two terms are adjustment factors.
The quantity di(x) + 2Inm, is called the quadratic discriminant function (QDF)
since it separates the different regions in the measurement space (corresponding to
different group classifications) by quadratic boundaries. In practice, the parameters
pr and X, will not be known and may be replaced by the usual estimates &, and
Sk respectively (defined in expression (1.9)). The sample discriminant rule is to

assign z to group k such that

di(€) = min {dk(m)}, (1.4)

and the sample quadratic discriminant function (SQDF) is
di(z) + 2Inmg = (¢ — &)'Sy ™ (¢ — &x) + In|Sk). (1.5)

The performance of the SQDF can be badly affected if the training sample size
is small, and this is due especially to the instability of the estimates, Sy. If n; is
close to or less than p, Sy may be singular or nearly singular and some elements
of Sx~! will have extremely large or infinite values, with serious consequences for
expression (1.5). Various approaches to addressing the problem of not being able to
obtain stable or reliable estimates of the 3, have been adopted. The general theme
throughout this thesis deals with allocation rules which are used to counteract
problems associated with the estimation of the covariance matrices and their effects
on discrimination.

A common way to overcome instability in the S, is to use the linear discrimi-

nant rule, which also assumes normality but with the additional assumption that all
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groups have equal covariance matrices. The resulting decision boundaries between
groups are linear, and the Sy are replaced by the pooled sample covariance ma-
trix, S, (see expression (1.11)). The resulting sample linear discriminant function

(SLDF) may be written (assuming equal priors and costs of misclassification)
(fk(m) + 2Inm = -—2:1:’S,,_l:i:k + Z'S, &y (1.6)

and the rule is the same as that in expression (1.4). In effect, the Sy are biased
towards the pooled covariance matrix, but the variance of the elements of S, are
smaller than the variances of the corresponding elements of the Sx. This reduction
in variance enables the SLDF to out-perform the SQDF for small sample sizes even
when the X, differ (see, for example, Marks and Dunn (1974), Wahl and Kronmal
(1977), Bayne et al. (1983)).

One of the simplest allocation rules adopts the approach of ignoring the covari-
ance matrix and assigning an unknown observation x to one group on the basis of
the Euclidean distance between = and each group mean, . The resulting (sample-
based) nearest-means classifier is termed the sample Euclidean distance function
(SEDF) and is written as

di(z) + 2Inmg = (T — &)’ (x — Tx). (1.7)
The SEDF has been compared to other more commonly used discriminant functions
including the SLDF by Raudys and Pikelis (1980) and Marco et al. (1987). It
was shown to perform well in comparison, especially when the group conditional
distributions are spherically normal, and when the dimensionality is large relative
to the training sample size.

A different way of addressing the problems associated with estimating the ¥y
in expression (1.3) is to employ shrinkage techniques on the covariance estimates.
James and Stein (1961), Stein et al. (1972), Efron and Morris (1976), Haff (1980)
and Dey and Srinivasan (1985) sought to obtain morereliable eigenvalue estimates,
correcting eigenvalue distortion present in the sample covariance matrix. Further
details are given in Section 3.2 of this thesis. The approach involved seeking es-
timates that minimise particular loss criteria on the eigenvalue estimates. Regu-
larisation of the covariance matrix is a similar technique that has been used for
situations where an estimate Sj is singular or nearly singular, as can occur when
the number of parameters to be estimated is similar to the number of training

sample observations available. Regularisation attempts to improve an estimate by
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biasing it from the estimated value to a value deemed physically plausible. An
example of such a plausible value to bias the individual covariance estimates Sy to
is S,. This value would be appropriate in many cases where the ¥ are not greatly
heterogeneous. If varying degrees of biasing to the chosen value is permitted, new
(regularised) covariance estimates may be obtained to produce intermediate mod-
els between the heteroscedastic (SQDF) and homoscedastic (SLDF) models — the
former being possibly too diffuse, and the latter perhaps too rigid. The effect of
this is to reduce the variance of the sample estimate at the expense of potentially

increasing its bias (see Friedman (1989)).

1.2 ERROR RATES

The error rate associated with the optimal or Bayes rule is the probability that
a randomly selected individual from group ¢ is misallocated to group j (3,7 =
1,...,K(i# 7)) on the basis of the optimal allocation rule which assumes that the
parameters are known. Since the optimal rule minimises the total probability of
misclassification, this probability is known as the optimal error rate. It is directly
related to the degree of separation between the groups.

In practice, the optimal rule and optimal error rate are not achievable and
allocation rules must be constructed on the basis of available training samples.
The conditional error rate of a sample-based rule is the probability, conditional on
the sample, that a randomly selected individual from group ¢ is allocated to group
j (,7=1,...,K; (i# j)). This is sometimes referred to as the actual error rate.
The expected value of the conditional error rate (on averaging the conditional error
rates over the distribution of the training sample) is termed the expected actual,
or unconditional error rate (see Lachenbruch (1975), Hand (1986), Chapter 2 of
this thesis, and McLachlan (1992) Section 1.10). This terminology was established
by Hills (1966).

The optimal, conditional and unconditional error rates of a sample-based rule
depend on the usually unknown population parameters, and as such, these error
rates must be estimated in practice. Estimating techniques, whether parametric
or non-parametric, are strictly functions of the sample data and they have usually
been evaluated regarding their performance in estimating the conditional error rate.
Glick (1978) alludes to some of the difficulties involved here:



Chapter 1. Introduction 6

The task of estimating probabilities of correct classification confronts
the statistician simultaneously with difficult distribution theory, ques-
tions intertwining sample size and dimension, problems of bias, vari-

ance, robustness and computation costs.

A commonly used error rate estimator is the plug-in error rate, obtained by re-
placing the unknown group parameters by their sample estimates in the available
expressions for the conditional error rates. For a comprehensive summary of error
rate estimators, including relevant references, see McLachlan (1992), Chapter 10.
Analytical results for the conditional error rates of the sample-based Bayes
discriminant rules have proved difficult to obtain because of the complexity of the
distributions of the various discriminant functions. A few such results have been
obtained, but only for very special cases, such as for only two normal groups with
equal covariance matrices. Most of the problems involving the distributions of
the discriminant functions and their associated error rates have been tackled using
asymptotic methods. McLachlan (1992), Chapter 4, gives a thorough summary of

the available error rate results for the case of multivariate normal groups.

1.3 OUTLINE OF RESEARCH UNDERTAKEN

This thesis begins where the unpublished work of Lim (1992) left off — comparing
the Euclidean and linear discriminant functions. The linear discriminant function,
first proposed by Fisher (1936), is still very popular, partly due to its optimal
properties when the parameters are known (Anderson, T. W. (1984)). However,
since it is recognised that the SLDF is not uniformly optimal and its performance
can be poor relative to other classifiers when the dimension is large relative to the
training sample size (Peck and van Ness (1982)), the SEDF has been identified as
a possible competing allocation procedure for discriminant analysis (Raudys and
Pikelis (1980), Marco et al. (1987)). Raudys and Pikelis employed numerical inte-
gration techniques in their study, while Marco et al. demonstrated the superiority
of the SEDF over the SLDF in certain conditions through a Monte Carlo simula-
tion experiment and comparing estimated error rates (in the form of probabilities
of correct classification).

Lim (1992) embarked on a study to compare the expected conditional error rates
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(i.e. the unconditional error rates) of the SEDF and SLDF via asymptotic expan-
sions of the error rates for the case of two multivariate normal groups. Non-trivial
conditions for achieving equivalence of the SEDF and SLDF, when all parameters
are known, were derived by Marco et al. (1987) and this result provides an ap-
propriate scenario to allow a fair comparison of the two classifiers. Lim obtained
the expected error rates of the SEDF and SLDF for conditions where the classi-
fiers are not equivalent, but was unable to derive the asymptotic expansions for the
conditional error rate of the SLDF under conditions of equivalence, due to the com-
plexity of both the differentiation and evaluation of the final expression. Therefore,
to enable a satisfactory comparative study of the error rates of the two classifiers,
the above asymptotic expansions (under conditions of equivalence) are derived in
Chapter 2 and numerically evaluated to obtain the expected error rates. Chapter 2
contains a comparative study of the SEDF and SLDF, using a different approach
to that of Raudys and Pikelis (1980) and Marco et al. (1987). The conditions
under which comparison is made are also broadened to include different structures
for the group covariance matrix.

The focus in Chapter 3 changes from looking at rigid techniques to deal with the
previously mentioned instability in the group covariance estimates in discriminant
functions, to the very flexible technique of covariance regularisation. Avoiding
estimation of the ¥y, as occurs when using the SEDF, is shown in Chapter 2
(and indeed in subsequent chapters) to be a very useful procedure in a number
of situations. Nevertheless, it is an extreme procedure. As a different approach,
regularisation of the type devised by Friedman (1989), and described fully in Chap-
ter 3, allows for intermediate rules between the heteroscedastic and homoscedastic
models. Furthermore, it allows for intermediate rules between those based on ex-
pression (1.5) which employ covariance estimates, and those nearest-means rules
which are largely based on the Euclidean distances from an unknown observation to
the various group means, but perhaps weighted by a scalar based on the covariance
estimates. Such a compromise is made possible by employing two separate regulari-
sation parameters to obtain estimates of the ¥;. Each is a continuous variable over
the range [0,1]. One parameter controls shrinkage of the heteroscedastic estimates,
Sk, towards the pooled estimate, S,. The other parameter controls the strength of
biasing towards a multiple of the identity matrix, I. The identity matrix is used

by Friedman(1989), but there is nothing special about it, and other matrices could
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be used.

The selection of these parameters leads to the regularisation model, and train-
ing sample information is used to select values, which, it is hoped, are at least
approximately optimal in terms of leading to discriminant models with minimal
error rates. Friedman used the re-sampling technique of cross-validation (see, for
example, Lachenbruch and Mickey (1968), Lachenbruch (1975)) to obtain estimates
of the regularisation parameters, since appropriate values to use are unlikely to be
known in advance. Rayens and Greene (1991) pointed out that this technique often
may not yield a unique value, and that in such cases a “tie-breaking” policy must
be implemented to select one value to use in the model. A Monte Carlo simula-
tion study is described in Chapter 3, and the purpose is to give an indication of
the effects of this action on the main criterion that is used in this thesis to assess
the performance of classifiers — the estimated overall error rate. Simulation work
must be relied upon and the estimated overall error rate used in any comparison
of the regularised rule with the other discriminant functions, since no analytic re-
sults concerning the distribution of error rates of such regularised rules exist in the
literature. Even for the QDF, in the case of unequal group means and covariances,
exact expressions for the conditional probabilities of misclassification have been
obtained only for the case of p = 1.

The regularised rule as devised by Friedman (1989), which we shall term the
sample regularised discriminant function (SRDF), is not generally scale invariant.
This is not a desirable characteristic of a discriminant rule and arises through the
use of the regularisation parameter which allows shrinkage to the identity matrix.
In Chapter 4 a modification of the SRDF is presented which removes this pa-
rameter but attempts to compensate for the loss by introducing group-conditional
regularisation parameters controlling shrinkage to the pooled covariance matrix.
This means that each group covariance matrix is able to be regularised to S,, to an
extent that is appropriate for that group rather than biasing all group covariances
to the same degree. This modified regularisation rule is compared to the SRDF
and the other more common discrimination rules. It is found that it performs
reasonably well, although in the high dimensional settings especially, where the
covariance estimates suffer from high variance and bias, Friedman’s original SRDF
still proved superior. This shows the importance of the second type of regularisa-

tion towards the identity matrix which shrinks the eigenvalues of the Sy towards
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equality. The effect is to dampen the variance in the high variance subspace, a
procedure that clearly seems to appear to enhance discrimination.

Thus it appears that the eigenvalue shrinkage technique of the regularised rule
gives this rule the edge in a number of situations over the other rules not employ-
ing the technique (See also Aeberhard et al. (1994)). However, it is assumed that
this advantage would only be apparent when the sample size to dimension ratio is
small, since it is in these situations that most problems involving estimation of the
population parameters occur. The advantage would be expected to diminish as the
sample size increases in relation to the dimension. To examine this proposition, a
further simulation study was undertaken to compare the performances of the other
previously introduced discriminant rules over a range of sample size to dimension
ratios for a variety of simulation conditions as in the previous simulation studies.
This study is also presented and discussed in Chapter 4, and results are presented.
The goal is to determine if, for a given situation, there comes a point where the
sample size is sufficiently large relative to the dimension such that the eigenvalue
shrinkage technique of the regularised rule no longer is advantageous for discrim-
ination. This can be ascertained by comparing the regularised rule to those rules
without the eigenvalue shrinkage facility.

In Chapter 5, some of the criticisms of the model selection (i.e. regularisation
parameter selection) of the SRDF are addressed. In addition to the observation
made earlier that a unique choice of parameter values may not usually be available,
Rayens and Greene (1991) pointed out that often the choice is determined by only
a small portion of the data available. This phenomenon arises through the use
of error rates (i.e. misclassification probabilities), empirically obtained from the
training sample, as the criterion for choosing the regularisation parameters. In
order to address these potential weaknesses, a different approach to the model
selection procedure used by Friedman is considered. Friedman used the criterion
of estimated error rate based on the training data, and employed the empirical
technique of cross-validation to estimate the error rates. In Chapter 5, a criterion
of “distance between groups” is employed to gain information from the training
sample regarding appropriate values of the regularisation parameters. The goal of
Friedman’s model selection procedure is to choose values that lead to the formation
of a discriminant rule which seeks to allocate unknown or test observations with as

small an error rate as possible. Therefore, it is a direct approach to use the training
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sample error rate as the criterion upon which to base the choice of regularisation
parameters. On the other hand, distance measures are at best indirect indicators of
the conditional error rate of a discriminant rule. In fact, exact results linking certain
distance measures to error rate are available only when population parameters are
known and then usually in terms of bounds on the error rate. Nevertheless, articles
in the literature suggest some measures of distances between two groups that can
provide information about appropriate regularisation parameter values to use for
a given set of data.

The sample Bhattacharyya distance between two groups with the simplifying
assumption of normality is a popular measure of similarity (see Fukunaga (1972))
and is the distance criterion used here. Under this assumption the expression
comprises two terms: one which is very similar to the familiar Mahalanobis distance
which primarily measures the shift in means between the groups, and one which is a
measure of the covariance shift, and which involves determinants of the covariance
estimates. Despite the latter term being more seriously affected by bias than the
former (Fukunaga and Hayes (1989)), it gives an indication of the similarity of the
group covariances and thus the appropriate degree of regularisation to the pooled
covariance matrix. Similarly, if the covariance shift term dominates the mean shift
term in the Bhattacharyya distance expression, it may indicate that eigenvalue
shrinkage needs to be employed to reduce the variation and bias in the estimates.

Thus, while the distance measure approach is relatively crude in terms of not
drawing on established analytical results but rather relying on empirical data and
empirically derived “rules of thumb”, it does afford advantages over the model
selection procedure in Friedman’s rule. Firstly, all the available training data con-
tributes to selection of the regularisation parameters. Secondly, a unique choice of
those parameters is obtained, avoiding arbitrary procedures to break ties. Finally,
re-sampling techniques are avoided, thus leading to a much faster computational
procedure. The discriminant rule developed is tested in a simulation study against
Friedman’s rule as well as the other rules used throughout this thesis for compar-
ison. It is also extended to the case of three groups. Several case studies are also
presented with real data sets incorporated as part of the comparative analysis of
the various rules.

Most of the work thus far regarding Friedman’s regularised rule involves com-

paring its estimated (conditional) error rate with that of other methods. To the best
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of the author’s knowledge, no exact analytic results regarding error rates are avail-
able in the literature which incorporate the effects of the regularisation parameters.
Houshmand (1993) provided exact expressions for computing the probabilities of
misclassification for the univariate QDF with two groups and known covariance
matrices. Since the effect of introducing regularisation of the covariance matrix on
error rate has only been studied via simulation experiments, it is of considerable in-
terest to attempt to describe this effect with analytic expressions. In Chapter 6, the
exact expressions given by Houshmand for the error rate of the QDF are differen-
tiated with respect to the covariance mixing parameter. The resultant expression,
after evaluation, provides information on the rate of change of the error rates with
respect to the regularisation parameters. Thus analytic results can be compared
with the empirical results obtained. Using the algorithms of Lau (1980) and Narula
and Desu (1981) the integrals in the derivative expressions are computed, and the
derivatives evaluated, for several combinations of population parameters and over
the range of values of the regularisation parameter. From the limited analytical

results obtained, confirmation of some results from earlier chapters is made.

1.4 NOTATION AND DEFINITIONS

Some notation that is used throughout this thesis will be established in this section,
and a few well known results rewritten for convenience since they will be used
extensively elsewhere in this work.

Vectors and matrices are written in bold type. The transpose, trace and deter-
minant of a matrix M are denoted by M’, tr {M} and |M| respectively, and I is the
identity matrix. The symbol ¢(.) denotes the standard normal density function,
given by

é(z) = (27) Y 2exp {—z2/2},

and the integral of ¢(z) from —oo to y is denoted ®(y), the (cumulative) normal
distribution function.
The square of the Mahalanobis distance between two groups or populations II;

and II, with means p; (i = 1,2) and common covariance matrix X is
A? = [(p1 — p2)' 7 (1 — p2)) (1.8)

where A is taken to be positive.
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The maximum likelihood estimates of the mean and covariance matrix com-

puted from a training sample from group k are

B = Sy Py

Mk =1
and
A 1 2 i
Ek = ;—Z(I,‘ —f.'k) (:Bt'—:i':k) (19)
k =1

respectively, where n; is the size of the sample. The estimator 3 is biased, so that

3k is estimated by the usual sample covariance matrix

1 i (@: — Zx) (z: — Zx)’ (1.10)

=1

S. =
- nk—l

The pooled sample covariance matrix for K samples is

1 K
= — 1.11
Sy = N 2 k(e — 1 (1.11)

where i
N =3 . (1.12)

k=1

The simulation experiments undertaken in this thesis were implemented using
MATLAB™ (The MathWorks, Inc. (1992)). The built-in random number gener-
ators rand and randn were used to generate the synthetic data for the simulation

studies in Chapters 2 through 5.
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Chapter 2

COMPARISON OF THE LINEAR AND
EUCLIDEAN DISCRIMINANT
FUNCTIONS

2.1 INTRODUCTION

In parametric statistical discriminant analysis, the linear discriminant function
(LDF), which is based on assumptions of multivariate normality and equal covari-
ance matrices, is quite popular because of its robustness and simplicity. Clearly,
there are situations when the LDF is inappropriate and related competitors like the
quadratic discriminant function (QDF) or the Euclidean distance function (EDF)
may be used instead; see, for example, McLachlan (1992, Chapters 3 and 5). In
this chapter the particular interest is to compare the LDF with the simpler EDF
via their asymptotic error rate under prescribed conditions.

In giving the background for this study, it is necessary to revise some related
literature whose results motivated this study to compare the LDF with the EDF.
There has been considerable interest in the literature in the relative performances
of these discriminant functions. These comparisons have usually been based on
various measures or estimates of error rates (probabilities of misclassifications) since
direct algebraic evaluations of some of these probabilities for unknown population

parameters have proved intractable. The main references are summarised below,
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and these provide comparisons between the EDF and the LDF (and sometimes a

few additional discriminant functions) under various conditions and assumptions.

2.2 LITERATURE REVIEW

2.2.1 Raudys and Pikelis (1980)

Raudys and Pikelis (1980) performed a comparative study of four classifiers: the
sample EDF (SEDF - see expression (1.7)), the sample LDF (SLDF - see expres-
sion (1.6)), the sample QDF (SQDF - see expression (1.5)) and a variant of the
SLDF for independent measurements (where the off diagonal elements of the pooled
sample covariance matrix S, are set to zero). The performance of each discrimi-
nant function was evaluated when allocating individuals from two spherical normal
populations. A second aim of their study was to monitor the effects of training
sample size, n, and dimensionality, p, on error rates. All the classifiers used are
Bayes procedures for normal populations that differed only in their assumptions
on the structure of the covariance matrices. The error rates were obtained through
numerical integration.

An exact expression for the expected value of the probability of misclassification
(conditional on the sample size) for the SLDF was derived by Sitgreaves (1961).
This expected conditional error rate is the unconditional error rate for the classifier.
However, Sitgreaves’ expression was found to be computationally impractical and
was reduced into a form suitable for numerical calculation by Estes (1965) in his
unpublished work. This latter result is used to calculate the unconditional error
rate for the SLDF in their paper. Also, the expected value of the conditional error
rates for the SQDF and SEDF were derived in the form of non-closed integrals, and
solved numerically to estimate the unconditional error rate for the classifiers. The
unconditional error rate for the SLDF for independent measurements was studied
by approximate formulae and by simulation. The expected values of the conditional
error rates for the SLDF and SQDF were evaluated in the case of spherical normal
populations with ¥; =1,: =1, 2.

The authors (Raudys and Pikelis (1980)) also performed a simulation study
using four sets of data from various populations, and compared the error rate of
each classifier. A majorresult of the simulationstudy was that the SEDF performed

better than the SLDF when p is large relative to the training sample size, n. In
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fact, over the whole study, the SEDF performed at least as well as the SLDF, even

for some non-spherical covariance configurations.

2.2.2 Peck and Van Ness (1982)

Peck and Van Ness (1982), noted that one problem with using the SLDF is that
the unbiased population parameter estimators in high dimensions are often of poor
quality. This applies particularly to the estimates of the population covariance
matrix. The problem is often evident even for Gaussian data. A shrinkage estimator
for the covariance matrix in the SLDF was investigated to try to ascertain its effect
in addressing this problem. A shrinkage estimator is usually a function of S,7*,
where S, is the pooled sample covariance matrix. This function then replaces S,,_1
in the SLDF.

There are a number of shrinkage estimators, including the characteristic roots
method (Stein (1975)), the correlation matrix methods (Lin, S. (1978)) and the
empirical Bayes method (Haff (1979, 1980)). Lin, H. (1979) compared the three
approaches via a Monte Carlo study and concluded that for many, but not all co-
variance structures, the characteristic roots method and correlation matrix method
out-performed the classical estimator used in the standard SLDF. The empirical
Bayes method improved upon the classical estimator for all covariance structures
and because of this latter fact, Peck and Van Ness chose the empirical Bayes
method, where the pooled sample estimate of the (assumed common) population

covariance matrix is replaced by a function of it (called the Bayes estimator),

B=(1-TU)@n-p-3)S," + (Zgjl}’) L (2.1)

Here b is a positive constant, U is a measure of disparity among the sample (co-
variance) eigenvalues (it is the geometric mean of the eigenvalues divided by the

arithmetic mean),
_ P|Sp|l/p

B tr{Sp}

the function 7(.) is a non-decreasing solution to

(2n—p—-1)T?—4T + (4U/p)T" <0

and 0 < T (U) < 1. Here, it is assumed equal training sample sizes, i.e. n; = ny = n

in the two-group case.
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Peck and van Ness made the assumption that the common group covariance
matrix, ¥, was a diagonal matrix with all leading diagonal elements equal to some

constant o2, so that
b

w(s,)
is a natural estimator of £~'. The quantity b was chosen to be p(2n — 2) — 2,
so as to yield an unbiased estimate of £~'. Their simulation results showed that
the discriminant function using shrinkage estimators performed better than the
standard SLDF in most cases, but this improvement was highly dependent on
the Mahalanobis distance between the two populations. A further conclusion was
that if the Euclidean distance between the population means is small then the
shrinkage estimator is of little use because the effect of poor estimation of the
population means on the probability of correct classification is more detrimental

than the effect of poor estimation of the covariance matrix.

2.2.3 Marco, Young and Turner (1987)

A Monte Carlo simulation study by Marco et al. (1987) compared the SLDF and
SEDF under conditions derived so as to ensure that the two classifiers were (i)
equivalent and (ii) non-equivalent. Here “equivalence” means that the classifiers
have the same true error rates (see Section 2.2.4), and arises from a contrived
arrangement of the population parameters, which are assumed known.

The results of their simulation study indicated that the SEDF out-performs the
SLDF when the underlying parameter configurations are such that the SEDF is
equivalent to the SLDF, assuming all parameters are known. The SEDF appears to
do as well as the SLDF even for non-equivalent situations. Another feature of their
results was that when the ratio of the Mahalanobis distance to Euclidean distance
is small, the SEDF tends to perform better than the SLDF, whereas when the ratio
is large, the converse is true. Overall, the studies by Marco et al. showed that the
SEDF performs as well as or better than the SLDF especially when the Euclidean
and Mahalanobis distances were similar, and when the dimension of the data is
large relative to the training sample sizes, and the variables in the data are mildly
or moderately correlated (positive). Simulations under conditions of medium to
high correlation were not performed, but it was stated that the results suggested

the SEDF would also perform very well in such conditions.
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An obvious advantage of the SEDF over the SLDF is its computational sim-
plicity, which may be important with high dimensional data in real-time pattern
recognition systems. Marco et al. also stated that a further advantage of the SEDF
is that the SEDF is invariant to correlated training observations whereas the SLDF
is not. This claim is unsubstantiated, however, and it appears that there is con-
fusion over the type of correlation meant. The comparison is made to the SLDF,
which is indeed affected by such correlation probably because the assumption of
independence is not satisfied within the training samples. (See Basu and Odell
(1974), Tubbs (1980), Lawoko and McLachlan (1983) and Koolaard and Lawoko
(1993). However, these papers deal with correlation between training observations
specifically, rather than correlation between measurement variables such as when
Y isasin (2.15), which is the only type of correlation used in the paper by Marco
et al.

Comparison of their results with those of Peck and V'an Ness (1982) show that
the SEDF performs as well as or better than the SLDF using a shrinkage estimator
of . Exceptions to this include the case when the underlying parameter config-
urations are such that the Mahalanobis distance is considerably larger than the

Euclidean distance, and the latter is of a small magnitude.

2.2.4 Implications of results from Marco, Young and Turner
(1987)

This paper derives conditions under which the LDF and the EDF are “equivalent”
(i.e. have the same overall error rates for known population parameters). The
authors also report results of simulation studies to compare the SLDF and SEDF
not only under conditions of equivalence but also under certain situations of “non-
equivalence”.

To be specific, in the two-group case, assuming equal prior probabilities and
costs of misclassification and common group covariance matrix X, it is well known
that the “true” error rate (i.e. when all population parameters are known) for
misallocating an object from group 1 to group 2 by the SLDF is the same as the
error rate for misallocating an object from group 2 to group 1. That is,

-A
P211=P1L2=<I)('2—), (2.2)

where A is given in expression (1.8). The corresponding error rates for the SEDF



Chapter 2. Linear and Fuclidean Discriminant Functions 18

are

P;i} LI PIE2‘ 3 < 1 (“’1 = 11'2) (u‘l - ”’2) ) ) (23)

T 2{(p1 = 12)' (1 — 1)1
Thus the overall error rates for the SLDF and SEDF (to be denoted here by
PL and P%) are equal to expressions (2.2) and (2.3) respectively.

Marco et al. proved the following related results.

(i) Let V be a p x p full rank matrix and F any p x 1 matrix with pseudo inverse
F*. f FF* and V~! commute then

F'V-IF = (F*V F¥)"!, (2.4)

(ii) If we add the requirement that V be symmetric, then

F'F
¢ £ 2.5

(iii) If we set F = (i, — i) and V = X in result (ii) where (g, — #4,) and

satisfy the requirements for results (i) and (ii), then PL = PE.

The authors argue that in view of result (iii) “... in many practical situations the
SEDF might perform better than the SLDF since considerably fewer parameters
must be estimated for the SEDF”. Thus, since “... the performance of the SLDF
deteriorates significantly as the dimension becomes large relative to the training
sample sizes, the computationally simpler SEDF may be the preferred discrimi-
nation algorithm in this situation”. In view of this last argument, the authors
conjectured that “the SEDF may perform as well as the SLDF even for (some)
‘non-equivalent’ situations”. The authors then performed a simulation experiment
for a very special structure of ¥ and concluded that there were indeed situations
when the SEDF performed better than the SLDF. They found that the “improve-
ment of the SEDF over the SLDF is highly dependent on the ratio of Mahalanobis
distance to Euclidean distance”. In particular, “whenever this ratio is small, the
SEDF tends to out-perform the SLDF, (and) when the ratio is large the reverse is
true”.

One possible explanation for the observed relative behaviours of the two dis-

criminant functions follows from Peck and Van Ness (1982), who conjectured that
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all this is due to the relative effects of the errors in estimating 3 to that in es-
timating p, and p,, and the relative seriousness of these effects depends on the
sizes of the Mahalanobis and Euclidean distances; see the original article or Marco
et al.(1987) for further details and illustrations. Of course, in “non-equivalent”
situations when the SLDF has a lower (true) error rate than the SEDF, it would
be anticipated that the SLDF would perform better than the SEDF.

On the matter of when the SEDF performs better than the SLDF, consider the
proof of result (iii) in Marco et al. (1987), where, if the conditions for the result

are satisfied, then

(11 — 19) (11 — 1)
(11— B2) By — p)]'V?
By swapping ¥ and 7! in the above result, we get the equivalent result that

= [(py — 12) 7 (1) — po)]'2 (2.6)

A _ [ = o) (1 — )P
A% (g — p2) =71 — po)

where Ag is the Euclidean distance between the two populations. Thus the size

=l p) S ), @)

of the ratio between the distance measures (Euclidean and Mahalanobis) can be
reduced to an explicit function of the elements of u,, 1, and X.

Without loss of generality, one can set p, = (0,0,...,0)'. Marco et al. (1987)
set the values of u, = (m,m,...,m) under “equivalence” and u, = (m*,0,0,...,0)’
under “non-equivalence”, where m and m* are appropriately chosen scalars so
that the Mahalanobis distances can be set equal (under equivalence and non-
equivalence) for purposes of comparison. This study concentrates on the “equiv-
alence” situation since it provides fair comparison between the two discriminant

functions (both being optimal Bayes procedures for known population parameters

under “equivalence”). Since p, = (0,0,...,0) and p, = (m,m,...,m)" in this
situation, it follows that AZ = pm? and
A% (A‘}s) 1 2
- = || X = = WiZp,)/pm” = ) _oai;/p, (2.8)
A2 A2 A2E 1 1 g 1]

where ¥ = {0;}.

Thus the only factors which determine the size of the ratio of the two distance
functions in this situation are the elements of the covariance matrix, 3. If, as
in Marco et al., standardisation is done and the covariance matrix is effectively a

correlation matrix, then it follows that in general high positive correlations yield
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large values of Z oi;. If there is no standardisation of the observation vectors then
t,J
large (small) variances and/or large positive (negative) correlations would result in
large (small) values of ) oy;.
1,J

Note that in their discussions Marco et al.(1987) refer to the size of the ratio of
A? to AZ, which is the reciprocal of the ratio in expression (2.8). In terms of the
ratio in (2.8) these authors’ simulation experiments suggest that: SEDF performs
better (worse) than SLDF when ) o;; is large (small). It can be concluded from

ij

the arguments above that it is the type and extent of correlations (or covariances)
among the observations which determine this observed behaviour (see Koolaard

and Lawoko (1996)).

2.2.5 DMotivation for the present study

As mentioned earlier the expansions of the error rates that Raudys and Pikelis
(1980) obtained involved numerical integration, which is often a complicated tech-
nique. Furthermore, they only considered the trivial case of equivalence of the
SLDF and SEDF when ¥ = 1. Meanwhile, Marco et al.(1987) compared the per-
formances of the SLDF and SEDF through simulations only. Thus it is of interest
to broaden these comparisons by using expected values of the error rates of each of
the discriminant classifiers. In this chapter, expectations of asymptotic expansions
of the conditional (i.e. actual) error rates are obtained for each classifier, and com-
parisons of the performances are made under the same conditions as those used by
Marco et al. It is of interest to determine if the results and deductions arrived at
from the asymptotic expansions in this study are consistent with the simulation
results of the aforementioned authors, which indicated that the simpler SEDF is
often superior in performance to the SLDF.

Lim (1992) derived the asymptotic expansions for the conditional error rates of
the SLDF and SEDF in the case of “nonequivalence” of the two classifiers. Lim
also derived the asymptotic expansion for the conditional error rate of the SEDF
under “equivalence”, but was unable to derive the corresponding expansion for the
SLDF under these conditions, so a proper comparison of the classifiers was not able
to be achieved. The outstanding expansions are derived in this chapter, enabling

the comparisons to be made.
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2.3 ASYMPTOTIC EXPANSIONS

In this chapter, the asymptotic expected error rates were obtained using Taylor
series expansions of the conditional error rates and taking expectations over the
distributions of Z,, Z; and S,. In particular, if #(.) is a differentiable function
of parameters (B,, Bo, ..., Bs), where (8, b, ..., Bs), are consistent estimators of
(B1, B2 - - -, Bs), then the Taylor series expansion (up to order one) of E(#) (E(.)

denoting expectation) about the point (5, 32 .., Bs) can be expressed as

S 6 .
E(H) = H(B, B .-, 05) + —H (B; — B;)
3=1 0B,
1 0?H
Z aﬁlaﬁ] [

For our expansions H = ®(.) is the standard normal distribution function, and

- 8)(Bi - 8;)].  (29)

Bl, BQ, AU Bs are the elements of &, 2, S,. The expansions are evaluated at the
point (g1, 1y, ).

The two asymptotic error rates considered here are (i) the expected error rate
based on samples of n, from population 1 and n, from population 2 (This is often
called the expected actual or unconditional error rate) and (ii) the expected plug-
in error rate. For these error rates, the function H(.) takes the following forms
(for misclassification of an object from population 1 to population 2), where the

subscript ‘A’ and ‘P’ refer to the “actual” and “plug-in” error rates respectively:

(41 — 3(&:1 + 22)]'S, ™' (&1 — &2)

Py = @ <_[(531 — &,)'S,”'=S,7 (&) - 532)]‘”) ' (2.10)
g = o (- ERRIaS) @)
PRERE = ®(=}[(&1 - 22)'S, ™ (21 — &2)]'/?) (2.12)
SEDF 1 (&, —Zo) (&1 — Z2)
and P = & (—5[(11 = j?)’sp(a-:l — 5:2)]1/2> . (2.13)

Corresponding probabilities of misclassifying an object from population 2 to

population 1 are:

12 — 3(21 + 22)]'S,” (21 — Z5)
Piny = (I)([(xlz z,)'S "2238 (z1—532)]2”2>’

eor (B2 — (&1 + 25)] (21 — )
Pain = q’( (21 — 22)2(z1 — 2,)]'2 )

PSRF = ®(-i[(& - 22)'S, 7" (&1 — 2,)]/?)
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1 (2 — &) (z) — o)
and PSR — B[ -= : : ’
n 12(P) 2[(&, — T2)'Sp(T) — T9)] /2

The following result by Okamoto (1963) was used to obtain the partial derivative

terms in the expansion:

If the covariance matrix ¥ is symmetric and invertible, and we let

2! = {0Y} (where {0¥} is a function of o, (the (r,5)®" element of
3), then
d(c¥) 1 Sk o B
- il 4 gitg" < 2.14
o 1+6rs(ao +0%0")  (r<s) (2.14)

where ¢, is the Kronecker delta.

In a series of papers, McLachlan (1972, 1973, 1974a, 1974b) obtained asymp-
totic expansions of error rates for the SLDF. No such results appear to have been
obtained for the SEDF. This is partly due to the fact that for the SLDF the function
H(.) can be reduced to a relatively simple function (usually referred to as “canonical
form”) through a linear transformation of the observation vector. This simplifies
the algebra considerably, and makes the final result dependent on only a few param-
eters. Unfortunately, no similar technique can be used for the corresponding H(.)
function for the SEDF. The canonical form that has been traditionally adopted
(after the transformation) has been u, = (4,0,0,...,0), u, = (0,0,0,...,0)" and
3 =1, which would not allow us to investigate the distinction between SLDF and
SEDF, since such a parametric configuration means there is no difference between
the SLDF and the SEDF. Also, this represents a different parametric configura-
tion to that of the “equivalence” situation of the error rates (see Section 2.2.4).
Hence, such an investigation (as is being planned here) would require that a par-
ticular structure of ¥ be assumed. Consequently each asymptotic expansion takes
a different form, depending on (i) the assumed structure of X, (ii) whether the
expansion is obtained under “equivalence” or “non-equivalence”, (iii) whether the
expansion is for the SLDF or the SEDF, and also (iv) whether the expansion is for
the “actual” or “plug-in” error rate.

The two distinct structures of X that will be considered are:

1. ¥ an (intra-class) equi-correlation matrix (Denoted X 4):

Ta=(1-pI+pJ, (p—<p51)
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where 1 is a p x p identity matrix and J is a p x p matrix of ones. That is,

(1 p p
al p p
Sa=|p p 1 g (2.15)
- )
lpp ... p 1]

2. X exhibiting the auto-correlation structure of an auto-regressive process of
order 1 (Denoted Xpg). That is,

1  p ¥ &
g P2
¥p=] & ® 1 we § | (2.16)
1 p
Yol alk

Asymptotic expansions are obtained under the following conditions:

1. Non-Equivalence of the LDF and EDF

Asymptotic expansions of the actual error rate and plug-in error rates of
the SLDF and SEDF for the case of non-equivalence under the following

conditions

e i, =(m*0,0,...,0), u, =(0,0,...,0) and ¥ = X,.

® p = (m*0,0,...,0), u, =(0,0,...,0) and T = Tp.
These expansions have been obtained and reported in Lim (1992).

2. Equivalence of the LDF and EDF

Asymptotic expansions of the actual and plug-in error rates of the SLDF and

SEDF for the case of equivalence under the following conditions

o u, =(m,m,...,m), u2=(0,0,...,0)' and B =2
o puy=(m,m,...,m), p, =(0,0,...,0) and T = Tp.
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For these two cases the asymptotic expansions of the plug in error rates for
both the SEDF and SLDF, as well as the asymptotic expansions of the expected
actual error rate for the SEDF (but not for the SLDF), are given in Lim (1992).

The Taylor Series expansion (up to first order) of the actual error rate associated

with the SLDF under “equivalence” conditions is of the form

PSMPF <1>(—92Z(Zs““)(zowsw)“”{zzs‘*})

5%®(.)

2nT Zl: Z 61:1,6:5 ij ZZ 8:{:2,61:2J

1 (ni+n
+ 5————( : 2) ZZZZ e :5 Juﬂ;t + oqojk) (2.17)

1 +n

where the quantities (‘3;—:9%)2- are obtained separately for each assumed structure of
Ky, o, and ¥ for any variables 6, and 6,. Here, S,[,_l = {s}, and s, is the
(r,s)™" element of S,. Details of the full algebraic expressions of the asymptotic
expansions, which are the quantities

02d(.) 0%®() 0%*®()

0%1;0%1; 0%2;0%s;’ Oski0sij’

are given in Appendix A for each structure of ¥. Evaluation of this expansion
involves taking the expectations of the above expression, yielding the expected

actual (i.e. unconditional) error rate associated with the SLDF.

2.4 NUMERICAL EVALUATIONS OF ASYMPTOTIC
EXPANSIONS

In addition to comparing the performances of the SLDF and the SEDF via asymp-
totic expansions, simulations are performed to give a further assessment of the
actual error rates of each classifier. Lim (1992) obtained the expected plug-in
error rate associated with each classifier, and her results will be incorporated in
the present discussion. As mentioned previously, the comparison is done under
similar but more extensive conditions to Marco, Young and Turner (1987), in or-
der to made direct comparison with their results. Values of m are chosen such

that the Mahalanobis Distance, A, is the same in both cases of equivalence and
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non-equivalence of the SLDF and SEDF. The values of the (squared) Mahalanobis
distance used are A2 = 0.5, 1.0, 1.5, 2.0 and 2.5. The covariance matrices, whether
they are of the form ¥ = ¥4 or ¥ = X, are determined by the parameter p. The
values of p used are 0.0, 0.2, 0.4 and 0.65. In some cases for ¥ = X g, additional
negative values of p have been used to allow more extensive investigation. The
negative values of p used are: p = -0.2, -04 and -0.65. It was decided not to use
these negative values when ¥ = 3 4, since ¥ will not be positive definite if p is less
than —1/(p — 1). For the case of non-equivalence of the SLDF and SEDF (where
p = (m*,0,0...0) and pa = (0,0,...,0)") the value of m* is given by

m* = /{A%/o1}. (2.18)

Meanwhile, for the case of equivalence of the two classifiers (where gy = (m, m, ..., m)’

and po = (0,0,...,0)"), the value of m is given by

m= \/{A2/ZZJU}. (2.19)

For most combinations of values of p;, g2 and ¥, comparison of the SLDF
and SEDF was carried out using two values of the dimension, namely p = 4 and
p = 8 The complexity of the expansions meant that numerical evaluation of
them at larger dimensions was not feasible in practice (surprisingly'), owing to the
prohibitive amount of computation time required. The samplesizes n; and n, from
populations (or groups) 1 and 2 were taken to be equal at n; = ny = 50 = n.

The relative performances of the SLDF and SEDF are compared using three
criteria:

1. comparisons of the expected actual error rates under conditions of equiva-
lence and non-equivalence.

2. comparisons of the expected plug-in error rates, obtained by Lim (1992),
under conditions of equivalence and non-equivalence.

3. comparisons of the estimated actual error rates, obtained via Monte Carlo
simulation methods, under conditions of equivalence and non-equivalence.

Since comparison of the classifiers under conditions of equivalent error rates
is the fair course of action, the discussion will primarily focus on results obtained
under this scenario. For the purpose of this discussion we will refer to the error rate
when all parameters are known as the true error rate. The asymptotic expectations

of the actual error rate and the plug in error rate will be referred to as “the expected
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actual error rate” and “the expected plug in error rate” respectively. The expected
actual error rate is also called the unconditional error rate. These various error

rates will be denoted as follows:

. E = true error rates for the SLDF (superscript L) and SEDF

etrue’ etrue

(superscript E).

el ef = asymptotic expected actual (i.e. unconditional) error rates.
él,éf = asymptotic expected plug-in error rates.
el ef = cross-validation error rates from simulation experiments.

The tables presented (Tables 2.3 to 2.5) give the order of magnitudes of various
expected error rates, and error rates obtained through simulation. The simulation
results in these tables will be discussed in Section 2.5. The results for the asymp-

totic expansions under the scenarios in Section 2.3 are now discussed separately.

Non-equivalence situation (X =X,)

Lim (1992) derived asymptotic expansions of the actual and plug-in error rates
- expressions (2.10), (2.11), (2.12) and (2.13) - under the previously defined con-
ditions of non-equivalence of these error rates. A reduced results table for this
case is presented (Table 2.1), and the main features of the results of the numerical
evaluation of these expansions are now discussed.

The expansions appear to be affected by a combination of large p and high
correlation between variables in this case of ¥ = ¥ 4. When p = 0.65 and p = 8 the
value of € and éF are substantially lower than expected, with éZ being particularly
low. It would not be advisable to use these expansions in this rather extreme
condition of high intra-class correlation coupled with high dimension.

It is observed that el and ef increase as the dimension changes from p = 4 to
p = 8, but that éL and éF decrease for the same change in dimension. It is well
known that the plug-in error rate for the SLDF is usually too optimistic, and this
bias appears to exhibit itself more strongly in the higher dimensional settings. The
expected plug-in rates é& and éf usually give very poor estimates of ef and ef
respectively, except for conditions of small p, large A2, and p close to zero. The
quantity e’ generally decreases as p increases from 0 to 0.65. This is consistent
with Cochran (1962), but is a phenomenon which is not entirely predictable as it

is likely to be produced by the combined effects of p, p and A2, as well as the
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Table 2.1: The true (e4ye), expected actual (e), expected plug-in (é) and mean
simulated (es)(with standard deviation) error rates of the SEDF and SLDF under
the case of “non-equivalence” with ¥ = ¥ 4.

p=4 p=28
E E sE E E sE
etruc e € elruc e €
2 L L A L L bz
A P €true € e €irue € e

0.5 0.0 .3618 3784 .3456 | .3618 .3996 .3244
.3618 .3857 .3373 | .3618 .3954 .3051

0.2 | 3677 .3823 .3491 | .3706 .4075 .3293
.3618 .3766 .3370 | .3618 .3899 .3047

0.4 | 3810 .3847 3515 | .3861 .3891 .3093
.3618 .3685 .3360 | .3618 .3673 .3036
20 00| 2398 2474 2328 | 2398 2562 .2240
.2398 .2277 .2191 | .2398 .2319 .1920

0.2 | 2495 .2566 .2414 | .2544 2714 .2367
.2398 .2280 .2187 | .2397 .2308 .1914

04 | 2724 2754 2592 | .2813 .2861 .2483
.2398 .2252 .2172 | .2397 .2155 .1897

accuracy of the asymptotic expansions used in this study, and that of Lim (1992).
In these conditions, the expected error rate e£ tends to be closer to the true error

E L ; i
rate e,/ ., than e isto e, ..

Non-equivalence situation (X = Xp)

In this situation, Lim (1992) also derived the appropriate asymptotic expansions
and the results of evaluating these expansions are now summarised. A table show-
ing some of the results is presented (Table 2.2). The missing values in this table
result from the evaluation of the asymptotic expansion for the LDF going out of
bounds for the case where p = —0.4 (Lim). The expected actual error rates e’

ef, as well as the expected plug-in error rates é&¢ and é® exhibit more consistent

b}

behaviour in relation to p, p and A? under these conditions. The expected rates el
and ef increase as p increases from p = 4 to p = 8, and also as p becomes closer to
either 1 or -1. This trend was not apparent when ¥ = 3 4. A reason for this may
be that for a given value of p, the correlations between variables in the data when
3 = ¥4 are generally stronger than the corresponding correlations when ¥ = ¥ .
The true error rate for the SLDF, ef, ., remains constant with respect to p and

p. This is due to the fact that it only depends on the Mahalanobis distance,A,
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Table 2.2: The true (e;ve), expected actual (e), expected plug-in (é) and mean
simulated (e,)(with standard deviation) error rates of the SEDF and SLDF under
the case of “non-equivalence” with ¥ = 5.

p=4 p=28
etEY‘UC eE éE etEr:'uc eE éE
A2 p ef‘ruc eL éL etLruc eL éL
0.5 -0.4| .3730 .3886 .3525 | .3730 4207 .3336
.3618 .3365 | .3618 .3043

0.0 | .3618 .3784 .3456 | .3618 .3996 .3244
.3618 .3906 .3373 | .3618 .4228 .3051

0.4 | .3730 .3886 .3537 | .3730 .4207 .3352
.3618 .4064 .3365 | .3618 .4669 .3043
20 -04 | .2585 .2661 .2494 | 2585 .2799 .2414
.2398 .2178 | .2398 .1908 ||

0.0 | 2398 .2474 2328 | .2398 .2562 .2240
.2398 .2447 .2191 | .2398 .2719 .1920 ||

0.4 | 2585 .2661 .2499 | .2585 .2799  .2420
.2398 .2733 .2178 | .2398 .3414 .1908

which, under these conditions and for the present structure of g£;, po and X, is

not affected by p or p. Since ef

increases as both p and p increase, this leads to
the result that el substantially overestimates ek, , for large p and p. On the other
hand, since both €€ and eZ,, increase as p and p increase, these two error rates are
generally closer together in magnitude.

Once again the expected plug-in error rates é€, and particularly éL, are affected
by bias, and underestimate e and ef. This is a well known result and is especially
true for larger dimension (p = 8) and p not close to 0 (either positive or negative).
Note that éL substantially decreases, and é% slightly decreases as p increases from
4 to 8. Generally, éL is a poor estimate of e, while é€ is a better estimate of e,

although it too is an underestimate.

Equivalence situation (X = X,)

The results for this case are presented in Table 2.3. The true error rate is equal
for SEDF and SLDF for all combinations of parameters, and is only affected by
A? and not p or p. Because eF is higher than e£,, for p = 0 and decreases as
p increases, it is closest to the true value when p = 0.65. For the SLDF, e’ also

decreases slightly as p increases, especially for larger values of A2, but usually it is
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as close to ek, as ef is to eZ,,. The expected error rate for the SLDF (e’) also
increases slightly when the dimension increases from 4 to 8, except for those cases
of small A? and high correlation.

Overall, there is little difference in the performance of the SLDF and SEDF
under these conditions, although the asymptotic expansion of e is extremely large
and complex and hence of doubtful practical use (see Appendix A).

Regarding the expected plug-in error rates, both é€ and é* underestimate the
expected actual error rates. The plug-in error rates decrease when the dimension
increases from p = 4 to p = 8, while el and e increase. It is also evident from
Table 2.3 that éL more seriously underestimates the expected actual error rate
than €, particularly for larger values of p and A?. For medium to large separation
between the populations (A% > 1.0), é€ gives a more accurate estimate of the
expected actual error rate than é~, especially when p > 4. On the other hand, for

small A?, there is no difference in performance between éZ and ér.
b

Equivalence situation (X = Xg) Positive correlation (p > 0)

The results for this case are given in Table 2.4. The expected error rates e’ and e®
both decrease only slightly as the correlation strength increases from p = 0 to 0.65
under this covariance structure, although e’ shows a larger reduction for the highest
value of p (p = 0.65). Both expected error rates estimate their corresponding true
error rate reasonably well. In particular, el estimates el a little better than ef
estimates eZ,, when A? and p are small, whereas the reverse is true when A? is
larger and p is moderate to high.

The behaviour of the expected plug-in error rates é¢ and é® in this case is

similar to that under the previous covariance structure, where ¥ = X 4.

Equivalence situation (X = Xg) Negative correlation (p < 0)

The results for this case are given in Table 2.5. The expected error rates e’ and
ef both increase in magnitude as the dimension p increases from 4 to 8 and as
the correlation p becomes more strongly negative (p decreases from -0.2 to -0.65).
In particular, ef increases considerably as p decreases, while e’ remains relatively
stable. Both el and eF usually overestimate ef,, and eZ . respectively, but e is
much closer to e . than ef isto e .. In fact for p = —.65 and large p, e can be

two or three times larger than ef,,.
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Table 2.3: The true (e;ve), €xpected actual (e), expected plug-in (é) and mean
simulated (e;)(with standard deviation) error rates of the SEDF and SLDF under
the case of “equivalence” with ¥ = ¥ 4.

p=4 p=38

€irue eE éE ef ef’uc eE éE esE

A? el .. el el el ek . el el el
0.5 0.0 .3618 .3788 3470  .3820(.062) 3618 4001  .3261 .4024(.056)
.3618 .3597 .3373 .3866(.066) | .3618 .3695 .3037 .4072(.067)
0.2 | .3618 3669 .3510 .3704(.049) 3618 3671  .3425 .3672(.068)
.3618 .3572 .3378 .3784(.061) | .3618 .3624 .3046 .3930(.059)
0.4 | 3618 .3641 .3554 .3574(.056) 3618 3639 3524 .3686(.063)
.3618 .3521 .3381 .3752(.063) | .3618 .3498 .3052 .3958(.076)
0.65 | .3618 .3631 .3593  .3656(.054) | .3618 .3631 .3586  .3588(.056)
.3618 .3331 .3384 .3856(.063) | .3618 .3051 .3059 .4016(.071)
1.0 0.0 .3085 .3205 .2294 .3236(.056) 3085  .3347 2857 .3284(.054)
.3085 .3110 .2867 .3240(.057) | .3085 .3245 .2562 .3274(.059)
0.2 | .3085 .3125 .3020 .3084(.056) 3085 .3128  .2967 .3266(.054)
.3085 .3092 .2873 .3180(.056) | .3085 .3194 .2574 .3340(.061)
0.4 | .3085 .3107 .3050 .3104(.061) | .3085 .3107 .3032  .3132(.054)
.3085 .3057 .2877 .3252(.059) [ .3085 .3109 .2580 .3360(.056)
0.65 [ .3085 .3101 3076  .3128(.053) 3085 .3102 .3074 .3102(.054)
.3085 .2930 .2882 .3212(.060) | .3085 .2812 .2590 .3394(.065)
20 0.0] 2398 .2481 .2351 .2542(.053) 2398 2571  .2268 .2478(.054)
.2398 .2461 .2196 .2643(.056) | .2398 .2633 .1902 .2580(.053)
0.2 | .2398 2431 .2367 .2376(.046) | .2398 2434 2336  .2434(.052) -
.2398 .2448 .2204 .2462(.052) | .2398 .2596 .1917 .2622(.056)
0.4 | 2398 .2420 .2386  .2490(.051) 2398 2421  .2377 .2504(.060)
.2398 .2425 .2209 .2530(.047) | .2398 .2541 .1926 .2674(.051)
0.65 | .2398 .2416 .2402 .2376(.053) 2398 2418 .2403 .2396(.053)
.2398 .2345 .2214 .2508(.057) | .2398 .2355 .1939 .2638(.065)
25 0.0 .2146 .2219 2112 .2172(.053) 2146 2296 .2043 .2236(.058)
.2146 .2220 .1951 .2278(.052) | .2146 .2400 .1661 .2340(.052)
0.2 | .2146 .2178 2126  .2130(.052) 2146  .2181 .2101 .2142(.054)
.2146 .2208 .1959 .2200(.058) | .2146 .2367 .1677 .2328(.054)
0.4 [ .2146 .2168 .2141 .2164(.050) 2146  .2170  .2135 .2174(.054)
.2146 .2188 .1964 .2274(.054) | .2146 .2321 .1686 .2346(.053)
0.65 | .2146 .2165 2155 .2132(.050) 2146  .2167 .2156 .2134(.048)
.2146 .2121 .1970 .2174(.042) | .2146 .2164 .1699 .2320(.054)
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Table 2.4: The true (eye), expected actual (e), expected plug-in (é€) and mean
simulated (e;)(with standard deviation) error rates of the SEDF and SLDF under
the case of “equivalence” with 3 = ¥z and positive p.

p=4 p=28

e ef éf ef eE.. ef éf ek

Iay el .. el et el el .. el el el
0.5 0.0 .3618 .3788 3470  .3828(.035) 3618 4001  .3261 .3858(.060)
.3618 .3597 .3373 .3852(.065) | .3618 .3695 .3037 .3936(.063)
0.2 | .3624 3704 .3495 .3676(.054) 3623 3806 .3316 .3874(.058)
.3618 .3583 .3376 .3788(.061) | .3618 .3671 .3042 .3954(.069)
04| 3634 3673 .3541 .3696(.064) 3636  .3725 .3417  .3616(.054)
.3618 .3548 .3378 .3812(.065) | .3618 .3615 .3044 .3832(.059)
0.65 | .3642 .3659 .3597  .3646(.069) 3660 3692  .3549 .3750(.057)
.3618 .3400 .3378 .3786(.066) | .3618 .3361 .3046 .3984(.072)
1.0 0.0| .3085 .3205 .2994 .3156(.039) | .3085 .3347  .2857 .3364(.052)
.3085 .3110 .2867 .3136(.057) | .3085 .3245 .2562 .3368(.061)
0.2 | .3092 .3153 .3014 .3160(.059) 3092 3221 .2897 .3182(.064)
.3085 .3099 .2871 .3238(.058) | .3085 .3227 .2567 .3322(.063)
0.4 | .3106 .3139 .3052  .3174(.058) .3109 3176  .2973 .3184(.051)
.3085 .3076 .2873 .3280(.061) | .3085 .3189 .2570 .3410(.059)
0.65| .3117 .3135 .3095 .3162(.054) 3140 3170 .3079 .3070(.061)
.3085 .2980 .2874 .3250(.053) | .3085 .3022 .2573 .3394(.057)
2.0 0.0] .2398 .2481 .2351 .2532(.057) 2397 2571  .2268 .2530(.053)
.2398 .2461 .2196 .2532(.059) | .2397 .2633 .1902 .2640(.059)
0.2 | .2406 .2453 2368  .2488(.048) 2405 2496  .2296 .2528(.050)-
.2398 .2453 .2200 .2532(.047) | .2397 .2619 .1908 .2640(.054)
0.4 | .2424 .2452 2400  .2434(.049) .2428 2479 2355 .2476(.056)
.2398 .2439 .2203 .2472(.053) | .2398 .2595 .1913 .2684(.059)
0.65 | .2437  .2457 2433  .2438(.052) 2467 2495  .2439 .2350(.054)
2398 .2381 .2204 .2548(.051) | .2398 .2491 .1917 .2618(.055)
25 00 .2146 .2219 .2112 .2200(.048) .2146 2296 .2043 .2384(.054)
.2146 .2220 .1951 .2262(.052) | .2146 .2400 .1661 .2478(.055)
0.2 | .2155 .2198 2127  .2302(.052) 2154 2234  .2208 .2148(.052)
.2146 .2213 .1951 .2358(.058) | .2146 .2388 .1667 .2260(.049)
0.4 | .2173 .2201 2158  .2234(.050) .2178 2225  .2122 .2368(.050)
.2146 .2200 .1959 .2258(.045) | .2146 .2367 .1671 .2430(.055)
0.65 | .2188 .2208 2189 .2286(.050) 22219 2246 .2201 .2274(.049)
.2146 .2153 .1959 .2266(.052) | .2146 .2281 .1676 .2384(.059)
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Table 2.5: The true (e;rye), expected actual (e), expected plug-in (€) and mean
simulated (e,)(with standard deviation) error rates of the SEDF and SLDF under
the case of “equivalence” with ¥ = X5 and with negative p.

p=4 p=28
ek . ef et ef er e ef éE ek
A? pl ek, el el el el . el el el

0.5 -0.2| .3626 .3994 .3522 .3878(.065) .3624 4505 .3400 .4030(.066)
.3618 .3605 .3367 .3770(.078) | .3618 .3709 .3031 .3900(.060)

-04 | 3654 4549 .3841 .4008(.052) 3644 6034 4346 .4286(.057)

.3618 .3614 .3350 .3858(.064) | .3618 .3729 .3009 .3986(.067)

-0.65 | 3721 .7889 .6551 .4370(.062) 3706 L *% .4594(.059)
.3618 .3643 .3250 .3766(.068) | .3618 .3815 .2875 .3932(.068)

1.0 -0.2 | 3096 .3347 .3034 .3324(.050) 3092 .3686  .2953 .3440(.050)
.3085 .3118 .2859 .3312(.058) | .3085 .3258 .2552 .3318(.060)

-04 | .3133 3636  .3264 .3476(.059) 3119 4717 3595 .3632(.060)

.3085 .3128 .2837 .3192(.057) | .3085 .3282 .2524 .3360(.060)

-0.65 | .3222 .6022 .5125 .3948(.061) 3203 o 9497 .4292(.053)
.3085 .3167 .2790 .3288(.052) | .3085 .3395 .2350 .3266(.058)

20 -0.2 | .2411 2576  .2382 .2516(.056) .2407 2787 2332 .2760(.066)
.2398 .2469 .2186 .2476(.049) | .2398 .2646 .1891 .2700(.062)

-0.4 | .2457 .2844  .2549 .2756(.054) 2439 3451  .2751 .3118(.058)"
.2398 .2481 .2161 .2470(.055) | .2398 .2674 .1856 .2630(.057)

-0.65 | .2570 4359 .3789  .3254(.054) 2546 .7905 .6548 .3746(.050)
.2398 .2529 .2011 .2484(.050) | .2398 .2814 .1646 .2614(.056)

25 -0.2 | .2160 .2302 .2141 .2264(.051) 2155 .2479  .2099 .2402(.051)
.2146 .2227 .1941 .2156(.048) | .2146 .2414 .1648 .2312(.053)

-0.4 | .2209 2539  .2291 .2496(.053) .2190 .3046 .2458 .2618(.057)
.2146 .2240 .1915 .2252(.055) | .2146 .2442 .1612 .2350(.059)

-0.65 | .2328 .3848 .3365 .2952(.058) 2302 6843  .5695 .3564(.060)
.2146 .2290 .1762 .2226(.052) | .2146 .2590 .1394 .2334(.052)
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In general, when p < 0, the SLDF performs better than the SEDF in terms of
expected error rate. This is consistent with the Marco et al.(1987) theory about the
relative performance of the two classifiers depending on the ratio of Mahalanobis
to Euclidean distance. It was noted in Section 2.2.4 that examination of this ratio
suggests that negative values of p in ¥4 or ¥ would result in small values of

Z 0;;- This value is inversely proportional to the ratio referred to in Marco et al.,

ez;plaining why the SEDF performs more poorly than the SLDF.

The plug-in error rate é€ increases dramatically (similarly to ef) as p decreases
to p = —0.65, especially under conditions where the population separation (A2)
is small. Clearly the error rates ef and éF are badly affected by strong negative
correlation. In comparison, the behaviour of e and é. are much more stable as |p|
increases under these conditions, although the accuracy of é~ as an estimate of e”

also deteriorates for |p| large (p = —0.65).

2.5 SIMULATION RESULTS

A Monte Carlo simulation study was performed to verify and compare the results
of the asymptotic expansions from the previous section. The values of A2, p, n;,
n,, p and ¥ were fixed to be the same as the values used for the evaluations of
the expansions. The value of m was obtained using equation (2.19), and data
was generated from two multivariate normal distributions with equal covariance

" and

matrices ¥ (where ¥ = ¥, or ¥ = ¥p), and with gy = (m,m,...,m)
po = (0,0,...,0)".

The random samples drawn from each population were of size 50 (i.e, n =
n; = ny = 50), and 100 simulations were performed for each combination of pa-
rameters (A2, p, p). The Fortran 77 computer language was used along with NAG
(1983) libraries for the simulation experiments. Sample observations were allocated
to one of two multivariate normal populations having various mean and variance
combinations as described in Section 2.3. Allocation was made using each classi-
fier and the error rates for each were assessed using all three estimating techniques
(bootstrapping, cross-validation, resubstitution). Although these various estimates
of the error rates were obtained from the simulation experiments, previous work
(e.g. Ganeshanandam and Krzanowksi (1990)) suggest that the cross-validated er-

ror rate is a good and reliable estimate to use. Consequently, the discussions here
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on simulated error rates (for the various scenarios in Section 2.3) will be based on
cross-validated error rates only, denoted by eZ and el. Its values are compared

with the asymptotic expected (unconditional) error rates.

Equivalence situations (X = X,)

Increasing the correlation p has very little effect on the simulated error rates (e£
and ef). This behaviour is slightly different from that of the evaluated expansions
of the expected actual error rates for the SLDF, where increasing p decreased the
error rate of the SLDF, el (for small A? and larger p in particular). The increase
in simulated error rates eX and ef when the dimension p increases from 4 to 8 is
slight but consistent over all A% and p, whereas the results from the asymptotic
expansions showed the expected (unconditional) error rates were affected differently
for different combinations of values of A%, p and p. When p is zero, or very small
(lpl < 0.2), the asymptotic expansions for SLDF yields similar error rates to the
simulated values, but as p increases it appears to unduly affect the expansion
evaluations for the SLDF which yield underestimates of the true error rate. The
expansion for SEDF always yield similar error rates to those from the simulation
experiments. In general, under these conditions, the agreement between simulated

and expected values (from the asymptotic expansions) is better for the SEDF than
for the SLDF.

Equivalence situation (X = Xpg) positive correlation (p > 0)

Increasing the correlation p from 0 to 0.65 did not appear to have any effect on
the simulated error rates whereas the expansion of the expected actual error rate
of the SLDF indicated the error rate decreases especially for high p (p = 0.65).
The simulation results confirmed the expansion evaluations of the SEDF error rate
across all values of p, A? and p. However, the asymptotic expansion for the SLDF
appears to be affected by high correlation, p, leading to values of e which are
significantly lower than the true error rate for small A%, whereas the values of ef
are consistently higher than e . and e’ .

As a general conclusion, agreement between simulated and expected values from
the asymptotic expansions is better for the SEDF than for the SLDF, although
the difference is not great and only appears when the group separation is small
(A% <1).
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Equivalence situation (X = Xpg) negative correlation (p < 0)

The SEDF appears to be unduly affected when the correlation p is negative, and
particularly when p is high and negative. The asymptotic expansion value e£ yields
higher values than the simulated results in general, particularly for A? < 2 and
p < —0.2. The simulation results confirmed that the error rate of the SEDF does
indeed increase as p becomes more strongly negative, but that the error rate of the
SLDF remained at a similar level for all (negative) values of p. On the other hand,
el is much closer to the simulated results, and there is good agreement between
them. Under these conditions of negative correlation it seems clear that the SLDF
performs better than the SEDF.

In summary, each classifier (i.e. SLDF or SEDF) has particular conditions under
which it performs better than the other, although the SEDF performed better than
the SLDF under the majority of conditions in this section. The simplicity of use
of the SEDF, and its overall performance relative to the SLDF make it preferable

as a rule for discrimination for the kind of conditions studied in this work.

2.6 GRAPHICAL DISPLAYS

It is instructive to demonstate the relative performances of the SLDF and SEDF,
through a graphical presentation of their error rates as they vary with the mag-
nitude of the square of the Mahalanobis distance A% between populations. This
enables some of the observations made in Sections 2.4 and 2.5 to be more easily

seen. Define the differences between the estimated and true error rates as:

¢l = el —ek, ., = difference between the expected actual error rate and
true error rate for the SLDF.

(E = €F — ek, = difference between the expected actual error rate and
the true error rate for the SEDF.

¢t = el—ek,, = difference between the simulated error rate and
the true error rate for the SLDF.

(E = eF —eE, , = difference between the simulated error rate and

the true error rate for the SEDF.

Graphical displays of the Absolute Difference from True Error Rate (i.e. |CE|,

|CE|, |CE| and |CE|) versus the Mahalanobis distance squared (A2), for various levels
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of correlation (p (rho)) among the observations, are presented in Figures 2.1 to
2.6. Results for positive autocorrelation structures are presented in Figures 2.1
and 2.2 (¥ = ¥,) and Figures 2.3 and 2.4 (¥ = Xp), while results for negative
autocorrelation between neighbouring observations with ¥ = 3 are presented in
Figures 2.5 and 2.6. Since Figures 2.1 to 2.6 show absolute differences between the
error rates, they hide any bias that an estimator might tend to have. Consequently,
six corresponding graphs have been provided to illustrate this bias issue: Figures 2.7
to 2.12, which display values of ¢%, ¢Z, ¢* and (Z.

It was hypothesised in Marco, Young and Turner (1987) that the SEDF performs
better than the SLDF if the ratio A?2/A% (Mahalanobis to Euclidean Distance) is
large. It was also established in Section 2.2.4 that this condition can be reduced to
the size of Zo,-j. Since large (positive) p means large Zaij, a comparison of the
plots showiI;Jg |¢E| and |¢E| for a given value of p indica;:s that the expected error
rates provide support for this conjecture. The plots of (¥ and ¢F in Figures 2.7 to
2.12 also support these results.

The plots in Figures 2.7 and 2.9 show that for positive correlation, eX usually
initially underestimates the true error rate (when A? is small) and this estimation
improves as A? increases until it overestimates the true error rate for very large
i

The plots for the simulated error rates in Figures 2.2 and 2.4 suggest that
for positive p, |CE| tends to be smaller than |¢£|, and Figure 2.6 suggests that for
negative p, the reverse happens. Although it is the absolute values of the simulated
error rates which are shown in these figures, the graphs of (£ and (¥ are similar
(Figures 2.8, 2.10 and 2.12), indicating that the simulated error rates show that
the SEDF performs better than the SLDF for positive p . Also, the simulated error
rates tend to be generally larger than the true error rates, which is to be expected.

From Figure 2.9, an interesting difference between (£ and (F is exhibited. As
p increases, (¥ decreases from positive values towards zero, particularly as A?
increases. Meanwhile, (L increases from negative values, through zero, to positive
values. Thus e’ generally underestimates the true error rate when A? is small, but
overestimates it for large values of A2.

When we compare the results for ¥ = ¥4 with those for ¥ = ¥ we find that
the corresponding values of |CZ|, |CE|, |¢£| and |(Z| are quite similar. In fact, it

can be seen from the orders of magnitude of these differences in error rates that
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the estimation of the error rates provided by the asymptotic expansions are quite
reasonable in both situations. This is confirmed by the simulated error rates being
of similar order of magnitude. It appears however, that when p is negative and
A? is large, the approximation provided by e” is an overestimate. The problem is
worsened as p increases. Note, however, the simulated error rates are also unusually

large under this situation (see Figures 2.6 and 2.12).
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Figure 2.1: |¢%| and |¢E| for £ = T4, and various A? and p values (p > 0).
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Simulated Error Rate (p=4)
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Figure 2.2: |¢Z| and |¢F| for £ = X4, and various A? and p values (p > 0).
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Figure 2.3: |¢%] and |¢F| for £ = X5, and various A? and p values (p > 0).
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Figure 2.4: |¢%| and |(E| for ¥ = T, and various A? and p values (p > 0).
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Figure 2.5: |¢%| and |¢Z| for £ = X p, and various A? and p values (p < 0).

42



Chapter 2. Linear and Fuclidean Discriminant Functions

o .

3 Simulated Error Rate (p=4)

5 =

t /‘ 3

e 8 — EChet2 | g

E & 0 —— EDCrho=04

e X —— EDCrho=065

E 8 — — LDFrho=42

S 0 —~— LDFrho={04

€35 | 6 X —= LDFrho=A0565

9N

L9

= o

a}

U

Z0

'6' =]

é 05 1.0 1.5 20 25
Mahalanobis distance squared

o .

L Simulated Error Rate (p=8)

6

E

4]

59

Fo

E

e

G

v Vv

Qo

5O

A

28

ERS

2

£ 05 10 15 20 25

Mahalanobis distance squared
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Expected Actual Error Rate (p=4)
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Figure 2.7: ¢ and (F for ¥ = ¥4, and various A? and p values (p > 0).
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Simulated Error Rate (p=4)
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Figure 2.8: ¢ and (£ for £ = T4, and various A? and p values (p > 0).



Chapter 2. Linear and Euclidean Discriminant Functions
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Simulated Error Rate (p=4)
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Figure 2.10: ¢ and (E for ¥ = ¥, and various A? and p values (p > 0).
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Expected Actual Error Rate (p=4)
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Simulated Error Rate (p=4)
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Chapter 3

REGULARISED DISCRIMINANT
ANALYSIS

3.1 INTRODUCTION

Problems associated with estimating the K population (group) covariance matrices,
¥, (1 £k < K), were mentioned in Chapter 2. In the situation where the sample
size is small in relation to the dimension, the usual discriminant rules (i.e. sample
quadratic discriminant function SQDF, and sample linear discriminant function
SLDF) are both affected by the quality of the sample based estimates of the pop-
ulation parameters, especially the covariance matrix. Friedman (1989) considered
using alternative estimates of the covariance matrix, instead of the usual maximum
likelihood ones. His regularisation technique (RDF) is described in detail in this
chapter, since this will be helpful to the reader throughout this and subsequent
chapters where modifications to the process will be examined and tested. The
details of the RDF need to be identified clearly in order to do this.

The technique is also compared through simulation to the SQDF, SLDF and
the sample Euclidean distance function (SEDF). The SEDF was compared to the
SLDF under limited conditions in Chapter 2, and is included in this chapter since,
under some circumstances, it can be a viable alternative discriminant rule to the
commonly used SQDF and SLDF. A modification to Friedman’s technique is ex-

plained and used to gain further understanding of the method.
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3.2 PROBLEMS WITH ESTIMATING COVARIANCE
MATRICES

The sample quadratic discriminant function (SQDF) requires approximately nor-
mal group conditional densities and reasonably large training sample sizes before it
can be expected to perform well in discrimination. The sample linear discriminant
function (SLDF) is more robust to non-normality, and requires less parameter esti-
mation than the SQDF. However, it too can produce poor estimates of the pooled
between-groups covariance matrix, particularly if the size of the training sample
from group k, ny, is small in relation to the dimension of the measurement space,
p. The estimates of the covariance matrices can be highly variable in this situa-
tion, and Friedman (1989) showed the effect of this phenomenon on discriminant
analysis by representing the group covariance matrices in terms of their spectral

decompositions. That is, 3, can be represented as
P
’
Tk =) erNuTic,
i=1

where e, is the ith eigenvalue of 3, and 1, is its corresponding eigenvector. The

inverse may be written as

P '
= ik Mk
Ekl = 1 1 3

The discriminant score in expression (1.3) may then be written as

di(z) = f (["5" (= = py)] ) 4 i:ln {ex} — 2n {m} . (3.1)

i=1 Cik
It is clear that small eigenvalues will have a large effect on this quantity. Sample-
based estimates (Sx) of X, are known to produce biased estimates of the eigen-
values, especially when the size of the training sample used to obtain the estimate
is small relative to the dimension. It is well known that the smallest eigenvalues
are biased towards values that are too small, while the largest eigenvalues are bi-
ased towards values that are too large. This bias is even more pronounced when
the eigenvalues of Sy are similar. When n; < p, the sample covariance matrix is
singular with rank < n,. Thus the smallest p — n, + 1 eigenvalues of Sy are zero.
In such a case the sample discriminant score di(z), in expression (3.2), cannot be

obtained since the first term of this equation involves division by the eigenvalue
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estimates. The sample discriminant score may be written as

dy(z) = zpj [ (mé- 20 + ij In {éi} — 2 In {m¢}, (3.2)

i=1 ik

where é; is the i** eigenvalue of Sy, and 7),, is its corresponding eigenvector.

If the sample covariance matrix is nearly singular, the smallest values of é;x, (i =
1,...,pand 1 < k < K) will be close to zero and will inflate the quantity dk(:c)
The effect of this bias in discriminant analysis is to exaggerate the importance
associated with the low-variance subspace which is spanned by those eigenvectors
corresponding to the smallest eigenvalues. In fact, most of the variation in the
sample discriminant score is associated with directions of low sample variance in

the measurement space (Friedman (1989)).

3.3 REGULARISED ESTIMATES OF X,

One can reduce the variance associated with sample-based estimates of ¥, by
biasing the estimates away from the sample values and towards values that are more
plausible in practice. Regularisation parameters may be introduced which control
the amount of biasing, and the sample data can be used to estimate appropriate
values for these parameters.

For example, consider the quadratic discriminant rule in expressions (1.4) and
(1.5), where each Sy is replaced by the pooled sample covariance matrix S,. The
resulting discriminant rule is the linear discriminant function. This is a more popu-
lar rule than the SQDF because of its greater robustness to (i) non-normality in the
population distributions and (ii) poor estimates of the population parameters. The
latter advantage of the SLDF over SQDF is enhanced by the decrease in variance
associated with the estimation of the population covariance matrices.

A researcher who is applying normal-based classification procedures would nor-
mally test for homogeneity of variance between groups in the first instance. If the
choice of rules is only between SLDF and SQDF, an initial test of Hp : 3} = 33 =
... = X, = X could be performed. If H, is rejected then the SQDF would be
used, otherwise the SLDF may be used. An alternative approach is to introduce
a regularisation parameter &, which regulates the shrinkage of the S¢ to S;. Thus

Sk in expressions (1.4) and (1.5) is replaced by
k(@) =aSk+(1-a)S, (0<a<l), (3:3)
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where o« is determined from the data. Variations of this middle-of-the-road type
of discriminant function were developed independently by Friedman (1989) and
Greene and Rayens (1989). The results in these (and related) papers are now

presented.

(i) Greene and Rayens (1989)

In their paper, these authors obtained empirical Bayves formulation for esti-
mating the 3,. That is, assuming that the training data from group k are
independent observations from Nj(pk, ), it follows that (conditioning on
the Xy)

(ne —1)Sg ~ W, (X, (ne — 1)),

where W(.) denotes the central Wishart distribution with parameter matrix
3, and degrees of freedom (n, — 1). A conjugate prior distribution for X,
is assumed, which is the inverted Wishart distribution. That is, the X, are

assumed to be mutually independent with
% ~ Wl (w-p-1)T,w),

where W is the matrix of hyperparameters, and w (where w > p+1) represents
the degree of “concentration” of the ¥; around ¥. In particular, it can be
established that

E(Z) =19,

and

(w=—p—1)

(w-p)(w-p-3)
2

(w=p)(w=p-3)

cov ((Zk)njs (Bk)im) =

(Yh¥im + Upm¥y;)

lI’hj‘I’;m. (3.4)

After some algebra and further results, it can be shown that the empirical

Bayes estimate of 3, for a given w is

~ fk w—p—l
5 () = S, + 8@, 3.5
W= s P s, @)

where fr = ny — 1. The unknown parameter w is estimated by either condi-
tionally maximising the marginal likelihood of S, S, ..., S over w or using a
method-of-moments type estimator. Details of this non-trivial computational

task are given in the paper.
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(ii) Friedman (1989)
Friedman’s (1989) approach begins with the introduction of a regularisation
parameter, A, which controls the degree of shrinkage of the individual group
covariance matrix estimates (Si) to the pooled estimate (S,). The following
set of alternatives are obtained,

(1=X) (e —1)Sk + AS,
1=-XN(n—-1)+A(N-K)

2k (A) = (3.6)

where
K
Z Ny = N.
k=1

The parameter A takes on values 0 < A < 1, and it is evident that if &, (A)is
used in expression (1.5) in place of Sy, the scenario A = 0 yields the SQDF,
while the SLDF may be obtained by setting A = 1 in expression (3.6).

Note that expression (3.6) yields discriminant rules where the only shrinkage
is to the pooled estimate by varying degrees. This may not provide for suffi-
cient regularisation, especially if the total sample size, [V, is small in relation
to the dimension p. In these cases, even for linear discriminant analysis, the
number of parameters to be estimated is close to, or less than, the number
of observations available. Also, biasing the group covariance estimates to the

pooled covariance matrix may not be appropriate in some situations.
Friedman (1989), therefore, allowed for further regularisation of the sample
covariance matrix. Thus X, is estimated by

) ) tr {3k ()}

) =0=-7Zc\)+ 7 5 I " (3.7)

where tr {f]k (/\)} is the trace of the matrix £, (1) in expression (3.6), I is
a p X p identity matrix and < is the additional parameter which regulates
shrinkage towards a multiple of the identity matrix (the multiplier simply
being the average eigenvalue of 3 (1)). Shrinking in this way acts counter to
the bias (described in Section 3.2) which is produced by sample estimation of
the eigenvalues, by decreasing the larger eigenvalues of 3, (M) and increasing

the smaller ones.

Friedman proposed that the regularised sample group covariance matrix

(=& (A, 7)) replace Sx (1 < k < K) in the sample quadratic discriminant rule
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SEDF

SQDF| SLOF

A

Figure 3.1: The extreme points on the (\,<) grid, and what each represents.

(iii)

(expressions (1.4) and (1.5) for discriminant analysis. However, as 0 < A,y <
1, a technique is required to select an appropriate (),<y) combination for use
in the model. Friedman employed a technique which selects that combination
which minimises an estimate of the future error rate (See Section 3.4 below).

He termed this procedure regularised discriminant analysis (RDA).

RDA provides a rich class of regularisation alternatives. The possible (), )
combinations may be thought of as lying on a plane with four corners (see
Figure 3.1). The bottom left vertex (A\ = 0,7 = 0) corresponds to the
SQDF, (A = 1,7 = 0) gives the SLDF, (A = 1,4 = 1) yields a discriminant
rule based on the minimum Euclidean distance between groups, while (A =
0, = 1) yields a weighted minimum Euclidean distance rule where the group
weights are inversely proportional to the average variance of the measurement
variables in the group, i.e. tr {2k} /p. If v is fixed at zero and A varied,
intermediate rules between the SQDF and SLDF are obtained. If X is fixed
at 1 and 7 increased from 0, one obtains an analogy to ridge regression for

linear discriminant analysis.

Rayens and Greene (1991)

As a consequence of the ideas in Friedman’s article, Rayens and Greene (1991)

modified their regularisation method to accommodate eigenvalue shrinkage
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using the regularisation parameter v as in Friedman’s paper. They also pro-
posed an alternative cross-validation approach for estimating the covariance
mixing parameter ), following a result which arises out of using the Kullback-
Leibler distance measure for discrimination. Extensive use of cross-validation

makes this also a computationally intensive option.

3.4 SELECTING REGULARISATION PARAMETER
VALUES

Optimal values for the regularisation parameters A and - are not known in advance
and Friedman (1989) suggested they be estimated from the training data. The se-
lected ()\,7y) combination is that which gives rise to the minimum cross-validated
estimate of the error rate associated with the sample regularised discriminant func-
tion (SRDF). A grid of points is chosen on the (A,7) plane (0 < A, v < 1) containing
typically between 25 and 50 combinations of the regularisation parameters A and
7. At each grid-point, the parameter values are used to create the classification
rule. Cross-validation is used to estimate the misclassification risk of the rule for
each combination of A and v for a given set of training data. The point (},4) with
the lowest estimated error rate is used as an estimate of the optimal values of A
and v in a given situation.

This two-parameter optimisation problem would require excessive computation
were it to be implemented directly. However, Friedman developed updating formu-
lae for the computation of the regularised sample covariance matrix and its-inverse,
when a single and different observation is successively omitted from the sample (as
occurs during cross-validation).

It should be noted that in his article, Friedman used robust versions of Sy and
S, in expressions (3.6) and (3.7) in place of the usual estimate in expression (1.10).

We may write expression (3.6) as

. (1= B+,

A=\ Wi+ AW (3.8)

where
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K

EP = Z Ek
k=1

I/Vlc = Wy
C(v)=k
K

W= z I/Vka
k=1

and c(v) = k is the group to which the v*" observation (z,) (1 < v < N) belongs.

th observation, and if all

Also, w, is the weight (0 < w, < 1) assigned to the v
observations are given equal weight, then W; is the size of the sample from group
k.

The updating formula constructed by Friedman (1989) applied to the use of
the robust estimator 3 (), 7) which is defined by using £k ()) instead of T ()
in expression (3.7). It was shown that if an observation is removed from the kth
training sample, then > v (A7) is obtained from =, (A, v) by subtracting a rank
one matrix and a multiple of the identity matrix. Here “/v” indicates that the
vt* observation has been removed from calculations. The inverse of 3, v (A7) is
obtained in a similar way, making use of its spectral decomposition. Despite the
updating formulae, this is still a computationally intensive process.

It should be noted that selection of appropriate parameter values is not as
straight-forward as it may appear. Rayens and Greene (1991) noted from their
simulation trials involving the SRDF that the minimum cross-validated estimate
of the misclassification risk is often constant for a wide range of (), ) combinations.
This may be due to the fact that the error surface is fairly flat over a range of values
of A and . Hence the optimal choice (/\, 4) for the model will often not be uniquely
determined. This was found to be commonly the case in a simulation study done
in this project, which is described in Section 3.6.

Friedman did not address the issue of breaking of ties in the situation of multiple
minima. However, Rayens and Greene demonstrated it as an issue which needs
attention since it gives rise to a related phenomenon of concern. That is, some
situations occur where only a very small proportion of the sample data influences
the optimal choice of (5\, 4). In such a situation, while most of the observations are
correctly classified for all (or almost all) points on the ()A,y) plane, the remaining
few observations are incorrectly classified for some values of A or <, and hence
they exclusively determine the minimum cross-validated error rate. In effect, the

choice of values for the regularisation parameters often depends on only a subset
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of the available data, and the remainder of the data has no influence, and thus is
effectively ignored in the model selection process. This occurs especially when the
groups are fairly well separated.

Friedman employed a strategy of maximum regularisation in the case of ties,
where, for all points yielding the minimum error rate on the (A, ) grid, that point
(5\,’)/) is selected which gives rise to the largest value of v for the largest value of
A . This may not always be the ideal course of action. For example, in Section 4.3

the effect of using an alternative rule for the selection of (), %) in situations where

there are ties of this nature is discussed.

3.5 ASSESSMENT OF THE SRDF

3.5.1 Comparison of SRDF with other classifiers

It should be noted at this stage that in all subsequent work in this thesis, we con-
centrate on the regularised discriminant function as defined by Friedman (denoted
here as SRDF), or some variants of it. Thus, unless stated otherwise, we do not
consider any further the work of Greene and Rayens (1989) and Rayens and Greene
(1991).

Friedman (1989) performed a simulation study to compare the regularised dis-
criminant rule with the linear and quadratic discriminant functions in terms of
their simulated overall error rates. The simulation conditions represented a wide
range of situations in terms of the general structures of the group means and covari-
ance matrices. Some of these conditions were chosen because they were expected
to be unfavourable to the SRDF in that any regularisation away from the SQDF
or SLDF would be detrimental to the discrimination process. On the other hand,
some conditions were chosen because they were expected to be favourable to regu-
larisation. Friedman (1989) considered six conditions for simulation and these are
listed below.

In each example the training samples (of size 40) comprised observations ran-
domly generated in equal proportions from three p-dimensional normal popula-
tions where p = 6, 10,20 and 40. The optimisation grid over the (),<) unit square
consisted of 25 points. Each simulation trial involved the formation of the lin-
ear, quadratic and regularised discriminant rules from the training data. These

rules were then applied to a test sample of observations (of size 100) which were
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generated from the same populations as the training samples. The probability of
misclassification (error rate) for each rule could therefore be estimated from the
test sample. The average of 100 replications of this simulation trial was obtained.

The six conditions, defined in terms of the population covariance matrices and
means, which are also employed extensively in this thesis for purposes of compari-

son, are:

1. Equal spherical population covariance matrices.
A spherical matrix may be thought of as one where all the eigenvalues

are similar in magnitude.
2. Unequal, spherical population covariance matrices.

3. Equal, highly ellipsoidal population covariance matrices with group mean
differences in the low variance subspace.
By ellipsoidal it is meant that there is a large difference in magnitude
between the smallest and largest eigenvalues. This was achieved by

making the leading diagonal elements of 3, highly disparate.

4. Equal, highly ellipsoidal population covariance matrices with group mean

differences in the high variance subspace.

5. Unequal, highly ellipsoidal population covariance matrices with zero

mean differences.

6. Unequal, highly ellipsoidal population covariance matrices with non-zero

mean differences.

The following is a summary and discussion of the results of the simulation study
by Friedman (1989) comparing the three discriminant functions: SRDF, SQDF
and SLDF. The reason for repeating many of these results is to establish patterns
that occur in the behaviour of the SRDF over these varying sets of conditions for
comparison purposes (later), and to highlight its superiority over the commonly
used discriminant rules under these circumstances.

In all the above simulation conditions, the SRDF-assessed optimum regularisa-
tion parameter values A and y were concentrated near to what would be expected
in order to obtain a near-optimum classification rule. Hence the overall conclusion
of the study was that the SRDF performs much better than the SLDF or SQDF in
conditions that favoured regularisation of the types available. Further, the SRDF
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does not lose much in performance to the SLDF or SQDF in conditions where
either of these latter rules were optimal. The superior performance of the SRDF
in reducing the error rate in situations where the sample size n, (1 < k < K) is
small relative to the dimensionality (p) was the highlight of the results of the study.

The minimum cross-validated estimate of the error rate assessed from the train-
ing sample underestimates the (actual) error rate estimate obtained from the test
sample by about 20%. Such a result is not unexpected since an estimate of the error
rate obtained from the same training data as is used to construct the discriminant
rule will always be optimistic. Friedman was surprised to find that there was only
low correlation between these two error rate estimates, however. The implication
was that the minimised cross-validated error rate provides an assessment of the
unconditional error rate of the SRDF rather than its conditional error rate for a
given set of training data.

In all simulation conditions where the total training sample size, N, was equal
to the dimension p, the SRDF proved far superior to the SLDF or SQDF. The
average assessed value of the regularisation parameter -y ranged from 0.45 to 1.0.
This indicates that some shrinkage of the eigenvalues of S; towards equality en-
hances discrimination, even under conditions where shrinkage of this sort would
be thought to be counterproductive. This is because when the ratio of n, to p
becomes small, the effect of this shrinkage is to stabilise the extreme (both small
and large) eigenvalues in the covariance estimates.

The case of spherical group covariance matrices (either equal or unequal) suited
the SRDF. In particular, shrinkage of the eigenvalues towards equality is desirable
in these situations, and indeed the average (over 100 replications) of the selected
regularisation parameter values ¥, (i.e. 4), was close to 1. The SRDF was superior
to the other rules under these conditions, especially for large p.

The case of equal but highly ellipsoidal group covariance matrices (with group
mean differences concentrated in the low variance subspace) ought to have favoured
the SLDF since any shrinkage away from the point (A = 1,y = 0) would be coun-
terproductive. This is because any use of v would tend to obscure the differences
in group means since increasing the smaller eigenvalues would increase the variance
in the low variance subspace. The regularisation parameters for the SRDF have
average values near this point. When p is very large, 4 increases in magnitude,

and the resulting reduction in variance in the high variance subspace enables the
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SRDF to out-perform the SLDF, even though such shrinkage introduces bias.

When the group covariances are unequal and highly ellipsoidal, very little regu-
larisation of either type is desirable since, in the absence of substantial differences
between group means, the differences in the covariances are heavily relied upon
to separate the observations into their correct groups. The averages X and 4 are
close to what is expected (i.e. A = 0,7 = 0), although the 4 values again tend to
increase for larger p. This enables the SRDF to perform better than the SQDF in
the larger dimensional settings, and comparable to it when p is small.

A related problem noted earlier, is that the optimal values (;\ and 4) are often
not unique. The extent of the implications associated with this feature of the SRDF
will be addressed as they occur in the discussion of the results in the following sec-
tions. The problems are addressed in Chapter 4, when a modification to the model
selection procedure of the SRDF is implemented. The following sections describe
various simulation studies which are aimed at further evaluating the SRDF, and
investigating modifications to the technique. For this purpose it was necessary to
develop software for its implementation. The software was written in a series of
subroutines using MATLAB™ (1992), to implement the technique as developed by
Friedman (1989).

For the studies in this chapter, however, one procedure employed by Friedman
relating to the practical application of the SRDF was not implemented. The sit-
uation may arise where the estimate Sy or S,, of a group covariance matrix is
singular, usually due to the sample size being less than the dimension. To enable
the inverse of a singular sample covariance matrix to be obtained, Friedman (1989)
advocated replacing the zero eigenvalues with a small number of sufficient magni-
tude to enable numerically stable inversion. The effect of this would be to produce
a classification rule based on Euclidean distance in the zero-variance subspace. In
other words, the variance of the subspace spanned by the eigenvectors correspond-
ing to the zero eigenvalues is effectively ignored in the classification rule. In the
present study, this manipulation of the eigenvalues was omitted, and samples of
sufficient size ensured the problem of singularity did not arise.

The first step in the study was to perform simulations under the same six condi-
tions as Friedman (1989) in order to verify that the implementation of Friedman’s
technique was correct and to establish a correspondence of results. The training

samples varied in size according to the dimension of the population or group they
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were sampled from. For p = 6, samples of size 14 were drawn from each popu-
lation (ng = 14 (1 < k < K)); for p = 10, nx = 16, and for p = 20, nx = 28.
These sample sizes are sufficient to avoid singularity yet not so large that all clas-
sifiers perform well because of reduced problems with parameter estimation. In
all cases there were K = 3 populations, and the optimisation grid of twenty-five
(A, ) values was defined by the outer product of A = (0,.125,.354,.65,1.0) and
v = (0,.25,.5,.75,1.0). These were the same values used by Friedman.

The training sample data was used to construct the various discriminant rules
(SQDF, SLDF, SEDF and SRDF). An additional test data set of size 100 was
generated from the same three populations, in equal proportion, and classified using
the discriminant rules derived from the training data. The test data was used to
estimate the misclassification or error rate for each rule, with each classification
error assigned equal loss, irrespective of its type. One hundred replications of the
above procedure were made.

The average error rate of each classifier, with its standard deviation, are given
in Tables 3.1 through 3.6. Note that e3#PF is the minimum cross-validated error

rate for the SRDF. The average regularisation parameter values are denoted A and

-

The results in Tables 3.1 through 3.6 are generally comparable to those of
Friedman (1989) although the performance of the SLDF and SQDF relative to
the SRDF was often better because of the larger sample sizes used to enable full
parameter estimation, which is particularly important for the SQDF. The minimum
cross-validated error rate estimate underestimated the actual error rate by abouﬁ
20% on average over the range of conditions, and by more in the situations where
the group covariance matrices were unequal. ]

The sample Euclidean distance function (SEDF) was included amongst the
discriminant rules which are being compared owing to its simplicity and good
performance over against the SLDF in previous studies as discussed in Chapter 2.
The SEDF used in this section is that obtained by using the SRDF model and

setting the regularisation parameter values A and v both to one. This means that
S0y = T8 frank a4 <k < K)
p

replaces S; in expression (1.5). Although the usual SEDF uses S, = I, for all &,
the allocation of a given observation to one group will not be affected. The perfor-

mance of the SEDF in relation to the other discriminant rules is now discussed.
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Table 3.1: Equal Spherical Covariance Matrices. Average error rate (with
standard deviation) for several discriminant functions.

p==©6 p=10 p=20
SRDF .11 (.04) .12 (.04) .12 (.04)
SLDF .13 (.04) .14 (.04) .15 (.04)
SQDF .24 (.06) .32 (.07) .41 (.07)
SEDF .11 (.04) .11 (.03) .11 (.03)
eSRPF 09 (.05) .10 (.04) .10 (.04)
=SRDF
R 87 (.29) .85 (.30) .80 (.34)
3°RPE 78 (34) .81 (.26) .81 (.24)

Table 3.2: Unequal Spherical Covariance Matrices. Average error rate (with
standard deviation) for several discriminant functions.

p=~6 p=10 p =20
SRDF .14 (.04) .18 (.05) .11 (.04)
SLDF .18 (.05) .27 (.05) .26 (.05)
SQDF .25 (.06) .48 (.07) .48 (.05)
SEDF .16 (.04) .23 (.04) .21 (.04)
e PF .10 (.04) .14 (.06) .10 (.03)
=SRDF
A 37 (.38) .25 (.28) .09 (.10)
3°RPE 78 (31) .86 (.21) .90 (.19)
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Table 3.3: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences in Low Variance Subspace. Average error rate (with standard devi-
ation) for several discriminant functions.

p==6 p=10 p=20
SRDF .07 (.05) .12 (.04) .15 (.04)
SLDF .06 (.03) .11 (.04) .14 (.04)
SQDF .14 (.05) .29 (.06) .39 (.06)
SEDF .24 (.06) .29 (.06) .32 (.05)
eSEPF 06 (.04) .11 (.04) .13 (.04)
=SRDF
A 87 (.24) .89 (.23) .87 (.19)
3°RPF 05 (.14) .04 (.11) .04 (.09)

The SEDF gave the lowest average error rate (with smallest standard deviation)
under conditions of equal and spherical group covariance matrices (Table 3.1), but
was similar to the SDRF. This is not surprising since in these conditions the opti-
mal value for X and 7 is (1, 1) since such regularisation would bias the covariance
estimates towards exactly the correct value. Even when the group covariance ma-
trices are unequal, but spherical (Table 3.2), the SEDF gives a comparable error
rate to the SRDF when the dimensionality is small. However as p becomes large,
the error rate of the SEDF becomes much larger than that of the SRDF. Under
these simulation conditions the SEDF gives a lower error rate than either the SQDF
or SLDF. This is consistent with the findings in Chapter 2 regarding the relative
performance of the SLDF and SEDF for various scenarios involving the ratio of the
Euclidean to Mahalanobis distance. In these conditions of spherical group covari-
ances the ratio is not small, whereas in those conditions involving highly ellipsoidal
covariance matrices, the Mahalanobis distance is much larger than the Euclidean
distance and the SEDF performs worse than the SLDF.

For the case of equal, highly ellipsoidal group covariance matrices (with group
mean differences concentrated in the low variance subspace) (Table 3.3), the SEDF
performs poorly compared to the SRDF and SLDF. A high degree of shrinkage
of the covariance matrix eigenvalues to equality is clearly not helpful to the clas-
sification process here since the mean differences may become obscured. When
the mean differences are concentrated in the high variance subspace (Table 3.4),
the three methods, SRDF, SLDF and SEDF perform equally well for p not large.
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Table 3.4: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences in High Variance Subspace. Average error rate (with standard devi-
ation) for several discriminant functions.

p==6 p=10 p=20
SRDF .06 (.03) .10 (.03) .11 (.03)
SLDF .07 (.03) .12 (.04) .14 (.04)
SQDF .16 (.06) .30 (.08) .42 (.06)
SEDF .06 (.03) .10 (.03) .11 (.03)
eSRDF 04 (.03) .07 (.04) .10 (.03)
=SRDF
A 85 (.31) .86 (.29) .79 (.33)
3°RPF 58 (37) .62 (.33) .67 (.27)

Table 3.5: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. Average error rate (with standard deviation) for several dis-
criminant functions.

p==6 p=10 p =20
SRDF .20 (.06) .12 (.05) .03 (.02)
SLDF .60 (.06) .59 (.06) .58 (.05)
SQDF .17 (.05) .14 (.06) .14 (.04)
SEDF .60 (.06) .59 (.06) .58 (.05)
eSRDF 17 (.06) .11 (.04) .02 (.02)
=SRDF
A .04 (.07) .04 (.06) .04 (.06)
3°RPF 12/ (15) .25 (.16) .35 (.18)

This suggests that the error rate surface over the (), ) plane is very “flat™ over a
wide range of values of A and 7. For large dimensional settings, a high degree of
regularisation with 7 results in an overall reduction in variance so that the mean
differences become more apparent. In these conditions, therefore, the SEDF and
SRDF prove to be the superior methods, especially the SEDF with its maximal
eigenvalue shrinkage.

The SEDF does not perform well under conditions of unequal, ellipsoidal group
covariance matrices (Tables 3.5 and 3.6) since very little of either type of regulari-

sation is appropriate in this case.
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Table 3.6: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Average error rate (with standard deviation) for several
discriminant functions.

p=26 p=10 p=20
SRDF .06 (.04) .06 (.04) .02 (.02)
SLDF .17 (.05) .18 (.04) .21 (.04)
SQDF .04 (.03) .05 (.04) .06 (.04)
SEDF .16 (.04) .17 (.04) .17 (.04)
eSEDF 04 (.03) .03 (.03) .01 (.01)
=SRDF

10 (.20) .10 (.14) .07 (.06)
35RPF 19 (27) 29 (22) .35 (.19)

3.5.2 Simulations for groups with small mean differences

Most of the simulations performed by Friedman involved parameter settings where
the mean differences between groups were quite large. It is of interest to examine
the behaviour of the model selection process of the SRDF (i.e. the process which
selects the regularisation parameters A and ) when the differences between group
means is much smaller than before. This may indicate whether a greater or lesser
degree of regularisation is generally required when the mean differences between
groups decrease, and the conditions for discrimination become more difficult. In
this section, a simulation study is performed under the same group covariance
structures as in Subsection 3.5.1, but the Euclidean distance between each pair of
population means is reduced by approximately 75 %. The average Mahalanobis
distance between pairs of populations is reduced by a similar amount for most of
the simulation conditions. For condition 6 (Table 3.11), the reduction in average
Mahalanobis distance between pairs of populations is nearly 90 % through the
smaller population mean differences used. Average parameter values (with stan-
dard deviations) for all conditions are given in Tables 3.7 to 3.11 for the case of
smaller group mean differences. In the following discussion, a comparison is made
between the simulation results in Subsection 3.5.1, and the results obtained under
the same conditions except for smaller group mean differences, with emphasis on
the average values of X and 4 (i.e. X and 7).

Overall, the relative performance of the various classification rules (in terms of

their error rate estimates) is not changed by closer group means, but obviously the
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Table 3.7: Equal Spherical Covariance Matrices. Average regularisation pa-
rameter values (with standard deviation) in the case of smaller mean differences
than in Table 3.1.

p=~6 p=10 p =20

69 (.39) .73 (.35) .70 (.37)
69 (.35) .65 (.37) .67 (.33)

Table 3.8: Unequal Spherical Covariance Matrices. Average regularisation
parameter values (with standard deviation) in the case of smaller mean differences
than in Table 3.2.

p=~6 p= il p =20

~SRDF
6 (.30) .12 (.14) .05 (.08)

3°RPE 73 (32) .84 (.22) .89 (.16)

error rates of the rules increase substantially and to a different extent depending
on the parameter settings. Higher average error rates are coupled with increases
in the variance of the error rate estimates (approximately 20% higher with closer
group means).

In the situation where the group covariance matrices are equal and spherical,
the average selected X and 4 values are slightly lower since in general the informa-
tion from the covariance estimates is more necessary for discrimination purposes
than when the group means are well separated, and hence less regularisation is
appropriate.

Under conditions of unequal, spherical group covariance matrices the average

Table 3.9: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences in Low Variance Subspace. Average regularisation parameter values
(with standard deviation) in the case of smaller mean differences than in Table 3.3.

p==6 p=10 p =20

=SRDF
5(.32) .81 (.26) .73 (.29)

§5RDF‘ 01 004) .06 LIG) .09 (22)
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Table 3.10: Equal, Highly Ellipsoidal Covariance Matrices with Mean
Differences in High Variance Subspace. Average regularisation parameter
values (with standard deviation) in the case of smaller mean differences than in
Table 3.4.

Table 3.11: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Average regularisation parameter values (with standard
deviation) in the case of smaller mean differences than in Table 3.6.

p=~6 p=10 p=20

=SRDF
3 (.07) .05 (.07) .05 (.06)

55RPF 13 (18) 28 (17) .31 (19)

selected ) value is reduced with higher dimensionality and small separation between
groups. This is to be expected since regularisation of the covariance estimates to
commonality is likely to be more detrimental to the classification process if group
mean differences are small. The value of 4 under those conditions remains very
high despite the separation between the groups becoming small. This indicates
that those conditions are ideal for eigenvalue shrinkage.

The best two classifiers under conditions of equal, highly ellipsoidal group co-
variance matrices (with group mean differences concentrated in the low variance
subspace) are the SLDF and SRDF. When the groups are close together, the av-
erage A value for the SRDF is still close to one which is the optimal value, but is
again slightly reduced because of the need to retain covariance information for the
classification process. The value of 4 is not affected by smaller mean differences
and remains very close to zero.

In summary, the SRDF is still generally superior to the other techniques in
terms of assessed error rate even for very small separation between group means.
The values of A and 4 are not greatly affected by closer group means, but any effect
that is present is towards less regularisation. This is so that more information may

be retained from the group covariance estimates in order to enhance classification
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under difficult discrimination conditions.

3.6 FURTHER MODEL SELECTION CONSIDERATIONS
FOR THE SRDF: BREAKING OF TIES

In Section 3.4 it was pointed out that often the choice of (5\,1) for the sample
regularised discriminant function (SRDF) is not uniquely determined. If the cross-
validated error rate of the SRDF over the (), ) plane is thought of as a response
surface, then it is often the case that the surface is very flat in the neighbourhood of
its minimum. Thus, there is a range of (), ) combinations that result in the same
or very similar minimum cross-validated error rate being obtained. Consequently,
a decision must be made as to how to break the tie and choose a particular (;\, 3)
combination to use in the model.

It is of interest to study the effect of a different procedure than that employed
by Friedman (1989) for selecting X and 4 in these tied situations. Friedman’s
approach was one of maximum regularisation: choosing the largest ¥ value for the
largest A among those combinations with the minimum cross-validated error rate.
Rayens and Greene (1989) showed the importance of any specific procedure used
to break ties by giving an example where the minimum cross-validated error rate
occurs at more than one-third of the points on the (A, ) grid. They noted that
in this case if the ties were broken by taking the largest X value for the largest 4
value, a completely different grid point would have been selected. The results of
a simulation study are reported in this section, which (again) involved performing
100 replications in identical settings to those described in Section 3.5, and under
the same sets of conditions. The difference here is that a policy of minimum
regularisation for the SRDF is employed in those cases where the minimum cross-
validated error rate is not uniquely determined. Thus, if there are more than one
(X, %) combinations associated with the minimum cross-validated training sample
error rate, the point chosen is that which has the smallest values of 4 for the
smallest A. The classification rule which employs this tie-breaking procedure will
be denoted as SRDF1, which represents “minimum regularisation” as opposed to
Friedman’s “maximum regularisation” option. Results are given in Tables 3.12 to
3.17, where the average error rates and average regularisation parameter values are

given for various dimensions.
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Table 3.12: Equal Spherical Covariance Matrices. Comparison of SRDF and
SRDF1 error rates and regularisation parameter values.

p=©6 p=10 p=20
SRDF1 .12 (.03) .14 (.04) .12(.03)
SRDF .11 (.04) .12 (.04) .12 (.04)
eRDF1 09 (.05) .10 (.05) .10(.04)
=SRDF1
X 15 (.26) .20 (.33) .24(.33)
35RPFY 67 (.32) .69 (.30) .80(.25)
eSEDF 09 (.05) .10 (.04) .10 (.04)
=SRDF
A 87 (.29) .85 (.30) .80 (.34)
35RPE 78 (.34) .81 (.26) .81 (.24)

The first and major finding from this study which compares SRDF1 with the
SRDF (see Tables 3.12 to 3.17), is that whether minimum or maximum regularisa-
tion is used to break ties does not matter greatly in most of the parameter settings
considered, even though the assessed values A and, to a lesser extent 9, are quite
different. It also indicates the degree of homogeneity in the error rate response
surface over the (), 4) plane. This homogeneity is greater with respect to the co-
variance mixing parameter A, while the error rate surface is clearly more sensitive
to the parameter 7.

Examining Table 3.12, for example, it can be seen that when the group covari-
ance matrices are all equal and spherical, the error rate for SRDF1 is only slightly
greater than that for the SRDF, even though X is much smaller. For SRDF1, Mis
close to zero while for SRDF it is close to one, even though the optimal parameter
configuration is A = 4 = 1. The value of ¥ is only slightly lower for SRDF1, indicat-
ing that substantial shrinkage of the eigenvalues is important for classifying under
these conditions. The standard deviation of the sample based ) and 4 estimates
are similar for both rules, and its large size (in general) is further evidence that the
cross-validated error rate response surface is quite flat at its minimum.

SRDF1 might be expected to give a better error rate than the SRDF if the
group covariances are unequal but spherical (Table 3.13), since a low value of
) is desirable. In fact the difference is only slight and only occurs in the high

dimensional settings. For SRDF1, 5\ is very close to the optimal value of zero, and
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Table 3.13: Unequal Spherical Covariance Matrices. Comparison of SRDF
and SRDF1 error rates and regularisation parameter values.

pi=B p=10 p=20
SRDF1 .18 (.05) .16 (.04) .11 (.03)
SRDF .14 (.04) .18 (.05) .11 (.04)
eRDF1 15 (.06) .14 (.05) .10 (.03)
=SRDF1
A .10 (.18) .06 (.09) .03 (.06)
55RPFL 71 (:30) .84 (.22) .90 (.14)
eSEPF 10 (.04) .14 (.06) .10 (.03)
=SRDF

37 (.38) .25 (.28) .09 (.10)
SRPF 78 (31) .86 (.21) .90 (.19)

Table 3.14: Equal, Highly Ellipsoidal Covariance Matrices with Mean
Differences in Low Variance Subspace. Comparison of SRDF and SRDF1
error rates and regularisation parameter values.

p==6 p=10 p=20
SRDF1 .08 (.04) .13(.05) .16 (.04)
SRDF .07 (.05) .12 (.04) (04)
eRDF1 05 (.03) .11 (.05) .14 (.04)
=SRDF1

41 (.28) .56 (.30) .73 (.27)
FSRDEY 02 (.07) .03 (.11) .02 (.07)
eSRDF 06 (.04) .11 (.04) .13 (.04)
=SRDF
A 87 (.24) .89 (.23) .87 (.19)
3RPE 05 (.14) .04 (.11) .04 (.09)
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Table 3.15: Equal, Highly Ellipsoidal Covariance Matrices with Mean
Differences in High Variance Subspace. Comparison of SRDF and SRDF1
error rates and regularisation parameter values.

p=>6 p=_10 p=20
SRDF1 .07 (03) .10 (.03) .11 (.03)
SRDF .06 (.03) .10 (.03) .11 (.03)
eRDF1 04 (03) .08 (.04) .09 (.03)
=SRDF1

15 (.25) .26 (.32) .32 (.34)
3°RPFY 50 (.35) .55 (.26) .67 (.27)
eSEDF 04 (.03) .07 (.04) .10 (.03)
=SRDF
B\ 85 (.31) .86 (.29) .79 (.33)
35RPE 58(37) .62 (.33) .67 (27)

Table 3.16: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. Comparison of SRDF and SRDF1 error rates and regularisa-
tion parameter values. ‘

p==6 p=10 p=20
SRDF1 .18 (06) .11 (.04) .03 (.02)
SRDF .20 (.06) .12 (.05) .03 (.02)
eRDF1 18 (06) .09 (.04) .02 (.01)
=SRDF1
A .01 (.04) .01 (.04) .02 (.05)
3°RPFL 10 (14) 26 (.15) .26 (.15)
esBDF 17 (.06) .11 (.04) .02 (.02)
=SRDF
) .04 (.07) .04 (.06) .04 (.06)
3°RPE 12 (15) 25(.16) .35 (.18)
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Table 3.17: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Comparison of SRDF and SRDF1 error rates and reg-
ularisation parameter values.

p-=26 p=10 p=20
SRDF1 .05 (.02) .05(.04) .01 (.01)
SRDF .06 (.04) .06 (.04) .02 (.02)
eRDF1 04 (.03) .03 (.02) .01 (.01)
=SRDF1
A 01 (.03) .02 (.04) .00 (.00)
FEPFL 10 (13) 22 (.15) .27 (.09)
eSRDF 04 (.03) .03 (.03) .01 (.01)
=SRDF
A 10 (.20) .10 (.14) .07 (.06)
FRPE 19 (27) 29 (22) .35 (.19)

its standard deviation is very small. The values of 4 for both SRDF1 and the SRDF
are very similar in magnitude, indicating that a certain level of 4 is necessary in
this case.

In the cases of equal but highly ellipsoidal group covariances (Tables 3.14 and
3.15), altering the procedure for the breaking of ties has little effect in terms of error
rates. The minimum level of the cross-validated error rate response surface on the
(A, 7) plane occurs over a wide range of ), but a much narrower range of 4 values,
again indicating that eigenvalue shrinkage is more critical for classification purposes
under these conditions, since the error rate is very sensitive to the parameter ~y.

Error rates are slightly lower for the SRDF1 than for the SRDF under simulation
conditions where the group covariance matrices are highly ellipsoidal and dissimilar.
In the situation of equal group means (Table 3.16), both ) and 4 are very close to
zero for both the SRDF and SRDF1, although ¥ increases for larger p. This shows
that the minimum error rate would usually occur in a very small region of the (A}, )
plane, situated near the vertex A = v = 0, which is the optimum combination for
this parameter configuration.

Conditions for discrimination are usually improved by having non-zero differ-
ences between group means (Table 3.17). The SRDF1 performs better than the
SRDF here because the distribution of A for SRDF1 has a mean (j\) closer to the
desirable value of zero. Its standard deviation is also smaller, indicating a greater

consistency of low X values selected. The distribution of 4 also has a lower standard
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deviation for SRDF1.

In conclusion therefore, modifications to the way in which the SRDF breaks
ties in the selection of regularisation parameter values A and 4 cannot be said to
significantly change its error rate. Under most of the conditions looked at, the
error rates with and without the modification were quite similar, although some
parameter configuration settings favoured the lesser degree of regularisation offered
by SRDF1, while others favoured more regularisation. Thus the issue of how the
SRDF should break ties in the minimum cross-validated error rate is not a crucial
one in terms of affecting the error rate of the discriminant rule for most of the
conditions trialled. Also, of the two regularisation parameters, the choice of X is

less crucial and less precise, than the choice of 4.
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Chapter 4

INVARIANCE AND SAMPLE SIZE
CONSIDERATIONS FOR THE
SAMPLE REGULARISED
DISCRIMINANT FUNCTION

4.1 INTRODUCTION

Friedman (1989) noted that the regularised discriminant function is not generally
scale invariant. The reason for this relates to the presence of the eigenvalue shrink-
age parameter . Changing the relative scales of the measurement variables, or
their linear combinations, will usually alter the eigenvalues of the sample covari-
ance matrix and change the classification rule and results. In particular, if y = 0,
the SRDF is scale invariant. Since scale invariance is often regarded as an im-
portant characteristic of discriminant functions, it is of considerable interest to
investigate whether a similar level of discriminatory success can be achieved with a
modification of the regularisation rule. A modification to the SRDF is introduced
in Sections 4.2 and 4.3, and is compared with the original SRDF.

A further study is implemented in this chapter to investigate the effect of sample
size on the various classifiers. From the studies in the previous chapter, plus other
published results (see, for example, Aeberhard et al. (1994)), it was found that the
SRDF is at least equal to but usually superior to the other classification rules under
a fairly wide range of situations. The conditions under which these studies have
been implemented involved reasonably small sample sizes compared to dimension,
p. This simulation study is undertaken using a range of larger sample sizes (in

relation to p) in an attempt to determine if regularisation — and in particular the
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eigenvalue shrinkage feature of the SRDF - loses its advantage over the common

discriminant rules once the sample size becomes sufficiently larger than p.

4.2 INVARIANCE

In order to achieve a classification rule possessing scale invariance, the effect of
removing the eigenvalue shrinkage parameter - from the model is examined. How-
ever, if one simply removed v from the SRDF model, the resulting discriminant
rule would allow for a reduced set of regularised models between the SQDF and
the SLDF only, as defined in expression (3.6). It was mentioned there that this set
of alternatives is rather restrictive. Further, the resulting model may not provide
appropriate regularisation if the group covariance matrices are of quite a different
nature. In such a situation, it is plausible that some improvement could be made
if each covariance matrix were independently regularised to the pooled estimate
by an appropriate degree, which would be estimated from the training data. Us-
ing such shrinkage could overcome, to some extent, the problem of inappropriate
regularisation, as the model would be more sensitive to variations in the “shape”
among the various populations.

In the single parameter regularisation model of equation ( 3.6), it may occur that
in the selection of A, a large proportion of the training observations misclassified
by cross-validation come from one group. This may be in part due to the shrink-
age employed being inappropriate for that group but appropriate for the others.

The following model is proposed to obtain separate regularised group covariance

estimates: " 4
- (1 '_’/\A:) (Te‘.k = 1) Sk+/\ks
(X)) = L 4.1
k() (1= M) (e — 1) + A\ (N — K) (41)
where k£ =1,..., K groups, and Sp is the pooled covariance matrix.

The K regularisation parameters A control the degree of shrinkage of the indi-
vidual group covariance matrix estimates towards the pooled estimate. The value
M = 0 gives 3¢ (Ac) = Sk and M = 1 yields & (M) = g,,. Each \; is ob-
tained by minimising the group conditional cross-validated error rate over the
range 0 < A\ < 1, k = 1,...,K. Each S; in expression (1.5) is replaced by
3 (Ak) for discriminant analysis. This approach will be denoted SRDF-Modified
(or SRDF-M). To demonstrate that the SRDF-M rule is invariant under. a linear



Chapter 4. Exploring the SRDF further 77

scale transformation, let

di(z) = (x — %) (M) (z — ) +In

a1
70|
be the discriminant score for observation x in group 1 (0 < A; < 1). Similarly, let

dy() = (T — 22)'S, Ma)(@ — ) +1n [, (Mo

be the score for observation = in group 2, for A, (0 < Ay < 1) not necessarily
equal to A\;. Given a symmetric non-singular matrix A, one can form a linear

transformation y = Az and it can be shown that
di(y) = di() +2In |A~|

and
dy(y) = d() + 2In |A7Y].

Thus the transformed discriminant scores for all the K groups only differ from
the untransformed scores by the addition of a constant (2In|A|), and hence the
discriminant rule is not affected by the transformation. The following section will
report on a simulation study to investigate the relative performance of the scale
invariant SRDF-M compared with the SRDF and other classification rules.

4.3 ASSESSING THE PERFORMANCE OF THE
MODIFIED REGULARISED DISCRIMINANT
FUNCTION (SRDF-M)

4.3.1 The performance of SRDF-M when the population

shapes are similar

A Monte Carlo simulation study was performed under the same conditions (defined
by the various population parameter configurations) and sample sizes as in the
previous chapter (See Sections 3.5 and 3.6). Results for the SRDF-M rule are
presented in Tables 4.1 to 4.6, along with the error rates of the other discriminant
rules. These are repeated from tables given in Chapter 3, thus allowing comparison

with the other classification rules.
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Table 4.1: Equal Spherical Covariance Matrices. Average error rate (with
standard deviation) and parameter values for several discriminant functions.

Dimension p

6 10 20
SRDF .11 (.04) .12 (.04) .12 (.04)
SRDF-M .14 (.04) .17 (.05) .16 (.04)
SLDF .13 (.04) .16 (.05) .15 (.04)
SQDF .23 (.05) .39 (.07) .42 (.05)
SEDF .11 (.03) .12 (.04) .12 (.03)
es PF .09 (.05) .10 (.04) .10 (.04)
=SRDF
A 87 (.29) .85 (.30) .80 (.34)
557PF 78 (.34) .81 (.26) .81 (.24)
ey, M .17 (.08) .17 (.09) .21 (.09)
estn M .09 (07) .12(.07) .13 (.07)
esrn. M .09 (.07) .10 (.07) .12 (.06)
~SRDF-M
. 79 (.35) .81 (.28) .84 (.26)
~SRDF-M
X 91 (.25) .93 (.19) .90 (.21)
~SRDF-M
x 92 (.21) .87 (.25) .83 (.25)

[t is evident from the results in these tables that having the option to use the
regularisation parameter <y to shrink the covariance matrix eigenvalues to equality
undoubtedly enhances discrimination in many situations, and not only when the
populations are spherical. This type of shrinkage reduces the variance, which, de-
spite the introduced bias, is beneficial for discrimination purposes especially in the
high dimensional setting. This extra variance-reduction factor probably explains
why the minimum cross-validated error rate for SRDF-M sometimes underesti-
mates the actual error rate by a greater degree than for the SRDF, especially for
large dimensions (p). The magnitude of the minimum cross-validated error rate
over the whole training sample for SRDF-M is at a comparable level to those for
the SRDF, and it is the actual error rate which is usually higher for SRDF-M.

When the group covariances are spherical and set to be equal, SRDF-M yielded
error rate estimates of between 30% and 40% higher than the SRDF (Table 4.1).
Under these conditions, eigenvalue shrinkage (to equality) clearly enhances dis-

crimination, as evidenced by the fact that the SEDF performs well. The mean
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Table 4.2: Unequal Spherical Covariance Matrices. Average error rate (with
standard deviation) and parameter values for several discriminant functions.

Dimension p

6 10 20

SRDF .14 (.04) .18 (.05) .11 (.04)
SRDF-M .24 (.07) .28 (.08) .28 (.08)

SLDF .23 (.06) .26 (.05) .26 (.05)

SQDF .32 (.06) .44 (.07) .48 (.05)

SEDF .20 (.04) .22(.05) .21 (.04)

eSRDF 10 (.04) .14 (.06) .10 (.03)

~SRDF

! 37 (.38) .25 (.28) .09 (.10)

3°RPF 78 (.31) .86 (.21) .90 (.19)
ey, M 14 (.09) .14 (.09) .11 (.05)
eon M .19 (.10) .19 (.09) .24 (.08)
esy .21 (.09) .25 (.10) .25 (.09)
~SRDF-M

) 70 (.35) .73 (.34) .60 (.27)
=SRDF-M

Y 77 (.34) .77 (.33) .75 (.28)
~SRDF-M

. 43 (.39) .60 (.40) .43 (.36)
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Table 4.3: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences in Low Variance Subspace. Average error rate (with standard devi-
ation) and parameter values for several discriminant functions.

Dimension p

6 10 20

SRDF .07 (.05) .12 (.04) .15 (.04)
SRDF-M .06 (.03) .14 (.05) .16 (.04)

SLDF .06 (.03) .13 (.05) .16 (.04)

SQDF .13 (.06) .36 (.08) .39 (.06)

SEDF .24 (.06) .32 (.06) .34 (.05)

eSEPF 06 (.04) .11 (.04) .13 (.04)

=SRDF

A 87 (:24) .89 (.23) .87 (.19)

5°RPE 05 (.14) .04 (.11) .04 (.09)
esy” M .10 (.08) .17 (.10) .19 (.07)
ez M .04 (.05) .10 (.09) .12 (.05)
ey M .04(.06) .09 (.07) .10 (.06)
=SRDF-M ’

. 91 (.26) .79 (.33) .83 (.27)
=SRDF-M

b 99 (.05) .95 (.17) .86 (.29)
=SRDF-M

3 96 (.19) .87 (.27) .91 (.19)

minimizing cross-validated error rate over all groups underestimated the actual er-
ror rate by around 20% for p < 10, but by only about 5% for p = 20. The means of
the group conditional minimizing cross-validated error rates differed significantly,
with substantial variation. )

If the group covariances are spherical but unequal (Table 4.2), SRDF-M gives
error rate estimates around 70% higher than for SRDF, and worse for larger dimen-
sions. It is clear that under such conditions, eigenvalue shrinkage is very desirable
in order to reduce variation in the higher dimensions. The mean minimum cross-
validated error rate over all groups underestimated the actual misclassification risk
by 25% — 30%, although observations from the higher variance groups were more
frequently misclassified.

The performance of the SRDF-M rule is comparable to that of the SRDF under
conditions of equal but highly ellipsoidal group covariances (Tables 4.3 and 4.4).

This is not surprising since eigenvalue shrinkage is expected to be counterproductive
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Table 4.4: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences in High Variance Subspace. Average error rate (with standard devi-
ation) and parameter values for several discriminant functions.

Dimension p

6 10 20
SRDF .06 (.03) .10 (.03) .11 (.03)
SRDF-M .08 (.03) .14 (.04) .15 (.05)
SLDF .07 (.03) .13(.04) .14 (.04)
SQDF .16 (.05) :36 (.08) .38 (.06)
SEDF .07 (.03) .11 (.03) .11 (.03)
eSEDF 04 (.03) .07 (.04) .10 (.03)
=SRDF
A 85 (.31) .86 (.29) .79 (.33)
3°RPF 58 (.37) 62 (.33) .67 (.27)
ey M .07 (.05) .15(.08) .16 (.07)
esy M .06 (.06) .09 (.08) .09 (.05)
ST M .06 (.06) .09 (.07) .11 (.06)
=SRDF-M
] 86 (.31) .80 (.32) .80 (.28)
=SRDF-M
2 88 (.31) .88 (.29) .87 (.24)
~SRDF-M
" 86 (.30) .87 (.25) .88 (.23)
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in this situation. In the case where the group mean differences are concentrated in
the low variance subspace (Table 4.3), and therefore more pronounced, the ik (=
1,..., K) values are very close to one, and the performance of SRDF-M approaches
that of the SLDF, which is the optimal rule in these conditions. However, when the
group means are concentrated in the high variance subspace (Table 4.4), SRDF-M
is less successful compared to the SRDF. The high degree of covariance shrinkage
towards the identity matrix enhances discrimination, because of the reduction in
variance achieved. This is why the SEDF performs as well as the SRDF under these
conditions, and yields a lower error rate than SRDF-M by about 40%. The mean
minimizing cross-validated error rate for SRDF-M underestimates the actual rate
by between zero and 15% when the group mean differences are more distinguishable
in the low variance subspace, and around 20% when the means are obscured by
high variance.

The final sets of simulation conditions represent the situation where the group
covariances are unequal and highly ellipsoidal (Tables 4.5 and 4.6). The SRDF-M
does not perform well here. Its average misclassification risk is 50% to 100% larger
than for the SRDF, and much more in the higher dimensions, when the SRDF
error rate decreases on account of increased use of 7. The standard deviation of
the misclassification error was also very large for SRDF-M compared with that of
the other rules.

These conditions are ideal for the SQDF, hence one might expect SRDF-M to
perform comparably well if the model selection procedure chooses small values of
A. However, it performs considerably worse, as 5 shows that values of A\ are be-
ing chosen which are too high. The minimizing cross-validated error rate based
on the training sample is observed to be similar to that for the SRDF, although
Friedman noted that this did not appear to be related to the actual error rate esti-
mate obtained from the test sample. Despite this observation, it can be seen from
Tables 4.5 and 4.6 that in fact the minimising cross-validated error rate severely
underestimates the actual rate for SRDF-M, especially for the high dimensional
settings. This is a curious phenomenon which exhibits itself strongly only in these
simulation conditions where the groups have high and unequal variance. The reduc-
tion in variance obtained by eigenvalue shrinkage is not the complete explanation
for, otherwise, SRDF-M should perform comparably to the SQDF, but it does not.

It should be noted that the error rate estimates for SRDF-M also have unusually
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Table 4.5: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. Average error rate (with standard deviation) and parameter
values for several discriminant functions.

Dimension p

6 10 20
SRDF .20 (.06) .12 (.05) .03 (.02)
SRDF-M .29 (.08) .39 (.11) .28 (.16)
SLDF .60 (.06) .60 (.06) .59 (.06)
SQDF .16 (.04) .19 (.06) .11 (.05)
SEDF .60 (.07) .59 (.06) .58 (.06)
eSRDF 17 (.06) .11 (.04) .02 (.02)
=SRDF
A .04 (.07) .04 (.06) .04 (.06)
F5RPE 12/ (15) .25 (.16) .35 (.18)
eskDF™M 14 (11) .15 (.10) .02 (.02)
sy’ M .07 (.08) .10 (.07) .01 (.02)
ess M .15(.08) .08(.08) .01 (.02)
=SRDF-M
] .01 (.03) .03 (.08) .06 (.08)
*SRDF-M
N .05 (.08) .07 (.09) .06 (.06)
~SRDF-M
1 25 (.20) .30 (.15) .36 (.15)
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Table 4.6: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Average error rate (with standard deviation) and pa-
rameter values for several discriminant functions.

Dimension p

6 10 20
SRDF .06 (.04) .06 (.04) .02 (.02)
SRDF-M .13 (.07) .21 (.09) .22 (.13)
SLDF .20 (.05) .21 (.04) .20 (.05)
SQDF .06 (.04) 10 (.06) .06 (.03)
SEDF .20 (.05) .20 (.04) .17 (.04)
e/ PF .04(.03) .03(.03) .01 (.01)
=SRDF
A 10 (.20) .10 (.14) .07 (.06)
S5RPF 19 (27) 29 (22) .35 (.19)
esy. M .05 (.07) .09 (.06) .02 (.02)
ey .04 (.05) .06 (.07) .01 (.01)
ess M .01(.04) .01(.02) .00 (.00)
=SRDF-M
1 11 (.21) .11 (.18) .07 (.09)
*SRDF-M
2 14 (21) .18 (.24) .13 (.14)
zSRDF-M
3 .88 (.30) .85 (.29) .89 (.23)
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high variance under these conditions. A possible explanation is that under these
conditions the best rules are those where J is close to zero with low variability.
Now, the values of j\k are not always close to zero for SRDF-M, and since each A,
is obtained from such a small number of data points, it variability is high.

A feature of the performance of SRDF-M under these conditions is that 5\3 is
much higher than /:\1 or /:\2. It happens that group 3 does not have quite the same
extreme ellipsoidal nature of the other two groups. Significant shrinkage of the
group 3 covariance matrix to the pooled covariance appears to lead to observations
from that group becoming indistinguishable (to the classification rule) from those
of the other high variance groups, and the error rate for that group becomes quite
high.

It is noted that if a policy of minimum regularisation is used to break ties
(similar to that employed by SRDF1 in Chapter 3), the performance of SRDF-M is
enhanced because smaller values of )\ are selected. The two tables (Tables 4.7 and
4.8) below compare the performance of SRDF-M with SRDF-M1. The difference
between rules SRDF-M and SRDF-M1 lies only in the policy used to break ties
when there is no unique value of Ay which minimizes the cross-validated error
rate for group k. That is, if the error rate is the same for several values of A,
SRDF-M selects the largest A of those values, while SRDF-M1 selects the smallest.
From Tables (4.7 and 4.8), it can be seen that the average values of A for the
SRDF-M rule have much higher variation than those for SRDF-M1. This is to be
" expected since the ) values are generally much closer to 0 for the SRDF-M1 rule.
The minimum cross-validated error rates for SRDF-M1 are, for these simulatioﬁ
cases, higher than those for SRDF-M, yet their average is closer to the actual error
rate obtained from the test samples. This is because the minimum cross-validated
error rates for SRDF-M1 do not underestimate the actual error rate as severely
as those for SRDF-M. The minimum cross-validated error rates for both SRDF-M
and SRDF-M1 are quite variable, as are the actual error rates achieved by each
rule.

In conclusion, the proposed regularisation model SRDF-M was not as successful
as the SRDF. This clearly shows the value of eigenvalue shrinkage, especially when
p is large. The attempt to make SRDF-M more sensitive by employing a sepa-
rate A for each group caused other problems in certain circumstances as described

above. If the problem of lack of scale invariance is to be avoided, other techniques
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Table 4.7: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. Comparison of SRDF-M and SRDF-M1 classifiers.

Dimension p

6 10 20
SRDF-M 29 (.08) .39 (.11) .28 (.16)
SRDF-M1 .27 (.06) .30 (.10) .23 (.11)
ey’ M 14 (11) 15 (.10) .02 (.02)
esyy M .07 (.08) .10 (.07) .01 (.02)
esryy M .15 (.08) .08 (.08) .01 (.02)
=SRDF-M

A .01 (.03) .03 (.08) .06 (.08)
=SRDF-M

3, .05 (.08) .07 (.09) .06 (.06)
=SRDF-M

A 25 (.20) .30 (.15) .36 (.15)
ey MY 21 (11) .18(.09) .07 (.05)
eoy M1 .09 (.08) .10 (.07) .04 (.04)
sy M .14 (.08) .07 (.06) .01(.02)
=SRDF-M1

A .03 (.14) .04 (.07) .06 (.06)
=SRDF-M1

X3 .00 (.02) .02 (.05) .03 (.05)
=SRDF-M1

L% 14 (.11) .15 (.08) .13 (.02)
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Table 4.8: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Comparison of SRDF-M and SRDF-M1 classifiers.

Dimension p

6 10 20
SRDF-M .13 (.07) .21 (.09) .22 (.13)
SRDF-M1 .07 (.04) .12 (.06) .12 (.08)
et ™M .05 (.07) .09 (.06) .02 (.02)
ecny M .04 (.05) .06 (.07) .01 (.01)
ecnsy M .01(.04) .01 (.02) .00 (.00)
=SRDF-M

\ 11 (.21) .11 (.18) .07 (.09)
=SRDF-M
P 14 (.21) .18 (.24) .13 (.14)
=SRDF-M
g 88 (.30) .85 (.29) .89 (.23)
eyt M .08 (.05) .07 (.06) .04 (.03)
enn Mt .04 (.05) .04 (.04) .03 (.03)
esxsy Mt .00 (.02) .00 (.01) .00 (.01)
=SRDF-M1

, .05 (.12) .06 (.08) .09 (.07)
=SRDF-M1
Ay .01 (.05) .05 (.10) .04 (.07)
=SRDF-M1

s 11 (.15) .12 (.07) .13 (.02)




Chapter 4. Exploring the SRDF further 88

need to be devised to replace eigenvalue shrinkage, while ensuring the accuracy of

classification attained by the SRDF is not compromised.

4.3.2 The performance of SRDF-M when the population

shapes are very different

The proposal of the technique of SRDF-M, where a separate covariance mixing pa-
rameter ) is determined for each group, envisaged the situation where the groups
had quite different covariance structures. Allowing for a different degree of shrink-
age (to the pooled estimate), as appropriate for each group, would be expected to
lead to a more sensitive model than one which employs only a single regularisation
parameter, A. The simulation conditions of Section 3.5 (used in Subsection 4.3.1)
all involved group parameter settings where the covariance matrices for the three
groups were all of the same type of structure: either all spherical or all ellipsoidal.
Hence it is of interest to investigate the usefulness of SRDF-M in situations where
the group covariances are not all of the same type, but are a mixture of spheri-
cal and ellipsoidal structures. It may be expected that the potential of SRDF-M
to shrink each covariance to the average by a different and appropriate amount,
would be one advantage it affords over the other classification rules (especially the
standard SRDF).

A further simulation study was conducted to compare the performances (in
terms of their error rates) of the following discriminant rules: SRDF, SRDF-M1,
SQDF, SLDF and SEDF. The reason why SRDF-M1 was chosen instead of SRDF-
M is because if the group covariances are dissimilar, as they are for this study, a
lower degree of covariance mixing is usually appropriate. The number of groups in
each case is three.

For this study, the following four sets of parameter configurations were used.

1. Two equal and highly ellipsoidal population covariance matrices, and
one spherical covariance matrix (identity matrix). The population mean
differences concentrated mainly in the low variance subspace of the two

ellipsoidal populations.

2. One highly ellipsoidal population covariance matrix, one moderately
ellipsoidal population covariance matrix, and one spherical covariance

matrix (identity matrix). The population mean differences are spread
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evenly across all dimensions.

3. Two unequal and highly ellipsoidal population covariance matrices, and
one spherical covariance matrix (identity matrix). Zero population mean

differences.

4. One highly ellipsoidal population covariance matrix, and two unequal
spherical covariance matrices. The population mean differences are

spread evenly across all dimensions.

The ellipsoidal covariance matrices were very similar to those used in Friedman
(1989) and in the previous simulations in this thesis. The procedure employed
for this simulation study was the same as that in Section 3.5, and once again 100

replications were performed and the results are presented in Tables 4.9 to 4.12.
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Table 4.9: Two equal and highly ellipsoidal covariances, one spherical
covariance matrices. Mean differences in the low variance subspace: Average

error rates with standard deviations. ) )
Dimension p

6 10 20

SRDF-M1 .02 (.02) .06 (.05) .06 (.05)
SRDF .04 (.03) .07 (.04) .07 (.03)
SLDF .04 (.02) .08 (.03) .10 (.04)
SQDF .03 (.03) .15 (.07) .24 (.08)
SEDF .13 (.04) .18 (.04) .18 (.04)
e PF .01 (.01) .03 (02) .04 (.02)
i 47 (.40) .28 (.25) .29 (.20)
F5RPE 15(28) .21 (29) .23 (.32)
esinF~M' .00 (.01) .00 (.01) .00 (.00)
esy M .01 (.03) .05(.05) .08 (.05)
efj{s’i”‘m 01 (.02) .04 (.06) .07 (.04)
5 .09 (.06) .13 (.06) .13 (.00)
% 03 (.07) .13 (.17) .24 (.19)
e .04 (.13) .16 (.20) .23 (.18)

Two equal, highly ellipsoidal covariances; one (low variance) spherical

covariance matrix.

In this situation, two of the groups have equal and highly ellipsoidal covariance
matrices as in Friedman (1989), Section (6.3). The other has a covariance matrix
equal to the identity. The group mean differences are concentrated in.the low
variance subspace of the first two groups. Table 4.9 shows the misclassification
error rates for each discriminant rule. As mentioned earlier, these conditions are
fairly well suited to the SLDF, although the spherical group would become almost
indistinguishable from the other two groups if a high degree of covariance mixing
were employed. The SRDF-M1 rule performs well —slightly better than both SLDF
and SRDF, for all dimensions used, although the error rates for all three classifiers
are quite similar in magnitude. The SRDF employs mild eigenvalue shrinkage.
However this does not lead to lower error rates than SRDF-M1. The minimum
cross-validated error rate for SRDF-M1 underestimates the actual error rate (as

assessed by the test sample) by a similar margin to that for the SRDF (i.e. 40%
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Table 4.10: Three unequal covariance matrices - one highly ellipsoidal,
one moderately ellipsoidal, one spherical. Group mean differences spread
equally over all subspaces: Average error rates with standard deviations.

Dimension p

6 10 20
SRDF-M1 .03 (.02) .08 (.05) .09 (.06)
SRDF .05 (.03) .06 (.03) .03 (.02)
SLDF .13 (.03) .16 (.04) .19 (.04)
SQDF .03 (.02) .06 (.04) .07 (.05)
SEDF .12 (.03) .14 (.04) .15 (.04)
eSRDF 02 (.02) .03 (.02) .01 (.01)
=SRDE
A 14 (.16) .17 (.19) .12 (.10)
F°RPE 97(.30) .40 (.29) .29 (.24)
esnF M .03 (.04) .05 (.05) .02 (.02)
esin M .03(.04) .05(.05) .03(.03)
e M .00 (.00) .00 (.00) .00 (.00)
(8 01 (.03) .05 (.08) .06 (.09)
2o 05 (.12) .05 (.07) .06 (.08)
i 01 (.04) .09 (.06) .12 (.02)

to 50%).

Three unequal group covariances, one highly ellipsoidal, one moderately

ellipsoidal and one spherical (low variance).

Here, the situation is considered where all three group covariance matrice‘s are of
a different nature: one highly ellipsoidal, as in the previous case; one with a less
extreme ellipsoidal structure to the first, with the ratio between the largest and
smallest eigenvalues halved; and one equal to the identity matrix. The differences
in group means is spread equally over all subspaces. Table 4.10 presents the results.

The SQDF, SRDF and SRDF-M1 rules perform equally well in the small di-
mensional settings. However, for larger p, the SRDF once again emerges superior,
employing moderate eigenvalue shrinkage. It should be noted, however, that the
error rates concerned are all of a small magnitude. As with the previous conditions,

the spherical group is the most correctly classified group by all classification rules
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Table 4.11: Three unequal covariance matrices: Two highly ellipsoidal,
one spherical. Zero group mean differences: Average error rates with standard
deviations.

Dimension p

6 10 20

SRDF-M1 .14 (.04) .12 (.05) .15 (.07)
SRDF .12 (.05) .10 (.04) .03 (.02)
SLDF .49 (.06) .47 (.05) .46 (.05)
SQDF .12 (.04) .22 (.07) .21 (.05)
SEDF .47 (.06) .46 (.05) .45 (.04)
«_zf,,RDF .09 (.04) .08 (.04) .02 (.02)
Y (.06) .06 (.07) .07 (.07)
F5RPE 94 (20) 23 (.17) .25 (.20)
SoTTML 11 (.07) .12 (.08) .04 (.04)
esiy’ M .07 (.07) .08 (.07) .03(.03)
eﬁ,{i""m .00 (.00) .00 (.00) .00 (.00)
% .02 (.04) ".06 (.06) .06 (.07)
2o 01 (.03) .02 (.04) .03 (.06)
3a 12 (.01) .13 (.00) .13 (.00)

because of its low variance and the presence of group mean differences across all

subspaces.

Three unequal group covariance matrices, two highly ellipsoidal and one

spherical.

This example considers the situation where two of the group covariance matrices
are highly ellipsoidal and very unequal (similar to those in Section 6.4, Friedman
(1989)). The other is equal to the identity matrix. The group means are all located
at the origin. Results are presented in Table 4.11.

SRDF-M1 again performs well relative to the SRDF, especially for p = 6, 10.
The model selection procedure of SRDF-M1 again appears to behave appropriately,
employing low covariance mixing in this case where shrinkage of this sort would
generally be strongly counter-productive. Although the SRDF also shrinks the

covariance matrices slightly under these conditions, it is the eigenvalue shrinkage
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which is significant. The resulting decrease in variance enhances the discrimination
process, especially for large dimension, and again makes the SRDF the superior
classification rule. The SRDF-MI1 rule performs better than the SQDF for the
larger dimensional settings. This must be a consequence of the mild use of the co-
variance mixing parameter A by SRDF-M1 to reduce variance in the higher variance
subspaces.

One interesting feature of the behaviour of SRDF-M1 in these conditions is the
large discrepancy between the minimizing cross-validated error rate based on the
training sample, and the assessed actual error rate from the test sample. Despite
the fact that the former is always an underestimate of the latter, and also that the
methods of assessing the error rates are different, the large magnitude of the under-
estimation warrants closer examination. The average minimizing cross-validated
error rate for SRDF-M1 is comparable to the corresponding quantity for the SRDF.
However, the average actual error rate for SRDF-M1 is five times higher than that
for the SRDF when p = 20, with a correspondingly large standard deviation which
is greater than that for all the classification rules. When the actual error rate is
examined by group, it is possible to determine how large the variation in error rate
is between groups and also among the different (sampling) replications. For the
larger dimensions (p > 6), the two highly ellipsoidal groups have a higher error
rate than the spherical group on average, while for p = 6 there is little difference.

If large training samples are used (yielding better parameter estimates), the
discrepancy between training sample and test sample error rate for the SRDF-M1
is still evident even though the error rates are smaller. Furthermore, experimental
simulations were performed where the training sample was identical to the test
sample, and it was found that the test sample error rate was still noticeably un-
derestimated by the training sample minimizing cross-validated error rate. While
the author of this thesis has not been able to ascertain fully why this phenomenon
occurs, it is concluded that for conditions difficult for discrimination, such as these,
the variation in the data is such that eigenvalue shrinkage is necessary in reducing

variance as the dimension becomes large, and this leads to reduced error rates.

Two spherical and one ellipsoidal covariance matrix.

The final example considers the case where one covariance matrix is equal to the

identity matrix, one is highly ellipsoidal, and the other is a multiple of the identity
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Table 4.12: Three unequal covariance matrices: one highly ellipsoidal,
two spherical. Group mean differences spread evenly over all subspaces: Average
error rates with standard deviations.

Dimension p

6 10 20
SRDF-M1 .04 (.03) .04 (.04) .03 (.04)
SRDF .04 (.03) .02 (.02) .01 (.02)
SLDF .13 (.04) .11 (.04) .06 (.03)
SQDF .06 (.04) .11 (.07) .12 (.07)
SEDF .18 (.03) .15 (.03) .11 (.03)
esRPF 01 (.01) .00 (.01) .00 (.00)
=SRDF
14 (.14) .23 (.16) .44 (.18)
5°RPF 68 (.38) .74 (.34) .70 (.33)
eoy’ M1 .00 (.01) .00 (.00) .00 (.00)
esxy’ M .04 (.04) .01(.03) .00 (.01)
efj}ﬁp-"“ .01 (.03) .01 (.03) .00 (.01)
5 .09 (.06) "12(.03) .12 (.02)
X 09 (.11) .12 (.06) .13 (.03)
e 00 (.01) .02 (.06) .00 (.01)

matrix, where the multiplier is a scalar of moderately low magnitude. The non-zero
group mean differences are spread evenly across all subspaces. Simulation results
are shown in Table 4.12. '
SRDF-M1 again performs well and is comparable to the SRDF for all dimen-
sions. This is somewhat surprising since SRDF employs a high degree of eigenvalue
shrinkage which does not result in a significantly lower error rate. It is clear that
some form of regularisation is beneficial in that it reduces variance in the high
dimensional settings. It is interesting to note that for all methods apart from the
SQDF, the error rates reduce slightly as the dimension increases. Note that the
SQDF is the only classifier which does not use any form of regularisation. The
minimum cross-validated error rate for SRDF-M1 again underestimates the actual
misclassification error assessed from the test sample, but all the error rates involved

are very small.
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In conclusion, from this supplementary study, we have compared the perfor-
mance of SRDF against SRDF-M1. The conditions under which this comparison
was made were designed to best use the flexibility that SRDF-M1 has, which is
the potential to regularise each group-conditional covariance estimate separately.
The SRDF-MI1 classifier performed well in all situations, and was generally at least
as good as the two established discriminant rules, SQDF and SLDF. If the model
selection process that selects A for a given sample of data is working well for SRDF -
M1, then it is expected that the classifier should perform at least as well as either
SQDF and SLDF. This indeed appears to be the case, assisted by the SRDF-M1
policy of minimum regularisation to break ties in the selection of \. However, de-
spite the good performance of SRDF-M1, on the whole it did not perform quite as
well as the SRDF, particularly for large dimension, p. This again shows the benefit
of permitting the use of eigenvalue shrinkage as in the SRDF classifier.

It could be expected that a classifier similar to SRDF-M1, but which also in-
cludes the eigenvalue shrinkage parameter vy, would perform slightly better than
the SRDF. This would be consistent with a conjecture that if the number of regu-

larisation parameters in a model is increased, the model will usually do better.

Computational considerations

The approximate computation times in CPU seconds for 100 repetitions of the
sampling experiment described in this section are given in Table 4.13 for various
p. These are the times required by the SRDF and SRDF-M1 rules to perform the
simulations using MATLAB™ on a SUN Sparcstation ELC. Also given is the ratio
(SRDF-M to SRDF) of CPU time needed to complete 100 simulations for those

two regularised discriminant rules.

Table 4.13: Comparison of computation times between SRDF-M1 and SRDF.

Dimension p
6 10 20
CPU time in seconds (SRDF) 1699 2864 12546
CPU time in seconds (SRDF-M1) 446 685 2586
SRDF-M1/SRDF 026 0.24 0.21
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4.4 PERFORMANCE OF THE REGULARISED
DISCRIMINANT FUNCTION IN TERMS OF THE
SAMPLE SIZE TO DIMENSION RATIO.

4.4.1 Simulation study

From the study by Friedman (1989), as well as those in the previous sections, it is
clear that the SRDF has proved itself at least equal to but usually superior to the
other classification rules under a fairly wide range of situations. This superiority
is greatest in the higher dimensional settings (p > 10). The comparisons with
the SQDF, SLDF and in particular SRDF-M1 (in Section 4.3) indicate that the
advantage the SRDF has over the other classification rules is a result of allowing for
(v) regularisation (or shrinkage) of the covariance matrix eigenvalues to equality.

The ratio of training sample size from each population, n; (1 < k < K), to the
dimensionality p in the previous studies (chtions 3.5 through 4.3) was between 1.4
(for large p) and 2.2 (for smaller p). It is of interest to investigate the performance
of the SRDF relative to the other classification rules over a wider range of n;/p
ratios. As mentioned earlier, the motivation for this is that presumably regular-
isation of the covariance matrix eigenvalues would no longer be advantageous for
discrimination once the training sample size increases past some point sufficiently
larger than p (see also Lawoko and Koolaard (1996) and Koolaard, Ganesalingam
and Lawoko (1996)). The question addressed in this section is: to what extent do
the benefits of covariance matrix regularisation (in particular eigenvalue shrinkage)
diminish as the sample size to dimensionality ratio increases? )

A further simulation study was implemented in the manner of the previous
sections, and using the same six simulation conditions determined by assigning
various settings of the population means and covariances to certain values (See
Section 3.5). The discriminant rules compared with SRDF were SQDF, SLDF,
SRDF-M1 and SEDF. The samples from each population are taken to be of equal
size, so let n = ng(k = 1,...,K) The various n/p ratios employed are 1.2, 1.5,
2, 3, 5, 10 for dimensions p = 6,10 and 20. Again, the inordinate amount of
computation time required precluded implementation of simulations for p > 20. In
all cases there are three populations or groups involved. The (), 7) grid of values for
use in the model selection procedure of the SRDF is defined by the outer product
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of A =(0,.25,.5,.75,1) and v = (0, .25, .5,.75,1). The entire training sample is 3n
in each case, since in all cases there are three groups. The test sample is 200. Fifty
replications of each experiment were performed. Average error rate (with standard
deviation in brackets) are given for each classification rule. The results are given
in Tables 4.14 to 4.19. Graphical displays of the various classifier error rates for
increasing n/p ratio are given in Figures 4.1 to 4.6.

The object of examination in this study is the eigenvalue regularisation tech-
nique as employed by the SRDF, hence the main interest is in comparing the SRDF
with the methods which do not use this technique. These are the SLDF, SQDF
and in particular SRDF-M1. Thus while the SEDF is included in the results, it
involves maximum <-regularisation and hence comparing its performance to that

of the SRDF is less relevant to the issue being investigated here.

4.4.2 Simulation results
Equal and spherical group covariances (Table 4.14 and Figure 4.1)

The use of the v parameter appears to enhance the classification process under con-
ditions of equal, spherical group covariances only for small sample size to dimension
ratios (n/p < 3). For larger ratios the advantage that the SRDF commands over
the SLDF and SRDF-M1 diminishes to nothing for all dimensions. It is observed
that for smaller dimensions a high degree of eigenvalue regularisation to equality
is maintained in the regularisation process for all n/p ratios, as evidenced by the
high value of 4. This is to be expected since the optimum value of  in these
conditions is one, as for the SEDF. For the higher dimensional settings, the ¥ value
is somewhat lower, yet it does not change with the ratio n/p. -

All the discriminant rules give decreased error rates as the n/p ratio increases,
with most significant change occuring for the SQDF, as expected. The SQDF is
most sensitive to poor parameter estimates, and as the sample size increases its
performance tends to improve quickly due to better parameter estimates. The

performance of the SRDF improves slightly as the n/p ratio increases.

Unequal spherical covariances (Table 4.15 and Figure 4.2)

In conditions where the group covariances are not equal but are of spherical struc-

ture, the SRDF is the superior discriminant rule at all n/p ratios and dimensions
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Error Rate vs. n/p ratio
(p=10) (p=20)

Error rate

2 4 6 8 10 2 4 6 8 1 2 4 6 8§ 0
Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio

Figure 4.1: Equal spherical population covariance matrices. Classifier Error
Rate vs. n/p ratio.
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Table 4.14: Equal Spherical Covariance Matrices. Average error rates with
standard deviations over a range of n/p ratios.

n to p ratio

p==©6 1.2:1 1.5:1 2:1 3:1 5:1 10:1
SRDF .13(.03) .12 (.02) .12(.03) .10(.02) .10(.02) .09 (.02)
SRDF-M1 .18 (.07) .16 (.05) .15(.03) .12 (.03) .11 (.02) .10 (.02)
SLDF .17 (.05) .16 (.04) .15(.03) .11 (.03) .10(.02) .09 (.02)
SQDF .47 (.09) .33 (.07) .25(.05) .17(.03) .13(.02) .10(.02)
SEDF 12 (.02) .12 (.02) .12(.02) .10(.02) .10(.02) .09 (.02)
p=10

SRDF .14 (.03) .12 (.03) .11(.02) .11(.02) .10(.02) .10 (.02)
SRDF-M1 .17 (.05) .16 (.04) .15(.04) .12 (.04) .11 (.03) .10 (.02)
SLDF 17 (.04) .15(.04) .14 (.03) .12(.03) .11(.03) .10 (.02)
SQDF .46 (.07) .34 (.07) .27 (.05) .20(.05) .15(.03) .11(.02)
SEDF .12 (.03) .11 (.03) .11 (.02) .10(.03) .10(.02) .10 (.02)
p=20

SRDF 13 (.03) .12 (.02) .11 (.02) .11(.02) .18 (.04) .13 (.02)
SRDF-M1 .18 (.04) .15(.03) .14 (.02) .12(.02) .11(.03) .10 (.02)
SLDF 17 (.03) .15(.03) .14(.03) .12(.02) .11(.02) .10 (.02)
SQDF 49 (.06) .39 (.06) .32(.04) .24(.03) .17 (.03) .13(.02)

SEDF 12(.02) .11(02) .11(.02) .10(.02) .10(.02) .10 (.02)

used. Once again the average 4 value used in the SRDF is high for most n/p ratios,
however there are one or two aberrations. The effect of v regularisation in these
conditions is evident for all n/p ratios considered, but appears to begin to abate at
n/p = 10. However, at this point the performance of SRDF-M1 only approaches
that of the SRDF.

Equal, highly ellipsoidal covariances (Tables 4.16, 4.17 and Figures 4.3,
4.4) '

As concluded earlier, there appears to be little advantage in eigenvalue shrinkage
under these conditions where the group covariances are equal and of a highly ellip-
soidal nature, and the group mean differences are concentrated in the low variance
subspace. The performances of the SLDF and SRDF-M1 are comparable to that of
the SRDF for all n/p ratios and for all dimensions studied. As eigenvalue shrink-
age (towards equality) would be strongly counterproductive in these circumstances
(since it would increase the variance in the low variance subspace), it is not sur-
prising that the SRDF generally selects very low 4 values (close to zero) for all p,

and especially as the n/p ratio increases.
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Table 4.15: Unequal Spherical Covariance Matrices. Average error rates with
standard deviations over a range of n/p ratios.

n to p ratio

p==©6 1.2:1 1.5:1 2:1 3:1 5:1 10:1
SRDF .22 (.04) .20(.04) .20(.03) .17 (.03) .17 (.03) .16 (.03)
SRDF-M1 .31 (.07) .27 (.07) .26 (.05) .22 (.04) .19 (.03) .17 (.02)
SLDF 30 (.06) .26 (.06) .25 (.02) .21 (.03) .20(.03) .18 (.02)
SQDF .53 (.07) 43 (.07) .34 (.06) .25(.04) .19 (.04) .17(.02)
SEDF 23 (.04) .22(.04) .22(.03) .20(.03) .19(.03) .18 (.02)
p=10

SRDF .20 (.05) .17 (.04) .15(.03) .15(.03) .13(.03) .10(.03)
SRDF-M1 28 (.05) .28 (.05) .27 (.06) .20 (.04) .18 (.03) .14 (.03)
SLDF .28 (.05) .26 (.05) .26 (.04) .22 (.04) .21 (.03) .18(.03)
SQDF .52 (.07) .43 (.06) .35(.05) .25 (.05) .19 (.03) .14(.03)
SEDF .24 (.04) .22 (.03) .21(.03) .20(.03) .20(.03) .18(.03)
p=20

SRDF .13 (.03) .12 (.02) .10 (.02) .19 (.03) .12 (.02) .09 (.02)
SRDF-M1 .29 (.07) .30(.08) .26 (.06) .18 (.04) .14 (.03) .13 (.02)
SLDF .28 (.03) .26 (.04) .24 (.03) .21(.03) .20(.03) .19 (.02)
SQDF .55 (.04) .47 (.06) .37 (.04) .27 (.04) .18 (.03) .12(.02)

SEDF 23 (.03) .22 (.03) .21(.03) .20(.02) .19 (.03) .18 (.02)

When the group mean differences are concentrated in the high variance sub-
spaces the SRDF is superior to the other discriminant rules (SEDF excepted) for
n/p < 3. Beyond n/p = 3, SRDF-M1 and the SLDF discriminate as well as the
SRDF. The benefits of employing the v parameter disappear at n/p = 3 or more
as the other rules improve in their performance at a faster rate than the SRDF, as
the sample size increases.

The average 4 value of the SRDF decreases as the sample size increases in
relation to p. (From 4 = 0.75 for n/p = 1.2 to 4 = 0.25 for n/p = 10). Also, a

lesser degree eigenvalue shrinkage is employed by the SRDF for larger values of p.

Unequal, highly ellipsoidal group covariances (Tables 4.18,4.19 and Fig-
ures 4.5, 4.6)

In the situation where the group means are equal, the SQDF, which represents no
covariance regularisation, performs generally well as would be expected. For small
n/p ratios (n/p < 2) and larger dimensions p > 10, the SRDF’s performance is
superior to that of the SQDF, suggesting that eigenvalue shrinkage is not advan-

tageous once the sample size becomes twice as large as p. The other discriminant
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Error Rate vs. n/p ratio

0.40

0.35

Error rate
0.30

0.25

0.20

0.15

2 4 6 8 10 2 4 6 8§ 0O 2 4 6 8 10
Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio

Figure 4.2: Unequal spherical population covariance matrices. Classifier
Error Rate vs. n/p ratio.




Chapter 4. Exploring the SRDF further

Table 4.16: Equal,

102

Highly Ellipsoidal Covariance Matrices with Mean

Differences in Low Variance Subspace. Average error rates with standard

deviations over a range of n/p ratios.

n to p ratio

p==~6 1.82:1 1.5:1 2:1 3:1 5:1 10:1
SRDF 12 (.06) .09 (.04) .08 (.04) .06 (.03) .06 (.01) .05 (.02)
SRDF-M1 .10 (.03) .08 (.03) .08 (.04) .05 (.02) .05 (.02) .04 (.01)
SLDF .10 (.03) .08 (.02) .07 (.02) .05(.02) .05 (.02) .04 (.01)
SQDF 41 (.09) .26 (.07) .15(.05) .09 (.03) .07 (.02) .05 (.02)
SEDF 28 (.05) .27 (.06) .26 (.05) .22(.04) .21 (.04) .20 (.03)
p=10

SRDF .16 (.04) .14 (.04) .12 (.04) .10(.03) .09 (.02) .10 (.03)
SRDF-M1 .14 (.03) .13(.03) .12(.03) .10(.03) .09 (.02) .08 (.02)
SLDF 14 (.03) .12(.03) .11(.02) .09 (.03) .09 (.02) .08 (.02)
SQDF .44 (.09) .31 (.06) .24 (.05) .17 (.04) .12 (.02) .09 (.02)
SEDF .32 (.05) .30 (.05) .28 (.04) .26 (.04) .24 (.03) .23 (.03)
p =20

SRDF .18 (.04) .16 (.03) .14 (.03) .13 (.02) .11 (.02) .11 (.02)
SRDF-M1 .17 (.03) .17 (.03) .15(.02) .13(.02) .11 (.02) .11 (.02)
SLDF 17 (.03) .16 (.02) .14 (.02) .12(.02) .11 (.02) .11 (.02)
SQDF .49 (.06) .39 (.04) .32 (.04) .24 (.04) .18 (.03) .14 (.02)
SEDF 33 (.04) .32(04) .30(.04) .27(.04) .26 (.04) .24 (.03)

Table 4.17: Equal, Highly Ellipsoidal Covariance Matrices with Mean
Differences in High Variance Subspace. Average error rates with standard

deviations over a range of n/p ratios.

n to p ratio
p==~6 1.2:1 1.5:1 23] 3:1 5:1 10:1
SRDF .08 (.03) .07 (.02) .07 (.02) .07 (.02) .06 (.02) .06 (.02)
SRDF-M1 .13 (.05) .10 (.04) .09 (.03) .07 (.03) .06 (.02) .05 (.01)
SLDF .12 (.03) .10(.03) .09 (.03) .07 (.02) .06 (.02) .05 (.01) "
SQDF .43 (.10) .29 (.09) .18 (.05) .11 (.03) .07 (.02) .06 (.01)
SEDF .07 (.02) .07 (.02) .07 (.02) .07 (.02) .06(.02) .06 (.02)
p=10
SRDF 0(.03) .10(.03) .10(.02) .10(.02) .08 (.02) .11 (.04)
SRDF-M1 .15 (.03) .13(.03) .12 (.04) .10 (.02) .09 (.02) .08 (.02)
SLDF .14 (.03) .13(.03) .11 (.03) .10(.02) .08 (.02) .08 (.02)
SQDF .45 (.07) .32 (.06) .23 (.05) .16 (.04) .12 (.03) .09 (.02)
SEDF .10 (.02) .10 (.02) .09 (.03) .10(.02) .10 (.02) .09 (.02)
p=20
SRDF 12 (.03) .12 (.02) .10(.02) 11(.02) .09 (.02) .09 (.02)
SRDF-M1 .16 (.03) .16 (.04) .13 (.03) .12(.03) .10(.02) .10 (.03)
SLDF 16 (.03) .15(.04) .13 (.02) .12(.03) .10(.02) .13 (.03)
SQDF .48 (.05) .39 (.04) .30 (.04) .22(.03) .16 (.02) .10 (.03)
SEDF 12 (.02) .12 (.03) .11(.03) .11(.03) .0 (.02) .11 (.03)
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Error Rate vs. n/p ratio
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Figure 4.3: Equal, highly ellipsoidal population covariance matrices. Popu-
lation mean differences concentrated in the low variance subspace. Classifier Error
Rate vs. n/p ratio.
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Error Rate vs. n/p ratio
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Figure 4.4: Equal, highly ellipsoidal population covariance matrices. Pop-
ulation mean differences concentrated in the high variance subspace. Classifier

Error Rate vs. n/p ratio.
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rules perform poorly in relation to these two, since any regularisation to the pooled
covariance is strongly counterproductive.

Under these conditions, the n/p ratio at which the performance of SRDF-M1
approaches that of the SRDF is approximately n/p = 2: slightly smaller for small
p and slightly larger for large p. The average % value used in the SRDF is usually
small, but there is substantial variation. This indicates that under these difficult
discrimination conditions and substantial variance in the data, selection of 4 is very
sensitive to the particular training sample data at hand.

Once again, the SRDF error rate improves as the sample size to dimension
ratio increases, although for p > 10 the reduction in error rate is not significant for
n/p > 3. Even at n/p = 10, the performance of SRDF-M1 does not compare with
that of the SRDF, indicating that regularisation to the pooled covariance alone,

does not help the classification process under these conditions .

For the case where the group means differences are non-zero (but still unequal,
highly ellipsoidal group covariances), the r'elative performance of the various rules
remain the same as in the situation of equal group means above. The rules all yield
lower error rates, since the groups now differ in location. For the SRDF, once n/p
is greater than 3, there is no real reduction in error rate. On the other hand, the
SRDF-M1 error rate decreases with increasing n/p until at n/p = 10, the two error
rates are nearly equal. The SRDF is superior to the SQDF in these conditions only
at the smallest sample size to dimension ratio, n/p = 1.2. Thus this is the n/p ratio
beyond (that is, larger than) which regularising the covariance matrix eigenvalues
towards equality no longer appears to be beneficial. The average v value, ¥, for
the SRDF decreases as n/p increases. At n/p = 10, 4 is close to zero, which is the

appropriate level given that the parameter estimates are good.

In conclusion, this simulation study underlines the usefulness of the eigenvalue
shrinkage technique as employed in regularised discriminant analysis. The advan-
tage that it commands over the other classification rules is strongest when the
training sample size from each group is small in relation to the dimensionality, p.
Furthermore, often that advantage remains even when the sample size increases to

several times that of the dimensionality.
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Error Rate vs. n/p ratio

(p=0) (p=10) (p=20)
% o rnezaene K WOl o piceseessesisn e K
oft, T L e Oy welkz~efi===""
S| soimets5 T BETT X
" n
o c
ol
< B — SRDF
Q O =--- SRDF-MI
| /g SLDF
\ e — SQDF
ﬂ: X === SEDF <
| @ Q
’i
"
Y Ul
& I
: o |
1
w e 1 I
\
Q
\
\
\

2 4 6 & 10 - 2 4 6 & Wb ° 2 4 6 8§ 1
Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio Sample size to Dimension (n/p) ratio

Figure 4.5: Unequal, highly ellipsoidal population covariance matrices.
Population means equal. Classifier Error Rate vs. n/p ratio.
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Error Rate vs. n/p ratio
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Figure 4.6: Unequal, highly ellipsoidal population covariance matrices.
Population means unequal. Classifier Error Rate vs. n/p ratio.
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Table 4.18: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. Average error rates with standard deviations over a range of
n/p ratios.

n to p ratio

p==6 1.2:1 1.5:1 21 3:1 5:1 10:1
SRDF 34 (.11) .29 (.07) .19 (.05) .14 (.04) .14 (.07) .10 (.04)
SRDF-M1 48 (.09) .44 (.08) .35 (.09) .25(.05) .20 (.07) .18 (.06)
SLDF .61 (.05) .60 (.06) .59 (.05) .59 (.05) .60 (.05) .62 (.04)
SQDF 39 (.09) .25(.06) .18 (.04) .13(.03) .10(.02) .08 (.02)
SEDF .59 (.04) .59 (.05) .59 (.06) .58 (.05) .60 (.05) .62 (.05)

=10
SRDF 15 (.06) .12 (.04) .09 (.03) .05(.02) .03 (.02) .06 (.03)
SRDF-M1 .34 (.10) .38(.09) .26 (.08) .16 (.05) .12 (.05) .10 (.04)
SLDF .59 (.04) .58 (.04) .59 (.04) .59 (.04) .60 (.04) .61 (.04)
SQDF .29 (.09) .17 (.06) .10(.03) .05 (.02) .03 (.01) .02(.01)
SEDF .59 (.04) .58 (.04) .59 (.04) .60(.04) .59 (.04) .61 (.04)
p=20
SRDF .03 (.02) .02(.02) .02(.02) .01(.01) .00(.01) .00 (.00)
SRDF-M1 .40 (.18) .36(.11) .20(.07) .11 (.03) .06 (.03) .05 (.02)
SLDF 58 (.04) .57 (.04) .59(.05) .61(.03) .61 (.03) .62 (.04)
SQDF .20 (.07) .10 (.03) .04 (.p2) .01 (.01) .00 (.00) .00 (.00)
SEDF .57 (.03) .59 (.04) .59 (.04) .60 (.04) .61 (.03) .61 (.04)

Table 4.19: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Average error rates with standard deviations over a
range of n/p ratios.

n to p ratio

p==©6 1.2:1 1.5:1 o5l 3:1 5%l 10:1
SRDF .14 (.04) .12(.04) .07 (.03) .04 (.03) .03 (.02) .02 (.01)
SRDF-M1 .19 (.06) .19 (.07) .13 (.05) .07 (.03) .04 (.02) .03 (.01)
SLDF .21 (.05) .20 (.05) .18(.04) .16 (.03) .14 (.03) .13 (.03)°
SQDF .25(.12) .10 (.06) .05 (.02) .03(.01) .02(.01) .02 (.01)
SEDF 18 (.04) .17 (.04) .16 (.03) .15(.03) .14 (.03) .14 (.03)
p=10

SRDF .09 (.05) .07 (.03) .04 (.03) .02 (.01) .02(.01) .01 (.01)
SRDF-M1 .20 (.07) .24 (.09) .13 (.05) .07 (.03) .04 (.02) .02 (.01)
SLDF .24 (.04) .22(.04) .20(.04) .18(.01) .17 (.03) .16 (.03)
SQDF .19 (.10) .08 (.05) .04 (.02) .02 (.01) .01(.01) .01 (.01)
SEDF .21 (.04) .19(.03) .19(.03) .18(.02) .17 (.03) .16 (.03)
p=20

SRDF .03(.02) .02 (.02) .01(.01) .00(.00) .00 (.01) .00 (.00)
SRDF-M1 .29 (.17) .25(.11) .11 (.04) .04(.02) .02(.01) .01 (.01)
SLDF .22 (.04) .20(.03) .18 (.03) .17(.03) .15 (.02) .15 (.03)
SQDF .14 (.06) .05 (.03) .01 (.01) .00 (.00) .00 (.00) .00 (.00)

SEDF 18(.03) .17 (.03) .17(.03) .16 (.02) .15(.02) .14 (.03)
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Chapter 5

MODEL SELECTION OF
REGULARISATION PARAMETERS
USING BHATTACHARY YA
DISTANCE

5.1 INTRODUCTION

In the previous chapters, the advantage of the regularised discriminant model of
Friedman has been demonstrated, particularly if the sample size is small in relation
to the size of the dimension. The major reason for its success in many conditions
that are difficult for discrimination stems from the rule’s flexibility in allowing for
eigenvalue regularisation towards equality in the sample covariance matrices. Since
the importance of the parameter v has been established, it will be maintained in
subsequent models for discrimination that appear in this thesis.

Several potential weaknesses in the model selection procedure of the SRDF as
developed by Friedman (1989) were noted by Rayens and Greene (1991). These
included (i) the fact that the regularisation parameters were often determined by
a small fraction of the data points available, and (ii) that in many instances (espe-
cially with smaller sample sizes) there will not be a unique choice of the parameters
(A, ) for the model. These problems were discussed and studied in Chapters 3 and
4. Furthermore, despite the development of computationally efficient algorithms
to enhance the attractiveness of what is inherently a computationally intensive
model, the computation time is still rather high from the author’s experience using
MATLAB™ on a SUN Sparcstation ELC computer. Therefore it is of interest

to explore other ways of arriving at appropriate regularisation parameter values
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in place of minimising the cross-validated error rate at a range of points over the
(X, 7) grid. Because of the computational burden inherent in SRDF, and with
regard to criticisms of the technique by Rayens and Greene (1991), it is investi-
gated here whether information about appropriate values for the two regularisation
parameters could be obtained by examining the behaviour of the Bhattacharyya
distance (Bhattacharyva (1946)) between the various populations. Note that any
determination of the optimal values of A and + (i.e. A and 4) from the data using
the Bhattacharyya distance involves use of all the data points. A classification rule
which uses regularisation parameters obtained from the Bhattacharyya distance is
presented for the case of two populations or groups, and is compared via simula-
tion with the original SRDF. An extension to the three group case is presented in
Subsection 5.2.5, and its performance is also examined against the other rules. If
thisrule is to perform comparably to the SRDF in terms of its error rate, its model
selection procedure must perform correctly in terms of selecting an appropriate de-
gree of regularisation for a given situation. For example, if the populations are of
similar shape and size (in terms of the magritude of their variances), the covariance
mixing parameter A should be set to a reasonably high value. The Bhattacharyya
distance is found to give information which leads to appropriate values of A and v
being selected in general. The rule presented is also computationally much faster
than Friedman’s SRDF since it avoids re-sampling methods.

In Section 5.4, the various rules are compared in terms of their performances
in correctly classifying observations from several real data sets. The results of
the simulation studies and the case studies with real data sets show that the rule
employing the Bhattacharyya distance in the model selection procedure generally

performs as well as Friedman’s SRDF.
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5.2 CONSTRUCTION OF A MODEL SELECTION
PROCEDURE BASED ON THE BHATTACHARY YA
DISTANCE

5.2.1 Distance measures and their applications in

discrimination

Distance measures have often been considered as alternatives to error rates in cer-
tain aspects of discriminant analysis. For example, Jain (1976) investigated the
behaviour of an estimate of the Bhattacharyya distance when used as a criterion
in variable selection. It was shown that the bias and variance of the estimate is
related to the number of training samples and parameter values of the distribution.
Kailath (1967) addressed the problem that minimising the error rate to determine
optimum classification can be difficult to accomplish in practice. He investigated
the idea of using simpler, albeit sub-optimal performance measures instead of the
error rate, and compared the Bhattacharyya distance with an often-used measure,
the divergence, which is closely related to Shannon’s logarithmic measure of in-
formation. Not only is the Bhattacharyya distance easier to evaluate than the
divergence, but in some examples in the study it was found to perform at least as
well as the divergence in minimising the probability of misclassification. Kailath
obtained an upper bound on the probability of misclassification in terms of the
Bhattacharyya distance in the case of equal prior probabilities of the distributions.
Note that Kailath only treated the case of two groups. Also, all his work assumed
knowledge of the parameters, whereas, as we shall see later, if one has to use sam-
ple estimates of the parameters, the link between Bhattacharyya distance and error
rate is much less clear. Also, Fukunaga and Hayes (1989) obtained an upper bound,
in terms of the Bhattacharyya distance, on the Bayes error for classifying between

two Gaussian distributions .

5.2.2 The Bhattacharyya distance

The Bhattacharyya distance between two multivariate normal density functions

with mean vectors g; and g9 and covariance matrices ¥; and X, is

B=Bl+B2 (5.1)
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where i
Bl = %(#1 — p2)’ (%) (11 — p2) (5.2)
and ¥ s
+
Bo =1 —-’— 2’ (5.3)

—In
2 lellf2|22|1,f2

The first term of the expression, B1, is similar to the well-known Mahalanobis
distance between the densities. It measures the distance between the two distri-
butions caused by the mean shift. The second term B2 utilises the determinants
of the two covariance matrices as well as that of the average group covariance ma-
trix. It gives a measure of the difference between the two distributions due to the
covariance shift.

Fukunaga and Hayes (1989), in an extensive mathematical development, derived
asymptotic expressions for the expected bias and variance of the sample estimates
(B\l and ﬁ) of terms B1 and B2, and showed that the bias of Bl is proportional
to p/n (for n; = n, i = 1,2,...), where 7, is the size of the sample taken from
group i. They also showed that the bias of B2 is proportional to (p+ 1)p/n. In
other words, estimates of the Bhattacharyya distance measure become increasingly
biased as the ratio p/n increases, with B2 more seriously affected than B1. Thus
in high dimensional space the bias present in the Bhattacharyya distance estimate
is dominated by the bias inherent in estimation of term B2. They also showed
that as the dimensionality increases, an increasingly large ratio of n/p is needed to
maintain a constant expected value of B. -

With the above knowledge of the Bhattacharyya distance function between two
Gaussian distributions, it is plausible to expect that some degree of regularisation
of the covariance, such as is provided for by the two-parameter model in expression
(3.7), would improve the estimation of the Bhattacharyya distance. The reason
for this stems from the accepted knowledge that covariance estimates based on
expression (1.10) yield eigenvalue estimates which are biased. The largest ones are
biased towards values which are too high, and the smallest ones are biased towards
values which are too low. This bias will be worse in the situation where the true
population eigenvalues are approximately equal, but in all cases this bias becomes
more pronounced as the ratio of sample size to dimension decreases. The term
B2 of the Bhattacharyya distance is most vulnerable to such bias occurring, being

a ratio of determinants of sample covariance estimates, and regularisation of the
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eigenvalues towards equality ought to prove useful in counteracting bias-induced

anomalies in estimates of B2, particularly as p becomes large.

5.2.3 Behaviour of Bhattacharyya distance with regularised

covariances

Kailath (1967) admitted that it would be hoping for too much, to expect a strong
relationship between distance measures and error rates. Nevertheless, the author
was able to obtain several useful theoretical results linking the two, assuming known
population parameters. In the present covariance regularisation context with two
parameters controlling the degree of shrinkage, as in expression (3.7), it would be
too optimistic to expect that the (),%) combination which maximises the Bhat-
tacharyya distance for a given set of data would also yield a classification rule which
minimises the future error rate. Instead, from the example (Table 5.1) below, we
can often detect no such relationship between the sample Bhattacharyya distance
and minimum error rate. Table 5.1 shows:the values of the components (ET, B2)-
of the sample Bhattacharyya distance at a range of points over the (A, ) grid. The
cross-validated error rate (es,) at each point is also stated to give an indication of
the range within which the minimum actual error rate lies. The data set consisted
of samples of size 13 from each of two normal populations (p = 6) with equal,
highly ellipsoidal covariance matrices and mean differences in the high variance

subspace (Condition 4 - see Chapter 3, Section 3.5).

Table 5.1: Example of (A, ) grid of Bhattacharyya distance values (e (B1, B2))

1 |.08(3.84,0.05) .08 (3.84,0.00) .08 (3.84,0.00)

0.5 | .04 (2.93,0.10) .04 (2.93,0.01) .04 (2.93,0.00)

0 |.15(2.73,0.59) .08 (2.73,0.05) .08 (2.73,0.00)
[ A=0 A=05 A=1

QR
Il

It is evident from Table 5.1 (and other data sets) that the largest value of
B = B1 + B2 for any given data set will always occur on the axis where A = 0
on the (),7) grid; i.e. suggesting no regularisation of the individual covariance
matrices towards the average covariance. This is the case for samples from any two

normal distributions. There are several reasons for this:
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1. The value of Bl is not affected by A when the regularised covariances are

used. This is because the central component of B1 is

(Z:07) + Z2(07) /2,
and this is not affected by A for a fixed value of 7.

2. The value of B2 decreases monotonically as A increases, for fixed v, since as
A approaches 1, the regularised covariances approach equality. When A =1,
%, (A7) and 35(), ) are both equal to (1 —)S, + 7 (tr {S,} /p)I. In this
case the numerator and denominator in the parenthesis in expression (5.3)

are equal, and the term B2 becomes zero.

3. Term B2 is always non-negative since for two p-dimensional positive definite

matrices, A and B,

|_4|132‘B|1f2 < |ﬁ|

2

4. The value of B2 decreases monotonically as -y increases from 0 to 1, for fixed
A. Since B2 is fundamentally a measure of the covariance shift between
the two distributions and as the eigenvalues of the separate covariances are
increasingly biased towards equality, the distributions become more similar

in shape.

5.2.4 Model selection

As mentioned earlier, the simulations performed with Friedman’s SRDF (and vari-
ous modifications) in Chapters 3 and 4 have enabled us to observe that for a number
of different simulation conditions, there is no unique combination of A and 4, using
the criteria of minimum cross-validated error rate. Indeed, altering the rule for the
breaking of such ties (Section 3.6) had little effect on the overall performance of
the procedure. Thus it appears that the degree of regularisation (either covariance
mixing or eigenvalue shrinkage, or both) is often not as important as its presence
in any (roughly appropriate) form. It can therefore be conjectured that complex
methods to obtain a precise selection of ) and 4 are not warranted. A goal of the
proposed model selection procedure using the Bhattacharyya distance is to provide
a much faster algorithm to that proposed by Friedman using cross-validation. Also,
the procedure should choose appropriate levels of the A and v parameters so that

the classification rule obtained is comparable in performance to Friedman’s SRDF.
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Consequently, a relatively simple heuristic algorithm for selecting the values of
A and v has been developed based on empirical data obtained from a number of
repeated simulation experiments involving calculations of the quantities B1 and
B2 over the (A,~) grid for a variety of conditions. A complex model selection
procedure is not imperative since evidence was presented in Chapter 3, Section 3.6
that in most situations only very approximate values of A and - are required. Note,
however, that 7 is usually required to be estimated more accurately than A. A dual
optimisation (of A and +y) approach is not possible here because of the behaviour
of terms B1 and B2 outlined in points 1 - 4 in the previous section. Instead, the
approach adopted is to first select one parameter, and then the other. Since both
terms Bl and B2 exhibit similar behaviour in relation to A for all values of 7, it is
sensible to first choose a value for 7y so as to narrow down the search area for A on
the (A, ) grid.

One conclusion from previous simulation studies (Chapter 4) is that as the
sample size to dimension ratio decreases, an increasing degree of eigenvalue reg-
ularisation using 7 (i.e. 7 > 0) becomes’necessary to counteract the bias in the
estimated eigenvalues of the sample covariances. Also, an increasing amount of
regularisation away from 7 = 0 is required as p increases, even for those conditions
where any shrinkage of the eigenvalues to equality would appear to be strongly
counter-productive. See, for example, Chapter 4, Table 4.5 where the average ¥
value increases with dimension to substantial levels, even though no regularisation,
or SQDF, would seem to be the best option in these conditions. The benefits
of a decrease in variance from such regularisation has been shown to outweigh
any introduced bias (see also Koolaard, Lawoko and Ganesalingam (1996)). The
proposed method of selecting « from the Bhattacharyya distance therefore only
considers values of v in the range 8 < v < 1, where # > 0, but usually fairly close
to zero, and where 6 depends on both the magnitude of p and the sample size to

dimensionality ratio.

Selection of the parameter v

Increasing the value of the eigenvalue regularisation parameter <y typically decreases
the term B1, but not always, and the trend is not always monotonic. However from
point 4 above we see that B2 exhibits only monotonic behaviour in relation to 7.

So it seems sensible to first look at the behaviour of B1 for a range of .
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The bias inherent in the estimate of Bl would be expected to be less than that
in estimates of B2, so that the principle upon which selection of the regularisation
parameter v is made involves giving Bl greater importance than B2. Thus, in
general the aim is to choose that v which gives a large or maximal value of Bl
or B1/B2. From the behaviour of primarily B1, and secondarily B2, calculated
for various 7y over § < v < 1, the following decision paths are proposed for the
selection of an appropriate 7.

From empirical data we can identify three scenarios relating to B1. Note that
all details, which define relative terms used here such as ‘small’ and ‘large’, are

given in the algorithm in Appendix B:

I. Magnitude of Bl small, and not greatly affected by the value of v changing
between 6 and 1. Under this scenario, B1 is not providing much information
as to an appropriate value of v, so look at the effect of v on B2. If it is
large, choose that y which gives a minimal value of B1/B2, since in this case
a dominant covariance shift over mean shift would seem to be important for
enhancing classification. If -y also has little effect on B2, choose that  which

leads to a maximal value of B1/B2.

II. Magnitude of Bl large and not greatly affected by the value of v changing
between 6 and 1. This indicates good conditions for classification due to the
large Mahalanobis distance measure (B1) for all values of 4. Some average,

approximate value of y will suffice.

III. B1 changes substantially as v changes between 6 and 1. Under this scenario, if
~ has little effect on B2, it is clearly desirable to select that v yielding a large
value of B1. However if B2 is greatly affected by 7 also, some greater degree of
reduction in the variance of the system (by increasing v a little) is desirable
for classification purposes, whilst still maintaining a sizeable Mahalanobis

distance (B1) between the groups.

The above guide-lines lead to a simple algorithm for the selection of v to use in
expression (3.7) based on the three scenarios above and followed by the selection
of A depending on a crude estimate of the similarity of the group covariances. This
algorithm is given in Appendix B. The critical values at each decision stage have

been arrived at empirically through a heuristic procedure which involved observing
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the values of B1 and B2 for various random samples from an extensive variety of

normal population combinations.

Selection of the parameter \

For the selection of the regularisation parameter A, only the term B2 can be em-
ployed since Bl is constant over all values of A for a given value of 7. Since the
term B2 gives a measure of the difference between the two distributions due to
the covariance shift, the value e~82 at the point A = 0,7 = 4 (i.e. with minimal
permitted eigenvalue shrinkage - see earlier) gives an indication of the similarity in
the group covariance matrices, and this is used as the initial estimate of A\, denoted
). However, since it is known that B2 can be badly affected by bias if the sample
size is small relative to p, a refinement to this estimate is proposed.

The magnitude of the term B2 when A = 0 and vy = 1 gives further indication
as to the similarity or dissimilarity of the group covariance estimates, and so can be
used to obtain an appropriately adjusted value of A. Under this situation (y=1)
of maximal eigenvalue shrinkage the determinants of the group covariances are
reduced to their average eigenvalue raised to the power of the dimension, p. If the
group covariances are similar, the average of their eigenvalues will be similar in
magnitude and the term within the brackets in the expression for B2 will be close
to one, resulting in the value of B2 itself being close to zero (see expression 5.3).
Since it is not guaranteed that a value of B2 close to zero means that the two
p—dimensional group covariances S; and S, are similar, a second quantity is used
as a further check to determine the degree of similarity in the covariances in such

a situation. Consider »
1 - .
212 = (- Z |1 — €2i|
p =1

where €;; is the i** eigenvalue of S;. Note that the S; and S; may have been
minimally regularised (as explained earlier) using A = 0,y = € to stabilize exces-
sive variation in the original covariance estimates. This quantity is the average
(absolute) difference between corresponding eigenvalues of S; and S relative to a
measure of the overall variance in the groups. It may occur that B2(0,1) (where
B2(a,b) denotes the value of B2 when A = a and v = b) is close to zero, while dis-
similarity between S; and S, is indicated by a large value of z;5. In such a situation
the second quantity z;, serves to compliment B2(0, 1) by detecting a phenomenon

which the latter is incapable of detecting.
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Taking into account the above procedures, the adjusted estimate of A is N .

where
5\1 — ;\l/w

where w is proportional to 1/B2(0,1) . If w is large (suggesting similarity of the
covariances), and z), is large (suggesting dissimilarity), an adjustment of ) towards
zero is made, if appropriate. Details of the heuristic algorithm, derived from purely
empirical/simulation results are given in Appendix B.

Thus model selection using the Bhattacharyya distance consists of the following

steps:

i. Evaluate B1 and B2 from the available data for varying degrees of covariance

eigenvalue shrinkage (a range of 7), but using no covariance mixing (A = 0).

ii. Select 4 using decision algorithm in Appendix B that implements the guide-

lines given in this section .

1. Using the amount of eigenvalue shrinkage determined by the selected param-
eter value 4, estimate \ using B2 and confirm or adjust this estimate using

the two checks of covariance similarity, the values w and zy,.

The regularised classification rule which uses the above model selection procedure
will be denoted SRDF-B.

Re-sampling techniques are avoided in this procedure. This contrasts with
Friedman’s SRDF where a sample-reuse method (cross-validation) is performed
at each of a whole grid of typically between 25 and 50 points. The result is a
classification rule with a greatly reduced computational burden. Furthermore, the
rule is one which avoids having to arbitrarily choose between apparently equally
good (A, ) combinations, such as occurs when there is a non-unique minimum

cross-validated error rate.

5.2.5 Model selection when there are more than two groups

The technique outlined above selects appropriate values of A and v using the Bhat-
tacharyya distance in situations when there are only two groups. This is because
the measure B as stated in expressions (5.1), (5.2) and (5.3) is written for the

two-group case. If there are more than two groups, the above procedure must be
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followed for each pair of groups, leading to estimates of the regularisation param-
eters being obtained for each pair. The final values of A and # are then calculated
by simply taking the median of the various parameter values obtained from the
different pairs. The median is used since there may be a small number of pairs of
groups for which the model selection procedure leads to regularisation parameter
values which are dissimilar to those obtained from the majority of pairs.

Since the model selection procedure is to be repeated for each pair of groups, the
computation time required increases as the number of groups increases. However,
since the model selection procedure proposed in this chapter is so much faster
(in terms of computation time) than the cross-validation method employed by
Friedman (see Table 5.14), the number of groups would have to be very large
before the computation times of the two methods became of a similar order of

magnitude.

5.3 SIMULATION STUDIES AND RESULTS

Computer simulation is used to compare the performances of SRDF, SLDF, SQDF,
SEDF and SRDF-B in the same variety of settings as that used in Chapter 3,
Section 3.5, with the addition that the two-group case is studied, as well as the
three-group situation. In all cases the group distributions are normal and the
sample size from each group was 14, giving a total sample size of 28 or 42. For each
set of conditions, simulations were performed for various levels of dimensionality:
p = 6,10 and 20. The optimisation grid for the SRDF was set equal to that used
in previous chapters. Since the sample size to dimensions ratio is less than one
for some simulations, the zero eigenvalues of the group covariance matrix estimates
were replaced by a small quantity, sufficient to permit numerically stable covariance
inversion.

There were 100 repetitions of the following experiment for each value of p and
for each of the six settings (see Subsection 3.5.1). As before, random samples of
size 14 from each group were drawn from specified multivariate normal distribu-
tions and were used to construct the classification rules for all five of the above
methods. An additional test sample of size 100 was randomly generated from the
same distributions and classified using each of the five rules given above, yielding

estimates of the overall error rate for each rule. These are presented in Tables 5.2
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Table 5.2: Equal, Spherical Covariance Matrices. (Two Groups) Error rate
(with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF .08 (.03) .10 (.04) .10 (.04)
SRDF-B .08 (.03) .09 (.03) .10 (.04)
SQDF .16 (.06) .30 (.07) .30 (.07)
SLDF 10 (.04) .14 (.05) .24 (.09)
SEDF .08 (.03) .09 (.03) .09 (.03)
IR .86 (.29) .83 (.32) .84 (.32)
y¥SRDF 79 (.33) .78 (.31) .82 (.27)
ASRDF-B 90 (.05) .77 (.08) .58 (.09)
¥SRDF-B 91 (.17) .90 (.19) .87 (.23)

to 5.13, along with the means and standard deviations of the selected regularisation
parameters for SRDF and SRDF-B over the 100 replications. In the tables ASRPF
and ASRDF-B depnote the mean value of A for SRDF and SRDF-B respectively. The
mean value of 7 for each method is defined similarly.

In the various conditions tested for the two- and three-group cases it is clear
that SRDF and SRDF-B yield very similar average error rates over the 100 repli-
cations. In nine of the eighteen sets of simulation conditions for the two-group
case represented in Tables 5.2 to 5.13, SRDF-B performs slightly better (and often
with a reduced standard deviation) than SRDF in terms of their estimated error
rates. In five of the sets the SRDF has a slightly lower error rate. The model
selection procedures of SRDF and SRDF-B give roughly similar results regarding
the selection of y by introducing appropriate degrees of this parameter for each set
of simulation conditions. Regarding the selection of A, the two procedures can give
entirely different results (e.g. Table 5.7) and yet the average error rates remain
very similar. This again shows that in a number of situations the error surface is
quite flat with respect to the covariance mixing parameter A. In conclusion, neither
technique is superior to the other in terms of experimental classification error rates.

In the cases where there are three groups, represented in Tables 5.8 to 5.13,
the SRDF-B again performs comparably to SRDF in most settings. There are two
exceptions to this, where SRDF-B performs somewhat worse than SRDF. These
both occur in higher dimensional setting (p = 20) (see Tables 5.10 and 5.12). In
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Table 5.3: Unequal, Spherical Covariance Matrices. (Two Groups) Error
rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF 13 (.05) .11 (.05) .08 (.05)
SRDF-B .12 (.04) .10 (.05) .10 (.10)
SQDF 20 (.06) .34 (.08) .35 (.07)
SLDF 17 (.05) .20 (.06) .30 (.07)
SEDF 15 (.04) .15 (.04) .18 (.04)
prlios 48 (.37) .33 (.33) .28 (.23)
A .75 (.34) .81 (.28) .89 (.19)
ASRDF-B 44 (.27) .10 (.15) .00 (.00)
¥SRDF=B 77 (.34) .85 (.25) .81 (.31)

Table 5.4: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences concentrated in the Low-Variance Subspace. (Two Groups)
Error rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF .03 (.03) .05 (.04) .12 (.06)
SRDF-B .01 (.02) .08 (.05) .16 (.05)
SQDF .02 (.02) .14 (.08) .28 (.07)
SLDF .01 (.01) .03 (.03) .15 (.08)
SEDF .09 (.04) .12 (.05) .15 (.05)
ASRDE 97 (.16) .92 (.21) .88 (.26)
ySBDF 23 (.32) .22 (.29) .43 (.29)
ASRDF-B 35 (12) .14 (.05) .01 (.00)
¥SRDF-B 01 (.10) .36 (.44) .72 (.38)
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Table 5.5: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences concentrated in the High-Variance Subspace. (Two Groups)
Error rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF 02 (.02) .03(.02) .04 (.02)
SRDF-B .02 (.02) .02 (.02) .04 (.02)
SQDF .06 (.04) .19 (.09) .23 (.09)
SLDF .03 (.02) .05 (.03) .16 (.08)
SEDF 02 (.02) .02 (.02) .04 (.02)
i g 95 (.19) .96 (.16) .93 (.23)
ySRDF 80 (.34) .87 (.28) .91 (.18)
ASRDF-B 36 (.12) .14 (.05) .01 (.00)
ySRDE=8 67 (.13) _.75-(.11) 88 (11)

Table 5.6: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. (Two Groups) Error rate (with standard deviation) for
several discriminant functions.

Dimension: p

6 10 20
SRDF .17 (.07) .13 (.06) .05 (.03)
SRDF-B .15 (.05) .11 (.05) .10 (.07)
SQDF .16 (.05) .19 (.08) .20 (.05)
SLDF .48 (.06) .46 (.06) .45 (.06)
SEDF .48 (.06) .46 (.06) .43 (.05)

WoRDR P4
ySRDF 13 (.
/_\SRDF—B 04 (
ySRDF-B 19 (.
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Table 5.5: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences concentrated in the High-Variance Subspace. (Two Groups)
Error rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF 02 (.02) .03 (.02) .04 (.02)
SRDF-B .02 (.02) .02 (.02) .04 (.02)
SQDF .06 (.04) .19 (.09) .23 (.09)
SLDF 03 (.02) .05 (.03) .16 (.08)
SEDF 02 (.02) .02 (.02) .04 (.02)
i RBE 95 (.19) .96 (.16) .93 (.23)
¥SRDF 80 (.34) .87 (.28) .91 (.18)
ASRDF-B 36 (.12) .14 (.05) .01 (.00)
FSRPPEE 67 (¢18)_— 75-(11)-_.88-(11)

Table 5.6: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. (Two Groups) Error rate (with standard deviation) for
several discriminant functions.

Dimension: p

6 10 20
SRDF 17 (.07) .13 (.06) .05 (.03)
SRDF-B .15 (.05) .11(.05) .10 (.07)
SQDF .16 (.05) .19 (.08) .20 (.05)
SLDF 48 (.06) .46 (.06) .45 (.06)
SEDF .48 (.06) .46 (.06) .43 (.05)
RERDE 14 (.14) .11 (.11) .15 (.12)
4SRDF 13 (.21) .47 (.32) .65 (.30)
ASRDF-B 04 (.02) .00 (.00) .00 (.00)
¥SRDF=B 12 (.21) .28 (.33) .50 (.34)
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Table 5.7: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. (Two Groups) Error rate (with standard deviation)

for several discriminant functions.

Dimension: p

6 10 20
SRDF .04 (.03) .06 (.04) .04 (.04)
SRDF-B .02(02) .04 (.03) .05 (.05)
SQDF 02 (.02) .08 (.07) .11 (.04)
SLDF 03 (.02) .09 (.04) .18 (.06)
SEDF 09 (.04) .13 (.05) .13 (.05)
NEEE 74 (.37) .50 (.34) .42 (.26)
4SRDF 34 (.31) .52 (.35) .74 (.31)
ASRDF-B 05 (.04) .01 (.01) .00 (.00)
¥SRDF-B 13 (.15) .28 (.33) .38 (.32)

Table 5.8: Equal, Spherical Covariance Matrices. (Three Groups) Error
rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF 12 (.04) .13 (.04) .15 (.06)
SRDF-B .11 (.03) .11 (.03) .14 (.04)
SQDF 22 (.06) .39 (.07) .41 (.07)
SLDF .13 (.04) .17 (.05) .25 (.06)
SEDF 11 (.03) .12 (.03) .14 (.04)
ASRDF 80 (.34) .78 (.36) .76 (.36)
FREE 77 (.30) .78 (.30) .82 (.24)
ASRDF-B 90 (.04) .76 (.05) .53 (.08)
¥SRDF-B 93 (.09) .91 (.12) .88 (.15)
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Table 5.9: Unequal, Spherical Covariance Matrices. (Three Groups) Error

rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF 19 (.04) .17 (.05) .15 (.05)
SRDF-B .19 (.05) .17 (.05) .17 (.10)
SQDF 31 (.06) .46 (.07) .51 (.07)
SLDF 23 (.04) .27 (.05) .35 (.07)
SEDF .21 (.04) .22 (.04) .25 (.05)
h i 33 (.36) .21 (.23) .16 (.16)
5SRDF 71 (.31) .86 (.21) .88 (.20)
NARER=5 w5 (m8) SN (50)1 01 §02)
¥SRDF-B 89 (.21) .89 (.20) .85 (.25)

Table 5.10: Equal, Highly Ellipsoidal Covariance Matrices with Mean
Differences concentrated in the Low-Variance Subspace. (Three Groups)

Error rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF .05 (.03) .10 (.05) .23 (.06)
SRDF-B .04 (.02) .15(.09) .29 (.07)
SQDF .10 (.04) .30 (.08) .46 (.06)
SLDF .05 (.02) .09 (.04) .21 (.05)
SEDF 21 (.05) .27 (.06) .33 (.06)
ASRDF 95 (.17) .83 (.27) .79 (.28)
ySRDF 02 (.08) .04 (.13) .20 (.23)
ASRDF-B 68 (.30) .80 (.19) .68 (.06)
¥SRDF=B 00 (.00) .28 (.40) .78 (.34)
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Table 5.11: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif-
ferences concentrated in the High-Variance Subspace. (Three Groups)
Error rate (with standard deviation) for several discriminant functions.

Dimension: p

6 10 20
SRDF .07 (.03) .10 (.03) .13 (.04)
SRDF-B .07 (.03) .10 (.03) .13 (.04)
SQDF 15 (.05) .35 (.08) .43 (.08)
SLDF .08 (.03) .13 (.04) .23 (.06)
SEDF 07 (.02) .10 (.03) .12 (.03)
ASRDF 83 (35) .86 (.27) .84 (.30)
ySRDF 65 (.39) .62 (.35) .77 (.24)
ASRDF-B 74 (29) .81 (.21) .71 (.04)
¥SRDF-B 74 (114) .81 (.11) .85 (.08)

Table 5.12: Unequal, Highly Ellipsoidal Covariance Matrices with Zero
Mean Differences. (Three Groups) Error rate (with standard deviation) for
several discriminant functions.

Dimension: p

6 10 20
SRDF 20 (.06) .14 (.05) .13 (.06)
SRDF-B .16 (.05) .12 (.05) .21 (.09)
SQDF .16 (.04) .20 (.06) .24 (.05)
SLDF .60 (.05) .59 (.05) .59 (.06)
SEDF 60 (.05) .59 (.05) .57 (.05)
ASRDF 03 (.05) .04 (.06) .08 (.07)
S 12 (.15) .30 (.16) .45 (.18)
ASRDF=B 2 (.06) .00 (.01) .00 (.00)
FSRDF=B 04 (.00) .11 (.14) .68 (.32)
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Table 5.13: Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. (Three Groups) Error rate (with standard deviation)
for several discriminant functions.

Dimension: p

6 10 20
SRDF .06 (.03) .06 (.03) .07 (.04)
SRDF-B .05 (.04) .05 (.04) .06 (.04)
SQDF .04 (.02) .10 (.06) .13 (.04)
SLDF .16 (.04) .18 (.04) .28 (.06)
SEDF .15 (.04) .16 (.04) .20 (.04)
WERBE 07 (.14) .09 (.10) .14 (.13)
ySRDF 17 (.20) .37 (.22) .51 (.20)
ASRDF-B 10 (.22) .06 (.17) .01 (.07)
¥SRDF-B 13 (.14) .24 (.20) .47 (.28)

these instances, the value of 4 for the SRDF-B appears to be too high, which in-
dicates inappropriate regularisation param;eter estimates, and consequently a high
error rate. On the whole, however, the model selection procedure of the SRDF-B
performs well, and generally in agreement with the model selection procedure of
the SRDF.

The standard deviations of the selected regularisation parameters tended to be
smaller for SRDF-B, perhaps because of the more direct nature of the path taken
to select the pair of values (5\,'7) in the parameter selection procedure in SRDF-B
compared with SRDF. Furthermore, the model selection process in SRDF-B affords
a unique choice of the estimated best pair of values (;\, %), without having to break
ties in an arbitrary way, as for SRDF.

In conclusion, it can be stated that the Bhattacharyya distance between groups
does indeed provide information as to appropriate regularisation parameter values
to use in expression (3.7). This can be used to obtain a classification rule which
seeks to minimise the actual overall error rate for data from two or more specified
normal distributions. Unfortunately, no tidy, direct theoretical relationship appears
to exist in the literature between components of the Bhattacharyya distance and
the error rate. Thus the derivation of the model selection procedure was based
on empirical data and it can be seen to perform as well as the model selection
procedure developed by Friedman (1989) in the SRDF method, at least under the
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tested range of simulated conditions.

Computational considerations

A substantial advantage of the model selection procedure in SRDF-B over that of
SRDF relates to the computation time required for each method. Table 5.14 gives
approximate ratios (SRDF-B/SRDF) of CPU times for various dimensions. The
actual CPU time in minutes required to estimate the regularisation parameters
from samples of size 14 from each group for SRDF-B are given in brackets in the
table. These are the times required to run the procedures, which are all written in
MATLAB™ (1995), on a SUN Sparcstation ELC.

Table 5.14: Ratios of CPU times required for each method (SRDF-B/SRDF).
6 p=10 p =20

12) .02 (.23) .02 (.65)
38) .02 (.67) .03 (2.00)

p —
Two Groups .02 (.
Three Groups .02 (.

These results indicate the large gain in computational efficiency in using SRDF-
B over SRDF. It is expected that as the number of groups increases, the ratio of
CPU times would increase, since SRDF-B deals with each pair of groups in turn.
Nevertheless, the SRDF-B method would still be expected to be considerably faster

than SRDF even for a large number of groups.

5.4 CASE STUDIES

The various classification rules, including SRDF-B, were tested on a number of real
data sets. These case studies are performed to compliment the large simulation
studies of this and previous chapters. The aim of this case study section is to focus
on the performance of the SRDF-B procedure developed in this chapter. Also,
the SEDF is included among the classifiers tested since it was the main subject of
the work in Chapter 2 of this thesis. Comparison is restricted to the criterion of
error rate, although the matter of computational efficiency has already been ad-
dressed in some previous sections. The re-sampling methods employed by SRDF
render it computationally the slowest technique by far. A brief description of each
data set, along with the various classifier error rates (obtained using the technique
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of cross-validation), and regularisation parameter values, is given below. Cross-
validation was chosen over some other re-sampling error-rate estimating methods
(see, for example, Ganeshanandam and Krzanowski (1990), Koolaard and Lawoko
(1993)) such as the 0.632 estimator (Efron (1983)), purely for practical reasons of
computational feasibility. That is, previous work in this research project already
involved cross-validated error rates, and it was decided to use the same computer
programs for the case studies. The aim is to observe the effect of regularisation
on the cross-validated error rate, and also to compare Friedman’s original method
of determining the degree of regularisation with the new method employing Bhat-

tacharyya distance.

Insect data

Lindsey, Herzberg and Watts (1987)

Three variables were measured on each of ten insects for each of three species of
a type of insect, Chaetocnema. The first variable is the width of the first joint
of the first tarsus; the second is the width of the first joint of the second tarsus,
and the third is the maximal width of the aedugus. The objective would be to
correctly classify a given individual as belonging to one of the species. The cross-
validated error rates obtained for the various methods were: SRDF .03, SRDF-B
.07, SQDF .03, SLDF .07, SEDF .17. Values of (},#) for the SRDF were (.97, .43)
while those for SRDF-B were (.53,.50). The problem is well posed here (n/p ratio
is 3.3), so the benefits of regularisation are not expected to be significant, and
this is shown to be the case. All methods except the SEDF yield low error rates,
since maximal eigenvalue shrinkage removes the moderately ellipsoidal nature of
the group covariance matrices in the example, and decreases the rule’s ability to

separate the groups.

Cancer data

Hong and Yang (1991)

The cancer data set was previously analysed by Aeberhard et al. (1994) using
various classification rules including the SRDF. This data set relates to three types
of pathological lung cancer. Each cancer type is described by 56 variables with
each variable taking on one of the integer values 1 through 4. The sample sizes
from each cancer type, or group, (9, 13 and 10 respectively) are very small. Hence,

this problem is extremely ill-posed. The cross-validated error rates for the various
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methods were SRDF .50, SRDF-B .44, SQDF .72, SLDF .60, SEDF .40. The values
of (A, %) were (.52,.75) for the SRDF and (.53,.95) for SRDF-B. It is clear that
a high degree of eigenvalue shrinkage is necessary to stabilise the covariance esti-
mates. In fact the SEDF has the lowest error rate in this case, implying that much
of the information in the covariance estimates does not improve discriminability in
this case, where there is such a large dimensionality and so few observations.

The magnitude of the error rate estimates for the SRDF in this example is
somewhat different to that obtained by Aeberhard et al. (1994), probably due
to differences in the implementation details of the method. The following error
rates were obtained by Aeberhard et al.: SQDF .69, SLDF .81, SRDF .37. These
differences include the particular regularisation grid specified in the model selection
procedure, as well as the precise implementation of the procedure which replaces
the zero eigenvalues of the covariance estimates with positive numbers sufficiently
large to permit numerically stable matrix inversion (see Section 5.3). Both of these
factors could affect the error rate obtained, particularly for this high-dimensional
data set which has a very small n/p ratio."The SQDF and SRDF are also affected

by the procedure which replaces the zero eigenvalues.

Diabetes data

Reaven and Miller (1979)

This data set comprises five variables measured on each of 145 non-obese individuals
belonging to one of three groups which relate to the type of diabetes they have.
The groups are: overt nonketotic diabetes (33 observations), chemical subclinical
diabetes (36 observations) and the final group is termed normal, indicating no
diabetes (76 observations). The problem is again well posed, and because of this,
little regularisation is necessary. The model selection procedures of SRDF and
SRDF-B do the right thing in this regard. It appears that eigenvalue shrinkage
is not beneficial for classification, and even the small amount (y = .08) employed
by the SRDF results in a slightly greater error rate for that classification rule
compared to SRDF-B and SQDF. The cross-validated error rates are: SRDF .15,
SRDF-B .11 SQDF .10 SLDF .11 and SEDF .14. The values of (},%) for SRDF
are (.28,.08), and for SRDF-B are (.12,.00). The model selection procedure for
SRDF-B performs very well in this case.
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Kangaroo data

Andrews and Herzberg (1985)

This data set relates to three species (groups) of kangaroo. Each group is described
by nine variables measuring physical characteristics of the animals. The data set
was split by sex and discriminant analysis was performed on males and females
separately. The sample sizes for each sex/species combination was 25 with the
exception of the sample of males from group 2 which numbered 23.

The error rates for the various classifiers applied to the male kangaroo data were
SRDF .32, SRDF-B .30, SQDF .34. SLDF .25 and SEDF .51. The values of (},7)
for SRDF are (.86,.13), and for SRDF-B are (.18,.00). The cross-validated error
rates for the various classifiers applied to the female kangaroo data were: SRDF .25,
SRDF-B .28, SQDF .40, SLDF .25 and SEDF .52. The values of (), %) for SRDF
are (.82,.01), and for SRDF-B are (.17,.00). Eigenvalue shrinkage appears not
to be beneficial in this instance, but employing covariance mixing does, although
there does not appear to be a clear relationship between the degree of regularisation
and the error rate. The model selection procedures for SRDF and SRDF-B select
similar values for the parameter 7, but not A, although the resulting error rates for
each rule are similar. The SLDF performs slightly better than the two regularised

rules for this data, which is an indication of very similar group covariance matrices.

Tibetan Skull data
Morant (1923)

This data set comprises 32 observations collected from skulls in parts of Tibet.
There are two types (groups) of skull represented in the sample, 17 from the Sikkim
area (type A) and 15 from the province of Khams (type B). The data consist of
five physical measurements made on each skull. The cross-validated error rates for
the various classifiers applied to the data were: SRDF .22, SRDF-B .22, SQDF
.44, SLDF .34 and SEDF .22. The values of (},%) for SRDF are (1.0,.92), and
for SRDF-B are (.46,.96). Despite being a seemingly well-posed problem, these
results indicate that a high degree of eigenvalue shrinkage is beneficial, as well as
a substantial degree of covariance mixing. This is perhaps an unexpected result,
but it indicates that the reduction in variance achieved by regularisation can be of
benefit in some situations where the sample size to dimension ratio is of a moderate

magnitude.
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In conclusion, these case studies give a variety of examples in which some clas-
sifiers perform better than others in some cases, and worse in others. However, the
regularised rules always perform as well as any of the other three. In addition, the
method proposed in this chapter, SRDF-B, performs about as well as the original
rule SRDF in all instances. Thus it seems that the Bhattacharyya distance can
indeed be employed to give reliable indications as to appropriate values for the reg-
ularisation parameters. While these values are not always close to those obtained
by SRDF through re-sampling techniques, the assessed error rates are quite close,
illustrating the fact that in many cases, as mentioned earlier, it is not the degree
of regularisation that is important to discrimination in a given case, so much as its

presence in some appropriate form.
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Chapter 6

ANALYTIC ASSESSMENT OF
REGULARISATION PARAMETERS
ON THE PROBABILITY OF
MISCLASSIFICATION OF THE
QUADRATIC DISCRIMINANT
FUNCTION

6.1 INTRODUCTION

In Chapters 3 to 5, Monte-Carlo simulation studies have been used to estimate error
rates and assess the effect of the regularisation parameters on the overall error rate
of the sample quadratic discriminant function with regularised covariance matrices.
Ideally, one would prefer to study the effect of the regularisation parameters by
using an exact analytic expression of the overall probability of misclassification of
the SQDF. This is the motivation for the work done in this chapter. That is, using
analytic results rather than empirical/simulation evidence, it is desired to confirm
or obtain support for the results depicting the relationship between regularisation
parameters and error rates, which were obtained in Chapters 3 to 5, largely from
simulation experiments.

Suppose we have two multivariate normal populations II; and II, where the
population parameters are known. The true error rates can be calculated exactly
for the LDF (where the population covariances are assumed equal) for any dimen-
sion, p. In the case of unequal covariances these error rates are difficult to evaluate
because percentage points for linear combinations of non-central chi-squared ran-

dom variables must be calculated, Bayne and Tan (1981). Various authors have
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commented on this problem, including Gilbert (1969) and McLachlan (1975). Sev-
eral studies of error rate properties in the case of unequal covariance matrices have
examined the special case of proportional covariances with zero off-diagonal matri-
ces. Very few analyﬁical results exist regarding the misclassification probabilities
of the QDF, and exact expressions for the error rates do not exist, with the ex-
ception of an expression recently derived by Houshmand (1993). This expression,
however, is limited to the case of two univariate populations only, and where both
the means and variances of the populations must be unequal. Nevertheless, it is a
manageable exact expression for the error rate of the QDF, and since the RDF is
just a variant of the QDF where the population covariance estimates are replaced
by regularised estimates, we can use these expressions to investigate the effect of

the regularisation parameters on this error rate of the QDF.

6.2 ERROR RATES OF THE QDF IN THE
LITERATURE ’

There has been some attempt in the literature to investigate error rates associ-
ated with the QDF. In this section, a brief summary of some relevant papers, in

chronological order, is given.

(i) Han (1969) obtained the distribution of the QDF for the two population
case with known (proportional) covariance matrices 3, and ¥, such that
3, = 0%, (62 > 1). Using asymptotic expansions this distribution was

obtained for the case of unknown population means.

(ii) Gilbert (1969) investigated the performance of the LDF when the popula-
tions are normal but the covariances are unequal. It was compared against
the QDF situation when all parameters are known. The error rate was one
criterion upon which the comparison was made, and it was found that the
QDF performed better than the LDF for larger p, and for more unequal co-
variances. It should be pointed out that the values of p used by Gilbert were
small (p = 1,2) and moderate (p = 6,10) only. The error rate for the LDF
was compared to an approximation of the error rate for the QDF where, in
both cases knowledge of the parameters was assumed. The results showed

the expected conclusion that pooling covariances (as in the LDF) is generally
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(i)

(vii)

harmful to discrimination if the covariances are in fact unequal.

McLachlan (1975) obtained the expected error rates of the SQDF in the form
of asymptotic expansions for the case of two multivariate populations with

unequal means and proportional covariance matrices.

Bayne and Tan (1981) found approximating methods to obtain misclassifi-
cation probabilities for the general covariance case. The purpose of their
paper was to study the effect of unequal covariances, and correlation between
variables, on error rate. The study was limited to two bivariate populations

whose mean vectors are p1; = 0, f1o = (p1, 42), and whose covariance matrices

2
a3 pPO102
EQ — 2 .
pPo09 a5

The matrix 3; may be diagonalised by a linear transformation of the obser-

are X, =1 and

vations. Four settings of the parameters p, o, and o, were proposed, and the
distributional form of the QDF was written for each. Pearson curves were
used to evaluate approximate error rates for each setting. The effects of p on

QDF error rate was examined, for different values of po, 0, and os.

Bayne, Beauchamp and Kane (1984) evaluated the error rates for the QDF
via numerical integration, in the case of two bivariate normal populations

with known parameters, and no conditions on the parameters.

Wakaki (1990) obtained asymptotic expansions of the distribution of the
SLDF and SQDF. Comparison of the estimated error rates of each method
was made in the special case of proportional covariance matrices, and in the

situation where the sample sizes are equal.

Houshmand (1993) provided the expression for the exact distribution of the
QDF for two univariate normal populations (p = 1), and hence derived the
exact error rates for this case in the form of integrals which can be calculated
using numerical techniques. In the case of two multivariate normal popula-
tions, Houshmand describes an existing approximation for the distribution
of the QDF, and gives a new approximation. From these, the error rates
may be approximated. Methods for computing the above error rates are also

provided in the paper, and references therein.
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6.3 COMPUTING THE ERROR RATE FOR THE QDF
ANDITS DERIVATIVE IN THE UNIVARIATE CASE

In this section we outline the expressions for the error rate of the QDF in the two
univariate normal population case, and its derivative with respect to the regulari-
sation parameters. In Chapters 3 and 4 it was reported in the discussion about the
overall sample error rate for various A and <y, that the estimated error rate surface
over the (), v) grid was reasonably flat in the A direction. It is of interest to ex-
amine how the true overall error rate changes with the regularisation parameters,
in order to get some indication as to the effect of A on the QDF true error rate in
the two univariate population situation. This can be achieved by looking at the
rate of change (i.e. derivative) of the error rates with respect to the regularisation
parameters. Houshmand (1993) obtained the following expressions for P(1|2) and
P(2]1), where P(i|j) denotes the probability of classifying an observed vector z into
population I1; when it in fact belongs to population IT; (see Chapter 1, Section 1.2).

In the univariate case, population Il; has mean u; and variance of, & = Ly

U X zi-2exp {—2z/2}  exp~® (0.54,)'
Pa) = 1- [ —— . d .
112) o = 2HN(3 4 1/2) % i ‘ (6.1)
where
ﬁl Ug(y’l - ‘1’2)2
(o1 — 03)?
Uy = o}(K+r)(o2-02)7!
K = In{o?/02} for equal priors and costs of misclassification-
and
- (ﬂl—#2)2
A B T
01 - 02
Ur & z-12exp {—2/2}  exp~5%2 (0.58)"
P(2i) = 1- [ _ d 6.2
@) 0 &= TG +1/2) i < (62)
where

0?(#1 - #2)2
(0 - 03)?

P
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and
Uy = o3(K+r)(o?-02)"L

The effects of the regularisation parameters on these error rates are studied
by evaluating the derivative of the probabilities with respect to the regularisation
parameters. The derivatives of P(1|2) and P(2|1) with respect to A have been
obtained, but not with respect to the eigenvalue shrinkage parameter -y, since in
the univariate situation such shrinkage has no effect anyway. The primary practical
use of 7 lies in its application, in the multivariate situation, to the sample covariance
matrix, whereas in this chapter we are dealing with population parameters which
are assumed known. The expressions (6.1) and (6.2) are valid in all situations
where p; # po and o, # o9, since they are QDF error rates. Hence the derivatives
obtained are also not finite if either the population means or variances are equal,
as is the case when A = 1.

In this chapter the derivative of P(1|2) with respect to A is evaluated for a
variety of settings of p,, u2, 0% and o2 O L range 0 < A < 1. The four settings
of the population parameters chosen represent four general classification cases in
the univariate situation: means and variances similar in magnitude, means similar
but variances disparate, means separate but variances similar, and both means and
variances dissimilar. They serve to give an impression of the effect of the covariance
mixing parameter on error rate. Four figures, (Figures 6.1 to 6.4), are presented
with the results in Section 6.6, showing how the rate of change of the overall error
rate P, = 0.5P(1]|2) + 0.5P(2]1) is affected by A.

The integrals in expressions (6.1) and (6.2), and similar integrals in the (deriva-
tive) expression (6.3) in Section 6.4, were computed using the algorithms of Lau
(1980) and Narula and Desu (1981). To do this, a computer program was written
in FORTRAN 77 and was based on one received by the author from Houshmand
(1995). Additional programs were written using MATLAB™ to complete compu-
tation of expression (6.3).

The expression %&Iﬂ is given in the following section.
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6.4 DERIVATIVE OF P(1|2) IN THE UNIVARIATE

SITUATION

From Houshmand (1993), the rate of change of one component (P(1]2)) of the

overall error rate with respect to the regularisation parameter X is given by:
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X
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Rewriting the above expression we obtain

dP(1)2) o s z"‘%exp{—%z} " exp{—%ﬁl} (%ﬁl)idz
d ”3/0 & 9T+ 1) i

m & 2 texp {1z} exp{"‘%ﬁl} (%ﬁl)ii
+Zn4/ 2 2"+%[‘(i+%) > 3 - dz

e {41} (38)'

& 230 (i + 1)

(6.3)
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and k. k, and k, are as defined earlier.

6.5 ERROR RATE FOR QDF: MULTIVARIATE
NORMAL POPULATIONS WITH DIAGONAL
COVARIANCE MATRICES

Consider the situation of two multivariate ;10rmal populations, I1; : N(u1,X;) and
I1; : N(po,X,) where ¥, and X, are diagonal matrices, with leading diagonal ele-
ments denoted as (07,,0%,...,0%,)) and (03,,0%,...,03,) respectively. The mean
vectors p; and p, are given by (i1, p12, - - -, p1p) and (po1, po2, - - -, pop). Housh-
mand (1993) has given an approximation for the error rates P(1|2) and P(2|1) for
the QDF in the case of 01; # 09; and p1; # poi, for all z. This is an extension of
Patnaik’s (1949) method of approximating the distribution of a linear combination
of independent non-central Chi-square variates, which the QDF is. The technique
involves the conjecture that such a linear combination as stated above may be ap-
proximated by a multiple of central Chi-square variates with v degrees of freedom,
cXty-
Houshmand (1993) obtained the following expressions for the error rates:

l—Pr[x?u)<(K+r—a)/c] ifc>0

6.4
Pr [x%,,) <(K+r- a)/c] if ¢ <0, (64)

P(1]2) = {
where

K = In{|%]|/|%|}
Xp: (1 — p2j)?

T
i=1 91 ~ 9%



Chapter 6. Regularisation effects on QDF error rate 140

. — Z3Z, — 222
e
Z3
cC = —
4Z,
823
n = 2
Z3
p
j=1
p
Zy = 2) al(1+263)
j=1

and
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Pr [X(Q‘,) <(K+r- a)/c] ifc>0

l—Pr[)(2 <(K+r—a)/c] ifc<0 (65)
(v) g

P(2]1) = {

where K, r, a,c,n, Z,,Z,, Z3 have the same form as above except that now

= 2 2y =2
a; = (‘713' - U?j)a2j
and
0 = of;(ms — poj)(a}; —03;)7h

Settings of the population parameters were used which are similar to those six
conditions used in the simulation studies of Chapters 3 to 5 (see, in particular,
Section 3.5). Some of the mean vectors and covariance matrices had to be altered
slightly since the expressions (6.4) and (6.5) are not valid if corresponding elements
of either p; and po, or ¥, and ¥, are equal, which is the case for most of the
six conditions. Figures 6.5 to 6.22 are displays of the overall error rate, P, =
(P(1|2) + P(2]1))/2 (assuming equal prior probabilities), as it varies with respect
to the covariance regularisation parameters A and v under the above six conditions.

That is, regularisation of the same form as that in expression (3.7) is applied to
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matrices 3, and ¥,. The resulting covariance matrices are used in expressions
(6.4) and (6.5) above.

As mentioned before, the error rate expressions in both the univariate and
multivariate cases above are for the true error rate. It would have been most ap-
propriate to have been able to use similar expressions for the error rate conditional
on the training sample since it is on the sample estimates that regularisation is
employed. No exact, analytical expression exists for the error rate of the SQDF,
however, as has been already stated. In any event, the effect of regularisation on
the SQDF was the very focus in Chapters 3 to 5 in the various simulation stud-
ies. With this in mind, the purpose of the work in this chapter is to analytically
and algebraically confirm some of the findings of previous chapters, particularly

regarding appropriate magnitudes of A and v for given parameter settings.

6.6 RESULTS

6.6.1 Univariate populations

The results of evaluating expressions (6.1) and (6.2) for various population param-
eters and values of A are now discussed. Figures 6.1 to 6.4 and Tables 6.1 to 6.4
show how the overall error rate, P, as well as P(1|2) and its derivative vary with
A. As a general comment, it may be observed that the overall error rate is not
greatly affected by lambda. Over most of the range of ), there is usually a small
rate of change in error rate with respect to A, although in some conditions, as A
nears 1, the error rate changes more rapidly.

Figure 6.1 shows P, changing with A in the case where both the population
means and variances are similar in magnitude: (u; = 0, p2 = 0.1,06% = 0.5 and 02 =
1). The overall level of error rate is high here since these are difficult conditions
for discrimination between the populations. Since the population means are close
together, if A is increased and thereby the variances tend to equality, then P,
increases due to the large ‘overlap’ between the populations. The overall error rate
increases by around 15% as A increases from 0 to 0.9, and the rate of increase
is steady for the most part but decreases as A approaches 1. From Table 6.1 it
may be observed that P(1]2) increases from A = 0 to approximately A = 0.7, then
decreases rather rapidly as A nears 1. On the other hand, P(2|1) increases steadily

throughout the range of A until about A = 0.8, when it appears to increase rapidly
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Overall Error Rate versus Lambda
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Figure 6.1: Overall error rate (P.) versus Lambda (A) when the two population
means and variances are similar. (p=1,u; = 0, =0.1,0? = 0.5 and 02 = 1)

as A approaches 1. These two error rates presumably rapidly tend to equality as A
increases from 0.9 and approaches 1. However, the computations in this range of
A are unstable because the summation to infinity in expressions (6.1) and (6.2) is
difficult to obtain.

These results indicate that using covariance mixing in conditions where the
population means are close together has the effect of diminishing any information
(that the covariance matrices might contain) which could be used to separate the
populations. Hence error rates increase. This is in agreement with conclusions
from the simulation studies under similar conditions which are also difficult for
discrimination.

Figure 6.2 shows the overall error rate against A when the population means are
also close together but the variances are more disparate. Once again P, increases
as A increases from 0 to 0.9, but this time by over 40%, since making the variances
more similar in magnitude increases the ‘overlap’ between the populations. The
rate of increase of P, is close to constant across the whole range of A, and P(1|2)
and P(2]1) behave in a similar way to the previous case, with P(1|2) peaking
and dropping between 0.8 and 1, and P(2|1) increasing more rapidly in the same
range of A (Table 6.2). Once again the general conclusion can be made that if
the population means are very close together, the (co)variances should not be

regularised to equality.
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Table 6.1: Error rates in the case of similar population means and variances. (1, =
0,2 =0.1,02 = 0.5 and 02 = 1)

A P(z) 4B PRI P
0.0 0.5922 0.0954 0.2370 0.4146
0.1 0.6016 0.0920 0.2446 0.4231
0.2 0.6106 0.0884 0.2521 0.4313
0.3 0.6193 0.0844 0.2595 0.4394
0.4 0.6275 0.0791 0.2669 0.4472
0.5 0.6350 0.0704 0.2744 0.4547
0.6 0.6412 0.0513 0.2823 0.4618
0.7 0.6440 -0.0063 0.2922 0.4681
0.8 0.6347 -0.2340 0.3118 0.4732
0.9 0.5814 -0.8618 0.3707 0.4761

Overall Error Rate versus Lambda

Overall Error Rate

034 036 038 040 042 044 046 048

0.0 02 04 06 08
Lambda

Figure 6.2: Overall error rate (P.) versus Lambda (\) when the two population
means are similar, but their variances are disparate. (p =1, 4, = 0,42 =0.1,0% =
0.5 and 02 = 2)
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Table 6.2: Error rates in the case of similar population means, but variances dis-
parate. (i, = 0, 42 = 0.1,07 = 0.5 and 02 = 2)

A _Pap) SR P P,
0.0 0.5025 0.2460 0.1734 0.3379
0.1 0.5259 0.2231 0.1887 0.3573
0.2 0.5473 0.2052 0.2034 0.3753
0.3 0.5670 0.1907 0.2177 0.3923
04 0.5855 0.1786 0.2317 0.4086
0.5 0.6028 0.1682 0.2454 0.4241
0.6 0.6191 0.1582 0.2590 0.4391
0.7 0.6344 0.1454 0.2725 0.4534
0.8 0.6476 0.1096 0.2863 0.4669
0.9 0.6468 -0.3130 0.3094 0.4781

The third case involves population means which are reasonably far apart, and
variances which are close together (Figure 6.3). The overall error rate increases
only slightly (by less than 1%) as A increases from 0 to 0.8, and appears to level
off for higher values of A. From Table 6.3 it may be seen that P(1|2) decreases at
a slow but almost constant rate as A increases to about 0.8, while P(2|1) increases
at a similarly slow but very steady rate. The level of P, is much lower than
for the previous two cases, due primarily to the much greater separation between
population means. Since the variances are similar to begin with, regularisation
with A does not affect the error rate much, as is evident from both Figure 6.3 and
Table 6.3.

The final case looked at in this section involves two populations whose means
and variances are quite dissimilar. From Figure 6.4 and Table 6.4 it is again evident
that P, (nor indeed P(1]2) or P(2|1)) change much as A increases from 0 to 0.8, with
P, increasing by 5%. Once again, P(1]2) and P(2|1) change in opposite directions
at a very slow, almost constant rate. The level of error rate is quite low due to
the large separation between means. This case and the previous one illustrate the
fact that (co)variance mixing using the A parameter is less effective when there
is reasonable separation between population means, but it also often affects the

different components of P, in opposite ways.
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Overall Error Rate versus Lambda
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Figure 6.3: Overall error rate (P.) versus Lambda (A) when the two population
variances are similar, but their means are disparate. (p = 1,4y = 0, o = 1,0% =

0.75 and 02 = 1)

Table 6.3: Error rates in the case of similar population variances, but disparate
means. (p; = 0,9 =1,0?2 =0.75 and 02 = 1)

A Pa) €UD pop p,
0.0 0.3396 -0.0392 0.2491 0.2944
0.1 0.3357 -0.0401 0.2539 0.2948
0.2 0.3316 -0.0410 0.2587 0.2951
0.3 0.3275 -0.0418 0.2634 0.2955
0.4 0.3232 -0.0426 0.2682 0.2957
0.5 0.3189 -0.0434 0.2730 0.2960
0.6 0.3146 -0.0440 0.2777 0.2962
0.7 0.3101 -0.0447 0.2825 0.2963
0.8 0.3056 -0.0452 0.2872 0.2964
0.9 n/a n/a n/a n/a
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Overall Error Rate versus Lambda
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Figure 6.4: Overall error rate (P,) versus Lambda ()\) when the two population

means and variances are disparate. (p = 1,4 = 0, 42 = 3,07 =1 and 02 = 2)

Table 6.4: Error rates for the case of disparate population means and variances.

(m1 =0,y =3,02 =1 and 02 = 2)

dP(1]2)

A\ PO LU pep) P,
0.0 0.1294 -0.0110 0.0803 0.1049
0.1 0.1282 -0.0129 0.0836 0.1059
0.2 0.1268 -0.0147 0.0869 0.1069
0.3 0.1253 -0.0164 0.0901 0.1077
0.4 0.1235 -0.0179 0.0932 0.1084
0.5 0.1217 -0.0194 0.0963 0.1090
0.6 0.1197 -0.0208 0.0993 0.1095
0.7 0.1175 -0.0221 0.1022 0.1099
0.8 0.1152 -0.0234 0.1050 0.1101
09 n/a n/a n/a n/a
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Figure 6.5: Overall error rate (P.) versus Lambda (A) and Gamma () under
conditions of equal and spherical covariance matrices (p = 6). (i.e. Condition 1 in
Chapter 3, Section 3.5)

6.6.2 Multivariate populations

The results of evaluating expressions (6.4) and (6.5), under the conditions stated in
the previous section (Section 6.5), are now discussed. The figures show P, plotted
against A and 7.

From Figures 6.5, 6.6 and 6.7, it is clear that in the case of similar, spherical
covariance matrices, the error surface over the (A,7) grid is very flat. This con-
firms observations from the simulation studies of previous chapters. The choice
of high (close to one) values for both regularisation parameters is also supported
from these figures, and, on such a flat surface as this, shows how surprisingly sen-
sitive the model selection procedures of Friedman and that in Chapter 5 (using
Bhattacharyya distance) are.

It can be observed from these figures (i.e. Figures 6.5, 6.6 and 6.7) that ~ is
shown to have no effect on error rate. This is because the covariance matrices
being used are already perfectly spherical. It has been shown from the simulation
studies, however, that this condition is ideal for applying eigenvalue regularisation
to the sample covariance matrix, since the bias introduced by it is towards the true
value. The magnitude of the true error rate for these parameter settings (around

10%) is comparable to that of the error rates of the SRDF in the simulation study
of Chapter 3 (Section 3.5).
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Figure 6.6: Overall error rate (P.) versus Lambda (\) and Gamma (v) under

conditions of equal and spherical covariance matrices (p = 10). (i.e. Condition 1
in Chapter 3, Section 3.5)
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Figure 6.7: Overall error rate (P.) versus Lambda ()\) and Gamma () under

conditions of equal and spherical covariance matrices (p = 20). (i.e. Condition 1
in Chapter 3, Section 3.5)
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Figure 6.8: Overall error rate (P.) versus Lambda (\) and Gamma () under
conditions of unequal and spherical covariance matrices (p = 6). (i.e. Condition 2
in Chapter 3, Section 3.5)

For the case of unequal, spherical covdriances (Figures 6.8, 6.9 and 6.10), the
effect of covariance regularisation using A is substantial. The minimum error rate
occurs when A is zero. Again, since the covariance matrices are already perfectly
spherical, there is no effect of v on the true error rate in this situation, although
it is clear that in practice eigenvalue shrinkage will be beneficial since it makes the
resulting matrix closer to its (true) spherical shape. The magnitude of the true
error rate surface at its minimum is comparable to the minimising cross-validated
error rate for the SRDF in Chapter 3, between 10% and 14%.

For the case of similar, highly ellipsoidal covariance matrices, with mean differ-
ences in the low variance subspace (Figures 6.11, 6.12 and 6.13), the detrimental
effect of v regularisation on error rate is obvious. This result is in agreement with
findings from the simulation studies of previous chapters. Since the population
mean differences are in the low variance subspace, those differences are identi-
fiable if the covariance matrices remain ellipsoidal. Eigenvalue shrinkage causes
the covariance matrices to become more spherical, and the resulting increase in
variance in the low variance subspace leads to the mean differences becoming less
identifiable, and hence error rate increases.

Since the population covariances are very similar in this case, A is shown to have

virtually no effect on error rate, since A shrinks the covariances to their average.
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Figure 6.9: Overall error rate (P.) versus Lambda (A) and Gamma () under

conditions of unequal and spherical covariance matrices (p = 10). (i.e. Condition
2 in Chapter 3, Section 3.5)
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Figure 6.10: Overall error rate (P.) versus Lambda (A) and Gamma () under

conditions of unequal and spherical covariance matrices (p = 20). (i.e. Condition
2 in Chapter 3, Section 3.5)
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Overall Error Rate
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Figure 6.11: Overall error rate (P.) versus Lambda (A) and Gamma () under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in

the low variance subspace (p = 6). (i.e. Condition 3 in Chapter 3, Section 3.5)
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Overall Error Rate
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Figure 6.12: Overall error rate (P.) versus Lambda (A) and Gamma (v) under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in

the low variance subspace (p = 10). (i.e. Condition 3 in Chapter 3, Section 3.5)
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Overall Error Rate
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Figure 6.13: Overall error rate (P.) versus Lambda () and Gamma (v) under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in
the low variance subspace (p = 20). (i.e. Condition 3 in Chapter 3, Section 3.5)

However, in the sampling situation, we hdve seen that a high value of A is appro-
priate since such shrinkage is exactly what is required. Note that the magnitude
of the error rate at its minimum is again similar to that obtained in the simulation

study from the minimum cross-validating error rate, around 10%.

Turning to the case of equal, highly ellipsoidal population covariance matrices,
but where the mean differences are hidden in the high variance subspace (Fig-
ures 6.14, 6.15 and 6.16), the error rate surface over the (\,<y) grid drops as 7
increases. The variance-reducing effect of eigenvalue shrinkage acts primarily on
the high variance subspace where the mean differences are located, to make them
more identifiable for discrimination purposes.

Two other effects of the regularisation parameters exhibited by these plots (i.e.
Figures 6.14, 6.15 and 6.16) differ from observations made from the simulation
studies of previous chapters. Firstly, if v remains very low, the error rate does
not decrease as the covariance matrices are regularised with increasing A, closer to
the pooled covariance. In the simulation studies for these conditions, the SLDF
performed much better than the SQDF, especially as p became large. The reason for
this stems again from the fact that here we are dealing with population covariance
matrices, which are very close together to begin with, so regularisation to the

pooled covariance has little effect. In the sample situation of the simulation study,
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Figure 6.14: Overall error rate (P,) versus Lambda (A) and Gamma (y) under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in
the high variance subspace (p = 6). (i.e. Condition 4 in Chapter 3, Section 3.5)

the variance reducing effect of both A and 7 prove beneficial for discrimination.
The second difference is in the magnitude of the overall error rate at its min-
imum over the (), <) grid. The minimum rate, from Figures 6.14, 6.15 and 6.16,
is over 30%, whereas in the simulations studies in Chapters 3 to 5 the minimum
cross-validated error rate was less than 5%. The reason for the true error rate
here being so high relates to the sensitivity of the QDF to small differences in the
level of variation in the high variance subspace. The discriminant function uses
any disparity in the covariance matrices as an aid to discrimination. In the sam-
ple situation there can be large differences between corresponding elements of the
differing covariance matrices. These differences aid in the discrimination process,

and in this situation, such differences between the population covariance matrices
are negligible.

In the case of unequal, highly ellipsoidal covariance matrices with zero mean
differences (Figures 6.17, 6.18 and 6.19), there is a clear indication and confirmation
that the appropriate values for A and « are close to (0,0). This corresponds to the
QDF. The error rate rises markedly as A increases, since regularising the covariances
in any way towards their average results in a loss of information with which to

separate the populations.

If A remains very small while +y increases (i.e. the population covariances become
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Figure 6.15: Overall error rate (P.) versus Lambda (A\) and Gamma () under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in

the high variance subspace (p = 10). (i.e. Condition 4 in Chapter 3, Section 3.5)
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Figure 6.16: Overall error rate (P,) versus Lambda (\) and Gamma () under
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in

the high variance subspace (p = 20). (i.e. Condition 4 in Chapter 3, Section 3.5)
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Figure 6.17: Overall error rate (P.) versus Lambda (A\) and Gamma (v) under
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif-
ferences (p = 6). (i.e. Condition 5 in Chapter 3, Section 3.5)

spherical), the true error rate increases less dramatically, and in fact, for p = 20,
rises only slightly. This is consistent with the findings of the simulation studies,
and in fact some degree of eigenvalue shrinkage does prove to be beneficial for
discrimination in practice (i.e. in the sample situation), so as to stabilise the
sample covariance matrices, especially in the high dimensional setting.

The level of the true error rate at its minimum is close to zero, although it
must be remembered that in this case the population means are not identical (i.e.
very difficult for discrimination), but very similar, making the task of separating the
groups that much easier. In the simulation study the minimum cross-validated error
rate was around 14% for p = 6, 10, but close to zero for p = 20. This is consistent
with the results from Friedman (1989), as well as those from Chapter 3. The
covariance matrices are so different from each other that discriminating between

the two populations is relatively easy when no regularisation is applied.

For the situation where the population covariances are highly ellipsoidal but
the population mean differences are greater than in the previous condition, the
true error rate surfaces over the (), <) grid (Figures 6.20, 6.21 and 6.22) remain
similar to the previous cases of zero population mean differences (Figures 6.17, 6.18
and 6.19). Hence, the optimal choice of A and 7 in this situation is again close to

(0,0). In this (and in the magnitude of the error rates) there is agreement with
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Figure 6.18: Overall error rate (P.) versus Lambda (A) and Gamma (y) under
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif-
ferences (p = 10). (i.e. Condition 5 in Chapter 3, Section 3.5)
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Figure 6.19: Overall error rate (P,) versus Lambda (A\) and Gamma (v) under
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif-
ferences (p = 20). (i.e. Condition 5 in Chapter 3, Section 3.5)
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Figure 6.20: Overall error rate (P.) versus Lambda (A) and Gamma (7) under
conditions of unequal, highly ellipsoidal covariance matrices, with non-zero mean
differences (p = 6). (i.e. Condition 6 in Chapter 3, Section 3.5)

the simulation studies of Chapters 3 to 5.°

Summary

In this chapter, an attempt has been made to illustrate the effects of the regularisa-
tion parameters on the true error rate of the QDF in the univariate and multivariate
situations. The primary motivation for this work was to determine if the observed
(empirical) relationships between the (estimated) error rates and the regularisatidn
parameters, as observed in previous chapters, could be confirmed by the true error
rates used here. Only the covariance mixing parameter, A, was relevant in the
univariate situation, however. Expressions for the true error rate (assuming known
population parameters) of the QDF in the two-population case, under conditions of
unequal population means and covariances, were obtained by Houshmand (1993).
For numerical purposes, in the multivariate situation, every element of each pop-
ulation covariance matrix had to be unequal to the corresponding element in the
other covariance matrix.

Despite the fact that regularisation of the kind that is dealt with in this thesis
is designed to be applied to the sample covariance matrices, many results from the
simulation studies agree with the observations made in this chapter. Since there

is no exact analytical expression for the conditional error rate of the SQDF, it is
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Figure 6.21: Overall error rate (P.) versus Lambda ()\) and Gamma () under
conditions of unequal, highly ellipsoidal covariance matrices, with non-zero mean
differences (p = 10). (i.e. Condition 6 in Chapter 3, Section 3.5)
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Figure 6.22: Overall error rate (P.) versus Lambda (\) and Gamma (v) under
conditions of unequal, highly ellipsoidal covariance matrices, with non-zero mean
differences (p = 20). (i.e. Condition 6 in Chapter 3, Section 3.5)
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necessary to employ simulation studies with which to study the effect of regular-
isation, as has been done in this thesis. Nevertheless, expressions such as those
used in this chapter, assuming known or restricted parameter configurations, do

also provide insight into the problem, as has been demonstrated here.
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Chapter 7

SUMMARY

The focus in this thesis has been on addressing the problems associated with (poor)
estimation of the covariance matrix in the problem of statistical discriminant anal-
ysis based on multivariate normal populations. Alternatives to the commonly used
normal-based rules (i.e. sample linear discriminant function and sample quadratic
discriminant function) are considered. These alternatives are more robust to the
circumstances which tend to lead to poor estimation of the covariance matrix. The
technique used in these alternatives is shrinkage, or regularisation, of the covariance
matrix estimates towards a plausible, specified matrix.

The sample Euclidean distance function (SEDF) represents an extreme shrink-
age towards the identity matrix. This function has been compared to the SLDF
in several studies. Raudys and Pikelis (1980) used numerical integration assum-
ing very restricted structures of the ¥, (the covariance matrices of the K groups,
(k =1...K)). Marco et al. (1987) used Monte Carlo simulations with data gen-
erated from groups having the same specific covariance structure. Both studies
showed that in terms of yielding a smaller overall misclassification error rate, the
SEDF performed better than the SLDF when the dimension (p) is large in relation
to the sample size. From the latter study a further conclusion was that the SEDF is
preferable when the Mahalanobis distance between the groups is similar or smaller
than the Euclidean distance, and when the variables in the data are mildly but
positively correlated. It is shown algebraically in this thesis that the determining
factor of the relative performance between the SEDF and the SLDF (i.e the rela-
tive influence of the Mahalanobis and Euclidean distances mentioned previously)
is the extent and nature of the correlation among the variables. It is also shown

in this thesis, via asymptotic expansions and simulation experiments, that under
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both equi-correlation and auto-regressive (order 1) correlation structures for the
3k, negative correlations between variables lead to a large Mahalanobis distance
relative to Euclidean distance. These are conditions where the SLDF would per-
form better than the SEDF. In particular, numerical evaluation of the asymptotic
expansions for the SEDF and SLDF showed that the SEDF performed better than
the SLDF in conditions of medium to high positive correlation between variables.
In conditions of negative correlation between the variables, the SLDF substantially
out-performed the SEDF. In the case of mild to moderate correlation there was
little difference in the performances of the two classifiers.

In general, the results in this thesis from the asymptotic expansions confirm the
work of Marco et al. (1987). Simulations were performed to verify the numerical
evaluations of the expansions. The expansions were not evaluated for p larger than
eight due to the large amount of computation time required. This is especially true
for the expansion of the expected actual error rate for the SLDF, since it is rather
complex. Therefore, the claim that the SEDF performs better than the SLDF
when the dimension is high relative to the sample size was examined later in the
thesis through further simulation studies.

The SEDF employs a crude method of regularisation of the covariance matrix
estimates, yet such shrinkage is obviously beneficial in a number of situations.
However, the main focus of this thesis has been the flexible regularisation facility
of the sample regularised discriminant function(SRDF). Since it introduces a class
of models which incorporates as special cases the SLDF, SQDF and SEDF, it ought
to be a technique which yields the lowest error rate of all the rules based on the
multivariate normal distribution theory. Indeed, it has been shown via simulation
studies that it generally performs at least as well as the other rules, espécially in
the higher dimensional setting when the training sample is not large (Friedman
(1989)). This is particularly true in situations when the sample size to dimension
ratio is small. Further, Aeberhard et al. (1994) found the SRDF to be superior
to a number of non-parametric classifiers. The results of simulations performed
in this thesis under similar conditions to those in the paper by Friedman (1989)
confirmed this superiority of the SRDF over the other rules, even when the group
separations(i.e distances) are very small.

The success of the SRDF, however, hinges on the process which determines,
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from the training data, the degree of regularisation towards the pooled sample co-
variance matrix, and, separately, towards (a multiple of) the identity matrix. That
process involves repeated cross-validation, which is computationally intensive and
which rarely leads directly to a unique “optimum” value for the regularisation pa-
rameters without a ‘tie-breaking’ rule. Instead, it often indicates low sensitivity to
the degree of regularisation, especially with respect to regularisation towards the
pooled covariance matrix. This is evident from the simulation study in Chapter 3
where regularisation rules with two different policies for breaking ties are compared.
Often the degree of regularisation resulting from the different policies is quite dis-
similar, yet the error rates of the constructed rules applied to a test sample of data
are usually very similar.

The key to the success of the SRDF, especially when the sample size to di-
mension ratio is small, is the facility to regularise towards (a multiple of) the
identity matrix with the v parameter (eigenvalue shrinkage to equality). Despite
the bias introduced through this facility, the reduction in variance achieved, by
even a small degree of eigenvalue shrinkage, proves beneficial for discrimination
in many situations, often even when the group covariance matrix eigenvalues are
quite disparate. The price to be paid, however, for allowing eigenvalue shrinkage
is that the SRDF lacks scale invariance. In an attempt to ascertain just how im-
portant this type of shrinkage is, a modified regularisation rule was developed and
tested in a further simulation study against the SRDF and the other normal-based
rules. The modified rule omits eigenvalue shrinkage but, to compensate for this
in some measure, allows for a separate covariance-mixing parameter, Ag, for each
group. This would be expected to make the rule more sensitive to the data, since it
sometimes occurs that the various group covariance matrices are of quite different
structures, and it may be appropriate to apply covariance shrinkage to one of the
group covariance matrix, but not to another. While in general it is shown that the
omission of eigenvalue shrinkage clearly leads to an inferior classifier, the modified
regularisation rule can result in a comparable performance to the SRDF for certain
population parameter configurations.

In an article which has become known to the author at the end of this Ph.D.
project, Loh (1995) studied the discrimination problem between two p — dimen-
sional normal groups via adaptive ridge classification rules. Such a rule may be

thought of as similar to the SLDF, but where the pooled covariance matrix estimate
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is replaced by a regularised estimate. The regularisation used was the same as that
achieved by the y parameter in the SRDF model (i.e. towards the identity ma-
trix). No covariance mixing was employed. A closed form solution to the adaptive
parameter, which is similar to our -, was given, in terms of the group parameters,
for the case of equal group covariance matrices and equal prior probabilities. The
resulting regularised value of S, was employed to obtain the adaptive discriminant
rule. A Monte Carlo simulation study compared the error rate of this rule with
that of the SLDF. Two other rules were also included in the comparison. These
rules involved obtaining the ridge parameter v by re-sampling methods in a similar
way to the original SRDF. The adaptive discriminant rule compared reasonably
well with respect to the SLDF, but there was not much difference in performance
between Loh’s adaptive rule and those two which employed re-sampling methods to
obtain . Since the justification for the adaptive ridge classification rule is asymp-
totic, it is not appropriate to compare it with the regularised rules we have been
looking at in this thesis, which are designed to address the situation of sample sizes
which are not large. ’

Focussing further on the model selection process of the SRDF, it is also demon-
strated in this thesis that the components of the Bhattacharyya distance measure,
estimated from the training sample, can give information leading to appropriate
values for the regularisation parameters. These values would be more directly ob-
tained than if computationally intensive re-sampling techniques are employed, as
is the case with the original SRDF. The minimum cross-validated error-rate based
on the training sample is a natural measure to use if one wishes to select the model
which will yield the lowest error rate when applied to a future test sample of data
from the same population. However, it is shown in this thesis (and suppo;ted by
work from other researchers) that it is not necessary to determine the regularisa-
tion parameters precisely. Thus a regularisation rule is developed which bases its
model selection procedure on an estimate of the Bhattacharyya distance between
pairs of groups. It is shown to perform at least as well as the SRDF in most of
the simulation conditions, as well as in several case studies. Computationally, the
new model selection procedure is many times faster than that of the SRDF since
it avoids re-sampling methods. It also leads directly to an approximate but unique
regularisation model.

Finally, it is of interest to examine the effect of the regularisation parameters
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A and v on an analytic expression of the error rate of the SQDF, which is equiv-
alent to the SRDF when its regularisation parameters are zero. However, few of
such expressions exist in the literature, and they are often complicated expressions
involving approximations and limiting assumptions. Houshmand (1993) derived
manageable expressions for (i) the exact overall error rate of the SQDF in the
univariate case, assuming known population parameters; and (ii) the approximate
overall error rate for the SQDF for multivariate normal populations, assuming
known population parameters. Because of their manageable nature, these expres-
sions were used to examine the effect on the overall error rate of the SQDF, of
regularising the population covariance matrix estimates. Many of the observations
from the earlier simulation studies are confirmed by these results.

As mentioned earlier, one ma jor negative feature of the sample regularised dis-
criminant function is its lack of scale invariance. This is certainly an area which
has potential for future research. That is, to develop a scale invariant replace-
ment for eigenvalue shrinkage, but which maintains effective covariance estimate
stabilisation at high dimension and with small sample size. There is also scope for
research into replacements for the identity matrix as a matrix to regularise towards.
Possible options are the matrices ¥ 4 (equi-correlation) and ¥ g (AR(1) covariance
structure) from Chapter 2, which appear to be robust enough. Alternatively, one
could let the data choose, among many options, which matrix the covariance ma-
trices should be regularised to. Certain types of discriminant analysis problems,
where substantial prior information is available on the structure of the data, would
be candidates for this type of approach.

The final problem which requires further research is the matter of choosing
regularisation parameters using the Bhattacharyya distance, or some other distance
measures. Although the heuristic algorithms developed in this thesis have been
shown to work surprisingly well, it is necessary to obtain analytic results to support
these empirical results. This is no trivial task, however, and is clearly an area of

considerable potential for future research.
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Appendix A

ASYMPTOTIC EXPANSIONS FOR THE
CONDITIONAL ERROR RATE OF LINEAR
DISCRIMINANT FUNCTION UNDER
CONDITIONS OF “EQUIVALENCE” .

A.1 Covariance matrix of the form X = X 4.

The conditional probability of misclassifying an observation from population 1 into
population 2 for the LDF is P{i?f) (Equation 2.10, Chapter 2). The Taylor Series

expansion of this to first order approximation is
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where
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Taking expected values (E(.) denoting expectation) of the expansion yields
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Therefore the following quantities are required to be obtained
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Under “equivalence”, u; = (m,m,...,m) and py = 0. Since pu, = 0, equation
( 2.10) may be written as
LDF _
Pyi(a) = ®(-A)

where
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This expression will be used to obtain the desired quantities.
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A.1.1 Obtaining %%.
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Note that 24 is defined similarly to 24 but with j replaced by i. Label the
9 J
quantity % as equation ( A.6b).

Represent the right-hand side of equation ( A.6) as (a; x az X az) + (b), where
o = —(B)™?,
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3o = 2 Hes =3 ) Tt - jTus™
Tu w=1 w=l

The asymptotic expansion being derived is to be evaluated at the point where

T = p;. Replacing &, with pu;, some of the above expressions may be simplified:

HESE) Er)) "B} o

u=1 v=1 w=l

K\; s"”) (; a,msw,)] }—a/z
) ()

a, = m

|
P%JU
i

g
Il

Il
|
—~~
9]
—
~—
|
W
~
N
-

P
azzmz

..
Il
N

~~ N
0~
2.
.9._
3
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p P
az = m*y > s —1Im?) 5 swr

6a2 - ui gl
— = > ¥ dou],
a$ll u=1 =1
da o 2
_3 - mzswz_%mzswz_lmsu
6271,' w=1 w=1

in(Er)

4m u=1 \l=1 k=1 v=1 w=1
P P P P -5/2
A5z [(E) (o)
w=1v=1 u=1 u=1

E[E) Bl o B} 0

e Now to find %’L, and write it as at the point &; = ;.
0

b _ a p P
M _ (B) ™ — |3 s (pu — zu) | + (By)~'/? 23’[ (11— Zu)
071 07y;

0Z1; =~
= (B e+ -y 2 [zsﬂ(m,_zu]
() G

(i 8‘”’) (ZPZ ows“'")]}—/ : (A.10)

Il
|
| %
—N—
M-~
M-~
—
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Substitute equations ( A.9) (after factorising) and ( A.10) into ( A.7) to obtain

2 X ~
aiia’?—cu at the point where T, = pu,.
0’ A sii{ PP K (p )l }—1;2
9%.9%. _  _m 54 .., 4
0Z,;071,; m ;l; ; uz=:1 =

|
(£(E ) ()
|

Ef el (En(Eom)l)

u=1
Substituting equations ( A.8), ( A.6), ( A.6b) and ( A.11) into equation ( A.2)
gives the first desired quantity of equation ( A.l), namely

58 (.)

Sane, — PP (PP x Py x Py (A12)

where

P, = A (equation( A.8))
P, = equation ( A.11)
P; = equation ( A.6)

Py = equation ( A.6b).
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A.1.2 Obtaining ﬁ%

Po()  0() 94
022:0%y; 0%y e _A)af;rgj]
9’A 0A 0A
= =g~ lajgfafgj _AB:EQ,; aa‘:gJ' (A.13)

Again write equation ( 2.10) as

Pyitay = @ (=4)

where
A= (@ -2)'S,7'88,7 (21— 22)] [ - (@ +2)]'S,7 (&1 - 2o).
(A.14)
Now
g_a_‘i = [(5:1 - x)'S,”'®S, ! (&, - 5:2)]_3/2 S,”'=S, 7 (&) — Z,)
(Hl -3 (& +:i2))lsp (Z1 — &)
+ [(-’31 ;) S!S, —2)] v Sp™ (—u1 + Z2)
where
(T — ,)'S,”'ES, 7 (&) — &) =
i (jlw — .’Ezw) [ 3 <Z (.’I_Ilu — .’fgu) 5“") (i o-vusuw>] = 34 (A 15)
w=1 v=1 \u=l u=1
and
S,7' 28, (31 — &) [ — } (&1 - 532)]' S~ (31— @) =
{ (21 1S Ulu) (Zk p ¥ (xlk —572k))}
X { A ():w=1 (#hu —3 3 (Z1w — $2w)) Sw") (Z10 — 1_72u)}
: = Bs (A.16)
{ w1 (Zf=1 Splalu) ( k=1 s (Zw — f2k))}
R { i (2&:1 (Hnw -1 (Zw — izw)) 8""') (Z1y — 1_:20)} |
and

w1 8™ (— iy + Tou)
S, (—u + &) = : = Bs. (A.17)
7215 (—ty + Tou)
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Write the expression for at the point where &, = p;:

i <{mi(37)~if2w(5’v)}_3/2

6I?j w=1 w=1
<[5 (G o) (gt - £ oven)
X [%m Z_: i— (m+ Zgy) ™ — 3 Xi:j% <§ (m + Toy) s“’”>]>
+ <{m Zl (37) N Z .’fgw (37)}
times {XP: §7%Z9, — M i sj“}> (A.18)

where

=S (Br) (o) - (o) (o))

Now the right-hand side of equation ( A.18) can be expressed as

(04 X a5 X aﬁ)-i- (bg X b3>

and so
9’A B d “@i
0%9i0%9; O \OZa;
— aaaa -}~a|:13‘1 -i—aaaa“l
- 4 56I2: 4 66 2t 5 GaxQI
Obs by
(bgé}: + 6361:1‘) . (Alg)
where
das  OB;* s (8,))-5/2 x OBt
0% 0Ty 2 3$2:
where
0By P . L
— = Iy ) sV (Z o'ws“’) my ) s (Z Opu8" )
6.’[21' v=1 u=1 w=1v=1
p p p _
— {m z Sguv (Z O'WSm) _ (Z :J—,:%suv) (E O'WS‘“)} ;
v=1 u=1 u=1

6?5 2 i Eil s"cnu) (m > sk — kz::lsukfgk)l = i (i s"‘a;u) ™

Oy Oy u=1 \i=1
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by _ 0 [%mi<i(m+i2w)swv>_%zf%(zpj(mmzw)swu)]

P P _ P P
= ImY s —1Im > s 1) Tpusv - 1Tx ) s™,
v=1 w=1 w=1 w=1
98, o w = 1 (B) ¥ x 9By
81_32,‘ szi g ¢ ai'%’
and
0bs 0 B -
= — MToy —m ) &% =8
07 2; 0% L_l e ,;
Since £, = po = 0, some of the above components of 3;2'_25;2_ may be simplified:
1 -J
P p p -3/
ay = {m2 Z > <Z s"”> <Z avus"“’)} ,
w=1v=1 \u=1l u=1
p P P
as = m)y. ( s”a;u> ( s“"> g
u=1 \i= k=1
P
ag = sm*y > s,
v=1 w=1
P p P p -1/2
b, — {m2 S <zsw> <Zaws""’>} |
w=1v=1 \u=l u=1
p .
5 = -m) &
u=l1
P P /P P
B = m*Y Y} (Z s“”) (Z ams"‘”) :
w=1v=1 \u=l u=1
634 P 14 ) 14 14 P
= = 3. {m Y. 8® (Z cr,,,,s‘“)} —my Y sv (Z st“‘”)
T2 v=1 u=1 u=1 w=1v=1 =]
P P P P P
— _m{z Z P ( O.‘msm) + Z z st (Z o.uusuw)} .
v=1u=1 u=1 w=1v=1 u=1
Baﬁ 1 ( s : a )
— = 1lm st_zswt .
31‘2:‘ & v=1 w=1
Inserting all the above into equation ( A.19) yields
o = s ) )
— - SUU 0. Suw
0%5i0Z2; 2m :L;l :L;l :L;l uZ'—-:l "
P /P P P _
AZ B o) (B NG - S}
u=1 \l=1 k=1 u=1 =1

w=1v=1 \u=l

“wEEE) G
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P
=]
«
=
g ~ Ny \I\.:J ——
3 = T3 —— 8 T8
uS . uS m uS mmu uS
S g % @ _ 2 TR
5 S : 5 SAL e alpz_"_, 5
PZ._nw_. pz_h.f Ow PZw [ g Pz_n_‘ | Pz_u__
. = e sl - 3 ~ gl ——
L I o L I N AL T N
e o L oL T N A T S
S 2 L N [ e D e A I R 2L
= pz._n_. S + & l PZ_.._. o S .MS = S i B 5 Pz_u__ +
Z it N N i e ~/~ PZ._:_. < o PZW e oo St
X P @ % I pz__:_. ) el Pz.u PZ.._._. p PZﬂ % g o e
Z = — Ow mS ._1“.._. J.m.._ ) — im 2 L .Uw " nuw
N ! .ﬂ.M w FZ.W. FZM"__. “@lm\w -9 % m.um ”v;.”ﬂl_w_u .....5 1\\.-“-./ PZ._l_. D.zn_“_.. PZ.W_.
oI T o W s - s o
3 fr.l.\l ~_ 3 PZm % 3, PZ.._..._. ws Pz.m ) ~ ws Pz.m 3
N pzm N RN Pqu_. pzu PZW.. ~[A] ~— pz.w_. 8 A S Pzw pz.w_..
Z g Z Z - & PZ._;_ n.z ,PZ s PZi .PZ _w n.z._u__ Pz.m g PZ._u_.
+ % [ X l_nm X _ + X X + X

= M

omponents of equation ( A.13), evaluated at the point where &,

The other ¢

PEH_. ?Z._._.
\lUIl...I\-I.Iu”-/
US n_.w-
RO
N Z._._.
AL
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(EEE) ) () e

u=1

Note that 22 is defined similarly to % but with j replaced by i. Label the

quantity %:.- as equation ( A.21b). Substituting equations ( A.20), ( A.21), ( A.21b)
and ( A.8) into ( A.13) yields the second desired quantity of equation ( A.1), namely

820(.)

8i21—63":2j

=—¢(=P1) (Ps —P1 x Ps x Pr) (A.22)
where

P; = A (equation( A.8))

Ps = equation ( A.20)

Ps = equation ( A.21)
P; = equation ( A.21b).
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s s 8%®(.)
A.1.3 Obtaining 95p055;
Under equivalence and with ¥ = ¥4, again write equation ( 2.10) as

P?%‘{DAFi =0 ("'A) )

and at the point where &, = p; and &y = o, write A as

v=1w=1 w=1v=1 \u=l uFv=
Now
0%®(.) B 0 {6@(—‘4)
Osu0si;  Osw 0s;;
0
= E{—%mdﬁ(—A)XBg}
= —im[¢(—A)Bs+ Bio x By (A.24)
where
0B,
Bg = E
_ 0 a wy -1/2
B = (S5 e
_ 0¢(—A)
By, = Bon
and
P p P P
B, = ZZ(Z s’"’) <s‘""+p > s“"’).
w=1lu=1 \u=1 uFv=1
o A ~12 O -
= t;wgl 33=‘i (B) 3!: 'ngzls
where
a(Bll)—l/2 1 -3/2 6 4 2 (P v) vw . uw)
= -—1(B - s* s +p S
Js5 7 (Bu) 0sj wz=:1u§1 ugl u§=l
B P P P ava P asuw
= —3B)PY Y (st ( g TP 0s )
u=l Y uFv=1 LY
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- imreng [

P
{(svisjw+svjsiw)+p Z (Suisjw+sujsiw)}
4

(Suisjv i Sujsiv)>:| ,

£
I

05 o i=j
{ 5 [if A
Write
By = wq (ag) ~*/* [—%(1709 -+ agaw] (A.25)

where

M~
M-~

a; =

<
Il
—
g
I
=

ag =

M
]
—
]
03‘:
S
o~
mﬁ!

g
+
>
M
[V}
g
N

€
Il
=
@
]
—

|
M
=
—
V)
&
&
<
+
V)
§
o’l‘
<
~

ajo =

<
Il
=
g
Il
-

Qg =

M=

]~

—

O~

[
V)

&
N————
N

&
+
€
N
+
=)
&
&
tn'_l

€
Il
-
)
1]
—

where

Q9a svisjw +Svjsiw

p
p Z (Suisjw+sujsiw)
uFv=1

Qgp

14
g = va+p Z guw
uFv=1
p . "
aga = Y (s*sT + sWs'),
u=1

To find Bg, write

s = a | EE) EEE) (£

63’:163!:3' v=1w=1 w=1v=1
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_ o5
© Osw
6 -3/2 1
= 5.5—,:; {wo (as) [—56709 2 2 03010]}
_3})2 3 1
= wp ((a — a7aq9 + aga
0[( )" 5o {~1aras + asau}
d(a )'3/?
+ (—%a'{ag =t aaalo) —((;ST
where
d 1 dag daq Oayg
— 1 ar=— +ayz—| +a
aSH { za?'ag * asam} [ayaskg + % 65;;,] % 681:;
and
a(aa)hm = —3(as)” 5/2 538
BSH L 63;,;
Now
az . k 1k
et f— w Sw SU + sw s v ,
Oski 1:.-22‘»2::1 ( )

6a8

P P

4 (Sm+p i suw) g( ukgly 4 qul ku)jl,

uFv=1

P P
daqg —— Z Z [ wi (sjksl'u + sils kv) 4 Y ( wkgli 4wl k:)
Oski v=1w=1

Swj S:k !v tl ku) +sw (swkslj +sw!skj)]

+
= - EE[(E) (0 %)

Oski o OSk OSki
P asuu
+ a+
(ag agp) (; 33:::)

6(194 3095
Qg 9d
“ Osk Oski

where

6aga
Bsk;

= iy [Sui (Sjkslw + Sjlskw) £ Sjw (suk li + sul kg)

+ svI (sikslw + sils kw) + gt (sukslj + sulskj)] ;

+ (4310}

vk lw +Svfskw+p Z (sukslw +Sulskw)

)

185
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60,93, D : 3 . . ) )
Ao = 'u)]p Z [SUI (S]kslw + SJlSkw) + S]w (Suksll + Sulskl)
Osk ugv=1

+ g¥ (sikslw + silskw) + giw (Sukslj e Sulskj)] ,

Bagc — vk olw vl ckw : uk Jlw ul (kw
= w (S S + s7's ) + p Z (S S + el ) ,
88“ uFv=1
Qg% = w Xp: [S“i (3.7"‘3’" + SﬂSkv) + Sjv (Suksli + Sulski)
ask, o=
+ g (Sikslv + Silskv) + gt (Sukslj 1 Sulskj)] ,
P a uv P
) B = (Sukslv+5ulskv)
u=1 BSH u=l
and
-05 if k=1
w = .
-1 if k#L
Write Bg as
Bag 60..7 3(110 3&3
Bs = wp|(aa)™? |-} |ar=— + a9/ +a +a
’ ° {( 8) 2 TaSH m"ask; 8 ask; - BSH
_1 _3 —5/2 Oag
°E ( 3A709 +aaalo) ( 2) (as) "“—asﬂl (A.26)

Express Bjg as

_ 9¢(-4)
By = Bon
0A
= —A¢(-A) B5nt
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P
(&5
v=1w=1
g [XP: ( k ol [k i ( kol Lok )
x SuY vk glw 4 vl gkw +p stkglw 4 gulgkw
w= lvzz:l u=1 uFv=1
P p
+ (s +p Z Suw) Z ( uk lv ul kv)
uFv=l u=1
p P P P P p
+ Z Z <Z suv> Svw +p Z SUW [Z Z (kaslv +Swlskv) >
w=1v=1 \u=l uFv=1 v=1 w=1
P P p P p -2
= —im? (Z > s“’") é(—A)w, [Z Y (Z s‘“’> S Hp Y sw
v=1 w=1 w=1lv=1 \u=l ufv=1
P P P 14
X <_% z Z swv) {Z Z [Z SuY (Svkslw + Svlskw)
v=1 w=1 w=1v=1 Llu=1

u#v=1 u=l1
p P P p
+ Z Z <Z Suv) (svw +p Z Suw)
w=1v=1 \u=l u#v=1
P P
« [Z 3 (kaslv + swlskv)]> (A.27)
v=1w=1
Thus 5()
xdiic o) S | e 2
63k!65£j 2m [¢( A) . BS M BIU 8 39] (A 8)

where A is as in equation ( A.23), Bs is as in equation ( A.26), By is as in equation
( A.25) and By is as in equation ( A.27).
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A.2 Covariance matrix of the form > = Xpg.
Under equivalence and with 3 = ¥, again write equation ( 2.10) as
P;i&ﬁ =& (_A)1
and at the point where £, = p, and &, = p,, write A as
P P P P P P =172
A=1m (Z > sw“) 3.2 ( s“") s+ Y suwply (A.29)
v=1 w=l w=1v=1 \u=1 uFv=1

The only partial derivative term which differs from the expansion in the previous

section is that involving differentiation with respect to elements of 3, that is,

—U—asa;?’aéij. In an analogous expression to equation ( A.24),
0*®(—A) 8 [0D(—A)
05k1055 N OSki s
0
= 55 (-8 (-4) x G2}
= - %m [¢ (_A) C] + C3 X CQ] (ABO)
where
0Cs
£y = 5?,;,
o SN wy -1/2
C = 3 X 3 EE | (@)
Sij v=1w=1
_ 0¢(-4)
fr = 05k
and
p p P
(34 - z Z (Z Suu) SV 4 Z Suwp1v—u|
w=1lv=]1 \u=l uFtv=1
Now

where
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8 (C,) Y2 . ) P P P P e
__(8;811__ sy fi}(Cd) 3/2 aSij {Z Z (z Sm..-) (va_+_ Z Suwpl |

= — ‘i_)(ci)~3f‘2 wo Z Z [(Z_:l Suv)

w=1v=1

P
{(Svisjw +sWs™)+ Yy ((S“‘sjw + s¥s'?) p|v-u1)}

uFv=1

P p o
- (s”“’ + > S“wP!v—ul) (Z (s“'s? + s“«‘s‘”))] ;

uFv=1 u=1

o p P P P o o
T DR IR IR 3 HEEERY
1j

v=1 w=l1 v=1 w=1
and
—05 ifi=j
Wy =
~1 ifi#j
Write
C2 = Wy (dg)_3/2 [—%dld;; + d2d4] (A31)
where

P P
dl - Zzswv

v=1 w=1
p )4 P
d = > > (Z s'“’) s+ ) suw plv—ul
w=1v=1 \u=l uFv=1
p - . . .
de = )Y (s¥'s7 +5¥Is™)
v=1 w=1
P P )4
s = ) ) [(Z 3'"’) (d3a +da) + d3cd3d]
w=1v=1 u=1
where
dze = "7 4 sist
14
dspy = Z (Suisjw+sujsiw) plv—ul

uFv=1
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p
d3c = sV 4 Z~suwp|v—u|
uFv=1

P
d3d - Z(s"’s“+s"’sw).
u=l1

To find C,, write

G =

where

and

where

o4,
Ok
o4y
OSki

od

OSki

52 P P P P P P 1/2
(Cx o) |2 (Tem) (s 35 s
05k105;; v=1w=1 w=1v=1 \u=l uFv=1

ac,

05k
0 r
o {wo (d2)*/* [—%d1d3 + d2d4]}
0
wo [(dQ) —3/2 Bor { 3dd3 +d2d4}
8 (d2) ™%
+ (_%dld;; + d2d4) W
[, dds  dd ddy  d,
— 3 —3d,d dod = —1i|d +d d +d
3Skt{ B 4} l 1331:: 333:::] + 235;:: 438&:
0d;"" _ g (4o 0
88“ : . ask;’

P P
= w, Z Z (swkslv + Swlskv) ,

v=1w=l1

- EE[Ee) (£ )

ask,

w=1v=1

w=1v=1 u=1 #Fv=1
P P

+ | sv + Z SUW |v u| Z( uk lv ulskv)
uFv=1 u=l1
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+ gwi (s“‘s‘” ) Ss’lskv) 4 giv (kasu + Swiskj)]
and
ad3 - - & uv 8d3“ %
me = SE[(E) G2
P 83““ 6d3d 3d3‘,]
+ (d3a +d +d3e— +d
(d3a + d3b) (‘; BSH) %Fsa T PG,
where
0d3, — [Sui (Sjkslw 4 sjlskw) 1 g (Suksli " Sulski)
08k
+ g¥i (sikslw & silskw) + gt (Sukslj + svlskj)] ,
p
%Zi’ = w u;ﬂl [plv—ul <5ui (sf"s’“’ o Sjlslcw) 4 giw (suksli & sulski)
+ gu (sikslw + silskw) + siw (Sukslj + sulskj)>] ,
adsc = w suks[w+sulskw+ zp: {plv—ul (Sukslw+sulskw)}
68“ uFv=1 ,
a_dsg = w i [sui (Sjkslv 5 Sjlsku) + giv (Suksli + sulski)
63“ ==
+ gu (Sikslv + Silsku) + giv (Sukslj + sulskj)] ’
and
14 asuu P Y Y Y
; o = wl; (5 kglv | gulgk ),
where
-0.5 if k=1
w =
-1 if kL
Write C, and C; as
=5 ad ad ad. od.
= 32 _1 3 1 4 2
Cl = Wy ld-z ( 3 [dl 6SH -+ d3 asul + dz asu + d4 asﬂ)
_5/2 0da
_ 99(-4)

E)sk,
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v=1 w=1 w=1v=1 \u=1 uFv=1
P r P p P
1
x (-4 z Z SwY Z Z Z SuY (Svlcslw + Svlskw)
v=1w=1 w=1v=1 Llu=1l

”
P p
+ (svw 4 Z Suwplu—ul> Z (sukslv + Sulskv)J}

uFv=1 u=1
P 14 P
+ Z Z (Z Suv> (va+ Z Suwp|v—u|>]
w=]1v=] \u=l uFv=1
P P
x [Z Z (kaslu +Swlsku)]> (A.33)
v=1w=1
Thus 50()
(.
aSk‘aS,‘J = —%m [d)(-—A) X Cl +Cg X Cg] (A34)
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where A is as in equation ( A.29), C; is as in equation ( A.32), C, is as in equation
( A.31) and C; is as in equation ( A.33).

All the required quantities in equation ( A.1) have been obtained and thus
the asymptotic expansion is derived for the conditional error rate of the Linear
Discriminant Function under conditions of “equivalence” (See Marco, Young and
Turner (1987)) for two forms of covariance matrix: (i) ¥ = ¥4 and (i) ¥ = Xp.
These expansions were evaluated for various values of p, ¥ (determined by p) and

Mahalanobis distance A between the population means (determined by m).
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Appendix B

HEURISTIC ALGORITHM FOR MODEL SELECTION
PROCEDURE USING BHATTACHARYYA DISTANCE

Outlined below is the algorithm used to select 4 and A for the model selection

procedure using Bhattacharyya distance which was presented in Chapter 5.

(The first section sets a minimum value for vy in extreme cases of high dimension

and small sample size, so that only values greater than 6 are considered)

If training sample size is less than 2xdimension
set minimum 7~y value, (), equal to 0.04,
or 0.08 if the dimension is large (> 10).
If training sample size is less than dimension
increase the minimum + value, (0), still further,
depending on the magnitude of the dimension.
end if
end if

(Calculating Bl and B2 for various values of v from 6 to 1 in increments of 0.04)

Loop for y =6 to 1 in steps of 0.04
e Regularise sample covariance matrices using 7y
e Check the eigenvalues of the sample covariance matrices, and replace any
eigenvalues less than some threshhold (10~*) with that threshhold,

to permit stable inversion.
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e Calculate and store the values of B1, B2 and B1/B2
end Loop

(Calculating various measures from the stored values of B1, B2 and B\l/ B2 )

Calculate the following:
e range of B1 values (rangeg;)-
e mean of Bl values (meang;).
e ratio of largest B1 value to smallest Bl value (r5)-
e range of B2 values (rangeg;)-
e maximum of B2 values (mazg;).
e ratio of largest B2 value to smallest B2 value (rg;).

(Obtaining the appropriate value of vy, 74, using five different decision paths)

If r5 <2.8 AND meang; <2 AND mazg; < (.3p— .8)
(i.e. if Bl is small and not greatly affected by v, and if the effect of v on B2
is small.)
Select the value of 7 which gives the largest ratio of Bl to B2
else if (r5; < 2.8 or rangez; < 1.5) AND (meang; < 2) AND (mazg; < (:3p — .8))
(i.e. if Bl is small and not greatly affected by vy, and if the effect of v on B2
is large.)
Select the value of v which gives the smallest ratio of Bl to B2
else if (rz; < 2.8 AND (meang; > 2)
(i.e. if Bl is large but not greatly affected by y)
Select the value of v corresponding to an average value of Bl /E\Q
else if (r5; > 2.8 AND (mazg; < (.3p — .8))
(i.e. if Bl is greatly affected by -y, and if the effect of v on B2 is small)
Select the value of v which maximises B2
else if (rg; > 2.8 AND (mazg; > (.3p — .8))
(i.e. if Bl is greatly affected by vy, and if the effect of v on B2 is large)
Choose a value of 7y whereby BI is maximised sub ject to B2 remaining small
end If
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(Obtaining various quantities to be used to obtain the estimate for A, . )

e Calculate initial value of A with A = exp {—B\Q,y=g}

e Calculate y = log (B\I/I/B\Q) when v = 1.

(Let y denote the average value of y over all pairs of groups.)

e Calculate z = 37_, |e;; — e2;| where ey; is the ith eigenvalue of X,.

(Let z denote the average value of z over all pairs of groups.)

(Refining the choice of A to obtain ))

If § > 1 (i.e. § large, indicating covariance matrices are similar to each other.)
If z > 17 (i.e. Z large, indicating covariance matrices are not in fact)
dissimilar.)
N = X2 (adjust A towards zero.)
if < 1.6 AND 1 < z < 3 (Indicating similar covariance matrices)
N = \@=9) (Adjust A upwards)
ify>16 AND 1<z<3
N = \/@-D
ify<16 AND3<z<17
V= \V/@E+2)
else
N = \/i
end If
elseif 0.5 <y <1
X, — Xl/gl.ﬁ
else if § < 0.5
N = )2
end If
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A Comparison of the Euclidean and
Linear Discriminant Functions

J P Koolaard and C R O Lawoko
Department of Statistics
Massey University
Palmerston North
New Zealand

Abstract

The linear discriminant function is a very popular technique for statistical
discrimination because of its robustness. However, it has been demonstrated recently
that the much simpler Euclidean distance classifier can out-perform the linear
discriminant function in certain situations. In this article we present further results on
the relative performances of the two discriminant functions. Whilst in previous work
most of the comparisons have been based on simulation studies and numerical
integration of error rates, in this article we base our comparisons on asymptotic
expansions of errorrates as well as some simulation experiments.

1. Background and Motivation

In statistical discriminant analysis the Linear Discriminant Function (LDF) which is
based on assumptions of multivariate normality and equal covariance matrices is quite
popular because of its robustness and simplicity. Clearly, there are situations when the
LDF is inappropriate, and related competitors are the quadratic discriminant function
(QDF) and the Euclidean Distance Classifier (EDC). For the two-population situation
which we consider here, these rules are as follows:

Suppose the two populations have means |1} and ¢, and covariances 2} and Z,, so
that the sample estimators of these parameters (from training data) are X, X2, S; and Sj.
The sample versions of these discriminant functions (i.e. SQDF, SLDF SEDC) are:

(i) SQDF: Classify a new object with observation vector x as belonging to
population 1 if Q(x) > log.k,

where Qx) =3 loge (IS5l + 1)1} - 3 {x'(S]' - $3)x)

-2x(S xl-S x2)+x S xz-xZS'liz.

and k is some appropriately chosen constant. Clearly, if Q(x) < log.k we allocate x to
population 2. .

(ii) SLDF: Ifitcan be established that £} = £,, = £ say (or it is assumed so), then
one should use the SLDF, whereby an object with observation x is allocated to
population 1 if L(x) > log.k,

327



' Ny e . =
where L(x)=(X]-X)'S 1 {"'5("1 +X7))
(otherwise it is allocated to population 2).
(iii) SEDC: If X =1 in the LDF situation or the information in the covariance

matrix is deliberately ignored for the purpose of discrimination, then the SEDC should
be used. That is, allocate an object with observation x to population 1 it E(x) > logek.
where Ex) = (xg - )’(2)' {(x- % (X1 +X7)}.

(otherwise allocate it to population 2).

There has been considerable interest in the literature in the relative performances of
these discriminant functions. These comparisons have usually been based on various
measures of estimates of error rates (probabilities of misclassifications) since direct
evaluations of these probabilities have proved algebraically intractable. Articles which
provide relevant background for this study are:

(1) Raudys and Pikelis (1980) who perforined a simulation study to compare the
SLDF, SQDF, SEDC and a variant of the SLDF for independent measurements (i.e. off
diagonal elements of £ being set to zero). They evaluated the relative pertormances of
these discriminant functions when the populations are spherically normal. Since
computations of reliable estimators of error rates have been traditionally ditficult, they
used numerical integration techniques in evaluating the integrals in the definitions of
the probabilities of misclassification. They concluded that the simpler SEDC
performed better than the SLDC when p is large relative to n. In fact the SEDC was
found to perform at least as well as the SLDF even for non-spherical covariance
structures.

(i) Marco, Young and Turner (1987) compared the SLDF and SEDC under
conditions derived to make the two classifiers “equivalent” or “non equivalent”. They
defined the LDF and EDC as “‘equivalent” if they have the same (true) error rates (i.c.
assuming known population parameters). Their conclusion, based on simulation studies
only, was that the EDC generally performed better than the LDF except when the
Mahalanobis distance between the two populations (i.e. A) was substantially larger than
the corresponding Euclidean distance. Also, the SEDC performed at least as well as the
SLDF when the population parameters were set so as to achieve either equivalence or
non equivalence of the classifiers.

(iii) Other related work include Peck and Van Ness (1982) and Van Ness (1979),
among others; see Kim (1992).

The motivation for this work arose from the fact that no “easily-computable”
asymptotic results appear to be available in the literature on the relative performance of
these discriminant functions. Most of the available results are based on simulation
studies or ‘brute force’ extensive numerical integration of very complicated probability
functions (following basic definitions of the error rates).

2. Asymptotic Expansions and Evaluations

The asymptotic expected error rates were obtained using Taylor series expansions of the
conditional error rates (i.e. conditional on X, X, and S) and taking expectations over the
distributions of X;, X, and S. In particular, if H(.) is a differentiable function
of parameters (Bl. ﬁz. ﬁs). where (ﬁl. ﬁz. [3,-) are consistent estimators of
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~ (By. By, -... By) then the Taylor series expansion of E(H) about the point (B, B2, ..., By)
can be expressed as

E(H) = HPB;. By, .-t B E(
(H)=H@,. B, B')+J_18B B; - By

22 BB, aa, E((B; - B) B - B))

For our expansions H = d>( ), the standard normal distribution function, and f, f8,.

BS are the elements of X;, X5, S. The expansions are evaluated at the point
(P- 1 B2, 2).

In this article, we evaluate expected actual (unconditional) and expected plug-in
error rates, so that H(.) takes the following forms (for misclassifying an object from
population 1 into population 2):

(1) Actual crror rate for LDF: H(.) = ®(-D;/D,)
where D; = [p, -—(x1 +%9)) S1(X; - X9), Dy = {(%] - %)’ ST S (%, - %9)} 12

(i) Actual error rate for EDC:  H(.) = ®(-D3/Dy),
where D3 =[p -%(il + %] (X1-%9), Dg={E -%) Z &, - %)} "2

(iii) Plug-in error rate for LDF: H(.) = ®(-Ds).
where Ds = 2 {()‘q -%9)' S (% - )'(2)}”2

(iv) Plug 1n error rate for EDC: H(.) = ®(-Dg¢/D7).
where Dg = —(x1 - X7)" (X] - X7)

D= {(x1 - X9)" S(xg - xz)}”2

Results in Okamoto (1963) were used in obtaining some of the preliminary results in
the asymptotic expansions. One of the results is that if £ is symmetric and invertible
and Z = {6}, 1= (o) then

o) 1
ooy, (1 +3y)
where & is the Kronecker delta.

Each asymptotic expansion takes a slightly different form, depending on (i) the
structure of X assumed, (ii) whether the expansions are obtained under “equivalence” or
“non-equivalence” conditions and (iii) whether the expansion is for the LDF or the
EDC. For example, the expansion of the conditional error rate associated with the LDF
under “‘equivalence” conditions is of the form

pwr=¢{-%(2 ZCs"C ow s"‘")}"’z‘{z > S"‘l]

a2¢() 32d(.)
211,%‘ z axl Tl 2n2 Z Z axz-: aiz_r G
1 (n; +ny) 0%0(.)
* 2L 4325 3s;

(6o + 6 69) (r<s),

(0 Gj1 + CiOjk).
2 (nl + np - lk 1 J

- D(. .
where the quantities %2;% are obtained separately for each assumed structure of |1, b2

and X for any variables ‘a’ and ‘b’..

In comparing the asymptotic expected actual error rates for the LDF and EDC,
various ‘settings’ of certain parameters were used. For example, the values of one
parameter (denoted here by ‘m’ ... see below) were chosen so that A? was the same in
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both cases of equivalence and non-equivalence. Two structures of 2 were considered,
which are denoted by £ =%, and ¥ = Zp, where

1 p p o P (1 p p? e PP
p 1 p p p 1 p pP2
2A= p p 1 - p and EB=
P P
p s e p 1- _pP-l p 1 |

Numerical Evaluations -
In evaluating the results, appropriate values of p (both positive and negative) were

used. Meanwhile, for the situation of “equivalence” between LDF and EDC (where
Bp; =(m, m, .., m) and py = 0’) the value of m is calculated as

m=‘\/{A2/Z ¥ of)
1]

and for “non-equivalence” (where gy = (m", 0,0, ..., 0) and p, = 0°), the value of m" is
calculated as m* = \AZ%/c!!. The sample sizes were taken to be equal at ny = ny = 50,
and the dimensions of the observations were taken to be p =4 and p = 8. Although lots
of results under various conditions have been obtained (and are available from the
authors), in this article we concentrate on comparing the pertormances of the LDF and
EDC under “equivalence” and also on determining (through simulations) whether the
asymptotic expansions are accurate. Afterall, the situation of “‘equivalence” provides
the fairest scenario for comparing EDC and LDF. The discussions presented here are
basic summaries of general trends and results, since limitation of space does not allow
detailed discussion of peculiarities etc. These will be available elsewhere.

3. Discussion of Results

We shall ref er to the various error rates as follows;

€. eg = true error rates (i.e. for known population parameter values) for
the LDF (cL) and EDC (cE)

€1, € = asymptotic expected (unconditional) error rates

éL.. e = asymptotic expected (unconditional) plug-in error rates

esi. esg = error rates from simulation experiments

Note that although we obtained several estimates of the error rates from the
simulation experiments (e.g. cross-validation, bootstrap, resubstitution) previous work
(e.g. Ganeshanandam and Krzanowski (1990)) suggest that cross-validation is a good
estimator to use. Thus the comments on the results for simulated error rates are based
on cross-validation. We have omitted stating well known results such as error rates
generally increase with p or decrease with A. A sample page of the tables of results is
presented below. The results are now discussed under separate categories:

(@) ep vseg and & vs &g under equivalence withX =% 5:

Note that °L = cE = @(-A/2). In this case eg provides a reasonably good estimate of
eE (especially for p > 0). It is-quite clear that the asymptotic expansion given by e
tends to substantially underestimate the true error rate for small A, and as A increases it
tends to overestimate it. On the other hand, eg remains reasonably good for all values
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of A. Meanwhile, simulation experiments suggest that the error rates associated with
SEDC are slightly less than those for SLDF in general, in this situation.

When we consider the performance of the plug-in error rates (g and €g) as
estimators of ep and eg, we observe firstly the well known result that
¢ underestimates e; . Our expansions show that a similar statement can be made
about &g an eg. Note, however, that & provides a much better estimator of e, in that
the underestimation is of a smaller magnitude. For both SLDF and SEDC the
asymptotic expected error rates decrease with p(> () while the asymptotic expected
plug-in error rates increase. For small A, there is little difterence in the performances of
& and & (as estimates of e| and e respectively), but as A increases, the relative
performance of &g improves considerably.

(b) ey vseg and & vs &g under equivalence with 2 = Zp:

In this case, the relative performance of eg to ¢ depends on the values of the
parameters. For example, when p is small and positive and A is small to moderate, the
€L appe.rs to be a better estimate Lut as A and p increase the relative performance of eg
improves slightly. In general, ej has a tendency to overestimate ef_ when A is large, and
to underestimate it when A is small. Meanwhile eg tends to overestimate eg at all times.

When p becomes negative, the performance of eg deteriorates considerably
(especially for large p) and the asymptotic approximation is clearly not appropriate in
this situation. On the other hand, e is much more stable to changes in p and p,
suggesting that the information contained in p is clearly very relevant for discrimination
in this case.

Turning our attention to the plug-in error rates, it is very clear that for positive p, e
is a much better estimator of eg when compared to & as an estimator of e . In fact &
deteriorates considerably, especially for large p and (ironically) for large A. When p is
negative, both plug-in error rates do not perform well at all, and totally break down for
high negative correlation.

The simulation results indicate that ej and especially eg perform reasonably well
when p is positive, but when p is negative, eg, & and & yield poor approximations.

References

[1] Ganeshanandam, S and Krzanowski, W J (1990). Error-rate estimation in two
group Discriminant Analysis using the Linear Discriminant Function. J. Statist.
Comput. Simul. Vol 36, pp 157-175.

(2] Marco, VR, Young, D M and Turmer, D W (1987). The Euclidean Classifier: an
alternative to linear discriminant function. Commun. Statistics - Simul. 16, 485-
505.

[3] Okamoto, M (1963). An asymptotic expansion of the distribution of the linear
discriminant function. Ann. Math. Statist. 34, 1286-1301. Correction: Ann Math.
Starist. 39, 1358-1359.

[4] Peck, R and Van Ness, J (1982). The use of shrinkage estimators in linear
discriminant analysis. JEEE Trans. on Pattern Anal. Machine Intell. PAMI-4,

530-537.

331



(5]

(6]

Raudy, S and Pikelis, V (1980). On dimensionality, sample size. classification
error, and complexity of classification algorithm in pattern recognition. JEEE
Trans. on Pattern Anal. Machine Intell. PAMI-2, 242-252. '
Kim, T K. Comparison of the Euclidean and Linear Discriminant Functions in
Statistical Discriminant Analysis. Unpublished MSc dissertation, Massey
University, Palmerston North, New Zealand.

Table: The ‘true’, expected actual, expected plug-in and simulated error rates of the

EDC and LDF under the case of ‘equivalence’ withX =2 4.

Az P P= 4 pP= 8
true actual plug-in simul | true actual plug-in  simul

eE €E (53 eSE ex:: eE € eSE
eL eL e esL eL eL. L esL

0.5 0.0 03618 03788 03470 38 0.3618  0.4001 0.3261 40
0.3618 0.3597 0.3373 .38 03618 03695 03037 40

0.2 03618 03669 03510 37 | 03618 03671 03426 37

0.3618 0.3572 0.3378 38 0.3618 03624 0.3046 39

0.4 03618 03641 03554 .36 03618 03639 03524 37

0.3618 0.3521 0.3381 38 03618 0.3498 0.3052 39

0.65 03618 03631 03593 37 03618 03631 03586 .36

03618 03331 0.3384 39 03618 03051 0.3059 40

1.0 0.0 03085 03205 0.2994 32 03085 03347 02857 33
03085 03110 0.2867 32 0.3085 0.3245 0.2562 33

0.2 03085 03125 03020 .31 03085 03128 029670. .33

03085 03092 0.2873 32 0.3085 0.3194 2574 .33

04 03085 03107 03050 .31 03085 03107 03032 31

03085 0.3057 0.2877 33 03085 0.3109 0.2580 34

0.65 03085 03101 03076 .31 03085 03102 03074 31

03085 02930 0.2882 32 03085 0.3812 0.2590 34

20 0.0 02398 02481 02351 .25 02398 02571 02268 )53
02398 0.2461 0.2196 .26 0.2398 0.2633 0.1902 .26

0.2 02398 02431 02367 24 02398 - 02434 02336 24

0.2398 0.2448 0.2204 25 0.2398 0.2596 0.1917 .26

0.4 02398 02420 02386 25 02398 02421 02377 25

0.2398 0.2425 0.2209 25 0.2398 02541 0.1926 .27

0.65 0.2398 02416 02402 24 02398 02418 02403 24

0.2398 0.2345 0.2214 25 0.2398 0.2355 0.1939 .26

2.5 0.0 02146 0.2219 02112 22 02146 02296 02043 22
02146 02220 0.1951 .23 0.2146 02400 0.1661 .23

02 02146 02178 02126 21 | 02146 02181 02101 2]

02146 02208 0.1959 22 0.2146 0.2367 0.1677 .23

04 02146 02168 02141 122 02146 0.2170 0.2135 22

0.2146 0.2188 0.1964 .23 0.2146 0.2321 0.1686 .23
0.65 02146 02165 02155 21 02146 02167 02156 .21
02146 02121 0.1970 22 0.2146 0.2164 0.1699 23
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Covariance Shrinkage in Discriminant
Analysis

J.P.Koolaard
Department of Statistics
Massey University
Palmerston North

Abstract
Friedman (1989) proposed Regularised Discriminant Analysis (RDA) as a compromise between
normal-based Linear and Quadratic Discriminant Analyses by considering alternatives to the usual
maximum likelihood estimates for the covariance matrices. These alternatives are characterised by
two (regularisation) parameters, the values of which are customized to individual situations by
jointly minimising a sample-based estimate of future misclassification risk. This technique offers
sizeable gains in classification accuracy in many circumstances, although it is computationally

intensive.

To further investigate some aspects of the operation and performance of RDA, a series of
simulation studies were implemented which establish key factors in RDA's success, and
demonstrate that the advantage which RDA enjoys over Linear and Quadratic Discriminant
Analyses can be noticeable even if the sample size to dimension (number of feature variables) ratio
is quite large.

Because of the computational burden inherent in RDA, and with regard to criticisms of the
technique by Rayens and Greene (1991), it was investigated whether information about appropriate
values for the two regularisation parameters could be gleaned by examining the behaviour of the
Bhattacharyya Distance between the various populations. A classification rule for the two (normal)
population case which uses regularisation parameters obtained from the Bhattacharyya distance
(and which is computationally much faster than Friedman's RDA) is presented and compared with
the original RDA.

1.1 Introduction

A purpose of classification or discriminant analysis is to assign objects to one of several (K) groups
based on a set of measurements X=(X,,X,,... ,Xp) (where p denotes the dimensionality of the
data) obtained from each object or observation. An object is assumed to be a member of exactly one
of the groups, and an error is incurred if it is assigned to a different one.

The most common discriminant rules are based on the multivariate normal distribution. Assuming
we have K (normal) groups each with population mean py and covariance Xy



(k=1, ..., K), and = is the prior probability of observing a member of that group, the classif ication-
rule is to assign an object to group k", where
dk* (X)=min di.(X) (1 £k <K). (1)
Here di(X) is defined as
dp(X) = (X-py)’ ):'kl X-p) +InlE]-21nm, (2)

which is often called the discriminant score for the kth group.

Equations (1) and (2) define the quadratic discriminant function (QDF) since the regions of the
measurement space corresponding to each group assignment are separated by quadratic
boundaries.The special case occurring when all of the class covariance matrices are presumed to be
equal, i.e.

=2 (<k<K), (3)

is called the linear discriminant function (LDF).

This paper is concemned with the problems associated with estimating the group population
covariance matrices, 2, (1 <k < K). Quadratic discriminant analysis (QDA) requires approximately

normal group conditional densities and reasonably large training sample sizes, ny, before it can be

expected to work well. This is due to it’s sensitivity to the quality of the parameter estimates,
particularly the sample covariance matrix Sy,

1 ,
Skzn—kv);1 X, -X)(Xv-Xk) 4)
which is the unbiased and consistent sample estimates of Zk. Linear discriminant analysis (LDA) is

more robust to non-normality, and requires less parameter estimation than QDA. However, poor

estimates of the pooled covariance matrix (i.e. 2 in equation (3)) are possible, particularly if the
K
size of the training sample, N (N = ¥ n), is small in relation to the dimension of the
k=1

measurement space, p. The covariance matrix estimates can be highly variable in this situation, and
Friedman (1989) showed the effect of this phenomenon on discriminant analysis by representing
the group covariance matrices by their spectral decompositions

p ’
2= .21 Cik Mik M ik ©))
1=
where e;, is the ith eigenvalue of 3y and ;. is its corresponding eigenvector. The discriminant

score (2) can thus be written as
P M X-p)2 P _
4,0 = 3, M ) el L e -2 fnm, (6)
i=1 N i=1

It is clear from (6) that small eigenvalues and their eigenvectors willhave a large effect on this
quantity. It is well-known that sample based estimates of the ¥, produce biased estimates of the

eigenvaiues with the bias being more pronounced when the eigenvalues of the population
parameters (X, ) are similar, especially for small training sample size. When n,. < p, the smallest
eigenvalues of the Sy are zero, with obvious consequence for the sample discriminant score, which
is equation (5) but where €;; is replaced by the ith eigenvalue of S, , and n;,. becomes its
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corresponding eigenvector. Thus the importance of the low variance subspace spanned by the
eigenvectors corresponding to the smallest sample eigenvalues is greatly exaggerated. In fact most
of the variation in the sample discriminant score is associated with directions of low sample

variance in the measurement space.

2.1 Regularised estimates of X} in discrimination

One can reduce the variance associated with sample-based estimates of X, by biasing the estimates
away from the usual sample values and towards values which are more realistic in practice.
Regularisation parameters may be introduced which control the amount of biasing, and the sample

data can give information to estimate these parameters.

If one introduces a regularisation parameter, A, which controls the degree of shrinkage of the
individual group conditional covariance matrix estimates, the Sy, to the pooled estimate Sp, the
following set of alternatives may be obtained:

ik(l) _ (1-A)(n-1)S) + AS '
(I-A)(ng-1) + A(N-K)
Now A takes on values 0 < A <1 and it is evident that if 21:00 is used to estimate 3., in (2), the

(7

scenario A=0 simply yields QDA, while one can obtain LDA by setting A=1.

Equation (7) may not provide for sufficient regularisation, especially if the total sample size, N, is
less than or comparable in size to p. In these cases even for LDA, the number of parameters to be

estimated is close to, or less than, the number of observations available. One usually wants to avoid
this scenario in practice, however. Also, biasing the S, to the pooled estimate may not be

appropriate in some situations.

Friedman (1989), therefore, introduced further regularisation of the Sy to obtain

tr[ 3, (A)]
P

SN = (1= S+ ®)

where tr[ik(l)] is the trace of the matrix f,k(k) in (7), I is a pxp identity matrix and Y is the

additional parameter which regulates shrinkage towards a multiple of the identity matrix (the
multiplier simply being the average eigenvalue of 3 (A)). Shrinking in this way acts counter to the

bias, described earlier, produced by sample estimation of the eigenvalues by decreasing the larger
eigenvalues of 2 (A) and increasing the smaller ones.

Friedman proposed that the regularised sample group covariance matrices, ik(l,‘Y), be used as the
estimate for Zk in (1) and (2) for discriminant analysis. As 0 <A,Y < 1, a technique is required to
select an appropriate A,Y combination for use in the model, and Friedman employed one which
selects the combination that minimises an estimate of the future error rate (See section 2.2 below).
He termed this procedure regularised discriminant analysis (RDA).




RDA provides a rich class of regularisation alternatives. The possible A,Y combinations may be
thought of as a plane with four corners. The bottom left vertex (A=0, Y=0) corresponds to QDA,
(A=1, Y=0) gives LDA, (A=1, Y=1) yields a discriminant rule based on minimum euclidean distance
between groups, while (A=0, Y=1) yields a weighted minimum euclidean distance rule where the
group weights are inversely proportional to the average variance of the measurement variables in the
group, i.e. tr[S, )/p. If Y is fixed at zero and A varied, intermediate rules between QDA and LDA are
obtained. If A is fixed at 1 and Y increased from 0, one obtains an analogy to ridge regression for
LDA.

2.2 Selecting A and Y values and tie-breaking

In practice, optimal values for the regularisation parameters A and Y are not known before hand, and
Friedman suggests they be estimated from the training data. The selected A, Y combination is that
which gives rise to the minimum cross-validated estimate of the error rate associated with the

regularised discriminant rule.

A grid of points is chosen on the A, Y plane (0 £ A,Y < 1), containing typically between 25 and 50)
points. Using the A, Y values to create the classification rule at each point, cross-validation is used
to estimate the misclassitication risk for each combination of (A, ¥), and the point ():.,'?) with the
lowest estimated error rate is used as an estimate of the optimal values of A and Y. This two-
parameter optimisation problem would require excessive computation were it to be implemented in
a straight-forward way. However, Friedman developed updating formulas for the computation of
the regularised sample covariance matrix and its inverse when a different observation is

successively omitted from the sample, as during cross-validation.

Rayens and Greene (1991) noted two criticisms of the model selection procedure of Friedman.
Firstly, it was stated that the minimum cross-validated estimate of the misclassification risk is often
constant for a range of (A, ¥) combinations. Hence the optimal choice of A and Y for the model will
often not be uniquely determined. Friedman employed a strategy of maximum regularisation
where, for all point yielding the minimum error rate on the (A, ) grid, that point (71,17) is selected
which gives rise to the largest value of Y for the largest value of A. Secondly, Rayens and Greene
(1991) demonstrated a situation that can and does occur where only a very small proportion of the
sample data influences in any way the optimal choices of A and Y, and the remainder of the sample
observations are correctly classified for almost all points on the A, ¥ plane. This occurs especially

when the groups are well separated.

Friedman (1989) performed a simulation study to compare RDA with QDA and LDA in terms of
their simulated overall error rates. The simulation conditions represented a wide range of situations
in terms of the general structure of the group means and covariance matrices. Some of these
conditions were chosen because they were expected to be unfavourable to RDA in that any
regularisation away from QDA or LDA would be detrimental to the discrimination process. Other
conditions were chosen because they were expected to be favourable to regularisation. The six
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conditions, defined in terms of the population covariance matrices and means, which are also those
employed in the following simulation studies in this paper, are:

1) Equal spherical population covariance matrices. A spherical matrix is one where all the
eigenvalues are similar in magnitude.

2) Unequal, spherical population covariance matrices.

3) Equal, highly ellipsoidal population covariance matrices with group mean differences in the low
variance subspace. By ellipsoidal we mean that there is a large difference in magnitude between the
smallest and largest eigenvalues.

4) Equal, highly ellipsoidal population covariance matrices with group mean differences in the high
variance subspace.

5) Unequal, highly ellipsoidal population covariance matrices with zero mean differences.

6) Equal, highly ellipsoidal population covariance matrices with non-zero mean differences.

2.3 Selection of values for the regularisation parameters when the
choice is not uniquely determined by the minimum cross-
validated error rate

In the previous section we noted that the optimal choice of AY) s very often not uniquely

determined. It is of interest to study the effect of a different procedure than that employed by

Friedman (1989) for selecting the values to use for the regularisation parameters. A simulation

study has been performed under the same conditions as in the previous section but employing a

policy of minimum regularisation in the advent of the minimum cross-validated error rate not being

uniquely determined. If there is more than one point on the (A, Y) grid associated with the minimum
cross-validated error rate, that point is chosen having the smallest Y value for the smallest A value.

This method will be denoted RDA1 and is compared with RDA which follows the opposite policy

of maximum regularisation to break ties. The other discriminant rules are also included for

comparison. In all cases there are 3 populations or groups, and sample sizes are set to be just larger
than the dimension p in each case, so as to avoid singularity in the group covariance matrix
estimates. The (A, Y) grid of points consists of 25 points and is defined to be the same as that used

in Friedman’s study. Results for each set of simulation conditions are in Tables (1) to (6).

The firstand major finding from the present study comparing RDA1 with RDA is that the cross-
validated error rate surface over the A, ¥ plane is often very tlat at its minimum. In such situations
the error rate estimate will be very similar under both methods for dealing with ties, even though the
assessed A and ¥ values are quite different. This would indicate that employing a policy of
minimum regularisation does not have much effect on the pertormance of RDA in most of the
parameter settings considered, and indicates the degree of homogeneity in the cross-validated error
rate response surface over the A, Y ;ilane. In particular, the choice of A can be considerably less

precise than the choice of ¥ in determining the performance of the rule in terms of its error rate.



Table 1
Equal, Spherical Covariance Matrices

p=6 p=10 p=20
misclassification risk
RDA .11 (.04) .12 (.04) .12 (.04)
RDA1 .12 (.03) .14 (.04) .12(.03)
LDA .13 (.04) .14 (.04) .15 (.04)
QDA .24 (.06) .32 (.07) .41 (.07)
EDC .11 (.04) .11 (.03) .11 (.03)

Average regularisation parameter values

Table 4
Equal, Highly Ellipsoidal Covariance

Matrices
(Mean Difterences in High VarianceSubspace)
p=6 p=10 p=20
misclassification risk
RDA .06 (.03) .10 (.03) .11 (.03)
RDA1 .07 (.03) .10 (.03) .11 (.03)
LDA .07 (.03) .12 (.04) .14 (.04)
QDA .16 (.06) .30 (.08) .42 (.06)
EDC .06 (.03) .10 (.03) .11 (.03)

Average regularisation parameter values

RDA .87 (.29) .85 (.30) .80 (.34) RDA 1 .85 (.31) .86 (.29) .79 (.33)
RDA Y .78 (.34) .81 (.26) .81 (.24) RDA Y .58 (.37) .62 (.33) .67 (.27)
RDA1 A .15 (.26) .20 (.33) .24 (.33) RDA1 2 .15 (.25) .26 (.32) .32 (.34)
RDA1 Y .67 (.32) .69 (.30) .80 (.25) RDA1 Y .50 (.35) .55 (.26) .67 (.27)
Table 2 Table S
Unequal, Spherical Covariance Unequal, Highly Ellipsoidal
Matrices Covariance Matrices
(with Zero Mean Differences)
p=6 p=10 p=20 p=6 p=10 p=20
misclassification risk misclassification risk
RDA .11 (.04) .12 (.04) .12 (.04) RDA .20 (.06) .12 (.05) .03 (.02)
RDA1 .12 (.03) .14 (.04) .12 (.03) RDA1 .18 (.06) .11 (.04) .03 (.02)
LDA .13 (.04) .14 (.04) .15 (.04) LDA .60 (.06) .59 (.06) .58 (.05)
QDA .24 (.06) .32 (.07) .41 (.07) QDA .17 (.05) .14 (.06) .14 (.04)
EDC .11 (.04) .11 (.03) .11 (.03) EDC .60 (.06) .59 (.06) .58 (.05)

Average regularisation parameter values

Average regularisation parameter values

RDA A .04 (.07) .04 (.06) .04 (.06)
RDA Y 12 (.15) .25 (.16) .35 (.18)
RDA1 A .01 (.04) .01 (.04) .02 (.05)
RDA1 Y .10 (.14) .26 (.15) .26 (.15)

RDA A .87 (.29) .85 (.30) .80 (.34)
RDA ¥ .78 (.34) .81 (.26) .81 (.24)
RDA1 A .15 (.26) .20 (.33) .24 (.33)
RDA1 Y .67 (.32) .69 (.30) .80(.25)
Table 3
Equal, Highly Ellipsoidal Covariance
Matrices
(Mean Differences in Low Variance Subspace)
p=6 p=10 p=20
misclassification risk
RDA .07 (.05) .12 (.04) .15 (.04)
RDA1 .08 (.04) .13 (.05) .16 (.04)
LDA .06 (.03) .11 (.04) .14 (.04)
QDA .14 (.05) .29 (.06) .39 (.06)
EDC .24 (.06) .29 (.06) .32 (.05)

Average regularisation parameter values

RDA 2 .87 (.24) .89 (.23) .87 (.19)
RDA Y .05 (.14) .04 (.11) .04 (.09)
RDA1 A .41 (.28) .56 (.30) .73 (.27)
RDA1 Y .02 (.07) .03 (.11) .02 (.07)

Table 6
Unequal, Highly Ellipsoidal
Covariance Matrices
(with Non-zero Mean Difterences)

p=6 p=10 p=20
misclassification risk
RDA .06 (.04) .06 (.04) .02 (.02)
RDA1 .05 (.02) .05 (.04) .01 (.01)
LDA .17 (.05) .18 (.04) .21 (.04)
QDA .04 (.03) .05 (.04) .06 (.04)
EDC .16 (.04) .17 (.04) .17 (.04)

Average regularisation parameter values

RDA A .10 (.20) .10 (.14) .07 (.06)
RDA Y 19 (.27) .29 (.22) .35 (.19)
RDA1 A .01 (.03) .02 (.04) .00 (.00)
RDA1 Y .10 (.13) .22 (.15) .27 (.09)



In conclusion, altering the way ties are broken in the search for the optimum values of A and Y does
not have a great influence on the performance of RDA. Some of the parameter configurations
looked at would favour a greater degree of regularisation and some a lesser degree, but the

difference in error rates was slight.

2.4 Usefulness of RDA for various ratios of sample size to
dimension
From the study by Friedman (1989) as well as in the previous section it is clear that RDA has
proved itself at least equal to but usually superior to the other classification rules under a fairly wide
range of situations. The superiority is greatest in the larger dimensional settings (p>10). The
comparisons with QDA and LDA indicate that the advantage RDA has over the other classification
rules is a result of allowing for eigenvalue shrinkage. A question which becomes of interest is: to
what extent do the benefits of regularisation, in particular eigenvalue shrinkage, diminish as the

sample size to dimensionality ratio increases?

A (further) simulation study was implemented in the manner of Friedman (1989) (and the previous

section), using the same six simulation conditions. In those studies, the ratio of training sample size
to dimensionality (g) is around 2 or less. We investigate the performance of RDA relative to the

L1

P
shrinkage would no longer be useful for discriminating once the training sample size increases past

other classification rules over a wider range of — ratios. It would be anticipated that eigenvalue

some point sufficiently larger than p. The various % ratios employed were 1.2, 1.5, 2, 3, 5, 10 for

dimensions 6, 10 and 20. The (A, Y) grid of values for use in the model selection procedure of RDA
is defined by the outer product of A= (0, .25, .5, .75, 1) and Y = (0, .25, .5, .75, 1). The entire
training sample is 3n in each case, the test sample is 200, and 50 replications of each experiment
were performed. Average error rate (with standard deviation in brackets) are given for each
classification rule. The results are given in Tables 7 to 12.

Eigenvalue shrinkage appears to enhance the classification process under conditions of equal,
n
P
enjoys over the other methods disappears. QD A shows the most dramatic improvement in error rate
n

p

spherical covariance matrices only for small - ratio (% < 3). For larger ratios the advantage RDA

as the — ratio increases, owing to improved parameter estimates through larger sample size.

In the situation of unequal, spherical population covariance matrices RDA proved superior for all
n/p ratios studied, especially for smaller n/p ratios, indicating the benefit of eigenvalue shrinkage
which biases the covariance estimates towards the appropriate value (a multiple of the identity
matrix) in these circumstances.



Table 7

Misclassification Risk for Various n/p Ratios

Equal Spherical Covariance Matrices

p=6 p=10 p=20
Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
1.2:1 2:1 10:1 1.2:1 2:1 10:1 1.2:1 2:1 10:1
RDA .22 .20 .16 .20 .15 .10 .13 .10 .09
(.04) (.03) (.03) | (.05) (.03) (.03) | (.03) (.02) (.02)
LDA .30 .25 .18 .28 .26 .18 .28 .24 .19
(.06) (.02) (.02) | (.05) (.04) (.03) | (.03) (.03) (.02)
QDA .53 .34 .17 .52 .35 .14 3515 .37 .12
(.07) (.08) (.02) | (.07) (.05) (.03) | (.04) (.04) (.02)
Table 8
Misclassification Risk for Various n/p Ratios
Unequal, Spherical Covariance Matrices
p=6 p=10 p=20
Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
1.2:1 2:1 10:1 15201 2:1 10:1 126 2:1 10:1
RDA .22 .20 .16 .20 A5 .10 13 .10 .09
(.04) (.03) (.03) | (.05) (.03) (.03) | (.03) (.02) (.02)
LDA .30 .25 .18 .28 .26 .18 .28 .24 .19
(.06) (.02) (.02) | (.05) (.04) (.03) | (.03) (.03) (.02)
QDA 453 .34 7 .52 .35 .14 555 .37 .12
(.07) (.06) (.02) | (.07) (.05) (.03) | (.04) (.04) (.02)
Table 9
Misclassification Risk for Various n/p Ratios
Equal, Highly Ellipsoidal Covariance Matrices
(Mean Difterences in Low Varance Subspace)
p=6 p=10 p=20
Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
1.2:1 2:1 10:1 1.2:1 2:1 10:1 1.2:1 2:1 10:1
RDA 12 .08 .05 .16 fiZ o .18 .14 T
(.06) (.04) (.02) | (.04) (.04) (.03) | (.04) (.08) (.02)
LDA .10 .07 .04 .14 .11 7 .08 17 .14 .11
(.03) (.02) (.01) | (.03) (.02) (.02) (.03) (.02) (.02)
QDA .41 .15 .05 .44 .24 .09 .49 .32 .14
(.09) (.05) (.02) | (.09) (.05) (.02) | (.06) (.04) (.02)
Table 10
Misclassification Risk for Various n/p Ratios
Equal, Highly Ellipsoidal Covariance Matrices
(Mean Differences in High Variance Subspace)
p=6 p=10 p=20
Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio
1.2:1 2:1 10:1 1.2:1 2:1 10:1 1.2:1 2:1 10:1
RDA_ .08 .07 .06 .10 .10 11 .12 .10 .09
(.03) (.02) (.02) | (.03) (.02) (.04) | (.03) (.02) (.02)
LDA .12 .09 .05 .14 11 .08 .16 .13 .13
(.03) (.03) (.01) | (.03) (.03) (.02) | (.03) (.02) (.03)
QDA .43 .18 .06 .45 .23 .09 .48 .30 .10
(.10) (.05) (.01) | (.07) (.05) (.02) | (.05) (.04) (.03)




Table 11
Misclassification Risk for Various n/p Ratios
Unequal, Highly Ellipsoidal Covariance Matrices
(with Zero Mean Differences)

p=6 p=10 p=20

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio

1.2:1 2:1 10:1 1.2:1 2:1 10:1 1.2:1 231 10:1
RDA .34 .19 .10 .15 .09 .06 .03 .02 .00

(.11) (.05) (.04) (.06) (.03) (.03) | (.02) (.02) (.00)
LDA .61 .59 .62 .59 .59 .61 .58 .59 .62

(.05) (.05) (.04) (.04) (.04) (.04) | (.04) (.05) (.04)
QDA .39 .18 .08 .29 .10 .02 .20 .04 .00

(.09) (.04) (.02) (.09) (.03) (.01) |(.07) (.02) (.00)

Table 12
Misclassification Risk for Various n/p Ratios
Unequal, Highly Ellipsoidal Covariance Matrices
(with Non-zero Mean Ditferences)

p=6 p=10 p=20

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio

1.2:1 2:1 10:1 1.2:1 2:1 10:1 1.2:1 2:1 10:1
RDA .14 .07 .02 .09 .04 .01 .03(.0 .01 .00

(.04) (.03) (.01) (.05) (.03) (.01) 2) (.01) (.00)
LDA .21 .18 .13 .24 .20 .16 .22 .18 18

(.05) (.04) (.03) (.04) (.04) (.03) (.04) (.03) (.03)
QDA .25 .05 .02 .19 .04 .01 .14 .01 .00

(.12) (.02) (.01) (.10) (.02) (.01) (.06) (.01) (.00)

Eigenvalue shrinkage proves to be of no benefit when the population covariance matrices are equal
but highly ellipsoidal with mean differences in the low variance measurement subspace, at least for

the n/p ratios studied (% > 1.2). This is because if the covariance matrix eigenvalues are biased

towards equality, the variance in all subspaces is equalised and hence in this case the mean
differences will become obscured. Conversely, when the mean differences are exhibited in the high
variance subspace, eigenvalue shrinkage proves usetul in reducing the variance in those subspaces
where mean differences are exhibited. RDA has a lower error rate than those rules with no

eigenvalue shrinkage for % ratio less than 3. At g =3 and larger, LDA performs as well as RDA.

In the case of unequal, highly ellipsoidal population covariance matrices with either zero or non-
zero differences between the means, a small amount of eigenvalue shrinkage enables RDA to out-
perform QDA, but only when the sample size is less than twice the dimension. In this case,
eigenvalue shrinkage is generally not desirable since the covariance matrices provide substantial

inforrnation needed for discrimination. A small degree of eigenvalue shrinkage is beneficial in
n n
P P

ratios QDA’s performance is comparable to that of RDA, indicating eigenvalue shnnkage loses its

counteracting eigenvalue bias (see section 1.1) in those situations of small - ratio. For larger



effectiveness. While the average Y value used in RDA is usually small, there is substantial variation,

indicating that under these fairly difficult discrimination conditions (especially zero mean
differences), selection of Y is sensitive to peculiarities in the data.

In conclusion, this simulation study underlines the usefulness of the eigenvalue shrinkage technique
as employed by RDA. The advantage that it affords over the other rules is strongest when the
training sample size from each group is small in relation to the dimensionality, p. Furthermore,
often that advantage remains, even when the sample size increases to several times that of the

dimension.

Model Selection Using Bhattacharyya Distance
3.1 Introduction
In section 2.2, several weaknesses in the model selection procedure of Regularised Discriminant
Analysis as developed by Friedman (1989) were noted by Rayens and Greene(1991). These
included the fact that the regularisation parameters were often determined by a small fraction of the
data points available, and that in many instances (especially with smaller sample sizes) there will
not be a unique choice of the parameters (A,Y) for the model. Furthermore, despite the development
of computationally efficient algorithms to enhance the attractiveness of what is inherently a
computationally intensive model, the computation time is still rather high from the author’s
experience using MATLAB™ on a multiprocessing SUN Sparcstation ELC. Therefore it is of
interest to explore other ways of arriving at appropriate regularisation parameter values in place of
minimising the cross-validated error rate at a range of points over the A,Y grid.

Distance measures have often been considered as alternatives to error rates. For example, Jain
(1976) investigated the behaviour of an estimate of the Bhattacharyya distance when used as a
criterion in variable selection. It was shown that the bias and variance of the estimate is related to
the number of training samples and parameter values of the distribution. Kailath (1967) addressed
the problem that minimising the eiror rate to determine optimum classification can be difticult to
accomplish in practice. He investigated the idea of using simpler, albeit sub-optimal performance
measures instead of the error rate, and compared the Bhattacharyya distance with an often-used
measure, the divergence, which is closely related to Shannon’s logarithmic measure of information.
Not only is the Bhattacharyya Distance easier to evaluate than the divergence, but in some examples
in the study it was found to perform at least as well as the divergence in minimising the probability
of misclassification. Kailath obtained an upper bound on the the probability of misclassification in
terms of the Bhattacharyya distance in the case of equal prior probabilities of the distributions. Note
that Kailath only treated the case of two populations. Also, all his work assumed knowledge of the
parameters, whereas, as we shall see later, if one has to use sample estimates of the parameters, the
link between Bhattacharyya distance and error rate is a lot less clear. Also, Fukunaga and Hayes
(1989) obtained an upper bound, in terms of the Bhattacharyya distance, on the Bayes error for
classifying between two Gaussian distributions .
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The Bhattacharyya distance between two multivariate normal density functions with mean vectors
B and p, and covariance matrices ; and %, is

B=BIl + B2 9)
where
1 (21 + ZoY!
Bl:g(PI'Fz) (ITz) (P}'l‘z)
and

. 2
e
NDMRNDH

The first term of the expression, B1, is similar to the well-known Mahalanobis distance between the
densities. It measures the distance between the two distributions caused by the mean shift. The
second term B2 utilises the determinants of each distribution’s covariance as well as that of the
average group covariance matrix. It gives a measure of the the difference between the two
distributions due to the covanance shift.

Fukunaga and Hayes (1989) derived expressions for the expected bias and variance of the terms Bl
and B2 and showed that the bias of term B1 is proportional to g (n = sample size). i.e. increases as
the ratio g increases. They also showed that the bias of term B2 is proportional to _(EinDE In other

words, estimates of this distance measure become increasingly biased as the ratio g increases, with

term B2 more seriously affected than term B 1. Thus in high dimensional space the bias present in
the Bhattacharyya distance estimate is dominated by the bias inherent in estimation of term B2.

They also showed that as the dimensionality increases, an increasingly large ratio of g is needed to

maintain a constant expected value of B.

With the above knowledge of the Bhattacharyya distz-mce function between two Gaussian
distributions, it is plausible to expect that some degree of regularisation of the covariance, such as is
provided for by the two-parameter model in equation (8), would improve the estimation of the
Bhattacharyya distance. The reason for this stems from the accepted knowledge that covariance
estimates based on equation (4) yield eigenvalue estimates which are biased. The largest ones are
biased towards high values and the smallest ones are biased towards values which are too low. This
bias will be worse in the situation where the true population eigenvalues are approximately equal,
but in all cases this bias becomes more pronounced as the ratio of sample size to dimension
decreases.

The term B2 of the Bhattacharyya distance is most vulnerable to such bias occurring, being a ratio
of determinants of sample covariance estimates, and eigenvalue shrinkage ought to prove useful in
counteracting bias-induced anomalies in estimates of B2, particularly as p becomes large.
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3.2 Behaviour of Bhattacharyya Distance with Regularised
Covariances
Kailath (1967) admitted that it was too much to hope for to obtain a strong relationship between
distance measures and error rate, but he nevertheless was able to obtain several useful theoretical
results, assuming known population parameters. In the present covariance regularisation context
with two parameters controlling shrinkage, as in equations (7) and (8), it is also too much to hope
for to expect that the (i,‘?) combination which maximises the Bhattacharyya distance for a given set
of data will also yield a classification rule which minimises the future misclassification risk.
Instead, from the example below, we can detect no such relationship between sample
Bhattacharyya distance and minimum error rate. The figure shows the components B1, B2 of the
Bhattacharyya distance at a range of points over the A,Y grid. The cross-validated error rate (ecy) at
each point is also stated to give an indication of where the range in which the minimum actual error
rate lies. The data set consisted of samples of size 13 from each of two normal populations with

means and covariances as in Table 4 in section 2.3.

Table 13. Example of A,Y Grid of Bhattacharyya Distances (e.,, B1, B2)

Tl 0.08, 3.84, 0.05 0.08, 3.84, 0.00 0.08, 3.84, 0.00

=105 0.04, 2.93, 0.10 0.04, 2.93, 0.01 0.04, 2.93, 0.00

Y=0 0l15, 2 735080 0.08, 2.73, 0.05 0.08, 2.73, 0.00
A=0 A=05 A=1

It is evident from Table 13 that the largest value of B=B 1+B2 will always occur on the axis A=0 on
the A,Y grid; i.e. no regularisation of the individual covariance matrices towards the average

covariance. This is the case for samples from any two normal distributions.

There are several reasons for this:
1) The value of B1 is not affected by the value of A since the central component of it,
[ZI(X,Y)+EQO»,'Y)] /2, is nothing but the value towards which the individual covariances are biased
anyway by the use of A. Note that (S;(A)+S,(A))/2 always reduces to (S1+Sp)/2:
1 1 1 1
(S;(A)+S, (A2 = 5(1-).)81 + EXSP it (1-A)S, + EXSP = (§;+S5,)2

_1c 1
where Sp = 281+282.

2) The value of B2 decreases monotonically as A increases, for fixed 7, and when A=1, il AY)

= e[S, ] :
and 2,(A,Y) are both equal to (1 - Y) Sp+ Y—pn- I, where Sp is the pooled between-groups

sample covariance matrix. Hence the numerator and denominator of B2 are equal and the term

becomes zero.



3) Term B2 is always non-negative since for two p-dimensional positive definite matrices, A and
B,

VIAIBI< | 252

4) The value of B2 decreases monotonically as Y increases from 0 to 1, for fixed A. An intuitive

reason for this is as follows. The ratio

54
2
VIEIV 15,

is a measure of the covariance shift between the two distributions and as the eigenvalues of the
separate covariances are increasingly biased towards equality, the distributions become more
similar in shape.

3.3 Model Selection

Since the regularisation parameter A does not aftect term B1, and monotonically diminishes terin
B2 as it increases, it is evident that an appropriate value for it in a given situation cannot be
determined from information about B. Re-sampling methods can be employed to give a unique
choice for A. However these methods are computationally intensive, and since both the terms B1
and B2 exhibit the same behaviour in relation to A for all values of 7, it is sensible to first tun our
attention to choosing a value for Y so as to narrow down the search area for A on the (A,Y) plane.

Selection of the parameter ¥

Increasing the value of the eigenvalue shrinkage parameter Y typically decreases the term B 1, but
not always, and the trend is not always monotonic. However from point 4 above we see that B2
exhibits only monotonic behaviour in relation to Y. So it seems sensible to first look at the
behaviour of B1 for a range of 7.

From the empirical data we can identify three scenarios relating to B1:

1) Magnitude of B1 small, and not greatly affected by the value of ¥ changing between O and 1.
2) Magnitude of B1 large and not greatly affected by the value of ¥ changing between 0 and 1.
3) The effect on B1 of ¥ changing between 0 and 1 is large.

Now from the behaviour of primarily B1, and secondarily B2, calculated for various Y over
0 <Y< 1, the following decision paths are proposed for the selection of an appropriate Y.

Under scenario 1 above, B1 is not providing much information as to an appropriate value of ¥, so
look at the effect of various Y on B2. If it is large, choose that Y which gives a minimal value of

B1/B2, since in this case a dominant covariance shift over mean shift would seem to be important
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for enhancing classitication. If ¥ also has little effect on B2, choose that ¥ which leads to a maximal
value of B1/B2.

Scenario 2 above indicates these are good conditions for classification due to the large Mahalanobis
distance (B1) for all values of ¥. Some average value of Y will suftice.

Under scenario 3, if ¥ has little effect on B2, it is clearly desirable to select that Y yielding a large
value of B1. However if B2 is greatly affected by Y also, some greater degree of reduction in the
variance of the system (by increasing Y a little) is desirable for classification purposes, whilst still

maintaining a sizeable Mahalanobis distance (B 1) between the groups.

The above guidelines lead to a simple flow chart for the selection of ¥ to use in equations (7) and (8)
based on the three scenarios above and followed by the selection of A using a re-sampling
technique. The critical values at each decision stage have been arrived at empirically through
observing the values of B1 and B2 for various random samples from various normal populations.
The six simulation conditions proposed by Friedman (1989), and used in the present paper (section
2.2), offer a comprehensive set of group population distributions and n/p ratios from which to

estimate these critical values.

Selection of the parameter A

For the selection of the regularisation parameter A, only the term B2 can be employed since B1 is
constant over all values of A for a given value of Y. However, the decrease in B2 from its maximum
value at A=0 to A=1, when it is zero, is monotonic. Bootstrapping is used to estimate that upper
bound on B2 for the selected value of Y ('?) and A=0, and this estimate is compared to the full- -
sample estimate of B2 for that same degree of regularisation and a unique value of the parameter A

obtained.

The magnitude of B2 when A=0 and Y=1 gives further indication as to the similarity or dissimilarity
of the group covariance estimates, and hence also indication as to an appropriate value of A. Under
this situation of maximal eigenvalue shrinkage the determinants of the group covariances are
reduced to their average eigenvalue raised to the power of the dimension, p. If the group |
covariances are similar, the average of their eigenvalues will be similar in magnitude and the
fraction in term B2 will be close to one, resulting in the value of B2 itself being close to zero. This
being the case, the selected )» is raised to a power 1/k where k is proportional to 1/B2(0,1)
(B2(a,b) denotes the value of B2 when A=a and Y=b).

Thus model selection using the Bhattacharyya distance consists of the following steps:

1) Evaluate B1 and B2 from the available data for varying degrees of covariance eigenvalue
shrinkage (a range of Y), but using no covariance mixing (A=0).

2) Select ¥ using decision flow chart that implements the guidelines of this section .
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3) Using the amount of eigenvalue shrinkage determined by the selected parameter value '?, estimate

the upper bound of the range of B2 using the re-sampling technique of bootstrapping.

The re-sampling technique is therefore used only at one point on the (A,Y) plane. This contrasts
with Friedman’s RDA where a sample-reuse method (cross-validation) is performed at each of a
whole grid of typically between 25 and 50 points. No matrix updating formulas are therefore
required in this case which results in a greatly reduced computational burden (see section 3.6).

3.4 Discussion

The simulations performed with Friedman’s RDA in earlier section have enabled us to observe that
for a number of different simulation conditions, there is no unique selection of A and '?, using the
criteria of minimum cross-validated error rate, and indeed altering the rule for the breaking of such
ties had little effect on the overall performance of the procedure. In other words, the degree of
regularisation (either covariance mixing or eigenvalue shrinkage, or both) is often not as important
as its presence in any form.Thus it seems that complex methods to obtain a precise selection of A

and Y are not warranted.

Another conclusion from the simulation studies is that as the sample size to dimension ratio
decreases, a degree of eigenvalue shrinkage using Y (i.e. Y>()) becomes more necessary to
counteract the bias in the eigenvalues of the estimated covariances. Also, an increasing amount of
regularisation away from Y=() is required as p increases, even for those conditions where any
shrinkage of the eigenvalues to equality would appear to be strongly counter-productive. (See, for
example, Table (18) where the average '?value increases with dimension to substantial levels, even
though no regularisation, or QDA, would seem to be the best option in these conditions.) The
benefits of a decrease in variance from such shrinkage is proven to outweigh any introduced bias.
The proposed method of selecting Y from the Bhattacharyya distance therefore only considers
values of Y in the range 6 <Y < 1, where 6 2 0 but usually fairly close to zero and where 6 depends

on both the magnitude of p and the sample size to dimensionality ratio.

A goal of this model selection procedure using the Bhattacharyya distance is to provide a much
faster algorithm to that proposed by Friedman using cross-validation. Also, the model selection
procedure should choose appropriate levels of covariance mixing and eigenvalue shrinkage so that
the classification rule obtained is comparable in performance to Friedman’s RDA.

3.5 Simulation Studies

Computer simulation is used to compare the performance RDA, LDA, QDA, EDC and RDA-B
(which denotes Regularised Discriminant Analysis using the Bhattacharyya distance measure to
select the model) in the same variety of settings as that used by Friedman (1989), except that only
two groups are present instead of three. In all cases the group distributions are normal and the total
sample size from those distributions was 28, 14 from each group. For each set of conditions,
simulations were performed for various levels of dimensionality: p=6, 10 and 20. The optimisation
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grid for RDA was set as in Friedman’s study. Since the sample size to dimensions ratio is less than
one for some simulations, the zero eigenvalues of the group covariance matrix estimates were

replaced by a small quantity, sufticient to permit numerically stable covariance inversion.

There were 100 repetitions of the experiment for each of the six settings. As before, random
samples were drawn from specified multivariate normal distributions and were used to construct the
classification rules for all five of the above methods. An additional test sample of size 100 was
randomly generated from the same distributions and classitfied using each of the five rules obtained,
yielding estimates of the error rate for each rule. These are presented in Tables (13) to (18), along
with the mean and standard deviation of the selected regularisation parameters for RDA and RDA-B
over the 100 replications. A(RDA) and (A(RDA-B) denote the mean value of A for RDA and RDA-B

respectively. The mean value of ¥ for each method is defined similarly.

Table 14
Equal Spherical Covariance Matrices (k=2 groups)
p=6 p=10 p=20
RDA .08 (.03) .09 (.03) .11 (.04)
RDA-B .08 (.03) .09 (.03) .10 (.04)
QDA .16 (.06) 29 (.07) 32 (.06)
LDA .10 (.04) .14 (.05) .24 (.07)
EDC 08 (.03) .09 (.03) .10 (.03)
A(RDA) .86 (.30) 94 (.18) 94 (.20)
Y(RDA) .73 (.34) .86 (:22) .76 (.28)
A(RDA-B) .85 (.21) .84 (21) .84 (.16)
Y(RDA-B) 94 (11) 93 (07) .84 (.26)
Table 15
Unequal Spherical Covariance Matrices (k=2 groups)
p=6 p=10 p=20

RDA .11 (.04) .11 (.04) .08 (.05)
RDA-B .11 (.04) .09 (.05) .10 (.09)
QDA .20 (.05) .32 (.08) .35 (.07)
LDA .15 (.04) .20 (.06) .32 (.07)
EDC .13 (.04) .15 (.05) .18 (.05)
A(RDA) 46 (.37) .35 (.39) .28 (.27)
Y(RDA) .80 (.31) 77 (.30) .88 (.20)
A(RDA-B) .15 (.21) .09 (.11) .04 (.03)
Y(RDA-B) .72 (.37) .86 (.24) 7 (34)
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Table 16
Equal, Highly Ellipsoidal Covariance Matrices (k=2 groups)

(Mean differences in low variance subspace)

p=6 p=10 p=20
RDA .02 (.04) .05 (.03) .13 (.05)
RDA-B .01 (.01) .06 (.05) 13 (.05)
QDA .02 (.02) .16 (.08) .28 (.07)
LDA .01 (.01) .03 (.02) 15 (.07)
EDC 09 (.04) .10 (.04) .16 (.05)
ARDA) 96 (.17) .96 (.14) .87 (.28)
YRDA) .20 (.36) .29 (31) .49 (.31)
ARDA-B) 94 (.05) .84 (.15) .81 (.19)
YRDA-B) .01 (.10) .36 (.44) .68 (.39)
Table 17

Equal, Highly Ellipsoidal Covariance Matrices (k=2 groups)

(Mean differences in high variance subspace)

p=6 p=10 p=20
RDA 03 (.02) .03 (.02) .05 (.03)
RDA-B .02 (.02) 02 (.02) - .03 (.02)
QDA .07 (.04) .19 (.09) .23 (.08)
LDA .03 (.02) .06 (.04) .15 (.07)
EDC .03 (.02) .03 (.02) .04 (.02)
ARDA) 1.0 (.00) .94 (.23) 94 (.21)
Y®RDA) .89 (.26) .95 (.14) .82 (.26)
ARDA-B) 91 (.08) .89 (.08) .87 (.10)
YRDA-B) .69 (.14) 75 (.11) .82 (.11
Table 18

Unequal Highly Ellipsoidal Covariance Matrices (k=2 groups)

(Zero mean differences)

p=6 p=10 p =20
RDA 18 (.08) 13 (.06) .05 (.03)
RDA-B 18 (.06) 10 (.05) 05 (:04)
QDA 17 (.06) 22 (.09) 20 (.05)
LDA 47 (.06) 47 (07) 44 (.06)
EDC 47 (.05) 46 (.05) 43 (.05)
ARDA) 13 (.12) 12 (12) 15 (.11)
T®RDA) 12 (26) 39 (.29) 67 (:29)
ARDA-B) 16 (.09) 10 (.06) 04 (.03)
TRDAB) 19 (31) 33 (35) 63 (34)
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Table 19
Unequal Highly Ellipsoidal Covariance Matrices (k=2 groups)

(non zero mean differences)

p=6 - p=I0 p=2
RDA .03 (.03) .06 (.04) .04 (.05)
RDA-B .02 (.03) .03 (.02) .02 (.02)
QDA .02 (.02) .07 (.05) .11 (.04)
LDA .03 (.02) .10 (.05) .19 (.08)
EDC .10 (.04) .12 (04) .13 (.04)
ARDA) .76 (.34) .49 (.35) .46 (.26)
Y®RDA) .25 (.34) .46 (.35) .76 (.30)
A(RDA-B) .18 (.14) .11 (.07) .05 (.03)
Y(RDA-B) .16 (.23) 37 (.38) .35 (.30)

3.6 Results

In all the various conditions tested it is clear that RDA and RDA-B yield very similar error rates
over the 100 replications. There are 18 sets of simulations represented in tables (13) to (18). In ten
of these cases, RDA-B performs slightly better (and with a reduced standard deviation) than RDA
in terms of estimated error rate, and in two of the cases RDA has a slightly lower error rate. Thus
overall, neither technique is superior to the other in terms of experimental classification error rates.
The average regularisation parameter values for RDA and RDA-B show that for both methods, the
model selection procedures tend to do the right thing by introducing appropriate degrees of each
type of regularisation for the various simulation conditions.

The standard deviations of the selected regularisation parameters tended to be smaller for RDA-B,
perhaps because of the more direct nature of the path taken to select the pair of values @, Y) in the
parameter selection procedure in RDA-B compared with RDA. Furthermore, the model selection
process in RDA-B affords a unique choice of the estimated best pair of values (‘;» '?), without

kaving to break ties in an arbitrary way as for RDA.

In conclusion, it can be established that the Bhattacharyya distance between groups does indeed
provide information as to appropriate regularisation parameter values to use in equation (8). This
can be used to obtain a classification rule which seeks to minimise the actual error rate for data from
two specified normal distributions. Unfortunately, no tidy, direct theoretical relationship exists
between components of the Bhattacharyya distance and the error rate. Instead we have derived the
model selection procedure based on empirical data and it can be seen to perform as well, at least
under the tested range of simulated conditions, as the model selection procedure developed by
Friedman (1989) in the RDA method.
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Finally, a substantial advantage of the model selection procedure in RDA-B over that of RDA
relates to the computation time required for each. The table below gives approximate ratios (RDA-
B/RDA) of CPU times for various dimensions.

p=6 p=10 p=20
.15 2 .08

These results indicate the the gain in computational efticiency in using RDA-B over RDA.
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ABSTRACT

Friedman (1989) proposed a Regularised Discriminant Function (RDF) as a compromise
between nommal-based Linear and Quadratic Discriminant Functions, by considering
alternatives to the usual maximum likelihood estimates for the covariance matrices. These
alternatives are characterised by two (regularisation) parameters, the values of which are
customized to individual situations by jointly minimising a sample-based(cross-validated)
estimate of future misclassification risk. This technique appears to provide considerable gains
in classification accuracy in many circumstances, although it is computationally intensive.

Because of the computational burden inherent in RDF, and with regard to criticisms of the
technique by Rayens et. al. (1991), we investigated whether information about appropriate
values of the two regularisation parameters could be gleaned by examining the behaviour of
the Bhattacharyya Distance between the various populations. A classification rule for the two
(normal) population case which uses regularization parameters obtained from the
Bhattacharyya distance (and which is computationally much faster than Friedman's RDF) is
presented and compared with the original RDF.

1. INTRODUCTION

Regularized discriminant analysis was introduced by Friedman (1989) as an alternative to the
common normal-theory-based discriminant functions, such as the nearest-mean (euclidean
distance) classifier(EDF), the linear discriminant function(LDF) and the quadratic
discriminant function(QDF). Simulation results by various authors suggest that regularized
discriminant analysis can perform much better than these other normal-theory based
discriminant functions (see, for example, Friedman (1989), Rayens et. al. (1991)).
Experiences of the authors of this article also confirm these results. Meanwhile, a recent
article by Aeberhard et. al. (1994) reported results which found that the regularized
discriminant function (RDF) performed much better than seven other discriminant functions,
including several non-parametric ones.

To introduce the notation, suppose we have multivariate (p-dimensional) measurements (x)
on each object (pixel), where each object belongs to one of K classes. In order to apply
normal-theory based classification, it is usually assumed (correctly or incorrectly).that the
multivariate normal distribution can adequately describe the distribution of measurements
from each class. Let us denote the population mean and covariance function for group i by

I Author to whom correspondence should be addressed. Address after February 1, 1996: Faculty of Business,
Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.



y; and X; respectively. These are usually estimated by the sample mean X ; and sample
covariance matrix S;, from the training sample. If it is assumed that the covariance matrices
Z, are equal for all K classes, then the common value X is estimated by

K
Sp=2 (n/n) S; (1)

i=1

On the basis of these estimates, the sample classification functions based on the normal
distribution would allocate a pixel to class k according to the following rules:
(1) Sample euclidean distance function (SEDF, or the nearest mean classifier)

SEDF(k) = min (overi) {(x-%;) (x-X;)}
(i) Sample linear discriminant function (SLDF)
SLDF(k) = min (overi) (%, S} x-3%;S1%;+In =
(iii))  Sample quadratic discriminant function (SQDF)
- SQDF(k) = min (overi) {(x - x;)’ S'il(x -X,) +InlS;| -2 1nm} 2)

The motivation for developing the RDF was partly to do with the well-known problems
associated with estimating Z, by S;, which leads to relatively poor performance of the SQDF,

especially when the sample size to dimension ratio (i.e. n;: p ratio) is small. [This problem is

discussed in Friedman (1989), and also in an article at this conference (Lawoko et. al.
(1996)]. This led Friedman (1989) to propose a regularization parameter, A, which controls
the regularization of §; to Sp. thereby controlling the degree to which Z, is estimated by

pooled information from the several S; matrices, or by each S; separately. Thus the initial
proposal for the sample RDF (SRDF) is to use the SQDF in (2), but with §; estimated by

£ .(A), defined as
. (l—k)(ni—l)Si+7kSp
E'(l) = 1)
i (1-2) (o; — 1) + A(N-K)
where N=n; +n, +...+ng, and 0<A<.

3)

Because of well-known problems of bias associated with estimating the eigenvalues of the
covariance matrix (and since there are situations where one wants to perform a discriminant
analysis when n; 2 p), the above regularization may still not be adequate. Thus Friedman

- proposed further regularization beyond that in (3) by providing an option for regularizing the
eigenvalues of p) {(A) towards equality using a second regularization parameter, 7.

Consequently, the estimate of X; used is given by
Ein=0-nEm+luwE ol (4)

where i i(A) is given in (3) and-T is the identity matrix. Note that this shrinkage has the effect

_ of decreasing the larger eigenvalues and increasing the smaller ones, to counter the bias in
sample estimates of the eigenvalues of covariance matrices.



% PROBLEMS ASSOCIATED WITH IMPLEMENTING RDF

For the RDF to be implemented, A and 7y (plus all the other parameters) need to be estimated
from the data. Friedman proposed that the (A, ¥) value chosen should be that which minimizes
the cross-validated error rate of a training sample through a grid-search procedure. In spite of
Friedman’s tremendous work in deriving matrix algebraic relationships which reduce the
computational burden significantly, this is still a very computationally intensive procedure. It
is therefore of interest to consider alternative methods of estimating the appropriate (A, ¥)
combination for a given set of data.

Another problem associated with the RDF, which was discussed in detail by Rayens et. al.
(1991) is that since the estimated value of (A, Y) is obtained on the basis of error rates (i.e.
empirical misclassification rates), those objects (pixels) which are correctly classified for
most (A, ) values in the grid do not contribute to the estimation of A and y. It follows that in
many practical situations, only a very small fraction of the training data may determine the
values of A and y. It is therefore of interest to investigat if other methods which use all the
training data to estimate A and y may perform better. Incidentally, the regularization method
developed by Rayens et. al. (1989, 1991) uses all the data to estimate their regularisation
parameters (which are not A and 7), although they use Friedman’s y in addition to their
parameters in the 1991 paper.

One further reason for considering alternative ways of estimating A and 7 relates to the
empirical evidence that the error rate surface seems to be fairly flat in a very wide
neighbourhood of the minimum. Our own research into alternative ways of “breaking ties”

(in the case of several local minima) suggest that any of the values of (71 ,Y) which determine
the local minima could be chosen without any serious changes to the performance of the

RDEF. It follows (from the “inexactness” of the values of A and 4 required for successful
implementation of the RDF), that it may not be necessary to go through the (required)
intensive computation in the cross-validation method (and still get the RDF to perform
reasonably well).

In view of these issues discussed in this section, we investigated the use of the Bhattacharyya
distance measure, as an alternative to the cross-validated error rate, in determining the

optimal values of A and 3'
3. SOME PROPERTIES OF THE BHATTACHARYYA DISTANCE MEASURE

Distance measures have often been considered as alternatives to error rates as a criterion for
choosing among various options. For example, Jain (1976) investigated the behaviour of an
estimate of the Bhattacharyya distance when used as a criterion in variable selection. It was
shown that the bias and variance of the estimate is related to the number of training samples
and parameter values of the “distribution. Kailath (1967) addressed the problem that
minimising the error rate to determine optimum classification can be difficult to accomplish in
practice. He investigated the idea of using simpler, albeit sub-optimal performance measures
instead of the error rate, and compared the Bhattacharyya distance with an often-used
measure, the divergence, which is closely related to Shannon’s logarithmic measure of
information. Not only is the Bhattacharyya distance easier to evaluate than the divergence, but
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in some examples in the study it was found to perform at least as well as the divergence in
minimising the probability of misclassification. Kailath obtained an upper bound on the
probability of misclassification in terms of the Bhattacharyya distance, in the case of equal
prior probabilities of the distributions. Note that Kailath (1967) only treated the case of two
populations. That work also assumed knowledge of the parameters, whereas, as we shall see
later, if one has to use sample estimates of the parameters, the link between Bhattacharyya
distance and error rate is a lot less clear. Also, Fukunaga et. al. (1989) obtained an upper
bound, in terms of the Bhattacharyya distance, on the Bayes error for classifying between two
Gaussian distributions.

The Bhattacharyya distance between two multivariate normal density functions with mean
vectors [, and L, and covariance matrices X, and Z, is

B =Bl +B2
where
_ 1 L+ 2y}
B1=§(u1-ug)’ — 2 1) - Hp) B

and

1 2
B2=7 In———7— . (5)
2 T[T, [Iz,]

The first term of the expression, B1, is similar to the well-known Mahalanobis distance
between the densities. It measures the distance between the two distributions caused by the
mean shift. The second term B2 utilises the determinants of each covariance matrix as well
as that of the average (class) covariance matrix. It gives a measure of the difference between
the two distributions due to the covariance shift. Fukunaga et. al. (1989) derived expressions
for the expected bias and variance of the terms B1 and B2 and showed that the bias of term B1
is inversely proportional to (n/p) (n; = n = sample size). i.e. decreases as the ratio (n/p)
increases. They also showed that the bias of term B2 is inversely proportional to (o+1p ° In
other words, estimates of this distance measure become increasingly biased as the ratio (n/p)
decreases, with term B2 more seriously affected than B1. Thus, when the (n/p) ratio increases
the bias present in the Bhattacharyya distance estimate is dominated by the bias inherent in
estimation of the term B2. They also showed that as the dimensionality increases, an
increasingly large ratio of (n/p) is needed to maintain a constant expected value of B.

‘ZI"’EZ

With the above knowledge of the Bhattacharyya distance function between two Gaussian
distributions, it is plausible to expect that some degree of regularization of the covariances,
such as is provided for by the two-parameter model in equation (4), would improve the
estimation of the Bhattacharyya distance. The reason for this stems from the accepted
knowledge that sample covariance estimates S; yield eigenvalue estimates which are biased.

The -largest eigenvalues are biased towards high values and the smallest ones are biased
towards values which are too low. This bias will be worse in the situation where the true
population eigenvalues are approximately equal, but in all cases this bias becomes more
pronounced as the ratio of sample size to dimension decreases. The term B2 of the
Bhattacharyya distance is most vulnerable to such bias occurring, being a ratio of

determinants of sample covariance estimates, and eigenvalue shrinkage (regularization) ought
to prove useful in counteracting bias-induced anomalies in estimates of B2, particularly as p



becomes large (relative to n,).

4. BEHAVIOUR OF BHATTACHARYYA DISTANCE WITH
REGULARIZED COVARIANCES, AND CHOOSING A AND Y

Kailath (1967) admitted that one would not expect to obtain a strong relationship between
distance measures and error rate. Nevertheless, the author was able to obtain several useful
theoretical results, assuming known population parameters. In the present covariance
regularization context with two parameters controlling shrinkage, as in equations (3) and (4),

it would be too optimistic to expect that the (A ,Y ) combination which maximises the
Bhattacharyya distance for a given set of data will also yield a classification rule which
minimises the future misclassification risk. Instead, from the example below, we can detect
no strong relationship between sample Bhattacharyya distance and minimum error rate. That
is, Table 1 shows the components B1 and B2 of the Bhattacharyya distance at a range of
points over the A,Y grid. The cross-validated error rate (es,) at each point is also stated to give
an indication of where the range in which the minimum error rate lies. The data set consisted
of samples of size 13 from each of two normal populations with means and covariances as in
Table 2 (Condition II).

Table 1. Example of A,Y Grid of Bhattacharyya Distances (e.,, B1, B2)
T=1 0.08,3.84,0.05 0.08, 3.84,0.00 0.08, 3.84,0.00
Y=05 0.04,2.93,0.10 0.04,2.93,0.01 0.04,2.93,0.00
Y=0 0.15,2.73,0.59 0.08,2.73,0.05 0.08,2.73,0.00

| A=0 A=0.5 A=l

It is evident from Table 1 that the largest value of B=B1+B2 will always occur on the axis
A=0 on the A,Y grid; i.e. no regularisation of the individual covariance matrices towards the
average covariance. This is the case for samples from any two normal distributions. There are
several reasons for this:

1) -~ The value of B1 is not affected by the value of A since the central component of it,
[ 1(X,Y)+5.‘. 2(A.N] /2, is not changed by A for a fixed value of .
2) The value of B2 decreases monotonically as A increases, for fixed ¥. And when A=1,
- N tr[S._]
Z (A7) and X ,(A,Y) are both equal to (1 -7) Sp + 'Y_E'p I. Hence the numerator
and denominator of B2 are equal and the term becomes zero.
3) Term B2 is always non-negative since for two p-dimensional positive definite

matrices, A and B,

A+B

- A Bl < [=

4) The value of B2 decreases monotonically as Y increases from O to 1, for fixed A.
Since B2 is fundamentally a measure of the covariance shift between the two
distributions, if the eigenvalues of the separate covariances are increasingly biased




towards equality, the distributions become more similar in shape.

Since the regularisation parameter A does not affect term B1, and monotonically decreases as
the term B2 increases, it would seem that an appropriate value for it in a given situation
cannot be determined from information about B. Re-sampling methods can be employed to
give a unique choice for A for given sets of data. However these methods are computationally
intensive, and since both the terms B 1 and B2 exhibit similar behaviour in relation to A for all
values of 7, it is sensible to first choose a value for ¥ so as to narrow down the search area for
A on the (A,Y) grid. Also, the bias inherent in the estimate of B1 would be expected to be less
than that in estimates of B2, so that the principle upon which selection of the regularization
parameter Y is made involves giving B1 greater importance than B2. Thus, in general the aim
is to choose that y which gives a large or maximal value of B1 or B1/B2. In situations where
the distribution means are close together and B1 is small, a minimal value of B1/B2 is needed
since in this case a dominant covariance shift over mean shift would seem to be important in
enhancing classification.

The technique which employs the Bhattacharyya distance to select A and ¥y is denoted as
RDF-B. A detailed description of the (heuristic) algorithm for choosing A and 7 is not
possible in this article (space limitations) but the steps involved will be discussed at the
conference presentation, and will be reported elsewhere.

d. DISCUSSION AND SIMULATION STUDIES

As mentioned earlier, the simulations performed to investigate the behaviour of Friedman’s
RDF have enabled us to observe that for a number of difterent simulation conditions, there is

no unique selection of A and Y, using the criteria of minimum cross-validated error rate.
Indeed, altering the rule for the breaking of such ties had little effect on the overall
performance of the procedure. In other words, the degree of regularisation (either covariance
mixing or eigenvalue shrinkage, or both) is often not as important as its presence in any form.

Thus it would seem that complex methods to obtain a precise selection of A and ¥ are not
warranted.

Another conclusion from the simulation studies is that as the sample size to dimension (n:p)

ratio decreases, a degree of eigenvalue shrinkage using Y (i.e. Y>0) becomes more necessary in
order to counteract the bias in the eigenvalues of the estimated covariances. Also, an

increasing amount of regularisation away from Y=0 appears to be required as p increases, even
for those conditions where any shrinkage of the eigenvalues to equality would appear to be
strongly counter-productive. The benefits of a decrease in variance from such shrinkage

appears to outweigh any introduced bias. The proposed method of selecting ¥ from the

Bhattacharyya distance therefore only considers values of Y in the range 6 <Y <1, where 6 > 0
but usually fairly close to zero and where 6 depends on both the magnitude of p and the
sample size to dimensionality ratio.

A goal of this model selection procedure using the Bhattacharyya distance is to provide a
much faster algorithm to that proposed by Friedman using cross-validation. Also, the model
selection procedure should choose appropriate levels of covariance mixing and eigenvalue
shrinkage so that the classification rule obtained is comparable in performance to Friedman's
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RDF. In the case of discriminating between more than two classes, one can either use the
average regularisation parameter values of all possible pairs of classes, or introduce a separate
A and vy value for each class. This matter is currently under investigation by the authors.

Computer simulation was used to compare the performances of RDF (Friedman’s RDF
method) and RDF-B (which denotes RDF using the Bhattacharyya distance measure to select
the model) in the same variety of settings as that used by Friedman (1989), except that only
two classes are present instead of three. Further details of these six settings or conditions are
given in the article by Lawoko et. al., in the “Proceedings” of this conference. In all cases the
class distributions are normal and the total sample size from those distributions was 28 i.e. 14
from each class. For each set of conditions, simulations were performed for various levels of
dimensionality: p=6, 10 and 20. The optimisation grid for RDF was set as in Friedman’s
study. Since the sample size to dimensions ratio is less than one for some simulations, the zero
eigenvalues of the class covariance matrix estimates were replaced by a small quantity,
sufficient to permit numerically stable covariance inversion(as done in Friedman(1989)).

Table 2.

] p=6 p=10 — . p=20
Condition* I I1 111 I 11 111 I 11 111
RDF 08 (.03) .03 (.02) .18 (.08)[ .09 (.03) .03 (.02) .13(.06)|.11(.04) .05(.03) .05(.03)
RDF-B .08 (.03) .02(.02) .18 (.06)| .09 (.03) .02 (.02) .10(.05)|.10(.04) .03(.02) .05 (.04)
A (RDF) .86 (.30) 1.0(.00) .13(.12)| .94 (.18) .94 (.23) .12 (.12)| .94 (.20) .94 (21) .15(.11)
T (RDF) .73 (34) .89 (.26) .12 (.26)| .86(.22) .95(.14) .39(.29)|.76 (.28) .82(.26) .67(.29)
A (RDF-B) .85(.21) .91(.08) .16(.09)| .84 (.21) .89(.08) .10(.06)|.84 (.16) .87 (.10) .04 (.03)
Y (RDF-B) 94 (.11) .69 (14) .19(.31)|.93(07) .75(.11) .33(.35)|.84(.26) .82(.11) .63 (.34)

* Condition I: Equally spherical covariance matrices.
Condition II: Equal, highly ellipsoidal covariance matrices, with mean difference in the
high variance subspace
Condition III: Unequal highly ellipsoidal covariance matrices with zero mean differences

There were .100 repetitions of the experiment for each of the six settings. As before,
randomsamples were drawn from specified multivariate normal distributions and were used to
construct the classification rules. An additional test smﬁple of size 100 was randomly
generated from the same distributions and classified using the two rules, yielding estimates of
the error rate for each rule. These are presented in Table 2 (with sample standard deviations in
brackets). The mean and standard deviation of the selected regularization parameters for RDF

and RDF-B over the 100 replications are also given, with ARDF) and A(RDF-B) denoting the

mean values of A for RDF and RDF-B respectively. The corresponding values for Y for each
method are defined similarly.

6. RESULTS

In all the various conditions tested it is clear that RDF and RDF-B yield very similar error
rates over the 100 replications, which are generally better or comparable to the best of the
SEDF, SLDF, and SQDF. Thus the average regularization parameter values for RDF and



RDF-B show that for both methods, the model selection procedures tend to do the right thing
by introducing appropriate degrees of each type of regularization for the various simulation
conditions. The standard deviations of the selected regularization parameters tended to be
smaller for RDF-B, perhaps because of the more direct nature of the path taken to select the

pair of values (5» ,Y) in the parameter selection procedure in RDF-B ,compared with RDF.
Furthermore, the model selection process in RDF-B provides a unique choice of the estimated

best pair of values (A ,Y), without having to break ties in an arbitrary way as in the RDF.

In conclusion, it can be established that the Bhattacharyya distance between two classes does
indeed provide adequate information about the appropriate regularization parameter values to
use in equations (3) and (4). This can be used to obtain a classification rule which
approximately minimises the error rate for data from two specified normal distributions.
Unfortunately, no tidy, direct theoretical relationship exists between components of the
Bhattacharyya distance and the error rate. Instead we hgve derived the model selection
procedure based on empirical evidence and observations. It does perform approximately as
well, however, as the model selection procedure developed by Friedman (1989) in the original
RDF method. - )

Finally, a substantial advantage of the model selection procedure in RDF-B over that of RDF
relates to the computation time required for each. The table below gives approximate ratios
(RDF-B/RDF) of CPU times for various dimensions.

p=6 p=10 p=20
15 12 .08

These results indicate the gain in computational efficiency in using RDF-B over RDF.
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ABSTRACT

In this article we discuss the performance and properties of regularized discriminant functions
(RDFs). These are classification functions which can be intermediary among the common
discriminant functions, namely the nearest-mean (euclidean distance) method, linear
discriminant function, and the quadratic discriminant function. It has been demonstrated by
several researchers that the RDF can out-perform most of the common discriminant
functions, including non-parametric ones; see, for example, Friedman (1989), Rayens et. al.
(1989, 1992), and Aeberhard et. al. (1994).

In spite of its impressive performance, the RDF has some drawbacks, like computational
intensity and lack of scale invariance. We report and discuss results from simulation
experiments which investigated some of these properties. Alternative means of estimating the
regularization parameters are also introduced and discussed. It must be pointed out that
because of space limitations, very few results have been included in this article, although
more results(from remotely sensed and GIS data) will be discussed in the presentation.

1. INTRODUCTION

Consider the problem of classification or discriminant analysis, where we want to classify an
object (pixel) to one of several (K) groups (classes) based on multivariate (p-dimensional)
data (x) on each object. Common supervised classification methods based on the
normal distribution are the Nearest-mean classifier or the Euclidean discriminant
function (EDF), the Linear discriminant function (LDF), and the Quadratic discriminant
function (QDF). Specifically, suppose the population mean and covariance matrices for class
i@d=1,2, ..,K)are p; and % respectively, and T is the prior probability of class i.
Assuming normality, the three discriminant functions allocate a pixel with observation vector
x to class k according to the following well-known rules:

1) EDF: EDF(k)=min (overi){(x — H;)’ (x — 1;)}
() LDF:LDF(k) = min (overi){p] E1x—3 p; Elp+lnm, )
(i) QDF: QDF(k) = min (over i){x — ;) T (x-n) +InZ, -2 Inm;) (1)

Clearly, the unknown population- parameters in expression (1) have to be estimated from
training samples. Usually p; and X, are estimated by unbiased and consistent estimators,

1Author to.whom correspondence should be addressed. Address after February 1, 1996: Faculty of Business,
Queensland University of Technology, GPO Box 2434, Brisbane, Queensland, 4001, Australia.



which are the sample mean (X ;) and the sample covariance matrix (S;). In the case of LDF,
the common value of X is estimated by the pooled sample covariance matrix, Sp.In practice
therefore,the sample discriminant functions used are:

6)) Sample EDF: SEDF(k) = min (over i){(x — X ;)" (x - x;)}

(i1) Sample LDF: SLDF(k) = min (over i){x; Sg x—%i; S, X + Inm; )}

-1
p

(i)  Sample QDF: SQDF(k) = min (over i){(x - X ;)’ S'il(x -X%;,) +InlS;l -2 1n =} 2)
(see, for example, McLachlan (1992) or Fukunaga (1990)).

In practical applications, the SEDF is used only under very special circumstances because of
the restrictive assumption that £ = I (the identity matrix). Meanwhile, the SLDF has been
shown to be quite robust to violations of the (required) X; = X assumption, and to
non-normality of data. Consequently the SLDF is a quite popular classification procedure.
Meanwhile the SQDF, which should be the most widely used, suffers from the fact that it has
a large number of unknown parameters which must be estimated from the training data. Itis
also quite sensitive to violations of the normality assumption. This means that the SQDF
requires very high n;: p ratios for successful implementation. For example, it has been shown
that SLDF can out-perform the SQDF for small to moderate (n;: p) ratios, even if the

covariance matrices are quite different. This matter is of relevance to the classification of
remotely sensed data because, even if there are usually a considerable abundance of data,
there are usually problems with finding good training data for some groups.

The relative underperformance of the SQDF is partly due to the estimation of Z;. This can be
demonstrated by representing X, by its spectral decomposition. That is, rewrite Z, as (see,
for example, Friedman (1989)):
P . P V.. vy \L
=Y e.v.vi sothat X' = 2—“—@? J 3)
i Vi @ i ' e..
j:] )=1 il

. .th . .« . . «
where e;; s the j™ eigenvalue of ¥, and vjiis its corresponding eigenvector.

Thus the QDF discriminant score in (1) becomes
’ 2
p [ v, X - ul) ] p
QDF(k) = X 2 . + 2 Ine;-2lm 4)
J=1 ji j=1
Expression (4) demonstrates the fact that small eigenvalues may have a disproportionately
large effect on the discriminant score. This problem is worsened when X; is estimated by

S; because the eigenvalues of S; are well-known to be biased estimates of the eigenvalues of

%, and the bias is usually more pronounced if the eigenvalues of X, are

similar. - The problem is further compounded by the facts that the largest eigenvalues are
biased upwards (i.e. high) and the smallest ones biased towards values which are even
smaller. Also, the problem worsens as the (n;: p) ratio decreases. The consequences of all

this is that the importance of the eigenvalues and vectors associated with the low-variance
subspace (i.e. small eigenvalues) in a classification problem is greatly exaggerated. Thus, as
noted by Friedman (1989) “... most of the variance incurred in estimating discriminant scores
is associated with direction of low sample variance in the measurement space”. One approach



to address this problem is to employ a regularization method which works by biasing sample
estimates away from their usual sample-based values towards what one believes to be more
plausible values, which serves to reduce the variance associated with S; . These methods were

used by Friedman (1989) and Greene et. al. (1989), leading to two different versions of
regularized discriminant functions (RDFs), which are effectively “middle-of-the-road”
classification functions, between EDF, LDF and QDF.

2 REGULARISED DISCRIMINANT FUNCTIONS (RDFs)

A researcher who is applying normal-theory-based classification might suspect that Z, = X for

all i. One approach which enables the researcher to decide between SLDF and SQDF would
be to initially perform a test of Hy: 2, =X, = ... =L, =X (say), and use either the SLDF or

the SQDF depending on the outcome of the test. An alternative approach is to introduce a
regularization parameter @, which controls the degree of regularization (shrinkage) of the S;

to Sp. Thus S; in the SQDF in expressions (2) is replaced by
Zi(a))zcolsi+(l—co)sp O0=sws)), (5)
where ®is determined from the data. Note that at one extreme (= 1) ) i{(®) = §;, and at the

other extreme (= 0), s () is Sp. Variations of this middle-of-the-road type of discriminant

function were developed independently by Friedman (1989) and Greene et. al. (1989). The
two regularized discriminant functions will now be introduced separately.

(i) Green and Raynes (1989)
In their paper, these authors obtained empirical Bayes formulation for estimating X,. That is,

assuming that the training data from group i are i.i.d. Np(ui, X.), it follows that (conditionally
on Z,)

(n, - 1)S; ~ Wp (Z;, (n; = 1)), ©)
where Wp(.) denotes the central Wishart distribution with parameter matrix X; and degrees of
freedom (n; — 1). They then assume a conjugate prior distribution for X,, which is the
inverted Wishart distribution. That is, that X, are mutually independent with

%~ Wl (@ -p-DY¥, o) %)

where o > p + 1, V¥ is the matrix of hyperparameters and o represents the degree of
“concentration” of Zi around ¥. In particular, it can be established that

E@Z,) =Y, andforaa>p+3 and 1<h,jk1<p,

2
cov [Ty Ey) = m [Whi i) + Wi Wil + (@p)op3) ¥ ¥u (8)

After some algebra and further results it can be shown that the empirical Bayes estimate of
X, forknown ais:

, (@-p-1)
T di+a-p-1 "1 (d;+a-p-1)
where d; = (n; — 1). The unknown parameter a is estimated by either conditionally

S,(@, ©



maximizing the marginal likelihood of Sy, S5, ..., S, over & or using a method-of-moments
type estimator. Details of this nontrivial computational task are given in their paper.

(ii) Friedman (1989)
Friedman proposed a regularization parameter, A, which controls the shrinkage
(regularization) of §; to Sp, whereby X, in (1) is estimated by

(1-2) (= 1) S, +AS,
(1-2) (0, — 1) + AN-K)’

whereN:nl+n2+...+nK,andOSlSl.

(10)

T =

Further regularisation can be achieved by shrinking the eigenvalues of each > i(A) towards

equality, so that the resulting estimates (of eigenvalues) become multiples of the identity
matrix. The consequence of implementing these two dimensions of regularization is to
replace X; in (1) by

Zi v)=(1—y>>‘:i(x)+g tr (£ A (11)

Thus A controls regularization of S; to Sp while vy (simultaneously) controls regularization to

tr[i ; M))/p, the average of the p eigenvalues of > iA) in (10). The appropriate values of y

and A need to be determined from the data, and the approach proposed by the author is to
choose a (A, y) combination which minimizes the cross-validated estimate of future
(expected) misclassification error, on the basis of available training data. Implementation of
this cross-validation strategy is a computationally intensive problem, which Friedman
simplifies to a limited extent by deriving some algebraic results. In spite of this
simplification, it is still a rather slow process.

(ili) Rayens and Green (1992)

As a consequence of the ideas in Friedman’s article, Rayens et. al. (1992) modified their
regularization method to take into consideration another regularization parameter (like ¥ in
Friedman’s paper). They also proposed an alternative cross-validation approach for
estimating their first regularization parameter o, following a result which arises out of using
the Kullback-Leibler distance measure for discrimination. Once again, major computational
complications have to be addressed.

3 CONSEQUENCES OF APPLYING (FRIEDMAN’S) RDF

Simulation experiments done by us and the various authors mentioned in the previous section
indicate that the RDF can perform impressively better than the other discriminant functions
(i.e. SEDF, SLDF and SQDF). This is not (intuitively) entirely surprising since the RDF
(Friedman’s RDF in particular) can be any one of the three discriminant functions or
something (better, in terms of érror rates) in-between. Note that RDF = QDF when A = 0 and
Y=0, RDF = LDF when A = 1 and y=0, and RDF = EDF when A = 1, Y= 1. Note, however,
that Aeberhard et. al. (1994) compared RDF against seven other classification functions
(including non-parametric functions) and found that the RDF was clearly the most powerful
classifier overall. Some simulation results are presented (Table 1) without discussion (space



limitations). Note that all the simulation experiments reported here (unless otherwise stated)
were done under similar combinations of parameters (conditions) to those of Friedman
(1989). These six conditions were:

@) COND-1: Equal and spherical covariance matrices (favourable to RDF) [A
spherical matrix is one in which all the eigenvalues are similar].

(i) COND-2: Unequal and spherical covariance matrices (even more favourable to
the RDA).

@ii)) COND-3: Equal but highly ellipsoidal covariance matrices (difficult for RDA).
Here the mean differences between the classes is located in the low-variance subspace.

(iv) COND-4: Same as COND-3, but the mean difference between the classes is
located in high-variance subspace.

v) COND-5: Very unequal and highly ellipsoidal covariance matrices. Here the
class means are identical.

(vi) COND-6: Same as COND-5, but with unequal class means.

The Tables report the average (out of 100 simulations) simulated error rates, and the
corresponding standard error (in brackets). The average values of the regularization
parameters are also given in some cases, with standard errors. Note that in all the Tables
RDF-1 denotes the original RDF as proposed by Friedman, while RDF-2 and RDF-M are
modified versions of RDF-1, which will be introduced later.

4. PROBLEMS ASSOCIATED WITH IMPLEMENTATION OF
(FRIEDMAN’S) RDF

In spite of the impressive performance of the RDF, there are some fundamental problems
associated with implementing it, and some of its properties require further investigation. This
article reports and discusses the findings of investigations of some of these properties and
problems.

(i) Lack of scale invariance

As discussed by Friedman, an important drawback of RDF is that it is not generally scale
invariant. Thus changing the relative scales of the measurements or their linear combinations
will (in general) change the classification rule and results. This is primarily due to the
regularization involving the yy parameter, which shrinks the eigenvalues. In particular, if y =
0, RDF is scale invariant.

Scale invariance is considered to be a fairly important property of discriminant functions, and
it is unfortuante that this property is lost by the y-regularization. Hence an obvious question
is whether a similar level of success with some kind of limited regularization can be achieved,
without losing the invariance property. In this study, we investigated the performance of a
regularization method which employed different degrees of regularization to shrink each

Z,; to Z (i.e. different A; values in > i(A;)). but did not use the second regularization parameter,

Y. The motivation for this approach was to remove the regularization parameter associated
with eigen values (y), and yet compensate the process by allowing different levels of
shrinkage of Z, to Z. A second aspect of this option is that using only one value of A for all



X, may be too restrictive. Thus Z; in (1) would be estimated by
1-2) (- DE+ AN E

(1-2) (n;~ 1) + A, (N - K) (12)

) =

Thus this method involves K regularization parameters, with A; = 0 for all i, resulting

in £ ;(A)) = S; (SQDF), and ; = 1 for all i resulting in £ () = S (SLDF). Note that each };
is obtained independently of the others since each A, is chosen to minimize the error rate in
class i. This method will be denoted in this article as RDF-Modified (RDF-M).

Simulation results presented in Table 2 suggest that RDF-M is not as successful as the
original RDF (denoted in this article as RDF-1). This indicates that eigenvalue shrinkage, in
spite of the problems it creates, is quite necessary. There are also some peculiar results
associated with RDF-M which are still under investigation. For example, sometimes there is
considerable imbalance in the distribution of the error rates among the populations.

The conclusion from this simulation study is that it is not possible to do without the
eigenvalue shrinkage, and yet maintain the impressive performance of the RDF. In view of
this, it is relevant to consider the importance (or contribution) of the matrix of shrinkage (in
this case I) to the entire problem. For example, is there a more appropriate shrinkage matrix
(instead of I), which could be determined by the data? Friedman has already alluded to this
matter, and one of the authors is currently investigating this problem.

(il)  Necessity of regularization for large data sets
One of the motivations for considering RDF is to do with the fact that for small (n;:p) ratio

the SQDF does not perform very well. Also, the discussion in the previous section indicated
that y-regularisation is crucial. A relevant question then is to what extent the benefits of
regularization (especially y-regularization) diminish as the ratio n;: p increases. That is, is

there a point at which (because of massive amounts of data) we can do without regularization
(especially in view of its restrictive non-invariance property). Theory and the justification for
regularization (as suggested earlier) suggest that there must be a point (of the n;: p ratio)

where there are no serious benefits for regularization, especially when one considers also its
computational requirements.

The simulation experiment was designed to determine the performance of the RDF against
the other discriminant functions, as the n;: p ratio increases. Results are presented in Table 3.

(iii)  Only vague values of A (especially) and 7 are necessary

From our experiences (as well as others’) it is clear that the surface representing the cross-
validated error rate is fairly constant for a wide range of (A, ¥) combinations. Thus the
optimal choice of (A, y) is not unique, and as it turns out, a wide range of (A, yY) combinations
could do the job equally well, in any given situation. Questions which arise from these
empirical observations are the following.

(a) In using RDF is it still necessary to use the “maximum regularization” strategy in the
event of several local minima? If there are such ties one option (as was apparently used by
Friedman) is to choose the largest value of y from among tied grid points with the largest
value of A (“maximum regularization”) (RDF-1 in Table 1). An alternative



TABLE 1

COND-1 COND-3
p=6 p=10 p=20 p=6 p:lO p=20
misclassification risk misclassification risk
RDF-1 .11 (.04) .12 (.04) .12 (.04) RDF-1 .07 (.05) .12 (.04) .15 (.04)
RDF-2 .12 (.03) .14 (.04) .12(.03) RDF-2 .08 (.04) .13 (.05) .16 (.04)
LDF .13 (.04) .14 (.04) .15 (.04) LDF .06 (.03) .11 (.04) .14 (.04)
QDF .24 (.06) .32(.07) .41 (.07) QDF .14 (.05) .29 (.06) .39 (.06)
EDF .11 (.04) .11 (.03) .11 (.03) EDF .24 (.06) .29 (.06) .32 (.05)
Average regularisation parameter values Average regularisation parameter values
RDF-1 A 87 (.29) .85 (.30) .80 (.34) RDF-1 A 87 (.24) .89 (.23) .87 (.19)
RDF-1 vy .78 (.34) .81 (.26) .81 (.24) RDF-1 ¥ .05 (.14) 04 (.11) .04 (.09)
RDF-2 A .15 (.26) .20 (.33) 24 (.33) RDF-2 A .41 (.28) .56 (.30) 73 (.27)
RDF-2 y 67 (32) .69 (.30) .80 (.25) RDF-2 y .02 (.07) .03 (.11) .02 (.07)
COND-5 COND-6
p=6 p=10 p=20 p=6 p=10 =20
misclassification risk misclassification risk
RDF-1 .20 (.06) .12 (.05) .03 (.02) RDF-1 .06 (.04) .06 (.04) .02 (.02)
RDA-2 .18 (.06) .11 (.04) .03 (.02) RDF-2 .05 (.02) .05 (.04) .01 (.01)
LDF .60 (.06) .59 (.06) .58 (.05) LDF .17 (.05) .18 (.04) .21 (.04)
QDF .17 (.05) .14 (.06) .14 (.04) QDF .04 (.03) .05(.04) .06 (.04)
EDC .60 (.06) 59 (.06) .58 (.05) EDF .16 (.04) .17 (.04) .17 (.04)
Average regularisation parameter values Average regularisation parameter values
RDF-1 A .04 (.07) .04 (.06) .04 (.06) RDF-1 A .10 (.20) .10(.14) .07 (.06)
RDF-1 vy 12 (.15) .25 (.16) .35 (.18) RDF-1 vy .19 (.27) 29 (.22) 35(.19)
RDF-2 A .01 (.04) .01 (.04) .02 (.05) RDF-2 A .01 (.03) .02 (.04) .00 (.00)
RDF-2 y .10 (.14) 26 (.15) .26 (.15) RDF-2 y .10 (.13) 22 (.15) 27 (.09)
TABLE 2
ERROR RATES AVERAGE REGULATION PARAMETERS
RDF-1 RDF-M RDF-1 RDF-M
A b ll 12 13
COND-1(p=6) 0.11 (0.04) 0.14 (0.04) 0.87 (0.29) 0.78 (0.34) 0.79 (0.35) 0.91 (0.25) 0.92 (0.21)
COND-2(p=6) 0.14 (0.04) 0.24 (0.07) 0.37 (0.38) 0.78 (0.31) 0.70 (0.35) 0.77 (0.34) 0.43 (0.39)
COND-3(p=10) 0.12 (0.04) 0.14 (0.05) 0.89 (0.23) 0.04 (0.11) 0.79 (0.33) 0.95 (0.17) 0.87(0.27)
COND-4(p=20) 0.11 (0.03) 0.15 (0.05) 0.79 (0.33) 0.67 (0.27) 0.80 (0.28) 0.87 (0.24) 0.88 (0.23)
COND-5 (p=10) 0.12 (0.05) 0.39 (0.11) 0.04 (0.06) 0.25(0.16) 0.03(0.08) 0.07 (0.09) 0.30 (0.15)
COND-6 (p=20) 0.02 (0.02) 0.22 (0.13) 0.07 (0.06) 0.35 (0.19) 0.07(0.09) 0.13(0.14) 0.89 (0.23)
TABLE 3
COND-1
p=6 p=10 p=20
n:p 12:1 21 10:1 1.2:1 2:1 10:1 12:1 21 10:1
1
RDF-1 22(04) 20(03) .16(03) | .20(.05) .15(03) .10(.03) |.13(03) .10(.02) .09 (.02)
LOF .30 (.06) 25 (.02) .18 (.02) .28 (.05) 26 (.04) .18 (.03) .28 (.03) .24 (.03) .19 (.02)
QDF 53(07) .34(06) .17(02) | 52(07) .35(05) .14(03) | .55(04) .37(04) .12(.02)
COND-3
p=6 p=10 p=20
n:p 12:1 2:1 10:1 1.2:1 2:1 10:1 12:1 2:1 10:1
1
RDF-1 .12 (.06) .08 (.04) .05 (.02) .16 (.04) 12 (.04) .10 (.03) .18 (.04) .14 (.03) .11 (.02)
LOF .10 (.03) .07 (.02) .04 (.01) .14 (.03) 11(.02) .08 (.02) .17 (.03) .14 (.02) .11 (.02)
QDF .41 (.09) .15 (.05) .05 (.02) .44 (.09) .24 (.05) .09 (.02) .49 (.06) .32(.04) 14 (.02)
COND-5
p=6 p=10 P=20
n:p 12:1 2:1 10:1 12:1 21 10:1 12:1 2:1 10:1
1
RDF-1 34(11) 19(05) .10(04) | .15(06) .09(03) .06(03) |.03(02) .02(.02) .00(.00)
LDF .61(05) .59(05) .62(04) | .59(04) .59(.04) .61(04) | .58(04) .59(.05) .62 (.04)
QDF 39(09) .18(.04) .08(02) | .29(09) .10(.03) .02(.01) |.20(07) .04(02) .00(.00)
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would be to use a “minimum regularization” strategy, which chooses the smallest value of y
for the smallest value of A (RDF-2 in Table 1).

The simulation experiments to compare the two stategies (reported in Table 1) show
that the error rates were quite similar for the two strategies in spite of the quite
different (A, y) values (compare RDF-1 and RDF-2).

(b) An issue which arises immediately from part (a) is: why bother with all the computer-
intensive cross-validation technique if we only need rough guesses of (A, y) values.
To address this issue, we have investigated the use of empirical (and relatively crude)
rules for finding a (roughly) optimal (A, Y) combination using the Bhattacharyya
distance measure. We have obtained empirical rules which compete quite favourably
with the cross-validation technique for two populations. These results are reported
elsehwere, and extensions and refinements are currently being done.

(iv) Estimation of regularisation parameters may involve very few training data

The criterion for estimating the regularization parameters of the RDF, as suggested by
Friedman, is to choose the values of A and y which minimize the cross-validated error rate.
As argued by Rayens et. al. (1989), this means that only a small fraction of the training data
may contribute towards determining the values of A and v, since most of the training data
should be correctly classified. It follows that a criterion which uses all the data in choosing A

and Y may be preferable, and Rayens et. al. (1989) indeed demonstrate that such a criterion
can outperform the misclassification rate criterion. We have investigated the use of the
Bhattacharyya distance as an alternative criterion for choosing A and 7y and find that in
situations where it is appropriate, it can perform as well as the RDF, with the added bonus
that it requires only 10-20% of the computation time. A detailed description of the
Bhattacharyya distance methodology is presented in another article.
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COMPARISON OF REGULARISED DISCRIMINANT ANALYSIS
WITH THE STANDARD DISCRIMINATION METHODS

ABSTRACT

The objective of the classical discriminant analysis problem is to classify a p-variate observation
vector x as having come from one of K populations. Itis well known that the linear discriminant
function (LDF) and quadratic discriminant function (QDF) and euclidean distance based
discriminant function (EDF) are the standard type of discriminant functions employed in practice.
Under the assumption of normality these discriminant functions behave reasonably well in a variety

of situations.

When the size of the training set is small when compared to the dimension, the performance is
degraded because these methods use unstable sample mean vectors and in particular covariance
matrices. Friedman (1989) and Greene and Rayens (1989) proposed different methods for
addressing the problem of unstable covariance matrices. This article details a critical comparison of
the standard approaches with a Friedman’s newly proposed regularized discriminant function
(RDF) and its implementation difficulties. The article also discusses the implementation of an

extension/adaptation of Friedman’s RDF.

It was noted that if the RDF is used in higher dimensional situations this is likely to reduce the
overall error rate when compared to the application of the other standard discriminant functions.



1. INTRODUCTION

The objective of the classical discriminant analysis problem is to classify a p-variate observation
X = (X, Xy oens xp) as having come from one of the several (K) groups or classes. For example, in
plant taxonomy a botanist may wish to classify a new specimen as one of several recognized
species of a flower. In educational psychology a candidate for admission to a school or study
program must be assigned to categories of the sort “admit”, “admit conditionally” or “admission
denied” on the basis of a vector of test scores, grades and ratings. In routine banking or commercial
finance an officer or analyst may wish to classify loan applications as low or high credit risks on the
basis of the elements of certain accounting statements. In each case the decision-maker wishes to
classify from simple functions of the observation’vector rather than complicated regions in the

higher dimensional space of the original vector.

Now let us consider the standard approaches for classification of an unknown observation to one of
K populations. The responses of the independent observations are described by multi-normal
random variables with mean vectors |, W, ..., i, and variance-covariance matrices X,%, .. 5.
If the parameters are known, and assuming given prior probabilities of population memberships and
a specified matrix of misclassification costs, the Bayes rule is based upon the likelihood ratio
F1(xV/f,(x) for all pairs of populations (see, for example, Anderson (1984)). This leads to the linear
discriminant function (LDF). Another competitor to the LDF, but also linear in nature is the well
known euclidean distance based discriminant function (EDF), see for example Macro, Young and
Tumer (1987). The EDF ignores the information given by the covariance matrix X, while forming
the discriminant function. It has been shown that the EDF performs better in many circumstances
than the LDF (Koolaard and Lawoko (1996)).

The quadratic discriminant function (QDF) requires approximately normal group conditional
densities and reasonably large training sample sizes before it can be expected to perform well in
discrimination. The LDF is more robust to non-normality and requires less parameter estimation
than the QDF. However, problems with obtaining good estimates of the within-groups covariance
matrices can affect both these discriminant functions, in particular when the size, ny of the training

sample from group k is small in relation to the dimension of the measurement space, p.

Friedman (1989) proposed Regularised Discriminant Analysis as a compromise between normality
based LDF and QDF by considering alternatives to the usual maximum likelihood estimate for the
covariance matrices. These alternatives are characterized by two regularisation parameters, the
values of which are customized to individual situations by jointly minimising a sample-based
estimate of future misclassification error. This technique seems to offer a significant gain in
classification accuracy in many circumstances, although it is computationally intensive.



In this paper we shall term the discriminant function proposed by Friedman the regularised
discriminant function (RDF), and we examine by extensive simulations, the performance of the
sample regularised discriminant function (SRDF) and some modifications of it with the more
common sample based rules: SLDF, SEDF and SQDF, for various combinations of population
parameters. Note that it is the sample based rules that we are dealing with throughout this paper.

2. THE SRDF AND PROBLEMS ASSOCIATED WITH ITS IMPLEMENTATION

The regularized discriminant function (SRDF) was introduced by Friedman (1989) as an alternative

to the common normal theory based discriminant functions. With the SRDF, a two parameter
family of estimates of the variance covariance matrix X; of the i® population, is considered, where

one parameter A controls shrinkage of the heteroscedastic estimates towards a common (usually
pooled) estimate. The other parameter y controls shrinkage towards a multiple of a specified
covariance matrix such as the identity matrix. Through these two parameters, a fairly rich class of
regularised discriminant rules can be provided. Further, with these two parameters assessed from
the training set by minimizing the cross validated estimate of the overall error rate, a compromise
between sample normal based linear and quadratic analysis is determined automatically from the

available data.

Simulation results by various authors suggest that the SRDF can perform much better than the other
standard approaches based on normal theory (see for example, Friedman, 1989 and Rayens et al.
1991). Our results also confirm these findings. A recent article by Aeberhard et al. (1994) reported
that the SRDF performed better than seven other discriminant functions including several non-
parametric ones.

To introduce notation, suppose we have (p-dimensional) multivariate measurements x on each
object, (for example, patient, plant, pixel), where each object belongs to one of K distinct sub-
populations or groups. In order to apply standard classification approaches it is usually assumed
that measurements from each group follow a multi-normal distribution.

Let us denote the population mean and covariance matrix of group i by W;, Z; respectively,
i=1..K. These parameters are usually estimated by X; and S; using the training sample of
size n;. If it is assumed that the covariance matrices Z; are equal forall K classes, then the common
value X is estimated by

g =1

M=

n; S;
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-
[}
—
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On the basis of these estimates the normal theory based discriminant rules allocate an object to class

k as follows:

i) SEDF(k) : Min (overi) {(x—X;)’(x—X;)-2lnm;}
i) SLDF(k) : Min (over i) {(x—ii)’S;)I(x—ii) ~2nn)
i) SQDF() : Min (over1i) {(J'c—)'(i)'Si'1 (x=x;) +1nIS;1 -2 In =} 2.1

L]

The covariance matrix estimates can be highly variable and Friedman (1989) showed the effect of
this phenomenon on discriminant analysis by replacing the group covariance matrices by their
spectral decompositions. The covariance matrix for ;roup k can be written

1% '
I = 21 Eik Mac N,
1=

where €5 is the ith eigenvalue of X, and my is its corresponding eigenvectors. The discriminant

rule, for (iii) above will give the discriminant score as:

p [n;‘(x“ik)] 2 P
S—— + ) hheg-2hm (2.2)
i=1 € i=1

for an observation vector x belonging to group k.

It is clear from the above expression (2.2) that the small eigenvalues and their eigen vectors will
have a large effect on the discriminant score. Itis well known that sample based estimates S of the

X, produce biased estimates of the eigenvalues with the bias being more pronounced when the
eigenvalues of the population parameters X, are similar especially for small training sample size.

The motivation for developing SRDF was partly to do with the above mentioned bias problems.
Friedman (1989) proposed a regularisation of §; to Sp, thereby controlling the degree to which X is
estimated by pooled information from the several §; matrices or by each S; separately. Thus the
initial proposal for the SRDF is to use the SQDF in (2.1), but with S, replaced by

(1-A)(n;-1) + A (n -k)

0<A<l1 (2.3)

Even this may not provide sufficient regularisation for a stable covariance estimate especially when
the total sample size n is less than or comparable in size to the dimension p. Also, biasing the group
covariance estimates to the pooled covariance matrix may not be appropriate in some situations.

Thus Friedman introduces further regularisation by providing an option for regularising the
eigenvalues of Z;(A), using a second regularisation parameter v, (0 <y < 1). Consequently the

estimate of X used is given by



£ = -0E )+ ] tracel; (W] (24)

where ﬁi (M) is given in (2.3) and I is the identity matrix. Note that shrinkage using y have the

effect of decreasing the larger eigenvalues and increasing the smaller ones to counter the bias in the
sample estimates of the eigenvalues of the covariance matrices.

L]

The possible (A,y) combinations may be thought of as a plane with four corners.

" A /
1 SEDF
SQDF
/ SLDF
-
0 1 A

The bottom left vertex (A = 0, y = 0) corresponds to the SQDF, (A=1, y=0) gives the SLDF, (A=1,
v=1) yields a discriminant function based on minimum euclidean distance between groups, while

(A=0, v=1) yields a weighted minimum euclidean distance function where the group weights are

inversely proportional to the average variance of the measurement variables in the group, that is,
trace[S, )/p. If y is fixed at zero and A is varied, intermediate rules between the SQDF and the

SLDF are obtained. If A is fixed at 1 and vy increased from 0, one obtains an analogy to ridge

regression for the SLDF.

3. SELECTING A AND y VALUES AND TIE-BREAKING

In practice, optimal values for the regularisation parameters A and 7y are not known beforehand, and
Friedman suggests they be estimated from the training data. The selected A, y combination is that
which gives rise to the minimum cross-validated estimate of the overall error rate associated with
the regularised discriminant rule.

A grid of points is chosen on the A, v plane (0 < A, ¥ < 1), containing typically between 25 and 50
points. Using the A, 7y values to create the classification rule at each point, cross-validation is used
to estimate the misclassification risk for each combination of (A, ), and the point (A, ) with the
lowest estimated error rate is used as an estimate of the optimal values of A and y. This two-

\
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parameter optimisation problem would require excessive computation were it to be implemented in
a straightforward way. However, Friedman developed updating formulas for the computation of the
regularised sample covariance matrix and its inverse when a different observation is successively

omitted from the sample, as during cross-validation.

Rayens and Greene (1991) noted two criticisms of the model selection procedure of Friedman.
Firstly, it was stated that the minimum cross-validated estimate of the misclassification risk is often
constant for a range of (A, y) combinations. Hence the optimal choice of A and 7 for the model will
often not be uniquely determined. Friedman employed a strategy of maximum regularisation
where, for all points yielding the minimum error rate on the (A, ) grid, that point (A, ¥) is selected
which gives rise to the largest value of y for the largest value of A. Secondly, Rayens and Greene
(1991) demonstrated a situation that can and does occur where only a very small proportion of the
sample data influences in any way the optimal choices of A and ¥, and the remainder of the sample
observations are correctly classified for almost all points on the A, y plane. This occurs especially

when the groups are well separated.

Friedman (1989) performed a simulation study to compare the SRDF with SQDF and SLDF in
terms of their estimated overall error rates. The simulation conditions represented a wide range of
situations in terms of the general structure of the group means and covariance matrices. Some of
these conditions were chosen because they were expected to be unfavourable to the SRDF in that
any regularisation away from the SQDF or SLDF would be detrimental to the discrimination
process. Other conditions were chosen because they were expected to be favourable to
regularisation. The six conditions, defined in terms of the population covariance matrices and
means, which are also those employed in the following simulation studies in this paper, are:

1)  Equal spherical population covariance matrices. A ‘spherical’ matrix is one where all
the eigenvalues are similar in magnitude.

2)  Unequal, spherical population covariance matrices.

3)  Equal, highly ellipsoidal population covariance matrices with group mean differences in
the low variance subspace. ‘Ellipsoidal’ in this case implies that there is a large
difference in magnitude between the/smallest and largest eigenvalues.

4)  Equal, highly ellipsoidal population covariance matrices with group mean differences in
the high variance subspace.

5)  Unequal, highly ellipsoidal population covariance matrices with zero mean differences.

6) Equal, highly ellipsoidal pb;;ulation covariance matrices with non-zero mean
differences.



3.1 Selection of values for the regularisation parameters when the choice is not uniquely

detertnined by the minimum cross-validated error rate

In the previous section we noted that the optimal choice (7: Yy of (A,y) is very often
not uniquely determined. It is of interest to study the effect of a different procedure than that
employed by Friedman (1989) for selecting the values to use for the regularisation parameters. A
simulation study has been performed under the same conditions as in the previous section but
employing a policy of minimum regularisation in the advent of the minimum cross-validated error
rate not being uniquely determined. If there is more than one point on the (A, y) grid associated
with the minimum cross-validated error rate, that point is chosen having the smallest y value for the
smallest A value. This method will be denoted SRDF-1 and is compared with SRDF which follows
the opposite policy of maximum regularisation to break ties. In all cases there are 3 populations or
groups, and sample sizes are set to be just larger than the dimension p in each case, so as to avoid
singularity in the group covariance matrix estimates. The (A, ) grid of points consists of 25 points
and is defined to be the same as that used in Friedman’s study. Results comparing the estimated
error rates (€, averaged over 100 simulations) of the SRDF and SRDF-1 rules for four of the

simulation conditions (described in Section 3) are in Table 1. Also shown are the average values of
the two SRDF regularisation parameters A and y. The standard errors of & for both SRDF and

SRDF-1 ranged from 0.002 to 0.006, according to the magnitude of &, while the standard errors of A
and ¥ ranged from 0.01 to 0.03.

Table 1 —mean values of e, A,y (thatis, é[i, ¥1) for various values of p.

Condition 1 p=6 p=10 p=20
SRDF A1(87,78)  .12[85.81]  .12[.80,81)
SRDF-1 12[15,67] .14[.20,69)  .12[.24,.80)
Condition 3

SRDF 07(.87,.05)  .12[.89,.04)  .15[.87..04)
SRDF-1 08[41,02] .13[56,03]  .16[.73,.02)

/

Condition 4

SRDF 06(.85.58] .10[.86,62]  .11[.79..67)
SRDF-1 , 07[.15,50]  .10[.26,55]  .11[32..67)
Condition 5

SRDF 20[.04,.12) .12 [.04,.25) .03 [.04,35)
SRDF-1 A18[.01,.10]  .11[.01,26) .03 [.02,.26)



The first and major finding from the present study comparing SRDF-1 with the SRDF is that the
cross-validated error rate surface over the A, ¥ plane is often very flat at its minimum. In such
situations the error rate estimate will be very similar under both methods for dealing with ties, even
though the assessed A and 7 values are quite different. This would indicate that employing a policy
of minimum regularisation does not have much effect on the performance of the SRDF in most of
the parameter settings considered, and indicates the degree of homogeneity in the cross-validated
error rate response surface over the A, y plane. In particular, the choice of A can be considerably
less precise than the choice of v in determining the performance of the rule in terms of its error rate.
In conclusion, altering the way ties are broken in the search for the optimum values of A and y does
not have a great influence on the performance of the SRDF. Some of the parameter configurations
here favour a greater degree of regularisation and some a lesser degree, but the difference in error

rates was slight.

4. USEFULNESS OF SRDF FOR VARIOUS RATIOS OF SAMPLE SIZE TO
DIMENSION

From the study by Friedman (1989) as well as in the previous section it is clear that the SRDF has
proved itself at least equal to but usually superior to the other classification rules under a fairly wide
range of situations. The superiority is greatest in the larger dimensional settings (p>10). The
comparisons with the SQDF and SLDF indicate that the advantage the SRDF has over the other
classification rules is a result of allowing for eigenvalue shrinkage. A question which becomes of
interest is: to what extent do the benefits of regularisation, in particular eigenvalue shrinkage,
diminish as the sample size to dimensionality ratio increases?

A (further) simulation study was implemented in the manner of Friedman (1989) (and the previous
section), using the same six simulation conditions. In those studies, the ratio of training sample size
to dimensionality (n;/p, denoted r throughout this section) is approximately between 0.5 and 2. We
investigate the performance of the RDF relative to the other classification rules over a wider range
of values of r. It would be anticipated that eigenvalue shrinkage would no longer be useful for
discriminating once the training sample size increases past some point sufficiently larger than p.
The various r values ratios employed were 1.2, 1.5, 2, 3, S, 10 for dimensions 6, 10 and 20.
The (A, v) grid of values for use in the model se{ection procedure of the RDF is defined by the outer
product of A= (0, .25, .5, .75, 1) and y= (0, .25, .S, .75, 1). The entire training sample is 3n in each
case, the test sample is 200, and 50 replications of each experiment were performed. Average error
rate, € is given for each classification rule: Three sets of results are shown in Table 2 but comment
is made on each of the six simulation conditions. The standard error of € is in the range
10310102 ’



Table 2. Values of € for various combinations of r and p
Condition 2. =6 p=10 =20
r value r value r value

1.2 15 2 S 10 12 15 2 S 10 12 1.5 2 S 10

SRDF 022 020 020 0.17 016 020 0.17 0.15 013 0.10 0.13 012 0.10 0.12 0.09
SLDF 030 026 025 020 0.8 028 026 026 021 0.8 028 026 024 020 0.9
SQDF o053 043 034 019 017 052 043 035 019 0.4 055 047 037 018 0.12
SEDF 023 022 022 019 018 024 022 021 020 0.8 023 022 021 019 0.8

Condition 4

SRDF 008 007 007 006 006 0.10 0.0 0.10 008 0.1 012 012 0.0 009 009
SLDF o012 010 009 006 005 014 013 011 008 008 016 015 013 010 0.3
SQDF 043 020 018 007 006 045 032 023 012 009 048 039 030 0.16 0.0
SEDF 007 007 007 006 006 010 010 009 010 009 012 012 011 010 0.11

Condition 5

SRDF 034 029 019 014 010 015 012 009 003 006 003 002 002 000 000
SLDF o061 060 05 060 062 059 058 059 060 0.61 058 057 059 061 062
SQDF o039 025 018 010 008 029 017 010 003 002 020 010 004 000 000
SEDF o059 05 05 060 062 059 058 05 059 0.6l 057 059 059 061 0.61

Eigenvalue shrinkage appears to enhance the classification process under conditions of equal,
spherical covariance matrices only for r < 3. For larger ratios the advantage the SRDF enjoys over
the other methods disappears. The SQDF shows the most dramatic improvement in error rate as the
r ratio increases, owing to improved parameter estimates through larger sample size.

In the situation of unequal, spherical population covariance matrices SRDF proved superior for all r
values studied, especially the smaller values, indicating the benefit of eigenvalue shnnkage which
biases the covariance estimates towards the appropriate value (a multiple of the identity matrix) in
these circumstances.
/

Eigenvalue shrinkage proves to be of no benefit when the population covariance matrices are equal
but highly ellipsoidal with mean differences in the low variance measurement subspace. This is
because if the covariance matrix eigenvalues are biased towards equality, the variance in all
subspaces is equalised and hence in this case the mean differences will become obscured.
Conversely, when the mean differences are exhibited in the high variance subspace, eigenvalue
shrinkage proves useful in reducing the variance in those subspaces where mean differences are
exhibited. The SRDF has a lower error rate than those rules with no eigenvalue shrinkage for r less
than 3. Atr =3 and larger, SLDF performs as well as the SRDF.
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In the case of unequal, highly ellipsoidal population covariance matrices with either zero or non-
zero differences between the means, a small amount of eigenvalue shrinkage enables the SRDF to
out-perform the SQDF, but only when the sample size is less than twice the dimension. In this
case, eigenvalue shrinkage is generally not desirable since the covariance matrices provide
substantial information needed for discrimination. A small degree of eigenvalue shrinkage is
beneficial in counteracting eigenvalue bias in those situations where r is small. For larger values of
r the SQDF’s performance is comparable to that of the SRDF, indicating eigenvalue shrinkage loses
its effectiveness. While the average 7y value used in the SRDF is usually small, there is substantial
variation, indicating that under these fairly difficult discrimination conditions (especially zero mean
differences), selection of ¥ is sensitive to peculiarities in the data.

In conclusion, this simulation study underlines the usefulness of the eigenvalue shrinkage technique
as employed by the SRDF. The advantage that it affords over the other rules is strongest when the
training sample size from each group is small in relation to the dimensionality, p. Furthermore,
often that advantage remains, even when the sample size increases to several times that of the

dimension.
5. INVARIANCE

In the simulation results reported in the earlier sections it was noted that the regularised
discriminant function is not generally scale invariant. The cause of this is the presence of the
eigenvalue shrinkage parameter y. Thus it is of interest to examine the effect of removing this
parameter from the model and comparing the performance of the resulting discriminant functions
with the SRDF. This would result in a reduced setAof regylarised models between the SQDF and
-V ) Z+ A%

(1-A)n;-1) + Mn-i)

the SLDF only. In this situation ; (A) =

As mentioned in Section 2, this set of alternatives is rather restrictive. Further the resulting model
may not provide appropriate regularisation if the group covariance matrices are of quite a different
nature. In such a situation, it may be useful if each covariance matrix is shrunk to the pooled
estimate by an appropriate degree, again estimable from the training data. Using such shrinkage
could go some way to overcome the problem of inappropriate regularisation, as the model would be
more sensitive to variations in the ‘shape’ between the various populations. In the single parameter
regularisation model, it may occur that in the selection of A, a large proportion of the training
observations misclassified by cross validati(.)n come from one group. This may be in part due to the
shrinkage being inappropriate for that group but appropriate for the other groups. The following
model is proposed to obtain regulari_sed and group covariance estimates:

_ @0 -DE+AF
(1-A,)(n;-1) + A (n-i)

£y
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where i=1 ..... K groups andip is the estimate of the pooled covariance matrix. Observe that the k
regularisation parameters A (i=1 ... K) control the degree of shrinkage of the individual group
covariance matrix estimates towards the pooled estimate. The value A;=0 gives :‘.1(7») = Al
and A=1 yields 2(7&,) = Zp Each A is obtained by mmlmlzlng the group conditional cross-
validated error rate over therange 0 < A; < 1,i=1 ... K. Each Z S; in the SQDF in equation
(iii) of (2.1) is replaced by i‘i(li) for discriminant analysis. We shall call the resulting rule SRDF-

M, (modified SRDF). Section 6 reports on a further simulation study to investigate the relative
performance of the scale invariant SRDF-M compared with the SRDF and other standard

classification rules.

6. EFFECT OF OMITTING EIGENVALUE SHRINKAGE PARAMETER

Monte Carlo simulation studies were performed again under the same conditions as in the previous
two studies reported in Sections 4 and 5. Results for three conditions only are given in Table 3,
comparing the performance of SRDF-M with the other approaches. Once again the standard errors
of the & values fall in the range 1073 to 10-2. The average regularisation parameter values in Table 3
have standard errors in the range 0.01 to 0.03. Discrimination in each situation is between three
groups, hence for the SRDF-M method the average values of A for each group are given
(kl, )»2, 7»3) Also given are the average minimising cross-validated error rates for each group

Cevaty Eev2y Bov3y-

One immediately observes that having the option to use the regularisation parameter y and shrink
the covariance matrix eigenvalues to equality undoubtedly enhances discrimination in many
situations; and not only when the populations are spherical. This type of shrinkage reduces the
variance which, despite the introduced bias, is beneficial for discrimination especially in the high
dimensional setting. This extra variance reduction factor, apparently explains why the minimum
cross-validated error rate for SRDF-M underestimates the actual error rate (assessed from the test

sample) by a greater degree than for the SRDF.

The magnitude of the minimum cross-validated error rate over the whole training sample for SRDF-
M is at a comparable level to those for the SRDIé meaning it is the actual error rate which is usually
higher for SRDF-M. There is also often a large variation in the corresponding (cross-validated)
error rates for each group. In some case the average minimum error rate for one group was twice as
large as for another, and was extremely variable.

12



Table 3 — Comparison of error rates and parameter values for SRDF and SRDF-M and other rules

Condition 1 p=06 p=10 p=20
SRDF: &[A, Y] .11(.87,.78) .12.85,.81) .12(.80,.81)
SRDF-M: e [ip 7—&2, 713] 14[.79,.91,92) 17 (.81,.93,87) .16 [.84,.90,.83]
SLDF 13 .16 15

SQDF 23 39 42

SEDF 11 12 12

SRDF: €, 09 10 10
SRDF-M: &.y(1)€cv(2)Bev(3)  .17.09,09 17,.12,.10 21,.13,.12
Condition 4

SRDF: & [7», Y] .06 [.85,.58) .10(.86,.62) .11 [.79,.67)

SRDF-M: & [M, 7&2, 7\-3] .08.86,.88,.86] .14[.80,.88,.87] .15 [.80,.87,.88]

SLDF 07 13 14
SQDF 16 36 38

SEDF .07 11 11
SRDF: e, 04 07 10
SRDF-M: €.y(1)€cv(2)€ev(3)  07.06,06 15,.09,.09 16,.09,.11
Condition 6

SRDF: &[A, Y] .06(.10,.19] .06 [.10,.29) .02[.07,.35)

SRDF-M: &[A1,25,24] 13 [.11,.14,.88) 21[.11,.18,.85) 22[.07,.13,.89)

SLDF 20 i 20
SQDF .06 .10 .06
SEDF 20 20 17
SRDF: &, 04 03 01

.05,.04,.01 .09,.06,.01 .02,.01,.00

SRDF-M: &,(1)€cv2)€cv(3)
When the group covariances are spherical and set to be equal, SRDF-M yielded error rate estimates
of between 30% and 40% higher than the SRDF/‘. Under these conditions, eigenvalue shrinkage (to
equality) clearly enhances discrimination. Hence the SEDF performs well. The mean minimum
cross-validated error rate over all groups underestimated the actual error rate by around 25% for p <
10, but by only about 5% for p = 20. The group conditional mean minimum cross-validated error
rates differed significantly, and their standard deviations were also large.
If the group covariances are spherical but unequal, SRDF-M gives error rate estimates around 70%
higher than for SRDF, and worse for larger dimensions. It is clear that under such conditions,
eigenvalue shrinkage is very desirable in order to reduce variation in the higher dimensions. The
mean minimum cross-validated error rate over all groups underestimated the actual
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misclassification risk by 30%-40%, although observations from the higher variance groups were

more frequently misclassified.

The SRDF-M performs comparably to the SRDF under conditions of equal but highly ellipsoidal
group covariances. This is not surprising since eigenvalue shrinkage is counterproductive in this
situation. In the case where the group mean differences are concentrated in the low variance
subspace, and therefore more pronounced the ki, (i=1, .., k) values are very close to one, and the
performance of SRDF-M approaches that of the SLDF, which is the optimum rule in these

conditions.

When the group means are concentrated in the high variance subspace, SRDF-M is less successful
compared to the SRDF. The high degree of covariance shrinkage towards the identity matrix
enhances discrimination, because of the reduction in variance achieved. This is why the SEDF
performs as well as the SRDF under these conditions, each outperforming SRDF-M by about 40%.
The minimum cross-validated error rate for SRDF-M underestimates the actual error rate by
between 10% and 20% when the group mean differences are more exposed in the low variance
subspace, and between 30% and 40% when the means are obscured by high variance.

The final situation looked at is when the group covariances are unequal and highly ellipsoidal. The
SRDF-M does not perform well here. In fact the minimising cross-validated error rate severely
underestimates the actual error rate for SRDF-M, especially for the high dimensional settings. This
is a curious phenomenon which exhibits itself strongly only in these simulation conditions where
the groups have high and unequal variance. The reduction in variance obtained by eigenvalue
shrinkage is not the complete explanation for otherwise SRDF-M should perform comparably to the
SQDF, but it does not. It should be noted that the error rate estimates for SRDF-M also have
unusually high variance under these conditions. An explanation is that under these conditions the
best rules are those where A is close to zero with low variability. Since each A; is obtained from

such a small number of data points, its variability is high.

One other feature of the performance of SRDF-M under these conditions is that A5 is much higher
than A; or A,. Now it happens that group 3 does not have quite the same extreme ellipsoidal nature
of the other two groups. Significant shrinkage of the group 3 covariance matrix to the pooled
covariance appears to lead to observations from that group becoming indistinguishable (to the
classification rule) from those of the other high variance groups. It is noted that if a policy of

minimum regularisation is used to break ties (similar to that employed by SRDF-1 in Section 3.1),
SRDF-M is enhanced because smaller values of A, are selected.

In conclusion, the proposed regularisation model SRDF-M was not as successful as the SRDF.

This clearly shows the importance of eigenvalue shrinkage, especially when p is large. The
attempt to make SRDF-M more sensitive by employing a separate A for each group caused other

problems in certain circumstances as described above. If a solution to the problem of lack of scale
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invariance is to be found, other techniques need to be devised to replace eigenvalue shrinkag
while ensuring the accuracy of classification attained by the SRDF is not compromised.

7. CASE STUDIES
Case Study 1: The data considered here consists of 3 variables measured on each of 10 insect:

Chaetocnema, (Lindsey et al. 1987). The variables are as follows, all measured in microns.

xq: the width of the first joint of the first tarsus
X,: the width of the first joint of the second tarsus
x3: the maximal width of the aedegus

Each insect was classified to one of the species according to its measurements of x,, X, and x5 an

the error rate for each rule was assessed using the technique of cross-validation.

The error rates for SRDF, SQDF, SLDF and SEDF were 0.03, 0.03, 0.07, 0.17 respectively. Th
values of A and ¥ for the RDF were 0.97 and 0.43 respectively. The model selection procedures fc
the SRDF chooses a value of A close to 1 on average, and still yields a similar error rate to that ¢
the SQDF. This is to be expected since r is relatively large (r = 3.3). Hence shrinking to the poole
covariance makes little difference in this example. On the other hand, the degree of eigenvalu
shrinkage should not be large, as evidenced by the poor performance of SEDF. This was expecte
due to the high ellipsoidal nature of the covariance estimates.

Case Study 2: The data considered here relates to three types of pathological lung cancer, (Hon
and Yang, 1991). Each type is described by 56 variables, the variables taking on integer values 1-¢
The number of training samples are very small: 9 from the first, 13 from the second and 10 from tk
third type of cancer (group), rendering the problem very ill-posed. Each patient was classified t

one of the types of cancer according to his/her measurements of the 56 variables and the error rat
for each rule was assessed using the technique of cross validation. Note that in this data setr ~ .

which is small. The error rates for SRDF, SQDF and SEDF were .375, .688, and .813 respectivel:
That is, SRDF correctly classify 62.5% of the observations, while other two rules only about 3.]¢
and 19% respectively. ’

The results of this case study show that if the SRDF is used in higher dimensional situations, this
likely to reduce the error rate when comi)ared to the application of other rules. If the grou
covariance matrices are identical, it is clear that the, SLDF will be the only method capable of ou
performing SRDF (Aeberhard et al. (1994)).
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ABSTRACT

This article considers the problem of statistical classification involving mul-
tivariate normal populations and compares the performance of the linear
discriminant function (LDF) and the Euclidean distance function (EDF). Al-
though the LDF is quite popular and robust, it has been established (Marco,
Young and Turner, 1989) that under certain non-trivial conditions, the EDF
is “equivalent” to the LDF, in terms of equal probabilities of misclassifica-
tion (error rates). Thus it follows that under those conditions the sample
EDF could perform better than the sample LDF, since the sample EDF
involves estimation of fewer parameters. Simulation results, also from the
above paper, seemed to support this hypothesis. This article compares the
two sample discriminant functions through asymptotic expansions of error
rates, and identifies situations when the sample EDF should perform better
than the sample LDF. Results from simulation experiments are also reported

and discussed.

1 Author to whom all correspondence and enquiries should be addressed



1. INTRODUCTION

In parametric statistical discriminant analysis, the linear discriminant func-
tion (LDF), which is based on assumptions of multivariate normality and
equal covariance matrices, is quite popular because of its robustness and sim-
plicity. Clearly, there are situations when the LDF is inappropriate and re-
lated competitors like the quadratic discriminant function (QDF'), Euclidean
distance function (EDF') or regularized discriminant function (RDF) may be
used instead; see, for example, McLachlan (1992, Chapters 3 and 5) and
Friedman (1989). In this article we are concerned with the performances of
the LDF and the EDF, following results in Marco, Young and Turner (1987).
In their article, Marco, Young and Turner describe and discuss in detail the
two discriminant functions and the error rates associated with them. Before
discussing this article (plus related ones) in detail, we briefly introduce the
two discriminant functions and the relevant notation.

Suppose that two multivariate normal populations have p-dimensional
mean vectors g, and g2, and (p X p) covariance matrices ¥; and ¥;. The
usual (consistent) sample estimators of these parameters (from training data)
are denoted by z,, Z,, S, and S, respectively. For the two-population situ-
ation the sample versions of these discriminant functions (i.e. sample linear
discriminant function, SLDF, and sample Euclidean discriminant function,

SEDF)-can be expressed as follows:

1. SLDF: If it can be established that ¥, = ¥, = ¥, say (or it is as-
sumed so) then one would use the SLDF which allocates an object

with observation z to population 1 if
L(z) > log.k, (1)
where
L(z) = (21— 22)'S7 (z — 1(21 + 1)),

and k is some appropriately chosen constant (see McLachlan (1992,
Chapter 3) for example). If £L(z) > log, k, z is allocated to popula-

tion 2.



2. SEDF: If ¥ =1 in the LDF or the information in the covariance matrix
is deliberately ignored for the purpose of discrimination, one gets the
SEDF, which allocates an object with observation & to population 1,
if

E(x) > log, k, (2)

where
E(z) = (21 — 22) (z — 1(Z1 + Z2))

(otherwise it is allocated to population 2).

There has been considerable interest in the literature in the relative
performances of these discriminant functions. These comparisons have usu-
ally been based on various measures of estimates of error rates (probabilities
of misclassifications) since direct algebraic evaluations of these probabilities
have proved intractable. The following sources provide relevant background

for this study.

1. Raudys and Pikelis (1980), who performed a simulation study to com-
pare the SLDF, SEDF, the sample quadratic discriminant function
(SQDF), and a variant of the SLDF for independent measurements
(i.e. with off-diagonal elements of ¥ being set to zero); see McLachlan
(1992, Section 4.6) for the details about the SQDF. The relative perfor-
mances of these discriminant functions when the populations are spheri-
cally normal were evaluated. Since computations of reliable estimators
of error rates have been traditionally difficult, numerical integration
techniques were used in evaluating the integrals in the definitions of
the probabilities of misclassification. It was concluded that the simpler
SEDF performed better than the SLDF when p is large relative to n.
In fact the SEDF was found to perform at least as well as the SLDF

even for non-spherical covariance structures.

2. Marco, Young and Turner (1987) compared the SLDF and SEDF un-

der conditions derived to make the two classifiers “equivalent” or “non



equivalent”. The LDF and EDF were defined as “equivalent” if they
have the same true error rates (i.e. assuming known population param-
eters). The conclusion, based on simulation studies only, was that the
SEDF generally performed better than the SLDF except when the Ma-
halanobis distance (A) between the two populations was substantially
larger than the corresponding Euclidean distance. Also, the SEDF per-
formed at least as well as the SLDF when the population parameters
were set so as to achieve either equivalence or non equivalence of the

classifiers.

This article follows directly from the Marco, Young and Turner paper,

and some results in their paper will be discussed in more detail later.

3. Other related work include Peck and van Ness (1982), van Ness (1979),
Lim (1992), Friedman (1989), Greene and Rayens (1989), and Rayens
and Greene (1991). The last three articles are concerned with regu-
larised discriminant analysis whereby, depending on the values of other
parameters an (effectively) quadratic discriminant function may be-
come a linear (or even Euclidean) discriminant function. Although
preliminary empirical and simulation results in those articles suggest
that these regularised discriminant functions (RDFs) can perform sur-
prisingly better than the other discriminant functions, using RDFs is a
highly computer-intensive procedure and their properties are still being
evaluated by researchers (mainly through simulation experiments). In
particular, regularised discriminant functions are not yet abundantly

available in commercial statistical software,

In view of the limited knowledge about, and lack of availability of soft-
ware for RDFs, it is still relevant to investigate the relative performances of
the SEDF and SLDF. As mentioned earlier, previous articles have reported
comparisons based on simulation experiments and ‘brute force’ numerical
integrations of very complicated probability functions (following basic def-
initions of error rates or probabilities of misclassification). In this article,

following arguments from Marco, Young and Turner (1987), we highlight

o



situations where the SEDF performs better than the SLDF. We also report
results from asymptotic expansions of the error rates associated with these

discriminant functions, and results from some simulation studies.

2. IMPLICATIONS OF RESULTS FROM MARCO, YOUNG
AND TURNER (1987)

This paper derives conditions under which the LDF and the EDF are “equiv-
alent” (i.e. have the sameerror rates for known population parameters). The
authors also report results of simulation studies to compare the SLDF and
SEDF not only under conditions of equivalence but also under certain situ-
ations of “non-equivalence”.

To be specific, if ¥ = 0 in the expressions (1) and (2) then it is well
known that the “true” error rate (i.e. when all population parameters are
known) for allocating an object from population i to population j (5 # i) by
the LDF is

PIPF = 8(-Af2)  (i#7=1,2) 3)
where

A=[(p — 1) (1 — 1))

is the Mahalanobis distance between the two populations and ®(.) is the
standard normal distribution function. The corresponding error rate for the

EDF (details in Marco, Young and Turner) is

pEDF _ g ( —3(1 — #2) (111 — 112) ) (4)
Y (11 — 12) B (g1 — p15)]'/2

The overall error rates are obtained by summing the errors for 3 = 1,2

in expressions (3) and (4). Since k = 0 here, these overall error rates (to be

denoted here by P and Pg) would be equal to the corresponding error rates

given in those expressions. That is,

PL=P;PF  (j#£i=12)



and
P = PP (j#i=1,2). (5)

Marco, Young and Turner proved the following related results.

(i) Let V be a p x p full rank matrix and F any p x 1 matrix with pseudo

inverse F*. If FF* and V~! commute then

F[VT'F]'? = (FtV FY)™! (6)

(ii) If we add the requirement that V be symmetric, then
F'F

Ve "

[F'V-IF)/?
(iii) If weset F = (g — p2) and V = X in result (ii) where (1 — p2) and
Y satisfy the requirements for results (i) and (ii), then P, = Pg.

The authors argue that in view of result (iii) “... in many practical
situations the SEDF might perform better than the SLDF since considerably
fewer parameters must be estimated for the SEDF”. Thus, since “... the
performance of the SLDF deteriorates significantly as the dimension becomes
large relative to the training sample sizes, the computationally simpler SEDF
may be the preferred discrimination algorithm in this situation”. In view of
this last argument, the authors conjectured that “the SEDF may perform as
well as the SLDF even for (some) ‘non-equivalent’ situations”. The authors
then performed a simulation experiment for a very special structure of ¥ and
concluded that there were indeed situations when the SEDF performed better
than the SLDF. They found that the “improvement of the SEDF over the
SLDF is highly dependent on the ratio of Mahalanbis distance to Euclidean
distance”. In particular, “whenever this ratio is small, the SEDF tends to
outperform the SLDF, (and) when the ratio is large the reverse is true”.
One possible explanation for the observed relative behaviours of the
two discriminant functions follows from Peck and Van Ness (1982) who con-
jectured that all this is due to the relative effects of the errors in estimating

Y to that in estimating p; and g, and the relative seriousness of these ef-

fects depends on the sizes of the Mahalanobis and Euclidean distances; see



the original article or Marco, Young and Turner, for further details and il-
lustrations. Of course, in “non-equivalent” situations when the LDF has a
lower (true) error rate than the EDF, it would be expected that the SLDF
would perform better than the SEDF.

On the matter of when the EDF performs better than the LDF, con-
sider the proof of result (iii) in Marco, Young and Turner (1987), where, if
the conditions for the result are satisfied, then

(e I RO PETR O

By swapping ¥ and £~ in the above result, we get the equivalent result

that

Al =) (e =) ey
A? (kg = pa) T (1 — )] (b = ) B = i)y )

where Ag is the Euclidean distance between the two populations. Thus the

size of the ratio between the distance functions can be reduced to an explicit
function of the elements of g, g, and X.

’

Without loss of generality, one can set u, = (0, 0, ..., 0)’. Marco,
Young and Turner (1987) set the values of g = (m, m, ..., m)’ under “equiv-
alence” and p, = (m*, 0, 0, ..., 0) under “non-equivalence”, where m and
m* are appropriately chosen scalars so that the Mahalanobis distances can
be set equal (under equivalence and non-equivalence) for purposes of com-
parison. In this article, we concentrate on the “equivalence” situation since it
provides fair comparison between the two discriminant functions (both being
optimal Bayes procedures for known population parameters under “equiva-
lence”). Since p, = (0,0, ...,0) and g, = (m, m, ..., m)"in this situation,
it follows that A% = pm? and
2 4
T - (B)xag -t =Tosln  (0)
where ¥ = {oy;}.
Thus the only factors which determine the size of the ratio of the

two distance functions are the elements of the covariance matrix, X. If, as in



Marco, Young and Turner (1987), standardisation is done and the covariance
matrix is effectively a correlation matrix, then it follows that in general high
positive correlations yield large values of ) _ o;;. If there is no standardisation
)
of the observation vectors then large (small) variances and/or large positive
(negative) correlations would result in large (small) values of ) _ oi;.
J

Note that in their discussions Marco, Young and Turner (1987) refer to
the size of the ratio of A? to A%, which is the reciprocal of the ratio in (10). In
terms of the ratio in (10) these authors’ simulation experiments suggest that:
SEDF performs better (worse) than SLDF when ) " o;; is large (small). It can

1)

be concluded that it is the type and extent of correlations (or covariances)

among the observations which determine this observed behaviour.

3. ASYMPTOTIC EXPANSIONS AND EVALUATIONS

In this article the asymptotic expected error rates were obtained using Taylor
series expansions of the conditional error rates (i.e. conditional on Z;, Z;
and S) and taking expectations over the distributions of p;, g2 and S. In
particular, if H(.) is a differentiable function of parameters (51, ,32, . ﬁ,),
where (Bl, Ba, .., B,), are consistent estimators of (8, [ ..., f,), then
the Taylor series expansion of E(H) about the point (8;, 8 ..., 3;) can be

expressed as

- 5B5)

( ) H(ﬂhﬂh aﬂs -+ z Bﬂ
r‘l J

&*H(.)
Z 7 9b; 6;3,

For our expansions H(.) = ®(.), the standard normal distribution func-

- B)(Bi - B;)- (11)

tion, and Bl, Bz, cen B, are the elements of z,, £, S. The expansions are
evaluated at the point (p1,u2, X).

The two asymptotic error rates considered here are the expected “ac-
tual” (i.e. unconditional) and the expected “plug-in” (i.e. conditional) error
rates. For these error rates, the function H(.) takes the following forms (for

misclassification of an object from population 1 to population 2), where the



two subscripts ‘A’ and ‘P’ refer to the “actual” and “plug-in” error rates

respectively:
pLDF _ o [ _ [y — 1(Z1 + 22)]'S7V (21— 25) |
H) (&1 — 2,)'S7'2SY (=, — ,)]'/2)°
PEDF _ & [ = 3@+ 22)]) (21 — 2)
21(A) [(il _ 1—:2):2(51 _ 52)]1;2
Pylpy = ¥(—1((=1 — 22)'S7!(Z1 — 22)]'?)
and

1 T — &) (Z1—

Faitry = @ (_-§ [(5’(1 li2)"25)((-'7211— i22))]”2) ' (12)

Corresponding expressions for misclassifying an object from popula-

tion 2 to population 1 are similar. Several results in Okamoto (1963) were
used in obtaining the asymptotic expansions.

In a series of papers, McLachlan (1972, 1973, 1974a, 1974b) obtained
asymptotic expansions of error rates for the SLDF. No such results appear
to have been obtained for the SEDF. We believe this is partly due to the fact
that for the SLDF the function H(.) can be reduced to a relatively simple
function (usually referred to as “canonical form”) through a linear transfor-
mation of the observation vector. This simplifies the algebra considerably,
and makes the final result dependent on only a few parameters (see, for éx-
ample, McLachlan (1972,1973)). Unfortunately, no similar trick can be used
for the H(.) function for the SEDF. The canonical form that has been tra-
ditionally adopted (after the transformation) has been pu, = (4A,0,0,...,0)’,
Ho = (A,0,0,...,0) and 3 = I, which would not allow us to investigate the
distinction between SLDF and SEDF. Hence, such an investigation would
require that a particular structure of ¥ be assumed. Consequently each
asymptotic expansion takes a different form, depending on (i) the assumed
structure of X, (ii) whether the expansion is obtained under “equivalence” or

“non-equivalence”, (iii) whether the expansion is for the SLDF or the SEDF,



and also (iv) whether the expansion is for the “actual” or “plug-in” error
rate.
For example, the expansion (up to first order) of the conditional error

rate associated with the LDF under “equivalence” conditions is of the form

Pior = @(—EEZ(z:swxzo.mswr”’{zgsm})

82®(.) 0%®(.)
2?’1. z‘: Z 321,6171 Z Z 6-‘1’2‘612,

1 (n -I-n)
+ 5(1’1 _:n : ZZZ Z 33“3 Ulkaﬂ o Uu'a;k) (13)

where the quantities 2 36, 5(5)- are obtained separately for each assumed structure
of p,, 2, and X, for any variables 6, and 6,. The full algebraic expressions
of the asymptotic expansions are too complicated to be put in this paper.
Interested readers can get them from the authors. However, for the purpose
of completeness and to give some idea about computational requirements,
we give partial details of one of the expansions in the appendix.

Two different structures of 3 were considered, and they will be denoted

as ¥4 and ¥ g, where

(1 p p 1 p PP P!
p 1 p P 1 P

2A= p P 1 and23= p2 P 1 .o . (14)
L P B s 1 N . G 1

4. NUMERICAL EVALUATIONS AND DISCUSSION

Appropriate values of p (both positive and negative) and other parameters
were chosen for the numerical evaluation of the asymptotic expansions. We
follow the work of Marco, Young and Turner (1987) where, in the situation

of “equivalence” the value of the parameter m is given by

\/{N/Z_ 3o} (15)
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For “non-equivalence”, its counterpart (i.e. m*) is given by

m* = /{A?/o1}. (16)

The sample sizes were taken to be equal at n; = n, = 50, and dimen-
sions of the observation vectors used were p = 4 and p = 8. We present and
discuss here a very limited set of results; several other results obtained under
much more extensive conditions are available from the authors.

One table (TABLE I) is presented to illustrate the order of magnitudes
of the various error rates. In the notation and discussions about TABLE I

the various error rates are referred to as follows:

el eg: true error rates (i.e. for known population parameter values)
for the SLDF (subscript L) and SEDF (subscript E).

€L, eg: asymptotic expected actual (i.e. unconditional) error rates.

€L, €E: asymptotic expected plug-in (i.e. conditional) error rates.

esL,esg: mean cross-validation error rates from 100 simulation

experiments using computer-generated data.

Note that several other estimates of error rates (e.g. bootstrap and
resubstitution) were obtained from the simulation experiments. However,
previous work (e.g. Ganeshanandam and Krzanowski, 1990) suggest that
the cross-validation error rate is one of the better and reliable ones to use.
Also, although results for the asymptotic expected plug-in error rates (i.e.
ér, and ég) are given, it is well-known that this particular error rate is biased
(usually too optimistic). Henceforth, results about this error rate will not be
discussed or referred to.

It is easier to visualise the relative performances of the SLDF and
SEDF, through a graphic presentation of their error rates. Define the differ-

ences between the estimated and true error rates as:



AL

AE

= ¢p — e; = difference between the expected error rate and
true error rate for the SLDF.

= eg — e = difference between the expected error rate and
the true error rate for the SEDF.

= esL — e}, = difference between the simulated error rate and
the true error rate for the SLDF.

= esg — eg = difference between the simulated error rate and

the true error rate for the SEDF.

Graphical displays of values of |AL|,|Ag|,|Ast| and |Asg| for various

values of the Mahalanobis distance (A) and levels of correlation among the

observations are presented in FIGS. 1 to 3. Results for positive autocorre-
lation structures are presented in FIG. 1 (¥ = ¥,) and FIG. 2 (¥ = X3p),
while results for negative autocorrelation between neighbouring observations
with ¥ = ¥ g are presented in FIG. 3. Since FIGS. 1 to 3 show absolute dif-

ferences between the error rates, they hide any bias that an estimator might

tend to have. Consequently, we have provided FIG. 4 which displays values

of Az, Ag, Ast and Asg, to illustrate this bias issue.

The main features of these plots and results are the following:

For positive p (FIGS. 1 and 2) it is interesting to note that |Ag| tends

to decrease as p increases while |AL| tends to increase.

It was hypothesized in Marco, Young and Turner (1987) that the SEDF
performs better than the SLDF if the ratio A?/A% is large. It was
also established in Section 2 that this condition can be reduced to
the size of ) _ oy;. Since large p means large > 0ij, a comparison of
the plots ofu|/\[,| and |Ag| for a given value c;;' p indicates that the
asymptotic expected error rates provide support for those arguments

and conjectures. Plots of Ar and Ag in FIG. 4 also support these results.

The plots in FIGS. 1 and 2 might appear to suggest that the expected
error rate associated with SLDF tends to initially decrease with A and

then increase as A increases further. The plots in FIG. 4 clarify this

v
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matter, since A initially underestimates the true error rate (when A is
small) and this estimation improves as A increases until it overestimates

the true error rate for very large A.

o The plots for the simulated error rates in FIGS. 1 and 2 suggest that
for positive p, |Asg| tends to be smaller than |Asp|, and FIG. 3 suggests
that for negative p, the reverse happens. Note that although it is the
absolute values of the simulated error rates which are plotted in FIGS.
1 to 3, plots of Asg and Ast would be very similar, indicating that the
simulated error rates tend to be generally larger than the true error

rates (not surprisingly).

¢ From FIG. 4, an interesting difference between A, and Ag is that as p
increases Ag decreases from positive values towards zero. Meanwhile,

AL decrease from positive values through zero, to negative values.

o When we compare the results for ¥ = ¥ 4 with those for ¥ = X5 we
find the corresponding values of |AL|, |\E|, |Ase| and |AsL| are quite
similar. In fact, it can be seen from the orders of magnitude of these
differences in error rates that the estimation of the error rates provided
by the asymptotic expansions are quite reasonable in both cases. This
is confirmed by the simulated error rates being of similar order of mag-
nitude. It appears however, that when p is negative and A is large
the approximation provided by eg is quite inaccurate. The problem
is worsened as p increases. This asymptotic expansion is therefore not
recommended for approximating the error rate under this situation.
Note, however, that the simulated error rates are also unusually large

under this situation (FIG. 3).

5. CONCLUSION

The sample linear discriminant function (SLDF) is still the most popular
classifier among users of discrimination procedures, in spite of its drawbacks.

Meanwhile, the sample Euclidean discriminant function (SEDF), which is a

12



simpler version of the SLDF, has been shown to (surprisingly) perform better
than the SLDF under some circumstances. It is established algebraically
in this article that the relative performances of the SLDF and SEDF are
determined by the type and extent of correlations (or covariances) among
the observations. This result explains and supports previously published
conjectures and simulation results on this matter (Peck and Van Ness (1982);
Marco et al (1987)).

Asymptotic expansions of the error rates associated with the two dis-
criminant functions are given for two specific structures of the covariance
matrix, 3. Although several expansions are available in the literature for
the SLDF, similar expansions are not available for the SEDF, because of the
fact that its error rate function cannot be reduced to a function of only a few
parameters. Consequently, any asymptotic expansion of the error rate for
the SEDF (and hence comparison with the SLDF) is likely to be “messy”,
and feasible for particular structures of ¥ only. Two such structures of ¥
are adopted in this article, and the asymptotic expansions (and subsequent
numerical evaluations) provide support for the earlier conjectures and simu-
lation results about the relative performances of SLDF and SEDF.

Comparisons of the asymptotic expansions with the simulated cross-
validated error rates indicate that the asymptotic expansions are quite rea-
sonable, except under certain parameter configurations, which are identified
in this article. This article also identifies situations when the two estimated

error rates provide biased estimates of the true error rates.
APPENDIX

ASYMPTOTIC EXPANSION FOR THE CONDITIONAL
ERROR RATE OF LINEAR DISCRIMINANT FUNCTION
UNDER CONDITIONS OF “EQUIVALENCE“ WITH
COVARIANCE MATRIX OF THE FORM X = ¥,4.

The probability, conditional on the samples, that the Linear Discriminant
Function misclassifies an observation from group 1 into group 2 is:

o1 s e —2)
Pithy = @ (_ (21— 2,)S 155 (2: — 532)]1/2) .




For the error rates of the LDF and EDF to be equivalent, the popula-

tion means must be set so that

#’1 = (mama---am)’

u, = (0,0,...,0). (A.2)
The Taylor Series expansion (up to first order approximation) is
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Thus the following quantities need to be obtained

Under “equivalence” p, = 0, and we may write equation (A.1) as

where
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to obtain the desired quantities:
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(A.7)

The asymptotic expansion for the probability in equation (A.1) would be

obtained after collection and evaluation of all these expressions.
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TABLE I

p=4
true actual plug-in simulated true actual plug-in simulated
EDF(ex) EDF(eg EDF§éE EDF?CSE; EDF?C};) EDF(eg EDFééE EDF?esg
LDF(e}J) LDF er, LDF éL LDF esr, LDF ez) LDF(eL LDF éL LDF esyr,
3721 .7889 .6551 .4370(.062) .3706 e % .4594(.059
.3618 .3643 .3250 .3766(.068) .3618 .3815 .2875 .3932(.06¢
.3654 .4549 .3841 .4008(.052) .3644 .6034 4346 .4286(.057
.3618 3614 .3350 .3858(.064) .3618 3729 .3009 .3986(.0617
.3618 .3788 .3470 .3828(.055) .3618 4001 3261 .3858(.060
.3618 .3597 3373 .3852(.065) .3618 .3695 .3037 .3936(.063
3634 3673 .3541 .3696(.064) .3636 3725 3417 .3616(.054
.3618 3548 3378 .3812(.065) .3618 .3615 .3044 .3832(.059
.3642 .3659 .3597 .3646(.069) .3660 .3692 .3549 .3750(.057
.3618 .3400 3378 .3786(.066) .3618 .3361 .3046 .3984(.072
3222 .6022 .5125 .3948(.061) 3203 L .9497 .4292(.053
.3085 3167 .2790 .3288(.052) .3085 .3395 .2350 .3266(.058
.3133 .3636 .3264 .3476(.059) 3119 4717 .3595 .3632(.060°
.3085 .3128 .2837 .3192(.057) .3085 .3282 .2524 .3360(.060
.3085 .3205 .2994 .3156(.059) .3085 3347 .2857 .3364(.052
.3085 .3110 .2867 .3136(.057) .3085 3245 .2562 .3368(.061
.3106 3139 .3052 .3174(.058) .3109 3176 2973 .3184(.051
.3085 .3076 .2873 .3280(.061) .3085 .3189 .2570 .3410(.059
3117 3135 .3095 .3162(.054) .3140 3170 3079 .3070(.061]
.3085 .2980 2874 .3250(.053) .3085 .3022 .2573 .3394(.057
2328 .3848 .3365 .2952(.058) 2302 .6843 .5695 .3564(.060)
.2146 .2290 .1762 .2226(.052) .2146 .2590 .1394 .2334(.052
.2209 .2539 .2291 .2496(.053) .2190 .3046 .2458 .2618(.057)
.2146 .2240 .1915 .2252(.055) .2146 2442 .1612 .2350(.059
.2146 2219 .2112 .2200(.048) .2146 .2296 .2043 .2384(.054)
.2146 .2220 .1951 .2262(.052) .2146 .2400 .1661 .2478(.055
2173 .2201 .2158 .2234(.050) 2178 .2225 2122 .2368(.050)
.2146 .2200 .1959 .2258(.045) .2146 .2367 1671 .2430(.055
.2188 .2208 .2189 .2286(.050) 2219 .2246 .2201 .2274(.049)
.2146 .2153 .1959 .2266(.052) .2146 .2281 .1676 .2384(.059

:ates that for those conditions the asymptotic expansions yield estimates out of bounds for probabilities.

TABLE I The true, expected actual, expected plug-in and mean simulated
(with standard deviation) error rates of the SEDF and SLDF in the case of
‘equivalence’ with ¥ = ¥ g and various p.
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FIG. 1 Displays showing the absolute difference between the true error rate
and a) the expected actual error rate (i.e. the evaluated asymptotic expan-
sions) (graphs (i) and (ii)); and b) the simulated error rates (graphs (iii)
and (iv)) for ¥ = ¥4, dimension p=(4,8), and various Ma.ha.lanobls distance
squared (A?) and p.
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FIG. 2 Displays showing the absolute difference between the true error rate
and a) the expected actual error rate (i.e. the evaluated asymptotic expan-
sions) (graphs (i) and (ii)); and b) the simulated error rates (graphs (iii)
and (iv)) for ¥ = ¥, dimension p=(4,8), and various Mahalanobis distance

squared (A?) and positive p.
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FIG. 3 Displays showing the absolute difference between the true error rate
and a) the expected actual error rate (i.e. the evaluated asymptotic expan-
sions) (graphs (i) and (ii)); and b) the simulated error rates (graphs (iii)
and (iv)) for £ = ¥p, dimension p=(4,8), and various Mahalanobis distance
squared (A?) and negative p. :
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FIG. 4 Displays showing the difference between the true error rate and a)
the expected actual error rate (i.e. the evaluated asymptotic expansions)
(graphs (i) and (ii)); and b) the simulated error rates (graphs (iii) and (iv))
for ¥ = ¥, dimension p=(4,8), and various Mahalanobis distance squared
(A?) and positive p.
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