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Errata 
t.o the thesis by J.P.Koolaard entitled "Some Aspects of Covariance 

Regularisation in Discriminant Analysis". 

Page 1, line -10 'Prostrate' should be prostate. 

1 

Page 3, line 5 After the words " .. .for group k." add the sentence: "It is evident 

from expression (1.3) that all vectors in the thesis are considered as column 

vectors, unless stated otherwise." 

Page 4, line 6 Sentence beginning on this line should read:"In effect, the Sk are 

replaced by the pooled covariance matrix, and the variance of the elements 

of Sp are smaller ... " 

Page 15, line -11 " ... where the pooled sample estimate ... " should read: " ... where 

the inverse pooled sample estimate ... ". 

Page 56, lines -6 to -4 Rewrite these three lines as: "It should be noted that in 

his article, Friedman used robust covariance estimators in place of Sk and Sp 
in expressions (3.6) and (3.7). T he resulting robustification of (3.6) is written 

as ... " 

Page 76, lines -9 , -8, -5 In these lines replace 8k with Sk and 81' with S1" 

Page 3, line 14 Change " ... expression (1.9) ... " to " ... expressions (1.9) and 

(1.10) ... " . 

Page 5, line 12 To avoid any possible confusion, change "(i,j - 1, . . .  ,1«(i =I 

j ) )" to "(for all j (  =I i) = 1,2, . . .  , I< )". 

Page 5, line 15 Remove the word "directly". 

Page 12, line 1 Change "mean" to "mean vector". 

Page 14, line 8 Change "off diagonal" to "off-diagonal". 

Page 17, line 10 Change "(1993)" to "(1993))". 

Page 21 , line 14 Change "samples of" to "samples of size". 
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Abstract 

Statistical discriminant analysis and classification are multivariate techniques con­

cerned with separating distinct set of objects, and with allocating new objects to pre­

viously defined populations or groups. In this process the covariance matrix plays 

an important role, and usually this matrix has to be estimated from sample data. 

In this thesis, attention is focussed on investigating the problem of (poor) estima­

tion of the covariance structure and its effects in statistical discriminant analysis. 

The quality or statistical properties of these estimates usually affect the resultant 

classification rules which are constructed using them. 

Reasons for the (usually, consistent) estimators of the covariance matrices be­

ing poor are mainly to do with the quality and/or size of the training sample in 

relation to the number of parameters which have to be estimated. In this thesis, 

we are interested in investigating this problem as it occurs in the small sample, 

high-dimensional situation. In particular, we are interested in the problem of co­

variance estimation in the situations when the sample size to dimension ratios are 

relatively small. The criterion used to determine the success or otherwise of vari­

ous methods used to address this problem is the estimated (overall) error rate. One 

method of dealing with a situation which potentially results in poor estimation of 

the covariance matrix is to impose a prescribed (simple) structure on the covariance 

matrix, such as the identity matrix, or multiple of it. Another method is to make 

the assumption that all the groups have the same covariance matrix. The effect of 

such simplifying assumptions is to reduce the number of parameters to be estimated. 

Consequently, the (fewer) parameters are estimated with higher precision. It has 

been demonstrated that this may result in better statistical discriminant analysis, 

even if the simplifying assumptions may not be entirely correct. 

Of the classification rules based on the normal distribution, the quadratic dis­

criminant function (QDF) makes no restrictions on the population parameters, 

and as such is the most general of this class of classification rules. However, it 

is also the one most affected by poor population parameter estimates. The two 

common simplifying techniques mentioned earlier (i. e. imposing an identity matrix 

structure on the covariance matrix, or assuming a common covariance among all 

populations) lead to two other discriminant rules, namely, the Euclidean distance 

function (EDF, based on the Euclidean distance between the group means) and the 
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popular linear discriminant function. (LDF, based on the Mahalanobis distance be­

tween the groups) respectively. The sample-based versions of these two classifiers 

are compared using expected error rates (conditional on a set of training data), 

and these expected error rates are obtained through the derivation of asymptotic 

expansions. The expansions are evaluated under a range of settings, defined by 

employing combinations of various values of dimension, group separation, and co­

variance structure. It is shown that the simpler sample Euclidean distance function 

(SED F) performs as well as or better than the sample linear discriminant function 

(SLDF) under most of the settings used. Exceptions occurred when the Mahalanobis 

distance between populations was much greater than the Euclidean distance. 

A flexible discrimination model, or rather, class of models, was developed by 

Friedman (1989), and called the regularised discriminant function (RDF). The 

sample version of the RDF (i. e. SRDF) model incorporates the general sample 

quadratic discriminant function (SQDF), the two previously-mentioned restricted 

models (SEDF and SLDF), as well as a wide range of models intermediate to these, 

through the use of additional Uregularisation" parameters. The method employs two 

types of shrinkage of the covariance estimates - towards the pooled estimate on one 

hand, and towards a multiple of the identity matrix on the other. A separate regular­

isation parameter controls shrinkage to each. The training data is used in the model 

selection process to determine appropriate values for the regularisation parameters, 

through the use of cross-validation. The quality of model selection procedure which 

specifies a discriminant model is a crucial factor, since if it is performing well, it 

will result in a classification rule close to the optimal one from the class of models 

available. 

Through large-scale simulation studies, the performance of the sample regu­

larised discriminant function (SRDF) is investigated and it is shown that the SRDF 

generally leads to lower overall error rates than the standard classification rules. 

This is found to be largely due to the facility which allows shrinkage of the covari­

ance matrices to sphericity, or eigenvalue regularisation. It is also found that the 

SEDF performs very well in relation to the SRDF for a variety of settings. Further 

simulation studies show that the performance of the SRDF is more sensitive to the 

parameter controlling shrinkage to sphericity than the one controlling covariance 

mixing. Also, it is found that under some circumstances, the SRDF performs better 

than the other classifiers even for quite large sample size to dimension ratios. 
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A crucial negative feature of the SRDF is its lack of scale invariance. The cause 

of this is eigenvalue regularisation. A modified classification rule is developed which 

is scale invariant, and is compared to the SRDF and the other classifiers via sim­

ulation. The modified rule omits eigenvalue regularisation, but otherwise increases 

sensitivity to the data by allowing for varying degrees of shrinkage to the pooled 

covariance for each group. It is shown that eigenvalue regularisation is generally 

beneficial for discrimination in medium to large dimensional problems, through its 

variance-reduction effect which stabilises the covariance estimates. Thus, the study 

concludes that scale invariance must be sacrificed in order to achieve reductions in 

error rate, in the absence of a suitable replacement for eigenvalue regularisation. 

The use of cross-validation in the model selection process of the SRDF is also 

investigated, for several reasons: the computational effort involved, and the fact 

that it rarely leads to a unique choice of model, and often uses only a small subset 

of the available observations, in the model selection process. Consequently, another 

method for determining the optimal regularisation parameters is investigated. In 

particular, it is investigated whether appropriate values for the regularisation pa­

rameters can be indicated from a measure of the distance between the groups. For 

this purpose, the Bhattacharyya distance is chosen since it comprises a term pri­

marily pertaining to the difference between group means, and a further term which 

indicates the level of disparity between group covariance structures. It is shown 

that the magnitudes of the various components of the Bhattacharyya distance, when 

considered on their own and in relation to each other, do give information as to 

appropriate values for the regularisation parameters. A new simulation study, as 

well as various case studies are presented to assess the performance of a new reg­

ularised discriminant function which uses the Bhattacharyya distance estimates 

between groups to select regularisation parameters for given training data. This 

classifier is shown to perform as well as the SRDF, and is computationally much 

faster since it avoids any re-sampling methods. 

It is clear that most of the investigations and assessments of the various reg­

ularised discriminant rules have to be undertaken using Monte-Carlo simulation 

techniques, especially to estimate error rates. This is because exact analytical ex­

pressions for the unconditional error rate of the SRDF do not exist, except  in 

certain limited circumstances. It has not been possible to obtain asymptotic expan­

sions or some form of approximations of these error rates in a general context. 
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However, an approximation which can be used to calculate algebraically the error 

rate of the SQDF, assuming known population parameters under (other) strict con­

ditions, is available in the literature. This approximation is used in this thesis to 

further examine the effects (observed in earlier simulation work) of the covariance 

regularisation parameters on error rates. This is the last piece of work in the thesis 

and, in spite of its limited extent (because of the restricted conditions of the approx­

imations given), it largely confirms the results which were obtained from simulation 

experiments in the previous parts of the thesis. 
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A bbreviations used in this thesis 

List of Abbreviations used in this Thesis 

SLDF Sample linear discriminant function. 

SQDF Sample quadratic discriminant function. 

SRDF Sample regularised discriminant function, similar to the method 
developed by Friedman ( 1989) . 

XXI 

SRDF1 Rule based on SRDF, but where a policy of minimum regularisation 
(instead of maximum regularisation as with SRDF) is employed to 
break ties in cases where the model selection procedure does not 
yield a unique choice of values for the regularisation parameters. 

SRDF-M A modified regularised rule which omits the eigenvalue 
shrinkage parameter , but allows for as many covariance mixing 
parameters (A's) as there are groups to be discriminated between. 
This rule is scale-invariant, unlike the SRDF. 

SRDF-M1 Similar to SRDF-M, but where a policy of minimum regularisation 
is employed to break ties (as for SRDF1) .  

SRDF-B Regularised discriminant rule which chooses the A and , 
parameters by using information obtained from a measure of 
the Bhattacharyya distance between pairs of populations 
(of interest) .  

SEDF Sample Euclidean distance function. In this thesis, this rule is 
formed by setting the regularisation parameters (A and ,) in the 
SRDF rule both equal to one. 
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Chapter 1 

INTRODUCTION 

1.1 GENERAL FRAMEWORK 

Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating new ob­

servations to previously defined groups. As a separatory procedure, it is often 

employed on a one-time basis in order to investigate observed differences when 

casual relationships are not well understood. Classification procedures are less ex­

ploratory in the sense that they lead to well defined rules, which can be used for 

assigning new objects. 

An assumption underlying the use of discriminant analysis is that there is a 

way of correctly classifying the initial data. In other words, there must exist some 

variable or variables which allow the different groups to be established and defini­

tively identified. For example, in a study of prostrate cancer, measurements from 

a biopsy would be used to define the groups "cancer" and "non-cancer" . Or, in 

a study to determine if the New Zealand kiwi bird will be susceptible to rabbit 

calicivirus disease (RCD) ,  a virus which kills rabbits in large numbers (to attempt 

to control the rabbit plague in some parts of New Zealand) , tissue culture from 

various organs of a kiwi which has been exposed to the virus are taken and ex­

amined for the presence or absence of antibodies against the disease, and various 

measurements are taken. 

These variables cannot be used directly to predict the group to which an indi­

vidual belongs. In many instances these variables are difficult to obtain. In the 
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prostrate cancer example, a biopsy is not always practical (for reasons of expense 

and discomfort) for all patients. Rather, only those who are very likely to have 

the disease will be operated on. In the kiwi example, the destruction of the bird 

is necessary to obtain the required tissue samples which will indicate conclusively 

whether antibodies against the disease have been produced, and thus indicate how 

susceptible the kiwi is to the disease. Since the kiwi is the national emblem of New 

Zealand and its population is extremely small, any such experimentation would 

have to be limited to just one or two birds. Thus in most problems, other variables 

will be used which are more readily available, or less invasive and destructive. It is 

hoped that these variables will be sufficiently sensitive and indicatory to allow an 

accurate assignment to be made. 

The formal purpose of discriminant analysis is to assign objects to one of several 

(K) populations or groups defined a priori. The assignment is based on a set of p 

measurements x = (X l ,  X2, . . •  , xp) obtained from p variables from each object. If 

each variable is thought of as an axis in a metric space, the observations, x, are 

points in p-dimensional measurement space. Different groups would ideally occupy 

different regions in the measurement space as this would allow allocation methods 

to assign observations based on their locations in the space. Often the different 

regions overlap, and correct allocation is not possible every time. Nevertheless, it 

is important that the assignment of an unknown observation to a group be carried 

out with a small probability of misclassification (often referred to as the "error 

rate" ) .  

The measurements associated with the population of observations i n  the kth 
group comprise a distribution of values with probability density function (pdf) 

fk(X), k = 1 ,  . .. , K. The optimal (Bayes) rule for allocating an observation x is 

arrived at through minimising the total probability of misclassification under the 

assumption that all group parameters are known (see for example, Seber (1984), 

Section 6.2 .2) . The rule may be written as: choose group k such that 

1fkhc(x) = max {1fkfk(X)}, 
I � k � K 

where 1fk is the a priori probability that x belongs to the kth group. 

( 1 . 1 )  

Given the commonly used assumption that the groups are normally distributed, 
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the following rule is obtained: assign x to group k such that 

dk(x) = mm {dk (x)} ( 1.2) 
1 � k � K 

where 

( 1.3) 

and J.Lk and �k represent the mean vector and covariance matrix for group k. The 

quantity dk (x) is often called the discriminant score for allocation of observation x 
to the kth group, but is sometimes referred to as the generalised distance between 

x and J.Lk. The first term of dk (x) is the square of the well known Mahalanobis 

distance between x and J.Lk , while the other two terms are adjustment factors. 

The quantity dk (x) + 21117rk is called the quadratic discriminant function (QDF) 

since it separates the different regions in the measurement space (corresponding to 

different group classifications) by quadratic boundaries. In practice, the parameters 

J.Lk and �k will not be known and may be replaced by the usual estimates Xk and 

Sk respectively (defined in expression ( 1 .9)). The sample discriminant rule is to 

assign x to group k such that 

dk(x) = min {dk(x)}, ( 1 .4)  

1 � k � K 

and the sample quadratic discriminant function (SQDF) is 

( 1.5) 

The performance of the SQDF can be badly affected if the training sample size 

is small, and this is due especially to the instability of the estimates, Sk. If nk is 

close to or less than p, Sk may be singular or nearly singular and some elements 

of Sk -1 will have extremely large or infinite values, with serious consequences for 

expression ( 1.5) .  Various approaches to addressing the problem of not being able to 

obtain stable or reliable estimates of the �k have been adopted. The general theme 

throughout this thesis deals with allocation rules which are used to counteract 

problems associated with the estimation of the covariance matrices and their effects 

on discrimination. 

A common way to overcome instability in the Sk is to use the linear discrimi­

nant rule, which also assumes normality but with the additional assumption that all 
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groups have equal covariance matrices. The resulting decision boundaries between 

groups are linear, and the Sk are replaced by the pooled sample covariance ma­

trix, Sp (see expression ( 1 . 1 1 ) ). The resulting sample linear discriminant function 

(SLDF) may be written (assuming equal priors and costs of misclassification) 

( 1 .6) 

and the rule is the same as that in expression ( 1 .4 ) .  In effect, the Sk are biased 

towards the pooled covariance matrix, but the variance of the elements of Sp are 

smaller than the variances of the corresponding elements of the Sk . This reduction 

in variance enables the SLDF to out-perform the SQDF for small sample sizes even 

when the �k differ (see, for example, Marks and Dunn ( 1974 ) ,  Wahl and Kronmal 

( 1977) , Bayne et al. ( 1983 ) ) .  

One of  the simplest allocation rules adopts the approach of ignoring the covari­

ance matrix and assigning an unknown observation x to one group on the basis of 

the Euclidean distance between x and each group mean, J.L .  The resulting (sample­

based) nearest-means classifier is termed the sample Euclidean distance function 

(SEDF) and is written as 

( 1 .7) 

The SEDF has been compared to other more commonly used discriminant functions 

including the SLDF by Raudys and Pikelis ( 1980) and Marco et al . ( 1 987). It 

was shown to perform well in comparison, especially when the group conditional 

distributions are spherically normal, and when the dimensionality is large relative 

to the training sample size. 

A different way of addressing the problems associated with estimating the �k 
in expression ( 1 .3) is to employ shrinkage techniques on the covariance estimates. 

James and Stein ( 1961 ) ,  Stein et al. ( 1972) , Efron and Morris ( 1976 ) ,  Haff ( 1980) 

and Dey and Srinivasan ( 1985) sought to obtain more reliable eigenvalue estimates, 

correcting eigenvalue distortion present in the sample covariance matrix. Further 

details are given in Section 3.2 of this thesis. The approach involved seeking es­

timates that minimise particular loss criteria on the eigenvalue estimates. Regu­

larisation of the covariance matrix is a similar technique that has been used for 

situations where an estimate Sk is singular or nearly singular, as can occur when 

the number of parameters to be estimated is similar to the number of training 

sample observations available. Regularisation attempts to improve an estimate by 
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biasing it from the estimated value to a value deemed physically plausible. An 

example of such a plausible value to bias the individual covariance estimates Sk to 

is Sp . This value would be appropriate in many cases where the �k are not greatly 

heterogeneous. If varying degrees of biasing to the chosen value is permitted, new 

(regularised) covariance estimates may be obtained to produce intermediate mod­

els between the heteroscedastic (SQDF) and homoscedastic (SLDF) models - the 

former being possibly too diffuse, and the latter perhaps too rigid . The effect of 

this is to reduce the variance of the sample estimate at the expense of potentially 

increasing its bias (see Friedman ( 1989) ) .  

1 .2  ERROR RATES 

The error rate associated with the optimal or Bayes rule is the probability that 

a randomly selected individual from group i is misallocated to group j (i , j = 
1 ,  . . . , K (i =/:. j) )  on the basis of the optimal allocation rule which assumes that the 

parameters are known. Since the optimal rule minimises the total probability of 

misclassification, this probability is known as the optimal error rate. It is directly 

related to the degree of separation between the groups. 

In practice, the optimal rule and optimal error rate are not achievable and 

allocation rules must be constructed on the basis of available training samples. 

The conditional error rate of a sample-based rule is the probability, conditional on 

the sample, that a randomly selected individual from group i is allocated to group 

j (i, j = 1 ,  . . . , K;  (i =/:. j) ) .  This i s  sometimes referred to as the actual error rate. 

The expected value of the conditional error rate (on averaging the conditional error 

rates over the distribution of the training sample) is termed the expected actual, 

or unconditional error rate (see Lachenbruch ( 1975) , Hand ( 1986) , Chapter 2 of 

this thesis, and McLachlan ( 1992) Section 1.10). This terminology was established 

by Hills ( 1966). 

The optimal, conditional and unconditional error rates of a sample-based rule 

depend on the usually unknown population parameters, and as such, these error 

rates must be estimated in practice. Estimating techniques, whether parametric 

or non-parametric, are strictly functions of the sample data and they have usually 

been evaluated regarding their performance in estimating the conditional error rate. 

Glick ( 1978) alludes to some of the difficulties involved here: 
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The task of estimating probabilities of correct classification confronts 

the statistician simultaneously with difficult distribution theory, ques­

tions intertwining sample size and dimension, problems of bias, vari­

ance, robustness and computation costs. 

6 

A commonly used error rate estimator is the plug-in error rate, obtained by re­

placing the unknown group parameters by their sample estimates in the available 

expressions for the conditional error rates. For a comprehensive summary of error 

rate estimators, including relevant references, see McLachlan ( 1992) , Chapter 10. 

Analytical results for the conditional error rates of the sample-based Bayes 

discriminant rules have proved difficult to obtain because of the complexity of the 

distributions of the various discriminant functions. A few such results have been 

obtained, but only for very special cases, such as for only two normal groups with 

equal covariance matrices. Most of the problems involving the distributions of 

the discriminant functions and their associated error rates have been tackled using 

asymptotic methods. McLachlan ( 1992) ,  Chapter 4, gives a thorough summary of 

the available error rate results for the case of multivariate normal groups. 

1 .3 OUTLINE OF RESEARCH UNDERTAKEN 

This thesis begins where the unpublished work of Lim (1992) left off - comparing 

the Euclidean and linear discriminant functions. The linear discriminant function, 

first proposed by Fisher ( 1936) , is still very popular, partly due to its optimal 

properties when the parameters are known (Anderson, T. W. ( 1984) ) .  However, 

since it is recognised that the SLDF is not uniformly optimal and its performance 

can be poor relative to other classifiers when the dimension is large relative to the 

training sample size (Peck and van Ness (1982) ) ,  the SEDF has been identified as 

a possible competing allocation procedure for discriminant analysis (Raudys and 

Pikelis ( 1980) , Marco et al . ( 1987) ) .  Raudys and Pikelis employed numerical inte­

gration techniques in their study, while Marco et al . demonstrated the superiority 

of the SEDF over the SLDF in certain conditions through a Monte Carlo simula­

tion experiment and comparing estimated error rates (in the form of probabilities 

of correct classification) .  

Lim ( 1992) embarked on a study to compare the expected conditional error rates 
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(i .e. the unconditional error rates) of the SEDF and SLDF via asymptotic expan­

sions of the error rates for the case of two multivariate normal groups. Non-trivial 

conditions for achieving equivalence of the SEDF and SLDF, when all parameters 

are known, were derived by Marco et al . ( 1987) and this result provides an ap­

propriate scenario to allow a fair comparison of the two classifiers. Lim obtained 

the expected error rates of the SEDF and SLDF for conditions where the classi­

fiers are not equivalent, but was unable to derive the asymptotic expansions for the 

conditional error rate of the SLDF under conditions of equivalence, due to the com­

plexity of both the differentiation and evaluation of the final expression. Therefore, 

to enable a satisfactory comparative study of the error rates of the two classifiers, 

the above asymptotic expansions (under conditions of equivalence) are derived in 

Chapter 2 and numerically evaluated to obtain the expected error rates. Chapter 2 

contains a comparative study of the SEDF and SLDF, using a different approach 

to that of Raudys and Pikelis ( 1980) and Marco et al . ( 1987) . The conditions 

under which comparison is made are also broadened to include different structures 

for the group covariance matrix. 

The focus in Chapter 3 changes from looking at rigid techniques to deal with the 

previously mentioned instability in the group covariance estimates in discriminant 

functions, to the very flexible technique of covariance regularisation. A voiding 

estimation of the :Ek, as occurs when using the SEDF, is shown in Chapter 2 

(and indeed in subsequent chapters) to be a very useful procedure in a number 

of situations. Nevertheless, it is an extreme procedure. As a different approach, 

regularisation of the type devised by Friedman ( 1 989) , and described fully in Chap­

ter 3, allows for intermediate rules between the heteroscedastic and homoscedastic 

models. Furthermore, it allows for intermediate rules between those based on ex­

pression ( 1 .5) which employ covariance estimates, and those nearest-means rules 

which are largely based on the Euclidean distances from an unknown observation to 

the various group means, but perhaps weighted by a scalar based on the covariance 

estimates. Such a compromise is made possible by employing two separate regulari­

sation parameters to obtain estimates of the :Ek. Each is a continuous variable over 

the range [0, 1] . One parameter controls shrinkage of the heteroscedastic estimates, 

Sk , towards the pooled estimate, Sp. The other parameter controls the strength of 

biasing towards a multiple of the identity matrix, I. The identity matrix is used 

by Friedman( 1989) , but there is nothing special about it, and other matrices could 
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be used. 

The selection of these parameters leads to the regularisation model, and train­

ing sample information is used to select values, which, it is hoped, are at least 

approximately optimal in terms of leading to discriminant models with minimal 

error rates. Friedman used the re-sampling technique of cross-validation (see, for 

example, Lachenbruch and Mickey ( 1968) , Lachenbruch ( 1975) )  to obtain estimates 

of the regularisation parameters, since appropriate values to use are unlikely to be 

known in advance. Rayens and Greene ( 1991 )  pointed out that this technique often 

may not yield a unique value, and that in such cases a "tie-breaking" policy must 

be implemented to select one value to use in the model . A Monte Carlo simula­

tion study is described in Chapter 3, and the purpose is to give an indication of 

the effects of this action on the main criterion that is used in this thesis to assess 

the performance of classifiers - the estimated overall error rate. Simulation work 

must be relied upon and the estimated overall error rate used in any comparison 

of the regularised rule with the other discriminant functions, since no analytic re­

sults concerning the distribution of error rates of such regularised rules exist in the 

literature. Even for the QDF, in the case of unequal group means and covariances, 

exact expressions for the conditional probabilities of misclassification have been 

obtained only for the case of p = 1 .  

The regularised rule as devised by Friedman ( 1989) , which we shall term the 

sample regularised discriminant function (SRDF), is not generally scale invariant. 

This is not a desirable characteristic of a discriminant rule and arises through the 

use of the regularisation parameter which allows shrinkage to the identity matrix. 

In Chapter 4 a modification of the SRDF is presented which removes this pa­

rameter but attempts to compensate for the loss by introducing group-conditional 

regularisation parameters controlling shrinkage to the pooled covariance matrix. 

This means that each group covariance matrix is able to be regularised to Sp, to an 

extent that is appropriate for that group rather than biasing all group covariances 

to the same degree. This modified regularisation rule is compared to the SRDF 

and the other more common discrimination rules. It is  found that it performs 

reasonably well, although in the high dimensional settings especially, where the 

covariance estimates suffer from high variance and bias, Friedman's original SRDF 

still proved superior. This shows the importance of the second type of regularisa­

tion towards the identity matrix which shrinks the eigenvalues of the Sk towards 
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equality. The effect is to dampen the variance in the high variance subspace, a 

procedure that clearly seems to appear to enhance discrimination. 

Thus it appears that the eigenvalue shrinkage technique of the regularised rule 

gives this rule the edge in a number of situations over the other rules not employ­

ing the technique (See also Aeberhard et al. ( 1994) ) .  However, it is assumed that 

this advantage would only be apparent when the sample size to dimension ratio is 

small ,  since it is in these situations that most problems involving estimation of the 

population parameters occur. The advantage would be expected to diminish as the 

sample size increases in relation to the dimension. To examine this proposition, a 

further simulation study was undertaken to compare the performances of the other 

previously introduced discriminant rules over a range of sample size to dimension 

ratios for a variety of simulation conditions as in the previous simulation studies . 

This study is also presented and discussed in Chapter 4, and results are presented . 

The goal is to determine if, for a given situation, there comes a point where the 

sample size is sufficiently large relative to the dimension such that the eigenvalue 

shrinkage technique of the regularised rule no longer is advantageous for discrim­

ination. This can be ascertained by comparing the regularised rule to those rules 

without the eigenvalue shrinkage facility. 

In Chapter 5, some of the criticisms of the model selection (i .e. regularisation 

parameter selection) of the SRDF are addressed. In addition to the observation 

made earlier that a unique choice of parameter values may not usually be available, 

Rayens and Greene ( 1991 )  pointed out that often the choice is determined by only 

a small portion of the data available. This phenomenon arises through the use 

of error rates (Le. misclassification probabilities) , empirically obtained from the 

training sample, as the criterion for choosing the regularisation parameters. In 

order to address these potential weaknesses, a different approach to the model 

selection procedure used by Friedman is considered. Friedman used the criterion 

of estimated error rate based on the training data, and employed the empirical 

technique of cross-validation to estimate the error rates. In Chapter 5 ,  a criterion 

of "distance between groups" is employed to gain information from the training 

sample regarding appropriate values of the regularisation parameters. The goal of 

Friedman's model selection procedure is to choose values that lead to the formation 

of a discriminant rule which seeks to allocate unknown or test observations with as 

small an error rate as possible. Therefore, it is a direct approach to use the training 
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sample error rate as the criterion upon which to base the choice of regularisation 

parameters. On the other hand, distance measures are at best indirect indicators of 

the conditional error rate of a discriminant rule. In fact, exact results linking certain 

distance measures to error rate are available only when population parameters are 

known and then usually in terms of bounds on the error rate. Nevertheless, articles 

in the literature suggest some measures of distances between two groups that can 

provide information about appropriate regularisation parameter values to use for 

a given set of data. 

The sample Bhattacharyya distance between two groups with the simplifying 

assumption of normality is a popular measure of similarity (see Fukunaga ( 1972) )  

and is  the distance criterion used here. Under this assumption the expression 

comprises two terms: one which is very similar to the familiar Mahalanobis distance 

which primarily measures the shift in means between the groups, and one which is a 

measure of the covariance shift, and which involves determinants of the covariance 

estimates. Despite the latter term being more seriously affected by bias than the 

former (Fukunaga and Hayes ( 1989) ) ,  it gives an indication of the similarity of the 

group covariances and thus the appropriate degree of regularisation to the pooled 

covariance matrix. Similarly, if the covariance shift term dominates the mean shift 

term in the Bhattacharyya distance expression, it may indicate that eigenvalue 

shrinkage needs to be employed to reduce the variation and bias in the estimates. 

Thus, while the distance measure approach is relatively crude in terms of not 

drawing on established analytical results but rather relying on empirical data and 

empirically derived "rules of thumb" , it does afford advantages over the model 

selection procedure in Friedman's rule. Firstly, all the available training data con­

tributes to selection of the regularisation parameters. Secondly, a unique choice of 

those parameters is obtained, avoiding arbitrary procedures to break ties. Finally, 

re-sampling techniques are avoided, thus leading to a much faster computational 

procedure. The discriminant rule developed is tested in a simulation study against 

Friedman's rule as well as the other rules used throughout this thesis for compar­

ison. It is also extended to the case of three groups. Several case studies are also 

presented with real data sets incorporated as part of the comparative analysis of 

the various rules. 

Most of the work thus far regarding Friedman's regularised rule involves com­

paring its estimated (conditional) error rate with that of other methods. To the best 
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of the author's knowledge, no exact analytic results regarding error rates are avail­

able in the literature which incorporate the effects of the regularisation parameters. 

Houshmand ( 1993) provided exact expressions for computing the probabilities of 

misclassification for the univariate QDF with two groups and known covariance 

matrices. Since the effect of introducing regularisation of the covariance matrix on 

error rate has only been studied via simulation experiments, it is of considerable in­

terest to attempt to describe this effect with analytic expressions. In Chapter 6, the 

exact expressions given by Houshmand for the error rate of the QDF are differen­

tiated with respect to the covariance mixing parameter. The resultant expression, 

after evaluation, provides information on the rate of change of the error rates with 

respect to the regularisation parameters. Thus analytic results can be compared 

with the empirical results obtained. Using the algorithms of Lau ( 1 980) and Narula 

and Desu ( 1981 )  the integrals in the derivative expressions are computed, and the 

derivatives evaluated, for several combinations of population parameters and over 

the range of values of the regularisation parameter. From the limited analytical 

results obtained, confirmation of some results from earlier chapters is made. 

1 .4 NOTATION AND DEFINITIONS 

Some notation that is used throughout this thesis will be established in this section, 

and a few well known results rewritten for convenience since they will be used 

extensively elsewhere in this work. 

Vectors and matrices are written in bold type. The transpose, trace and deter­

minant of a matrix M are denoted by M', tr {M} and IMI respectively, and I is the 

identity matrix. The symbol ¢(.) denotes the standard normal density function, 

given by 

¢(x) = (21r)-1/2exp {_X2 /2} , 
and the integral of ¢(x) from -00 to y is denoted cp(y) , the (cumulative) normal 

distribution function. 

The square of the Mahalanobis distance between two groups or populations fI! 

and fI2 with means /-Li (i = 1 , 2) and common covariance matrix � is 

( 1 .8) 
where /:l is taken to be positive. 
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The maximum likelihood estimates of  the mean and covariance matrix com­

puted from a training sample from group k are 

and 

( 1 .9) 

respectively, where nk is the size of the sample. The estimator tk is biased , so that 

�k is estimated by the usual sample covariance matrix 

( 1 . 10) 

The pooled sample covariance matrix for K samples is 

( 1 . 1 1  ) 

where 
K 

N = L nk. ( 1 . 12 )  
k=l 

The simulation experiments undertaken in this thesis were implemented using 

MATLABTM (The MathWorks, Inc. ( 1992 ) ) .  The built-in random number gener-

ators rand and randn were used to generate the synthetic data for the simulation 

studies in Chapters 2 through 5. 
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Chapter 2 

COMPARISON OF THE LINEAR AND 

EUCLIDEAN DISCRIMINANT 

FUNCTIONS 

2 . 1  INTRODUCTION 

In parametric statistical discriminant analysis, the linear discriminant function 

(LDF) , which is based on assumptions of multivariate normality and equal covari­

ance matrices, is quite popular because of its robustness and simplicity. Clearly, 

there are situations when the LDF is inappropriate and related competitors like the 

quadratic discriminant function (QDF) or the Euclidean distance function (EDF) 

may be used instead; see, for example, McLachlan (1992, Chapters 3 and 5 ) .  In 

this chapter the particular interest is to compare the LDF with the simpler EDF 

via their asymptotic error rate under prescribed conditions. 

In giving the background for this study, it is necessary to revise some related 

literature whose results motivated this study to compare the LDF with the EDF. 

There has been considerable interest in the literature in the relative performances 

of these discriminant functions. These comparisons have usually been based on 

various measures or estimates of error rates (probabilities of misclassifications) since 

direct algebraic evaluations of some of these probabilities for unknown population 

parameters have proved intractable. The main references are summarised below, 
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and these provide comparisons between the EDF and the LDF (and sometimes a 

few additional discriminant functions) under various conditions and assumptions. 

2 .2  LITERATURE REVIEW 

2 .2 . 1  Raudys and Pikelis (1980) 
Raudys and Pikelis ( 1 980) performed a comparative study of four classifiers: the 

sample EDF (SEDF - see expression ( 1 .7) ) ,  the sample LDF (SLDF - see expres­

sion ( 1 . 6) ) ,  the sample QDF (SQDF - see expression ( 1 .5 ) )  and a variant of the 

SLDF for independent measurements (where the off diagonal elements of the pooled 

sample covariance matrix Sp are set to zero) . The performance of each discrimi­

nant function was evaluated when allocating individuals from two spherical normal 

populations. A second aim of their study was to monitor the effects of training 

sample size, n, and dimensionality, p, on error rates. All the classifiers used are 

Bayes procedures for normal populations that differed only in their assumptions 

on the structure of the covariance matrices. The error rates were obtained through 

numerical integration. 

An exact expression for the expected value of the probability of misclassification 

(conditional on the sample size) for the SLDF was derived by Sitgreaves ( 1961 ) .  

This expected conditional error rate is the unconditional error rate for the classifier. 

However, Sitgreaves' expression was found to be computationally impractical and 

was reduced into a form suitable for numerical calculation by Estes ( 1965) in his 

unpublished work. This latter result is used to calculate the unconditional error 

rate for the SLDF in their paper. Also, the expected value of the conditional error 

rates for the SQDF and SEDF were derived in the form of non-closed integrals, and 

solved numerically to estimate the unconditional error rate for the classifiers. The 

unconditional error rate for the SLDF for independent measurements was studied 

by approximate formulae and by simulation. The expected values of the conditional 

error rates for the SLDF and SQDF were evaluated in the case of spherical normal 

populations with �i = I, i = 1 ,  2 .  

The authors (Raudys and Pikelis ( 1980))  also performed a simulation study 

using four sets of data from various populations, and compared the error rate of 

each classifier. A major result of the simulation study was that the SEDF performed 

better than the SLDF when p is large relative to the training sample size, n. In 
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fact ,  over the whole study, the SEDF performed at least as well as the SLDF, even 

for some non-spherical covariance configurations. 

2 .2 .2  Peck and Van Ness ( 1982) 
Peck and Van Ness ( 1982) , noted that one problem with using the SLDF is that 

the unbiased population parameter estimators in high dimensions are often of poor 

quality. This applies particularly to the estimates of the population covariance 

matrix. The problem is often evident even for Gaussian data. A shrinkage estimator 

for the covariance matrix in the SLDF was investigated to try to ascertain its effect 

in addressing this problem. A shrinkage estimator is usually a function of Sp -
1 , 

where Sp is the pooled sample covariance matrix. This function then replaces Sp - 1 
in the SLDF. 

There are a number of shrinkage estimators, including the characteristic roots 

method (Stein ( 1 975) ) ,  the correlation matrix methods (Lin , S. ( 1978) )  and the 

empirical Bayes method (Haff ( 1979, 1980) ) .  Lin, H. ( 1979) compared the three 

approaches via a Monte Carlo study and concluded that for many, but not all co­

variance structures, the characteristic roots method and correlation matrix method 

out-performed the classical estimator used in the standard SLDF. The empirical 

Bayes method improved upon the classical estimator for all covariance structures 

and because of this latter fact, Peck and Van Ness chose the empirical Bayes 

method, where the pooled sample estimate of the (assumed common) population 

covariance matrix is replaced by a function of it (called the Bayes estimator) , 

- 1  (T(U)b) 
B = ( 1  - 7(U)) (2n - p - 3)Sp + tr{Sp} 

I. (2 . 1 )  

Here b is a positive constant, U is a measure o f  disparity among the sample (co­
variance) eigenvalues (it is the geometric mean of the eigenvalues divided by the 

arithmetic mean ) ,  

U _ 
p1Sp 1 1/P 

- tr{Sp} 
, 

the function 7( . )  is a non-decreasing solution to 

(2n - p - 1 )'f2 - 47 + (4U/p)T' < 0 

and 0 � 7(U) � 1 .  Here, it is assumed equal training sample sizes, i.e. nl = n2 = n 

in the two-group case. 
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Peck and van Ness made the assumption that the common group covariance 

matrix, � ,  was a diagonal matrix with all leading diagonal elements equal to some 

constant (72 , so that 
b I 

tr{Sp } 

is a natural estimator of �- l . The quantity b was chosen to be p(2n - 2) - 2, 

so as to yield an unbiased estimate of �-l . Their simulation results showed that 

the discriminant function using shrinkage estimators performed better than the 

standard SLDF in most cases, but this improvement was highly dependent on 

the Mahalanobis distance between the two populations. A further conclusion was 

that if the Euclidean distance between the population means is small then the 

shrinkage estimator is of little use because the effect of poor estimation of the 

population means on the probability of correct classification is more detrimental 

than the effect of poor estimation of the covariance matrix. 

2 .2 .3 Marco, Young and Turner ( 1987) 

A Monte Carlo simulation study by Marco et a1. ( 1987) compared the SLDF and 

SEDF under conditions derived so as to ensure that the two classifiers were ( i)  

equivalent and (ii) non-equivalent. Here "equivalence" means that the classifiers 

have the same true error rates (see Section 2 .2 .4) ,  and arises from a contrived 

arrangement of the population parameters, which are assumed known. 

The results of their simulation study indicated that the SEDF out-performs the 

SLDF when the underlying parameter configurations are such that the SEDF is 

equivalent to the SLDF, assuming all parameters are known. The SEDF appears to 

do as well as the SLDF even for non-equivalent situations. Another feature of their 

results was that when the ratio of the Mahalanobis distance to Euclidean distance 

is small, the SEDF tends to perform better than the SLDF, whereas when the ratio 

is large, the converse is true. Overall ,  the studies by Marco et a1 . showed that the 

SEDF performs as well as or better than the SLDF especially when the Euclidean 

and Mahalanobis distances were similar, and when the dimension of the data is 

large relative to the training sample sizes, and the variables in the data are mildly 

or moderately correlated (positive) . Simulations under conditions of medium to 

high correlation were not performed, but it was stated that the results suggested 

the SEDF would also perform very well in such conditions. 
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An  obvious advantage of the SEDF over the SLDF is its computational sim­

plicity, which may be important with high dimensional data in real-time pattern 

recognition systems. Marco et al. also stated that a further advantage of the SEDF 

is that the SEDF is invariant to correlated training observations whereas the SLDF 

is not. This claim is unsubstantiated, however, and it appears that there is con­

fusion over the type of correlation meant. The comparison is made to the SLDF, 

which is indeed affected by such correlation probably because the assumption of 

independence is not satisfied within the training samples. (See Basu and Odell 

( 1974) , Tubbs ( 1980) , Lawoko and McLachlan ( 1983) and Koolaard and Lawoko 

( 1993) . However, these papers deal with correlation between training observations 

specifically, rather than correlation between measurement variables such as when 

L is as in (2. 15 ) ,  which is the only type of correlation used in the paper by Marco 

et al . 

Comparison of their results with those of Peck and Van Ness ( 1982) show that 

the SEDF performs as well as or better than the SLDF using a shrinkage estimator 

of L .  Exceptions to this include the case when the underlying parameter config­

urations are such that the Mahalanobis distance is considerably larger than the 

Euclidean distance, and the latter is of a small magnitude. 

2 .2 .4 Implications of results from Marco, Young and Turner 

(1987) 

This paper derives conditions under which the LDF and the EDF are "equivalent" 

(i .e . have the same overall error rates for known population parameters) . The 

authors also report results of simulation studies to compare the SLDF and SEDF 

not only under conditions of equivalence but also under certain situations of "non­

equivalence" . 

To be specific, in the two-group case, assuming equal prior probabilities and 

costs of misclassification and common group covariance matrix L ,  it is well known 

that the "true" error rate (i .e. when all population parameters are known) for 

misallocating an object from group 1 to group 2 by the SLDF is the same as the 

error rate for misallocating an object from group 2 to group 1 .  That is, 

L L (-D.) P21 = P12 = <I> 2 ' (2.2) 

where D. is given in expression ( 1 .8) . The corresponding error rates for the SEDF 
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are 

E E ( 1  (IL l - IL2) ' (IL l - IL2 ) ) P2l = P12 = <I> - 2  [ ( IL l - IL2 ) 'L. (IL l - IL2)P/2 . (2 .3) 

Thus the overall error rates for the SLDF and SEDF (to be denoted here by 
pL and PE) are equal to expressions (2 .2) and (2.3) respectively. 

Marco et al . proved the following related results. 

( i )  Let V be a p x p full rank matrix and F any p x 1 matrix with pseudo im·erse 

F+ . If FF+ and V-I commute then 

(ii) If we add the requirement that V be symmetric, then 

[ , -1 ] 1 /2 
_ F'F 

F V F - [F'VFP/2 . 

(2.4) 

(2.5) 

(iii) If we set F = (IL l  - IL2) and V = L. in result (ii) where ( ILl - IL2) and L. 

satisfy the requirements for results (i) and (ii) , then pL = pE. 

The authors argue that in view of result (iii) " . . .  in many practical situations the 

SEDF might perform better than the SLDF since considerably fewer parameters 

must be estimated for the SEDF" . Thus, since " . . .  the performance of the SLDF 

deteriorates significantly as the dimension becomes large relative to the training 

sample sizes, the computationally simpler SEDF may be the preferred discrimi­

nation algorithm in this situation" . In view of this last argument, the authors 

conjectured that "the SEDF may perform as well as the SLDF even for (some) 

'non-equivalent' situations" . The authors then performed a simulation experiment 

for a very special structure of L. and concluded that there were indeed situations 

when the SEDF performed better than the SLDF. They found that the "improve­

ment of the SEDF over the SLDF is highly dependent on the ratio of Mahalanobis 

distance to Euclidean distance" . In particular, "whenever this ratio is small, the 

SEDF tends to out-perform the SLDF, (and) when the ratio is large the reverse is 

true" . 

One possible explanation for the observed relative behaviours of the two dis­

criminant functions follows from Peck and Van Ness ( 1982) , who conjectured that 
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all this is  due to the relative effects of the errors in estimating � to that in es­

timating ILl  and IL2 ' and the relative seriousness of these effects depends on the 

sizes of the Mahalanobis and Euclidean distances; see the original article or Marco 

et al . ( 1 987) for further details and illustrations. Of course, in "non-equivalent" 

situations when the SLDF has a lower (true) error rate than the SEDF, it would 

be anticipated that the SLDF would perform better than the SEDF. 

On the matter of when the SEDF performs better than the SLDF, consider the 

proof of result (iii) in Marco et al . ( 1987) , where, if the conditions for the result 

are satisfied, then 

(ILl - IL2)' (ILl - IL2) = [ (J.L - J.L )'�- l (IL - IL )j 1 /2 (2 .6) 
[ (IL l  - IL2)/� (ILl - IL2)  ] 1 /2 1 2 1 2 . 

By swapping � and �-l  in the above resul t ,  we get the equivalent result that 

where /1E is the Euclidean distance between the two populations. Thus the size 

of the ratio between the distance measures (Euclidean and Mahalanobis) can be 

reduced to an explicit function of the elements of ILl '  IL2 and � .  
Without loss of generality, one can set IL2 = (0, 0, . . .  , 0) , .  Marco et al. (1 987) 

set the values of ILl  = (m, m, . . .  , m) ' under "equivalence" and ILl = (m* , 0, 0, . . .  , 0) ,  

under "non-equivalence" , where m and m* are appropriately chosen scalars so 

that the Mahalanobis distances can be set equal (under equivalence and non­

equivalence) for purposes of comparison. This study concentrates on the "equiv­

alence" situation since it provides fair comparison between the two discriminant 

functions (both being optimal Bayes procedures for known population parameters 

under "equivalence" ) .  Since IL2 = (0, 0, . . .  , 0), and ILl = (m, m, . . .  , m) ' in this 

situation, it follows that /1� = pm2 and 

/1� 
= 

(/1� ) 
/12 /12 

where � = {aij}. 

(2 .8) 

Thus the only factors which determine the size of the ratio of the two distance 

functions in this situation are the elements of the covariance matrix, � .  If, as 

in  Marco et al. ,  standardisation is done and the covariance matrix is effectively a 

correlation matrix, then it follows that in general high positive correlations yield 
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large values of L aij . If there is no standardisation of the observation vectors then 
i ,j 

large (small) variances and/or large positive (negative) correlations would result in 

large (small) values of L aij · 
i,j 

Note that in their discussions Marco et al . ( 1987) refer to the size of the ratio of 

�2 to ��, which is the reciprocal of the ratio in expression (2.8) . In terms of the 

ratio in (2.8) these authors' simulation experiments suggest that: SEDF performs 

better (worse) than SLDF when L ai,j is large (small) . It can be concluded from 
ij 

the arguments above that it is the type and extent of correlations (or covariances) 

among the observations which determine this observed behaviour (see Koolaard 

and Lawoko (1996) ) .  

2 .2 .5  Motivation for the present study 

As mentioned earlier the expansions of the error rates that Raudys and Pikelis 

( 1980) obtained involved numerical integration, which is often a complicated tech­

nique. Furthermore, they only considered the trivial case of equivalence of the 

SLDF and SEDF when � = I. Meanwhile, Marco et al . ( 1987) compared the per­

formances of the SLDF and SEDF through simulations only. Thus it is of interest 

to broaden these comparisons by using expected values of the error rates of each of 

the discriminant classifiers. In this chapter, expectations of asymptotic expansions 

of the conditional (i.e. actual) error rates are obtained for each classifier, and com­

parisons of the performances are made under the same conditions as those used by 

Marco et al. It is of interest to determine if the results and deductions arrived at 

from the asymptotic expansions in this study are consistent with the simulation 

results of the aforementioned authors, which indicated that the simpler SEDF is 

often superior in performance to the SLDF. 

Lim (1992) derived the asymptotic expansions for the conditional error rates of 

the SLDF and SEDF in the case of "nonequivalence" of the two classifiers. Lim 

also derived the asymptotic expansion for the conditional error rate of the SEDF 

under "equivalence" , but was unable to derive the corresponding expansion for the 

SLDF under these conditions, so a proper comparison of the classifiers was not able 

to be achieved. The outstanding expansions are derived in this chapter, enabling 

the comparisons to be made. 
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2.3 ASYMPTOTIC EXPANSIONS 

In this chapter, the asymptotic expected error rates were obtained using Taylor 

series expansions of the conditional error rates and taking expectations over the 

distributions of Xl , X2 and Sp . In particular, if 1£( . ) is a differentiable function 

of parameters (�) , �2 ' . . .  , �s ) , where (�l ' �2 ' . . . , �s ) , are consistent estimators of 

({31 , {32 . . .  , {3s) ,  then the Taylor series expansion (up to order one) of E(ll) (E( . ) 
denoting expectation) about the point (/3) , /32 . . .  , /35 )  can be expressed as 

5 81£ � 

E(ll) � 1£ (/31 , /32 , . . .  , /35)  + L 
-� 

E(/3j - /3j ) 
j= )  8/3j 
1 821£ [ �  � ] 

+ 2 I: 8� 8� . 
E (/3i - /3i ) (/3j - /3j )'  . 

t ,] t J 
(2.9) 

For our expansions 1£ = <II{.) is the standard normal distribution function, and 

�1 ' �2 ' . . . , �s are the elements of Xl , X2 , Sp. The expansions are evaluated at the 

point (J.L1 ' J.L2 ' L) .  
The two asymptotic error rates considered here are (i) the expected error rate 

based on samples of nl from population 1 and n2 from population 2 (This is often 

called the expected actual or unconditional error rate) and (ii) the expected plug­

in error rate. For these error rates, the function 1£ ( .) takes the following forms 

(for misclassification of an object from population 1 to population 2) , where the 

subscript 'A' and 'P' refer to the "actual" and "plug-in" error rates respectively: 

p,SLDF 21(A) 

p,SEDF 21(A) 
p,SLDF 21 (P) 

and p,SEDF 21(P) 

cI> ( [J.L1 - HXl + X2)l'Sp - l (X l  - X2) ) - [(Xl - X2)'Sp - lLSp - 1 (X1 - X2) ) 1/2 ' 
cI> ( _ 

[J.L1 - HX1 + X2) ]' (X 1 - X2) ) 
[ (X l - X2)'L (X1 - X2)) 1/2 ' 

cI>(- � [(Xl - X2)'Sp-1 (Xl - X2 )] 1/2 ) 

-
cI> ( _ � (Xl - X2)' (X1 - X2) ) . 

2 [ (Xl - X2)'Sp(X l  - X2) ] 1/2 

(2. 1 0) 

(2 . 1 1 )  

(2 . 12)  

(2. 13) 

Corresponding probabilities of misclassifying an object from population 2 to 

population 1 are: 

pSLDF 12(A) 

Pl�(f{ 
pSLDF 12(P) 

cI> ( [J.L2 - HX1 + X2)l'Sp - 1 (X1 - X2) ) 
[(X l - X2) 'Sp - lLSp -1 (X1 - X2)) 1/2 ' 

<p ( [J.L2 - HX1 + X2) ]' (X1 - X2) ) 
[ (Xl - X2)'L (X1 - X2) ] 1/2 ' 

cI>( - � [(X1 - X2)'Sp -1 (X1 - X2)P/2 ) 



Chapter 2. Linear and Euclidean Discriminant Functions 

and pSEDF = <p (_� (Xl - X2)'(X l  - X2) ) 
12{P) 2 [(X l  - X2)'Sp (X l  - X2)P/2 . 

22 

The following result by Okamoto ( 1963) was used to obtain the partial derivative 

terms in the expansion: 

If the covariance matrix � is symmetric and invertible , and we let 

�- l 
= {aij } (where {aij }  is a function of aTS (the (r, j ) th element of 

� ) ,  then 

(r :s; s) (2 . 14) 

where ors is the Kronecker delta. 

In a series of papers, McLachlan (1972, 1973, 1974a, 1974b) obtained asymp­

totic expansions of error rates for the SLDF. No such results appear to have been 

obtained for the SEDF. This is partly due to the fact that for the SLDF the function 

1£(. )  can be reduced to a relatively simple function (usually referred to as "canonical 

form" ) through a linear transformation of the observation vector. This simplifies 

the algebra considerably, and makes the final result dependent on only a few param­

eters. Unfortunately, no similar technique can be used for the corresponding 1£(.) 
function for the SEDF. The canonical form that has been traditionally adopted 

(after the transformation) has been ILl = (.6., 0, 0, . . .  , 0)" IL2 = (0, 0, 0, . . .  , 0) '  an'd 

� = I ,  which would not allow us to investigate the distinction between SLDF and 

SEDF, since such a parametric configuration means there is no difference between 

the SLDF and the SEDF. Also, this represents a different parametric configura­

tion to that of the "equivalence" situation of the error rates (see Section 2.2 .4) . 

Hence, such an investigation (as is being planned here) would require that a par­

ticular structure of � be assumed. Consequently each asymptotic expansion takes 

a different form, depending on (i) the assumed structure of �,  (ii) whether the 

expansion is obtained under "equivalence" or "non-equivalence" , (iii) whether the 

expansion is for the SLDF or the SEDF, and also (iv) whether the expansion is for 

the "actual" or "plug-in" error rate. 

The two distinct structures of � that will be considered are: 

1 .  � an (intra-class) equi-correlation matrix (Denoted �A) :  

�A = ( 1 - p)I + pJ, -1  
(--1 � p :S; 1 ) p -
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where I is a p x p identity matrix and J is a p x p matrix of ones. That is, 

1 P P P 
P 1 p P 

�A = P P 1 (2. 1 5) 

p 
p p P 1 

2 .  � exhibiting the auto-correlation structure of an auto-regressive process of 

order 1 (Denoted �B) .  That is, 

1 P p2 pP- I 

P 1 P pP-2 

�B = p2 P 1 (2 . 16) 

P 
pP- I pp-2 P 1 

Asymptotic expansions are obtained under the following conditions: 

1 .  Non-Equivalence of the LDF and EDF 

Asymptotic expansions of the actual error rate and plug-in error rates 'of 

the SLDF and SEDF for the case of non-equivalence under the following 

conditions 

• III = (m* , O, O, . . .  , 0) " 112 = (0, 0, . . .  , 0)' and � = :EA. 

• III = (m* , 0, 0, . . . , 0) " 112 = (0, 0, . . .  , 0), and :E = :EB. 

These expansions have been obtained and reported in Lim ( 1992) . 

2 .  Equivalence of the LDF and EDF 

Asymptotic expansions of the actual and plug-in error rates of the SLDF and 

SEDF for the case of equivalence under the following conditions 

• III = (m, m, . . .  , m)' , JL2 = (0, 0, . . . , 0) ,  and :E = :EA. 

• JLI = (m, m, . . . , m)', 112 = (0, 0, . . .  , 0) ,  and :E = :EB. 
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For these two cases the asymptotic expansions of the plug in error rates for 

both the SEDF and SLDF, as well as the asymptotic expansions of the expected 

actual error rate for the SEDF (but not for the SLDF) , are given in Lim ( 1992) .  

The Taylor Series expansion (up to first order) of  the actual error rate associated 

with the SLDF under "equivalence" conditions is of the form 

pSLDF 
A 

where the quantities �;�J6� are obtained separately for each assumed structure of 

J-L l '  J-L2 and � for any variables 81 and 82 . Here, Sp - 1 = {Sij } , and Srs is the 

(r, S) th element of Sp . Details of the full algebraic expressions of the asymptotic 

expansions, which are the quantities 

02 <J? ( . ) 02 <J? ( • ) 02 <J? ( • ) 
OXliOXlj ' OX2iOX2j 

, OSklOSij , 

are given in Appendix A for each structure of � .  Evaluation of this expansion 

involves taking the expectations of the above expression, yielding the expected 

actual (i .e. unconditional) error rate associated with the SLDF. 

2.4 NUMERICAL EVALUATIONS OF ASYMPTOTIC 

EXPANSIONS 

In addition to comparing the performances of the SLDF and the SEDF via asymp­

totic expansions, simulations are performed to give a further assessment of the 

actual error rates of each classifier. Lim (1992) obtained the expected plug-in 

error rate associated with each classifier, and her results will be incorporated in 

the present discussion. As mentioned previously, the comparison is done under 

similar but more extensive conditions to Marco, Young and Thrner ( 1987) , in or­

der to made direct comparison with their results. Values of m are chosen such 

that the Mahalanobis Distance, .6., is the same in both cases of equivalence and 
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non-equivalence of the SLDF and SEDF. The values of the (squared) Mahalanobis 

distance used are �2 = 0.5 ,  1 .0, 1 .5, 2 .0 and 2 .5 .  The covariance matrices, whether 

they are of the form � = �A or � = �B,  are determined by the parameter p. The 

values of p used are 0.0, 0.2, 0 .4 and 0.65. In some cases for � = �B ' additional 

negative values of p have been used to allow more extensive investigation. The 

negative values of p used are: p = -0.2, -0.4 and -0.65. It was decided not to use 

these negative values when � = �A ' since � will not be positive definite if p is less 

than - l /(p - 1 ) .  For the case of non-equivalence of the SLDF and SEDF (where 

J.Ll = (m* , 0, 0 . . .  0)' and J.L2 = (0, 0, . . .  , 0),) the value of m* is given by 

(2 . 18) 

Meanwhile, for the case of equivalence of the two classifiers (where J.Ll  = (m, m, . . .  , m)' 

and J.L2 = (0, 0,  . . .  , 0) , ) ,  the value of m is given by 

m = { � 2/ L L (lij } . 
j 

(2 . 19) 

For most combinations of values of J.Ll , J.L2 and �, comparison of the SLDF 

and SEDF was carried out using two values of the dimension, namely p = 4 and 

p = 8. The complexity of the expansions meant that numerical evaluation of 

them at larger dimensions was not feasible in practice (surprisingly!) , owing to the 

prohibitive amount of computation time required. The sample sizes nl and n2 from 

populations (or groups) 1 and 2 were taken to be equal at nl = n2 = 50 = n. 
The relative performances of the SLDF and SEDF are compared using three 

criteria: 

1 .  comparisons of the expected actual error rates under conditions of equiva­

lence and non-equivalence. 

2 .  comparisons of the expected plug-in error rates, obtained by Lim ( 1992) , 

under conditions of equivalence and non-equivalence. 

3. comparisons of the estimated actual error rates, obtained via Monte Carlo 

simulation methods, under conditions of equivalence and non-equivalence. 

Since comparison of the classifiers under conditions of equivalent error rates 

is the fair course of action, the discussion will primarily focus on results obtained 

under this scenario. For the purpose of this discussion we will refer to the error rate 

when all parameters are known as the true error rate. The asymptotic expectations 

of the actual error rate and the plug in error rate will be referred to as "the expected 
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actual error rate" and "the expected plug in error rate" respectively. The expected 

actual error rate is also called the unconditional error rate. These various error 

rates will be denoted as follows: 

L E etrue ' etrue true error rates for the SLDF (superscript L) and SEDF 

(superscript E) . 

asymptotic expected actual (i .e. unconditional) error rates. 

asymptotic expected plug-in error rates. 

cross-validation error rates from simulation experiments. 

The tables presented (Tables 2.3 to 2 .5) give the order of magnitudes of various 

expected error rates, and error rates obtained through simulation. The simulation 

results in these tables will be discussed in Section 2 .5 .  The results for the asymp­

totic expansions under the scenarios in Section 2.3 are now discussed separately. 

Non-equivalence situation ( :E  = :EA ) 

Lim ( 1992) derived asymptotic expansions of the actual and plug-in error rates 

- expressions (2. 10) ' (2 . 1 1 ) ,  (2 . 12) and (2. 13) - under the previously defined con­

ditions of non-equivalence of these error rates. A reduced results table for this 

case is presented (Table 2 . 1 ) ' and the main features of the results of the numerical 

evaluation of these expansions are now discussed. 

The expansions appear to be affected by a combination of large p and high 

correlation between variables in this case of :E = :EA. When p = 0.65 and p = 8 the 

value of eE and eE are substantially lower than expected, with eE being particularly 

low. It would not be advisable to use these expansions in this rather extreme 

condition of high intra-class correlation coupled with high dimension. 

It is observed that eL and eE increase as the dimension changes from p = 4 to 

p = 8, but that eL and eE decrease for the same change in dimension. It is well 

known that the plug-in error rate for the SLDF is usually too optimistic, and this 

bias appears to exhibit itself more strongly in the higher dimensional settings. The 

expected plug-in rates eL and eE usually give very poor estimates of eL and eE 

respectively, except for conditions of small p, large f:j. 2 , and p close to zero. The 

quantity eL generally decreases as p increases from 0 to 0.65. This is consistent 

with Cochran (1962) , but is a phenomenon which is not entirely predictable as it 

is likely to be produced by the combined effects of p, p and f:j. 2 , as well as the 
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Table 2 .1 :  The true (etrue ) '  expected actual (e) ,  expected plug-in (e) and mean 
simulated (es ) (with standard deviation) error rates of the SEDF and SLDF under 
the case of "non-equivalence" with � = �A.  

p = 4  p = 8  

e{;.ue eE eE E etrue eE eE 
�2 p efrue eL eL efrue eL eL 
0.5 0.0 .3618 .3784 .3456 .3618 .3996 .3244 

.3618 .3857 .3373 .3618 .3954 .3051 

0.2 .3677 .3823 .3491 .3706 .4075 .3293 
.3618 .3766 .3370 .3618 .3899 .3047 

0.4 .3810 .3847 .3515 .3861 .3891 .3093 
.36 18  .3685 .3360 .3618 .3673 .3036 

2.0 0.0 .2398 .2474 .2328 .2398 .2562 .2240 
.2398 .2277 . 2 19 1  .2398 .2319 .1920 

0.2 .2495 .2566 .2414 .2544 .2714 .2367 
.2398 .2280 .2187 .2397 .2308 .1914 

0.4 .2724 .2754 .2592 .2813 .2861 .2483 
.2398 .2252 .2172 .2397 .2155 . 1897 

accuracy of the asymptotic expansions used in this study, and that of Lim ( 1992) . 

In these conditions, the expected error rate eE tends to be closer to the true error 

t E . th L '  t L ra e etrue '  an e IS 0 etrue ' 

Non-equivalence situation ( �  = �B) 

In  this situation, Lim ( 1992) also derived the appropriate asymptotic expansio·ns 

and the results of evaluating these expansions are now summarised. A table show­

ing some of the results is presented (Table 2.2) .  The missing values in this table 

result from the evaluation of the asymptotic expansion for the LDF going out of 

bounds for the case where p = -0.4 (Lim) . The expected actual error rates eL , 

eE , as well as the expected plug-in error rates eL and eE exhibit more consistent 

behaviour in relation to p, p and /j.2 under these conditions. The expected rates eL 

and eE increase as p increases from p = 4 to P = 8, and also as p becomes closer to 

either 1 or - 1 .  This trend was not apparent when � = �A. A reason for this may 

be that for a given value of p, the correlations between variables in the data when 

� = �A are generally stronger than the corresponding correlations when � = �B. 

The true error rate for the SLDF, errue' remains constant with respect to p and 

p. This is due to the fact that it only depends on the Mahalanobis distance,/j., 
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Table 2 .2 :  The true (etrue ) , expected actual (e) , expected plug-in (e) and mean 
simulated (es ) (with standard deviation ) error rates of the SEDF and SLDF under 
the case of "non-equivalence" with � = �B'  

p = 4 p = 8  

etue eE eE E etrue eE eE 
�2 p et.ue eL eL L etrue eL eL 
0.5 -0.4 .3730 .3886 .3525 .3730 .4207 .3336 

.3618 .3365 .3618 .3043 

0.0 .3618 .3784 .3456 .3618 .3996 .3244 
.3618 .3906 .3373 .3618 .4228 .3051 

0.4 .3730 .3886 .3537 .3730 .4207 .3352 
.3618 .4064 .3365 .3618 .4669 .3043 

2.0 -0.4 .2585 .2661 .2494 .2585 .2799 .2414 
.2398 .2178 .2398 .1908 

0.0 .2398 .2474 .2328 .2398 .2562 .2240 
.2398 .2447 .2191 .2398 .2719 . 1920 

0.4 .2585 .2661 .2499 .2585 .2799 .2420 
.2398 .2733 .2178 .2398 .3414 .1908 

which, under these conditions and for the present structure of ILl , /1-2 and � ,  is 

not affected by p or p. Since eL increases as both p and p increase, this leads to 

the result that eL substantially overestimates efrue for large p and p. On the other 

hand, since both eE and efrue increase as p and p increase, these two error rates are 

generally closer together in magnitude. 

Once again the expected plug-in error rates eE, and particularly eL, are affected 

by bias, and underestimate eL and eE. This is a well known result and is especially 

true for larger dimension (p = 8) and p not close to 0 (either positive or negative) . 

Note that eL substantially decreases, and eE slightly decreases as p increases from 

4 to 8. Generally, eL is a poor estimate of eL, while eE is a better estimate of eE, 
although it too is an underestimate. 

Equivalence situation (� = �A)  

The results for this case are presented in  Table 2.3 .  The true error rate i s  equal 

for SEDF and SLDF for all combinations of parameters, and is only affected by 

� 2 and not p or p. Because eE is higher than efrue for p = 0 and decreases as 

p increases, it is closest to the true value when p = 0.65. For the SLDF, eL also 

decreases slightly as p increases, especially for larger values of �2 , but usually it is 
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as close to etue as eE is to e�ue ' The expected error rate for the SLDF (eL) also 

increases slightly when the dimension increases from 4 to 8, except for those cases 

of small 6.2 and high correlation. 

Overall ,  there is little difference in the performance of the SLDF and SEDF 

under these conditions, although the asymptotic expansion of eL is extremely large 

and complex and hence of doubtful practical use (see Appendix A) . 

Regarding the expected plug-in error rates, both eE and eL underestimate the 

expected actual error rates. The plug-in error rates decrease when the dimension 

increases from p = 4 to P = 8, while eL and eE increase. It is also evident from 

Table 2 .3 that eL more seriously underestimates the expected actual error rate 

than eE, particularly for larger values of p and 6.2. For medium to large separation 

between the populations (6.2 > 1 .0) , eE gives a more accurate estimate of the 

expected actual error rate than eL, especially when p > 4.  On the other hand, for 

small 6.2, there is no difference in performance between eE and eL . 

Equivalence situation ( �  = �B) Positive correlation (p > 0) 

The results for this case are given in Table 2 .4 .  The expected error rates eL and eE 
both decrease only slightly as the correlation strength increases from p = 0 to 0 .65 

under this covariance structure, although eL shows a larger reduction for the highest 

value of p (p = 0.65) . Both expected error rates estimate their corresponding true 

error rate reasonably well .  In particular, eL estimates etue a little better than eE 
estimates e�ue when 6.2 and p are small, whereas the reverse is true when 6.2 is 

larger and p is moderate to high. 

The behaviour of the expected plug-in error rates eL and eE in this case is 

similar to that under the previous covariance structure, where � = �A '  

Equivalence situation ( �  = �B) Negative correlation (p < 0 )  

The results for this case are given in Table 2 .5 .  The expected error rates eL  and 

eE both increase in magnitude as the dimension p increases from 4 to 8 and as 

the correlation p becomes more strongly negative (p decreases from -0.2 to -0.65) . 

In particular, eE increases considerably as p decreases, while eL remains relatively 

stable. Both eL and eE usually overestimate etue and e�ue respectively, but eL is 

much closer to etue than eE is to e�ue ' In fact for p = - .65 and large p, eE can be 

two or three times larger than e[;.ue . 
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Table 2.3: The true (etrue ) ,  expected actual (e) , expected plug-in (e) and mean 
'simulated (es) (with standard deviation) error rates of the SEDF and SLDF under 
the case of "equivalence" with :E = :EA . 

p = 4 p = 8  

E eE eE eE E eE eE eE etrue • etrue 8 
1::12 p efrue eL eL eL 

• efrue eL eL eL 
• 

0.5 0.0 .3618 .3788 .3470 .3820(.062) .3618 .4001 .3261 .4024(.056) 
.3618 .3597 .3373 .3866( .066) .3618 .3695 .3037 .4072( .067) 

0.2 .3618 .3669 .3510 .3704(.049) .3618 .3671 .3425 .3672(.068) 
.3618 .3572 .3378 .3784( .061) .3618 .3624 .3046 .3930( .059) 

0.4 .3618 .3641 .3554 .3574( .056) .3618 .3639 .3524 .3686( .063) 
.3618 .3521 .3381 .3752(.063) .3618 .3498 .3052 .3958( .076) 

0.65 .3618 .3631 .3593 .3656( .054) .3618 .3631 .3586 .3588( .056) 
.3618 .3331 .3384 .3856( .063) .3618 .3051 .3059 .4016(.071) 

1 .0 0.0 .3085 .3205 .2294 .3236(.056) .3085 .3347 .2857 .3284(.054) 
.3085 .3110 .2867 .3240( .057) .3085 .3245 .2562 .3274(.059) 

0.2 .3085 .3125 .3020 .3084( .056) .3085 .3128 .2967 .3266(.054) 
.3085 .3092 .2873 .3180( .056) .3085 .3194 .2574 .3340(.061) 

0.4 .3085 .3107 .3050 .3104( .061) .3085 .3107 .3032 .3132( .054) 
.3085 .3057 .2877 .3252( .059) .3085 .3109 .2580 .3360(.056) 

0.65 .3085 .3101 .3076 .3128(.053) .3085 .3102 .3074 .3102(.054) 
.3085 .2930 .2882 .3212( .060) .3085 .2812 .2590 .3394( .065) 

2.0 0.0 .2398 .2481 .2351 .2542(.053) .2398 .2571 .2268 .2478(.054) 
.2398 .2461 .2196 .2643( .056) .2398 .2633 .1902 .2580(.053) 

0.2 .2398 .2431 .2367 . 2376(.046) .2398 .2434 .2336 .2434(.052) . 
.2398 .2448 .2204 .2462( .052) .2398 .2596 .1917 .2622( .056) 

0.4 .2398 .2420 .2386 .2490( .051) .2398 .2421 .2377 .2504(.060) 
. 2398 .2425 .2209 .2530( .047) . 2398 .2541 .1926 .267 4{ .051) 

0.65 .2398 .2416 .2402 .2376(.053) .2398 .2418 .2403 .2396(.053) 
.2398 .2345 .2214 .2508(.057) .2398 .2355 . 1939 .2638(.065) 

2.5 0.0 .2146 .2219 .21 12 .2172(.053) .2146 .2296 .2043 .2236(.058) 
.2146 .2220 .1951 .2278 (.052) .2146 .2400 . 1661 .2340{.052) 

0.2 .2146 .2178 .2126 .2130(.052) .2146 .2181 .2101 .2142(.054) 
.2146 .2208 .1959 .2200( .058) .2146 .2367 .1677 .2328{.054) 

0.4 .2146 .2168 .2141 .2164(.050) .2146 .2170 .2135 .2174(.054) 
.2146 .2188 .1964 .2274{.054) .2146 .2321 . 1686 .2346(.053) 

0.65 .2146 .2165 .2155 .2132(.050) .2146 .2167 .2156 .2134(.048) 
.2146 .2121 .1970 .2174(.042) .2146 .2164 .1699 .2320(.054) 
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Table 2 . 4 :  The true (etrue ) ,  expected actual (e) , expected plug-in (e) and mean 
simulated (es) (with standard deviation) error rates of the SEDF and SLDF under 
the case of "equivalence" with � = �B and positive p. 

p = 4  p = 8  

E eE eE eE E eE eE eE etrue s etrue 6 
�2 P efrue eL eL eL s efrue eL eL eL s 

0.5 0.0 .3618 .3788 .3470 .3828(.055) .3618 .4001 .3261 .3858( .060) 
.3618 .3597 .3373 .3852( .065) .3618 .3695 .3037 .3936(.063) 

0.2 .3624 .3704 .3495 .3676( .054) .3623 .3806 .3316 .3874(.058) 
.3618 .3583 .3376 .3788 (.061) .3618 .3671 .3042 .3954( .069) 

0.4 .3634 .3673 .3541 .3696(.064) .3636 .3725 .3417 .3616( .054) 
.3618 .3548 .3378 .3812( .065) .3618 .3615 .3044 .3832( .059) 

0.65 .3642 .3659 .3597 .3646( .069) .3660 .3692 .3549 .3750( .057) 
.3618 .3400 .3378 .3786(.066) .3618 .3361 .3046 .3984(.072) 

1 .0 0 .0 .3085 .3205 .2994 .3156( .059) .3085 .3347 .2857 .3364(.052) 
.3085 .3110 .2867 .3136( .057) .3085 .3245 .2562 .3368(.061) 

0.2 .3092 .3153 .3014 .3160( .059) .3092 .3221 .2897 .3182(.064) 
.3085 .3099 .2871 .3238(.058) .3085 .3227 .2567 .3322(.063) 

0.4 .3106 .3139 .3052 .3174(.058) .3109 .3176 .2973 .3184(.051) 
.3085 .3076 .2873 .3280 (.061) .3085 .3189 .2570 .3410( .059) 

0.65 .31 1 7  .3135 .3095 .3162( .054) .3140 .3170 .3079 .3070(.061 )  
.3085 .2980 .2874 .3250 ( .053) .3085 .3022 .2573 .3394(.057) 

2.0 0.0 .2398 .2481 .2351 .2532( .057) .2397 .2571 .2268 .2530( .053) 
.2398 .2461 .2196 .2532( .059) .2397 .2633 . 1902 .2640(.059) 

0.2 .2406 .2453 .2368 .2488(.048) .2405 .2496 .2296 .2528( .050) · 
.2398 .2453 .2200 .2532( .047) .2397 .2619 . 1908 .2640(.054) 

0.4 .2424 .2452 .2400 .2434( .049) .2428 .2479 .2355 .2476( .056) 
.2398 .2439 .2203 .2472(.053) .2398 .2595 .1913 .2684( .059) 

0.65 .2437 .2457 .2433 .2438( .052) .2467 .2495 .2439 .2350(.054) 
.2398 .2381 .2204 .2548(.051) .2398 .2491 .1917 .2618( .055) 

2.5 0.0 .2146 .2219 .2112 .2200(.048) .2146 .2296 .2043 .2384(.054) 
.2146 .2220 .1951 .2262(.052) .2146 .2400 .1661 .2478( .055) 

0.2 .2155 .2198 .2127 .2302(.052) .2154 .2234 .2208 .2148(.052) 
.2146 .2213 .1951 .2358(.058) .2146 .2388 .1667 .2260( .049) 

0.4 .2173 .2201 .2158 .2234( .050) .2178 .2225 .2122 .2368(.050) 
.2146 .2200 . 1959 .2258(.045) .2146 .2367 . 1671 .2430(.055) 

0.65 .2188 .2208 .2189 .2286(.050) .2219 .2246 .2201 .2274(.049) 
.2146 .2153 .1959 .2266( .052) .2146 .2281 .1676 .2384(.059) 
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Table 2 .5 :  The true (etrue ) ' expected actual (e) , expected plug-in (e) and mean 
simulated (es) (with standard deviation) error rates of the SEDF and SLDF under 
the case of "equivalence" with � = �B and with negative p. 

p = 4 p = 8 

ef..ue eE eE eE 
5 ef..ue eE eE eE 

• 
/:12 P L eL eL eL efrue eL eL eL etrue 5 5 

0.5 -0.2 .3626 .3994 .3522 .3878(.065) .3624 .4505 .3400 .4030(.066) 
.3618 .3605 .3367 .3770( .078) .3618 .3709 .3031 .3900( .060) 

-0.4 .3654 .4549 .3841 .4008(.052) .3644 .6034 .4346 .4286( .057) 
.3618 .3614 .3350 .3858( .064) .3618 .3729 .3009 .3986( .067) 

-0.65 .3721 .7889 .6551 .4370(.062) .3706 ** ** .4594(.059) 
.3618 .3643 .3250 .3766(.068) .3618 .3815 .2875 .3932( .068) 

1 .0 -0.2 .3096 .3347 .3034 .3324(.050) .3092 .3686 .2953 .3440(.050) 
.3085 .3118 .2859 .3312( .058) .3085 .3258 .2552 .3318( .060) 

-0.4 .3133 .3636 .3264 .3476(.059) .3119 .4717 .3595 .3632(.060) 
.3085 .3128 .2837 .3192( .057) .3085 .3282 .2524 .3360(.060) 

-0.65 .3222 .6022 .5125 .3948(.061) .3203 ** .9497 .4292(.053) 
.3085 .3167 .2790 .3288( .052) .3085 .3395 .2350 .3266(.058) 

2.0 -0.2 .2411  .2576 .2382 .2516(.056) .2407 .2787 .2332 .2760(.066) 
.2398 .2469 .2186 .2476 (.049) .2398 .2646 .1891 .2700( .062) 

-0.4 .2457 .2844 .2549 . 2756( .054) .2439 .3451 .2751 .31 18( .058) . 
.2398 .2481 .2161 .2470(.055) .2398 .2674 .1856 .2630( .057) 

-0.65 .2570 .4359 .3789 .3254(.054) .2546 .7905 .6548 .3746(.050) 
.2398 .2529 .2011 .2484(.050) .2398 .2814 . 1646 .2614( .056) 

2.5 -0.2 .2160 .2302 .2141 .2264(.051) .2155 .2479 .2099 .2402( .051) 
.2146 .2227 . 1941 .2156(.048) .2146 .2414 . 1648 .2312 (.053) 

-0.4 .2209 .2539 .2291 .2496( .053) .2190 .3046 .2458 .2618(.057) 
.2146 .2240 .1915 .2252( .055) .2146 .2442 .1612 .2350(.059) 

-0.65 .2328 .3848 .3365 .2952(.058) .2302 .6843 .5695 .3564(.060) 
.2146 .2290 .1762 .2226( .052) .2146 .2590 .1394 .2334( .052) 
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In general , when P < 0, the SLDF performs better than the SEDF in terms of 

expected error rate. This is consistent with the Marco et al . ( 1987) theory about the 

relative performance of the two classifiers depending on the ratio of Mahalanobis 

to Euclidean distance. It was noted in Section 2 .2.4 that examination of this ratio 

suggests that negative values of P in �A or �B would result in small values of 

L ai,j · This value is inversely proportional to the ratio referred to in Marco et al . ,  
i ,j 
explaining why the SEDF performs more poorly than the SLDF. 

The plug-in error rate eE increases dramatically (similarly to eE) as p decreases 

to p = -0.65, especially under conditions where the population separation (.0.2) 
is small. Clearly the error rates eE and eE are badly affected by strong negative 

correlation . In comparison, the behaviour of eL and eL are much more stable as Ipi 

increases under these conditions, although the accuracy of eL as an estimate of eL 
also deteriorates for Ipi large (p = -0.65) . 

2 . 5  SIMULATION RESULTS 

A Monte Carlo simulation study was performed to verify and compare the results 

of the asymptotic expansions from the previous section. The values of .0.2 , p, nl , 
n2 , P and :E were fixed to be the same as the values used for the evaluations of 

the expansions. The value of m was obtained using equation (2 . 19) ' and data 

was generated from two multivariate normal distributions with equal covariance 

matrices � (where � = :EA or � = �B) '  and with J-tl = (m, m, . . .  , m) ' and 

J-t2 = (0, 0 ,  . . .  , 0) ' .  

The random samples drawn from each population were of size 50 (i .e ,  n = 

nl = n2 = 50) , and 100 simulations were performed for each combination of pa­

rameters (.0.2 , p, p) . The Fortran 77 computer language was used along with NAG 

( 1983) libraries for the simulation experiments. Sample observations were allocated 

to one of two multivariate normal populations having various mean and variance 

combinations as described in Section 2.3. Allocation was made using each classi­

fier and the error rates for each were assessed using all three estimating techniques 

(bootstrapping, cross-validation, resubstitution) .  Although these various estimates 

of the error rates were obtained from the simulation experiments, previous work 

(e.g. Ganeshanandam and Krzanowksi ( 1990) ) suggest that the cross-validated er­

ror rate is a good and reliable estimate to use. Consequently, the discussions here 
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on simulated error rates (for the various scenarios in Section 2.3) will be based on 

cross-validated error rates only, denoted by ef and e� . Its values are compared 

with the asymptotic expected (unconditional) error rates. 

Equivalence situations (b = bA) 

Increasing the correlation p has very little effect on the simulated error rates (e� 
and ef) . This behaviour is slightly different from that of the evaluated expansions 

of the expected actual error rates for the SLDF, where increasing p decreased the 

error rate of the SLDF, eL (for small b:,.2 and larger p in particular) . The increase 

in simulated error rates e� and ef when the dimension p increases from 4 to 8 is 

slight but consistent over all b:,.2 and p, whereas the results from the asymptotic 

expansions showed the expected (unconditional) error rates were affected differently 

for different combinations of values of b:,. 2 , P and p. When p is zero, or very small 

( Ipl < 0.2) , the asymptotic expansions for SLDF yields similar error rates to the 

simulated values, but as p increases it appears to unduly affect the expansion 

evaluations for the SLDF which yield underestimates of the true error rate. The 

expansion for SEDF always yield similar error rates to those from the simulation 

experiments. In general, under these conditions, the agreement between simulated 

and expected values (from the asymptotic expansions) is better for the SEDF than 

for the SLDF. 

Equivalence situation (b = bB) positive correlation (p > 0) 

Increasing the correlation p from 0 to 0.65 did not appear to have any effect on 

the simulated error rates whereas the expansion of the expected actual error rate 

of the SLDF indicated the error rate decreases especially for high p (p = 0.65) . 

The simulation results confirmed the expansion evaluations of the SEDF error rate 

across all values of p, /).2 and p. However, the asymptotic expansion for the SLDF 

appears to be affected by high correlation, p, leading to values of eL which are 

significantly lower than the true error rate for small b:,. 2 , whereas the values of e� 
are consistently higher than efrue and eL . 

As a general conclusion, agreement between simulated and expected values from 

the asymptotic expansions is better for the SEDF than for the SLDF, although 

the difference is not great and only appears when the group separation is small 

(b:,.2 � 1 ) .  
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Equivalence situation (:E = :EB)  negative correlation (p < 0) 

The SEDF appears to be unduly affected when the correlation p is negative, and 

particularly when p is high and negative. The asymptotic expansion value eE yields 

higher values than the simulated results in general, particularly for �2 � 2 and 

p < -0 . 2 . The simulation results confirmed that the error rate of the SEDF does 

indeed increase as p becomes more strongly negative, but that the error rate of the 

SLDF remained at a similar level for all (negative) values of p. On the other hand, 

eL is much closer to the simulated results, and there is good agreement between 

them. Under these conditions of negative correlation it seems clear that the SLDF 

performs better than the SEDF. 

In summary, each classifier (i.e. SLDF or SEDF) has particular conditions under 

which it performs better than the other, although the SEDF performed better than 

the SLDF under the majority of conditions in this section. The simplicity of use 

of the SEDF, and its overall performance relative to the SLDF make it preferable 

as a rule for discrimination for the kind of conditions studied in this work. 

2 .6 GRAPHICAL DISPLAYS 

It is instructive to demonstate the relative performances of the SLDF and SEDF, 

through a graphical presentation of their error rates as they vary with the mag­

nitude of the square of the Mahalanobis distance l:12 between populations. This 

enables some of the observations made in Sections 2.4 and 2.5 to be more easily 

seen. Define the differences between the estimated and true error rates as: 

(L eL - e�ue = difference between the expected actual error rate and 

true error rate for the SLDF.  

(E eE - efrue = difference between the expected actual error rate and 

the true error rate for the SEDF. 

(f e� - e�ue = difference between the simulated error rate and 

the true error rate for the SLDF. 

(f e� - efrue = difference between the simulated error rate and 

the true error rate for the SEDF. 

Graphical displays of the Absolute Difference from 'Ihte Error Rate (Le. I(L I ,  
I(E I , K: I and 1(:: 1 )  versus the Mahalanobis distance squared (�2) ,  for various levels 
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of correlation (p ( rho) ) among the observations, are presented in Figures 2 . 1  to 

2.6 .  Results for positive autocorrelation structures are presented in Figures 2 . 1  

and 2 .2 (:E = :EA) and Figures 2.3 and 2 .4  (:E = :EB) ,  while results for negative 

autocorrelation between neighbouring observations with :E = :EB are presented in 

Figures 2 .5 and 2.6 .  Since Figures 2 . 1  to 2 .6 show absolute differences between the 

error rates, they hide any bias that an estimator might tend to have. Consequently, 

six corresponding graphs have been provided to illustrate this bias issue: Figures 2 .7  

to 2 . 12 ,  which display values of (L, (E , (f and (t 
It was hypothesised in Marco, Young and Turner ( 1987) that the SEDF performs 

better than the SLDF if the ratio /12 / /1� (Mahalanobis to Euclidean Distance) is 

large. It was also established in Section 2.2 .4 that this condition can be reduced to 

the size of I:a"ij . Since large (positive) p means large L aij , a comparison of the 
ij ij 

plots showing i (LI and I(EI for a given value of p indicates that the expected error 

rates provide support for this conjecture. The plots of (L and (E in Figures 2 .7  to 

2 . 12  also support these results. 

The plots in Figures 2.7 and 2.9 show that for positive correlation, eL usually 

initially underestimates the true error rate (when .6.2 is small) and this estimation 

improves as /12 increases until it overestimates the true error rate for very large 
[).2.  

The plots for the simulated error rates in Figures 2.2 and 2.4 suggest that 
for positive p, I(! I tends to be smaller than I(f / ,  and Figure 2.6 suggests that for 

negative p, the reverse happens. Although it is the absolute values of the simulated 

error rates which are shown in these figures, the graphs of (! and (: are similar 

(Figures 2.8, 2 . 10  and 2 . 1 2) , indicating that the simulated error rates show that 

the SEDF performs better than the SLDF for positive p .  Also, the simulated error 

rates tend to be generally larger than the true error rates, which is to be expected. 

From Figure 2.9, an interesting difference between (L and (E is exhibited. As 

p increases, (E decreases from positive values towards zero, particularly as /12 

increases. Meanwhile, (L increases from negative values, through zero, to positive 

values. Thus eL generally underestimates the true error rate when /12 is small, but 

overestimates it for large values of /12 • 
When we compare the results for :E = 1;A with those for 1; = 1;B we find that 

the corresponding values of /(L / , I(E I ,  I(f /  and /(!I  are quite similar. In fact, it 

can be seen from the orders of magnitude of these differences in error rates that 
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the estimation of the error rates provided by the asymptotic expansions are quite 

reasonable in both situations. This is confirmed by the simulated error rates being 

of similar order of magnitude. It appears however, that when p is negative and 

� 2 is large, the approximation provided by eE is an overestimate. The problem is 

worsened as p increases. Note, however, the simulated error rates are also unusually 

large under this situation (see Figures 2.6 and 2 . 12) .  
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Chapter 3 

REGULARISED DISCRIMINANT 
ANALYSIS 

3 . 1  INTRODUCTION 

50 

Problems associated with estimating the K population (group) covariance matrices, 
�k (1 � k � K) , were mentioned in Chapter 2. In the situation where the sample 
size is small in relation to the dimension, the usual discriminant rules (i .e. sample 
quadratic discriminant function SQDF, and sample linear discriminant function 
SLDF) are both affected by the quality of the sample based estimates of the pop­
ulation parameters, especially the covariance matrix. Friedman ( 1989) considered 
using alternative estimates of the covariance matrix, instead of the usual maximum 
likelihood ones. His regularisation technique (RDF) is described in detail in this 
chapter, since this will be helpful to the reader throughout this and subsequent 
chapters where modifications to the process will be examined and teste4. The 
details of the RDF need to be identified clearly in order to do this. 

The technique is also compared through simulation to the SQDF, SLDF and 
the sample Euclidean distance function (SEDF) . The SEDF was compared to the 
SLDF under limited conditions in Chapter 2, and is included in this chapter since, 
under some circumstances, it can be a viable alternative discriminant rule to the 
commonly used SQDF and SLDF. A modification to Friedman's technique is ex­
plained and used to gain further understanding of the method. 
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3 . 2  PROBLEMS WITH ESTIMATING COVARIANCE 

MATRICES 

The sample quadratic discriminant function (SQDF) requires approximately nor­
mal group conditional densities and reasonably large training sample sizes before it 
can be expected to perform well in discrimination. The sample linear discriminant 
function (SLDF) is more robust to non-normality, and requires less parameter esti­
mation than the SQDF. However, it too can produce poor estimates of the pooled 
between-groups covariance matrix, particularly if the size of the training sample 
from group k, nk , is small in relation to the dimension of the measurement space, 
p. The estimates of the covariance matrices can be highly variable in this situa­
tion, and Friedman ( 1989) showed the effect of this phenomenon on discriminant 
analysis by representing the group covariance matrices in terms of their spectral 
decompositions. That is, :Ek can be represented as 

P 
:Ek = L eikTJikTJ�k ' i= l  

where eik is the ith eigenvalue of :Ek,  and TJik i s  its corresponding eigenvector. The 
inverse may be written as 

The discriminant score in expression ( 1 .3) may then be written as 

It is clear that small eigenvalues will have a large effect on this quantity. Sample­
based estimates (Sk) of :Ek are known to produce biased estimates of the eigen­
values, especially when the size of the training sample used to obtain the estimate 
is small relative to the dimension. It is well known that the smallest eigenvalues 
are biased towards values that are too small, while the largest eigenvalues are bi­
ased towards values that are too large. This bias is even more pronounced when 
the eigenvalues of Sk are similar. When nk < p, the sample covariance matrix is 
singular with rank � nk . Thus the smallest p - nk + 1 eigenvalues of Sk are zero. 
In such a case the sample discriminant score dk(x) , in expression (3.2 ) ,  cannot be 
obtained since the first term of this equation involves division by the eigenvalue 
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estimates. The sample discriminant score may be written as 

A P ( [iJ�k (x - Xk)t ) P 
dk (x) = � eik 

+ � In {eid - 2 ln {7rd , 

where eik is the ith eigenvalue of Sk , and iJik is its corresponding eigenvector. 

52 

(3.2) 

If the sample covariance matrix is nearly singular, the smallest values of eik , (i = 
1 ,  . . .  , p  and 1 :S k :S K) will be close to zero and will inflate the quantity dk (x) . 
The effect of this bias in discriminant analysis is  to exaggerate the importance 
associated with the low-variance subspace which is spanned by those eigenvectors 
corresponding to the smallest eigenvalues. In fact, most of the variation in the 
sample discriminant score is associated with directions of low sample variance in 
the measurement space (Friedman (1989) ) .  

3.3 REGULARISED ESTIMATES OF b k  

One can reduce the variance associated with sample-based estimates of � k  by 
biasing the estimates away from the sample values and towards values that are more 
plausible in practice. Regularisation parameters may be introduced which control 
the amount of biasing, and the sample data can be used to estimate appropriate 
values for these parameters. 

For example, consider the quadratic discriminant rule in expressions ( 1 .4)  and 
( 1 .5 ) ,  where each Sk is replaced by the pooled sample covariance matrix Sp . The 
resulting discriminant rule is the linear discriminant function. This is a more popu':' 
lar rule than the SQDF because of its greater robustness to (i) non-normality in the 
population distributions and (ii) poor estimates of the population parameters. The 
latter advantage of the SLDF over SQDF is enhanced by the decrease in variance 
associated with the estimation of the population covariance matrices. 

A researcher who is applying normal-based classification procedures would nor­
mally test for homogeneity of variance between groups in the first instance. If the 
choice of rules is only between SLDF and SQDF, an initial test of Ho : �l = �2 = 
. . .  = �k = � could be performed. If Ho is rejected then the SQDF would be 
used, otherwise the SLDF may be used. An alternative approach is to introduce 
a regularisation parameter Ct, which regulates the shrinkage of the Sk to Sp. Thus 
Sk in expressions ( 1 .4) and ( 1 .5) is replaced by 

(3.3) 
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where a is determined from the data. Variations of this middle-of-the-road type 

of discriminant function were developed independently by Friedman ( 1989) and 

Greene and Rayens (1989) . The results in these (and related) papers are now 

presented. 

(i) Greene and Rayens ( 1989) 

In their paper, these authors obtained empirical Bayes formulation for esti­

mating the :Ek. That is, assuming that the training data from group k are 

independent observations from Np(J.Lk , :Ek) ,  it follows that (conditioning on 

the :Ek) 

where Wp( . )  denotes the central Wishart distribution with parameter matrix 

:Ek and degrees of freedom (nk - 1 ) .  A conjugate prior distribution for :Ek 

is assumed, which is the inverted Wishart distribution. That is, the :Ek are 

assumed to be mutually independent with 

:Ek rv W;1 ( (w - P - 1 )'l1 ,  w) , 

where W is the matrix of hyperparameters, and w (where w > p+ 1) represents 

the degree of "concentration" of the :Ek around w. In particular, it can be 

established that 

and 

After some algebra and further results, it can be shown that the empirical 

Bayes estimate of :Ek for a given w is 

A h w - p - 1 
:Ek{w) = 

f 1
8k + f 

8p{w) ,  (3.5) 
k + W - P - k + w - p - l 

where fk = nk - 1 .  The unknown parameter w is estimated by either condi­

tionally maximising the marginal likelihood of 81 , 82, • • •  , 8k over w or using a 

method-of-moments type estimator. Details of this non-trivial computational 

task are given in the paper. 
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(ii) Friedman ( 1989) 

Friedman's ( 1989) approach begins with the introduction of a regularisation 

parameter, A, which controls the degree of shrinkage of the individual group 

covariance matrix estimates (Sk) to the pooled estimate (Sp) .  The following 

set of alternatives are obtained, 

(3.6) 

where 
K 
L nk = N. k=l 

The parameter A takes on values 0 � A � 1 ,  and it  is evident that if  tk (A) is 

used in expression (1 .5) in place of Sk , the scenario A = 0 yields the SQDF, 

while the SLDF may be obtained by setting A = 1 in expression (3 .6) .  

Note that expression (3 .6) yields discriminant rules where the only shrinkage 

is to the pooled estimate by varying degrees. This may not provide for suffi­

cient regularisation, especially if the total sample size, N, is small in relation 

to the dimension p. In these cases, even for linear discriminant analysis, the 

number of parameters to be estimated is close to, or less than, the number 

of observations available. Also, biasing the group covariance estimates to the 

pooled covariance matrix may not be appropriate in some situations. 

Friedman ( 1989) ,  therefore, allowed for further regularisation of the sample 

covariance matrix. Thus bk is estimated by 

- _ tr { t d A) } 
bdA, 1') = (1 - 1') bk (A) + l' I 

P 
. (3.7) 

where tr {tk (A) } is the trace of the matrix tk (A) in expression (3.6) , I is 

a p x p identity matrix and l' is the additional parameter which regulates 

shrinkage towards a multiple of the identity matrix (the multiplier simply 

being the average eigenvalue of tk (A) ) .  Shrinking in this way acts counter to 

the bias (described in Section 3.2) which is produced by sample estimation of 

the eigenvalues, by decreasing the larger eigenvalues of tk (A) and increasing 

the smaller ones. 

Friedman proposed that the regularised sample group covariance matrix 

(tk (A, 1')) replace Sk ( 1  � k � K) in the sample quadratic discriminant rule 
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Figure 3 . 1 :  The extreme points on the (A, ,) grid , and what each represents. 

(expressions ( 1 .4) and ( 1 .5) for discriminant analysis. However, as 0 � A, 'Y � 

1 ,  a technique is required to select an appropriate (A, ,) combination for use 

in the model . Friedman employed a technique which selects that combination 

which minimises an estimate of the future error rate (See Section 3.4 below) . 

He termed this procedure regularised discriminant analysis (RDA) . 

RDA provides a rich class of regularisation alternatives. The possible (A, ,) 

combinations may be thought of as lying on a plane with four corners (see 

Figure 3 . 1 ) .  The bottom left vertex (A = 0" = 0) corresponds to the 

SQDF, (A = 1 "  = 0 )  gives the SLDF, ( A  = 1 "  = 1 )  yields a discriminant 

rule based on the minimum Euclidean distance between groups, white (A = 
0, 'Y = 1 )  yields a weighted minimum Euclidean distance rule where the group 

weights are inversely proportional to the average variance of the measurement 

variables in the group, i .e. tr {tk}  /p. If 'Y is fixed at zero and A varied, 

intermediate rules between the SQDF and SLDF are obtained. If A is fixed 

at 1 and 'Y increased from 0, one obtains an analogy to ridge regression for 

linear discriminant analysis. 

(iii) Rayens and Greene ( 1991) 

As a consequence of the ideas in Friedman's article, Rayens and Greene ( 1991 )  

modified their regularisation method to accommodate eigenvalue shrinkage 
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using the regularisation parameter /, as in Friedman's paper. They also pro­

posed an alternative cross-validation approach for estimating the covariance 

mixing parameter A, following a result which arises out of using the Kullback­

Leibler distance measure for discrimination. Extensive use of cross-validation 

makes this also a computationally intensive option. 

3.4 SELECTING REGULARISATION PARAMETER 

VALUES 

Optimal values for the regularisation parameters A and /, are not known in advance 

and Friedman ( 1989) suggested they be estimated from the training data. The se­

lected (A,/,) combination is that which gives rise to the minimum cross-validated 

estimate of the error rate associated with the sample regularised discriminant func­

tion (SRDF) . A grid of points is chosen on the ().,/,) plane (O :s A, /' :s 1)  containing 

typically between 25 and 50 combinations of the regularisation parameters A and 

/'. At each grid-point, the parameter values are used to create the classification 

rule. Cross-validation is used to estimate the misclassification risk of the rule for 

each combination of A and /, for a given set of training data. The point (�, 1') with 

the lowest estimated error rate is used as an estimate of the optimal values of A 

and /, in a given situation. 

This two-parameter optimisation problem would require excessive computation 

were it to be implemented directly. However, Friedman developed updating formu­

lae for the computation of the regularised sample covariance matrix and its .inverse, 

when a single and different observation is successively omitted from the sample (as 

occurs during cross-validation) . 

It should be noted that in his article, Friedman used robust versions of Sk and 

Sp in expressions (3.6) and (3.7) in place of the usual estimate in expression ( 1 . 10) .  

We may write expression (3.6) as 

where 

tk = L WII (XII - Xk) (XII - Xk)' 
C(II)=k 

(3.8) 
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Wk = L Wv 
C(v)=k 

K 
W = L Wk, 

k= l 
and c(v) = k is  the group to which the vth observation (xv) ( 1  :::; v :::; N) belongs. 

Also, Wv is the weight (0 :::; Wv :::; 1) assigned to the vth observation, and if all 

observations are given equal weight, then Wk is the size of the sample from group 

k .  

The updating formula constructed by Friedman ( 1989) applied to the use of 

the robust estimator tk (>', ')') which is defined by using tk (>.) instead of tk (>.) 
in expression (3.7) .  It was shown that if an observation is removed from the kth 

training sample, then tk/v (>' ,  ')') is obtained from tk (>., ')') by subtracting a rank 

one matrix and a multiple of the identity matrix. Here "/v" indicates that the 

vth observation has been removed from calculations. The inverse of tk/ll (>., ')') is 

obtained in a similar way, making use of its spectral decomposition. Despite the 

updating formulae, this is still a computationally intensive process. 

It should be noted that selection of appropriate parameter values is not as 

straight-forward as it may appear. Rayens and Greene ( 1991 )  noted from their 

simulation trials involving the SRDF that the minimum cross-validated estimate 

of the misclassification risk is often constant for a wide range of (>', ')') combinations. 

This may be due to the fact that the error surface is fairly flat over a range of values 

of >. and ')'. Hence the optimal choice (�, i) for the model will often not be uniquely 

determined. This was found to be commonly the case in a simulation study done 

in this project, which is described in Section 3.6. 

Friedman did not address the issue of breaking of ties in the situation of multiple 

minima. However, Rayens and Greene demonstrated it as an issue which needs 

attention since it gives rise to a related phenomenon of concern. That is, some 

situations occur where only a very small proportion of the sample data influences 

the optimal choice of (.x, i) . In such a situation, while most of the observations are 

correctly classified for all (or almost all) points on the (>.,,),) plane, the remaining 

few observations are incorrectly classified for some values of >. or ,)" and hence 

they exclusively determine the minimum cross-validated error rate. In effect, the 

choice of values for the regularisation parameters often depends on only a subset 
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of the available data, and the remainder of the data has no influence, and thus is 

effectively ignored in the model selection process. This occurs especially when the 

groups are fairly well separated. 

Friedman employed a strategy of maximum regularisation in the case of ties, 

where, for all points yielding the minimum error rate on the (>., -y) grid, that point 

(,). , 1') is selected which gives rise to the largest value of -y for the largest value of 

>. . This may not always be the ideal course of action . For example, in Section 4 .3 

the effect of using an alternative rule for the selection of (�, 1') in situations where 

there are ties of this nature is discussed . 

3 . 5  ASSESSMENT O F  THE SRDF 

3 .5 . 1  Comparison of SRDF with other classifiers 

It should be noted at this stage that in all subsequent work in this thesis, we con­

centrate on the regularised discriminant function as defined by Friedman (denoted 

here as SRDF) , or some variants of it. Thus, unless stated otherwise, we do not 

consider any further the work of Greene and Rayens ( 1989) and Rayens and Greene 

( 1991 )  . 
Friedman ( 1989) performed a simulation study to compare the regularised dis­

criminant rule with the linear and quadratic discriminant functions in terms of 

their simulated overall error rates. The simulation conditions represented a wide 

range of situations in terms of the general structures of the group means and covari-­

ance matrices. Some of these conditions were chosen because they were expected 

to be unfavourable to the SRDF in that any regularisation away from the.SQDF 

or SLDF would be detrimental to the discrimination process. On the other hand, 

some conditions were chosen because they were expected to be favourable to regu­

larisation. Friedman ( 1989) considered six conditions for simulation and these are 

listed below. 

In each example the training samples (of size 40) comprised observations ran­

domly generated in equal proportions from three p-dimensional normal popula­

tions where p = 6 , 10 , 20 and 40. The optimisation grid over the (..x, -y) unit square 

consisted of 25 points. Each simulation trial involved the formation of the lin­

ear, quadratic and regularised discriminant rules from the training data. These 

rules were then applied to a test sample of observations (of size 100) which were 
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generated from the same populations as the training samples. The probability of 

misclassification (error rate) for each rule could therefore be estimated from the 

test sample. The average of 100 replications of this simulation trial was obtained. 

The six conditions, defined in terms of the population covariance matrices and 

means, which are also employed extensively in this thesis for purposes of com pari-

son , are: 

1. Equal spherical population covariance matrices. 

A spherical matrix may be thought of as one where all the eigenvalues 

are similar in magnitude. 

2. Unequal, spherical population covariance matrices. 

3. Equal , highly ellipsoidal population covariance matrices with group mean 

differences in the low variance subspace. 

By ellipsoidal it is meant that there is a large difference in magnitude 

between the smallest and largest eigenvalues. This was achieved by 

making the leading diagonal elements of bk highly disparate. 

4. Equal, highly ellipsoidal population covariance matrices with group mean 

differences in the high variance subspace. 

5. Unequal, highly ellipsoidal population covariance matrices with zero 

mean differences. 

6. Unequal, highly ellipsoidal population covariance matrices with non-zero 

mean differences. 

The following is a summary and discussion of the results of the simulation study 

by Friedman ( 1989) comparing the three discriminant functions: SRDF, SQDF 

and SLDF. The reason for repeating many of these results is to establish patterns 

that occur in the behaviour of the SRDF over these varying sets of conditions for 

comparison purposes (later) , and to highlight its superiority over the commonly 

used discriminant rules under these circumstances. 

In all the above simulation conditions, the SRDF-assessed optimum regularisa­

tion parameter values ). and , were concentrated near to what would be expected 

in order to obtain a near-optimum classification rule. Hence the overall conclusion 

of the study was that the SRDF performs much better than the SLDF or SQDF in 

conditions that favoured regularisation of the types available. Further, the SRDF 
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does not lose much in performance to the SLDF or SQDF in conditions where 

either of these latter rules were optimal. The superior performance of the SRDF 

in reducing the error rate in situations where the sample size nk ( 1  � k � K) is 

small relative to the dimensionality (p) was the highlight of the results of the study. 

The minimum cross-validated estimate of the error rate assessed from the train­

ing sample underestimates the (actual) error rate estimate obtained from the test 

sample by about 20%. Such a result is not unexpected since an estimate of the error 

rate obtained from the same training data as is used to construct the discriminant 

rule will always be optimistic. Friedman was surprised to find that there was only 

low correlation between these two error rate estimates, however. The implication 

was that the minimised cross-validated error rate provides an assessment of the 

unconditional error rate of the SRDF rather than its conditional error rate for a 

given set of training data. 

In all simulation conditions where the total training sample size, N, was equal 

to the dimension p, the SRDF proved far superior to the SLDF or SQDF. The 

average assessed value of the regularisation parameter 'Y ranged from 0.45 to 1 .0 .  

This indicates that some shrinkage of the eigenvalues of Sk towards equality en­

hances discrimination, even under conditions where shrinkage of this sort would 

be thought to be counterproductive. This is because when the ratio of nk to p 
becomes small, the effect of this shrinkage is to stabilise the extreme (both small 

and large) eigenvalues in the covariance estimates. 

The case of spherical group covariance matrices (either equal or unequal) suited 

the SRDF. In particular, shrinkage of the eigenvalues towards equality is desirable 

in these situations, and indeed the average (over 100 replications) of the selected 

regularisation parameter values 1, (i.e . .y), was close to 1 .  The SRDF was superior 

to the other rules under these conditions, especially for large p. 
The case of equal but highly ellipsoidal group covariance matrices (with group 

mean differences concentrated in the low variance subspace) ought to have favoured 

the SLDF since any shrinkage away from the point ('x = 1 ,  'Y = 0) would be coun­

terproductive. This is because any use of 'Y would tend to obscure the differences 

in group means since increasing the smaller eigenvalues would increase the variance 

in the low variance subspace. The regularisation parameters for the SRDF have 

average values near this point. When p is very large, .y increases in magnitude, 

and the resulting reduction in variance in the high variance subspace enables the 
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SRDF to out-perform the SLDF, even though such shrinkage introduces bias. 

When the group covariances are unequal and highly ellipsoidal, very little regu­

larisation of either type is desirable since, in the absence of substantial differences 

between group means, the differences in the covariances are heavily relied upon 

to separate the observations into their correct groups. The averages 5. and � are 

close to what is expected (i .e . ). = 0, 'Y = 0) , although the l' values again tend to 

increase for larger p. This enables the SRDF to perform better than the SQDF in 

the larger dimensional settings, and comparable to it when p is small. 

A related problem noted earlier, is that the optimal values (5. and 1') are often 

not unique. The extent of the implications associated with this feature of the SRDF 

will be addressed as they occur in the discussion of the results in the following sec­

tions. The problems are addressed in Chapter 4, when a modification to the model 

selection procedure of the SRDF is implemented. The following sections describe 

various simulation studies which are aimed at further evaluating the SRDF, and 

investigating modifications to the technique. For this purpose it was necessary to 

develop software for its implementation. The software was written in a series of 

subroutines using MATLABTM (1992) ,  to implement the technique as developed by 

Friedman ( 1989) .  
For the studies in this chapter, however, one procedure employed by Friedman 

relating to the practical application of the SRDF was not implemented. The sit­

uation may arise where the estimate Sk or Sp, of a group covariance matrix is 

singular, usually due to the sample size being less than the dimension. To enable 

the inverse of a singular sample covariance matrix to be obtained, Friedman (1989) 
advocated replacing the zero eigenvalues with a small number of sufficient magni­

tude to enable numerically stable inversion. The effect of this would be to produce 

a classification rule based on Euclidean distance in the zero-variance subspace. In 

other words, the variance of the subspace spanned by the eigenvectors correspond­

ing to the zero eigenvalues is effectively ignored in the classification rule. In the 

present study, this manipulation of the eigenvalues was omitted, and samples of 

sufficient size ensured the problem of singularity did not arise. 

The first step in the study was to perform simulations under the same six condi­

tions as Friedman (1989) in order to verify that the implementation of Friedman's 

technique was correct and to establish a correspondence of results. The training 

samples varied in size according to the dimension of the population or group they 
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were sampled from. For p = 6,  samples of size 14 were drawn from each popu­

lation (nk = 14 (1 ::; k ::; K)) ;  for p = 10, nk = 16, and for p = 20, nk = 28. 

These sample sizes are sufficient to avoid singularity yet not so large that all clas­

sifiers perform well because of reduced problems with parameter estimation. In 

all cases there were K = 3 populations, and the optimisation grid of twenty-five 

(A, ,) values was defined by the outer product of A = (0, . 125, .354, .65, 1 .0) and 

, = (0, . 25, .5 ,  . 75, 1 .0) . These were the same values used by Friedman. 

The training sample data was used to construct the various discriminant rules 

(SQDF, SLDF, SEDF and SRDF) . An additional test data set of size 100 was 

generated from the same three populations, in equal proportion, and classified using 

the discriminant rules derived from the training data. The test data was used to 

estimate the misclassification or error rate for each rule, with each classification 

error assigned equal loss, irrespective of its type. One hundred replications of the 

above procedure were made. 

The average error rate of each classifier, with its standard deviation, are given 

in Tables 3 . 1  through 3.6. Note that e!RDF is the minimum cross-validated error 

rate for the SRDF. The average regularisation parameter values are denoted A and 

i· 
The results in Tables 3 . 1  through 3.6 are generally comparable to those of 

Friedman (1989) although the performance of the SLDF and SQDF relative to 

the SRDF was often better because of the larger sample sizes used to enable full 

parameter estimation, which is particularly important for the SQDF. The minimum 

cross-validated error rate estimate underestimated the actual error rate by about 

20% on average over the range of conditions, and by more in the situations where 

the group covariance matrices were unequal. 

The sample Euclidean distance function (SEDF) was included amongst the 

discriminant rules which are being compared owing to its simplicity and good 

performance over against the SLDF in previous studies as discussed in Chapter 2 .  

The SEDF used in this section is  that obtained by using the SRDF model and 

setting the regularisation parameter values A and , both to one. This means that 

:Ek (A,  ,) = 
tr{Sp }  I, for all k (1 ::; k ::; K) 

p 

replaces Sk in expression ( 1 .5 ) .  Although the usual SEDF uses Sk = I, for all k, 
the allocation of a given observation to one group will not be affected. The perfor­

mance of the SEDF in relation to the other discriminant rules is now discussed. 
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Table 3.1 :  Equal Spherical Covariance Matrices. Average error rate (with 
standard deviation ) for several discriminant functions. 

p = 6  p = 10 p = 20 
SRDF . 11  ( .04) . 12  (.04) .12 (.04) 
SLDF . 1 3  ( .04) . 14  (.04) .15 (.04) 
SQDF .24 ( .06) .32 ( .07) .41  ( .07) 
SEDF .11 ( .04) . 1 1  ( .03) . 11  (.03) 

eSRDF 
cv .09 ( .05) .10 ( .04) .10 ( .04) 

-;:SRDF 
A .87 (.29) .85 ( .30) .80 ( .34) 
-;:SRDF . 78 ( .34) .81 ( .26) .81 ( . 24) 'Y 

Table 3.2: Unequal Spherical Covariance Matrices. Average error rate (with 
standard deviation) for several discriminant functions. 

p = 6  p =  10  p =  20 
SRDF .14 (.04) . 18 (.05) . 1 1  ( .04) 
SLDF .18 (.05) .27 (.05) .26 ( .05) 
SQDF .25 ( .06) .48 ( .07) .48 ( .05) 
SEDF .16 (.04) .23 (.04) .21  ( .04)  
eSRDF 

cv .10 (.04) . 14  ( .06) . 10 ( .03) 
;:SRDF 
A .37 (.38) .25 ( .28) .09 ( . 10) 
-;:SRDF .78 (.3 1 )  .86 ( . 21 )  . 90  ( . 19) 'Y 
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Table 3.3: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences in Low Variance Subspace. Average error rate (with standard devi­
ation) for several discriminant functions. 

p = 6  p = 10 p = 20 
SRDF .07 ( .05) . 1 2  ( .04) . 1 5  ( .04 ) 
SLDF .06 ( .03) . 11  ( .04) . 14 ( .04) 
SQDF .14 ( .05) .29 ( .06) .39 ( .06) 
SEDF .24 ( .06) .29 ( .06) .32 ( .05) 
eSRDF 

cv .06 ( .04) . 1 1  ( .04) . 13 ( .04) 
-;:SRDF 
A .87 ( .24) .89 ( . 23) .87 ( . 19) 
-;:SRDF .05 ( . 14) .04 ( . 1 1 )  .04 ( .09) 'Y 

The SEDF gave the lowest average error rate (with smallest standard deviation) 

under conditions of equal and spherical group covariance matrices (Table 3. 1 ) ,  but 

was similar to the SDRF. This is not surprising since in these conditions the opti­

mal value for A and "I is ( 1 , 1 )  since such regularisation would bias the covariance 

estimates towards exactly the correct value. Even when the group covariance ma­

trices are unequal, but spherical (Table 3.2) , the SEDF gives a comparable error 

rate to the SRDF when the dimensionality is small. However as p becomes large, 

the error rate of the SEDF becomes much larger than that of the SRDF. Under 

these simulation conditions the SEDF gives a lower error rate than either the SQDF 

or SLDF. This is consistent with the findings in Chapter 2 regarding the relative 

performance of the SLDF and SEDF for various scenarios involving the ratio of the 

Euclidean to Mahalanobis distance. In these conditions of spherical group covari­

ances the ratio is not small, whereas in those conditions involving highly ellipsoidal 

covariance matrices, the Mahalanobis distance is much larger than the Euclidean 

distance and the SEDF performs worse than the SLDF. 

For the case of equal, highly ellipsoidal group covariance matrices (with group 

mean differences concentrated in the low variance subspace) (Table 3.3) , the SEDF 

performs poorly compared to the SRDF and SLDF. A high degree of shrinkage 

of the covariance matrix eigenvalues to equality is clearly not helpful to the clas­

sification process here since the mean differences may become obscured. When 

the mean differences are concentrated in the high variance subspace (Table 3.4) , 

the three methods, SRDF, SLDF and SEDF perform equally well for p not large. 
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Table 3.4: Equal , Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences in High Variance Subspace. Average error rate (with standard devi­
ation ) for several discriminant functions. 

p = 6  p = 10 p = 20 
SRDF .06 ( .03) . 10 ( .03) . 1 1  ( .03) 
SLDF .07 ( .03) . 1 2  ( .04) . 14 ( .04) 
SQDF . 16 ( .06) .30 ( .08) .42 ( .06) 
SEDF .06 ( .03) . 10 ( .03) . 1 1  ( .03) 

eSRDF cv .04 ( .03) .07 ( .04) . 10 ( .03) 
� SRDF 
A .85 ( .31 )  .86 ( .29) .79 ( .33) 
�SRDF .58 ( .37) .62 ( .33) .67 ( .27) , 

Table 3.5 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. Average error rate (with standard deviation) for several dis­
criminant functions. 

p = 6  p = 10 p = 20 
SRDF .20 ( .06) . 1 2  ( .05) .03 ( .02) 
SLDF .60 ( .06) .59 ( .06) .58 ( .05) 
SQDF . 17  ( .05) . 14 ( .06) . 14 ( .04) 
SEDF .60 ( .06) .59 ( .06) .58 ( .05) 

eSRDF cv . 1 7  ( .06) . 1 1  ( .04) .02 ( .02) 
�SRDF 
A .04 ( .07) .04 ( .06) .04 ( .06) 
�SRDF . 1 2  ( . 15) .25 ( . 16) .35 ( . 18) , 

This suggests that the error rate surface over the (A, ,) plane is very "flat)!' over a 

wide range of values of A and ,. For large dimensional settings, a high degree of 

regularisation with , results in an overall reduction in variance so that the mean 

differences become more apparent. In these conditions, therefore, the SEDF and 

SRDF prove to be the superior methods, especially the SEDF with its maximal 

eigenvalue shrinkage. 

The SEDF does not perform well under conditions of unequal, ellipsoidal group 

covariance matrices (Tables 3.5 and 3.6) since very little of either type of regulari­

sation is appropriate in this case. 
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Table 3.6: Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. Average error rate (with standard deviation) for several 
discriminant functions. 

p = 6  p =  10 p = 20 
SRDF .06 ( .04 ) .06 ( .04) .02 ( .02) 
SLDF . 1 7  ( .05) . 18 ( .04) . 21  ( .04) 
SQDF .04 ( .03) .05 ( .04) .06 ( .04) 
SEDF . 16 ( .04) . 1 7  ( .04) . 1 7  ( .04) 

eSRDF cv .04 ( .03) .03 ( .03) .01 ( .01 )  
-;; SRDF 
A . 10 ( .20) . 10 ( . 14) .07 ( .06) 
-;; SRDF . 19  ( .27) .29 ( .22) .35 ( . 19) , 

3.5 .2 Simulations for groups with small mean differences 

Most of the simulations performed by Friedman involved parameter settings where 

the mean differences between groups were quite large. It is of interest to examine 

the behaviour of the model selection process of the SRDF (i .e. the process which 

selects the regularisation parameters A and ,) when the differences between group 

means is much smaller than before. This may indicate whether a greater or lesser 

degree of reguiarisation is generally required when the mean differences between 

groups decrease, and the conditions for discrimination become more difficult. In 

this section, a simulation study is performed under the same group covariance 

structures as in Subsection 3.5 . 1 ,  but the Euclidean distance between each pair of 

population means is reduced by approximately 75 %. The average Mahalanobis 

distance between pairs of populations is reduced by a similar amount for most of 

the simulation conditions. For condition 6 (Table 3 . 1 1 ) ,  the reduction in average 

Mahalanobis distance between pairs of populations is nearly 90 % through the 

smaller population mean differences used. Average parameter values (with stan­

dard deviations) for all conditions are given in Tables 3.7 to 3 . 1 1  for the case of 

smaller group mean differences. In the following discussion, a comparison is made 

between the simulation results in Subsection 3.5. 1 ,  and the results obtained under 

the same conditions except for smaller group mean differences, with emphasis on 

the average values of � and l' (Le. � and �) . 
Overall, the relative performance of the various classification rules ( in terms of 

their error rate estimates) is not changed by closer group means, but obviously the 
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Table 3.7: Equal Spherical Covariance Matrices. Average regularisation pa­
rameter values (with standard deviation) in the case of smaller mean differences 
than in Table 3 . 1 .  

p = 6  
-;:SRDF 
A .69 ( .39) 
-;:SRDF 
"( .69 ( .35) 

p =  10 

.73 ( .35) 

.65 ( .37) 

p =  20 

.70 ( .37) 

.67 ( .33) 

Table 3 .8 :  Unequal Spherical Covariance Matrices. Average regularisation 
parameter values (with standard deviation) in the case of smaller mean differences 
than in Table 3.2. 

p = 6  
;;SRDF 
A . 26 ( .30) 
;; SRDF 
"( .73 ( .32) 

p = 10 

. 12 ( . 14 )  
.84  ( .22) 

p =  20 

.05 ( .08) 

.89 ( . 16) 

error rates of the rules increase substantially and to a different extent depending 

on the parameter settings. Higher average error rates are coupled with increases 

in the variance of the error rate estimates (approximately 20% higher with closer 

group means) . 

In the situation where the group covariance matrices are equal and spherical : 

the average selected A and i' values are slightly lower since in general the informa­

tion from the covariance estimates is more necessary for discrimination purposes 

than when the group means are well separated, and hence less regularisation is 

appropriate. 

Under conditions of unequal, spherical group covariance matrices the average 

Table 3.9: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences in Low Variance Subspace. Average regularisation parameter values 
(with standard deviation) in the case of smaller mean differences than in Table 3.3. 

p = 6  
;; SRDF 
A . 75 ( .32) 
-;:SRDF 
"( .01 ( .04) 

p =  10 

.81  ( .26) 

.06 ( . 16) 

p = 20 

. 73 ( .29) 

.09 ( .22) 
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Table 3 . 10 : Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences in High Variance Subspace. Average regularisation parameter 
values (with standard deviation) in the case of smaller mean differences than in 
Table 3.4. 

p = 6  
�SRDF 
A .75 ( .36) 
�SRDF 'Y .56 ( .34) 

p =  10 

.78 ( .32) 

.61 ( .33) 

p =  20 

.55 ( .35) 

. 65 ( .29) 

Table 3 . 1 1 :  Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. Average regularisation parameter values (with standard 
deviation ) in the case of smaller mean differences than in Table 3.6. 

p = 6  
� SRDF 
A .03 ( . 07) 
�SRDF 
'Y . 13 ( . 18) 

p = 10 

.05 ( .07) 

. 28 ( . 17) 

p =  20 

.05 ( .06) 

.31 ( . 19) 

selected >' value is reduced with higher dimensionality and small separation between 

groups. This is to be expected since regularisation of the covariance estimates to 

commonality is likely to be more detrimental to the classification process if group 

mean differences are small. The value of 1- under those conditions remains very 

high despite the separation between the groups becoming small. This indicates 

that those conditions are ideal for eigenvalue shrinkage. 

The best two classifiers under conditions of equal, highly ellipsoidal group co­

variance matrices (with group mean differences concentrated in the low variance 

subspace) are the SLDF and SRDF. When the groups are close together, the av­

erage >. value for the SRDF is still close to one which is the optimal value, but is 

again slightly reduced because of the need to retain covariance information for the 

classification process. The value of � is not affected by smaller mean differences 

and remains very close to zero. 

In summary, the SRDF is still generally superior to the other techniques in 

terms of assessed error rate even for very small separation between group means. 

The values of >. and � are not greatly affected by closer group means, but any effect 

that is present is towards less regularisation. This is so that more information may 

be retained from the group covariance estimates in order to enhance classification 
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under difficult discrimination conditions. 

3 . 6  FURTHER MODEL SELECTION CONSIDERATIONS 

FOR THE SRDF: BREAKING OF TIES 

In Section 3 .4  it was pointed out that often the choice of (). , i) for the sample 

regularised discriminant function (SRDF) is not uniquely determined. If the cross­

validated error rate of the SRDF over the (,x ,  ,) plane is thought of as a response 

surface, then it is often the case that the surface is very fiat in the neighbourhood of 

its minimum. Thus, there is a range of (,x ,  ,) combinations that result in the same 

or very similar minimum cross-validated error rate being obtained. Consequently, 

a decision must be made as to how to break the tie and choose a particular (). , i) 
combination to use in the model. 

It is of interest to study the effect of a different procedure than that employed 

by Friedman ( 1989) for selecting ). and i in these tied situations. Friedman's 

approach was one of maximum regularisation: choosing the largest i value for the 

largest ). among those combinations with the minimum cross-validated error rate. 

Rayens and Greene ( 1989) showed the importance of any specific procedure used 

to break ties by giving an example where the minimum cross-validated error rate 

occurs at more than one-third of the points on the (\ ,) grid. They noted that 

in this case if the ties were broken by taking the largest ,x value for the largest i 
value, a completely different grid point would have been selected. The results of 

a simulation study are reported in this section, which (again) involved performing 

100 replications in identical settings to those described in Section 3.5,  and under 

the same sets of conditions. The difference here is that a policy of minimum 

regularisation for the SRDF is employed in those cases where the minimum cross­

validated error rate is not uniquely determined. Thus, if there are more than one 

(5. , 1') combinations associated with the minimum cross-validated training sample 

error rate, the point chosen is that which has the smallest values of i for the 

smallest ). . The classification rule which employs this tie-breaking procedure will 

be denoted as SRDF1,  which represents "minimum regularisation" as opposed to 

Friedman's "maximum regularisation" option. Results are given in Tables 3 . 12  to 

3. 1 7, where the average error rates and average regularisation parameter values are 

given for various dimensions. 
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Table 3 . 1 2 : Equal Spherical Covariance Matrices. Comparison of SRDF and 
SRDF1 error rates and regularisation parameter values. 

p = 6  p = 10 p =  20 
SRDF1 .12 ( .03) . 14 ( .04) . 1 2 ( .03) 
SRDF . 1 1  ( .04) .12 ( .04) . 12 ( .04) 

eRDFl 
cv .09 ( .05) . 1 0  ( .05) . 10( .04) 

;: SRDFI 
A . 1 5  ( .26) .20 ( .33) . 24 ( .33) 
;:SRDFI .67 ( .32) .69 ( .30) .80( .25) , 
eSRDF 

cv .09 ( .05) . 10 ( .04) . 1 0  ( .04) 
;: SRDF 
A .87 ( .29) .85 ( .30) .80 ( .34) 
;:SRDF 

. 78 ( .34) .81 ( .26) .81  ( . 24) , 

The first and major finding from this study which compares SRDFI with the 

SRDF (see Tables 3 . 12  to 3. 17) ,  is that whether minimum or maximum regularisa­

tion is used to break ties does not matter greatly in most of the parameter settings 

considered, even though the assessed values A and, to a lesser extent 1', are quite 

different. It also indicates the degree of homogeneity in the error rate response 

surface over the (). , 1') plane. This homogeneity is greater with respect to the co­

variance mixing parameter A, while the error rate surface is clearly more sensitive 

to the parameter 'Y. 
Examining Table 3 . 12 ,  for example, it can be seen that when the group covari­

ance matrices are all equal and spherical, the error rate for SRDF1 is only slightly 
- -

greater than that for the SRDF, even though ). is much smaller. For SRDFl,  ). is 

close to zero while for SRDF it is close to one, even though the optimal parameter 

configuration is A = , = 1 .  The value of l' is only slightly lower for SRDFl,  indicat­

ing that substantial shrinkage of the eigenvalues is important for classifying under 

these conditions. The standard deviation of the sample based ). and l' estimates 

are similar for both rules, and its large size (in general) is further evidence that the 

cross-validated error rate response surface is quite fiat at its minimum. 

SRDF1 might be expected to give a better error rate than the SRDF if the 

group covariances are unequal but spherical (Table 3 . 13) ,  since a low value of 

A is desirable. In fact the difference is only slight and only occurs in the high 

dimensional settings. For SRDF1, ). is very close to the optimal value of zero, and 
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Table 3. 13 :  Unequal Spherical Covariance Matrices. Comparison of SRDF 
and SRDF1 error rates and regularisation parameter values. 

p = 6  p = 10 P = 20 
SRDF1 . 18 ( .05) . 16 ( .04) . 1 1  ( .03) 
SRDF . 1 4  ( .04) . 1 8  ( .05) . 1 1  ( .04) 

eRDFl cv . 1 5  ( .06) . 14 ( .05) . 10  ( .03) 
;; SRDFI 
). . 10 ( . 18) .06 ( .09) .03 ( .06) 
;; SRDFI 

.71 ( .30) .84 ( . 22) .90 ( . 14 )  'Y 
eSRDF cv . 10 ( .04) . 14 ( .06) . 10 ( .03) 
;; SRDF 
). .37 ( .38) .25 ( .28) .09 ( . 1 0) 
;;SRDF .78 ( .3 1 )  .86 ( . 2 1 )  .90 ( . 19) 'Y 

Table 3 . 14 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences in Low Variance Subspace. Comparison of SRDF and SRDF1 
error rates and regularisation parameter values. 

p = 6  p = 10  p =  20 
SRDF1 .08 ( .04) . 1 3  ( .05) . 16 ( .04) 
SRDF .07 ( .05) . 1 2  ( .04) . 1 5  ( .04 ) 

eRDFl cv .05 ( .03) . 1 1  ( .05) . 14 ( .04) 
;;SRDFI 
). Al ( .28) . 56 ( .30) .73 ( .27) 
;;SRDFI .02 ( .07) .03 ( . l l )  .02 ( .07) 'Y 

eSRDF cv .06 ( .04) . 1 1  ( .04) . 1 3  ( .04) 
;;SRDF 
). .87 ( .24) .89 ( .23) .87 ( . 19 )  
;;SRDF .05 ( . 14 )  .04 ( . 1 1 )  .04 ( .09) 'Y 
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Table 3 . 15 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences in High Variance Subspace. Comparison of SRDF and SRDF1 
error rates and regularisation parameter values. 

p = 6  p = 10 P = 20 
SRDF1 .07 ( .03) . 10 ( .03) . 1 1  ( .03) 
SRDF .06 ( .03) . 10 ( .03) . 1 1  ( .03) 

eRDFl cv .04 (03) .08 ( .04) .09 ( .03) 
-;:: SRDFI ,\ . 1 5  ( . 25) . 26 ( .32) .32 ( .34) 
;:: SRDFI .50 ( .35) .55 ( .26) .67 ( . 27) 'Y 
eSRDF cv .04 ( .03) .07 ( .04) . 1 0  ( .03) 
;:: SRDF ,\ . 85 ( .31)  .86 ( . 29) .79 ( .33) 
-;:: SRDF .58 ( .37) .62 ( .33) .67 ( .27) 'Y 

Table 3 . 16 : Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. Comparison of SRDF and SRDF1 error rates and regularisa­
tion parameter values. 

p = 6  p = 10 p =  20 
SRDF1 .18 ( .06) . 1 1  ( .04) .03 ( .02) 
SRDF .20 ( .06) . 1 2  ( .05) .03 ( .02) 

eRDFl cv . 18  ( .06) .09 ( .04) .02 ( .01)  
-;:: SRDFI ,\ .01 ( .04) .01 ( .04) .02 ( .05) 
-;:: SRDFI . 10  ( . 14) .26 ( . 15) .26 ( . 15) 'Y 

eSRDF cv . 17  ( .06) . 1 1  ( .04) .02 ( .02) 
-;:: SRDF ,\ .04 ( .07) .04 ( .06) .04 ( .06) 
-;:: SRDF . 12 ( . 15) .25 ( . 16) .35 ( . 18) 'Y 
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Table 3 . 17: Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. Comparison of SRDF and SRDF1 error rates and reg­
ularisation parameter values. 

p = 6  p = 10 P = 20 
SRDF1 .05 ( .02) . 05 ( .04) .01 ( . 0 1 )  
SRDF .06 ( .04) .06 ( .04) .02 ( . 02) 

eRDF1 cv .04 ( .03) .03 ( .02) .01 ( . 0 1 )  
-;:: SRDFI 
A .01 ( .03) .02 ( .04) .00 ( .00) 
-;:: SRDFI . 1 0  ( . 13) .22 ( . 15 ) .27 ( .09) , 

eSRDF cv .04 ( .03) .03 ( .03) .01  ( . 0 1 )  
-;:: SRDF 
A . 1 0  ( .20) . 1 0  ( . 1 4) .07 ( .06) 
-;:: SRDF . 19 ( . 27) .29 ( .22) .35 ( . 19) , 

its standard deviation is very small. The values of -r for both SRDF1 and the SRDF 

are very similar in magnitude, indicating that a certain level of :Y is necessary in 

this case. 

In the cases of equal but highly ellipsoidal group covariances (Tables 3 . 14  and 

3 . 1 5) ,  altering the procedure for the breaking of ties has little effect in terms of error 

rates. The minimum level of the cross-validated error rate response surface on the 

(A ,  ,) plane occurs over a wide range of 5., but a much narrower range of :Y values, 

again indicating that eigenvalue shrinkage is more critical for classification purposes 

under these conditions, since the error rate is very sensitive to the parameter , . . 
Error rates are slightly lower for the SRDF1 than for the SRDF under simulation 

conditions where the group covariance matrices are highly ellipsoidal and dissimilar. 

In the situation of equal group means (Table 3 . 16) ,  both 5. and -r are very close to 

zero for both the SRDF and SRDFl, although -r increases for larger p. This shows 

that the minimum error rate would usually occur in a very small region of the (>', ,) 
plane, situated near the vertex A = , = 0, which is the optimum combination for 

this parameter configuration. 

Conditions for discrimination are usually improved by having non-zero differ­

ences between group means (Table 3 . 17) .  The SRDF1 performs better than the 

SRDF here because the distribution of 5. for SRDF1 has a mean (5.) closer to the 

desirable value of zero. Its standard deviation is also smaller, indicating a greater 

consistency of low 5. values selected. The distribution of :Y also has a lower standard 
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deviation for SRDFl.  

In conclusion therefore, modifications to the way in which the SRDF breaks 

ties in the selection of regularisation parameter values � and i' cannot be said to 

significantly change its error rate. Under most of the conditions looked at, the 

error rates with and without the modification were quite similar, although some 

parameter configuration settings favoured the lesser degree of regularisation offered 

by SRDFl , while others favoured more regularisation. Thus the issue of how the 

SRDF should break ties in the minimum cross-validated error rate is not a crucial 

one in terms of affecting the error rate of the discriminant rule for most of the 

conditions trialled . Also, of the two regularisation parameters, the choice of � is 

less crucial and less precise, than the choice of 1'. 



'Chapter 4 

INVARIANCE AND SAMPLE S IZE 
CONSIDERATIONS FOR THE 

SAMPLE REGULARISED 
DISCRIMINANT FUNCTION 

4 . 1  INTRODUCTION 

75 

Friedman ( 1989) noted �hat the regularised discriminant function is not generally 

scale invariant. The reason for this relates to the presence of the eigenvalue shrink­

age parameter T. Changing the relative scales of the measurement variables, or 

their linear combinations, will usually alter the eigenvalues of the sample covari­

ance matrix and change the classification rule and results. In particular, if T = 0, 

the SRDF is scale invariant. Since scale invariance is often regarded as an im­

portant characteristic of discriminant functions, it is of considerable interest to 

investigate whether a similar level of discriminatory success can be achieved with a 

modification of the regularisation rule. A modification to the SRDF is introduced 

in Sections 4 .2  and 4.3, and is compared with the original SRDF. 

A further study is implemented in this chapter to investigate the effect of sample 

size on the various classifiers. From the studies in the previous chapter, plus other 

published results (see, for example, Aeberhard et al. ( 1994) ) ,  it was found that the 

SRDF is at least equal to but usually superior to the other classification rules under 

a fairly wide range of situations. The conditions under which these studies have 

been implemented involved reasonably small sample sizes compared to dimension, 

p. This simulation study is undertaken using a range of larger sample sizes (in 

relation to p) in an attempt to determine if regularisation - and in particular the 
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eigenvalue shrinkage feature of the SRDF - loses its advantage over the common 

discriminant rules once the sample size becomes sufficiently larger than p. 

4.2 INVARIANCE 

In order to achieve a classification rule possessing scale invariance, the effect of 

removing the eigenvalue shrinkage parameter I from the model is examined. How­

ever, if one simply removed I from the SRDF model , the resulting discriminant 

rule would allow for a reduced set of regularised models between the SQDF and 

the SLDF only, as defined in expression (3.6) . It was mentioned there that this set 

of alternatives is rather restrictive. Further, the resulting model may not provide 

appropriate regularisation if the group covariance matrices are of quite a different 

nature. In such a situation, it is plausible that some improvement could be made 

if each covariance matrix were independently regularised to the pooled estimate 

by an appropriate degree, which would be estimated from the training data. Us­

ing such shrinkage could overcome, to some extent, the problem of inappropriate 

regularisation , as the model would be more sensitive to variations in the "shape" 

among the various populations. 

In the single parameter regularisation model of equation ( 3 .6) , it may occur that 

in the selection of A, a large proportion of the training observations misclassified 

by cross-validation come from one group. This may be in part due to the shrink­

age employed being inappropriate for that group but appropriate for the others. 

The following model is proposed to obtain separate regularised group covariance 

estimates: 

(4. 1 )  

where k = 1 ,  . . .  , K groups, and Sp is the pooled covariance matrix. 

The K regularisation parameters Ak control the degree of shrinkage of the indi­

vidual group covariance matrix estimates towards the pooled estimate. The value 

Ak = 0 gives :Ek (Ak) = Sk and Ak = 1 yields :Ek (Ak) = Sp. Each Ak is ob­

tained by minimising the group conditional cross-validated error rate over the 

range 0 ::; Ak ::; 1, k = 1, . . .  , K. Each Sk in expression (1 .5) is replaced by 

:Ek (Ak) for discriminant analysis. This approach will be denoted SRDF-Modified 

(or SRDF-M) .  To demonstrate that the SRDF-M rule is invariant under a linear 
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scale transformation, let 

be the discriminant score for observation x in group 1 (0 � Al  � 1 ) . Similarly, let 

be the score for observation x in group 2, for A2 (0 � A2 � 1 ) not necessarily 

equal to ) '1 '  Given a symmetric non-singular matrix A, one can form a linear 

transformation y = Ax and it can be shown that 

and 

Thus the transformed discriminant scores for all the K groups only differ from 

the untransformed scores by the addition 'of a constant (21n IA I ) , and hence the 

discriminant rule is not affected by the transformation. The following section will 

report on a simulation study to investigate the relative performance of the scale 

invariant SRDF-M compared with the SRDF and other classification rules. 

4.3 ASSESSING THE PERFORMANCE OF THE 

MODIFIED REGULARISED DISCRIMINANT 

FUNCTION (SRDF-M) 

4.3 . 1  The performance of SRDF-M when the population 

shapes are similar 

A Monte Carlo simulation study was performed under the same conditions (defined 

by the various population parameter configurations) and sample sizes as in the 

previous chapter (See Sections 3.5 and 3.6) . Results for the SRDF-M rule are 

presented in Tables 4. 1 to 4.6, along with the error rates of the other discriminant 

rules. These are repeated from tables given in Chapter 3, thus allowing comparison 

with the other classification rules. 
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Table 4 . 1 :  Equal Spherical Covariance Matrices . Average error rate (with 
standard deviation) and parameter values for several discriminant functions. 

Dimension p 
6 10 20 

SRDF . 1 1  ( .04) . 1 2  ( .04) . 1 2  ( .04) 
SRDF-M . 14 ( .04) . 1 7  ( .05) . 1 6  ( .04) 

SLDF . 1 3  ( .04) . 1 6  ( .05) . 1 5  ( .04) 
SQDF .23 ( .05) .39 ( .07) .42 ( .05) 
SEDF . 1 1  ( .03) . 1 2  ( .04) . 1 2  ( .03) 
eSRDF cv .09 ( .05) . 1 0  ( .04) . 1 0  ( .04) 
-;:SRDF 
A .87 ( .29) .85 ( .30) .80 ( .34) 
-;:SRDF 

.78 ( .34) .81 ( .26) .81  ( .24) , 
eSRDF-M 
cV( l ) . 1 7 ( .08) . 1 7  ( .09) .21  ( .09) 

eSRDF-M cv(2) .09 ( .07) . 1 2  ( .07) . 1 3  ( .07) 
eSRDF-M cv(3) . 09 ( .07) . 1 0  ( .07) . 1 2  ( .06) 
-;:SRDF-M 
Al . 79 (.35) .�1 ( .28) .84 ( .26) 
-;:SRDF-M 
A2 .91 ( .25) .93 ( . 19) .90 ( . 2 1 )  
-;:SRDF-M 
A3 .92 ( .2 1 )  .87 ( .25) .83 ( .25) 

It is evident from the results in these tables that having the option to use the 

regularisation parameter , to shrink the covariance matrix eigenvalues to equality 

undoubtedly enhances discrimination in many situations, and not only when the 

populations are spherical. This type of shrinkage reduces the variance, which, de­

spite the introduced bias, is beneficial for discrimination purposes especially in the 

high dimensional setting. This extra variance-reduction factor probably explains 

why the minimum cross-validated error rate for SRDF-M sometimes underesti­

mates the actual error rate by a greater degree than for the SRDF, especially for 

large dimensions (p) . The magnitude of the minimum cross-validated error rate 

over the whole training sample for SRDF-M is at a comparable level to those for 

the SRDF, and it is the actual error rate which is usually higher for SRDF-M.  

When the group covariances are spherical and set to  be equal, SRDF-M yielded 

error rate estimates of between 30% and 40% higher than the SRDF (Table 4 . 1 ) .  

Under these conditions, eigenvalue shrinkage (to equality) clearly enhances dis­

crimination, as evidenced by the fact that the SEDF performs well. The mean 
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Table 4 .2 :  Unequal Spherical Covariance Matrices. Average error rate (with 
standard deviation) and parameter values for several discriminant functions. 

Dimension p 
6 10 20 

SRDF . 1 4  ( .04) . 18 ( . 05) . 1 1  ( .04) 
SRDF-M .24 ( .07) .28 ( .08) .28 ( .08) 

SLDF .23 ( .06) .26 ( .05) .26 ( .05) 
SQDF .32 ( .06) ,

,
44 ( .07) .48 ( .05) 

SEDF .20 ( .04) .22 ( .05) .21 ( .04) 

eSRDF cv . 10  ( .04) . 1 4  ( .06) .10 ( .03) 
;:: SRDF 
A .37 ( .38) .25 ( .28) .09 ( . 10) 
;::SRDF .78 ( .31 )  .86 ( . 2 1 )  .90 ( . 19) 'Y 

eSRDF-M cv(l) .14 ( .09) . 1 4  ( .09) . 1 1  ( .05) 

eSRDF-M cv(2) . 19 ( . 10) .19 ( .09) .24 ( .08) 

eSRDF-M cv(3) . 2 1  ( .09) .25 ( . 10) .25 ( .09) 
;:: SRDF-M 
Al .70 ( .35) .73 ( .34) .60 ( .27) 
;:: SRDF-M 
A2 .77 ( .34) .77 ( .33) .75 ( .28) 
;:: SRDF-M 
A3 .43 ( .39) .60 ( .40) .43 ( .36) 
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Table 4 .3 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences in Low Variance Subspace. Average error rate (with standard devi­
ation) and parameter values for several discriminant functions. 

Dimension p 
6 10  20 

SRDF .07 ( .05) . 1 2  ( .04) . 1 5 ( .04 ) 
SRDF-M .06 ( .03) . 14 ( .05) . 1 6  ( .04) 

SLDF .06 ( .03) . 13 ( .05) . 1 6  ( .04) 
SQDF . 13 ( .06) .36 ( .08) .39 ( .06) 
SEDF .24 ( .06) .32 ( .06) .34 ( .05) 

eSRDF ev . 06 ( .04) . 1 1  ( .04) . 13 ( .04) 
=SRDF 
A .87 ( .24) .89 ( .23) .S7 ( . 19) 
=SRDF .05 ( . 14) .04 ( . 1 1 )  . 04 ( .09) I 

eSRDF-M ev(l) . 10 ( .OS) . 1 7 ( . 1 0) . 1 9  ( .07) 
eSRDF-M ev(2) .04 ( .05) . 10 ( .09) .12 ( .05) 
eSRDF-M ev(3) .04 ( .06) .09 ( .07) . 10 ( .06) 
=SRDF-M . 

Al .91 ( .26) .79 ( .33) .S3 ( .27) 
=SRDF-M 
A2 .99 ( .05) .95 ( . 1 7) .S6 ( .29) 
=SRDF-M 
A3 .96 ( . 1 9) .S7 ( .27) .91  ( . 19) 

minimizing cross-validated error rate over al l  groups underestimated the actual er­

ror rate by around 20% for p ::; 10 ,  but by only about 5% for p = 20. The means of 

the group conditional minimizing cross-validated error rates differed significantly, 

with substantial variation. 

If the group covariances are spherical but unequal (Table 4.2) , SRDF-M gives 

error rate estimates around 70% higher than for SRDF, and worse for larger dimen­

sions. It is clear that under such conditions, eigenvalue shrinkage is very desirable 

in order to reduce variation in the higher dimensions. The mean minimum cross­

validated error rate over all groups underestimated the actual misclassification risk 

by 25% - 30%, although observations from the higher variance groups were more 

frequently misclassified. 

The performance of the SRDF-M rule is comparable to that of the SRDF under 

conditions of equal but highly ellipsoidal group covariances (Tables 4.3 and 4.4) . 

This is not surprising since eigenvalue shrinkage is expected to be counterproductive 
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Table 4 . 4 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences in High Variance Subspace. Average error rate (with standard devi­
ation) and parameter values for several discriminant functions. 

Dimension p 
6 10 20 

SRDF .06 ( .03) . 10  ( .03) . 1 1  ( .03) 
SRDF-M .08 ( .03) . 14  ( .04) . 15 ( .05) 

SLDF .07 ( .03) . 13  ( . 04) .14 ( .04) 
SQDF . 16  ( .05) :36 ( .08) .38 ( .06) 
SEDF .07 ( .03) . 1 1  ( .03) . 1 1  ( .03) 

eSRDF cv .04 ( .03) .07 ( .04) . 10 ( .03) 
;:: SRDF 
A .85 ( .31)  .86 ( .29) .79 ( .33) 
;:: SRDF .58 ( .37) .62 ( .33) .67 ( .27) I 

eSRDF-M cv(l) .07 ( .05) . 15  ( .08) . 16 ( .07) 

eSRDF-M cv(2) .06 ( .06) .09 ( .08) .09 ( .05) 

eSRDF-M cv(3) .06 ( .06) .09 ( .07) . 1 1  ( .06) 
;:: SRDF-M 
Al .86 ( .31 )  .80 ( .32) .80 ( .28) 
;:: SRDF-M 
A2 .88 ( .31 )  .88 ( .29) .87 ( .24) 
;:: SRDF-M 
A3 .86 ( .30) .87 ( .25)  .88 ( .23) 
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in this situation. In the case where the group mean differences are concentrated in 

the low variance subspace (Table 4.3) , and therefore more pronounced, the �k (k = 
1 ,  . . .  , K) values are very close to one, and the performance of SRDF-M approaches 

that of the SLDF, which is the optimal rule in these conditions. However, when the 

group means are concentrated in the high variance subspace (Table 4.4 ) ,  SRDF-M 

is less successful compared to the SRDF. The high degree of covariance shrinkage 

towards the identity matrix enhances discrimination, because of the reduction in 

variance achieved. This is why the SEDF performs as well as the SRDF under these 

conditions, and yields a lower error rate than SRDF-M by about 40%. The mean 

minimizing cross-validated error rate for SRDF-M underestimates the actual rate 

by between zero and 15% when the group mean differences are more distinguishable 

in the low variance subspace, and around 20% when the means are obscured by 

high variance. 

The final sets of simulation conditions represent the situation where the group 

covariances are unequal and highly ellipsoidal (Tables 4.5 and 4.6) . The SRDF-M 

does not perform well here. Its average mistlassification risk is 50% to 100% larger 

than for the SRDF, and much more in the higher dimensions, when the SRDF 

error rate decreases on account of increased use of ,. The standard deviation of 

the misclassification error was also very large for SRDF-M compared with that of 

the other rules. 

These conditions are ideal for the SQDF, hence one might expect SRDF-M to 

perform comparably well if the model selection procedure chooses small values of 

).. However, it performs considerably worse, as � shows that values of ). are be­

ing chosen which are too high. The minimizing cross-validated error rate based 

on the training sample is observed to be similar to that for the SRDF, aithough 

Friedman noted that this did not appear to be related to the actual error rate esti­

mate obtained from the test sample. Despite this observation, it can be seen from 

Tables 4.5 and 4.6 that in fact the minimising cross-validated error rate severely 

underestimates the actual rate for SRDF-M, especially for the high dimensional 

settings. This is a curious phenomenon which exhibits itself strongly only in these 

simulation conditions where the groups have high and unequal variance. The reduc­

tion in variance obtained by eigenvalue shrinkage is not the complete explanation 

for, otherwise, SRDF-M should perform comparably to the SQDF, but it does not. 

It should be noted that the error rate estimates for SRDF-M also have unusually 
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Table 4 .5 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. Average error rate (with standard deviation) and parameter 
values for several discriminant functions. 

Dimension p 
6 10 20 

SRDF .20 ( .06) . 1 2  ( .05) .03 ( .02) 
SRDF-M .29 ( .08) .39 ( . 1 1 )  .28 ( . 16)  

SLDF .60 ( .06) .60 ( .06) .59 ( .06) 
SQDF . 16  ( .04) .. 19 ( .06) . 1 1  ( .05) 
SEDF .60 ( .07) .59 ( . 06) .58 ( .06) 

eSRDF cv . 1 7  ( .06) . 1 1  ( .04) .02 (.02) 
-::: SRDF 
A .04 ( .07) .04 ( .06) .04 ( .06) 
-::: SRDF . 1 2  ( . 1 5) .25 ( . 16) .35 ( . 18)  'Y 

eSRDF-M 
cv(l) . 14 ( . 1 1 ) . 1 5  ( . 10) .02 ( .02) 

eSRDF-M 
cv(2) .07 ( .08) . 1 0  ( .07) .01  ( .02) 

eSRDF-M cv(3) . 15 ( .08) .08 ( .08) .01  ( .02) 
-::: SRDF-M 
Al . 01  ( .03) .03 (.08) .06 ( .08) 
-::: SRDF-M 
A2 .05 (.08) .07 ( .09) .06 ( .06) 
-::: SRDF-M 
A3 .25 ( .20) .30 ( . 1 5) .36 ( . 1 5 )  
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Table 4.6 :  Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. Average error rate (with standard deviation) and pa­
rameter values for several discriminant functions. 

Dimension p 
6 10 20 

SRDF .06 ( .04) .06 ( .04) .02 ( .02) 
SRDF-M . 1 3  ( .07) . 2 1  ( .09) . 22 ( . 1 3) 

SLDF . 20 ( .05) .21 ( .04) .20 ( .05) 
SQDF . 06 ( .04)  .·10 ( .06) .06 ( .03) 
SEDF .20 ( .05) .20 ( .04) . 17 ( .04) 

eSRDF cv .04 ( .03) .03 ( .03) .01 ( .0 1 )  
�SRDF 
A . 10 ( .20) . 1 0  ( . 14)  .07 ( .06) 
�SRDF 

. 19 ( .27) .29 ( .22) .35 ( . 19 )  I 

eSRDF-M cv(I) .05 ( .07) .09 ( .06) .02 ( .02) 

eSRDF-M 
cv(2) .04 ( .05) .06 ( .07) .01 ( .0 1 )  

eSRDF-M cv(3) .01 ( .04) .01  ( .02) .00 ( .00) 
�SRDF-M 
Al . 1 1  ( . 2 1 )  . 1 1  ( . 1 8) .07 ( .09) 
�SRDF-M 
A2 . 1 4  ( . 2 1 )  . 1 8  ( .24) . 13 ( . 14 )  
�SRDF-M 
A3 .88 ( .30) .85 ( .29) .89 ( .23) 
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high variance under these conditions. A possible explanation is that under these 

conditions the best rules are those where � is close to zero with low variability. 

Now, the values of �k are not always close to zero for SRDF-M, and since each Ak 
is obtained from such a small number of data points, it variability is high. 

A feature of the performance of SRDF-M under these conditions is that �3 is 
- -
� � 

much higher than Al or A2 ' It happens that group 3 does not have quite the same 

extreme ellipsoidal nature of the other two groups. Significant shrinkage of the 

group 3 covariance matrix to the pooled covariance appears to lead to observations 

from that group becoming indistinguishable (to the classification rule) from those 

of the other high variance groups, and the error rate for that group becomes quite 

high . 

It is noted that if a policy of minimum regularisation is used to break ties 

(similar to that employed by SRDFI in Chapter 3) , the performance of SRDF-M is 

enhanced because smaller values of Ak are selected. The two tables (Tables 4 .7 and 

4 .8)  below compare the performance of SRDF-M with SRDF-Ml .  The difference 

between rules SRDF-M and SRDF-Ml lies only in the policy used to break ties 

when there is no unique value of Ak which minimizes the cross-validated error 

rate for group k. That is, if the error rate is the same for several values of A, 
SRDF-M selects the largest A of those values, while SRDF-Ml selects the smallest . 

From Tables (4 .7  and 4 .8) , it can be seen that the average values of A for the 

SRDF-M rule have much higher variation than those for SRDF-Ml .  This is to be 

expected since the A values are generally much closer to 0 for the SRDF-Ml rule. 

The minimum cross-validated error rates for SRDF-Ml are, for these simulation 

cases, higher than those for SRDF-M, yet their average is closer to the actual error 

rate obtained from the test samples. This is because the minimum cross-validated 

error rates for SRDF-Ml do not underestimate the actual error rate as severely 

as those for SRDF-M. The minimum cross-validated error rates for both SRDF-M 

and SRDF-Ml are quite variable, as are the actual error rates achieved by each 

rule. 

In conclusion , the proposed regularisation model SRDF-M was not as successful 

as the SRDF. This clearly shows the value of eigenvalue shrinkage, especially when 

p is large. The attempt to make SRDF-M more sensitive by employing a sepa­

rate A for each group caused other problems in certain circumstances as described 

above. If the problem of lack of scale invariance is to be avoided, other techniques 
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Table 4.7: Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. Comparison of SRDF-M and SRDF-M1 classifiers. 

Dimension p 
6 10 20 

SRDF-M .29 ( .08) .39 ( . 1 1 ) .28 ( . 16) 
SRDF-M1 . 27  ( .06) .30 ( . 10) . 23 ( . 1 1 ) 
eSRDF-M cv( l ) . 14 ( . 1 1 ) . 1 5  ( . 10) .02 ( .02) 
eSRDF-M cv(2) .07 ( .08) . 10  ( .07) .01  ( .02) 
eSRDF-M cv(3) . 1 5  ( .08) .08 ( .08) .01 ( .02) 
-;:SRDF-M ),1 .01 ( .03) .03 ( .08) .06 ( .08) 
-;:SRDF-M 
),2 .05 ( .08) .07 ( .09) .06 ( .06) 
-;:SRDF-M 
),3 .25 ( .20) .30 ( . 15 )  .36 ( . 15 )  
eSRDF-MI cv( l )  . 21  ( . 1 1 )  . 1 8  ( .09) .07 ( . 05) 
eSRDF-MI  cv(2) .09 ( .08) .10 ( .07) .04 ( .04) 
eSRDF-Ml cv(3) . 14 ( .08) .07 ( .06) .01 ( .02) 
-;:SRDF-Ml 
),1 .03 ( . 14)  .04 ( .07) .06 ( .06) 
-;:SRDF-Ml 
),2 .00 ( .02) .02 ( .05) .03 ( .05) 
-;:SRDF-Ml 
),3 . 1 4  ( . 1 1 )  . 15 ( .08) . 13  ( .02) 
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Table 4 .8 :  Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. Comparison of SRDF-M and SRDF-M1 classifiers. 

Dimension p 
6 10 20 

SRDF-M . 13  ( .07) . 2 1  ( .09) . 22 ( . 13) 
SRDF-M1 .07  ( .04) . 1 2  ( .06) . 1 2  ( .08) 
eSRDF-M cv( l )  . 05  ( .07) .09 ( .06) .02 ( .02) 
eSRDF-M cv(2) . 04 ( .05) .06 ( .07) .01  ( .01 )  

. eSRDF-M cv(3) .01  ( .04) .01 ( .02) .00 ( .00) 
-;:SRDF-M 
).1 . 1 1  ( . 2 1 )  . 1 1  ( . 18) .07 ( .09) 
-;:SRDF-M 
).2 . 1 4  ( .2 1 )  . 1 8  (.24) . 13 ( . 14 )  
-;:SRDF-M 
).3 .88 ( .30) .85 ( .29) .89 ( .23) 
eSRDF-Ml cv(l ) .08 ( .05) .07 ( .06) .04 ( .03) 
eSRDF-Ml cv(2) .04 ( .05) .04 ( .04) .03 ( .03) 
eSRDF-Ml cV(3) . 00 ( .02) .00 ( . 0 1 )  . 00 ( .01 )  
-;:SRDF-Ml 
).1 .05 ( . 12)  .06 ( .08) .09 ( .07) 
-;:SRDF-Ml 
).2 . 0 1  ( .05) .05 ( . 10)  .04 ( .07) 
-;:SRDF-Ml 
).3 . 1 1  ( . 15)  . 12 ( .07) . 13 ( .02) 
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need to be devised to replace eigenvalue shrinkage, while ensuring the accuracy of 

classification attained by the SRDF is not compromised. 

4.3 .2 The performance of SRDF-M when the population 

shapes are very different 

The proposal of the technique of SRDF-M,  where a separate covariance mixing pa­

rameter A is determined for each group, envisaged the situation where the groups 

had quite different covariance structures. Allowing for a different degree of shrink­

age (to the pooled estimate) ,  as appropriate for each group, would be expected to 

lead to a more sensitive model than one which employs only a single regularisation 

parameter, A. The simulation conditions of Section 3.5 (used in Subsection 4.3. 1 )  

all involved group parameter settings where the covariance matrices for the three 

groups were all of the same type of structure: either all spherical or all ellipsoidal. 

Hence it is of interest to investigate the usefulness of SRDF-M in situations where 

the group covariances are not all of the same type, but are a mixture of spheri­

cal and ellipsoidal structures. It may be expected that the potential of SRDF-M 

to shrink each covariance to the average by a different and appropriate amount, 

would be one advantage it affords over the other classification rules (especially the 

standard SRDF) . 

A further simulation study was conducted to compare the performances (in 

terms of their error rates) of the following discriminant rules: SRDF, SRDF-M1 ,  

SQDF, SLDF and SEDF. The reason why SRDF-M1 was chosen instead of SRDF­

M is because if the group covariances are dissimilar, as they are for this study, a 

lower degree of covariance mixing is usually appropriate. The number of groups in 

each case is three. 

For this study, the following four sets of parameter configurations were used. 

1 .  Two equal and highly ellipsoidal population covariance matrices, and 

one spherical covariance matrix (identity matrix) . The population mean 

differences concentrated mainly in the low variance subspace of the two 

ellipsoidal populations. 

2. One highly ellipsoidal population covariance matrix, one moderately 

ellipsoidal population covariance matrix, and one spherical covariance 

matrix (identity matrix) . The population mean differences are spread 
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evenly across all dimensions. 

3. Two unequal and highly ellipsoidal population covariance matrices, and 

one spherical covariance matrix (identity matrix) . Zero population mean 

differences. 

4. One highly ellipsoidal population covariance matrix, and two unequal 

spherical covariance matrices. The population mean differences are 

spread evenly across all dimensions. 

The ellipsoidal covariance matrices were very similar to those used in Friedman 

( 1 989) and in the previous simulations in this thesis. The procedure employed 

for this simulation study was the same as that in Section 3 .5 ,  and once again 100 

replications were performed and the results are presented in Tables 4 .9  to 4 . 12 .  
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Table 4 .9 :  Two equal and highly ellipsoidal covariances, one spherical 
covariance matrices. Mean differences in the low variance subspace: Average 
error rates with standard deviations. 

Dimension p 
6 10 20 

SRDF-Ml .02 ( .02) .06 ( .05) .06 ( .05) 
SRDF .04 ( .03) .07 ( .04) .07 ( .03) 
SLDF .04 ( .02) .08 ( .03) . 1 0  ( .04) 
SQDF .03 ( .03) . 1 5  ( .07) .24 ( .08) 
SEDF . 13  ( .04) . 18  ( .04) . 1 8  ( .04) 

eSRDF 
cv .01 ( .01 )  .03 ( .02) .04 ( .02) 

-;:SRDF 
A .47 ( .40) .28 ( .25) .29 ( .20) 
;:SRDF 

. 1 5  ( .28) . 2 1  ( .29) .23 ( .32) 'Y 
eSRDF-Ml  cv( l )  . 00 ( .01 )  .00 ( .01 )  .00 ( .00) 
eSRDF-MI  cv(2) .01 ( .03) .05 ( .05) .08 ( .05) 
eSRDF-MI cv(3) .01 ( .02) .04 ( .06) .07 ( .04) 

Al .09 ( .06) . 1 3  ( .06) . 1 3  ( .00) 

A2 .03 ( .07) . 1 3  ( . 1 7) .24 ( . 19)  

A3 .04 ( . 1 3) . 1 6  ( .20) .23 ( . 18) 

Two equal, highly ellipsoidal covariances; one (low variance) spherical 

covariance matrix. 

In this situation, two of the groups have equal and highly ellipsoidal covariance 

matrices as in Friedman ( 1 989) , Section (6.3) . The other has a covariance matrix 

equal to the identity. The group mean differences are concentrated in. the low 

variance subspace of the first two groups. Table 4 .9 shows the misclassification 

error rates for each discriminant rule. As mentioned earlier, these conditions are 

fairly well suited to the SLDF, although the spherical group would become almost 

indistinguishable from the other two groups if a high degree of covariance mixing 

were employed. The SRDF-Ml rule performs well - slightly better than both SLDF 

and SRDF, for all dimensions used, although the error rates for all three classifiers 

are quite similar in magnitude. The SRDF employs mild eigenvalue shrinkage. 

However this does not lead to lower error rates than SRDF-Ml .  The minimum 

cross-validated error rate for SRDF-Ml underestimates the actual error rate (as 

assessed by the test sample) by a similar margin to that for the SRDF (i.e. 40% 
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Table 4 . 10 : Three unequal covariance matrices - one highly ellipsoidal, 
one moderately ellipsoidal, one spherical. Group mean differences spread 
equally over all subspaces: Average error rates with standard deviations. 

Dimension p 
6 10  20 

SRDF-M1 .03 ( .02) .08 ( .05) .09 ( .06) 
SRDF .05 ( .03) .06 ( .03) .03 ( .02) 
SLDF . 13 ( .03) . 16  ( .04) . 19 ( .04) 
SQDF .03 ( .02) .06 ( .04) .07 ( . 05) 
SEDF . 1 2  ( .03) . 14 ( .04)  . 15 ( .04) 

eSRDF cv .02 ( .02) .03 ( .02) .01 ( . 0 1 )  
;:: SRDF 
A . 1 4  ( . 16) .17 ( . 19) .12 ( . 10) 
;:: SRDF 

.27 ( .30) .40 ( . 29) . 29 ( . 24)  'Y 
eSRDF-MI cv(l) .03 ( .04) .05 ( .05) .02 ( .02) 
eSRDF-MI cv(2) .03 ( .04) .05 ( .05) .03 ( .03) 
eSRDF-MI cv(3) .00 ( .00) .00 ( .00) .00 ( .00) 

Al .01 ( .03) .05 ( .08) .06 ( .09) 

A2 .05 ( . 12 )  .05 ( .07) .06 ( .08) 

A3 .01 ( .04) .09 ( .06) . 12 ( .02) 

to 50%) . 

Three unequal group covariances, one highly ellipsoidal, one moderately 

ellipsoidal and one spherical (low variance) . 

Here, the situation is considered where all three group covariance matrices are of 

a different nature: one highly ellipsoidal, as in the previous case; one with a less 

extreme ellipsoidal structure to the first, with the ratio between the largest and 

smallest eigenvalues halved; and one equal to the identity matrix. The differences 

in group means is spread equally over all subspaces. Table 4 . 1 0  presents the results. 

The SQDF, SRDF and SRDF-M1 rules perform equally well in the small di­

mensional settings. However, for larger p, the SRDF once again emerges superior, 

employing moderate eigenvalue shrinkage. It should be noted, however, that the 

error rates concerned are all of a small magnitude. As with the previous conditions, 

the spherical group is the most correctly classified group by all classification rules 
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Table 4 . 1 1 : Three unequal covariance matrices: Two highly ellipsoidal, 
one spherical. Zero group mean differences: Average error rates with standard 
deviations. 

Dimension p 
6 10 20 

SRDF-M1 . 14 ( .04) . 1 2 ( .05) . 1 5  ( .07) 
SRDF . 1 2  ( .05) . 1 0  ( .04) .03 ( .02)  
SLDF .49 ( .06) .47 ( .05) .46 ( .05) 
SQDF . 1 2  ( .04) . 22 ( .07) .21  ( .05) 
SEDF .47 ( .06) .46 ( .05) . 45 ( .04) 
eSRDF ev . 09 ( .04) .08 ( .04) .02 ( .02) 
:::: SRDF 
A .04 ( .06) .06 ( .07) .07 ( .07) 
:::: SRDF .24 ( .20) .23 ( . 1 7) .25 ( .20) 'Y 

eSRDF-MI ev(l ) . 1 1  ( .07) . 1 2  ( .08) .04 ( .04) 
eSRDF-MI ev(2) .07 ( .07) .08 ( .07) .03 ( .03) 
eSRDF-MI  ev(3) .00 ( .00) .00 ( .00) .00 ( .00) 

Al .02 ( .04) ' .06 ( .06) .06 ( .07) 

A2 .01 ( .03) .02 ( .04) .03 ( .06) 

A3 . 12 ( .0 1 )  . 13 ( .00) . 1 3  ( .00) 

because of its low variance and the presence of group mean differences across all 

subspaces. 

Three unequal group covariance matrices, two highly ellipsoidal and one 

spherical. 

This example considers the situation where two of the group covariance matrices 

are highly ellipsoidal and very unequal (similar to those in Section 6.4, Friedman 

( 1989) ) .  The other is equal to the identity matrix. The group means are all located 

at the origin. Results are presented in Table 4 . 1 l .  

SRDF-M1 again performs well relative to the SRDF, especially for p = 6, 10 .  

The model selection procedure of SRDF-Ml again appears to behave appropriately, 

employing low covariance mixing in this case where shrinkage of this sort would 

generally be strongly counter-productive. Although the SRDF also shrinks the 

covariance matrices slightly under these conditions, it is the eigenvalue shrinkage 
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which is significant. The resulting decrease in variance enhances the discrimination 

process, especially for large dimension, and again makes the SRDF the superior 

classification rule. The SRDF-Ml rule performs better than the SQDF for the 

larger dimensional settings. This must be a consequence of the mild use of the co­

variance mixing parameter ). by SRDF-Ml to reduce variance in the higher variance 

subspaces. 

One interesting feature of the behaviour of SRDF-Ml in these conditions is the 

large discrepancy between the minimizing cross-validated error rate based on the 

training sample, and the assessed actual error rate from the test sample. Despite 

the fact that the former is always an underestimate of the latter, and also that the 

methods of assessing the error rates are different, the large magnitude of the under­

estimation warrants closer examination. The average minimizing cross-validated 

error rate for SRDF-Ml is comparable to the corresponding quantity for the SRDF. 

However, the average actual error rate for SRDF-Ml is five times higher than that 

for the SRDF when p = 20, with a correspondingly large standard deviation which 

is greater than that for all the classification rules. When the actual error rate is 

examined by group, it is possible to determine how large the variation in error rate 

is between groups and also among the different (sampling) replications. For the 

larger dimensions (p > 6) , the two highly ellipsoidal groups have a higher error 

rate than the spherical group on average, while for p = 6 there is little difference; 

If large training samples are used (yielding better parameter estimates) , the 

discrepancy between training sample and test sample error rate for the SRDF-Ml 

is still evident even though the error rates are smaller. Furthermore, experimental 

simulations were performed where the training sample was identical to the test 

sample, and it was found that the test sample error rate was still noticeably un­

derestimated by the training sample minimizing cross-validated error rate. While 

the author of this thesis has not been able to ascertain fully why this phenomenon 

occurs, it is concluded that for conditions difficult for discrimination, such as these, 

the variation in the data is such that eigenvalue shrinkage is necessary in reducing 

variance as the dimension becomes large, and this leads to reduced error rates. 

Two spherical and one ellipsoidal covariance matrix. 

The final example considers the case where one covariance matrix is equal to the 

identity matrix, one is highly ellipsoidal, and the other is a multiple of the identity 
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Table 4 . 12 :  Three unequal covariance matrices: one highly ellipsoidal, 
two spherical. Group mean differences spread evenly over all subspaces: Average 
error rates with standard deviations. 

Dimension p 
6 10 20 

SRDF-M1 .04 ( .03) .04 (.04) .03 ( .04) 
SRDF .04 ( .03) .02 ( .02) .01 ( .02) 
SLDF .13 ( .04) . 1 1  ( .04) .06 ( .03) 
SQDF .06 ( .04) . 1 1  ( .07) . 1 2  ( .07) 
SEDF . 18 ( .03) . 1 5  ( .03) . 1 1  ( .03) 
eSRDF cv .01 ( .01 )  .00 ( .01)  .00 ( .00) 
;:: SRDF 
A . 1 4  ( . 14) .23 ( . 16) .44 ( . 18) 
;:: SRDF 

.68 ( .38) .74 ( .34) .70 ( .33) 'Y 
eSRDF-MI cv( l )  .00 ( .01 )  .00 ( .00) .00 ( .00) 
eSRDF-MI cv(2) .04 ( .04) .01 ( .03) .00 ( .01 )  
eSRDF-MI cv(3) .01 ( .03) .01 ( .03) .00 ( .01)  

Al .09 ( .06) 
. 

. 1 2  ( .03) . 1 2  ( .02) 

A2 .09 ( . 1 1 )  . 1 2  ( .06) . 1 3  ( .03) 

A3 .00 ( .01)  .02 ( .06) .00 ( .01 )  

matrix, where the multiplier is a scalar of  moderately low magnitude. The non-zero 

group mean differences are spread evenly across all subspaces. Simulation results 

are shown in Table 4 . 12 .  

SRDF-Ml again performs well and is  comparable to  the SRDF for all dimen­

sions. This is somewhat surprising since SRDF employs a high degree of eigenvalue 

shrinkage which does not result in a significantly lower error rate. It is clear that 

some form of regularisation is beneficial in that it reduces variance in the high 

dimensional settings. It is interesting to note that for all methods apart from the 

SQDF, the error rates reduce slightly as the dimension increases. Note that the 

SQDF is the only classifier which does not use any form of regularisation. The 

minimum cross-validated error rate for SRDF-M1 again underestimates the actual 

misclassification error assessed from the test sample, but all the error rates involved 

are very small. 
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In conclusion, from this supplementary study, we have compared the perfor­

mance of SRDF against SRDF-Ml .  The conditions under which this comparison 

was made were designed to best use the flexibility that SRDF-M1 has, which is 

the potential to regularise each group-conditional covariance estimate separately. 

The SRDF-M1 classifier performed well in all situations, and was generally at least 

as good as the two established discriminant rules, SQDF and SLDF. If the model 

selection process that selects ). for a given sample of data is working well for SRDF­

M 1 ,  then it is expected that the classifier should perform at least as well as either 

SQDF and SLDF. This indeed appears to be the case, assisted by the SRDF-Ml 

policy of minimum regularisation to break ties in the selection of ). .  However, de­

spite the good performance of SRDF-M1 ,  on the whole it did not perform quite as 

well as the SRDF, particularly for large dimension , p. This again shows the benefit 

of permitting the use of eigenvalue shrinkage as in the SRDF classifier. 

It could be expected that a classifier similar to SRDF-Ml ,  but which also in­

cludes the eigenvalue shrinkage parameter " would perform slightly better than 

the SRDF. This would be consistent with a conjecture that if the number of regu­

larisation parameters in a model is increased, the model will usually do better. 

Computational considerations 

The approximate computation times in CPU seconds for 100 repetitions of the 

sampling experiment described in this section are given in Table 4 . 1 3  for various 

p. These are the times required by the SRDF and SRDF-M1 rules to perform the 

simulations using MATLABTM on a SUN Sparcstation ELC. Also given is the ratio 

(SRDF-M to SRDF) of CPU time needed to complete 100 simulations f?r those 

two regularised discriminant rules. 

Table 4 . 13 :  Comparison of computation times between SRDF-M1 and SRDF. 

CPU time in seconds (SRDF) 
CPU time in seconds (SRDF-M1)  
SRDF-M1/SRDF 

Dimension p 
6 10 20 

1 699 2864 
446 685 
0.26 0.24 

1 2546 
2586 
0 .21  
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4.4 PERFORMANCE OF THE REGULARISED 

96 

DISCRIMINANT FUNCTION IN TERMS OF THE 

SAMPLE SIZE TO DIMENSION RATIO. 

4 .4 .1  Simulation study 

From the study by Friedman ( 1989) ,  as well as those in the previous sections, it is 

clear that the SRDF has proved itself at least equal to but usually superior to the 

other classification rules under a fairly wide range of situations. This superiority 

is greatest in the higher dimensional settings (p > 10) . The comparisons with 

the SQDF, SLDF and in particular SRDF-Ml (in Section 4.3) indicate that the 

advantage the SRDF has over the other classification rules is a result of allowing for 

(-y) regularisation (or shrinkage) of the covariance matrix eigenvalues to equality. 

The ratio of training sample size from each population, nk ( 1  � k � K) ,  to the 

dimensionality p in the previous studies (Sections 3.5 through 4.3) was between 1 .4 
. 

(for large p) and 2.2 (for smaller p). It is of interest to investigate the performance 

of the SRDF relative to the other classification rules over a wider range of nklp 
ratios. As mentioned earlier, the motivation for this is that presumably regular­

isation of the covariance matrix eigenvalues would no longer be advantageous for 

discrimination once the training sample size increases past some point sufficiently 

larger than p (see also Lawoko and Koolaard ( 1996) and Koolaard, Ganesalingam 

and Lawoko ( 1 996) ) .  The question addressed in this section is: to what extent do 

the benefits of covariance matrix regularisation (in particular eigenvalue shrinkage) 

diminish as the sample size to dimensionality ratio increases? 

A further simulation study was implemented in the manner of the previous 

sections, and using the same six simulation conditions determined by assigning 

various settings of the population means and covariances to certain values (See 

Section 3.5) . The discriminant rules compared with SRDF were SQDF, SLDF, 

SRDF-Ml and SEDF. The samples from each population are taken to be of equal 

size, so let n = nk(k = 1 ,  . . .  , K) The various nip ratios employed are 1 .2 ,  1 .5,  

2 ,  3 ,  5, 10  for dimensions p = 6, 10  and 20. Again, the inordinate amount of 

computation time required precluded implementation of simulations for p > 20. In 

all cases there are three populations or groups involved. The (A, 1') grid of values for 

use in the model selection procedure of the SRDF is defined by the outer product 
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of ). = (0, .25, .5 ,  .75, 1) and I = (0, . 2q, .5 ,  .75, 1 ) .  The entire training sample is 3n 
in each case, since in all cases there are three groups. The test sample is 200. Fifty 

replications of each experiment were performed. Average error rate (with standard 

deviation in brackets) are given for each classification rule. The results are given 

in Tables 4 . 14  to 4 . 19. Graphical displays of the various classifier error rates for 

increasing nip ratio are given in Figures 4 . 1  to 4 .6 .  

The object of examination in this study is the eigenvalue regularisation tech­

nique as employed by the SRDF, hence the main interest is in comparing the SRDF 

with the methods which do not use this technique. These are the SLDF, SQDF 

and in particular SRDF-Ml .  Thus while the SEDF is included in the results, it 

involves maximum I-regularisation and hence comparing its performance to that 

of the SRDF is less relevant to the issue being investigated here. 

4.4.2 Simulation results 

Equal and spherical group covariances (Table 4.14 and Figure 4. 1 )  

The use o f  the I parameter appears to enhance the classification process under con­

ditions of equal, spherical group covariances only for small sample size to dimension 

ratios (nip < 3) .  For larger ratios the advantage that the SRDF commands over 

the SLDF and SRDF-M1 diminishes to nothing for all dimensions. It is observed 

that for smaller dimensions a high degree of eigenvalue regularisation to equality 

is maintained in the regularisation process for all nip ratios, as evidenced by the 

high value of i. This is to be expected since the optimum value of I in these 

conditions is one, as for the SEDF. For the higher dimensional settings, the l' value 

is somewhat lower, yet it does not change with the ratio nip. 
All the discriminant rules give decreased error rates as the nip ratio increases, 

with most significant change occuring for the SQDF, as expected. The SQDF is 

most sensitive to poor parameter estimates, and as the sample size increases its 

performance tends to improve quickly due to better parameter estimates. The 

performance of the SRDF improves slightly as the nip ratio increases. 

Unequal spherical covariances (Table 4 .15 and Figure 4.2) 

In conditions where the group covariances are not equal but are of spherical struc­

ture, the SRDF is the superior discriminant rule at all nip ratios and dimensions 
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Table 4 . 14 :  Equal Spherical Covariance Matrices. Average error rates with 
standard deviations over a range of nip ratios. 

n to p ratio 
p = 6  1 .2:1  1 . 5:1 2:1 3:1 5:1 1 0:1 
SRDF . 13 (.03) . 12 (.02) . 12 ( .03) . 10 ( .02) . 10 ( .02) .09 (.02) 
SRDF-M1 . 18 ( .07) . 16 ( .05) . 15  ( .03) . 12 ( .03) . 1 1  ( .02) . 10 ( .02) 
SLDF . 17 ( .05) . 16 ( .04) . 15 ( .03) . 1 1  ( .03) . 10 ( .02) .09 (.02) 
SQDF .47 (.09) .33 (.07) .25 ( .05) . 17  (.03) . 13 ( .02) . 10  ( .02) 
SEDF . 12  ( .02) . 12 ( .02) . 12  ( .02) . 10 ( .02) . 10 ( .02) .09 (.02) 
p = 10 
SRDF . 14 ( .03) . 12  ( .03) . 1 1 ( .02) . 1 1  ( .02) . 10 ( .02) . 10 ( .02) 
SRDF-M1 .17 ( .05) . 16 ( .04) . 15  ( .04) . 12 ( .04) . 1 1  ( .03) . 10 ( .02) 
SLDF . 17  ( .04) . 15  ( .04) . 14 ( .03) . 12 ( .03) . 1 1  ( .03) .10 (.02) 
SQDF .46 ( .07) .34 ( .07) .27 ( .05) .20 ( .05) . 15  ( .03) . 1 1  ( .02) 
SEDF . 12 ( .03) . 1 1  ( .03) . 1 1  ( .02) . 10 (.03) . 10 ( .02) . 10 ( .02) 
p =  20 
SRDF . 13 ( .03) . 12 (.02) . 1 1  ( .02) . 1 1  ( .02) . 18  ( .04) . 13  ( .02) 
SRDF-M1 . 18  ( .04) . 15 ( .03) . 14 ( .02) . 12 ( .02) . 1 1  ( .03) . 10  ( .02) 
SLDF . 17  ( .03) . 15  ( .03) . 14  ( .03) . 12  ( .02) . 1 1  ( .02) . 10  ( .02) 
SQDF .49 ( .06) .39 ( .06) .32 ( .04) .24 ( .03) . 17 ( .03) . 13  ( .02) 
SEDF . 12  ( .02) . 1 1  ( .02) . 1 1  ( .02) . 10 ( .02) . 10 ( .02) . 1 0  ( .02) 

used . Once again the average i value used in the SRDF is high for most nip ratios, 

however there are one or two aberrations. The effect of 'Y regularisation in these 

conditions is evident for all nip ratios considered, but appears to begin to abate at 

nip = 10 .  However, at this point the performance of SRDF-M1 only approaches 

that of the SRDF. 

Equal, highly ellipsoidal covariances (Tables 4.16,  4 .17  and Figures 4.3, 

4.4) 

As concluded earlier, there appears to be little advantage in eigenvalue shrinkage 

under these conditions where the group covariances are equal and of a highly ellip­

soidal nature, and the group mean differences are concentrated in the low variance 

subspace. The performances of the SLDF and SRDF-Ml are comparable to that of 

the SRDF for all nip ratios and for all dimensions studied. As eigenvalue shrink­

age (towards equality) would be strongly counterproductive in these circumstances 

(since it would increase the variance in the low variance subspace) , it is not sur­

prising that the SRDF generally selects very low i values (close to zero) for all p, 
and especially as the nip ratio increases. 
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Table 4 . 1 5 : Unequal Spherical Covariance Matrices. Average error rates with 
standard deviations over a range of nip ratios. 

n to p ratio 
p = 6 1 .2:1 1 . 5:1 2:1 3:1 5:1 10:1 
SRDF .22 ( .04) .20 ( .04) .20 ( .03) . 17 ( .03) . 17 ( .03) . 16 ( .03) 
SRDF-Ml .31 ( .07) .27 ( .07) .26 ( .05) .22 ( .04) . 19 ( .03) . 17  ( .02) 
SLDF .30 ( .06) .26 ( .06) .25 (.02) .21 ( .03) .20 ( .03) .18 ( .02) 
SQDF .53 (.07) .43 ( .07) .34 ( .06) .25 ( .04) .19 ( .04) . 1 7 ( .02) 
SEDF .23 ( .04) .22 ( .04) .22 ( .03) .20 ( .03) . 19 ( .03) . 18  ( .02) 
p = 10 
SRDF .20 ( .05) . 17 ( .04) . 1 5  ( .03) . 15  ( .03) . 13 ( .03) . 10  ( .03) 
SRDF-Ml .28 ( .05) .28 ( .05) .27 ( .06) .20 ( .04) . 18 ( .03) . 14 ( .03) 
SLDF .28 ( .05) .26 ( .05) .26 ( .04) .22 ( .04) .21 ( .03) . 18  ( .03) 
SQDF .52 ( .07) .43 ( .06) .35 ( .05) .25 ( .05) . 19 ( .03) . 14 ( .03) 
SEDF .24 ( .04) .22 ( .03) .21 ( .03) .20 (.03) .20 ( .03) . 18  ( .03) 
p = 20 
SRDF . 13 ( .03) . 12  ( .02) . 10 ( .02) . 19 ( .03) . 12 ( .02) .09 ( .02) 
SRDF-Ml .29 ( .07) .30 ( .08) .26 ( .06) . 18 ( .04) . 14 ( .03) .13 ( .02) 
SLDF .28 ( .03) .26 ( .04) .24 ( .03) .21 ( .03) .20 ( .03) . 19 (.02) 
SQDF .55 ( .04) .47 ( .06) .37 ( .04) .27 ( .04) . 18  (.03) . 12  ( .02) 
SEDF .23 ( .03) .22 (.03) .21 ( .03) .20 ( .02) . 19 ( .03) . 18 ( .02) 

When the group mean differences are concentrated in the high variance sub­

spaces the SRDF is superior to the other discriminant rules (SEDF excepted) for 

nip < 3 .  Beyond nip = 3, SRDF-M1 and the SLDF discriminate as well as the 

SRDF. The benefits of employing the 'Y parameter disappear at nip = 3 or more 

as the other rules improve in their performance at a faster rate than the SRDF, as 

the sample size increases. 

The average i' value of the SRDF decreases as the sample size increases in 

relation to p. (From 1- � 0 .75 for nip = 1 .2 to 1- � 0.25 for nip = 10) . Also, a 

lesser degree eigenvalue shrinkage is employed by the SRDF for larger values of p. 

Unequal, highly ellipsoidal group covariances (Tables 4. 18,4.19 and Fig­

ures 4.5,  4.6) 

In the situation where the group means are equal, the SQDF, which represents no 

covariance regularisation, performs generally well as would be expected. For small 

nip ratios (nip < 2) and larger dimensions p � 10,  the SRDF's performance is 

superior to that of the SQDF, suggesting that eigenvalue shrinkage is not advan­

tageous once the sample size becomes twice as large as p. The other discriminant 
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Table 4 . 16 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences in Low Variance Subspace. Average error rates with standard 
deviations over a range of nip ratios. 

n to p ratio 
p = 6  1 .E:l 1 .5:1 2:1 3:1 5:1 10:1 
SRDF . 12  ( .06) .09 ( .04) .08 ( .04) .06 ( .03) .06 ( .0 1 )  .05 (.02) 
SRDF-M1 . 10  ( .03) .08 ( .03) .08 (.04) .05 ( .02) .05 ( .02) .04 (.01 )  
SLDF . 10  (.03) .08 (.02) .07 ( .02) .05 ( .02) .05 ( .02) .04 ( .01) 
SQDF Al ( .09) .26 ( .07) . 15 ( .05) .09 ( .03) .07 ( .02) .05 (.02) 
SEDF .28 ( .05) .27 ( .06) .26 ( .05) .22 ( .04) .21 ( .04) .20 (.03) 
p = 10 
SRDF .16 ( .04) . 14 ( .04) . 12  (.04) . 10 (.03) .09 ( .02) . 10 ( .03) 
SRDF-M1 . 14  ( .03) . 13  (.03) . 12  ( .03) . 10  (.03) .09 ( .02) .08 ( .02) 
SLDF .14 ( .03) . 12  ( .03) . 1 1  ( .02) .09 ( .03) .09 ( .02) .08 ( .02) 
SQDF 044 ( .09) .31 ( .06) .24 (.05) . 17 ( .04) . 12 ( .02) .09 (.02) 
SEDF .32 ( .05) .30 ( .05) .28 ( .04) .26 (.04) .24 ( .03) .23 ( .03) 
p = 20  
SRDF . 18 ( .04) . 16 ( .03) .14 ( .03) . 13 ( .02) . 1 1  ( .02) .11 ( .02) 
SRDF-M1 . 17 ( .03) . 1 7  ( .03) . 15 ( .02) . 13 ( .02) . 1 1  ( .02) . 1 1  (.02) 
SLDF .17 ( .03) .16 ( .02) . 14 ( .02) .12 ( .02) . 1 1  ( .02) . 1 1  ( .02) 
SQDF 049 (.06) .39 ( .04) .32 (.Q4) .24 ( .04) . 18 ( .03) . 14 ( .02) 
SEDF .33 ( .04) .32 (.04) .30 ( .04) .27 ( .04) .26 ( .04) .24 ( .03) 

Table 4 . 17: Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences in High Variance Subspace. Average error rates with standard 
deviations over a range of nip ratios. 

n to p ratio 
p = 6  1 .2:1 1 . 5:1 2:1 3:1 5:1 1 0:1  
SRDF .08 ( .03) .07 ( .02) .07 ( .02) .07 (.02) .06 ( .02) .06 ( .02) 
SRDF-M1 . 13 ( .05) .10 (.04) .09 (.03) .07 ( .03) .06 ( .02) .05 ( .01 )  
SLDF . 12  ( .03) . 10 ( .03) .09 (.03) .07 ( .02) .06 ( .02) .05 (.01) . 

SQDF .43 ( . 10) .29 ( .09) .18 (.05) . 1 1  ( .03) .07 ( .02) .06 ( .01) 
SEDF .07 ( .02) .07 ( .02) .07 (.02) .07 ( .02) .06 ( .02) .06 ( .02) 
p =  10  
SRDF .10 (.03) .10 ( .03) .10 ( .02) .10 ( .02) .08 ( .02) .11 ( .04) 
SRDF-M1 .15 (.03) . 13 ( .03) . 12 (.04) .10 ( .02) .09 ( .02) .08 ( .02) 
SLDF .14 ( .03) . 13 (.03) . 11  (.03) .10 ( .02) .08 ( .02) .08 ( .02) 
SQDF 045 ( .07) .32 ( .06) .23 ( .05) . 16 ( .04) . 12 ( .03) .09 (.02) 
SEDF . 10 (.02) .10 ( .02) .09 (.03) . 10 ( .02) .10 ( .02) .09 ( .02) 
p =  20  
SRDF .12 ( .03) . 12 ( .02) .10 (.02) 11  ( .02) .09 ( .02) .09 (.02) 
SRDF-M1 .16 ( .03) . 16 (.04) .13 ( .03) . 12 ( .03) .10 ( .02) . 10 ( .03) 
SLDF .16 ( .03) . 15 ( .04) .13 (.02) . 12 ( .03) .10 ( .02) . 13 (.03) 
SQDF .48 ( .05) .39 (.04) .30 (.04) .22 ( .03) .16 ( .02) .10 ( .03) 
SEDF .12 ( .02) .12 (.03) . 1 1  (.03) . 1 1  ( .03) .10 ( .02) . 1 1  ( .03) 



Chapter 4. Exploring the SRDF further 

� ... til ... 
... 
o t: 

� 0 

Ul � 
o 

\ 
\ 
x. ,  

• 
0 
+ 
• 
x 

(p=6) 
-
- _ .  

. . . . . .  

- - . 

SRDF 
SRDF·MI 
SLDF 
SQDF 
SEDF 

- - x 

2 4 6 8 10 
Sample size to Dimension (nip) ratio 

� 0 

..... 
o 

Error Rate vs. nip ratio (p= lO) 

\ 
X 

, 
x .... .... .... '* - - - - - - - -x 

2 4 6 8 10 
Sample size to Dimension (nip) ratio 

� 0 

..... 
o 

\ 
X 

, x 
.... .... 

103 

(p=20) 

.... '* - - - - - - - - -x 

2 4 6 8 10 
Sample size to Dimension (nip) ratio 
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rules perform poorly in relation to these two, since any regularisation to the pooled 

covariance is strongly counterproductive. 

Under these conditions, the nip ratio at which the performance of SRDF-M 1 

approaches that of the SRDF is approximately nip = 2 :  slightly smaller for small 

p and slightly larger for large p. The average i value used in the SRDF is usually 

small ,  but there is substantial variation. This indicates that under these difficult 

discrimination conditions and substantial variance in the data, selection of i is very 

sensitive to the particular training sample data at hand. 

Once again ,  the SRDF error rate improves as the sample size to dimension 

ratio increases, although for p 2: 10 the reduction in error rate is not significant for 

nip > 3. Even at nip = 10 ,  the performance of SRDF-M1 does not compare with 

that of the SRDF, indicating that regularisation to the pooled covariance alone, 

does not help the classification process under these conditions . 

For the case where the group means differences are non-zero (but still unequal , 

highly ellipsoidal group covariances) ,  the r:lative performance of the yarious rules 

remain the same as in the situation of equal group means above. The rules al l yield 

lower error rates, since the groups now differ in location. For the SRDF, once nip 
is greater than 3, there is no real reduction in error rate. On the other hand, the 

SRDF-M1 error rate decreases with increasing nip until at nip = 10 ,  the two error 

rates are nearly equal. The SRDF is superior to the SQDF in these conditions only 

at the smallest sample size to dimension ratio, nip = 1 .2 .  Thus this is the nip ratio 

beyond (that is, larger than) which regularising the covariance matrix eigenvalues 

towards equality no longer appears to be beneficial. The average I value, 1', for 

the SRDF decreases as nip increases. At nip = 10, l' is close to zero, whi�h is the 

appropriate level given that the parameter estimates are good. 

In conclusion, this simulation study underlines the usefulness of the eigenvalue 

shrinkage technique as employed in regularised discriminant analysis. The advan­

tage that it  commands over the other classification rules is strongest when the 

training sample size from each group is small in relation to the dimensionality, p. 
Furthermore, often that advantage remains even when the sample size increases to 

several times that of the dimensionality. 



Chapter 4. Exploring the SRDF further 

¢) 
� ... ... 
0 
t: Ul 

(p=6) 
t _. _ _  -J: 

100, .�. • • • )It._--'-->e<*,.-+ .. ,:: � y 

If) 
0 • SRDF CV 0 SRDF·MI 

+ ... . . . SLDF 
, • SQDF 
III x SEDF 

� 
0 

q 
, 

C'l , 
0 

, 
(il , , , , 

1'1 
0- _  0 

-
0 

2 4 6 8 10  

Sample size to Dimension (nip) ratio 

If) 
0 

� 
0 

C'l 
0 

1'1 0 

0 
0 

Error Rate vs. nJp ratio (p=l O) 

<il " 
" 

<!J ,  

, 
<il 

, 
, 

� , , , 
'0- _ _ - - - - - - -0  

2 4 6 8 \0  

Sample size to Dimension (nip) ratio 

106 

(p=20) 

If) 
0 

� 
0 

<il " 
" 

<!J ,  
C'l 0 , 

\ 
<il 

, 
1'1 , 
0 

, 
� , , , 

'0- _ _ - - - - - - -0  

0 
0 

2 4 6 8 \0 

Sample size to Dimension (nip) ratio 

Figure 4 .5 :  Unequal, highly ellipsoidal population covariance matrices. 
Population means equal. Classifier Error Rate vs. nip ratio. 
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Figure 4.6: Unequal, highly ellipsoidal population covariance matrices. 
Population means unequal. Classifier Error Rate vs. nip ratio. 
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Table 4 . 18 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. Average error rates with standard deviations over a range of 
nip ratios. 

n to p ratio 
p = 6  1 .2:1 1 .5:1 2:1 3: 1 5:1 10:1  
SRDF .34 ( . 1 1 )  .29 ( .07) . 19 ( .05) . 14 ( .04) .14 ( .07) . 10 ( .04) 
SRDF-M1 .48 ( .09) .44 ( .08) .35 (.09) .25 ( .05) .20 ( .07) . 18  ( .06) 
SLDF .61 ( .05) .60 ( .06) .59 ( .05) .59 (.05) .60 ( .05) .62 ( .04) 
SQDF .39 ( .09) .25 ( .06) . 18  (.04) . 13 ( .03) . 10 ( .02) .08 ( .02) 
SEDF .59 (.04) .59 ( .05) .59 ( .06) .58 ( .05) .60 ( .05) .62 ( .05) 
p = 10 
SRDF .15 ( .06) . 12 ( .04) .09 ( .03) .05 ( .02) .03 ( .02) .06 ( .03) 
SRDF-M1 .34 ( . 10) .38 ( .09) .26 (.08) . 16 ( .05) . 12 ( .05) .10 ( .04) 
SLDF .59 ( .04) .58 (.04) .59 ( .04) .59 ( .04) .60 ( .04) .61 ( .04) 
SQDF .29 (.09) . 17  (.06) . 10 (.03) .05 ( .02) .03 ( .01) .02 ( .01) 
SEDF .59 (.04) .58 (.04) .59 (.04) .60 ( .04) .59 ( .04) .61 ( .04) 
p =  20 
SRDF .03 ( .02) .02 ( .02) .02 ( .02) .01 ( .01) .00 ( .01) .00 ( .00) 
SRDF-M1 .40 ( . 18) .36 ( . 1 1 )  .20 ( .07) . 1 1  ( .03) .06 (.03) .05 ( .02) 
SLDF .58 ( .04) .57 ( .04) .59 ( .05) .61 ( .03) .61 ( .03) .62 ( .04) 
SQDF .20 (.07) .10 (.03) .04 ( .J)2) .01 ( .01) .00 ( .00) .00 ( .00) 
SEDF .57 (.03) .59 (.04) .59 ( .04) .60 ( .04) .61 ( .03) .61 ( .04) 

Table 4 . 19 :  Unequal, Highly Ellipsoidal Covariance Matrices with Non-
zero Mean Differences. Average error rates with standard deviations over a 
range of nip ratios. 

n to p ratio 
p = 6  1 .2:1 1 .5:1 2:1 3:1 5:1 10:1 
SRDF .14 ( .04) . 12 ( .04) .07 ( .03) .04 (.03) .03 ( .02) .02 ( .01) 
SRDF-M1 . 19 (.06) . 19 (.07) .13 (.05) .07 ( .03) .04 ( .02) .03 ( .01) 
SLDF .21 ( .05) .20 ( .05) .18 ( .04) . 16 (.03) . 14 ( .03) . 13 ( .03) ' 
SQDF .25 ( . 12) . 10 ( .06) .05 ( .02) .03 (.01) .02 (.01) .02 ( .01) 
SEDF .18 ( .04) . 17 ( .04) . 16 ( .03) . 15 (.03) .14 ( .03) .14 ( .03) 
p =  10 
SRDF .09 ( .05) .07 ( .03) .04 ( .03) .02 ( .01) .02 ( .01) .01 (.01) 
SRDF-Ml .20 ( .07) .24 ( .09) .13 ( .05) .07 ( .03) .04 ( .02) .02 ( .01) 
SLDF .24 ( .04) .22 ( .04) .20 (.04) .18 (.01) . 17 ( .03) .16 ( .03) 
SQDF .19 ( . 10) .08 ( .05) .04 ( .02) .02 (.01) .01 (.01) .01 ( .01) 
SEDF .21 (.04) .19 ( .03) .19 ( .03) .18 (.02) .17 (.03) .16 ( .03) 
p =  20 
SRDF .03(.02) .02 ( .02) .01 (.01) .00 (.00) .00 (.01) .00 ( .00) 
SRDF-Ml .29 ( . 17) .25 ( . 1 1) . 1 1  ( .04) .04 (.02) .02 (.01) .01 ( .01) 
SLDF .22 ( .04) .20 (.03) . 18 ( .03) .17 (.03) .15 (.02) .15 ( .03) 
SQDF .14 ( .06) .05 (.03) .01 ( .01) .00 (.00) .00 ( .00) .00 ( .00) 
SEDF .18 ( .03) .17 ( .03) .17 ( .03) .16 (.02) .15 ( .02) .14 ( .03) 



Chapter 5 

MODEL SELECTION OF 
REGULARISATION PARAMETERS 

USING BHATTACHARYYA 
DISTANCE 

5 . 1  INTRODUCTION 

109 

In the previous chapters, the advantage of the regularised discriminant model of 

Friedman has been demonstrated, particularly if the sample size is small in relation 

to the size of the dimension. The major reason for its success in many conditions 

that are difficult for discrimination stems from the rule's flexibility in allowing for 

eigenvalue regularisation towards equality in the sample covariance matrices. Since 

the importance of the parameter , has been established, it will be maintained in 

su bsequent models for discrimination that appear in this thesis. 

Several potential weaknesses in the model selection procedure of the SRDF as 

developed by Friedman (1989) were noted by Rayens and Greene ( 1991 ) .  These 

included (i) the fact that the regularisation parameters were often determined by 

a small fraction of the data points available, and (ii) that in many instances (espe­

cially with smaller sample sizes) there will not be a unique choice of the parameters 

(,x, ,) for the model. These problems were discussed and studied in Chapters 3 and 

4. Furthermore, despite the development of computationally efficient algorithms 

to enhance the attractiveness of what is inherently a computationally intensive 

model, the computation time is still rather high from the author's experience using 

MATLABTM on a SUN Sparcstation ELC computer. Therefore it is of interest 

to explore other ways of arriving at appropriate regularisation parameter values 
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in place of minimising the cross-validated error rate at a range of points over the 

(>' , ,,,) grid. Because of the computational burden inherent in SRDF, and with 

regard to criticisms of the technique by Rayens and Greene ( 1 991 ) ,  it is investi­

gated here whether information about appropriate values for the two regularisation 

parameters could be obtained by examining the behaviour of the Bhattacharyya 

distance (Bhattacharyya ( 1946)) between the various populations. Note that any 

determination of the optimal values of >. and I (i .e .  � and i) from the data using 

the Bhattacharyya distance involves use of aLL the data points. A classification rule 

which uses regularisation parameters obtained from the Bhattacharyya distance is 

presented for the case of two populations or groups, and is compared via simula­

tion with the original SRDF. An extension to the three group case is presented in 

Subsection 5.2 .5 ,  and its performance is also examined against the other rules. If 

this rule is to perform comparably to the SRDF in terms of its error rate, its model 

selection procedure must perform correctly in terms of selecting an appropriate de­

gree of regularisation for a given situation. For example, if the populations are of 

similar shape and size (in terms of the magnitude of their variances) ,  the covariance 

mixing parameter >' should be set to a reasonably high value. The Bhattacharyya 

distance is found to give information which leads to appropriate values of >. and I 
being selected in general. The rule presented is also computationally much faster 

than Friedman's SRDF since it avoids re-sampling methods. 

In Section 5 .4 ,  the various rules are compared in terms of their performances 

in correctly classifying observations from several real data sets. The results of 

the simulation studies and the case studies with real data sets show that the rule 

employing the Bhattacharyya distance in the model selection procedure generally 

performs as well as Friedman's SRDF. 
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5 . 2  CONSTRUCTION OF A MODEL SELECTION 

1 1 1  

PROCEDURE BASED ON THE BHATTACHARYYA 

DISTANCE 

5 .2 . 1  Distance measures and their applications in 

discrimination 

Distance measures have often been considered as alternatives to error rates in cer­

tain aspects of discriminant analysis. For example, Jain ( 1976) investigated the 

behaviour of an estimate of the Bhattacharyya distance when used as a criterion 

in variable selection. It was shown that the bias and variance of the estimate is 

related to the number of training samples and parameter values of the distribution . 

Kailath ( 1 967) addressed the problem that minimising the error rate to determine 

optimum classification can be difficult to accomplish in practice. He investigated 

the idea of using simpler, albeit sub-optimpJ performance measures instead of the 

error rate, and compared the Bhattacharyya distance with an often-used measure, 

the divergence, which is closely related to Shannon's logarithmic measure of in­

formation. Not only is the Bhattacharyya distance easier to evaluate than the 

divergence, but in some examples in the study it was found to perform at least as 

well as the divergence in minimising the probability of misclassification. Kailath 

obtained an upper bound on the probability of misclassification in terms of the 

Bhattacharyya distance in the case of equal prior probabilities of the distributions. 

Note that Kailath only treated the case of two groups. Also, all his work assumed 

knowledge of the parameters, whereas, as we shall see later, if one has to use sam­

ple estimates of the parameters, the link between Bhattacharyya distance and error 

rate is much less clear. Also, Fukunaga and Hayes ( 1 989) obtained an upper bound, 

in terms of the Bhattacharyya distance, on the Bayes error for classifying between 

two Gaussian distributions . 

5 .2 .2  The Bhattacharyya distance 

The Bhattacharyya distance between two multivariate normal density functions 

with mean vectors JLl and JL2 and covariance matrices :El and :E2 is 

B = Bl + B2 (5 .1 )  
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where 

(5 .2)  

and 

(5 .3) 

The first term of the expression , B 1 ,  is similar to the well-known Mahalanobis 

distance between the densities. It measures the distance between the two distri­

butions caused by the mean shift. The second term B2 utilises the determinants 

of the two covariance matrices as well as that of the average group covariance ma­

trix. It gives a measure of the difference between the two distributions due to the 

covariance shift. 

Fukunaga and Hayes ( 1989) ,  in an extensive mathematical development, derived 

asymptotic expressions for the expected bias and variance of the sample estimates 

(iii and B2) of terms B 1  and B2, and showed that the bias of Ri is proportional 

to pin (for ni = n, i = 1 , 2 , . . .  ) ' where rii is the size of the sample taken from 

group i .  They also showed that the bias of B2 is proportional to (p + l )pln. In 

other words, estimates of the Bhattacharyya distance measure become increasingly 

biased as the ratio pin increases, with B2 more seriously affected than Ri. Thus 

in high dimensional space the bias present in the Bhattacharyya distance estimate 

is dominated by the bias inherent in estimation of term B2.  They also showed 

that as the dimensionality increases, an increasingly large ratio of nip is needed to 

maintain a constant expected value of B .  

With the above knowledge of the Bhattacharyya distance function between two 

Gaussian distributions, it is plausible to expect that some degree of regularisation 

of the covariance, such as is provided for by the two-parameter model in expression 

(3 .7) , would improve the estimation of the Bhattacharyya distance. The reason 

for this stems from the accepted knowledge that covariance estimates based on 

expression ( 1 . 10) yield eigenvalue estimates which are biased. The largest ones are 

biased towards values which are too high, and the smallest ones are biased towards 

values which are too low. This bias will be worse in the situation where the true 

population eigenvalues are approximately equal, but in all cases this bias becomes 

more pronounced as the ratio of sample size to dimension decreases. The term 

B2 of the Bhattacharyya distance is most vulnerable to such bias occurring, being 

a ratio of determinants of sample covariance estimates, and regularisation of the 
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eigenvalues towards equality ought to prove useful in counteracting bias-induced 

anomalies in estimates of B2, particularly as p becomes large. 

5 .2 .3 Behaviour of Bhattacharyya distance with regularised 

covanances 

Kailath ( 1967) admitted that it would be hoping for too much, to expect a strong 

relationship between distance measures and error rates . Nevertheless, the author 

was able to obtain several useful theoretical results linking the two, assuming known 

population parameters . In the present covariance regularisation context with two 

parameters controlling the degree of shrinkage, as in expression (3.7) , it would be 

too optimistic to expect that the (�, i) combination which maximises the Bhat­

tacharyya distance for a given set of data would also yield a classification rule which 

minimises the future error rate. Instead, from the example (Table 5 . 1 )  below, we 

can often detect no such relationship between the sample Bhattacharyya distance 

and minimum error rate. Table 5 . 1  shows- the values of the components (in, B2) . 

of the sample Bhattacharyya distance at a range of points over the (A, ,) grid. The 

cross-validated error rate (ecv) at each point is also stated to give an indication of 

the range within which the minimum actual error rate lies . The data set consisted 

of samples of size 13 from each of two normal populations (p = 6) with equal , 

highly ellipsoidal covariance matrices and mean differences in the high variance 

subspace (Condition 4 - see Chapter 3, Section 3.5) . 

Table 5 . 1 :  Example of (A, ,) grid of Bhattacharyya distance values (ecv (B1 ,  B2)) 

, = 1 
, = 0.5 
, = 0  

. 08 (3.84,0.05) 

. 04 (2.93,0.10) 

. 1 5 (2 .73,0.59) 

. 08 (3.84,0.00) 

. 04 (2 .93 ,0.01 )  

. 08 (2 .73,0.05) 
A = 0.5 

. 08 (3.84,0.00) 

. 04 (2 .93,0.00) 

. 08 (2 .73,0.00) 
A = l 

It is evident from Table 5 . 1  (and other data sets) that the largest value of 

B = B1  + B2 for any given data set will always occur on the axis where A = 0 

on the (A, ,) grid; i .e .  suggesting no regularisation of the individual covariance 

matrices towards the average covariance. This is the case for samples from any two 

normal distributions. There are several reasons for this: 
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1 .  The value of B l  is not affected by A when the regularised covariances are 

used. This is because the central component of B l  is 

and this is not affected by A for a fixed value of 'Y. 

2. The value of B2 decreases monotonical ly as A increases, for fixed 'Y, since as 

A approaches 1 ,  the regularised covariances approach equality. When A = 1 ,  

t l  (A,  'Y) and t2 (A ,  'Y) are both equal to ( 1  - 'Y)Sp + 'Y (tr {Sp } /p) I .  In this 

case the numerator and denominator in the parenthesis in expression (5.3) 

are equal, and the term B2 becomes zero. 

3. Term B2 is always non-negat ive since for two p-dimensional positive definite 

matrices, A and B, 

4. The value of B2 decreases monotonically as 'Y increases from 0 to 1 ,  for fixed 
. 

A.  Since B2 is fundamentally a measure of the covariance shift between 

the two distributions and as the eigenvalues of the separate covariances are 

increasingly biased towards equality, the distributions become more similar 

in shape. 

5 .2 .4 Model selection 

As mentioned earlier, the simulations performed with Friedman's SRDF (and vari­

ous modifications) in Chapters 3 and 4 have enabled us to observe that for a number 

of different simulation conditions, there is no unique combination of >. and" 1', using 

the criteria of minimum cross-validated error rate. Indeed, altering the rule for the 

breaking of such ties (Section 3.6) had little effect on the overall performance of 

the procedure. Thus it appears that the degree of regularisation (either covariance 

mixing or eigenvalue shrinkage, or both) is often not as important as its presence 

in any (roughly appropriate) form. It can therefore be conjectured that complex 

methods to obtain a precise selection of >. and l' are not warranted. A goal of the 

proposed model selection procedure using the Bhattacharyya distance is to provide 

a much faster algorithm to that proposed by Friedman using cross-validation. Also, 

the procedure should choose appropriate levels of the A and 'Y parameters so that 

the classification rule obtained is comparable in performance to Friedman's SRDF. 
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Consequently, a relatively simple heuristic algorithm for selecting the values of 

). and , has been developed based on empirical data obtained from a number of 

repeated simulation experiments involving calculations of the quantities B 1  and 

B2 over the (>., ,) grid for a variety of conditions. A complex model selection 

procedure is not imperative since evidence was presented in Chapter 3, Section 3.6 

that in most situations only very approximate values of ). and , are required. Note, 

however, that , is usually required to be estimated more accurately than ). .  A dual 

optimisation (of ). and ,) approach is not possible here because of the behaviour 

of terms B 1  and B2 outlined in points 1 - 4 in the previous section. Instead, the 

approach adopted is to first select one parameter, and then the other. Since both 

terms B 1  and B2 exhibit similar behaviour in relation to ). for all values of " it is 

sensible to first choose a value for , so as to narrow down the search area for )' on 

the (). ,  ,) grid. 

One conclusion from previous simulation studies (Chapter 4) is that as the 

sample size to dimension ratio decreases, an increasing degree of eigenvalue reg­

ularisation using , (i .e .  , >  0) becomes 'necessary to counteract the bias in the 

estimated eigenvalues of the sample covariances. Also, an increasing amount of 

regularisation away from , = 0 is required as p increases, even for those conditions 

where any shrinkage of the eigenvalues to equality would appear to be strongly 

counter-productive. See, for example, Chapter 4 ,  Table 4 .5 where the average. i 

value increases with dimension to substantial levels, even though no regularisation, 

or SQDF, would seem to be the best option in these conditions. The benefits 

of a decrease in variance from such regularisation has been shown to outweigh 

any introduced bias (see also Koolaard, Lawoko and Ganesalingam ( 1996)) .  The 

proposed method of selecting , from the Bhattacharyya distance therefore only 

considers values of , in the range () � , � 1 ,  where () > 0, but usually fairly close 

to zero, and where () depends on both the magnitude of p and the sample size to 

dimensionality ratio. 

Selection of the parameter , 

Increasing the value of the eigenvalue regularisation parameter , typically decreases 

the term B 1 ,  but not always, and the trend is not always monotonic. However from 

point 4 above we see that B2 exhibits only monotonic behaviour in relation to ,. 

So it seems sensible to first look at the behaviour of B1 for a range of 'Y. 
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The bias inherent in the estimate of B1 would be expected to be less than that 

in estimates of B2, so that the principle upon which selection of the regularisation 

parameter 'Y is made involves giving B1 greater importance than B2. Thus, in 

general the aim is to choose that 'Y which gives a large or maximal value of B1  

or B11  B2. From the behaviour of primarily B1 ,  and secondarily B2 ,  calculated 

for various 'Y over () ::; 'Y ::; 1 ,  the following decision paths are proposed for the 

selection of an appropriate ,. 

From empirical data we can identify three scenarios relating to B 1 .  Note that 

all details, which define relative terms used here such as 'small ' and 'large' , are 

given in the algorithm in Appendix B: 

I .  Magnitude of B1 small, and not greatly affected by the value of 'Y changing 

between () and 1 .  Under this scenario, B1  is not providing much information 

as to an appropriate value of 'Y, so look at the effect of 'Y on B2. If it is 

large, choose that 'Y which gives a minimal value of B11  B2, since in this case 

a dominant covariance shift over me3;n shift would seem to be important for 

enhancing classification . If 'Y also has little effect on B2, choose that 'Y which 

leads to a maximal value of B11  B2. 

II. Magnitude of B 1  large and not greatly affected by the value of , changing 

between () and 1 .  This indicates good conditions for classification due to the 

large Mahalanobis distance measure (B 1 )  for all values of ,. Some average, 

approximate value of 'Y will suffice. 

III . B1 changes substantially as 'Y changes between () and 1 .  Under this scenario, if 

'Y has little effect on B2, it is clearly desirable to select that , yielding a large 

value of B1 .  However if B2 is greatly affected by 'Y also, some greater degree of 

reduction in the variance of the system (by increasing , a little) is desirab1e 

for classification purposes, whilst still maintaining a sizeable Mahalanobis 

distance (B1)  between the groups. 

The above guide-lines lead to a simple algorithm for the selection of , to use in 

expression (3.7) based on the three scenarios above and followed by the selection 

of >. depending on a crude estimate of the similarity of the group covariances. This 

algorithm is given in Appendix B. The critical values at each decision stage have 

been arrived at empirically through a heuristic procedure which involved observing 
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the values of B1  and B2 for various random samples from an extensive variety of 

normal population combinations. 

8election of the parameter A 

For the selection of the regularisation parameter A, only the term B2 can be em­

ployed since B1 is constant over all values of A for a given value of 'Y. Since the 

term B2 gives a measure of the difference between the two distributions due to 

the covariance shift, the value e-B2 at the point A = 0, 'Y = () ( i .e. with minimal 

permitted eigenvalue shrinkage - see earlier) gives an indication of the similarity in 

the group covariance matrices, and this is used as the initial estimate of A ,  denoted 

..x. However, since it is known that B2 can be badly affected by bias if the sample 

size is small relative to p, a refinement to this estimate is proposed . 

The magnitude of the term B2 when A = ° and 'Y = 1 gives further indication 

as to the similarity or dissimilarity of the group covariance estimates, and so can be 

used to obtain an appropriately adjusted value of i Under this situation (r = 1 )  . 
of maximal eigenvalue shrinkage the determinants of the group covariances are 

reduced to their average eigenvalue raised to the power of the dimension, p. If the 

group covariances are similar, the average of their eigenvalues will be similar in 

magnitude and the term within the brackets in the expression for B2 will be close 

to one, resulting in the value of B2 itself being close to zero (see expression 5.3) .  

Since it is not guaranteed that a value of B2 close to zero means that the two 

p-dimensional group covariances 81 and 82 are similar, a second quantity is used 

as a further check to determine the degree of similarity in the covariances in such 

a situation. Consider 

Z12 = (� t l e1i - e2i l) p i=l 
where eli is the ith eigenvalue of 81 , Note that the 81  and 82 may have been 

minimally regularised (as explained earlier) using A = 0, 'Y = () to stabilize exces­

sive variation in the original covariance estimates. This quantity is the average 

(absolute) difference between corresponding eigenvalues of 81 and 82 relative to a 

measure of the overall variance in the groups. It may occur that B2(0, 1 )  (where 

B2(a, b) denotes the value of B2 when A = a and 'Y = b) is close to zero, while dis­

similarity between 81 and 82 is indicated by a large value of Z12 ' In such a situation 

the second quantity Z12 serves to compliment B2(0, 1) by detecting a phenomenon 

which the latter is incapable of detecting. 
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Taking into account the above procedures, the adjusted estimate o f  A is �I , 

where 
�f = )'l/w 

where w is proportional to 1/ B2(0, 1) . If w is large (suggesting similarity of the 

covariances) ,  and Z12 is large (suggesting dissimilarity) , an adjustment of � towards 

zero is made, if appropriate. Details of the heuristic algorithm, derived from purely 

empirical/simulation results are given in Appendix B .  

Thus model selection using the Bhattacharyya distance consists of the following 

steps: 

1. Evaluate Bl and B2 from the available data for varying degrees of covariance 

eigenvalue shrinkage (a range of ,) , but using no covariance mixing (A = 0) .  

1 1 .  Select i' using decision algorithm in Appendix B that implements the guide­

lines given in this section . 

111 .  Using the amount of eigenvalue shrinkage determined by the selected param­

eter value i', estimate ). using B2 and confirm or adjust this estimate using 

the two checks of covariance similarity, the values w and Z12 . 

The regularised classification rule which uses the above model selection procedure 

will be denoted SRDF-B. 

Re-sampling techniques are avoided in this procedure. This contrasts with 

Friedman's SRDF where a sample-reuse method (cross-validation) is performed 

at each of a whole grid of typically between 25 and 50 points. The result is a 

classification rule with a greatly reduced computational burden. Furthermore, the 

rule is one which avoids having to arbitrarily choose between apparently equally 

good (A, ,) combinations, such as occurs when there is a non-unique minimum 

cross-validated error rate. 

5 .2 .5 Model selection when there are more than two groups 

The technique outlined above selects appropriate values of A and , using the Bhat­

tacharyya distance in situations when there are only two groups. This is because 

the measure B as stated in expressions (5. 1 ) ,  (5.2) and (5 .3) is written for the 

two-group case. If there are more than two groups, the above procedure must be 
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followed for each pair of groups, leading to estimates of the regularisation param­

eters being obtained for each pair. The final values of � and i are then calculated 

by simply taking the median of the various parameter values obtained from the 

different pairs. The median is used since there may be a small number of pairs of 

groups for which the model selection procedure leads to regularisation parameter 

values which are dissimilar to those obtained from the majority of pairs. 

Since the model selection procedure is to be repeated for each pair of groups, the 

computation time required increases as the number of groups increases. However, 

since the model selection procedure proposed in this chapter is so much faster 

(in terms of computation time) than the cross-validation method employed by 

Friedman (see Table 5 . 14) ,  the number of groups would have to be very large 

before the computation times of the two methods became of a similar order of 

magnitude. 

5 . 3  SIMULATION STUDIES AND RESULTS 
. 

Computer simulation is used to compare the performances of SRDF, SLDF, SQDF, 

SEDF and SRDF-B in the same variety of settings as that used in Chapter 3, 

Section 3.5, with the addition that the two-group case is studied, as well as the 

three-group situation. In all cases the group distributions are normal and the 

sample size from each group was 14,  giving a total sample size of 28 or 42. For each 

set of conditions, simulations were performed for various levels of dimensionality: 

p = 6, 10  and 20. The optimisation grid for the SRDF was set equal to that used 

in previous chapters. Since the sample size to dimensions ratio is less than one 

for some simulations, the zero eigenvalues of the group covariance matrix estimates 

were replaced by a small quantity, sufficient to permit numerically stable covariance 

inversion. 

There were 100 repetitions of the following experiment for each value of p and 

for each of the six settings (see Subsection 3.5. 1 ) .  As before, random samples of 

size 14 from each group were drawn from specified multivariate normal distribu­

tions and were used to construct the classification rules for all five of the above 

methods. An additional test sample of size 100 was randomly generated from the 

same distributions and classified using each of the five rules given above, yielding 

estimates of the overall error rate for each rule. These are presented in Tables 5.2 
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Table 5 .2 :  Equal , Spherical Covariance Matrices. (Two Groups) Error rate 
(with standard deviation) for several discriminant functions. 

Dimension : p 
6 10 20 

SRDF .08 ( .03) . 10 ( .04) . 1 0  ( .04) 
SRDF-B .08 ( .03) .09 ( .03) . 10 ( .04) 
SQDF . 16  ( .06) .30 ( .07) .30 ( .07) 
SLDF . 10  ( .04) . 14 ( .05) .24 ( .09) 
SEDF .08 ( .03) .09 ( .03) .09 ( .03) 

5..SRDF .86 ( .29) .83 ( .32) .84 ( .32) 
;ySRDF . 79 ( .33) .78 ( .31 )  .82  ( .27) 
5..SRDF-B .90 ( .05) .77 ( .08) .58 ( .09) 
;ySRDF-B .91 ( . 1 7) .90 ( . 19) .87 ( .23) 

to 5 . 13 ,  along wi th the means and standard deviations of the selected regularisation 

parameters for SRDF and SRDF-B over the 100 replications. In the tables 5..SRDF 

and 5..SRDF-B denote the mean value of >. for SRDF and SRDF-B respectively. The 

mean value of 'Y for each method is defined similarly. 

In the various conditions tested for the two- and three-group cases it is clear 

that SRDF and SRDF-B yield very similar average error rates over the 100 repli­

cations. In nine of the eighteen sets of simulation conditions for the two-group 

case represented in Tables 5.2 to 5 . 13 ,  SRDF-B performs slightly better (and often 

with a reduced standard deviation) than SRDF in terms of their estimated error 

rates. In five of the sets the SRDF has a slightly lower error rate. The model 

selection procedures of SRDF and SRDF-B give roughly similar results regarding 

the selection of 'Y by introducing appropriate degrees of this parameter for each set 

of simulation conditions. Regarding the selection of >., the two procedures can give 

entirely different results (e.g. Table 5.7) and yet the average error rates remain 

very similar. This again shows that in a number of situations the error surface is 

quite fiat with respect to the covariance mixing parameter >.. In conclusion, neither 

technique is superior to the other in terms of experimental classification error rates. 

In the cases where there are three groups, represented in Tables 5.8 to 5 . 13 ,  

the SRDF-B again performs comparably to SRDF in most settings. There are two 

exceptions to this, where SRDF-B performs somewhat worse than SRDF. These 

both occur in higher dimensional setting (p = 20) (see Tables 5 . 10  and 5 . 12 ) .  In 
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Table 5 .3 :  Unequal, Spherical Covariance Matrices. (Two Groups) Error 
rate (with standard deviation) for several discriminant functions. 

Dimension: p 
6 10 20 

SRDF . 1 3  ( .05) . 1 1  ( .05) .08 ( .05) 
SRDF-B . 1 2  ( .04) . 1 0  ( .05) . 10 ( . 10) 
SQDF .20 ( .06) .34 ( .08) .35 ( .07) 
SLDF . 1 7  ( .05) .20 ( .06) .30 ( .07) 
SEDF . 1 5  ( .04) . 1 5  ( .04) . 1 8  ( .04) 

.:\SRDF .48 ( .37) .33 ( .33) .28 ( .23) 
;ySRDF .75 (.34) .81 ( . 28) .89 ( . 19) 
.:\SRDF-B .44 ( . 27) . 10 ( . 1 5) .00 ( .00) 
;ySRDF-B . 77 ( .34) .85 ( .25) .81 ( .3 1 )  

Table 5 .4 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences concentrated in the Low-Variance Subspace. (Two Groups) 
Error rate (with standard deviation) for several discriminant functions. 

Dimension: p 
6 10 20 

SRDF .03 ( .03) .05 ( .04) . 1 2  ( .06) 
SRDF-B .01 ( .02) .08 ( .05) . 1 6  ( .05) 
SQDF .02 ( .02) . 1 4  ( .08) .28 (.07) 
SLDF .01 ( .01 )  .03 ( .03) . 1 5  ( .08) 
SEDF .09 ( .04) . 12  ( .05) . 1 5  ( .05) 

.:\SRDF .97 ( . 16) .92 ( . 2 1 )  .88 ( .26) 
;ySRDF .23 ( .32) .22 ( .29) .43 ( . 29) 
.:\SRDF-B .35 ( . 12) . 14 ( .05) . 0 1  ( .00) 
;ySRDF-B . 01  ( . 10) .36 ( .44) . 72 ( .38) 
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Table 5.5: Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences concentrated in the High-Variance Subspace. (Two Groups) 
Error rate (with standard deviation) for several discriminant functions. 

Dimension : p 
6 10 20 

SRDF .02 ( .02) .03 ( .02) .04 ( .02) 
SRDF-B .02 ( .02) .02 ( .02) .04 ( .02) 
SQDF .06 ( .04) . 19 ( .09) .23 ( .09) 
SLDF .03 ( .02) .05 ( .03) . 1 6  ( .08) 
SEDF .02 ( .02) .02 ( .02) .04 ( .02) 

�SRDF .95 ( . 19) .96 ( . 16) .93 ( .23) 
;;,lRDF .80 ( .34) .87 ( .28) .91 ( . 18) 
�SRDF-B .36 ( . 12) .14 ( .05) .01 ( .00) 
;ySRDF-B .67 ( . 13) .75 ( . 1 1 )  .83 ( . 1 1 )  

Table 5.6 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. (Two Groups) Error rate (with standard deviation) for 
several discriminant functions. 

Dimension: p 
6 10 20 

SRDF . 17  ( .07) . 13  ( .06) .05 ( .03)  
SRDF-B . 1 5  ( .05) . 1 1  ( .05) . 10 ( .07) 
SQDF .16 ( .05) . 19  ( .08) .20 ( .05) 
SLDF .48 ( .06) .46 ( .06) .45 (.06) 
SEDF .48 ( .06) .46 ( .06) .43 ( .05) 

�SRDF . 14  ( . 14 )  . 1 1  ( . 1 1 )  . 15 ( . 1 2) 
;ySRDF . 13 ( .21 )  .47 ( .32) .65 ( .30) 
�SRDF-B .04 ( .02) .00 ( .00) .00 ( .00) 
;ySRDF-B . 1 2  ( .21 )  . 28 ( .33) .50 (.34) 
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Table 5.5 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences concentrated in the High-Variance Subspace. (Two Groups) 
Error rate (with standard deviation) for several discriminant functions. 

Dimension : p 
6 10 20 

SRDF .02 ( .02) .03 ( .02) .04 ( .02) 
SRDF-B . 02 ( .02) .02 ( .02) .04 ( .02) 
SQDF .06 ( .04) . 1 9  ( .09) . 23 ( .09) 
SLDF .03 ( .02) .05 ( .03) . 16  ( .08) 
SEDF .02 ( .02) .02 ( .02) .04 ( .02) 

5,SRDF .95 ( . 19) .96 ( . 16) .93 ( .23) 
;:ySRDF .80 ( .34) .87 ( .28) .91  ( . 1 8) 
5,SRDF-B .36 ( . 12) .14 ( .05) .01 ( .00) 
;:ySRDF-B .67 ( . 13) .75 ( . 1 1 )  .83 ( . 1 1 )  

Table 5.6 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. (Two Groups) Error rate (with standard deviation) for 
several discriminant functions. 

Dimension: p 
6 10 20 

SRDF . 1 7  ( .07) . 13  ( .06) .05 ( .03) 
SRDF-B . 1 5  ( .05) . 1 1  ( .05) . 10  ( .07) 
SQDF . 16  ( .05) . 19 ( .08) . 20 ( .05) 
SLDF .48 ( .06) .46 ( .06) .45 ( .06) 
SEDF .48 ( .06) .46 ( .06) .43 ( .05) 

5,SRDF . 14  ( . 14) . 1 1  ( . 1 1 ) . 15 ( . 12) 
;:ySRDF . 1 3  ( . 2 1 )  .47  ( .32) .65 ( .30) 
5,SRDF-B .04 ( .02) .00 ( .00) .00 ( .00) 
-SRDF-B 'Y . 1 2  ( .21)  .28 ( .33) .50 ( .34) 
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Table 5 .7: Unequal , Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. (Two Groups) Error rate (with standard deviation) 
for several discriminant functions. 

Dimension : p 
6 10 20 

SRDF .04 ( .03) .06 ( .04) .04 ( .04) 
SRDF-B .02 ( .02) .04 ( .03) .05 ( .05) 
SQDF .02 ( . 02) .08 ( .07) . 1 1  ( .04) 
SLDF .03 ( .02) .09 ( .04) . 18 ( .06) 
SEDF .09 ( .04) . 1 3  ( .05) . 1 3  ( .05) 

;"SRDF .74 ( .37) .50 ( .34) .42 ( .26) 
;ySRDF .34 ( .31)  . 52 ( .35) .74 ( .31 )  
;"SRDF-B .05 ( .04) .01 ( .01 )  .00 ( .00) 
;ySRDF-B . 1 3  ( . 1 5) .28 ( .33) .38 ( .32) 

Table 5.8: Equal, Spherical Covariance Matrices. (Three Groups) Error 
rate (with standard deviation) for several discriminant functions. 

Dimension : p 
6 10 20 

SRDF .12 ( .04) . 1 3  ( .04) . 1 5  ( .06) 
SRDF-B . 1 1  ( .03) . 1 1  ( .03) . 1 4  ( .04) 
SQDF .22 ( .06) .39 ( .07) .41  ( .07) 
SLDF . 13 ( .04)  . 17  ( .05) .25 ( .06) 
SEDF . 1 1  ( .03) .12 ( .03) . 14  ( .04) 

;"SRDF .80 ( .34) .78 (.36) .76 ( .36) 
;ySRDF .77 ( .30) .78 ( .30) .82 ( .24) 
;"SRDF-B .90 (.04) .76 ( .05) .53 ( .08) 
tSRDF-B .93 (.09) .91 ( . 12)  .88 ( . 15 )  
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Table 5.9 :  Unequal, Spherical Covariance Matrices. (Three Groups) Error 
rate (with standard deviation) for several discriminant functions. 

Dimension: p 
6 10  20 

SRDF . 19 ( .04) . 1 7  ( .05) . 15 ( .05) 
SRDF-B . 1 9  ( .05) . 1 7  ( .05) . 1 7 ( . 10) 
SQDF .31 ( .06) .46 ( .07) .51  ( .07) 
SLDF .23 ( .04) .27 ( .05) .35 ( .07) 
SEDF . 2 1  ( .04) .22 ( .04) .25 ( .05) 

�SRDF .33 ( .36) . 2 1  ( .23) . 1 6  ( . 16) 
� SRDF , .71 ( .31 ) .86 ( . 2 1 )  .88 ( .20) 
�SRDF-B .45 ( . 18 )  . 1 1  ( . 10) .01  ( .02) 
;ySRDF-B .89 ( . 2 1 )  .89 ( .20) .85 ( .25) 

Table 5 . 10 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean 
Differences concentrated in the Low-Variance Subspace. (Three Groups) 
Error rate (with standard deviation) for several discriminant functions. 

Dimension: p 
6 10 20 

SRDF .05 ( .03) .10 ( .05) .23 ( .06) 
SRDF-B .04 ( .02) . 1 5  ( .09) .29 ( .07) 
SQDF . 10  ( .04) .30 ( .08) .46 ( .06) 
SLDF .05 ( .02) .09 ( .04) . 2 1  ( .05) 
SEDF .21 ( .05) .27 ( .06) .33 ( .06) 

�SRDF .95 ( . 17) .83 ( .27) .79 ( .28) 
;ySRDF .02 ( .08) .04 ( . 13) . 20 ( .23) 
�SRDF-B .68 ( .30) .80 ( . 19) .68 ( .06) 
;ySRDF-B .00 ( .00) .28 ( .40) .78 ( .34) 
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Table 5. 1 1 :  Equal, Highly Ellipsoidal Covariance Matrices with Mean Dif­
ferences concentrated in the High-Variance Subspace. (Three Groups) 
Error rate (with standard deviation) for several discriminant functions. 

Dimension: p 
6 10 20 

SRDF .07 ( .03) . 10  ( .03) . 1 3  ( .04)  
SRDF-B .07 ( .03) . 1 0  ( .03) . 13 ( .04 ) 
SQDF . 1 5  ( .05) .35 ( .08) .43 ( .08) 
SLDF .08 ( .03) . 13 ( .04)  .23 ( .06) 
SEDF .07 ( .02) .10 ( .03) . 12 ( .03) 

5.SRDF .83 ( .35) .86 ( .27) .84 ( .30) 
;ySRDF .65 ( .39) .62 ( . 35) . 77 ( . 24)  
5.SRDF-B . 74 ( . 29) .81 ( . 2 1 )  .71 ( .04)  
;ySRDF-B . 74 ( . 14)  .81  ( . 1 1 )  .85 ( .08) 

Table 5 . 12 :  Unequal, Highly Ellipsoidal Covariance Matrices with Zero 
Mean Differences. (Three Groups) Error rate (with standard deviation) for 
several discriminant functions. 

Dimension: p 
6 10 20 

SRDF .20 ( .06) . 14  ( .05) . 13 ( .06) 
SRDF-B . 16 ( .05) . 1 2  ( .05) .21 ( .09) 
SQDF . 1 6  ( .04) .20 ( .06) .24 ( .05) 
SLDF .60 ( .05) .59 ( .05) .59 ( .06) 
SEDF .60 ( .05) .59 ( .05) .57 ( .05) 

5.SRDF .03 ( .05) .04 ( .06) .08 ( .07) 
;ySRDF . 1 2  ( . 1 5) .30 ( . 16) .45 ( . 18) 
5.SRDF-B .02 ( .06) .00 ( .01 )  .00 ( .00) 
;ySRDF-B .04 ( .00) . 1 1  ( . 14) .68 ( .32) 
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Table 5 . 13 :  Unequal, Highly Ellipsoidal Covariance Matrices with Non­
zero Mean Differences. (Three Groups ) Error rate (with standard deviation) 
for several discriminant functions. 

Dimension: p 
6 10 20 

SRDF .06 ( .03) .06 ( .03) .07 ( .04) 
SRDF-B .05 ( .04) .05 ( .04) .06 ( .04) 
SQDF .04 ( .02) . 1 0  ( .06) . 1 3  ( .04) 
SLDF . 1 6  ( .04) . 1 8  ( .04) .28 ( .06) 
SEDF . 15 ( .04) . 1 6  ( .04) .20 ( .04) 

5.SRDF .07 ( . 14) .09 ( . 10) . 14 ( . 13)  
;ySRDF . 1 7  ( .20) .37 ( .22) .51  ( .20) 
5.SRDF-B . 1 0  ( . 22) .06 ( . 17) .01  ( .07) 
;ySRDF-B . 1 3  ( . 14) .24 ( .20) .47 ( .28) 

these instances, the value of 1- for the SRDF -B appears to be too high, which in-
. 

dicates inappropriate regularisation parameter estimates, and consequently a high 

error rate. On the whole, however, the model selection procedure of the SRDF-B 

performs well, and generally in agreement with the model selection procedure of 

the SRDF. 

The standard deviations of the selected regularisation parameters tended to be 

smaller for SRDF-B, perhaps because of the more direct nature of the path taken 

to select the pair of values (.�, i) in the parameter selection procedure in SRDF-B 

compared with SRDF. Furthermore, the model selection process in SRDF-B affords 

a unique choice of the estimated best pair of values ()., i) , without having �o break 

ties in an arbitrary way, as for SRDF. 

In conclusion, it can be stated that the Bhattacharyya distance between groups 

does indeed provide information as to appropriate regularisation parameter values 

to use in expression (3.7) . This can be used to obtain a classification rule which 

seeks to minimise the actual overall error rate for data from two or more specified 

normal distributions. Unfortunately, no tidy, direct theoretical relationship appears 

to exist in the literature between components of the Bhattacharyya distance and 

the error rate. Thus the derivation of the model selection procedure was based 

on empirical data and it can be seen to perform as well as the model selection 

procedure developed by Friedman ( 1989) in the SRDF method, at least under the 
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tested range of simulated conditions. 

Computational considerations 

A substantial advantage of the model selection procedure in SRDF-B over that of 

SRDF relates to the computation time required for each method . Table 5 . 14  gives 

approximate ratios (SRDF-B/SRDF) of CPU times for various dimensions. The 

actual CPU time in minutes required to estimate the regularisation parameters 

from samples of size 14 from each group for SRDF-B are given in brackets in the 

table. These are the times required to run the procedures, which are all written in 

MATLABTM ( 1 995) , on a SUN Sparcstation ELC. 

Table 5 . 14 :  Ratios of CPU times required for each method (SRDF-B/SRDF) . 

Two Groups 
Three Groups 

p = 6 
.02 ( . 1 2) 
.02 ( .38) 

p = 10 
.02 ( .23) 
.02 ( .67) 

p = 20 
.02 ( .65) 
.03 (2 .00) 

These results indicate the large gain in computational efficiency in using SRDF­

B over SRDF. It is expected that as the number of groups increases, the ratio of 

CPU times would increase, since SRDF-B deals with each pair of groups in turn . 

Nevertheless, the SRDF-B method would still be expected to be considerably faster 

than SRDF even for a large number of groups. 

5 .4 CASE STUDIES 

The various classification rules, including SRDF-B, were tested on a number of real 

data sets. These case studies are performed to compliment the large simulation 

studies of this and previous chapters. The aim of this case study section is to focus 

on the performance of the SRDF-B procedure developed in this chapter. Also, 

the SEDF is included among the classifiers tested since it was the main subject of 

the work in Chapter 2 of this thesis. Comparison is restricted to the criterion of 

error rate, although the matter of computational efficiency has already been ad­

dressed in some previous sections. The re-sampling methods employed by SRDF 

render it computationally the slowest technique by far. A brief description of each 

data set, along with the various classifier error rates (obtained using the technique 
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of cross-validation) ,  and regularisation parameter values, is given below. Cross­

validation was chosen over some other re-sampling error-rate estimating methods 

(see, for example, Ganeshanandam and Krzanowski ( 1990) , Koolaard and Lawoko 

( 1 993) )  such as the 0.632 estimator (Efron ( 1983) ) ,  purely for practical reasons of 

computational feasibility. That is, previous work in this research project already 

involved cross-validated error rates, and it was decided to use the same computer 

programs for the case studies. The aim is to observe the effect of regularisation 

on the cross-validated error rate, and also to compare Friedman's original method 

of determining the degree of regularisation with the new method employing Bhat­

tacharyya distance. 

Insect data 

Lindsey, Herzberg and Watts {1987} 

Three variables were measured on each of ten insects for each of three species of 

a type of insect, Chaetocnema. The first variable is the width of the first joint 

of the first tarsus; the second is the width of the first joint of the second tarsus, 

and the third is the maximal width of the aedugus. The objective would be to 

correctly classify a given individual as belonging to one of the species. The cross­

validated error rates obtained for the various methods were: SRDF .03, SRDF-B 

.07, SQDF .03, SLDF .07, SEDF . 17. Values of (5., 1) for the SRDF were ( .97, .43) 

while those for SRDF-B were ( . 53, .50) . The problem is well posed here (nip ratio 

is 3.3) , so the benefits of regularisation are not expected to be significant, and 

this is shown to be the case. All methods except the SEDF yield low error rates, 

since maximal eigenvalue shrinkage removes the moderately ellipsoidal nature of 

the group covariance matrices in the example, and decreases the rule's ability to 

separate the groups. 

Cancer data 

Hong and Yang {1991} 

The cancer data set was previously analysed by Aeberhard et al . ( 1 994) using 

various classification rules including the SRDF. This data set relates to three types 

of pathologi.cal lung cancer. Each cancer type is described by 56 variables with 

each variable taking on one of the integer values 1 through 4. The sample sizes 

from each cancer type, or group, (9, 13 and 10 respectively) are very small .  Hence, 

this problem is extremely ill-posed. The cross-validated error rates for the various 
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methods were SRDF .50,  SRDF-B .44,  SQDF .72 ,  SLDF .60,  SEDF .40.  The values 

of (-X, i) were ( .52,  .75) for the SRDF and ( .53, .95) for SRDF-B. It is clear that 

a high degree of eigenvalue shrinkage is necessary to stabilise the covariance esti­

mates. In fact the SEDF has the lowest error rate in this case, implying that much 

of the information in the covariance estimates does not improve discriminability in 

this case, where there is such a large dimensionality and so few observations. 

The magnitude of the error rate estimates for the SRDF in this example is 

somewhat different to that obtained by Aeberhard et al . ( 1 994) ,  probably due 

to differences in the implementation details of the method . The following error 

rates were obtained by Aeberhard et al . :  SQDF .69, SLDF .81 ,  SRDF .37. These 

differences include the particular regularisation grid specified in the model selection 

procedure, as well as the precise implementation of the procedure which replaces 

the zero eigenvalues of the covariance estimates with positive numbers sufficiently 

large to permit numerically stable matrix inversion (see Section 5.3) . Both of these 

factors could affect the error rate obtained, particularly for this high-dimensional 

data set which has a very small nip ratio. 'The SQDF and SRDF are also affected 

by the procedure which replaces the zero eigenvalues. 

Diabetes data 

Reaven and Miller (1979) 

This data set comprises five variables measured on each of 145 non-obese individuals 

belonging to one of three groups which relate to the type of diabetes they have. 

The groups are: overt non ketotic diabetes (33 observations) , chemical subclinical 

diabetes (36 observations) and the final group is termed normal, indicating no 

diabetes (76 observations) . The problem is again well posed, and because of this, 

little regularisation is necessary. The model selection procedures of SRDF and 

SRDF-B do the right thing in this regard . It appears that eigenvalue shrinkage 

is not beneficial for classification, and even the small amount (-y = .08) employed 

by the SRDF results in a slightly greater error rate for that classification rule 

compared to SRDF-B and SQDF. The cross-validated error rates are: SRDF . 15 ,  

SRDF-B . 1 1  SQDF . 10  SLDF . 11  and SEDF . 14 .  The values of  (-X ,  i)  for SRDF 

are ( .28, .08) , and for SRDF-B are ( . 12 ,  .00) . The model selection procedure for 

SRDF-B performs very well in this case. 
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Kangaroo data 

Andrews and Herzberg {1985} 

This data set relates to three species (groups) of kangaroo. Each group is described 

by nine variables measuring physical characteristics of the animals. The data set 

was split by sex and discriminant analysis was performed on males and females 

separately. The sample sizes for each sex/species combination was 25 with the 

exception of the sample of males from group 2 which numbered 23. 

The error rates for the various classifiers applied to the male kangaroo data were 

SRDF .32, SRDF-B .30, SQDF .34, SLDF .25 and SEDF .51 .  The values of (X, i) 
for SRDF are ( .86, . 13) ,  and for SRDF-B are ( . 18, .00) . The cross-validated error 

rates for the various classifiers applied to the female kangaroo data were: SRDF .25, 

SRDF-B .28, SQDF .40, SLDF .25 and SEDF .52. The values of (). , i) for SRDF 

are ( .82, .01 ) ,  and for SRDF-B are ( . 17, .00) . Eigenvalue shrinkage appears not 

to be beneficial in this instance, but employing covariance mixing does, although 

there does not appear to be a clear relationship between the degree of regularisation 

and the error rate. The model selection p�ocedures for SRDF and SRDF-B select 

similar values for the parameter " but not A, although the resulting error rates for 

each rule are similar. The SLDF performs slightly better than the two regularised 

rules for this data, which is an indication of very similar group covariance matrices. 

Tibetan Skull data 

Morant {1923} 

This data set comprises 32 observations collected from skulls in parts of Tibet. 

There are two types (groups) of skull represented in the sample, 1 7  from the Sikkim 

area (type A) and 15 from the province of Khams (type B) .  The data consist of 

five physical measurements made on each skull. The cross-validated error rates for 

the various classifiers applied to the data were: SRDF .22, SRDF-B .22,  SQDF 

.44, SLDF .34 and SEDF .22. The values of (>" i) for SRDF are ( 1 .0 ,  .92) , and 

for SRDF-B are ( .46, .96) . Despite being a seemingly well-posed problem, these 

results indicate that a high degree of eigenvalue shrinkage is beneficial, as well as 

a substantial degree of covariance mixing. This is perhaps an unexpected result, 

but it indicates that the reduction in variance achieved by regularisation can be of 

benefit in some situations where the sample size to dimension ratio is of a moderate 

magnitude. 
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In conclusion, these case studies give a variety of examples in which some clas­

sifiers perform better than others in some cases, and worse in others. However, the 

regularised rules always perform as well as any of the other three. In addition, the 

method proposed in this chapter, SRDF-B, performs about as well as the original 

rule SRDF in all instances. Thus it seems that the Bhattacharyya distance can 

indeed be employed to give reliable indications as to appropriate values for the reg­

ularisation parameters. While these values are not always close to those obtained 

by SRDF through re-sampling techniques, the assessed error rates are quite close, 

illustrating the fact that in many cases, as mentioned earlier, it is not the degree 

of regularisation that is important to discrimination in a given case, so much as its 

presence in some appropriate form. 



Chapter 6 

ANALYTIC AS SESSMENT OF 
REGULARISATION PARAMETER S  

ON THE PROBABILITY OF 
MISCLAS SIFICATION OF THE 
QUADRATIC DISCRIMINANT 

FUNCTION 

6 . 1  INTRODUCTION 

1 32 

In Chapters 3 to 5 ,  Monte-Carlo simulation studies have been used to estimate error 

rates and assess the effect of the regularisation parameters on the overall error rate 

of the sample quadratic discriminant function with regularised covariance matrices. 

Ideally, one would prefer to study the effect of the regularisation parameters by 

using an exact analytic expression of the overall probability of misclassification of 

the SQDF. This is the motivation for the work done in this chapter. That is, using 

analytic results rather than empirical/simulation evidence, it is desired to confirm 

or obtain support for the results depicting the relationship between regularisation 

parameters and error rates, which were obtained in Chapters 3 to 5 ,  largely from 

simulation experiments. 

Suppose we have two multivariate normal populations III and II2 where the 

population parameters are known. The true error rates can be calculated exactly 

for the LDF (where the population covariances are assumed equal) for any dimen­

sion, p. In the case of unequal covariances these error rates are difficult to evaluate 

because percentage points for linear combinations of non-central chi-squared ran­

dom variables must be calculated, Bayne and Tan ( 1981) .  Various authors have 
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commented on this problem, including Gilbert ( 1969) and McLachlan ( 1 975) .  Sev­

eral studies of error rate properties in the case of unequal covariance matrices have 

examined the special case of proportional covariances with zero off-diagonal matri-
, 

ces. Very few analytical results exist regarding the misclassification probabilities 

of the QDF, and exact expressions for the error rates do not exist, with the ex­

ception of an expression recently derived by Houshmand ( 1 993) . This expression, 

however, is limited to the case of two univariate populations only, and where both 

the means and variances of the populations must be unequal. Nevertheless, it is a 

manageable exact expression for the error rate of the QDF, and since the RDF is 

just a variant of the QDF where the population covariance estimates are replaced 

by regularised estimates, we can use these expressions to investigate the effect of 

the regularisation parameters on this error rate of the QDF. 

6 .2  ERROR RATES OF THE QDF IN THE 

LITERATURE 

There has been some attempt in the literature to investigate error rates associ­

ated with the QDF. In this section, a brief summary of some relevant papers, in 

chronological order, is given. 

(i) Han ( 1 969) obtained the distribution of the QDF for the two population 

case with known (proportional) covariance matrices �l and �2' such that 

b2 = (j2bl {(j2 > 1 ) .  Using asymptotic expansions this distribution was 

obtained for the case of unknown population means. 

(ii) Gilbert ( 1 969) investigated the performance of the LDF when the popula­

tions are normal but the covariances are unequal. It was compared against 

the QDF situation when all parameters are known. The error rate was one 

criterion upon which the comparison was made, and it was found that the 

QDF performed better than the LDF for larger p, and for more unequal co­

variances. It should be pointed out that the values of p used by Gilbert were 

small (p = 1 , 2 )  and moderate (p = 6, 10) only. The error rate for the LDF 

was compared to an approximation of the error rate for the QDF where, in 

both cases knowledge of the parameters was assumed. The results showed 

the expected conclusion that pooling covariances (as in the LDF) is generally 
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harmful to discrimination if t4e covariances are in fact unequal. 

(iii) McLachlan ( 1975) obtained the expected error rates of the SQDF in the form 

of asymptotic expansions for the case of two multivariate populations with 

unequal means and proportional covariance matrices. 

(iv) Bayne and Tan ( 1981 )  found approximating methods to obtain misclassifi­

cation probabilities for the general covariance case. The purpose of their 

paper was to study the effect of unequal covariances, and correlation between 

variables, on error rate. The study was limited to two bivariate populations 

whose mean vectors are J-Ll = 0, J-L2 = (J.Ll , J.L2) ,  and whose covariance matrices 

are :El  = I and 

The matrix :E2 may be diagonalised by a linear transformation of the obser­

vations. Four settings of the parameters p, al and a2 were proposed, and the 
• 

distributional form of the QDF was written for each. Pearson curves were 

used to evaluate approximate error rates for each setting. The effects of p on 

QDF error rate was examined, for different values of J-L2, al and a2 . 

(v) Bayne, Beauchamp and Kane ( 1 984) evaluated the error rates for the QDF 

via numerical integration, in the case of two bivariate normal populations 

with known parameters, and no conditions on the parameters. 

(vi) Wakaki ( 1990) obtained asymptotic expansions of the distribution of the 

SLDF and SQDF. Comparison of the estimated error rates of eac4 method 

was made in the special case of proportional covariance matrices, and in the 

situation where the sample sizes are equal. 

(vii) Houshmand ( 1993) provided the expression for the exact distribution of the 

QDF for two univariate normal populations (p = 1 ) ,  and hence derived the 

exact error rates for this case in the form of integrals which can be calculated 

using numerical techniques. In the case of two multivariate normal popula­

tions, Houshmand describes an existing approximation for the distribution 

of the QDF, and gives a new approximation. From these, the error rates 

may be approximated. Methods for computing the above error rates are also 

provided in the paper, and references therein. 
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6 .3  COMPUTING THE ERROR RATE FOR THE QDF 

AND ITS DERIVATIVE IN THE UNIVARIATE CASE 

In this section we outline the expressions for the error rate of the QDF in the two 

univariate normal population case, and its derivative with respect to the regulari­

sation parameters. In Chapters 3 and 4 it was reported in the discussion about the 

overall sample error rate for various A and 'Y, that the estimated error rate surface 

over the (A, 'Y) grid was reasonably fiat in the A direction. It is of interest to ex­

amine how the true overall error rate changes with the regularisation parameters, 

in order to get some indication as to the effect of A on the QDF true error rate in 

the two univariate population situation. This can be achieved by looking at the 

rate of change (i .e. derivative) of the error rates with respect to the regularisation 

parameters. Houshmand ( 1993) obtained the following expressions for P( 1 12) and 

P(2 1 1 ) , where P{i lJ)  denotes the probability of classifying an observed vector x into 

population TIi when it in fact belongs to population TIj (see Chapter 1 ,  Section 1 .2) .  
In the univariate case, population TIi has mean J.li and variance al , (i = 1 , 2) .  

P ( 1 12) 

where 

K 

and 

P (2 1 1 )  

where 

ai {J.ll - J.l2)2 
(at - ai)2 

a� (K + r) (a� - ai)- l  

I n  { ai I ai} for equal priors and costs o f  misclassification' 

r 

at {J.ll - J.l2)2 
(ai - ai)2 

(6. 1 )  

(6 .2) 



Chapter 6. Regularisation effects on QDF error rate 136 

and 

The effects of the regularisation parameters on these error rates are studied 

. by evaluating the derivative of the probabilities with respect to the regularisation 

parameters. The derivatives of P(1 12) and P(2 1 1 ) with respect to ..\ have been 

obtained, but not with respect to the eigenvalue shrinkage parameter " since in 

the univariate situation such shrinkage has no effect anyway. The primary practical 

use of , lies in its application, in the multivariate situation, to the sample covariance 

matrix, whereas in this chapter we are dealing with population parameters which 

are assumed known. The expressions (6. 1 )  and (6 .2) are valid in all situations 

where III f. 112 and 0"1 f. 0"2 , since they are QDF error rates. Hence the derivatives 

obtained are also not finite if either the population means or variances are equal, 

as is the case when ..\ = 1 .  
In  this chapter the derivative of P(1 12) with respect to  ..\ i s  evaluated for a . 

variety of settings of Ill , 1l2 , O"r and O"i over the range 0 ::; ..\ < 1 .  The four settings 

of the population parameters chosen represent four general classification cases in 

the univariate situation: means and variances similar in magnitude, means similar 

but variances disparate, means separate but variances similar, and both means and 

variances dissimilar. They serve to give an impression of the effect of the covariance 

mixing parameter on error rate. Four figures, (Figures 6 .1  to 6.4) ,  are presented 

with the results in Section 6.6, showing how the rate of change of the overall error 

rate Pe = 0.5P( 1 12) + 0.5P(2 1 1 )  is affected by ..\.  
The integrals in expressions (6. 1 )  and (6.2) , and similar integrals in th� (deriva­

tive) expression (6.3) in Section 6.4, were computed using the algorithms of Lau 

( 1 980) and Narula and Desu ( 1981 ) .  To do this, a computer program was written 

in FORTRAN 77 and was based on one received by the author from Houshmand 

( 1995) . Additional programs were written using MATLABTM to complete compu­

tation of expression (6.3) . 
The expression dPJ�12) is given in the following section. 
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6.4 DERIVATIVE OF P ( 1 1 2) IN THE UNIVARIATE 

SITUATION 

137 

From Houshmand ( 1993) , the rate of change of one component (P( 1 12) )  of the 

overall error rate with respect to the regularisation parameter >' is given by: 

dP( 1 12) 
d>' 

. 1 { 1 } 
+ 2zt- 2"exp -2z ( { 1 ( ( 1 - >.)ai + >.a;) (J.Ll - 11-2)

2 }) 
x exp - 2

�
-------k�i�-------

x 
(� ((1 - >.)ai + '\a;) (11-1 - 11-2 )

2 ) i 
2 ki 

. ( 1 ( -� + �) (11-1 - 11-2)
2 ( ( 1 - '\)oi + '\0;) (ILl - IL2)

2 (-O"� + a�) 
X 2 2 

ki 
+ k� 

( 2i+t r(i + �)r(i + 1 )  ( 1 k� >')u� + >.u�) (1'1 _ 1',)' 
) } 

d
z 

+ � { �;- texp {-��1 } 

( { 1 ((1 - >.)ai + >.a;) (J.Ll - 11-2)
2 }) 

x exp -2 k� (� ( ( 1 - >.)ai + '\0;) (11-1 - 11-2)
2 ) i 

X 2 ki 

x (2i+tr(i + i)r(i + 1)) }  
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where 

r(t) 

(af + a�) 2 
1000 exp {-z} 3t- 1 dz 
(1 - A)af - ( 1  - A)ai ( (1 - A)af + Aa� ) (f-Ll - f-L2)2 In 

( ) 2 2 + 1 - A a2 + Aap kl 
( ( 1 - A)af + Aa�) k2 

kl 

Rewriting the above expression we obtain 

where 

dP( 1 J 2) dA 

( ( 1 - A)ai + Aa�) (f-Ll - f-L2)2 

k2 1 ((1 - A)af + Aa�) (f-Ll - f-L2)2 

ki 

138 
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1 k3/3l 2/31 k3 - + --2 ( 1 - A)ai + Aa� kl 1 -k3 2k3 
2" ( 1  - A)ai + Aa� kl 

k3Kl 

[ ( 

k3 ( ( 1 - A)ai + Aa�) k3 ) ( 1 - A)ai + Aa� + 
( 1  - A)ai + Aa� + ( ( 1 _ A)ai + Aa�)

2 

x ( (1 - A)ai + Aa�) - 2/32k3] (:J - 2�l
k3 } 

and kl ' k2 and Kl are as defined earlier. 

6 . 5  ERROR RATE FOR QDF: MULTIVARIATE 

NORMAL POPULATIONS WITH DIAGONAL 

COVARIANCE MATRICES 

139 

Consider the situation of two multivariate normal populations, II I  : N(JLI , �d and 

II2 : N(JL2 , �2) where �l and �2 are diagonal matrices, with leading diagonal ele­

ments denoted as (ail ' ai2 " ' " aip) and (ail 1 ai2 " ' " aip) respectively. The mean 

vectors JLl and JL2 are given by (J.Lu ,  J.L12, · . .  , J.Llp) and (J.L2 l ,  J.L22 , . . .  , J.L2p ) .  Housh­

mand ( 1993) has given an approximation for the error rates P(1 12) and P (2 1 1 ) for 

the QDF in the case of ali =1= a2i and J.Lli =1= J.L2i , for all i .  This is an extension of 

Patnaik's ( 1949) method of approximating the distribution of a linear combination 

of independent non-central Chi-square variates, which the QDF is. The technique 

involves the conjecture that such a linear combination as stated above may be ap­

proximated by a mUltiple of central Chi-square variates with v degrees of freedom, 
2 CX(II) . 
Houshmand ( 1993) obtained the following expressions for the error rates: 

where 

P ( 1 12)  = { I - Pr [xfll) < (K + r - a)jc] 
Pr [xfll) < (K + r - a)jc] 

K 

r 

if c > 0 
if c < 0 ,  

(6.4) 
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and 

b ·  J 

a 
Z3Z1 - 2Zi Z3 
Z3 

c -

4Z2 

n 
8Zi Z2 3 
P 

ZI L aj ( l  + bJ) 
j=1 

P Z2 2 L a} ( 1  + 2bJ) 
j= 1  

p 
Z3 L 8a] ( 1  + 3bJ) 

j=1 
a ·  J ( 2 2 ) 2 -2 

alj - a2j a1j 

2 ( ) ( 2 2 ) - 1 a2j J-l lj - J-l2j a1j - a2j . 

P(2 J l )  = { pr [XlII) < (K + r - a)/c] if c > 0 
(6.5) 

1 - Pr [XlII) < (K + r - a)/c] if c < 0, 

where K, r, a, c, n, Z1 ,  Z2 , Z3 have the same form as above except that now 

and 

� _ 2 ( ) ( 2 2 ) - 1  Uj - alj J-llj - J-l2j alj - a2j . 

Settings of the population parameters were used which are similar to those six 

conditions used in the simulation studies of Chapters 3 to 5 (see, in particular, 

Section 3.5) .  Some of the mean vectors and covariance matrices had to be altered 

slightly since the expressions (6.4) and (6.5) are not valid if corresponding elements 

of either #1-1 and #1-2 , or Ll and L2 are equal, which is the case for most of the 

six conditions. Figures 6.5 to 6.22 are displays of the overall error rate, P e = 
(P( l J2) + P(2 J l ) )/2 (assuming equal prior probabilities) , as it varies with respect 

to the covariance regularisation parameters oX and 'Y under the above six conditions. 

That is, regularisation of the same form as that in expression (3.7) is applied to 
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matrices �l  and �2. The resulting; covariance matrices are used in expressions 

(6.4) and (6 .5) above. 

As mentioned before, the error rate expressions In both the univariate and 

multivariate cases above are for the true error rate. It would have been most ap­

propriate to have been able to use similar expressions for the error rate conditional 

on the training sample since it is on the sample estimates that regularisation is 

employed . No exact, analytical expression exists for the error rate of the SQDF, 

however, as has been already stated . In any event, the effect of regularisation on 

the SQDF was the very focus in Chapters 3 to 5 in the various simulation stud­

ies. With this in mind, the purpose of the work in this chapter is to analytically 

and algebraically confirm some of the findings of previous chapters, particularly 

regarding appropriate magnitudes of A and 'Y for given parameter settings. 

6 .6  RESULTS 

6.6 . 1 Univariate populations 

The results of evaluating expressions (6. 1 )  and (6.2) for various population param­

eters and values of A are now discussed. Figures 6 .1  to 6.4 and Tables 6 . 1  to 6.4 

show how the overall error rate, Pe, as well as P(1 12) and its derivative vary with 

A. As a general comment, it may be observed that the overall error rate is not 

greatly affected by lambda. Over most of the range of A, there is usually a small 

rate of change in error rate with respect to A, although in some conditions, as A 
nears 1 ,  the error rate changes more rapidly. 

Figure 6 .1  shows Pe changing with A in the case where both the population 

means and variances are similar in magnitude: (J-Ll = 0, J-L2 = 0 . 1 ,  ur = 0.5 and u� = 

1 ) .  The overall level of error rate is high here since these are difficult conditions 

for discrimination between the populations. Since the population means are close 

together, if A is increased and thereby the variances tend to equality, then P e 

increases due to the large 'overlap' between the populations. The overall error rate 

increases by around 15% as A increases from 0 to 0.9, and the rate of increase 

is steady for the most part but decreases as A approaches 1 .  From Table 6 .1  it 

may be observed that P(1 12) increases from A = 0 to approximately A = 0.7, then 

decreases rather rapidly as A nears 1 .  On the other hand, P(2 1 1 )  increases steadily 

throughout the range of A until about A = 0.8, when it appears to increase rapidly 
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Figure 6. 1 :  Overall error rate (Pe) versus Lambda (A) when the two population 
means and variances are similar. (p = 1 ,  J.Ll = 0, J.L2 = 0 . 1 ,  a� = 0 .5  and ai = 1 )  

as A approaches 1 .  These two error rates presumably rapidly tend to equality as A 
increases from 0.9 and approaches 1 .  However, the computations in this range of 

A are unstable because the summation to infinity in expressions (6. 1 )  and (6.2) is 

difficult to obtain. 

These results indicate that using covariance mixing in conditions where the 

population means are close together has the effect of diminishing any information 

(that the covariance matrices might contain) which could be used to separate the 

populations. Hence error rates increase. This is in agreement with conclusions 

from the simulation studies under similar conditions which are also difficult for 

discrimination. 

Figure 6.2 shows the overall error rate against A when the population means are 

also close together but the variances are more disparate. Once again P e increases 

as A increases from 0 to 0.9, but this time by over 40%, since making the variances 

more similar in magnitude increases the 'overlap' between the populations. The 

rate of increase of Pe is close to constant across the whole range of A, and P( 1 12)  

and P(2 1 1 )  behave in a similar way to the previous case, with P( 1 1 2) peaking 

and dropping between 0.8 and 1 ,  and P(2 1 1 )  increasing more rapidly in the same 

range of A (Table 6.2) .  Once again the general conclusion can be made that if 

the population means are very close together, the {co)variances should not be 

regularised to equality. 
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Table 6 . 1 :  Error rates in the case of similar population means and variances. 
0 , J-l2 = O. l , a� = 0.5 and a� = 1)  

A P(1 12) dP(112) P(2 1 1 )  Pe dt. 
0.0 0 .5922 0.0954 0.2370 0.4 146 
0 . 1  0 .6016 0.0920 0.2446 0.4231 
0.2 0.6106 0.0884 0 .2521 0.4313 
0.3 0.6193 0.0844 0 .2595 0.4394 
0.4 0.6275 0.0791 0 .2669 0 .4472 
0.5 0 .6350 0.0704 0. 2744 0 .4547 
0.6 0.6412 0 .0513 0. 2823 0.4618 
0.7 0 .6440 -0.0063 0.2922 0 .4681 
0.8 0 .6347 -0.2340 0 .3 1 18  0.4732 
0.9 0.5814 -0.8618 0 .3707 0.4761  

Overall Error Rate versus Lambda 

�.------------------------------------. ci 

-;1, 
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Figure 6 .2 :  Overall error rate (P e) versus Lambda (A) when the two population 
means are similar, but their variances are disparate. (p = 1, J.Ll = 0, J.L2 = 0 . 1 ,  a; = 
0.5 and a� = 2) 
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Table 6.2 :  Error rates in the case of similar population means, but variances dis-
parate. (f.i,l = 0, f.i,2 = 0. 1 ,  ai = 0.5 and a� = 2) 

A P( 1 12)  dP(112) P(2 1 1 )  Pe dt. 
0.0 0.5025 0.2460 0 . 1734 0 .3379 
0 . 1  0.5259 0.2231 0 . 1887 0.3573 
0 .2 0.5473 0. 2052 0.2034 0.3753 
0.3 0.5670 0 . 1907 0 .2177 0.3923 
0.4 0.5855 0 . 1786 0.2317 0.4086 
0 .5 0.6028 0 . 1682 0.2454 0.4241 
0.6 0.6191 0 . 1582 0.2590 0.4391 
0.7 0.6344 0 . 1454 0.2725 0.4534 
0.8 0.6476 0 . 1096 0. 2863 0.4669 
0.9 0.6468 -0.3130 0.3094 0.4781 

The third case involves population means which are reasonably far apart, and 

variances which are close together (Figure 6.3) . The overall error rate increases 

only slightly (by less than 1%) as A increaSes from 0 to 0.8, and appears to level 

off for higher values of A .  From Table 6.3 it may be seen that P( 1 12 )  decreases at 

a slow but almost constant rate as A increases to about 0.8, while P (2 1 1 )  increases 

at a similarly slow but very steady rate. The level of P e is much lower than 

for the previous two cases, due primarily to the much greater separation between 

population means. Since the variances are similar to begin with, regularisation 

with A does not affect the error rate much, as is evident from both Figure 6 .3 and 

Table 6.3. 

The final case looked at in this section involves two populations whose means 

and variances are quite dissimilar. From Figure 6.4 and Table 6.4 it is again evident 

that Pe (nor indeed P( 1 12 )  or P(2 1 1 ) )  change much as A increases from 0 to 0.8, with 

Pe increasing by 5%. Once again, P( 1 12) and P(2 1 1 )  change in opposite directions 

at a very slow, almost constant rate. The level of error rate is quite low due to 

the large separation between means. This case and the previous one illustrate the 

fact that {co ) variance mixing using the A parameter is less effective when there 

is reasonable separation between population means, but it also often affects the 

different components of P e in opposite ways. 
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Figure 6.3 :  Overall error rate (Pe) versus Lambda (>.) when the two population 
variances are similar, but their means are disparate. (p = 1 ,  Jll = 0, Jl2 = 1 ,  a� = 
0.75 and ai = 1 )  

. 

Table 6.3 : Error rates in the case of similar population variances, but disparate 
means. (Jll = 0, Jl2 = 1 ,  a� = 0.75 and ai = 1 )  

>. P( 1 12) dP(112) P(2 1 1 )  Pe d.� 
0.0 0.3396 -0.0392 0.2491 0.2944 
0 . 1  0.3357 -0.0401 0.2539 0.2948 
0.2 0.3316 -0.0410 0.2587 0.2951 
0.3 0.3275 -0.0418 0.2634 0.2955 
0.4 0.3232 -0.0426 0.2682 0.2957 
0.5 0.3189 -0.0434 0.2730 0.2960 
0 .6 0 .3146 -0.0440 0.2777 0.2962 
0 .7 0 .3101 -0.0447 0.2825 0 .2963 
0.8 0.3056 -0.0452 0.2872 0.2964 
0.9 n/a n/a nla n/a 
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Figure 6.4: Overall error rate (P e) versus Lambda ().) when the two population 
means and variances are disparate. (p = 1 ,  J-ll = 0, J-l2 = 3, ai = 1 and a� = 2) 

Table 6.4: Error rates for the case of disparate population means and variances. 
(J-ll = 0, J-l2 = 3, ai = 1 and a� = 2) 

). P (1 12) dP(112) P(2 1 1 ) Pe d.� 
0.0 0. 1294 -0.01 10  0.0803 0 . 1049 
0 .1 0 . 1282 -0.0129 0.0836 0 . 1059 
0.2 0. 1268 -0.0147 0.0869 0 . 1069 
0.3 0 .1253 -0.0164 0.0901 0 . 1077 
0.4 0 . 1235 -0.0179 0.0932 0 . 1084 
0.5 0 . 1217 -0.0194 0.0963 0 . 1090 
0.6 0. 1 197 -0.0208 0.0993 0. 1095 
0.7 0 . 1 175 -0.0221 0 . 1022 0 . 1099 
0.8 0. 1 1 52 -0.0234 0. 1050 0 . 1 101  
0.9 nla nla nla nla 
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Figure 6.5 :  Overall error rate (P e ) versus Lambda (,X) and Gamma h) under 
conditions of equal and spherical covariance matrices (p = 6) . (i .e. Condition 1 in 
Chapter 3, Section 3.5) 

6 .6 .2  Multivariate populations 

The results of evaluating expressions (6.4) and (6.5) , under the conditions stated in 

the previous section (Section 6.5) , are now discussed. The figures show P e plotted 

against ,X and ,. 

From Figures 6.5, 6.6 and 6.7, it is clear that in the case of similar, spherical 

covariance matrices, the error surface over the (,X, ,) grid is very flat. This con­

firms observations from the simulation studies of previous chapters. The choice 

of high (close to one) values for both regularisation parameters is also supported 

from these figures, and, on such a fiat surface as this, shows how surprisin
,
gly sen­

sitive the model selection procedures of Friedman and that in Chapter 5 (using 

Bhattacharyya distance) are. 

It can be observed from these figures (i .e. Figures 6.5, 6 .6 and 6.7) that , is 

shown to have no effect on error rate. This is because the covariance matrices 

being used are already perfectly spherical. It has been shown from the simulation 

studies, however, that this condition is ideal for applying eigenvalue regularisation 

to the sample covariance matrix, since the bias introduced by it is towards the true 

value. The magnitude of the true error rate for these parameter settings (around 

10%) is comparable to that of the error rates of the SRDF in the simulation study 

of Chapter 3 (Section 3.5) . 
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Figure 6 .6 :  Overall error rate (Pe) versus Lambda (,\) and Gamma (-y) under 
conditions of equal and spherical covariance matrices (p = 10) .  (i .e. Condition 1 
in Chapter 3, Section 3 .5) 

o \) 

Figure 6.7 :  Overall error rate (Pe) versus Lambda (,\) and Gamma (-y) under 
conditions of equal and spherical covariance matrices (p = 20) . (Le. Condition 1 
in Chapter 3, Section 3.5) 
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Figure 6.8: Overall error rate (P e ) versus Lambda (.x) and Gamma (-y) under 
conditions of unequal and spherical covariance matrices (p = 6) .  ( i .e . Condition 2 
in Chapter 3 ,  Section 3.5) 

For the case of unequal, spherical covariances (Figures 6.8, 6.9 and 6 . 10) ,  the 

effect of covariance regularisation using .x is substantial . The minimum error rate 

occurs when .x is zero. Again, since the covariance matrices are already perfectly 

spherical, there is no effect of , on the true error rate in this situation, although 

it is clear that in practice eigenvalue shrinkage will be beneficial since it makes the 

resulting matrix closer to its (true) spherical shape. The magnitude of the true 

error rate surface at its minimum is comparable to the minimising cross-validated 

error rate for the SRDF in Chapter 3, between 1 0% and 14%. 

For the case of similar, highly ellipsoidal covariance matrices, with meCl;n differ­

ences in the low variance subspace (Figures 6. 1 1 ,  6 . 12  and 6.13) ,  the detrimental 

effect of , regularisation on error rate is obvious. This result is in agreement with 

findings from the simulation studies of previous chapters. Since the population 

mean differences are in the low variance subspace, those differences are identi­

fiable if the covariance matrices remain ellipsoidal. Eigenvalue shrinkage causes 

the covariance matrices to become more spherical, and the resulting increase in 

variance in the low variance subspace leads to the mean differences becoming less 

identifiable, and hence error rate increases. 

Since the population covariances are very similar in this case, A is shown to have 

virtually no effect on error rate, since .x shrinks the covariances to their average. 
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Figure 6 .9 :  Overall error rate (Pe) versus Lambda (A) and Gamma b) under 
conditions of unequal and spherical covariance matrices (p = 10) . ( i .e. Condition 
2 in Chapter 3, Section 3.5) 
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Figure 6 . 10 :  Overall error rate (Pe) versus Lambda (A) and Gamma b) under 
conditions of unequal and spherical covariance matrices (p = 20) . (Le. Condition 
2 in Chapter 3, Section 3.5) 
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Figure 6. 1 1 : Overall error rate (Pe) versus Lambda (>.) and Gamma (-y) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the low variance subspace (p = 6) .  ( i .e .  Condition 3 in Chapter 3, Section 3.5) 

o () 

Figure 6 . 12 :  Overall error rate (P e) versus Lambda (>.) and Gamma (-y) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the low variance subspace (p = 10) .  (i.e. Condition 3 in Chapter 3 ,  Section 3.5) 
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Figure 6 . 13 :  Overall error rate (P e ) versus Lambda (A) and Gamma h) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the low variance subspace (p = 20) . (i .e. Condition 3 in Chapter 3, Section 3.5) 

However, in the sampling situation, we helve seen that a high value of A is appro­

priate since such shrinkage is exactly what is required. Note that the magnitude 

of the error rate at its minimum is again similar to that obtained in the simulation 

study from the minimum cross-validating error rate, around 10%. 

Turning to the case of equal, highly ellipsoidal population covariance matrices, 

but where the mean differences are hidden in the high variance subspace (Fig­

ures 6. 14, 6 . 15  and 6. 16) ,  the error rate surface over the (A ,  ,) grid drops as ,  

Increases. The variance-reducing effect of eigenvalue shrinkage acts primarily on 

the high variance subspace where the mean differences are located, to m3;ke them 

more identifiable for discrimination purposes. 

Two other effects of the regularisation parameters exhibited by these plots (i .e. 

Figures 6. 14, 6 . 15  and 6. 16) differ from observations made from the simulation 

studies of previous chapters. Firstly, if , remains very low, the error rate does 

not decrease as the covariance matrices are regularised with increasing A, closer to 

the pooled covariance. In the simulation studies for these conditions, the SLDF 

performed much better than the SQDF, especially as p became large. The reason for 

this stems again from the fact that here we are dealing with population covariance 

matrices, which are very close together to begin with, so regularisation to the 

pooled covariance has little effect. In the sample situation of the simulation study, 
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Figure 6. 14: Overall error rate (P e ) versus Lambda (A) and Gamma (r) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the high variance subspace (p = 6) . (i .e . Condition 4 in Chapter 3, Section 3.5) 

the variance reducing effect of both A and , prove beneficial for discrimination. 

The second difference is in the magnitude of the overall error rate at its min­

imum over the (A, ,) grid. The minimum rate, from Figures 6.14 ,  6 . 15  and 6 .16, 

is over 30%, whereas in the simulations studies in Chapters 3 to 5 the minimum 

cross-validated error rate was less than 5%. The reason for the true error rate 

here being so high relates to the sensitivity of the QDF to small differences in the 

level of variation in the high variance subspace. The discriminant function uses 

any disparity in the covariance matrices as an aid to discrimination. In the sam­

ple situation there can be large differences between corresponding elements of the 

differing covariance matrices. These differences aid in the discrimination process, 

and in this situation, such differences between the population covariance matrices 

are negligible. 

In the case of unequal, highly ellipsoidal covariance matrices with zero mean 

differences (Figures 6. 17, 6 .18 and 6 .19) ,  there is a clear indication and confirmation 

that the appropriate values for A and , are close to (0, 0) .  This corresponds to the 

QDF. The error rate rises markedly as A increases, since regularising the covariances 

in any way towards their average results in a loss of information with which to 

separate the populations. 

If A remains very small while , increases (i .e. the population covariances become 
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Figure 6 . 15 :  Overall error rate (Pe) versus Lambda ('x) and Gamma (-y) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the high variance subspace (p = 10) .  (i .e .  Condition 4 in Chapter 3, Section 3.5) 

" 'T"' 

o 0 

Figure 6. 16: Overall error rate (P e) versus Lambda (,x) and Gamma (-y) under 
conditions of equal, highly ellipsoidal covariance matrices, with mean differences in 
the high variance subspace (p = 20) . (i .e. Condition 4 in Chapter 3, Section 3.5) 
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Figure 6 . 1 7: Overall error rate (Pe) versus Lambda ().) and Gamma (-y) under 
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif­
ferences (p = 6) . (i .e. Condition 5 in Chapter 3 ,  Section 3 .5) 

spherical) ,  the true error rate increases le�s dramatically, and in fact, for p = 20, 

rises only slightly. This is consistent with the findings of the simulation studies, 

and in fact some degree of eigenvalue shrinkage does prove to be beneficial for 

discrimination in practice (i .e. in the sample situation) ,  so as to stabilise the 

sample covariance matrices, especially in the high dimensional setting. 

The level of the true error rate at its minimum is close to zero, although it 

must be remembered that in this case the population means are not identical ( i .e. 

very difficult for discrimination) , but very similar, making the task of separating the 

groups that much easier. In the simulation study the minimum cross-validated error 

rate was around 14% for p = 6, 10,  but close to zero for p = 20. This is consistent 

with the results from Friedman ( 1989) , as well as those from Chapter 3. The 

covariance matrices are so different from each other that discriminating between 

the two populations is relatively easy when no regularisation is applied. 

For the situation where the population covariances are highly ellipsoidal but 

the population mean differences are greater than in the previous condition, the 

true error rate surfaces over the ()., ,) grid (Figures 6.20, 6 .21  and 6 .22) remain 

similar to the previous cases of zero population mean differences (Figures 6 .17 , 6 .18 

and 6 . 19) .  Hence, the optimal choice of  ). and , in this situation is  again close to 

(0, 0) .  In this (and in the magnitude of the error rates) there is agreement with 
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Figure 6 . 18 :  Overall error rate (Pe) versus Lambda (A) and Gamma (r) under 
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif­
ferences (p = 10) .  ( i .e .  Condition 5 in Chapter 3, Section 3 .5) 
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Figure 6.19 :  Overall error rate (P e) versus Lambda (A) and Gamma (r) under 
conditions of unequal, highly ellipsoidal covariance matrices, with zero mean dif­
ferences (p = 20) . (i .e. Condition 5 in Chapter 3 ,  Section 3.5) 
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Figure 6 .20: Overall error rate (Pe) versus Lambda (A) and Gamma b) under 
conditions of unequal, highly ellipsoidal covariance matrices, with non-zero mean 
differences (p = 6) .  ( i .e .  Condition 6 in Chapter 3, Section 3.5) 

the simulation studies of Chapters 3 to 5 . ' 

Summary 

In this chapter, an attempt has been made to illustrate the effects of the regularisa­

tion parameters on the true error rate of the QDF in the univariate and multivariate 

situations. The primary motivation for this work was to determine if the observed 

(empirical) relationships between the (estimated) error rates and the regularisation 

parameters, as observed in previous chapters, could be confirmed by the true error 

rates used here. Only the covariance mixing parameter, A, was relevant in the 

univariate situation, however. Expressions for the true error rate (assuming known 

population parameters) of the QDF in the two-population case, under conditions of 

unequal population means and covariances, were obtained by Houshmand ( 1993) . 

For numerical purposes, in the multivariate situation, every element of each pop­

ulation covariance matrix had to be unequal to the corresponding element in the 

other covariance matrix. 

Despite the fact that regularisation of the kind that is dealt with in this thesis 

is designed to be applied to the sample covariance matrices, many results from the 

simulation studies agree with the observations made in this chapter. Since there 

is no exact analytical expression for the conditional error rate of the SQDF, it is 
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Figure 6.2 1 :  Overall error rate (Pe) versus Lambda ('x) and Gamma (-y) under 
conditions of unequal , highly ellipsoidal covariance matrices, with non-zero mean 
differences (p = 10) .  ( i .e .  Condition 6 in Chapter 3, Section 3.5) 
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Figure 6.22: Overall error rate (Pe) versus Lambda (,x) and Gamma (-y) under 
conditions of unequal, highly ellipsoidal covariance matrices, with non-zero mean 
differences (p = 20) . (Le. Condition 6 in Chapter 3, Section 3.5) 
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necessary to employ simulation studies with which to study the effect of regular­

isation, as has been done in this thesis. Nevertheless, expressions such as those 

used in this chapter, assuming known or restricted parameter configurations, do 

also provide insight into the problem, as has been demonstrated here. 
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Chapter 7 

SUMMARY 

The focus in this thesis has been on addressing the problems associated with (poor) 

estimation of the covariance matrix in the problem of statistical discriminant anal­

ysis based on multivariate normal populations. Alternatives to the commonly used 

normal-based rules (i .e. sample linear discriminant function and sample quadratic 

discriminant function) are considered. These alternatives are more robust to the 

circumstances which tend to lead to poor estimation of the covariance matrix. The 

technique used in these alternatives is shrinkage, or regularisation, of the covariance 

matrix estimates towards a plausible, specified matrix. 

The sample Euclidean distance function (SEDF) represents an extreme shrink­

age towards the identity matrix. This function has been compared to the SLDF 

in several studies. Raudys and Pikelis ( 1980) used numerical integration assum­

ing very restricted structures of the Ek (the covariance matrices of the K groups, 

(k = 1 . . .  K) ) .  Marco et al . ( 1987) used Monte Carlo simulations with data gen­

erated from groups having the same specific covariance structure. Both studies 

showed that in terms of yielding a smaller overall misclassification error rate, the 

SEDF performed better than the SLDF when the dimension (p) is large in relation 

to the sample size. From the latter study a further conclusion was that the SEDF is' 

preferable when the Mahalanobis distance between the groups is similar or smaller 

than the Euclidean distance, and when the variables in the data are mildly but 

positively correlated. It is shown algebraically in this thesis that the determining 

factor of the relative performance between the SEDF and the SLDF (i . e  the rela­

tive influence of the Mahalanobis and Euclidean distances mentioned previously) 
is the extent and nature of the correlation among the variables. It is also shown 

in this thesis, via asymptotic expansions and simulation experiments, that under 
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both equi-correlation and auto-regressive (order 1 )  correlation structures for the 

bk , negative correlations between variables lead to a large Mahalanobis distance 

relative to Euclidean distance. These are conditions where the SLDF would per­

form better than the SEDF. In particular, numerical evaluation of the asymptotic 

expansions for the SEDF and SLDF showed that the SEDF performed better than 

the SLDF in conditions of medium to high positive correlation between variables. 

In conditions of negative correlation between the variables, the SLDF substantially 

out-performed the SEDF. In the case of mild to moderate correlation there was 

little difference in the performances of the two classifiers. 

In general, the results in this thesis from the asymptotic expansions confirm the 

work of Marco et al. ( 1987) . Simulations were performed to verify the numerical 

evaluations of the expansions. The expansions were not evaluated for p larger than 

eight due to the large amount of computation time required. This is especially true 

for the expansion of the expected actual error rate for the SLDF, since it is rather 

complex. Therefore, the claim that the SEDF performs better than the SLDF 

when the dimension is high relative to the sample size was examined later in the 

thesis through further simulation studies. 

The SEDF employs a crude method of regularisation of the covariance matrix 

estimates, yet such shrinkage is obviously beneficial in a number of situations. 

However, the main focus of this thesis has been the flexible regularisation facility 

of the sample regularised discriminant function (SRDF).  Since it introduces a class 

of models which incorporates as special cases the SLDF, SQDF and SEDF, it ought 

to be a technique which yields the lowest error rate of all the rules based on the 

multivariate normal distribution theory. Indeed, it has been shown via simulation 

studies that it generally performs at least as well as the other rules, especially in 

the higher dimensional setting when the training sample is not large (Friedman 

( 1 989) ) .  This is particularly true in situations when the sample size to dimension 

ratio is small. Further, Aeberhard et al . ( 1994) found the SRDF to be superior 

to a number of non-parametric classifiers. The results of simulations performed 

in this thesis under similar conditions to those in the paper by Friedman ( 1989) 
confirmed this superiority of the SRDF over the other rules, even when the group 

separations(i .e distances) are very small. 

The success of the SRDF, however, hinges on the process which determines, 
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from the training data, the degree of regularisation towards the pooled sample co­

variance matrix, and, separately, towards (a multiple of) the identity matrix. That 

process involves repeated cross-validation, which is computationally intensive and 

which rarely leads directly to a unique "optimum" value for the regularisation pa­

rameters without a 'tie-breaking' rule. Instead, it often indicates low sensitivity to 

the degree of regularisation , especially with respect to regularisation towards the 

pooled covariance matrix. This is evident from the simulation study in Chapter 3 

where regularisation rules with two different policies for breaking ties are compared. 

Often the degree of regularisation resulting from the different policies is quite dis­

similar, yet the error rates of the constructed rules applied to a test sample of data 

are usually very similar. 

The key to the success of the SRDF, especially when the sample size to di­

mension ratio is small, is the facility to regularise towards (a multiple of) the 

identity matrix with the 'Y parameter (eigenvalue shrinkage to equality) .  Despite 

the bias introduced through this facility, the reduction in variance achieved, by 

even a small degree of eigenvalue shrinkage, proves beneficial for discrimination 

in many situations, often even when the group covariance matrix eigenvalues are 

quite disparate. The price to be paid, however, for allowing eigenvalue shrinkage 

is that the SRDF lacks scale invariance. In an attempt to ascertain just how im­

portant this type of shrinkage is, a modified regularisation rule was developed a,nd 

tested in a further simulation study against the SRDF and the other normal-based 

rules. The modified rule omits eigenvalue shrinkage but, to compensate for this 

in some measure, allows for a separate covariance-mixing parameter, Ak, for each 

group. This would be expected to make the rule more sensitive to the data, since it 

sometimes occurs that the various group covariance matrices are of quite different 

structures, and it may be appropriate to apply covariance shrinkage to one of the 

group covariance matrix, but not to another. While in general it is shown that the 

omission of eigenvalue shrinkage clearly leads to an inferior classifier, the modified 

regularisation rule can result in a comparable performance to the SRDF for certain 

population parameter configurations. 

In an article which has become known to the author at the end of this Ph.D. 

project, Loh ( 1995) studied the discrimination problem between two p - dimen­

sional normal groups via adaptive ridge classification rules. Such a rule may be 

thought of as similar to the SLDF, but where the pooled covariance matrix estimate 
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is replaced by a regularised estimate. The regularisation used was the same as that 

achieved by the 'Y parameter in the SRDF model (i .e. towards the identity ma­

trix) .  No covariance mixing was employed. A closed form solution to the adaptive 

parameter, which is similar to our "/, was given, in terms of the group parameters, 

for the case of equal group covariance matrices and equal prior probabilities. The 

resulting regularised value of Sp was employed to obtain the adaptive discriminant 

rule. A Monte Carlo simulation study compared the error rate of this rule with 

that of the SLDF. Two other rules were also included in the comparison. These 

rules involved obtaining the ridge parameter "/ by re-sampling methods in a similar 

way to the original SRDF. The adaptive discriminant rule compared reasonably 

well with respect to the SLDF, but there was not much difference in performance 

between Loh's adaptive rule and those two which employed re-sampling methods to 

obtain "/. Since the justification for the adaptive ridge classification rule is asymp­

totic, it is not appropriate to compare it with the regularised rules we have been 

looking at in this thesis, which are designed to address the situation of sample sizes 

which are not large. 

Focussing further on the model selection process of the SRDF, it is also demon­

strated in this thesis that the components of the Bhattacharyya distance measure, 

estimated from the training sample, can give information leading to appropriate 

values for the regularisation parameters. These values would be more directly ob­

tained than if computationally intensive re-sampling techniques are employed, as 

is the case with the original SRDF. The minimum cross-validated error-rate based 

on the training sample is a natural measure to use if one wishes to select the model 

which will yield the lowest error rate when applied to a future test sample of data 

from the same population. However, it is shown in this thesis (and supported by 

work from other researchers) that it is not necessary to determine the regularisa­

tion parameters precisely. Thus a regularisation rule is developed which bases its 

model selection procedure on an estimate of the Bhattacharyya distance between 

pairs of groups. It is shown to perform at least as well as the SRDF in most of 

the simulation conditions, as well as in several case studies. Computationally, the 

new model selection procedure is many times faster than that of the SRDF since 

it avoids re-sampling methods. It also leads directly to an approximate but unique 

regularisation model. 

Finally, it is of interest to examine the effect of the regularisation parameters 
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A and 'Y on an analytic expression of the error rate of the SQDF, which is equiv­

alent to the SRDF when its regularisation parameters are zero. However, few of 

such expressions exist in the literature, and they are often complicated expressions 

involving approximations and limiting assumptions. Houshmand ( 1993) derived 

manageable expressions for (i) the exact overall error rate of the SQDF in the 

univariate case, assuming known population parameters; and (ii) the approximate 

overall error rate for the SQDF for multivariate normal populations, assuming 

known population parameters. Because of their manageable nature, these expres­

sions were used to examine the effect on the overall error rate of the SQDF, of 

regularising the population covariance matrix estimates. Many of the observations 

from the earlier simulation studies are confirmed by these results. 

As mentioned earlier, one major negative feature of the sample regularised dis­

criminant function is its lack of scale invariance. This is certainly an area which 

has potential for future research. That is, to develop a scale invariant replace­

ment for eigenvalue shrinkage, but which maintains effective covariance estimate 

stabilisation at high dimension and with small sample size. There is also scope for 

research into replacements for the identity matrix as a matrix to regularise towards. 

Possible options are the matrices �A (equi-correlation) and �B (AR(l )  covariance 

structure) from Chapter 2, which appear to be robust enough. Alternatively, one 

could let the data choose, among many options, which matrix the covariance ma­

trices should be regularised to. Certain types of discriminant analysis problems, 

where substantial prior information is available on the structure of the data, would 

be candidates for this type of approach. 

The final problem which requires further research is the matter of choosing 

regularisation parameters using the Bhattacharyya distance, or some other distance 

measures. Although the heuristic algorithms developed in this thesis have been 

shown to work surprisingly well ,  it is necessary to obtain analytic results to support 

these empirical results. This is no trivial task, however, and is clearly an area of 

considerable potential for future research. 
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Appendix A 

ASYMPTOTIC EXPANSIONS FOR THE 
CONDITIONAL ERROR RATE OF LINEAR 

DIS CRIMINANT FUNCTION UNDER 
CONDITIONS OF "EQUIVALENCE" . 

A . I  Covariance matrix of the form :E = :EA . 
The conditional probability of misclassifying an observation from population 1 into 

population 2 for the LDF is P2�fl) (Equation 2 . 10 ,  Chapter 2 ) .  The Taylor Series 

expansion of this to first order approximation is 
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where 

t t �
2�(

�) = t t �
2�( . ) = t t �

2�( . ) = O.  
i= l j=l OXliOX2j i= 1 j=1 OXliOSij i= 1 j= 1 OX2iOSij 

Taking expected values (E( . )  denoting expectation) of the expansion yields 

(A.l ) 

where 

Therefore the following quantities are required to be obtained 

02�( . ) 02�( . ) 02�( . ) 
OXliOXlj ' OX2iOX2j , OSklOSij . 

Under "equivalence" , 1-£1 = (m, m, . . .  , m) and 1-£2 = O. Since 1-£2 = 0, equation 

( 2 . 10) may be written as 

where 

This expression will be used to obtain the desired quantities. 
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A.I . 1  

Now 

where 

and 

and 

Therefore 

and hence 

02 <I> ( . )  
OXliOXlj 

[ - 's -l �S - 1 - ] -3/2 S - l �S - 1 - ( 1 - ) ' S - 1 -- Xl p L.J P Xl P L.J P X l  J.Ll - 2"X l P X l  

[ _ ' - 1 - 1 - ] - 1/2 -1 ( -

+ Xl Sp �Sp Xl Sp J.Ll - Xd 

S - 1 � S - 1 - ( 1 - )pr
ime S - 1 - -

p L.J P X l  J.Ll - 2"Xl p X l -

( - (B, )-3/2 x {t. (� S" U" ) (t, S" X,,) } 
x {t. (�

l 
(JLlw - �Xlw) SWV) XIV } ) 

+ ( (B, )  -1/2 [� sil (I'U - XU)] )  . 
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(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 
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Note that oO_A . is defined similarly to o�A but with j replaced by i. Label the X h Xlj 
quantity :X�i as equation ( A.6b) . 

Represent the right-hand side of equation ( A.6) as (al x a2 x a3) + (bl ) , where 

Now 

where 

al - (Bl r
3/2 , 

a, t (t, sPlalU) (E sU'i" ) , 
a3 t (tl (ILIW - �XIW) swv) Xlv 

t (E IL IWSWV) - � t Xlv (tl XIWSWV) , 
b, = (B, ) - 'I' [t, sil (I'll - i l l)] ' 

oal 
OXli 
oa2 
OXli 
oa3 
OXli 

� {B ) -5/2 oBI 
2 I X � _ , 

UXIi 

- t sui (t sj1alU) , 
u= l  1=1 P P 
'"' wi 1 '"' - wi 1 - ii � ILlwS - 2 � XlwS - 2XliS . 
w= l w=l 

(A.7) 

The asymptotic expansion being derived is to be evaluated at the point where 

Xl = J.LI . Replacing Xl with J.LI , some of the above expressions may be simplified: 

a, - {m' t,t [ (t suo) (t a=suw) ] } 
-3/' 

- (Bd-3/2 , 

a, m t (t, silaIU) l� su.) , 

(A.B) 
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OBI 
aXli 
aa2 
aXli 
aa3 
aXli 

v=l w=l 
p p 

!m2 L L sWv , 
v=l w=l 

v=1 w=l 

m {t. [ (t. s.,) (t. awSUi) 1 + [t. Si' (t. avusUi) l }  , 
t sui (t sj1a1u) , u=l 1=1 

P P 
m L swi - !m L swi - !msii 
w=l w=1 

Thus, at the point where Xl = 1-£ 1 , 

• Now to find :::i ' and write it as at the point Xl = 1-£1 . 

( ) - 1/2 a [� ·z ( )] a 
( )-1/2 [� °Z ( )] B1 � _ ° � sJ J.Lll - Xli + � _ ° B1 � sJ J.Lll - Xli UXh 1=1 UXh Z=l 

-1/2 °i [ 1  -3/2 OBI ] [f.. °1 ] (Bd [-sJ 1 + - 2  (Bd � �sJ (J.Lll - Xli ) aXil 1=1 

-s;i { m' 1;1 t, [ (t. suo) (t, avusuw) ] } -1/' 
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sji { P P [ ( P 

) ( P ) ] }- 1/2 
-- L L L SuV L a sUW m w=1 v=1 u=1 u=1 

vu (A. lO) 
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Substitute equations ( A.9) (after factorising) and ( A. IO) into ( A.7) to obtain 
o2 A h . h -OX l i OXlj at t e pomt w ere Xl = J.LI .  

(A. l l )  

Substituting equations ( A.8) , ( A.6) , ( A.6b) and ( A . l l )  into equation ( A.2) 

gives the first desired quantity of equation ( A . I ) ,  namely 

where 

PI A (equation( A.8) ) 

P2 equation ( A. I I ) 

P3 equation ( A.6) 

P4 - equation ( A.6b) . 

(A.12)  . 
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A.1 .2  

02 <I> ( . ) 
OX2iOX2j 

Again write equation ( 2 .10) as 

where 

1 78 

(A. 1 3) 

A = [ (Xl - X2)' Sp - l:ESp -1 (Xl - X2) r 1/
2 
[J.tl - � (X l + X2)] ' Sp - 1 (Xl - X2) . 

(A. 1 4) 
Now 

where 

and 

and 

[ (Xl - X2)' Sp - l :ESp - 1  (Xl - X2)r3/2 Sp - l:ESp - 1 (Xl - X2) 

X (J.tl - � (Xl + X2)) '  Sp -1 (Xl - X2) 

+ [ (Xl - X2)' Sp - l:ESp -1 (Xl - X2) r
l/2 Sp - 1 (-J.t l + X2) 

(Xl - xd Sp - l:ESp -1 (Xl - X2) = 

1;
1 
(Xlw - X2w) [E (E (Xlu - X2u) SUV) (E aVUSUW) 1 = 84 

Sp - l:ESp -1 (Xl - X2) [J.tl - � (Xl - X2)] ' Sp -1 (Xl - X2) = 

{L�=l (Lf=l s
llalU) (L�=l Suk (Xlk - X2k )) }  

x {L�=l (L�=l (J.LIW - � (XIW - X2W)) SWV) (Xlv - X2V ) } 

(A. i 5) 

= 85 (A. 16) 
{L�= l (Lf=l SPlaIU) (L�=l Suk (Xlk - X2k)) }  

x {L�=l (L�= l (J.LlW - � (Xlw - X2W)) SWV) (XlV - X2V ) } 

- 1 
- l L�=l Slu (�J.Llu + X2u) 1 

Sp (-J.tl + X2) = : = 86 . 
L�=l sPU (-J.Llu + X2u) 

(A.1 7) 
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Write the expression for :X�j at the point where Xl = J-tl :  

( { m j; (B, ) - j; X2w (B,f3
/2 

X [� (� sj'u,u) (m E suk - E SUkX2k) ] 
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x [�m�j; (m + x2w) sWV - � � X2V (j; (m + X2w ) SWV) ] )  

where 

+ ( {m j; (B,) -j; X2w (B,) r'2 

times {t -sjuX2u - m t sju } )  
u=l u=l 

Now the right-hand side of equation ( A. I8) can be expressed as 

and so 

where 

8a4 
8X2i 

where 
8B4 
8X2i 

(A. 18) 

(A. 19) 
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8b2 
8X2i 
and 
8b3 
8X2i 

0:" [!m t, (1:1 (m + I,w) sw,) - ! t, I" (1; (m + I,w) SW,) 1 
p p p p 1m" Siv _ 1m " swi - 1 " x swi - 1x . " swi 2 � 2 � 2 � 2w 2 21 � , 
v== 1 w==1 w=1 w=1 

8 (B4 ) - 1/2 = _ 1 (B4 ) -3/2 x 8B4 
8X2i 2 8X2i ' 
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Since X2 = J.L2 = 0, some of the above components of 8X�i2:X2j may be simplified: 

bj 

{m' 1; t, (t, s.,) (� �=suw) } -3/' 
m � (t, sjlalU) (t, SUk) , 

p p 
�m2 L L sWV, v=1 w=1 

{ m' 1:1 t, (� s.,) (t, �'uSuw ) r' 
p -m L sju, u=1 

Inserting all the above into equation ( A. 19) yields 

1 {
P P ( P ) ( p ) 

} -3/2 
- L L L sUv L a sUw 
2m w==l v==l u==l u==l vu 

X {� (t, sj1a1u) (t, sUk) } {� SiV -1:1 SWi } 
1 
{
P P ( P ) ( p 

) } 
-3/2 

- - � � � sUV � a sUw 
2m w==l v==l u==l u==l vu 
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The other components of  equation ( A. 13) ,  evaluated at the point where Xl = 1-£1 
and X2 = 1-£2 are 



Appendix A 182 

(A.21)  

Note that :X�i is defined similarly to a��j but with j replaced by i. Label the 

quantity :X�i as equation ( A.21b) .  Substituting equations ( A .20) , ( A.2 1 ) ,  ( A.21b) 

and ( A.8) into ( A. 13) yields the second desired quantity of equation ( A. I ) ,  namely 

(A.22) 

where 

PI A (equation( A.8)) 

P5 equation ( A.20) 

P6 equation ( A.21)  

P7 equation ( A.21b) .  
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A.1 .3 Obtaining 821>(.) • 8Skl8Sij 
Under equivalence and with � = �A ' again write equation ( 2 .10) as 

and at the point where X l = ILl and X2 = IL2, write A as 

Now 

where 

Now 

where 

02�( . ) 
OSklOSij 

o { o�( -A) } 
OSkl OSij 

88 

8g 

810 

and 

811 

� {-1m¢>(-A) x 8g } OSkl - 1m [¢>( -A )88 + 810 x 8g] 

08g 
OSkl , 

� { ( t t swv) (81 1 )- 1/2 } , 
OStJ v=l w=l o¢>( -A) 

OSkl , 

f;,� (� s .. ) (s= + Pj�/w) . 
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(A.23) 

(A.24) 

o (8uf
l /2 

OSij - � (81 1f3/2 � {t t (t suv) (svw + p t suw) }  
oS'J w=l v=1 u=l u;i:v=l 

- 1 (81 1 )
-3/2 L L L suv _S_ + P L _S_ 

P P [ ( P ) (0 vw P 0 uw ) 
2 

w= l v=l u=l OSi; u;i:v=l OSi; 

( P )  ( P OSUV ) ] + SVw + P L suw L --. .  
u;i:v=l u=l oS'J 
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and 

Write 

where 

where 

To find 88) write 

- � (81 1 ) -3/2 Wo E t, [ (t, SUV) { (SViSjW + SvjSiw ) + p t (SuiSjw + SUjSiW) } 
u,iv= l 

+ (SVW + p t SUW) (t (SuiSjv + suj SiV)) ] ) u,iv=l u=l  
p p 

Wo L L (Swisjv + swj Siv ) 
v= l w= l  

Wo = 
{ - 0 . 5 if i = j 

- 1  if i =1= j. 

p p 
a7 L L sWV v= l w= l 

as fl t, (t, s") (s'W + p J��/w ) 
p p 

alO L L (swisjv + swj Siv ) v= l w= l 
ag fl 

t, [ (t, suv) (aga + a9b ) + ageagd 1 

aga svi sjw + svj Siw 
p 

agb P L (suisjw + sujsiw ) 
u,iv=l 

p 
age sVw + P L sUw 

u,iv=l 
p 

agd L (sui sjv + suj Siv ) . 
u=l 
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(A.25) 
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where 

and 

Now 

oa7 
OSkl 

oag 
OSkl 

where 

WI [SVi (sjk slw + sjl SkW) + sjw (SVk Sli + svl Ski) 

+ svj (sikSlW + SilSkW) + Siw (SVkslj + sVlskj) ] , 

1 85 
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and 

aa9c 
aSkl 
aa9d 
aSkl 

Write B8 as 

B8 = 

P 
W I P L [SUi (sjkslW + Sj1SkW) + sjw (SUkSli + SUlski) u:;tv=1 
+ suj (Sik Slw + Sil SkW) + Siw (SUk slj + sui skj) ] , 

WI [(SVkSIW + SVISkW) + P t (SUkSIW + SUISkW) ] , u:;tv=1 
P 

WI L [SUi (sjk Slv + sjl skV) + sjv (SUk Sli + sui Ski) u=1 
+ suj (Sik Slv + Sil SkV) + Siv (sUk slj + sui skj) ] , 

p 
W I L (SUkSIV + SU1SkV) u=l 

{ -0.5 if k = l 

- 1 if k =1= l .  
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(A.26) 

BlO 

Express BlO as 

a¢> (-A) 
aSkl 

aA - A¢> (-A) aSkl 

-�m (t,i; sw,) [i;t, (t, s") (s'w + p .t s.w) r' x ¢(-A) (�m) 

x a:., { (t,t; sw,) [f;IE (E s") (s= + p.t s.w) r'} 

-�m' (E i; sw,) [i; t, (t, s") (s.w + p .EI s.w) f/' 
x¢(-A)WI [tIt, (t, s") (s= + p.t s.w) f/' 
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Thus 

x (- 4 (Efl swv) 
x {f E [E suo (S"kSIW + S"' Skw + P 

u
i

. 
(sukS'w + sulSkw) ) 

+ (S"W + p J, suw) E (SUk s'" + sU' Sk" ) ] }  
+ [t, E (E su.) (S"W + P ui. suw) ]  [E 1 (SWkSI. + SWIS,") ] )  

- !m' (E1 SW}(-A)W. [1E (E suo) (s.w + P 
u
i

. 
suw) r 

x (- 4 (Efl swv) {t,E [E suV (sVkSIW + sVlskW) 

p 
+ P L (SUkSIW + SUISkW) 

u¥v=l 

+ (S"W + P 
u
� , 

suw) E (Suksl" + SWS'")] } 
+ [1E (t. suo) (S"W + P

u
t suw) ]  

x [�fl (sWk slv + swl SkV) 1 ) (A.27) 

(A.28) 

where A is  as in equation ( A.23) , B8 is  as in equation ( A.26) , B9 is as in equation 
( A .25) and B10 is as in equation ( A.27) . 
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A . 2  Covariance matrix of the form L = LB . 

Under equivalence and with L = LB, again write equation ( 2. 10) as 

and at the point where Xl = J.Ll and X2 = J.L2 , write A as 
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The only partial derivative term which differs from the expansion in the previous 

section is that involving differentiation with respect to elements of L ,  that is, 

a�:�J2ij ' In an analogous expression to equation ( A.24) ' 

where 

and 

Now 

where 

0
2<1>( -A) 
OSklOSij 

oC2 
OSkl

' 

o { 0<1> ( -A) } 
OSkl OSij 

� { - �m¢ ( -A) X C2 } 
OSkl 
- �m [¢ (-A) Cl + C3 x C2] 

� { (t t swv) (C4 )- 1/2 } os,) v=l w=l 
o¢ (-A) 

OSkl 

(A.30) 
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and 

Write 

where 

d1 

d2 

d4 

d3 

where 

d3a 

d3b 

p p 
Wo L L (Swisjv + swj Siv ) 
v=l w=l 

{ -0.5 if i = j Wo -
- 1  if i =I j. 

C2 = Wo (d2r
3/2 [-�dld3 + d2d4] 

p p 
L L swV 
v=l w=l 

1;, � (� s • .  ) (s.w + .t s·w pl.-.I) 
p p 
L L (swisjv + swj Siv ) 
v=l w=1 

1;1 � [ (t, suv) (d3a + d3b) + d3cd3d 1 
svi sjw + svj Siw 

p 
L (suisjW + suj Siw) p1v-ul 
u;ev=1 
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(A.31 )  
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p 

SVW + L ' SUW p1v-ul 
u:;t:v= l 

P 
d3d L (Sui sjv + suj Siv ) . 

u=l 

. To find C1 , write 

where 

and 

where 

02 
. .  { (t t swv) [t t (t suv) (svw + t suwpIV_U1) ] - 1/2} 

OSklOStJ v= l w=l w=l v=l u=l u:;t:v= l 

oC2 
OSkl 

� 0 {wo (d2r3/2 [- �dld3 + d2d4] ) USkl 

Wo [ (d2 )-
3/2 �

O 
{ - �dld3 + d2d4 } 

USkl 

o (d r
3/2 ] + (- �dl d3 + d2d4 ) _�_2 __ 

USkl 

p P 
WI L L (SWkS1V + SW1SkV) , 

v= l w= l 

t t [(t suv) (osvw + t osuw 
p1V-U1) 

w=l v= l u=l OSkl u:;t:v=l OSkl 

+ (svw + t suwpIV-UI) (t asuv ) ] 
u:;tv=l u=l OSkl 

W, t};; [ (t, suu) (SUk S'w + suI skw + 
u
t

i 
(SUk s'w + sui skw) pIU-UI) 

+ (svw + t suw pIV-U1) t (SUk Slv + sui skV) ] , 
u:;tv=l u= l  

p p 
WI L L [SWi (sjkslv + sjlskV) + sjv (SWkSli + SWlski) 

v=l w=l 
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and 

where 

and 

where 

ad3c 
aSkl 

ad3d 
aSkl 

WI [SVi (sjk Slw + sjl SkW) + sjw (sVk sli + svi Ski) 

+ svj (Sik Slw + Sil SkW) + Siw (SVk slj + svi skj) ] , 

p 
Wl L [plv-ul (SUi (sjk Slw + sjl SkW) + sjw (SUk Sli + sui Ski) 

u#v= l 
+ suj (sik Slw + Sil SkW) + Siw (SUk slj + sui skj) )] , 
WI [SVk Slw + svi Skw + t {p1v-ul (SUk slw + sui skW) }] 

, u#v= l  
P 

WI L [SUi (sjk Slv + sjl SkV) + sjv (SUk Sli + sui Ski) 
u= I 

+ suj (Sik Slv + Sil SkV) + Siv (SUk slj + sui Ski) ] , 

P 
WI L (SUk Slv + sui SkV) , 

u= l 

{ -0.5 if k = l 

- 1 if k i- t .  
Write C1 and C3 as 

a¢ (-A) 
aSkl 
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(A.32) 
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8A - - A¢ (-A) 8skl 
- -�m (�j; sW') [j;� (� sU') (s.w + 

ui/wp" -u,) r' 
x ¢( -A) ( �m) 
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x a�kI { (�fl sw.) [fl � (� su.) (s.w + 
uE/w pl.-UI) r/' } 

- -im' (�fl sw.) [j; � (� su.) (s.w + 
u
t sUW pl.-UI) rl' 

x¢(-A)wI [j;� (� su.) (s.w + 
u
t suwpl.-UI) ] -3/' 

x (-! (�f /WV) 

x {j; � [� su. (s.k S'w + S·, Skw + 
uEI 

pl,-ul (SUk S'w + sui SkW) ) 
+ (s.w + 

uE/w pl.-UI) � (SUk S,· + sui s'") ] } 

+ [j; � (� su.) (s.w + 
ut suw pl.-UI) ] [�fl 

(SWk S,· + Swl Sku ) ] ) 
- -im' (�j; sw.) ¢(-A)wI [j;� (� su.) (s= + 

u
t suwpl.-UI) r 

x ( -! (�fl SWv) {fl � [� Suv (SVk Slw + Svi Skw ) 

Thus 

p + L plv-ul (sUk Slw + sui Skw ) u:;cv=l 
+ (svw + t suw pIV-U1) t (SUk Slv + sui skV)] } u:;cv=l u=l 
+ [fl� (� su.) (s.w + 

u
t suwpl.-UI) ] 

x [�� (sWkSIV + SWIskV) l )  (A.33) 

(A.34) 
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where A is as in equation ( A.29) , C1 is as in equation ( A .32) , C2 is as in equation 

( A .31 )  and C3 is as in equation ( A.33) . 

All the required quantities in equation ( A .l )  have been obtained and thus 

the asymptotic expansion is derived for the conditional error rate of the Linear 

Discriminant Function under conditions of "equivalence" (See Marco, Young and 

Turner ( 1987)) for two forms of covariance matrix: (i) � = �A and (ii) � = �B .  

These expansions were evaluated for various values of p ,  :E (determined by p) and 

Mahalanobis distance � between the population means (determined by m) . 
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Appendix B 

HEURISTIC ALGORITHM FOR MODEL SELECTION 
PROCEDURE USING BHATTACHARVYA DISTANCE 

Outlined below is the algorithm used to select i and A for the model selection 

procedure using Bhattacharyya distance which was presented in Chapter 5 .  

(The first section sets a minimum value for I in extreme cases of high dimension 

and small sample size, so that only values greater than 0 are considered) 

If training sample size is less than 2 xdimension 

set minimum I value, (0) , equal to 0.04, 

or 0.08 if the dimension is large (>  10) .  

end if 

If training sample size is less than dimension 

end if 

increase the minimum I value, (0) , still further, 

depending on the magnitude of the dimension. 

(Calculating Bi and B2 for various values of I from () to 1 in increments of 0. 04) 

Loop for I = () to 1 in steps of 0.04 

• Regularise sample covariance matrices using I 
• Check the eigenvalues of the sample covariance matrices, and replace any 

eigenvalues less than some threshhold (10-4)  with that threshhold, 

to permit stable inversion. 
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• Calculate and store the values of BI, m and BI/m 
end Loop 
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(Calculating various measures from the stored values of B1 ,  m and BI/ B2) 

Calculate the following: 

• range of BI values (rangeBi ) '  

• mean of BI values (meanBi ) '  

• ratio of largest B l  value to smallest BI value (rBi ) '  

• range of m values (rangeii?J 

• maximum of m values (maxm) '  

• ratio of largest m value to smallest m value (rm) '  

(Obtaining the appropriate value of I, 1 ,  using five different decision paths) 

If rBi < 2 .8 AND meanBi S; 2 AND maxm S; ( .3p - .8) 

(i. e. if BI is small and not greatly affected by " and if the effect of , on m 
is small.) - -
Select the value of I which gives the largest ratio of B1 to B2 

else if (rBi < 2.8 or rangeBi < 1 .5) AND (meanBi ::s 2) AND (maxm ::s ( .3p -" .8) ) 

(i. e. if BI is small and not greatly affected by I, and if the effect of I on B2 

is large.) 

Select the value of , which gives the smallest ratio of BI to B2 
else if (rBi < 2.8 AND (meanBi > 2) 
(i. e. if BI is large but not greatly affected by I) 

Select the value of I corresponding to an average value of Bi/ B2 

else if (rBi > 2.8 AND (maxm < ( .3p - .8) ) 

(i. e. if Bi is greatly affected by " and if the effect of I on B2 is small) 

Select the value of I which maximises m 
else if (rm > 2.8 AND (maxm > ( .3p - .8) ) 

(i. e .  if BI is greatly affected by " and if the effect of I on B2 is large) 

Choose a value of I whereby Bi is maximised subject to B2 remaining small 

end If 
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(Obtaining various quantities to be used to obtain the estimate for A, �) 

• Calculate initial value of A with � = exp {-m-y=(J} 
• Calculate y = log (BI/ B2) when , = 1 .  

(Let y denote the average value of y over all pairs of groups. ) 
• Calculate z = Lf=l l e l i  - e2i l where el i  is the ith eigenvalue of � l '  

(Let z denote the average value of z over all pairs of groups. ) 

(Refining the choice of � to obtain �) 
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If Y > 1 (i. e. y large, indicating covariance matrices are similar to each other.) 

If z > 17 (i. e. z large, indicating covariance matrices are not in fact) 

dissimilar. ) 
�I = � 2 (adjust � towards zero.) 

if y < 1.6 AND 1 < z < 3 (Indicating similar covariance matrices) 
�I = �1/(Y-.6) (Adjust � upwards) 

if y > 1 .6 AND 1 < z < 3 
�I = �l/(y- l ) 

if Y < 1 .6 AND 3 < z < 17  
�I = � 1/(!7+2) 

else 

end If 

else if 0.5 < y < 1 
�, = �1/y1 .6 

else if y < 0.5 
�' = �2 

end If 
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A Comparison of the Euclidean and 
Linear Discriminant Functions 

J P Koolaard and C R 0 Lawoko 
Department of Statistics 

Massey University 
Palmerston North 

New Zealand 

Abstract 

The l inear discriminant function is a very popular technique for statistical 
discrimination because of its robustness. However. it has been demonstrated recently 
that the much simpler Euclidean distance classifier can out-perform the linear 
discriminant function in certain situations. In this article we present further results on 
the relative performances of the two discriminant functions. Whilst in previous work 
most of the comparisons have been based on simulation studies and numerical 
integration of error rates. in this article we base our comparisons on asymptotic 
expansions of error rates as well as some simulation experiments. 

1.  Background and Motivation 

In statistical discriminant analysis the Linear Discriminant Function (LDF) which is 
based on assumptions of multivariate normality 'and equal covariance matrices is quite 
popular because of its robustness and simplicity. Clearly. there are situations when the 
LDF is inappropriate, and related competitors are the quadratic discriminant function 
(QDF) and the Euclidean Distance Classifier (EDC). For the two-population situation 
which we consider here, these rules are as follows: 

Suppose the two populations have means 11 1  and 112 and covariances I I and I2, so 
that the sample estimators of th.ese parameters (from training data) are xl , x2, SI and S2' 
The sample versions of these discriminant functions (i.e. SQDF, SLDF. SEDC) are: 

. (i) SQDF:  . Classify a new object with observation vector x as belonging to 
population 1 if Q(x) > lo�k, 
where Q(x) = t loge { IS21 + lS I I }  - t {x'(Si

l - Si
1)x } 

2 '(S-I
- S-I _ ) -' S

-1 -' -' S-1 -
. - x I X I - 2 x2 + X l 1 x2 - x2 2 x2, 

and k is some appropriately chosen constant Clearly, if Q(x) < lo�k we allocate X to 
population 2. . 

(ii) SLDF: If it can be established that II ' S:: I2, = I say (or it is assumed so), then 
one should use the SLDF. whereby an .object with observation x is allocated to 
population 1 if L(x) > lo&k, 
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where 

(otherwise it is allocated to population 2). 
(iii) SEDe : If l: = I in the LDF situation or the infonnation in the covariance 

matrix is deliberately ignored for the purpose of discrimination, then the SEDC should 
be used. That is, allocate an object with observation x to population 1 if E(x) > logek. 

where E(x) = (X l - Xl)' { (x - � (X l + x2) } ,  
(otherwise allocate it to population 2). 

There has been considerable interest in the literature in the relativ� performances of 

these discriminant functions. These comparisons have usually been based on various 

measures of estimates of error rates (probabilities of misclassifications) since direct 

evaluations of these probabilities have proved algebraically intractable. Anicles which 

provide relevant background for this study are: 

(i) Raudys and Pikelis ( 1980) who perfonned a simulation study to compare the 
SLDF, SQDF, SEDC ·and a variant of the SLDF for independent measurements (i.e. off 

diagonal elements of I being set to zero). They evaluated the relative perfonnances of 

these discriminant functions when the populations are spherically normal. S ince 

computations of reliable estimators of error rates have been traditionally difficult, they . 

used numerical integration techniques in evaluating the integrals in the definitions of 
the probabilities of misclassification. They concluded that the simpler S EDC 
perfonned better than the SLDC when p is large relative to n. In fact the SEDC was 

found to perfonn at least as well as the SLDF even for non-spherical covariance 

structures. 

(ii) Marco,  Young and Turner ( 1 987) compared the SLDF and SEDC under 

conditions derived to make the two classifiers "equivalent" or "non equiValent". They 

dermed the LDF and EDC as "equivalent" if they have the same (true) error rates (i.e. 
assuming known population parameters). Their conclusion, based on simulation studies 

only, was that the EDC generally perfonned better than the LDF except when the 
Mahalanobis distance between the two populations (i.e. A) was substantially larger than 

the corresponding Euclidean distance. Also, the SEDC perfonned at least as well as the 

SLDF when the population parameters were set so as to achieve either equivalence or 

non equivalence of the classifiers. 
(iii) Other related work include Peck and Van Ness ( 1982) and Van Ness ( 1 979), 

among others; see Kim ( 1992). 
The motivation for this work arose from the fact that no "easily-computable" 

asymptotic results appear to be available in the literature on the reJative perfonnance of 
these discriminant functions. Most of the available results are based on simulation 
studies or 'brute force' extensive numerical integration of very complicated probability 
functions (following basic definitions of the error rates). 

2. Asymptotic Expansions and Evaluations 

The asymptotic expected error rates were obtained using Taylor series expansions of the 
conditional error rates (Le. conditional on x I .  x2 and S) and taking expectations over the 

distributions of xl . x2 and S .  I n  particular. if H(.) is a differentiable function 

of parameters (�I '  � 2 , ...• � s)' where (�1 ' � 2 • . . . •  � s) are consistent estimators of 
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(PI , P2' .. . , Ps) then the Taylor series expansion of E(H) about the point (J3 1 '  J32' . . .  , J3s) 
can be expressed as 

s aH . E(H) = H (P I ' P2' .. . , Ps) + r -. E(Pj - Pj) 
j=1 apj 

I . a2H . . 

+ 2 �. ·aR . aR . E{ (pj - Pj) (Pj - Pj) }  
I, J .... , .... J 

For our expansions H = <1>(.) ,  the standard normal distribution function, and P I , P2' 
. .

. , Ps are the elements of xI , x2 , S . The expansions are evaluated at the point 
(JL I, JL2' l:). 

In this article, we evaluate expected actual (u�conditional) and expected plug-in 
error rates, so that H(.) takes the following forms (for misclassifying an object from 
population 1 into population 2): 

(i) Actual error rate for LOF: H(.) = <1>(-01102) 
where 0 1  = [JL I - !  (x I + X2)]' S-I (X I - x2),  02 = { (xI - X2)' S- Il: S-I (X I - x2) }  In. 

(ii) Actual error rate for EOC: H(.) = <1>(-D3104), 
where 03 = [JL I - !  (x I + x2]' (x I - x2), 04 =. { (x I - X2)' l: (x I - x2) } 112. 

(iii) Plug-in error rate for LOF: He.) = <1>(-0,;), 
where DS = - !  { (x I  - X2)' S- I (xI - x2) } 112. 

. 

(iv) Plug-in error rate for EOe: H(. ) = <1>(-0&07)' 
where D6 = �XI - x2)' (x I - x2) 

D7 = { (xI - x2)' S(xI  - X2) } In. 
Results in Okamoto ( 1 963) were used in obtaining some of the preliminary results in 

the asymptotic expansions. One of the results is that if l: is symmetric and invertible 
and l: = { ars } , I- I = { aij 1 then 

a(aij) = 
_ 1 (airasj + ais cr:i) (r :5; S), a ars (1 + ors) 

where ors is the Kronecker delta. 
Each asymptotic expansion takes a slightly different form, depending on (i) the 

structure of I assumed, (ii) whether the expansions are obtained under "equivalence" or 
"non-equivalence" conditions and (iii) whether the expansion is for the LOF or the 
EOe. For example, the expansion of the conditional error rate associated with the LOF 
under "equivalence" conditions is of the form 

PLDF = J - � { r r a: SUv) a: avu SUW) r 112 ' {r r slk l] 1 w v u u k l  

+ 
_1 � � �2<1>(:) a . .  + _1_ � � �2<1>(} a .. 2ni i j dX I i  dX Ij IJ 2n2 i j dX2i dX2j IJ 

1 (n 1 + n2) 02<1>(.) 
+ - r r r r (ailca·1 + aila"k), 2 (n l + n2 - 2)2 k I i j aSk) aSij J J 

. where the quantities �Z�) are obtained separately for each assumed structure of IL l, IL2 
and I for any variables 'a' and 'b' .. 

In comparing the asymptotic expected actual error rates for the LDF and EDC, 

various 'settings' of certain parameters were used. For example, the values of one 
parameter (denoted here by 'm' .'. see below) were chosen so that 62 was the same in 
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both cases of equivalence and non-equivalence. Two structures of � were considered. 
which are denoted by I = IA and 1: = Ie. where 

1 p P P 
p I p P 

1:A = P p I p 
p 

p .
.

. . . .  P 1 

Numerical Evaluations 

and 

1 

p 

p-l 
P p 

p-l P p-2 P 

P 
1 

In evaluating the results. appropriate values of p (both positive and negative) wers: 
used. Meanwhile, for the situation of "equivalence" between LDF and EDe (where J.L l = (m, m,  ... , m), and J.L2 = 0') the value of m is calculated as 

m = A  I {A2� � aij } \I 1 J 
and for "non-equival�here J.L 1 = (m *, O. 0, . .. .  0)' and J.L2 = 0'), the value of m· is 
calculated as m* = \jA2/al l . The sample sizes were taken to be equal at n l = n2 = 50, 
and the dimensions of the observations were taken to be p = 4 and p = 8. Although lots 
of results under various conditions have been obtained (and are available from the 
authors), in this article we concentrate on comparing the performances of the LDF and 
EDC under "equivalence" and also on determining (through simulations) whether the 
asymptotic expansions are accurate. Afterall ,  the situation of "equivalence" provides 
the fairest scenario for comparing EDC and LDF. The discussions presented here are 
basic summaries of general trends and results, since limitation of space does not allow 
detailed discussion of peculiarities etc. These will be available elsewhere. 

3. Discussion of Results 

We shall refer to the various error rates as follows: 
• • 

t!r.' � = true error r�tes (i.e. for kn!'wn population parameter values) for 
the LDF (�) and EDC (eE) 

eL' � = asymptotic expected (unconditional) error rates 
�, � = asymptotic expected (unconditional) plug-in error rates 
eSL, eSE = error rates from simulation experiments 

Note that although we obtained several estimates of the error rates from the 
simulation experiments (e.g. cross-validation, bootstrap, resubstitution) previous work 
(e.g: Ganeshanandam and Krzanowski ( 1990» suggest that cross-validation is a good 
estimator to use. Thus the comments on the results for simulated error rates are based 
on cross-validation. We have omitted stating well known results such as error rates 
generally increase with p or decrease with A. A sample page of the tables of results is 
presented below. The results are now discussed under separate categories: 

(a) eL vs � and � vs � under equivalence with 1: = 1: A: 
• • 

• 
Note that � = � = c'J.>(-Al2). In this case eE provides a reasonably good estimate of 

� (especially for p > 0). It is- quite clear that the asymptotic expansion given by eL 
tends to substantially underestimate the true error rate for small A, and as A increases it 
tends to overestimate it. On the other hand, eE remains reasonably good for all values 
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of fl.. Meanwhile. simulation experiments suggest that the error rates associated with 
SEDC are slightly less than those for SLDF in general . in this situation. 

When we consider the performance of the plug-in error rates (� and t!E ) as 
estimators of eL and eE . we observe fi rstly the well known result that 
t!L underestim ates eL' Our expansions show that a similar statement can be made 
about � an eE. Note, however, that tt: provides a much better estimator of eE, in that 
the underestimation is of a smaller magnitude. For both SLDF and SEDC the 
asymptotic expected error rates decrease with pC> 0) while the asymptotic expected 
plug-in error rates increase. For small fl., there is little difference in the performances of 
� and � (as estimates of eL and eE respectively), but as Il increases, the relative 
performance of � improves considerably. 

(b) eL vs e:E and � vs � under equivalence with 1: = l:B : 
In this case, the relative performance of eE to eL depends on the values of the 

parameters. For example, when p is small and positive and fl. is small to .moderate, the 
eL appe..rs to be a better estimate but as Il and p increase the relative performance of eE 
improves slightly. In general, eL has a tendency to overestimate ei. when Il is large, and 
to underestimate it when Il is small. Meanwhile eE tends to overestimate eE at all times. 

When p becomes negative, the performance of eE deteriorates considerably 
(especially for large p) and the asymptotic approximation is clearly not appropriate in 
this situation. On the other hand, eL is much more stable to changes in p and p, 
suggesting that the information contained in p is clearly very relevant for discrimination 
in this case. 

Turning our attention to the plug-in error rates, it is very clear that for positive p,  � 
is a much better estimator of eE when compared to � as an estimator of eL. In fact � 
deteriorates considerably, especially for large p and (ironically) for large fl.. When p is 
negative, both plug-in error rates do not perform well at all, and totally break down for 
high negative correlation. 

The simulation results indica�e that eL and especially eE perform reasonably well 
when p is positive, but when p is negative, eE' � and � yield poor approximations. 

References 

[ 1 ] Ganeshanandam, S and Krzanowski, W J ( 1 990). Error-rate estimation in two 
group Discriminant Analysis using the Linear Discriminant Function. J. Statist. 

Comput. Simul. Vol 36, pp 157- 175. 
[2] Marco, V R, Young, D M and Turner, D W ( 1 987). The Euclidean Classifier: an 

alternative to linear discriminant function. Commun. Statistics - Simul. 1 6, 485-
505. 

[3] Okamoto, M ( 1 963). An asymptotic expansion of the distribution of the linear 
discriminant function. Ann. Math. Statist. 34, 1 286- 1 30 1 .  Correction: Ann Math. 

Statist. 39, 1 358- 1 359. 
"[4] Peck, R and Van Ness, J ( 1 982). The use of shrinkage estimators in linear 

discriminant analysis. IEEE Trans. on Pattern Anal. Machine Intell. PAMI-4, 
530-537. 

331 



[5] Raudy. S and Pikelis. V ( 1 980). On dimensionality. samplt! sizC!. classification 
error. and complexity of classification algorithm in pattern rC!cognition. IEEE 
Trans. on Pattern Anal. Machine Intel!. PAMI-2. 242-252. 

[6] Kim. T K. Comparison of the Euclidean and Linear Discriminant Functions in 
Statistical Discriminant Analysis. Unpublished MSc dissertation. Massey 
University. Palmerston North, New Zealand. 

Table: The 'true',  expected actual, expected plug-in and simulated error rates of the 
EDC and LDF under the case of 'equivalence' with :r = :rA . 

. 

112 P p = 4 p = 8  

true actual plug-in simul true actual plug-in simul 
., eE 

• eE eE � eSE eE eE eSE 
• eL ... er.. er. eL eSL er. eL eSL 

0.5 0.0 0.3618 0.3788 0.3470 .38 0.36 18 0.4001 0.3261 .40 

0.3618 0.3597 0.3373 .38 0.36 1 8  0.3695 0.3037 .40 

02 0.3618 0.3669 0.3510 .37 · 0.36 1 8  0.367 1 0.3426 .37 

0.3618 0.3572 0.3378 .38 0.36 18 0.3624 0.3046 .39 

0.4 0.3618 0.3641 0.3554 .36 0.3618 0.3639 0.3524 .37 

0.3618 0.3521 0.338 1 .38 0.36 1 8  0.3498 0.3052 .39 

0.65 0.3618 0.363 1  0.3593 .37 0.3618 0.3631 0.3586 .36 

0.3618 0.333 1 0.3384 .39 0.361 8  0.305 1 0.3059 .40 

1 .0 0.0 0.3085 0.3205 0.2994 .32 0.3085 0.3347 0.2857 .33 
0.3085 0.3 1 10 0.2867 .32 0.3085 0.3245 0.2562 .33 

0.2 0.3085 0.3125 0.3020 .31 0.3085 0.3128 0.29670. .33 

0.3085 0.3092 0.2873 .32 0.3085 0.3 194 2574 .33 

0.4 0.3085 0.3107 0.3050 .31  0.3085 0.3107 0.3032 .3 1 

0.3085 0.3057 0.2877 .33 0.3085 0.3 109 0.2580 .34 

0.65 0.3085 0.3101 0.3076 .31  0.3085 0.3102 0.3074 .3 1 

0.3085 0.2930 0.2882 .32 0.3085 0.381 2  0.2590 .34 

2.0 0.0 0.2398 0.2481 0.2351 .2.'i 0.2398 0.2571 0.2268 .25 

0.2398 0.2461 0.2196 .26 0.2398 0.2633 0.1902 .26 

0.2 0.2398 0.2431 0.2367 .24 0.2398 0.2434 0.2336 .24 

0.2398 0.2448 0.2204 .25 0.2398 0.2596 0.1917 .26 

0.4 0.2398 0.2420 0.2386 .25 0.2398 0.2421 0.2377 .25 

0.2398 0.2425 0.2209 .25 0.2398 0.2541 0.1926 .27 

0.65 0.2398 0.2416 0.2402 .24 0.2398 0.2418 0.2403 .24 

0.2398 0.2345 0.2214 .2.') 0.2398 0.2355 0. 1939 .26 

2.5 0.0 0.2146 0.2219 0.21 12 .22 0.2146 0.2296 0.2043 .22 

0.2146 0.2220 0.195 1 .2.1 0.2146 0.2400 0. 1661 .23 

0.2 0.2146 0.2178 0.2126 .21 0.2146 0.2181 0.2101 .2 1 

0.2146 0.2208 0.1959 .22 0.2146 0.2367 0.1677 .23 

0.4 0.2146 0.2168 0.2141 .22 0.2146 0.2170 0.2135 .22 

0.2146 0.2188 0.1964 .23 0.2146 0.2321 0. 1686 .23 

0.65 0.2146 0.2165 0.2155 .21 0.2146 0.2167 0.2156 .2 1 

0.2146 0.212 1  0.1970 .22 0.2146 0.2 1 64  0.1699 .23 
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Abstract 

Friedman (1989) proposed Regularised Discriminant Analysis (RDA) as a compromise between 

normal-based Linear and Quadratic Discriminant Analyses by considering alternatives to the usual 

maximum likelihood estimates for the covariance matrices. These alternatives are characterised by 

two (regularisation) parameters, the values of which are customized to individual situations by 

jointly minimising a sample-based estimate of future misclassification risk. This technique offers 

sizeable gains in classification accuracy in many circumstances, although it is computationally 

intensive. 

To further investigate some aspects of the operation and performance of RDA, a series of 

simulation studies were implemented which establish key factors in RDA's success, and 

demonstrate that the advantage which RDA enjoys over Linear and Quadmtic Discriminant 

Analyses can be noticeable even if the sample size to dimension (number of feature variables) ratio 

is quite large. 

Because of the computational burden inherent in RDA, and with regard to criticisms of the 

technique by Rayens and Greene (199 1), it was investigated whether information about appropriate 

values for the two regularisation parameters could be gleaned by examining the behaviour of the 

Bhattacharyya Distance between the various populations. A classification rule for the two (normal) 

population case which uses regularisation parameters obtained from the Bhattacharyya distance 

(and which is computationally much faster than Friedman's RDA) is presented and compared with 

the original RDA. 

1 . 1  I n t ro d uction 

A purpose of classification or  discriminant analysis is to assign objects to one of several (K) groups 

based on a set of measurements X=(X1,X2, ... ,Xp) (where p denotes the dimensionality of the 

data) obtained from each object or observation. An object is assumed to be a member of exactly one 

of the groups, and an error is incurred if it is assigned to a different one. 

The most common discriminant rules are based on the multivariate normal distribution. Assuming 

we have K (normal) groups each with population mean 11k and covariance Lk 



(Ie= ! ,  . . .  , K), and 7tk is the prior probability of observing a member of that group, the classification 

rule is to assign an object to group k· , where 
dk· (X)=min dk(X) ( 1  � k � K). ( 1 )  

(2) 

which is often called the discriminant score for the kth group. 

Equations (1)  and (2) define the quadratic discriminant function (QDF) since the regions of the 
measurement space corresponding to each group assignment are separated by quadratic 

boundaries.The special case occurring when all of the class covariance matrices are presumed to be 

equal, i.e. 
L.k = L. (1 � k � K), 

is called the linear discriminant function (LDF). 

(3) 

This paper is concerned with the problems associated with estimating the group population 
covariance matrices, L.k ( 1  � k � K). Quadratic discriminant analysis (QDA) requires approximately 

normal group conditional densities and reasonably large training sample sizes, nk, before it can be 

expected to work well. This is due to it's sensitivity to the quality of the parameter estimates, 

particularly the sample covariance matrix Sk' 
I nle , Sk = n L. (X v  - X ) (Xv - Xk) (4) k v=l 

which is the unbiased and consistent sample estimates of L.k. Linear discriminant analysis (LDA) is 
more robust to non-normality, and requires less parameter estimation than QDA. However, poor 
estimates of the pooled covariance matrix (i.e. L. in equation (3» are possible, particularly if the 

K 
size of the training sample, N (N = L nk), is small in relation to the dimension of the k=l 
measurement space, p. The covariance matrix estimates can be highly variable in this situation, and 
Friedman ( 1989) showed the effect of this phenomenon on discriminant analysis by representing 
the group covariance matrices by their spectral decompositions 

P , L.k = L. eik 1') ik 1') ik i=l (5) 

where eik is the ith eigenvalue of Lk and llik is its corresponding eigenvector. The discriminant 
score (2) can thus be written as p [TJ 'ik (X - .... k) ] 2 

dk(X) = 
i�l eik 

P . 
+ L in eik - 2 in 7tk 

i=l (6) 

It is clear from (6) that small eigenvalues and their eigenvectors will have a large effect on this 
quantity. It is well-known that sample based estimates of the L.k produce biased estimates of the 
eigenvalues with the bias being more pronounced when the eigenvalues of the population 
parameters (L.k) are similar, especially for small training sample size. When nk � p, the smallest 
eigenvalues of the Sk are zero, with obvious consequence for the sample discriminant score, which 
is equation (5) but where eik is replaced by the ith eigenvalue of Sk ' and 1') ik becomes its 
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corresponding eigenvector. Thus the importance of the low variance subspace spanned by the 
eigenvectors corresponding to the smallest sample eigenvalues is greatly exaggerated. In fact most 
of the variation in the sample discriminant score is associated with directions of low sample 
variance in the measurement space. 

2 . 1  Regularised estimates of Ik i n  discrimination 

One can reduce the variance associated with sample-based estimates of Lk by biasing the estimates 
away from the usual sample values and towards values which are more realistic in practice. 
Regularisation parameters may be introduced which control the amount of biasing, and the sample 
data can give infonnation to estimate these parameters. 

If one introduces a regularisation parameter, A, which controls the degree of shrinkage of the 
individual group conditional covariance matrix estimates, the Sk' to the pooled estimate Sp' the 
following set of alternatives may be obtained: 

Ik(A) = 
( l -A)(nk- l )Sk + ASp 

( l -A)(nk- l )  + A(N-K) 
(7) 

Now A takes on values 0 ::; A ::; I and it is evident that if Lk(A) is used to estimate Lk in (2), the 
scenario 1..=0 simply yields QOA, while one can obtain LOA by setting 1..=( 

Equation (7) may not provide for sufficient regularisation, especially if the total sample size, N, is 
less than or comparable in size to p.  In these cases even for LOA, the number of parameters to be 
estimated is close to, or less than, the number of observations available. One usually wants to avoid 
this scenario in practice, however. Also, biasing the Sk to the pooled estimate may not be 
appropriate in some situations. 

Friedman (1989), therefore, introduced further regularisation of the Sk to obtain 

Ik(A,'¥) = ( 1  - 1) Ik(�) + Y tr[L�
(A)] (8) 

where tr[ik(A)] is the trace of the matrix �(A.) in (7), I is a pxp identity matrix and Y is the 
additional parameter which regulates shrinkage towards a multiple of the identity matrix (the 
multiplier simply being the average eigenValue of ik(A)). Shrinking in this way acts counter to the 
bias, described earlier, produced by sample estimation of the eigenvalues by decreasing the larger 
eigenvalues of tk(A) and increasing the smaller ones. 

Friedman proposed that the regularised sample group covariance matrices, tk(A,1), be used as the 
estimate for Lk in (1) and (2) for discriminant analysis. As 0 ::;  A,Y ::; 1 ,  a technique is required to 
select an appropriate A,Y combination for use in the model, and Friedman employed one which 
selects the combination that minimises an estimate of the future error rate (See section 2.2 below). 
He tenned this procedure regularised discriminant analysis (RDAj. 
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RDA provides a rich class of regularisation alternatives. The possible A,"( combinations may be 

thought of as a plane with four comers. The bottom left vertex (1..=0, "(=0) corresponds to QDA, 

(1..=1 ,  "(=0) gives LDA, (1..= 1 ,  "(=1 )  yields a discriminant rule based on minimum euclidean distance 
between groups, while (A=O, 1'=1)  yields a weighted minimum euclidean distance rule where the 

group weights are inversely proportional to the average variance of the measurement variables in the 
group, i.e. tr[Sk]/p. If "( is fixed at zero and A varied, intermediate rules between QDA and LDA are 

obtained. If A is fixed at 1 and 1' increased from 0, one obtains an analogy to ridge regression for 

LDA. 

2 . 2  Selecting A and Y values and tie-breaking 
In practice, optimal values for the regularisation parameters A and l' are not known before hand, and 
Friedman suggests they be estimated from the training data. The selected A, l' combination is that 

which gives rise to the minimum cross-validated estimate of the elTor rate associated with the 
regularised discriminant rule. 

A grid of points is chosen on the A, "( plane ( 0 � /...,1 � I ), containing typically between 25 and 50 

points. Using the A, 1' values to create the classitication rule at each point, cross-validation is used 
to estimate the misclassification risk for each combination of (A, 1'), and the point (A,,¥) with the 
lowest estimated error rate is used as an estimate of the optimal values of A and "(. This two­

parameter optimisation problem would require excessive computation were it to be implemented in 
a straight-forward way. However, Friedman developed updating formulas for the computation of 
the regularised sample covariance matrix and its inverse when a different observation is 
successively omitted from the sample, as during cross-validation. 

Rayens and Greene ( 199 1 )  noted two criticisms of the model selection procedure of Friedman. 
Firstly, it was stated that the minimum cross-validated estimate of the misclassification risk is often 
constant for a range of (A, 1') combinations. Hence the optimal choice of A and "( for the model will 

often not be uniquely determined. Friedman employe·d a strategy of maximum regularisation 
where, for all point yielding the minimum error rate on the (A, 1') grid, that point (A,'¥) is selected 
which gives rise to the largest value of,,( for the largest value of A. Secondly, Rayens and Greene 

( 1991 )  demonstrated a situation that can and does occur where only a very small proportion of the 
sample data influences in any way the optimal choices of A and 1', and the remainder of the sample 
observations are correctly classified for almost all points on the A, l' plane. This occurs especially 

when the groups are well separated. 

Friedman (1989) performed a simulation study to compare RDA with QDA and LDA in terms of 
their simulated overall error rates. The simulation conditions represented a wide mnge of situations 
in terms of the general structure of the group means and covariance matrices. Some of these 
conditions were chosen because they were expected to be unfavourable to RDA in that any 
regularisation away from QDA or LDA would be detrimental to the discrimination process. Other 
conditions were chosen because they were expected to be favoumble to regularisation. The six 
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conditions, defined in tenns of the population covariance matrices and means, which are also those 

employed in the following simulation studies in this paper, are: 

I )  Equal spherical population covariance matrices. A spherical matrix is one where all the 

eigenvalues are similar in magnitude. 

2) Unequal, spherical population covariance matrices. 

3) Equal, highly ellipsoidal population covariance matrices with group mean differences in the low 

variance subspace. By ellipsoidal we mean that there is a large difference in magnitude between the 

smallest and largest eigenvalues. 

4) Equal, highly ellipsoidal population covariance matrices with group mean differences in the high 

variance subspace. 

5) Unequal, highly ellipsoidal population covariance matrices with zero mean differences. 

6) Equal, highly ellipsoidal population covariance matrices with non-zero mean differences. 

2 . 3  Selection of val ues fo r the regularisation pa ram eters when the 

choice is not u niquel y  dete rmined by the m inimum c ross­

validated error rate 

In the previous section we noted that the optimal choice of ()..,Y) is very often not uniquely 

detennined. It is of interest to study the effect of a different procedure than that employed by 

Friedman ( 1989) for selecting the values to use for the regularisation parameters. A simulation 

study has been perfonned under the same conditions as in the previous section but employing a 

policy of minimum regularisation in the advent of the minimum cross-validated error rate not being 

uniquely detennined. If there is more than one point on the (A., 1) grid associated with the minimum 

cross-validated error rate, that point is chosen having the smallest Y value for the smallest A. value. 

This method will be denoted RDAI and is compared with RDA which follows the opposite policy 

of maximum regularisation to break ties. The other discriminant rules are also included for 

comparison. In all cases there are 3 populations or groups, and sample sizes are set to be just larger 

than the dimension p in each case, so as to avoid singularity in the group covariance matrix 

estimates. The (A., 1) grid of points consists of 25 points and is defined to be the same as that used 

in Friedman's study. Results for each set of simulation conditions are in Tables ( 1 )  to (6). 

The first and major finding from the present study comparing RDAI with RDA is that the cross­

validated error rate surface over the A., Y plane is often very nat at its minimum. In such situations 

the error rate estimate will be very similar under both methods for dealing with ties, even though the 
� � 

�ssessed A. and Y values are quite different This would indicate that employing a policy of 

minimum regularisation does not have much effect on the perfonnance of RDA in most of the 

parameter settings considered, and indicates the degree of homogeneity in the cross-validated error 

rate response surface over the A., "'( plane. In particular, the choice of A. can be considerably less 

precise than the choice of Y in detennining the perfonnance of the rule in tenns of its error rate. 
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Table 1 
Equal, Spherical Covariance Matrices 

p = 6  
misclassification risk 

p = 1 0 p = 2 0  

R D A  

R D A 1  

L O A  

a D A  

EDC 

. 1 1 ( .04) . 1 2 ( .04) . 1  2 (. 04) 

. 1 2  ( .03) . 1 4  ( .04) . 1 2 ( .03 )  

. 1 3  ( .04) . 1 4  ( .04) . 1 5  ( .04) 

.24 (. 06) . 32 ( .07) .4 1 ( .07) 

. 1 1 ( .04) . 1 1  ( . 03) . 1 1 (. 03) 

A verage regularisa tion parameter values 

RDA A. . 87 ( .29) . 8 5  ( . 30) .80 ( .34) 

RDA 'Y 
R DA1 A. 

R DA1 'Y 

.78 (. 34) . 8 1  ( .26) . 8 1  (. 24) 

. 1 5  (.26) .20 ( .33) .24 ( . 33) 

.67 ( .32) .69  ( . 30) .80 ( .25) 

Table 2 
Unequal, Spherical Covariance 

Matrices 

p = 6  
misclassification risk 

p = 1 0 p = 2 0  

R D A  

R D A 1  

L O A  

a D A  

EDC 

. 1 1 ( . 04) . 1 2  ( .04) . 1  2 ( .04) 

. 1 2  ( .03) . 1 4  ( .04) . 1 2  (. 03) 

. 1 3  ( .04) . 1 4  ( .04) . 1 5  (.04) 

.24 (. 06) .32 ( .07) .4 1 ( .07) 

. 1 1 ( .04) . 1 1  ( .03) . 1 1  ( .03) 

A verage regularisa tion parameter values 

RDA A .87 ( .29) .85  ( .30) . 80 ( .34) 

RDA 'Y 
RDA1 A. 

R DA1 'Y 

.78 ( . 34) . 8 1  ( .26) . 8 1  ( .24) 

. 1 5  ( . 26) .20 ( .33) .24 (.33) 

.67 (. 32) .69 ( .30) . 8 0 ( . 2 5 )  

Table 3 
Equal, Highly Ellipsoidal Covariance 

Matrices 
(Mean Differences in Low Variance Subspace) 

p = 6  p = 1 0 p = 2 0  
misclassification risk 

R D A  

R D A 1  

L O A  

a D A  

EDC 

.07 (. 05) . 1 2  ( .04)  . 1 5  ( . 04) 

.08 (.04) . 1 3  ( .05)  . 1 6  ( .04) 

.06 ( . 03) . 1 1  ( .04) . 1 4  ( .04) 

. 1 4  ( .05) .29 ( .06) .39 ( . 06) 

.24 (. 06) . 2 9  ( .06) .32 (.05) 

A verage tegularisa tion parameter values 

R DA A. .87 ( .24) .89  ( .23) .87 ( . 1 9) 

RDA' 'Y .05 ( . 1 4) .04 ( . 1 1 ) .04 ( .09) 

RDA 1 A. .4 1  ( .28) .56 ( .30) .73 (.27) 

R OM 'Y .02 ( .07) .03 ( . 1 1 )  .02 ( .07) 
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Table 4 
Equal, Highly Ellipsoidal Covari ance 

Matrices 
(Me.;m Differences in High VarianceSubspace) 

p = 6  p = 1 0 p = 2 0  
misclassification risk 

R D A  

R D A 1  

L O A  

a D A  

EDC 

. 06 ( .03) . 1 0  ( .03) . 1 1  ( .03) 

. 07 ( .03) . 1 0  ( .03)  . 1 1  ( .03) 

. 07 ( .03) . 1 2  (. 04) . 1 4 ( .04) 

. 1 6  ( .06) .30 (.08) .42 ( .06) 

. 06 ( .03) . 1 0  ( .03) . 1 1  ( .03) 

Average regularisa tion parameter values 

RDA A. . 85 ( . 3 1 )  .86 ( .29)  .79 ( .33) 

RDA 'Y . 58 ( .37) .62 (. 33) . 67 ( .27) 

R D A 1  A. . 1 5  ( . 25) .26 ( .32) . 32 ( .34) 

R D A  1 'Y . 50 ( .35)  .55 ( .26)  . 67 ( .27) 

Table 5 
Unequal, Hi ghly Ell i psoidal 

Covariance Matrices 
(with Zero Mean Differences) 

p = 6  p = 1 0 p = 2 0  
misclassification risk 

R D A  

R D A 1  

L O A  

a D A  

EDC 

. 20 ( .06) . 1 2  ( .05)  .03 ( .02) 

. 1 8  ( .06) . 1 1  ( .04)  . 03 ( .02) 

. 60 ( .06) .59 ( .06) . 58 ( .05) 

. 1 7  ( . 05) . 1 4  ( .06) . 1 4  (.04) 

.60 ( .06) .59 (. 06) .58 ( .05) 

Average regularisa tion parameter values 

RDA A. .04 (.07) .04 ( . 06) . 04 ( .06) 

RDA 'Y 
RDA1 A. 

RDA1 'Y 

. 1 2  ( . 1 5) .25 ( . 1 6) .35  ( . 1 8) 

. 0 1  ( .04)  . 0 1  ( .04) .02 ( .05) 

. 1 0  ( . 1 4) .26 ( . 1 5) . 2 6  ( . 1 5) 

Table 6 
Unequal, Highly Ellipsoidal 

Covariance Matrices 
(with Non-zero Me.m Difterences) 

misclassification risk 
p = 6  p = 1 0  p = 2 0  

R D A  

R D A 1  

L O A  

a D A  

EDC 

. 06 ( .04) .06 (.04) .02 (.02) 

.05 ( .02) .05 ( .04) . 0 1  ( .0 1 )  

. 1 7  ( .05) . 1 8  ( .04) .2 1 ( .04)  

.04 ( .03) .05 ( .04) .06 ( .04) 

. 1 6  ( .04)  . 1 7  ( .04) . 1 7  ( .04)  

Average regularisa tion parameter values 

R DA A. . 1 0  ( .20) . 1 0  ( . 1 4) .07 ( .06) 

RDA 'Y . 1 9  ( .27) .29 ( .22)  . 35 ( . 1 9) 

R DA1 A .0 1  ( .03) .02 ( .04) .00 ( .00) 

RDA1 'Y . 1 0  ( . 1 3) .22 ( . 1 5) .27 (.09) 



In conclusion, altering the way ties are broken in the search for the optimum values of A and 'Y does 

not have a great influence on the performance of RDA. Some of the parameter configurations 

looked at would favour a greater degree of regularisation and some a lesser degree, but the 

difference in error rates was slight. 

2 . 4  Useful ness of RDA for various ratios of sample size to 

d i m e nsion 

From the study by Friedman ( 1989) as well as in the  previous section it is clear that RDA has 

proved itself at least equal to but usually superior to the other classification rules under a fairly wide 

range of situations. The superiority is greatest in the larger dimensional settings (p> IO) .  The 

comparisons with QDA and LDA indicate that the advantage RDA has over the other classification 

rules is a result of allowing for eigenvalue shrinkage. A question which becomes of interest is: to 

what extent do the benefits of regularisation, in particular eigenvalue shrinkage, diminish as the 

sample size to dimensionality ratio increases? 

A (further) simulation study was implemented in the manner of Friedman ( 1989) (and the previous 

section), using the same six simulation conditions. In those studies, the ratio of training sample size 

to dimensionality (g) is around 2 or less. We investigate the performance of RDA relative to the 

other classification rules over a wider range of g ratios. It would be anticipated that eigenvalue 

shrinkage would no longer be useful for discriminating once the training sample size increases past 

some point sufficiently larger than p. The various � ratios employed were 1 .2, 1 .5,  2, 3, 5, 10 for 

dimensions 6, 10 and 20. The (A, 'Y) grid of values for use in the model selection procedure of RDA 

is defined by the outer product of A= (0, .25, .5, .75, 1 )  and 'Y = (0, .25, .5, .75, 1 ). The entire 

training sample is 3n in each case, the test sample is 200, and 50 replications of each experiment 

were performed. Average error rate (with standard deviation in brackets) are given for each 

classification rule. The results are given in Tables 7 to 1 2. 

Eigenvalue shrinkage appears to enhance the classification process under conditions of equal, 

spherical covariance matrices only for small � ratio (� < 3). For larger ratios the advantage RDA 

enjoys over the other methods disappears. QDA shows the most dramatic improvement in error rate 

as the � ratio increases, owing to improved parameter estimates through larger sample size. 

In the situation of unequal, spherical population covariance matrices RDA proved superior for all 

nip ratios studied, especially for smaller nJp mtios, indicating the benefit of eigenValue shrinkage 

which biases the covariance estimates towards the appropriate value (a multiple of the identity 

matrix) in these circumstances. 

7 



Table 7 
Misclassi fication Risk for Various nIp Ratios 

Equal Spherical Covariance Matrices 

p = 6 p = 1 0 p = 2 0 

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 
7.2: 7 2: 7 7 0: 7  7 .2: 7 2: 7 7 0: 7  7 .2: 7 2: 7 7 0: 7  

R D A  . 2 2  . 2 0  . 1 6  . 2 0  . 1 5  . 1 0  . 1 3  . 1 0  . 0 9  

( . 0 4  ) ( . 03 )  ( . 0 3 )  ( . 0 5 )  ( . 0 3 )  ( . 03 )  ( . 0 3 )  ( . 0 2 )  ( . 02 )  

L O A  . 3 0  . 2 5  . 1 8  . 2 8  . 2 6  . 1 8  . 2 8  . 2 4  . 1 9  

( . 0 6 )  ( . 0 2 )  ( . 0 2 )  ( . 0 5 )  ( . 04 )  ( . 03 ) ( . 0 3 )  ( . 03 )  ( . 0 2 )  

a D A  . 5 3  . 3 4  . 1 7  . 5 2 . 3 5  . 1 4  . 5 5  . 3 7  . 1 2  

( . 0 7 )  ( . 0 6 )  ( . 02 ) ( . 07 )  ( . 0 5 )  ( . 0 3 ) ( . 0 4 )  ( . 04 )  ( . 02 )  

Table 8 
Misclassification Risk for Various nIp Ratios 

Unequal, Spherical Covariance Matrices 

p = 6 p = 1 0 p = 2 0  

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 
7 . 2: 7 2: 7 7 0: 7  7. 2: 7 2: 7 7 0: 7  1.2: 7  2: 7 7 0: 7  

R D A . 2 2  . 2 0  . 1 6  . 2 0  . 1 5  . 1 0 . 1 3  . 1 0  . 0 9  

( . 0 4  ) ( . 0 3 )  ( . 0 3 ) ( . 0 5 )  ( . 03 )  ( . 0 3)  ( . 0 3 )  ( . 02 )  ( . 02 )  
L O A  . 3 0  . 2 5  . 1 8  . 2 8  . 2 6  . 1 8  . 2 8  . 2 4  . 1 9  

( . 0 6 )  ( . 02 )  ( . 02 )  ( . 0 5 ) ( . 04 )  ( . 03 ) ( . 0 3) ( . 0 3 )  ( . 02 )  
a D A  . 5 3  . 3 4  . 1 7  . 5 2  . 3 5  . 1 4  . 5 5  . 3 7  . 1 2  

( . 0 7 )  ( . 0 6 )  ( . 0 2 )  ( . 0 7 )  ( . 05 )  ( . 0 3 ) ( . 0 4 )  ( . 04 )  ( . 02 ) 

Table 9 
Misclassification Risk for Various nIp Ratios 

Equal, Highly Ellipsoidal Covari ance Matrices 
(Mean Differences in Low Variance Subspace) 

p = 6 p = 1 0  p = 2 0  

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 
1 .2: 1 2: 7 7 0: 7  7.2: 7  2: 1 1 0: 1  7 .2: 7 2: 1 1 0: 1  

R D A  . 1 2  . 0 8  . 0 5  . 1 6  . 1 2  . 1 0  . 1 8  . 1 4  . 1 1 
( . 0 6 )  ( . 0 4 )  ( . 0 2 )  ( . 0 4 )  ( . 04 )  ( . 0 3 )  ( . 0 4  ) ( . 03 )  ( . 0 2 )  

L O A  . 1 0  . 07 . 0 4 . 1 4  . 1 1 . 0 8  . 1 7  . 1 4  . 1 1  
( . 0 3)  ( . 0 2 )  ( . 0 1 )  ( . 0 3 )  ( . 02 )  ( . 0 2 )  ( . 0 3 )  ( . 0 2 )  ( . 0 2 ) 

a D A  . 4 1 . 1 5  . 0 5  . 4 4  . 2 4  . 0 9  . 4 9  . 3 2  . 1 4  
( . 0 9 )  ( . 0 5 )  ( . 02 )  ( . 0 9 )  ( . 0 5 )  ( . 02 )  ( . 0 6 )  ( . 04 )  ( . 0 2 )  

Table 10  
Misclassification Risk for Various nIp Ratios 

Equal,  Highly Ellipsoidal Covariance Matrices 
(Mean Differences in High Variance Subspace) 

p = 6 p = 1 0 p = 2 0  

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 
1 .2: 1 2: 1 1 0: 7  1.2: 7  2: 7 1 0:1  1.2: 7  2: 7 1 0: 1  

R D A  . 0 8  . 0 7  . 0 6  . 1 0  . 1 0  . 1 1 . 1 2  . 1 0  . 0 9 
( . 0 3)  ( . 0 2 )  ( . 0 2 ) ( . 0 3 )  ( . 02 ) ( . 04 ) ( .03)  ( . 0 2 )  ( . 02 ) 

L O A  . 1 2  . 0 9  . 0 5  . 1 4  . 1 1 . 0 8  . 1 6  . 1 3  . 1 3  
( . 0 3 )  ( . 0 3 )  ( . 0 1  ) ( . 03)  ( . 0 3 )  ( . 0 2 ) ( . 0 3 )  ( . 02 ) ( . 03 )  

a D A  . 4 3  . 1 8  . 0 6  . 4 5  . 2 3  . 0 9  . 4 8  . 3 0  . 1 0  
( . 1 0) ( . 0 5 )  ( . 0 1  ) ( . 07)  ( . 0 5 ) ( . 02 )  ( . 0 5) ( . 0 4 )  ( . 0 3 )  
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Table 1 1  
Misclassi fication Risk for Various nIp Ratios 

Unequal, Highly Ellipsoidal Covariance Matrices 
(with Zero Mean Differences) 

p = 6  p = 1 0 p = 2 0  

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 

1 .2: 1 2: 1 1 0: 1  1 .2: 1 2: 1 1 0: 1 1 .2: 1 2: 1 1 0: 1 

R D A  . 3 4 . 1 9  . 1 0  . 1 5  . 0 9  . 0 6  . 0 3  . 0 2  . 0 0  

( .  1 1  ) ( . 0 5 )  ( . 04 )  ( . 0 6 )  ( . 0 3 )  ( . 0 3 ) ( . 0 2 )  ( . 0 2 )  ( . 00 )  

L O A  . 6 1  . 5 9  . 6 2  . 5 9  . 5 9  . 6 1  . 5 8  . 5 9  . 6 2  

( . 0 5 )  ( . 0 5 )  ( . 04 )  ( . 0 4)  ( . 04 ) ( . 04 ) ( . 0 4 )  ( . 0 5 )  ( . 04 )  

a D A  . 3 9  . 1 8  . 0 8  . 2 9  . 1 0  . 0 2  . 2 0  . 0 4  . 0 0  

( . 0 9 )  ( . 0 4 )  ( . 02 )  ( . 0 9 )  ( . 03 )  ( . 0 1  ) ( . 07 )  ( . 02 )  ( . 00 )  

Table 1 2  
Misclassification Risk for Various nIp Ratios 

Unequal, Highly Ell ipsoidal Covariance Matrices 
(with Non-zero Mean Differences) 

p = 6  p = 1 0 p = 2 0  

Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio 
1 .2: 1 2: 1 1 0: 1  1 . 2: 1  2: 1 1 0: 1  1 .2: 1 2: 1 1 0: 1  

R D A  . 1 4 . 0 7  . 0 2  . 0 9  . 0 4  . 0 1 . 0 3 ( . 0  . 0 1  . 0 0  

( . 04 )  ( . 0 3 )  ( . 0 1  ) ( . 0 5 )  ( . 03 )  ( . 0 1 )  2 )  ( . 0 1 ) ( . 00 )  

L O A  . 2 1  . 1 8  . 1 3  . 2 4 . 2 0  . 1 6  . 2 2  . 1 8  . 1 5  

( . 0 5 )  ( . 04 )  ( . 03 )  ( . 0 4 )  ( . 04 )  ( . 0 3 )  ( . 0 4 )  ( . 0 3 )  ( . 03 )  

a D A  . 2 5  . 0 5  . 02 . 1 9  . 0 4  . 0 1  . 1 4 . 0 1  . 0 0  

( . 1 2 ) ( . 02 ) ( . 0 1  ) ( . 1 0 ) ( . 02 )  ( . 0 1 ) ( . 0 6 )  ( . 0 1 ) ( . 00 )  

Eigenvalue shrinkage proves to be of no benefit when the population covariance matrices are equal 

but highly ellipsoidal with mean differences in the low variance measurement subspace, at least for 

the nip ratios studied (g > 1 .2). This is because if the covariance matrix eigenvalues are biased 

towards equality, the variance in all subspaces is equalised and hence in this case the mean 

differences will become obscured. Conversely, when
' 
the mean differences are exhibited in the high 

variance subspace, eigenvalue shrinkage proves useful in reducing the variance in those subspaces 

where mean differences are exhibited. RDA has a lower error rate than those rules with no 

eigenvalue shrinkage for g ratio less than 3. At g =3 and larger, LDA performs as well as RDA. 

In the case of unequal, highly ellipsoidal popUlation covariance matrices with either zero or non­

zero differences between the means, a small amount of eigenvalue shrinkage enables RDA to out­

perform QDA, but only when the sample size is less than twice the dimension. In this case, 

eigenvalue shrinkage is generally not desirable since the covariance matrices provide substantial 

information needed for discrimination. A small degree of eigenvalue shrinkage is beneficial in 

counteracting eigenvalue bias (see section 1 . 1) in those situation� of small g ratio. For larger g 
ratios QDA' s performance is comparable to that of RDA, indicating eigenvalue shrinkage loses its 
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effectiveness. While the average 'Y value used in RDA is usually small, there is substantial variation, 

indicating that under these fairly difficult discrimination conditions (especially zero mean 

differences), selection of 'Y is sensitive to peculiarities in the data. 

In conclusion, this simulation study underlines the usefulness of the eigenvalue shrinkage technique 

as employed by RDA. The advantage that it affords over the other rules is strongest when the 

training sample size from each group is small in relation to the dimensionality, p. Furthermore, 

often that advantage remains, even when the sample size increases to several times that of the 

dimension. 

Mode l  Selection Using B h attacharyya D istance 

3 . 1  I nt roduction 

In  section 2.2, several weaknesses in the model selection procedure of  Regularised Discriminant 

Analysis as developed by Fliedman ( 1989) were noted by Rayens and Greene( 199 1 ). These 

included the fact that the regularisation parameters were often detelmined by a small fraction of the 

data points available, and that in many instances (especially with smaller sample sizes) there will 

not be a unique choice of the parameters CA,Y) for the model. Furthermore, despite the development 

of computationally efficient algorithms to enhance the attractiveness of what is inherently a 

computationally intensive model, the computation time is still rather high from the author's 

experience using MA 1LAB 1M on a multiprocessing SUN Sparcstation ELC. Therefore it is of 

interest to explore other ways of aniving at appropriate regularisation parameter values in place of 

m inimising the cross-validated error rate at a range of points over the A,'Y grid. 

Distance measures have often been considered as alternatives to error rates. For example, Jain 

( 1976) investigated the behaviour of an estimate of the Bhattacharyya distance when used as a 

criterion in variable selection. It was shown that the bias and variance of the estimate is related to 

the number of training samples and parameter values of the distribution. Kailath ( 1967) addressed 

the problem that minimising the elTor rate to determine optimum classification can be difticult to 

accomplish in practice. He investigated the idea of using simpler, albeit sub-optimal performance 

measures instead of the error rate, and compared the Bhattacharyya distance with an often-used 

measure, the divergence, which is closely related to Shannon's  logarithmic measure of information. 

Not only is the Bhattacharyya Distance easier to evaluate than the divergence, but in some examples 

in the study it was found to perform at least as well as the divergence in minimising the probability 

of misclassification. Kailath obtained an upper bound on the the probability of misclassification in 

terms of the Bhattacharyya distance in the case of equal prior probabilities of the distributions. Note 

that Kailath only treated the case of two populations. Also, all his work assumed knowledge of the 

parameters, whereas, as we shan see later, if one has to use sample estimates of the parameters, the 

link between Bhattacharyya distance and error mte is a lot less clear. Also, Fukunaga and Hay�s 

( 1989) obtained an upper bound, in terms of the Bhattacharyya distance, on the B ayes error for 

classifying between two Gaussian distributions . 

10 



The Bhattacharyya distance between two multivariate nOl1l1al density functions with mean vectors 
"'1 and "'2 and covariance matrices II and I2 is 

B = B l  + B2 (9) 
where 

and 

The first tel1l1 of the expression, B 1 ,  is similar to the well-known Mahalanobis distance between the 

densities. It measures the distance between the two distributions caused by the mean shift. The 

second term B2 utilises the determinants of each distribution's covariance as well as that of the 

average group covariance matrix. It gives a measure of the the difference between the two 

distributions due to the covariance shift. 

Fukunaga and Hayes ( 1989) derived expressions for the expected bias and variance of the terms B 1 

and B2 and showed that the bias of term B 1 is proportional to � (n = sample size). i .e. increases as 

the ratio � increases. They also showed that the bias of term B2 is proportional to (p:l)p. In other 

words, estimates of this distance measure become increasingly biased as the ratio * increases, with 

term B2 more seriously affected than tel1l1 B 1. Thus in high dimensional space the bias present in 

the Bhattacharyya distance estimate is dominated by the bias inherent in estimation of term B2. . 

They also showed that as the dimensionality increases, an increasingly large ratio of � is needed to 

maintain a constant expected value of B .  

With the above knowledge of  the Bhattacharyya distance function between two Gaussian 

distributions, it is plausible to expect that some degree of regularisation of the covariance, such as is 

provided for by the two-parameter model in equation (8), would improve the estimation of the 

B hattacharyya distance. The reason for this stems from the accepted knowledge that covariance 

estimates based on equation (4) yield eigenvalue estimates which are biased. The largest ones are 

biased towards high values and the smallest ones are biased towards values which are too low. This 

bias will be worse in the situation where the true population eigenvalues are approximately equal, 

but in all cases this bias becomes more pronounced as the ratio of sample size to dimension 

decreases. 

The term B2 of the Bhattacharyya distance is most vulnerable to such bias occurring, being a ratio 

of determinants of sample covariance estimates, and eigenValue shrinkage ought to prove useful in 

counteracting bias-induced anomalies in estimates of B2, particularly as p becomes large. 

1 1  



3 . 2  B ehaviour of Bhattacharyya Distance with Regularised 

Covariances 

Kailath ( 1967) admitted that it was too much to hope for to obtain a strong relationship between 

distance measures and error rate, but he nevertheless was able to obtain several useful theoretical 

results, assuming known population parameters. In the present covariance regularisation context 

with two parameters controlling shrinkage, as in equations (7) and (8), it is also too much to hope 

for to expect that the CA,Y) combination which maximises the Bhattacharyya distance for a given set 

of data will also yield a classification rule which minimises the future misclassification risk. 

Instead, from the example below, we can detect no such relationship between sample 

Bhattacharyya distance and minimum error rate. The figure shows the components B 1 ,  B2 of the 

Bhattacharyya distance at a range of points over the A.;Y grid. The cross-validated error rate (ecv) at 

each point is also stated to give an indication of where the range in which the minimum actual error 

rate lies. The data set consisted of samples of size 1 3  from each of two normal populations with 

means and co variances as in Table 4 in section 2.3. 

Table 13. 

"'( = 1 
"'( = 0.5 
"'( = 0  

Example of A.,"'( Grid of Bhattacharyya Distances (ecv, B 1 ,  B2) 
0. 08, 3.84, 0.05 0. 08, 3 .84, 0.00 0. 08, 3.84, 0.00 
0. 04 , 2.93, 0. 10 ' 0. 04, 2.93, 0.0 1  0. 04, 2.93, 0.00 
0. 15, 2.73, 0.59 0. 08, 2.73, 0.05 0. 08, 2.73, 0.00 

A. = O  A. = 0.5 A. = 1 

It is evident from Table 1 3  that the largest value of B=B l+B2 will always occur on the axis A.=O on 

the A.,"'( grid; i.e. 'no regularisation of the individual covariance matrices towards the average 

covariance. This is the case for samples from any two normal distributions. 

There are ,several reasons for this: 

1) The value of B 1 is not affected by the value of A. since the central component of it, 

[tl (A.,1) + �(A.,1)] /2, is nothing but the value towards which the individual co variances are biased 

anyway by the use of A.. Note that (S I(A.)+S2(A»12 always reduces to (S l+S2)12: 
1 1 1 1 (S l (A.)+S2(A.»12 = 2< 1-A.)S I + 2:ASp + 2: ( 1 -A)S2 + 2:A.Sp = (S I +S2)12 

1 1 where Sp = 2S1+2S2.  

2)  The value of B2 decreases monotonically as A. increases, for fixed "'(, and when A.=1, tl (A.,1) 
� tr[S ] 

and �(A.,1) are both equal to ( 1  - 1) Sp + r �  I, where Sp is the poeHed between-groups 
- p 

sample covariance matrix. Hence the numerator and denominator of B2 are equal and the term 

becomes zero. 
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3) Tenn B2 is always non-negative since for two p-dimensional positive definite matrices, A and 

B ,  

-JiA1 �< I A ; B I · 
4) The value of B2 decreases monotonically as 'Y increases from 0 to 1 ,  for fixed A. An intuitive 

reason for this is as follows. The ratio 

-fif:i � li21 
is a measure of the covariance shift between the two distributions and as the eigenvalues of the 

separate co variances are increasingly biased towards equality, the distributions become more 

similar in shape. 

3 . 3  Model S election 

Since the regularisation parameter A. does not affect term B 1 ,  and monotonically diminishes tenn 

B2 as it increases, it is evident that an appropriate value for it in a given situation cannot be 

detennined from infonnation about B. Re-sampling methods can be employed to give a unique 
choice for A.. However these methods are computationally intensive, and since both the tenns B 1 

and B2 exhibit the same behaviour in relation to A for all values of 'Y, it is sensible to first turn our 

attention to choosing a value for 'Y so as to narrow down the search area for A on the (A,y) plane. 

Selection of the parameter r 
Increasing the value of the eigenvalue shrinkage parameter 'Y typically decreases the tenn B 1 ,  but 

not always, and the trend is not always monotonic. However from point 4 above we see that B2 
exhibits only monotonic behaviour in relation to 'Y. So i t  seems sensible to first look at  the 

behaviour of B 1 for a range of 'Y. 

From the empirical data we can identify three scenarios relating to B 1 :  

1 )  Magnitude of B 1 small, and not greatly affected by the value of r changing between 0 and 1 . . 

2) Magnitude of B 1 large and not greatly affected by the value of 'Y changing between 0 and 1 .  

3 )  The effect on B 1 of 'Y changing between 0 and 1 is large. 

Now from the behaviour of primarily B 1 ,  and secondarily B2, calculated for various 'Y over 

o � 'Y � 1 ,  the following decision paths are proposed for the selection of an appropriate 'Y. 

Under scenario 1 above, B l  is not providing much infonnation as to an appropriate value of'Y;so 

look at the effect of various 'Y on B2. If it is large, choose that r which gives a minimal value of 

B I1B2, since in this case a dominant covariance shift over mean shift would seem to be important 
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for enhancing classification. n' 'Y also has little effect on B2, choose that 'Y which leads to a maximal 

value of B l1B2. 

Scenario 2 above indicates these are good conditions for classitication due to the large Mahalanobis 

distance (B 1) for all values of 'Y. Some average value of Y will suffice. 

Under scenario 3, if'Y has little effect on B2, it is clearly desirable to select that Y yielding a large 

value of B 1 .  However if B2 is greatly affected by 'Y also, some greater degree of reduction in the 

variance of the system (by increasing Y a  little) is desirable for classification purposes, whilst still 

maintaining a sizeable Mahalanobis distance (B 1) between the groups. 

The above guidelines lead to a simple flow chart for the selection of Y to use in equations (7) and (8) 

based on the three scenarios above and followed by the selection of A using a re-sampling 

technique. The critical values at each decision stage have been arrived at empirically through 

observing the values of B l and B2 for various random samples from various normal populations. 

The six simulation conditions proposed by Friedman ( 1989), and used in the present paper (section 

2.2), offer a comprehensive set of group population distributions and nip ratios from which to 

estimate these critical values. 

Selection of the parameter A 
For the selection of the regularisation parameter A, only the term B2 can be employed since B 1 is 

constant over all values of A for a given value ofY. However, the decrease in B2 from its maximum 

value at A=O to A.= 1 ,  when it is zero, is monotonic. Bootstrapping is used to estimate that upper 

bound on B2 for the selected value of 'Y ('Y) and A=O, and this estimate is compared to the full-. ·· 

sample estimate of B2 for that same degree of regularisation and a unique value of the parameter A 

obtained. 

The magnitude of B2 when A=O and Y=l gives further indication as to the similarity or dissimilarity 

of the group covariance estimates, and hence also indication as to an appropriate value of A. Under 

this situation of maximal eigenvalue shrinkage the determinants of the group covariances are 

reduced to their average eigenvalue raised to the power of the dimension, p. If the group 

covariances are similar, the average of their eigenvalues will be similar in magnitude and the 

fraction in term B2 will be close to one, resulting in the value of B2 itself being close to zero. This 

being the case, the selected A, is raised to a power 11k where k is proportional to 11B2(O, 1 )  

(B2(a,b) denotes the value of  B2 when A=a and Y=b).  

Thus model selection using the Bhattacharyya distance consists of the following steps: 

1 )  Evaluate B l and B2 from the available data for varying degrees of covariance eigenvalue 

shrinkage (a range of 'Y), but using no covariance mixing (A=O), 
A 

2) Se1ect 'Y using decision flow chart that implements the guidelines of this section , 
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A 

3) Using the amount of eigenvalue shrinkage determined by the selected parameter value Y, estimate 

the upper bound of the range of B2 using the re-sampling technique of bootstrapping. 

The re-sampling technique is therefore used only at one point on the CA,,¥) plane. This contrasts 

with Friedman's RDA where a sample-reuse method (cross-validation) is performed at each of a 

whole grid of typically between 25 and 50 points. No matrix updating formulas are therefore 

required in this case which results in a greatly reduced computational burden (see section 3.6). 

3 . 4  D iscussion 

The simulations performed with Friedman's RDA in earlier section have enabled us  to observe that 
A A 

for a number of different simulation conditions, there is no unique selection of A. and Y, using the 

criteria of minimum cross-validated error rate, and indeed altering the rule for the breaking of such 

ties had little effect on the overall performance of the procedure. In other words, the degree of 

regularisation (either covariance mixing or eigenvalue shrinkage, or both) is often not as important 

as its presence in any form.Thus it seems that complex methods to obtain a precise selection of A. 
A 

and Y are not warranted. 

Another conclusion from the simulation studies is that as the sample size to dimension ratio 

decreases, a degree of eigenvalue shrinkage using Y (i.e. Y>O) becomes more necessary to 

counteract the bias in the eigenvalues of the estimated covariances. Also, an increasing amount of 

regularisation away from Y=O is required as p increases, even for those conditions where any 

shrinkage of the eigenvalues to equality would appear to be strongly counter-productive. (See, for 

example, Table ( 18) where the average Y value increases with dimension to substantial levels, even 

though no regularisation, or QDA, would seem to be the best option in these conditions.) The 

benefits of a decrease in variance from such shrinkage is proven to outweigh any introduced bias. 

The proposed method of selecting Y from the Bhattacharyya distance therefore only considers 

values of Y in the range e � Y � 1 ,  where e � 0 but usually fairly close to zero and where e depends 

on both the magnitude of p and the sample size to dimensionality ratio. 

A goal of this model selection procedure using the Bhattacharyya distance is to provide a much 

faster algorithm to that proposed by Friedman using cross-validation. Also, the model selection 

procedure should choose appropriate levels of covariance mixing and eigenvalue shrinkage so that 

the classification rule obtained is comparable in performance to Friedman's RDA. 

3 . 5  S i mu lation S tudies 

Computer simulation is used to compare the performance RDA, LDA, QDA, EDC and RDA-B 

(which denotes Regularised Discriminant Analysis using the Bhattacharyya distance measure to 

select the model) in the same variety of settings as that used by Friedman ( 1989), except that only 

two groups are present instead of three. In all cases the group distributions are normal and the total 

sample size from those distributions was 28, 14 from each group. For each set of conditions, 

simulations were performed for various levels of dimensionality: p=6, 10 and 20. The optimisation 
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grid for RDA was set as in Friedman's study. Since the sample size to dimensions ratio is less than 

one for some simulations, the zero eigenvalues of the group covariance matrix estimates were 

replaced by a small quantity, sufticient to permit numerically stable covariance inversion. 

There were 100 repetitions of the experiment for each of the six settings. As before, random 

samples were drawn from specitied multivariate normal distributions and were used to construct the 

classification rules for all five of the above methods. An additional test sample of size 100 was 

randomly generated from the same distributions and classitied using each of the five rules obtained, 

yielding estimates of the error rate for each rule. These are presented in Tables ( 13) to ( 1 8), along 

with the mean and standard deviation of the selected regularisation parameters for RDA and RDA-B 

over the 100 replications. A(RDA) and (A(RDA-B) denote the mean value of A. for RDA and RDA-B 

respectively. The mean value of Y for each method is defined similarly. 

Table 1 4  
Equal Spherical Covariance Matrices (k=2 groups) 

p = 6  p = 10  P = 20 
RDA .08 (.03) .09 (.03) . 1 1 (.04) 
RDA-B .08 (.03) .09 (.03) . 1 0  (.04) 
QDA . 1 6 (.06) .29 (.07) .32 (.06) 
LDA . 1 0  (.04) . 1 4 (.05) .24 (.07) 
EDC .08 (.03) .09 (.03) . 1 0  (.03) 

X(RDA) .86 (.30) .94 (. 1 8) .94 (.20) 

Y(RDA) .73 (.34) .86 (.22) .76 (.28) 

A(RDA-B) .85 (.2 1 )  .84 (.2 1 )  .84 (. 1 6) 

Y(RDA-B) .94 (. 1 1 ) .93 (.07) .84 (.26) 

Table 1 5  
Unequal Spherical Covariance Matrices (k=2 groups) 

p = 6 p = 10  P = 20 
RDA . 1 1  (.04) . 1 1 (.04) .08 (.05) 
RDA-B . 1 1 (.04) .09 (.05) . 1 0  (.09) 
QDA .20 (.05) .32 (.08) .35 (.07) 
LDA . 1 5  (.04) .20 (.06) .32 (.07) 
EDC . 1 3 (.04) . 1 5  (.05) . 1 8  (.05) 

X(RDA) .46 (.37) .35 (.35) .28 (.27) 

Y(RDA) .80 (.3 1 )  .77 (.30) .88  (.20) 

A(RDA-B) . 1 5 (.2 1 )  .09 (. 1 1 ) .04 (.03) 

Y(RDA-B) .72 (.37) .86 (.24) .77 (.34) 
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Table 16 

Equal,  Highly Ellipsoidal Covariance Matrices (k=2 groups) 

(Mean differences in low variance subspace) 

p = 6  p = 1 0  p = 20 
RDA .02 (.04) .05 (.03) . 1 3  (.05) 
RDA-B .01  (.0 1 )  .06 (.05) . 1 3  (.05) 
QDA .02 (.02) . 1 6 (.08) .28 (.07) 
LDA .01  (.0 1 )  .03 (.02) . 1 5  (.07) 
EOC .09 (.04) . 1 0 (.04) . 1 6  (.05) 

A(RDA) .96 (. 17)  .96 (. 14) .87 ( .28) 

"{(RDA) .20 (.36) .29 (.3 1 )  .49 (.3 1 )  

A(RDA-B) .94 (.05) .84 (. 15 )  .8 1 (. 1 9) 

"{(RDA-B) .0 1 (. 10) .36 (.44) .68 ( .39) 

Table 1 7  
Equal, Highly Ellipsoidal Covariance M atrices (k=2 groups) 

(Mean differences in high variance subspace) 

RDA 
RDA-B 
QDA 
LDA 
EOC 

A(RDA) 
'V(RDA) 
A (RDA-B) 
"{(RDA-B) 

p = 6 p = lO p = 20 
.03 (.02) .03 (.02) .05 (.03) 
.02 (.02) .02 (.02) .03 (.02) 
.07 ( .04) . 1 9 (.09) .23 (.08) 
.03 (.02) .06 (.04) . 1 5  (.07) 
.03 (.02) .03 (.02) .04 (.02) 

1 .0 (.00) .94 (.23) .94 (.2 1 )  

.89 (.26) .95 (. 1 4) .82 (.26) 

.9 1 (.08) .89 (.08) .87 (. 1 0) 

.69 (. 14) .75 (. 1 1 ) . 82  (. 1 1 ) 

Table 18 

Unequal Highly Ellipsoidal Covariance Matrices (k=2 groups) 

(Zero mean di fferences) 

p = 6 p = 1 0  P = 20 
RDA . 1 8  (.08) . 1 3  (.06) .05 (.03) 
RDA-B . 1 8  (.06) . 1 0  (.05) .05 (.04) 
QDA . 1 7  (.06) .22 (.09) .20 (.05) 
IDA .47 (.06) .47 (.07) .44 (.06) 
EOC .47 (.05) .46 (.05) .43 (.05) 

A(RDA) . 1 3  ( . 12) . 1 2  (. 1 2) . 1 5  (. 1 1 ) 

"{(RDA) . 1 2 ( .26) .39 (.29) .67 (.29) 

A(RDA-B) . 16 (.09) . 10 (.06) .04 (.03) 

'V(RDA-B) . 19 (.3 1 )  .33 (.35) .63 (.34) 
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Table 19 
Unequal Highly Ellipsoidal Covariance Matrices (k=2 groups) 

(non zero mean differences) 

p = 6  p = 10  P = 20 
RDA .03 (.03) .06 (.04) .04 (.05) 
RDA-B .02 (.03) .03 (.02) .02 (.02) 
QDA .02 (.02) .07 (.05) . 1 1  (.04) 
iliA .03 (.02) . 1 0  (.05) . 1 9 (.08) 
EOC . 1 0  (.04) . 1 2  (.04) . 1 3  (.04) 

X(RDA) .76 (.34) .49 (.35) .46 (.26) 

Y(RDA) .25 (.34) .46 (.35) .76 (.30) 

A(RDA-B) . 1 8  (. 14) . 1 1  (.07) .05 (.03) 

Y(RDA-B) . 1 6  (.23) .37 (.38) .35 (.30) 

3 . 6  Resul ts 

In all the various conditions tested it is clear that RDA and RDA-B yield very similar error rates 

over the 100 replications. There are 1 8  sets of simulations represented in tables (13)  to ( 1 8). In ten 

of these cases, RDA-B performs slightly better (and with a reduced standard deviation) than RDA 

in terms of estimated error rate, and in two of the cases RDA has a slightly lower error rate. Thus 

overall, neither technique is superior to the other in terms of experimental classification error rates. 

The average regularisation parameter values for RDA and RDA-B show that for both methods, the 

model selection procedures tend to do the right thing by introducing appropriate degrees of each 

type of regularisation for the various simulation conditions. 

The standard deviations of the selected regularisation parameters tended to be smaller for RDA-B , 

perhaps because of the more direct nature of the path taken to select the pair of values (A., 1) in the 

parameter selection procedure in RDA-B compared with RDA Furthermore, the model selection 

process in RDA-B affords a unique choice of the estimated best pair of values CA., 1), without 

having to break ties in an arbitrary way as for RDA. 

In conclusion, it can be established that the Bhattacharyya distance between groups does indeed 

provide information as to appropriate regularisation parameter values to use in equation (8). This 

can be used to obtain a classification rule which seeks to minimise the actual error rate for data from 

two specified normal distributions. Unfortunately, no tidy, direct theoretical relationship exists 

between components of the Bhattacharyya distance and the error rate. Instead we have derived the 

model selection procedure based on empirical data and it can be seen to perform as well, at least 

under the tested range of simulated conditions, as the model selection procedure developed by 

Friedman ( 1989) in the RDA method. 
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Finally, a substantial advantage of the model selection procedure in RDA-B over that of RDA 

relates to the computation time required for each. The table below gives approximate ratios (RDA­

BIRDA) of CPU times for various dimensions. 

p=6 

. 1 5 

p= l O  

. 1 2  

p=20 

.08 

These results indicate the the gain in computational efticiency in using RDA-B over RDA. 
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ABSTRACT 

1 

Friedman ( 1989) proposed a Regularised Discriminant Function (RDF) as a compromise 
between normal-based Linear and Quadratic Discriminant Functions, by considering 
alternatives to the usual maximum likelihood estimates for the covariance matrices. These 
alternatives are characterised by two (regularisation) parameters, the values of which are 
customized to individual situations by jointly minimising a· sample-based(cross-validated) 
estimate of future misclassification risk. This technique '!Ppears to provid_e considerable gains 
in classification accuracy in many circumstances, although it is computationally intensive. 

Because of the computational burden inherent in RDF, and with regard to criticisms of the 
technique by Rayens et. a1. ( 199 1 ), we investigated whether information about appropriate 
values of the two regularisation parameters could be gleaned by examining the behaviour of 
the Bhattacharyya Distance between the various populations. A classification rule for the two 
(normal) population case which uses regularization parameters obtained from the 
Bhattacharyya distance (and which is computationally much faster than Friedman's RDF) is 
presented and compared with the original RDF. 

1. INTRODUCTION 

Regularized discriminant analysis was introduced by Fliedman ( 1989) as an alternative to the 
common normal-theory-based discriminant functions, such as the nearest-mean (euclidean 
distance) classifierCEDF), the linear discliminant function(LDF) and the quadratic 
discriminant function(QDF). S imulation results by various authors suggest that regularized 
discriminant analysis can pedorm much better than tlJese other normal-theory based 
discriqIinant functions (see, for example, Fliedman ( 1989), Rayens et. ale ( 1991 » . 
Experiences of the authors of this article also confirm these results. Meanwhile, a recent 
article by Aeberhard et. a1. ( 1994) reported results which found that the regularized 
discriminant function (RDF) performed much better than seven other discriminant functions, 
including several non-parametric ones. 

To introduce the notation, suppose we have multivariate (p-dimensional) measurements (x) 
on each object (pixel), where each object belongs to one of K classes. In order to apply 
normal-theory based classification, it is usually assumed (con-ectly or incorrectly) ,that the 
multivariate normal distribution can adequately describe the distribution of measurements 
from each class. Let us denote the population mean and covariance function for group i by 

1 Author to whom correspondence should be addressed. Address after February I, 1996: Faculty of Business, 
QueenSland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia. 
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Jlj and 1:j respectively. These are usually estimated by the sample mean x j and sample 

covariance matrix Sj' from the training sample. If it is assumed that the covariance matrices 

1:j are equal for all K classes , then the common value 1: is estimated by 
K 

S = I (n.fn) S ·  ( 1 )  p 1 1 
i= l 

On the basis of these estimates, the sample classification functions based on the normal 
distribution would allocate a pixel to class k according to the following rules: 
(i) Sample euclidean distance function (SEDF, or the nearest mean classifier) 

SEDF(k) = min (over i) { (x - x / (x - x j) } 

(ii) Sample linear discriminant function (SLDF) 

SLDF(k) = min (over i) { xi S� x - k x jS� x j + In 1t j 

(iii) Sample quadratic discriminant function (SQDF) 
SQDF(k) = min (over i) { (x - x / S-jl (x - Xj) +}nISjl - 2 In 1tj } _ (2) 

The motivation for developing the RDF was partly to do with the well-known problems 
associated with estimating 1:j by Sj' which leads to relatively poor performance of the SQDF, 

especially when the sample size to dimension ratio (i.e. nj: p ratio) is small. [This problem is 

discussed in Friedman ( 1989), and also in an article at this conference (Lawoko et. al. 
( 1 996)]. This led Friedman ( 1 989) to propose a regularization parameter, A., which controls 
the regularization of Sj to Sp' thereby controlling the degree to which 1:j is estimated by 

pooled information from the several Sj matlices. or by each Sj separately. Thus the initial 

proposal for the sample RDF (SRDF) is to use the SQDF in (2), but with Sj estimated by 

i j(A), defined as 

( 1  - A) (n. - 1 )  S·  + A. S 
= l i p 

( 1 - A.) (nj - 1 )  + A.CN-K) 
, 

where N = n1 + n2 + . . .  + nK' and 0 $ A. $ 1 .  

(3) 

Because of well-known problems of bias associated with estimating the eigenvalues of the 
covariance matrix (and since there are situations where one wants to perform a discriminant 
analysis when nj 2 p), the above regularization may still not be adequate. Thus Friedman 

proposed further regularization beyond that in (3) by providing an option for regUlarizing the 
eigenvalues of i j(A.) towards equality using a second regularization parameter, "(. 

Consequently, the estimate of 1:j used is given by 

i: j(A., 'Y) = ( 1  - 'Y) i: j(A.) + 1 tr [i: j (A.)] I, p 
A 

(4) 

where 1: j(A.) is given in (3) and-J is the identity matrix. Note that this shrinkage has the effect 

( of decreasing the larger eigenvalues and increasing the smaller ones, to counter the bias in 
sample estimates of the eigenvalues of covariance matrices. 



2. PROBLEMS ASSOCIATED WITH IMPLEMENTING RDF 

3 

For the RDF to be implemented, A. and "I (plus all the other parameters) need to be estimated 
from the data. Friedman proposed that the (A., "I) value chosen should be that which minimizes 
the cross-validated error rate of a training sample through a grid-search procedure. In spite of 
Friedman's tremendous work in deriving matrix algebraic relationships which reduce the 
computational burden significantly, this is still a very computationally intensive procedure. It 
is therefore of interest to consider alternative methods of estimating the appropriate (A., "I) 
combination for a given set of data. 

Another problem associated with the RDF, which was discussed in detail by Rayens et. a1. 
( 199 1 )  is that since the estimated value of (A, "I) is obtained on the basis of error rates (i.e. 
empirical misclassification rates), those objects (pixels) which are correctly classified for 
most (A, "I) values in the grid do not contribute to the estimation of A. and "I. It follows that in 
many practical situations, only a very small fraction of the training data may determine the 
vaIues of A. and "I. It is therefore of interest to investigare if ·other methoas which use all the 
training data to estimate A. and "I may perform better. Incidentally, the regularization method 
developed by Rayens et. a1. ( 1989, 199 1 )  uses all the data to estimate their regularisation 
parameters (which are not A. and "I), although they use Friedman's "I in addition to their 
parameters in the 199 1  paper. 

One further reason for considering alternative ways of estimating A. and "I relates to the 
empirical evidence that the error rate surface seems to be fairly flat in a very wide 
neighbourhood of the minimum. Our own research into alternative ways of "breaking ties" 

(in the case of several local minima) suggest that any of the values of (� , y )  which determine 
the local minima could be chosen without any serious changes to the performance of the 

A 

RDF. It follows (from the "inexactness" of the values of A. and "y required for successful 
implementation of the RDF), that it may not be necessary to go through the (required) 
intensive computation in the cross-validation method (and still get the RDF to perform 
reasonably well). 

In view of these issues discussed in this section, we investigated the use of the Bhattacharyya 
distance measure, as an alternative to the cross-validated error rate, in determining the 

A A 

optimal values of A. and "I . 

3. SOME PROPERTIES OF THE BHATTACHA RYYA DISTANCE MEASURE 

Distance measures have often been considered as alternatives to error rates as a criterion for 
choosing among various options. For example, Jain ( 1976) investigated the behaviour of an 
estimate of the Bhattacharyya distance when used as a criterion in variable selection. It was 
shown that the bias and variance of the estimate is related to the number of training samples 
and parameter values of the -distribution. Kailath ( 1967) addressed the problem that 
minimising the error rate to determine optimum classification can be difficult to accomplish in 
practice. He investigated the idea of using simpler, albeit sub-optimal performance measures 
instead of the error rate, and compared the Bhattacharyya distance with an often-used 
measure, the divergence, which is closely related to Shannon's logarithmic measure of 
information. Not only is the Bhattacharyya distance easier to evaluate than the divergence. but 
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in some examples in the study it was found to perform at least as well as the divergence in 
minimising the probability of misclassification. Kailath obtained an upper bound on the 
probability of misclassification in terms of the Bhattacharyya distance, in the case of equal 
prior probabilities of the distributions. Note that Kailath ( 1967) only treated the case of two 
populations. That work also assumed knowledge of the parameters, whereas, as we shall see 
later, if one has to use sample estimates of the parameters, the link between Bhattacharyya 
distance and error rate is a lot less clear. Also, Fukunaga et. al. ( 1989) obtained an upper 
bound, in terms of the Bhattacharyya distance, on the Bayes error for classifying between two 
Gaussian distributions. 

The Bhattacharyya distance between two multivariate normal density functions with mean 
vectors J..l } and J..l2 and covariance matrices 1:} and 1:2 is 

B = B I + B2 
where 

and 

(5) 

The first term of the expression, B I ,  is similar to the well-known Mahalanobis distance 
between the densities. It measures the distance between the two distributions caused by the 
mean shift. The second term B2 utilises the determinants of each covariance matrix as well 
as that of the average (class) covariance matrix. It gives a measure of the difference between 
the two distributions due to the covariance shift. Fukunaga et. al. ( 1989) derived expressions 
for the expected bias and variance of the terms B I and B2 and showed that the bias of term B 1 
is inversely proportional to (nip) (ni = n = sample size). i.e. decreases as the ratio (nip) 
increases. They also showed that the bias of term B2 is inversely proportional to <:l)P '  In 
other words, estimates of this distance measure become increasingly biased as the ratio (nip) 
decreases, with term B2 more seriously affected than B 1 .  Thus, when the (nip) ratio increases 
the bias present in the B hattacharyya distance estimate is dominated by the bias inherent in 
estimation of the term B2. They also showed that

· 
as 

-the dimensionality increases, an 
increasingly large ratio of (nip) is needed to maintain a constant expected value of B. 

With the above knowledge of the Bhattacharyya distance function between two Gaussian 
distributions, it is plausible to expect that some degree of regularization of the covariances, 
such as is provided for by the two-parameter model in equation (4), would improve the 
estimation of the Bhattacharyya distance. The reason for this stems from the accepted 
knowledge that sample covariance estimates Si yield eigenvalue estimates which are biased. 

The .Iargest eigenvalues are biased towards high values and the smallest ones are biased 
towards values which are too low. This bias will be worse in the situation where the true 
population eigenvalues are approximately equal, but in all cases this bias becomes more 
pronounced as the ratio of sample size to dimension decreases. The term B2  of the 
Bhattacharyya distance is most vulnerable to such bias occurring, being a ratio of 
determinants of sample covariance estimates, and eigenvalue shrinkage (regularization) ought 
to prove useful in counteracting bias-induced anomalies in estimates of B2, particularly as p 

'. 
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becomes large (relative to nJ 

4. DEHA VIOUR OF DHATTACHARYYA DISTANCE WITH 

REGULARIZED COVARIANCES, AND CHOOSING 'A AND Y 

Kailath ( 1 967) admitted that one would not expect to obtain a strong relationship between 
distance measures and error rate. Nevertheless, the author was able to obtain several useful 
theoretical results, assuming known population parameters. In the present covariance 
regularization context with two parameters controlling shrinkage, as in equations (3) and (4), 

it wmild be too optimistic to expect that the ('A ,Y ) combination which maximises the 
B hattacharyya distance for a given set of data will also yield a classification rule which 
minimises the future misclassification risk. Instead, from the example below, we can detect 
no strong relationship between sample Bhattacharyya distance and minimum error rate. That 
is, Table 1 shows the components B l and B2 of the Bhattacharyya distance at a range of 

points over the I..,Y grid. The cross-validated en·or rate (ecv) at each point is also stated to give 
an indication of where the range in which the minimum error rate lies. The data set consisted 
of samples of size 1 3 from each of two normal populations with means and covariances as in 
Table 2 (Condition II). 

Table 1.  
1= 1 

Example of I..,Y Grid of Bhattacharyya Distances (ecv, B 1 ,  B2) 
0.08, 3 .84, 0.05 0.08, 3 .84, 0.00 0.08, 3 .84, 0.00 

1= 0.5 0.04, 2.93, 0 . 10  0.04, 2.93, 0.0 1 0.04, 2.93, 0.00 

1= 0 0. 15, 2.73, 0.59 0.08, 2.73, 0.05 0.08, 2.73, 0.00 
1.. = 0.5 1.. = 1  

It is evident from Table 1 that the largest value of B=B I +B2 will always occur on the axis 
',,:,. 

A=O on the I..,Y grid; i.e. no regularisation of the individual covaIiance matrices towards the 
average covariance. This is the case for samples from any two normal distributions. There are 
several reasons for this: 
1 )  . The value of B 1 is not affected by the value of I.. since the central component of it, 

A A 

[L 1 (I.. ,'Y) +L 2(1..,'Y)] /2, is not changed by I.. for a fixed value of y. 
2) The value of B2 decreases monotonically as I.. increases, for fixed Y. And when 1..= 1 ,  

A A tr[Sp] 
L 1 (I..,'Y) and L 2(1..,'Y) are both equal to ( 1  - Y) S

p 
+ r I Hence the numerator p . 

and denominator of B 2  are equal and the telm becomes zero. 
3) Term B 2  is always non-negative since for two p-dimensionaI positive definite 

matrices, A and D,  

_ � I �  < IA ;D I . 

4 )  The value of B 2  decreases monotonically as r increases from 0 to 1 ,  for fixed 1... 
Since B 2  is fundamentally a measure of the covaliance shift between the two 
distributions, if the eigenvalues of the separate co variances are increasingly biased 
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towards equality, the distributions become more similar in shape. 

Since the regularisation parameter A. does not affect telm B I ,  and monotonically decreases as 
the tenn B2 increases, it would seem that an appropriate value for it in a given situation 
cannot be detennined from infonnation about B. Re-sampling methods can be employed to 
give a unique choice for A. for given sets of data. However these methods are computationally 
intensive, and since both the tenns B l and B 2  exhibit similar behaviour in relation to A for all 

values of 'Y, it is sensible to first choose a value for 'Y so as to narrow down the search area for 
A. on the (A.,y) grid. Also, the bias inherent in the estimate of B I would be expected to be less 
than that in estimates of B2, so that the principle upon which selection of the regularization 
parameter 'Y is made involves giving B 1 greater importance than B2. Thus, in general the aim 
is to choose that 'Y which gives a large or maximal value of B 1 or B I1B2.  In situations where 
the distribution means are close together and B I is small, a minimal value of B IIB2 is needed 
since in this case a dominant covariance shift over mean shift would seem to be important in 
enhancing classification. 

-

The technique which employs the Bhattacharyya distance to select A. and 'Y is denoted as 
RDF-B. A detailed descliption of the (heuristic) algorithm for choosing A. and 'Y is not 
possible in this article (space limitations) but the steps involved will be discussed at the 
conference presentation,  and will be reported elsewhere. 

5. DISCUSSION AND SIMULATION STUDIES 

As mentioned earlier, the simulations performed to investigate the behaviour of Fliedman's 
RDF have enabled us to observe that for a number of different simulation conditions, there is 

no unique selection of i and Y , using the criteria of minimum cross-validated error rate. · 
Indeed, altering the rule for the breaking of such ties had li ttle effect on the overall 
perfonnance of the procedure. In other words, the degree of regularisation (either covariance 
mixing or eigenvalue shrinkage, or both) is often not as important as its presence in any form. 

A A 

Thus it would seem that complex methods to obtain a precise selection of A. and 'Y are not 
warranted. 

Another conclusion from the simulation studies is that as (he sample size to dimension (n:p) 
ratio decreases, a degree of eigenvalue shrinkage using 'Y (i.e. 'Y>O) becomes more necessary in 
order to counteract the bias in the eigenvalues of the estimated covariances. Also,· an 
increasing amount of regularisatio.n away from 'Y=O appears to be required as p increases, e�en 
for those conditions where any shrinkage of the eigenvalues to equality would appear to be 
strongly counter-productive. The benefits of a decrease in variance from such shrinkage 
appears to outweigh any introduced bias. The proposed method of selecting "( from the 
Bhattacharyya distance therefore only considers values of 'Y in the range e $ 'Y $1 ,  where e > 0 
but usually fairly close to zero and where e depends on both the magnitUde of p and the 
sample size to dimensionality ratio. 

A goal of this model selection procedure using the Bhattacharyya distance is to provide a 
much faster algorithm to that proposed by Friedman using cross-validation. Also, the model 
selection procedure should choose appropriate levels of covariance mixing and eigenvalue 
shrinkage so that the classification rule obtained is comparable in performance to Friedman's 
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RDF. In the case of discriminating between more than two classes, one can either use the 
average regularisation parameter values of all possible pairs of classes, or introduce a separate 
A and 'Y value for each class. This matter is cUlTently under investigation by the authors. 

Computer simulation was used to compare the performances of RDF (Friedman's RDF 
method) and RDF-B (which denotes RDF using the Bhattacharyya distance measure to select 
the model) in the same variety of settings as that used by Fdedman ( 1989), except that only 
two classes are present instead of three. Further details of these six settings or conditions are 
given in the article by Lawoko et. al., in the "Proceedings" of this conference. In all cases the 
class distributions are normal and the total sample size from those distributions was 28 i.e. 14 
from each class. For each set of conditions, simulations were performed for various levels of 
dimensionality: p=6, 10 and 20. The optimisation grid for RDF was set as in Friedman's 
study. Since the sample size to dimensions ratio is less than one for some simulations, the zero 
eigenvalues of the class covariance matrix estimates were replaced by a small quantity, 
sufficient to permit numerically stable covaIiance inversion(as done in Fliedman(1989» . 

Table 2. 
-

p = 6  p = 1 0- -
-

p = 20 

Condition* I II III I II III I II III 

RDF .08 (.03) .03 (.02) . 1 8  (.08) .09 (.03) .03 (.02) . 1 3  (.06) . 1 1 (.04) .05 (.03) .05 (.03) 

RDF-B .08 (.03) .02 (.02) . 1 8  (.06) .09 (.03) .02 (.02) . 10  (.05) . 10  (.04) .03 (.02) .05 (.04) 

� (RDF) .86 (.30) 1 .0 (.00) . 1 3  (. 12) .94 (. 1 8) .94 (.23) .12 (. 1 2) .94 (.20) .94 (.2 1 )  . 1 5 ( .1 1 )  

"( RDF) .73 (.34) .89 (.26) . 1 2  (.26) .86 (.22) .95 (.14) .39 (.29) .76 (.28) .82 (.26) .67 (.29) 

� (RDF-B) .85 (.2 1 )  .9 1 (.08) . 16 (.09) .84 (.2 1 )  .89 (.08) . 10  (.06) .84 ( . 16) .87 (. 1 0) .04 (.03) 

"( RDF-B) .94 ( . 1 1 )  .69 (. 14) . 19 (.3 1 )  .93 (.07) .75 (. 1 1 ) .33 (.35) .84 (.26) .82 (. 1 1 ) .63 (.34) 

* Condition I: Equally spherical covatiance matrices. 
Condition II: Equal, highly ellipsoidal covariance matrices, with mean difference in the 

high variance subspace 
Condition III: Unequal highly ellipsoidal covatiance matlices with zero mean differences 

There were . 100 repetitions of the experiment for each of the six settings. As before, 
randomsamples were drawn from specified multivariate normal distributions and were used to 
construct the classification rules. An additional test s�ple of size 100 was randomly 
generated from the same distributions and classified using the two rules, yielding estimates of 
the error rate for each rule. These are presented in Table 2 (with sample standard deviations in 
brackets). The mean and standard deviation of the selected regularization parameters for RDF 

and RDF-B over the 100 replications are also given, with A(RDF) and A(RDF-B) denoting the 

mean values of A for RDF and RDF-B respectively. The corresponding values for 'Y for each 
method are defined similarly. 

6. RESULTS 

In all the various conditions tested i t  is clear that RDF and RDF-B yield very similar error 
rates 'over the 100 replications, which are generally better or comparable to the best of the 
SEDF, SLDF, and SQDF. Thus the average regularization parameter values for RDF and 
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. RDF-B show that for both methods, the model selection procedures tend to do the right thing 
by introducing appropriate degrees of each type of regularization for the various simulation 
conditions. The standard deviations of the selected regularization parameters tended to be 
smaller for RDF-B , perhaps because of the more direct nature of the path taken to select the 

pair of values (A. , Y )  in the parameter selection procedure in RDF-B ,compared with RDF. 
Furthermore, the model selection process in RDF-B provides a unique choice of the estimated 

best pair of values (A , Y ), without having to break ties in an arbitrary way as in the RDF. 

In conclusion, it can be established that the Bhattacharyya distance between two classes does 
indeed provide adequate information about the appropriate regularization parameter values to 
use in equations (3) and (4). This can be used to obtain a classification rule which 
approximately minimises the error rate for data from two specitied normal distributions. 
Unfortunately, no tidy, direct theoretical relationship exists between components of the 
Bhattacharyya distance and the error rate. Instead we hOl-ve derived the model selection 
procedure based on empirical evidence and observations. It does perform approximately as 
w�ll, however, as the model selection procedure developed by Fliedman ( 1 989) in the original 
RDF method. 

-

Finally, a substantial advantage of the model selection procedure in RDF-B over that of RDF 
relates to the computation time required for each. The table below gives approximate ratios 
(RDF-BIRDF) O[ CPU/ times ;�: valiDu, di:���iDn'. 

p

��
o 

These results indicate the gain in computational efticiency in using RDF-B over RDF. 
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ABSTRACT 

1 

In this article we discuss the performance and properties of regularized discriminant functions 
(RDFs). These are classification functions which can be intermediary among the common 
discriminant functions, namely the nearest-mean (euclidean distance) method, linear 
discriminant function, and the quadratic discriminant function. It has been demonstrated by 
several researchers that the RDF can out-perform most of the common discriminant 
functions, including non-parametric ones; see, for example, Fliedman ( 1989), Rayens et. a1. 
( 1989, 1 992), and Aeberhard et. a1. ( 1 994). 

In spite of its impressive performance, the RDF has some drawbacks, like computational 
intensity and lack of scale invariance. We report and discuss results from simulation 
experiments which investigated some of these properties. Alternative means of estimating the 
regularization parameters are also introduced and discussed. It must be pointed out that 
because of space limitations, very few results have been included in this article, although 
more results(from remotely sensed and GIS data) will be discussed in the presentation. 

1 .  INTRODUCTION 

Consider the problem of classification or discriminant analysis, where we want to classify an 
object (pixel) to one of several (K) groups (classes) based on multivariate (p-dimensional) 
data (x) on each object. Common supervised classification methods based on the 
normal distribution are the Nearest-mean classifier or the Euclidean discriminant 
function (ED F), the Linear discriminant function (LDF), and the Quadratic discriminant 
function (QDF). Specifically, suppose the population mean and covariance matrices for class 

i (i = 1 ,  2, . . .  , K) are Jli and 1:i respectively, and 7ti is the prior probability of class i .  

Assuming normality, the three discriminant functions allocate a pixel with observation vector 
x to class k according to the following well-known rules: 

(i) EDF: EDF(k) = min (over i) { (x - J..l/ (x - JJ) } 

(ii) 

(iii) 

LDF: LDF(k) = min (over i) { Jli 

QDF: QDF(k) = min (over i) {x 

1:-1 x - t J..li L-1 Jli + In7ti } 
, 1 - Jli) L-j (x - lli) + InlLil - 2 In1ti }  ( 1 )  

Clearly, the unknown population- parameters in expression ( 1 )  have to be estimated from 

training samples. Usually Jli and 1:i are estimated by unbiased and consistent estimators, 
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which are the sample mean (x i) and the sample covariance matrix (Si). In the case of LDF, 

the common value of 1: is estimated by the pooled sample covariance matrix, Sp.In practice 

therefore, the sample discriminant functions used are: 

(i) Sample EDF: SEDF(k) = min (over i) { (x - x i)' (x - xi) } 

(ii) Sample LDF: SLDF(k) = min (over i) { xi S� x - k xi S� x i + lmti } 

(iii) Sample QDF: SQDF(k) = min (over i) { (x - x / S-l(x - Xi) + IniSil - 2 In 1ti } (2) 

(see, for example, McLachlan ( 1 992) or Fukunaga ( 1 990)). 

In practical applications, the SEDF is used only under very special circumstances because of 
the restrictive assumption that 1: = I (the identity matrix). Meanwhile, the SLDF has been 
shown to be quite robust to violations of the (required) 1:i = 1: assumption, and to 

non-normality of data. Consequently the SLDF is a quite popular classification procedure. 
Meanwhile the SQDF, which should be the most widely used, suffers from the fact that it has 
a large number of unknown parameters which must be estimated from the training data. It is 
also quite sensitive to violations of the normality assumption. This means that the SQDF 
requires very high ni: p ratios for successful implementation. For example, it has been shown 

that SLDF can out-perform the SQDF for small to moderate (ni: p) ratios, even if the 

covariance matrices are quite different. This matter is of relevance to the classification of 
remotely sensed data because, even if there are usually a considerable abundance of data, 
there are usually problems with finding good training data for some groups. 

The relative underperformance of the SQDF is partly due to the estimation of 1:i. This can be 

demonstrated by representing 1:i by its spectral decomposition. That is, rewrite 1:i as (see, 

for example, Friedman ( 1989)): 
P - 1  P � ,. 

1:. = L e· ·  v· ·  �' so that 1:j = L 1 J " 1 Jl J1 J '  e . .  
j=l j=l J1 

where eji is the jth eigenvalue of 1:i and vji is its corresponding eigenvector. 

Thus the QDF discriminant score in ( 1 )  becomes 
, 2 

(3) 

p [ V@( X - �i) ] p 

QDF(k) = L e. . + L In eji - 2 In1ti (4) 
j=l Jl j= l 

Expression (4) demonstrates the fact that small eigenvalues may have a disproportionately 
large effect on the discriminant score. This problem is worsened when 1:i is estimated by 

Si because the eigenValues of Si are well-known to be biased estimates of the eigenvalues of 

1:i, and the bias is usually more pronounced if the eigenvalues of 1:i are 

similar . .  The problem is further compounded by the facts that the largest eigenvalues are 
biased upwards (Le. high) and the smallest ones biased towards values which are even 
smaller. Also, the problem worsens as the (ni: p) ratio decreases. The consequences of all 

this is that the importance of the eigenvalues and vectors associated with the low-variance 
subspace (Le. small eigenvalues) in a classification problem is greatly exaggerated. Thus, as 
noted by Friedman ( 1989) " . . .  most of the variance incurred in estimating discriminant scores 
is associated with direction of low sample variance in the measurement space". One approach 
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to address this problem is to employ a regularization method which works by biasing sample 
estimates away from their usual sample-based values towards what one believes to be more 
plausible values, which serves to reduce the variance associated with Sj . These methods were 

used by Friedman ( 1 989) and Greene et. al . ( 1 989), leading to two different versions of 
regularized discriminant functions (RDFs), which are effectively "middle-of-the-road" 
classification functions, between EDF, LDF and QDF. 

2. REGULARISED DISCRIMINANT FUNCTIONS (RDFs) 

A researcher who is applying normal-theory-based classification might suspect that Lj = L for 

all i. One approach which enables the researcher to decide between SLDF and SQDF would 
be to initially perform a test of Ho: Ll = L2 = . . .  = � = L (say), and use either the SLDF or 

the SQDF depending on the outcome of the test. An alternative approach is to introduce a 
regularization parameter ro, which controls the degree of regularization (shrinkage) of the Sj 
to Sp. Thus Si in the SQDF in expressions (2) is replaced by 

A 

L j(Ol) = ro. Si + ( 1  - ol) Sp (0 $ ol $ 1 ) , (5) 

where Ol is determined from the data. Note that at one extreme (00 = 1 )  L i(Ol) = S i' and at the 
A 

other extreme (ol = 0), L i(Ol) is Sp. Variations of this middle-of-the-road type of discriminant 

function were developed independently by Fliedman ( 1 989) and Greene et. al . ( 1 989). The 
two regularized discriminant functions will now be introduced separately. 

(i) Green and Raynes (1989) 
In their paper, these authors obtained empirical Bayes fOlmulation for estimating Li. That is, 

assuming that the training data from group i are i.i.d. Np(Jli' Li)' it follows that (conditionally 

on Lj) 
(n. - 1 )  S·  - W (L. (n . - 1 »  l i p l' 1 ' (6) 

where W pO denotes the central Wishart distribution with parameter matrix Li and degrees of 

freedom (ni - 1 ) .  ·They then assume a conjugate prior distribution for Li, which is the 

inverted Wishart distribution. That is, that Li are mutually independent with 

Li - W� «:-- p -1)'P, a) (7) 

where a > p + 1 ,  'P is the matrix of hyperparameters and a. represents the degree of 
"concentration" of Lj around 'P. In particular, it can be established that 

E(Lj) = '1', and for a > p + 3 and 1 $ h, j, k, 1 $ p, 

(o.-p-1) 2 
cov [(Li)bj ' (Lj)kl) = 

(o.-p)(a-p-3) ['Phk 'Pjl + 'Phi 'Pkj] + (o.-p)(o.-p-3) 'Pbj'Pkl (8) 

After some algebra and further results, it can be shown that the empirical Bayes estimate of 
Lj for known a is: 

" di ( a - p - 1) 
L .(a) = S· + S (a.) 1 dj + a - p - 1 1 (dj + a. - p - 1 )  p , (9) 

where dj = (nj - 1 ). The unknown parameter a. is estimated by either conditionally 
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maximizing the marginal likelihood of SI ' S2' . . .  , S
p 

over a or using a method-of-moments 

type estimator. Details of this nontrivial computational task are given in their paper. 

(ii) Friedman (1989) 
Friedman proposed a regularization parameter, A, which 
(regularization) of Si to S

p
, whereby Li in (1) is estimated by 

controls the shrinkage 

( 1  - A) (n. - 1 )  S· + A S ,.. l i p 
L i(A) = 

( 1  - A) (ni - 1 )  + A(N-K) 
, 

where N = n l  + n2 + . . .  + nK' and 0 :::; A :::; l .  

( 1 0) 

,.. 

Further regularisation can be achieved by shrinking the eigenvalues of each L i(A) towards 

equality, so that the resulting estimates (of eigenvalues) become multiples of the identity 
matrix. The consequence of implementing these two dimensions of regularization is to 
replace Li in ( 1 )  by 

1; i(A, 'Y) = ( 1 - 'Y) 1; i(A) + '1 tr [1; i (1..)]1 ( 1 1 )  p 

Thus A controls regularization of Si to S
p 

while 'Y (simultaneously) controls regularization to 

tr[1; i (A)]/p, the average of the p eigenvalues of 1; i(A) in ( 10). The appropriate values of 'Y 
and A need to be determined from the data, and the approach proposed by the author is to 
choose a (A, 'Y) combination which minimizes the cross-validated estimate of future 
(expected) misclassification en'or, on the basis of available training data. Implementation of 
this cross-validation strategy is a computationally intensive problem, which Friedman 
simplifies to a limited extent by deriving some algebraic results. In spite of this 
simplification, it is still a rather slow process. 

(iii) Rayens and Green (1992) 
As a consequence of the ideas in Friedman's article, Rayens et. al. ( 1 992) modified their 
regularization method to take into consideration another regularization parameter (like 'Y in 
Friedman's  paper). They also proposed an alternative cross-validation approach for 
estimating their first regularization parameter a, following a result which arises out of using 
the Kullback-Leibler distance measure for discrimination. Once again, major computational 
complications have to be addressed. 

3. CONSEQUENCES OF APPLYING (FRIEDMAN'S) RDF 

Simulation experiments done by us and the various authors mentioned in the previous section 
indicate that the RDF can perform impressively better than the other discriminant functions 
(i.e. SEDF, SLDF and SQDF). This is not (intuitively) entirely surprising since the RDF 
(Friedman's RDF in particular) can be any one of the three discriminant functions or 
something (better, in terms of error rates) in-between. Note that RDF = QDF when A = 0 and 
'Y = 0, RDF = LDF when 1.. = 1 and 'Y = 0, and RDF = EDF when A = 1 ,  'Y = 1 .  Note, however, 
that Aeberhard et. al. (1994) compared RDF against seven other classification functions 
(including non-parametric functions) and found that the RDF was clearly the most powerful 
classifier overall. Some simulation results are presented (Table 1) without discussion (space 
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limitations). Note that all the simulation experiments reported here (unless otherwise stated) 
were done under similar combinations of parameters (conditions) to those of Friedman 
( 1989). These six conditions were: 

(i) COND- I :  Equal and spherical covariance matrices (favourable to RDF) [A 
spherical matrix is one in which all the eigenvalues are similar] . 

(ii) COND-2: Unequal and spherical covariance matrices (even more favourable to 
the RDA). 

(iii) COND-3: Equal but highly ellipsoidal covariance matrices (difficult for RDA). 
Here the mean differences between the classes is located in the low-variance subspace. 

(iv) COND-4: Same as COND-3, but the mean difference between the classes is 
located in high-variance subspace. 

(v) COND-5 : Very unequal and highly ellipsoidal covariance matrices. Here the 
class means are identical. 

(vi) COND-6: Same as COND-5 , but with unequal class means. 

The Tables report the average (out of 100 simulations) simulated error rates, and the 
corresponding standard elTor (in brackets). The average values of the regularization 
parameters are also given in some cases, with standard errors. Note that in all the Tables 
RDF- l denotes the original RDF as proposed by Friedman, while RDF-2 and RDF-M are 
modified versions of RD F- l ,  which will be introduced later. 

4. PROBLEMS ASSOCIATED WITH IMPLEMENTATION OF 
(FRIEDMAN'S) RDF 

In spite of the impressive performance of the RDF, there are some fundamental problems 
associated with implementing it, and some of its properties require further investigation. This 
article reports and discusses the findings of investigations of some of these properties and 
problems. 

(i) Lack of scale invariance 
As discussed by Friedman,  an important drawback of RDF is that it is not generally scale 
invariant. Thus changing the relative scales of the measurements or their l inear combinations 
will (in general) change the classification rule and results. This is primarily due to the 
regularization involving the y parameter, which shrinks the eigenvalues. In particular, if y = 
0, RDF is scale invariant. 

Scale in variance is considered to be a fairly important property of discriminant functions, and 
it is unfortuante that this property is lost by the y-regularization. Hence an obvious question 
is whether a similar level of success with some kind of limited regularization can be achieved, 
without losing the invariance property. In this study, we investigated the performance of a 
regularization method which employed different degrees of regularization to shrink each 

Li to L (i.e. different Ai values in i: i(Ai» , but did not use the second regularization parameter, 

y. The motivation for this approach was to remove the regularization parameter associated 
with eigen values (y), and yet compensate the process by allowing different levels of 
shrinkage of Li to L. A second aspect of this option is that using only one value of A for all 



l:i may be too restrictive. Thus l:j in ( 1 )  would be estimated by 

( 1 - A.) (n. - 1 )  1:. + A· 1: 1: . (A.) = 1 1 1 1 r 
1 1 ( 1  - Ai) (nj - 1 )  + Aj (N - K) 
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( 1 2) 

Thus this method involves K regularization parameters, with Ai = 0 for all i, resulting 

in 1: i(\) = Sj (SQDF), and Aj = 1 for all i resulting in 1: j(Aj) = Sp(SLDF). Note that each Ai 

is obtained independently of the others since each \ is chosen to minimize the error rate in 

class i .  This method will be denoted in this article as RDF-Modified (RDF-M). 

Simulation results presented in Table 2 suggest that RDF-M is not as successful as the 
original RDF (denoted in this article as RDF- l ) . This indicates that eigenvalue shrinkage, in 
spite of the problems it creates, is quite necessary. There are also some peculiar results 
associated with RDF-M which are still under investigation. For example, sometimes there is 
considerable imbalance in the distribution of the error rates among the populations. 

The conclusion from this simulation study is that it is not possible to do without the 
eigenvalue shrinkage, and yet maintain the impressive performance of the RDF. In view of 
this, it is relevant to consider the importance (or contribution) of the matrix of shrinkage (in 
this case I) to the entire problem. For example, is there a more appropriate shrinkage matrix 
(instead of I), which could be determined by the data? Friedman has already alluded to this 
matter, and one of the authors is currently investigating this problem. 

(ii) Necessity of regularization for large data sets 
One of the motivations for conside11ng RDF is to do with the fact that for small (nj :p) ratio 
the S QDF does not perform very well. Also, the discussion in the previous section indicated 
that 'Y-regularisation is crucial. A relevant question then is to what extent the benefits of 
regularization (especially 'Y-regularization) diminish as the ratio nj: p increases. That is, is 

there a point at which (because of massive amounts of data) we can do without regularization 
(especially in view of its restrictive non-invariance property). Theory and the justification for 
regularization (as suggested earlier) suggest that there must be a point (of the nj: p ratio) 

where there are no serious benefits for regularization, especially when one considers also its 
computational requirements. 

The simulation experiment was designed to determine the performance of the RDF against 
the other discriminant functions, as the nj: p ratio increases. Results are presented in Table 3. 

(iii) Only vague values of A (especially) and 'Y are necessary 
From our experiences (as well as others')  it is clear that the surface representing the cross­
validated error rate is fairly constant for a wide range of (A, 1') combinations. Thus the 
optimal choice of (A, 'Y) is not unique, and as it turns out, a wide range of (A, 1') combinations 
could do the job equally well, in any given situation. Questions which arise from these 
empirical observations are the following. 
(a) In using RDF is it still necessary to use the "maximum regularization" strategy in the 
event of several local minima? If there are such ties one option (as was apparently used by 
Friedman) is to choose the largest value of l' from among tied grid points with the largest 
value of A ("maximum regularization") (RDF-1 in Table 1 ). An alternative 



p=6 
misclassificalion risk 

COND-l 

RDF-l . 1 1  (.04) 
RDF-2 . 1 2  (.03) 

LDF . 1 3  (.04) 

QDF .24 (.06) 
EDF . 1 1  (.04) 

p=10 

. 12  (.04) 

. 14 (.04) 

. 14 (.04) 

.32 (.07) 

. 1 1  (.03) 
Average regulariSalion parameter values 

RDF-l A. .87 (.29) .85 (.30) 

RDF- l 'Y .78 (.34) . 8 1  (.26) 

RDF-2 A. . 1 5  (.26) .20 (.33) 

RDF-2 'Y .67 (.32) .69 (.30) 

COND-5 

p=6 p=10 
misclassification risk 
RDF-l .20 (.06) . 1 2  (.05) 

RDA-2 . 1 8  (.06) . 1 1  (.04) 

LDF .60 (.06) .59 (.06) 
QDF . 17 (.05) . 14 (.06) 
EDC .60 (.06) .59 (.06) 
Average regularisation parameter values 

RDF-1 A. .04 (.07) .04 (.06) 

RDF-l 'Y . 1 2  (. 15) .25 (. 16) 

RDF-2 A. .01 (.04) .01 (.04) 

RDF-2 'Y . 10 (. 14) .26 ( . 15) 

ERROR RATES 
RDF·I RDF-M 

CON[)'I{p=6) 0.1 1 (0.04) 0.14 (0.04) 
CON[)'2{p=6) 0.14 (0.04) 0.24 (0.07) 
CON[).3{p=10) 0.12 (0.04) 0.14 (0.05) 
CON[).4{p=20) 0. 1 1  (0.03) 0.15 (0.05) 
CON[)'5 (p=10) 0.12 (0.05) 0.39 (0. 1 1 )  
CON[)'6 (p=20) 0.Q2 (0.02) 0.22 (0.13) 

p=6 

TABLE 1 

COND-3 

p=20 p=6 p=1O p=20 
11liscla.�sification risk 

. 1 2 (.04) RDF- l .07 (.05) . 1 2  (.04) . 15 (.04) 

. 1 2(.03) RDF-2 .08 (.04) . 1 3  (.05) . 1 6  (.04) 

. 1 5  (.04) LDF .06 (.03) . 1 1  (.04) . 1 4  (.04) 
Al (.07) QDF . 14 (.05) .29 (.06) .39 (.06) 
. 1 1  (.03) EDF .24 (.06) .29 (.06) .32 (.05) 

Average regu/arisation parameter values 

.80 (.34) RDF-l A. .87 (.24) .89 (.23) .87 (. 19) 

. 8 1  (.24) RDF- l 'Y .05 (. 14) .04 (. 1 1 ) .04 (.09) 

.24 (.33) RDF-2 A. Al (.28) .56 (.30) .73 (.27) 

.80 (.25) RDF-2 'Y .02 (.07) .03 (. 1 1 ) .02 (.07) 

COND-6 
p=20 p=6 p=10 p=20 

misclassificGtion ri.tk 

.03 (.02) RDF- l .06 (.04) .06 (.04) .02 (.02) 

.03 (.02) RDF-2 . . 05 (.02) .05 (.04) .01 (.01)  

.58 (.05) LDF . 1 7  (.05) . 1 8  (.04) .21 (.04) 

. 14 (.04) QDF .04 (.03) .05 (.04) . .06 (.04) 

.58 (.05) EDF . 1 6  (.04) . 1 7 (.04) . 1 7 (.04) 
Average regularisalion parameter values 

.04 (.06) RDF-l A. . 10 (.20) . 10 ( . 14) .07 (.06) 

.35 (. 1 8) RDF- l 'Y . 19 (.27) .29 (.22) .35 (. 19) 

.02 (.05) RDF-2 A. .01 (.03) .02 (.04) .00 (.00) 

.26 ( . 15) RDF-2 'Y . 10 (. 1 3) .22 ( . 15)  .27 (.09) 

TABLE 2 

A VERAGE REGULA nON PARAMETERS 
RDF·I RDF-M 

A T A
l 

A
2 

A
3 

0.87 (0.29) 0.78 (0.34) 0.79 (0.35) 0.91 (0.25) 0.92 (0.21 )  
0.37 (0.38) 0.78 (o.m 0.70 (0.35) 0.77 (0.34) 0.43 (0.39) 
0.89 (0.23) 0.04 (0. 1 1 )  0.79 (0.33) 0.95 (0. 17) 0.87 (0.27) 
0.79 (0.33) 0.67 (0.27) 0.80 (0.28) 0.87 (0.24) 0.88 (0.23) 

0.04 (0.06) 0.25 (0.16) 0.03 (0.08) 0.07 (0.09) 0.30 (0.15) 

0.07 (0.06) 0.35 (0.19) 0.07 (0.09) 0.13 (0.14) 0.89 (0.23) 

TABLE 3 

COND-l 
p:10 p:20 

12:1 2:1 10:1 1.2:1 2:1 10:1 12:1 2:1 10:1 
.22 (.04) .20 (.03) .16 (.03) .20 (.05) .15 (.03) .10 (.03) .1 3  (.03) .10 (.02) .09 (.02) 

ni : p
.� ____ ��� __ �� __ ������ __ �����=-��� __ ������_ ROF-l 

LOF 
aOF 

ROF-1 
LOF 
aOF 

ROF·l 
lOF 
aOF 

.30 (.06) 

.53 (.07) 

12:1 
.12 (.06) 
.10 (.03) 
.41 (.09) 

12:1 
.34 (.1 1) 
.61 (.OS) .39 (.09) 

.25 (.02) 

.34 (.06) 

p:6 
2:1 
.08 (.04) 
.07 (.02) 
.15 (.05) 

p:6 
2:1 
.19 (.OS) .59 (.OS) 
.18 (.04) 

.18 (.02) .28 (.OS) 
. 17 (.02) .52 (.07) 

10:1 1.2:1 
.05 (.02) .16 (.04) 
.04 (.01) .14 (.03) 
.05 (.02) .44 (.09) 

10:1 12:1 
.10 (.04) .15 (.06) 
.62 (.04) .59 (.04) 
.08 (.02) 29 (.09) 

.26 (.04) .18 (.03) .28 (.03) .24 (.03) .19 (.02) 
.35 (.OS) .14 (.03) .55 (.04) .37 (.04) .12 (.02) 

COND-3 
p:1 0 p:z20 

2:1 10:1 12:1 2:1 10:1 
.12 (.04) . 10 (.03) .18 (.04) .14 (.03) . 1 1  (.02) 
. 1 1  (.02) .08 (.02) .17 (.03) .14 (.02) . 11  (.02) 
.24 (.05) .09 (.02) .49 (.06) .32 (.04) .14 (.02) 

COND-5 
.,.10 p.20 

2:1 10:1 12:1 2:1 10:1 
.09 (.03) .06 (.03) .03 (.02) .02 (.02) .00 (.OO) .59 (.04) .61 (.04) .58 (.04) .59 (.OS) .62 (.04) 
.10 (.03) .02 (.01) .20 (.07) .04 (.02) .00 (.00) 

7 
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would be to use a "minimum regularization" strategy, which chooses the smallest value of 'Y 

for the smallest value of A. (RDF-2 in Table 1 ). 

The simulation experiments to compare the two stategies (reported in Table 1 )  show 
that the error rates were quite similar for the two strategies in spite of the quite 
different (A., 'Y) values (compare RDF- I and RDF-2). 

(b) An issue which arises immediately from part (a) is: why bother with all the computer­
intensive cross-validation technique if we only need rough guesses of (A., 'Y) values. 
To address this issue, we have investigated the use of empirical (and relatively crude) 
rules for finding a (roughly) optimal (A., 'Y) combination using the Bhattacharyya 
distance measure. We have obtained empirical rules which compete quite favourably 
with the cross-validation technique for two populations. These results are reported 
elsehwere, and extensions and refinements are currently being done. 

(iv) Estimation of regularisation parameters may involve very few training data 

The criterion for estimating the regularization parameters of the RDF, as suggested by 
Friedman, is to choose the values of A. and 'Y which minimize the cross-validated error rate. 
As argued by Rayens et. al. ( 1 989), this means that only a small fraction of the training data 
may contribute towards determining the values of A. and 'Y, since most of the training data 
should be correctly classified. It follows that a criterion which uses all the data in choosing A. 
and 'Y may be preferable, and Rayens et. aI. ( 1 989) indeed demonstrate that such a criterion 
can outperform the misclassification rate criterion. We have investigated the use of the 
Bhattacharyya distance as an alternative criterion for choosing A. and 'Y and find that in 
situations where it is appropriate, it can perform as well as the RDF, with the added bonus 
that it requires only 10-20% of the computation time. A detailed description of the 
Bhattacharyya distance methodology is presented in another article. 
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COMPARISON OF REGULARISED DISCRIMINANT ANALYSIS 
WITH THE STANDARD DISCRIMINATION METHODS 

ABSTRACT 

The objective of the classical discriminant analysis problem is to classify a p-variate observation 

vector x as having come from one of K populatio£s. It is well known that the linear discriminant 

function (LDF) and quadratic discriminant function (QDF) and euclidean distance based 

discriminant function (EDF) are the standard type of discriminant functions employed in practice. 

Under the assumption of normality these discriminant functions behave reasonably well in a variety 

of situations. 

When the size of the training set is small when compared to the dimension, the performance is 

degraded because these methods use unstable sample mean vectors and in particular covariance 

matrices. Friedman ( 1989) and Greene and Rayens (1989) proposed different methods for 

addressing the problem of unstable covariance matrices. This article details a critical comparison of 

the standard approaches with a Friedman's newly proposed regularized discriminant function 

(RDF) and its �plementation difficulties. The article also discusses the implementation of an 

extension/adaptation of Friedman's RDF. 

It was noted that if the RDF is used in higher dimensional situations this is likely to reduce the 

overall error rate when compared to the application of the other standard discriminant functions. 
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1. INTRODUCTION 

The objective of the classical discriminant analysis problem is to classify a p-variate observation 
x = (xl '  x2, . • •  , ",,) as having come from one of the several (K) groups or classes. For example, in 

plant taxonomy a botanist may wish to classify a new specimen as one of several recognized 
species of a flower. In educational psychology a candidate for admission to a school or study 
program must be assigned to categories of the sort "admit", "admit conditionally" or "admission 

• 

denied" on the basis of a vector of test scores, grades and ratings. In routine banking or commercial 
finance an officer or analyst may wish to classify loan applications as low or high credit risks on the 
basis of the elements of certain accounting statements. In each case the decision-maker wishes to 
classify from simple functions of the observation'vector rather than complicated regions in the 
higher dimensional space of the original vector. 

Now let us consider the standard approaches for classification of an unknown observation to one of 
K populations. The responses of the independent observations are described by multi-normal 
random variables with mean vectors Jll ' 112, ... , Jlk and variance-covariance matrices 1;1' 1;2' ... , I1c. 
If the parameters are known, and assuming given prior probabilities of population memberships and 
a specified matrix of misclassification costs, the Bayes rule is based upon the likelihood ratio 
ft(x)lf2(x) for all pairs of populations (see, for example, Anderson ( 1984» . This leads to the linear 

discriminant function (LDF). Another competitor to the LDF, but also linear in nature is the well 
known euclidean distance based discriminant function (EDF), see for example Macro, Young and 
Turner ( 1987). The EDF ignores the information given by the covariance matrix li, while forming 

the discriminant function. It has been shown that the EDF performs better in many circumstances 
than the LDF (Koolaard and Lawoko ( 1996» . 

The quadratic discriminant function (QDF) requires approximately normal group conditional 
densities and reasonably large training sample sizes before it can be expected to perform well in 
discrimination. The LDF is more robust to non-normality and requires less parameter estimation 
than the QDF. However, problems with obtaining good estimates of the within-groups covariance 
matrices can affect both these discriminant functions, in particular when the size, nk of the traiDing 

sample from group k is small in relation to the dimension of the measurement space, p. 

Friedman ( 1989) proposed Regularised Discriminant Analysis as a compromise between normality 
based LDF and QDF by considering alternatives to the usual maximum likelihood estimate for the 
covariance matrices. These alternatives are characterized by two regularisation parameters, the 
values of which are customized to individual situations by jointly minimising a sample-based 
estimate of future misclassification error. This technique seems to offer a significant gain in 
classification accuracy in many circumstances, although it is computationally intensive. 
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In this paper we shall term the discriminant function proposed by Friedman the regularised 
discriminant function (RDF), and we examine by extensive simulations, the performance of the 
sample regularised discriminant function (SRDF) and some modifications of it with the more 
common sample based rules: SLDF, SEDF and SQDF, for various combinations of population 
parameters. Note that it is the sample based rules that we are dealing with throughout this paper. 

2. THE SRDF AND PROBLEMS ASSOCIATED WITH ITS IMPLEMENTATION 

The regularized discriminant function (SRDF) was introduced by Friedman ( 1989) as an alternative 
to the common normal theory based discriminant functions. With the SRDF, a two parameter 
family of estimates of the variance covariance matrix l:i of the i th population, is considered, where 

one parameter A. controls shrinkage of the heteroscedastic estimates towards a common (usually 
pooled) estimate. The other parameter r controls shrinkage towards a mUltiple of a specified 

covariance matrix such as the identity matrix. Through these two parameters, a fairly rich class of 
regularised discriminant rules can be provided. Further, with these two parameters assessed from 
the training set by minimizing the cross validated estimate of the overall error rate, a compromise 
between sample normal based linear and quadratic analysis is determined automatically from the 
available data. 

Simulation results by various authors suggest that the SRDF can perform much better than the other 
standard approaches based on normal theory (see for example, Friedman, 1989 and Rayens et al. 
1991). Our results also confmn these findings. A recent article by Aeberhard et al. (1994) reported 
that the SRDF performed better than seven other discriminant functions including several non­
parametric ones. 

To introduce notation, suppose we have (p-dimensional) multivariate measurements x on each 
object, (for example, patient, plant, pixel), where each object belongs to one of K distinct sub ­
populations or groups. In order to apply standard classification approaches it is usually assumed 
that measurements from each group follow a multi-normal distribution. 

Let us denote the population mean and covariance matrix of group i by Jii' l:i respectively, 
i = 1 .. . K. These parameters are usually estimated by Xi and � using the training sample of 
size ni' If it is assumed that the covariance matrices �i are equal for all K classes, then the common 

value 1: is estimated by 

where 

1 K 
S = - L � S .  P n i=l 1 

K 
n =  L �. i=l 
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On the basis of these estimates the nonnal theory based discriminant rules allocate an object to class 
k as follows: 

i) SEDF(k) : Min (over i) { (x-x/(x-xi) - 2ln 7t i }  
ii) SLDF(k) : Min (over i) { (x-x/S�

l(x-Xi) - 21n 7t i }  

iii) SQDF(k) : Min (over i) { (x-xi)'Sil (x-xi) + In IS il - 2 ln  � } (2. 1) 

The covariance matrix estimates can be highly variable and Friedman ( 1989) showed the effect of 
this phenomenon on discriminant analysis by replacing the group covariance matrices by their 
spectral decompositions. The covariance matrix for ,roup k can be written 

p , l1c = L Ejk llik llik i=l 

where Eik is the ith eigenvalue of l;k and llik is its corresponding eigenvectors. The discriminant 

rule, for (iii) above will give the discriminant score as: 

(2.2) 

for an observation vector x belonging to group k. 

It is clear from the above expression (2.2) that the small eigenvalues and their eigen vectors will 
have a large effect on the discriminant score. It is well known that sample based estimates Sk of the 
� produce biased estimates of the eigenvalues with the bias being more pronounced when the 
eigenvalues of the population parameters 11c are similar especially for small training sample size. 

The motivation for developing SRDF was partly to do with the above mentioned bias problems. 
Friedman, ( 1989) proposed a regularisation of S. to Sp' thereby controlling the degree to which li is 
estimated by pooled information from the several S. matrices or by each S. separately. Thus the 
initial proposal for the SRDF is to use the SQDF in (2. 1) , but with S. replaced by 

A (1-A)(n . - l) S . + A S 
L (A) = I I D ;  

I (1-AXni-1 )  + A (n -k) 
(2.3) 

Even this may not provide sufficien! regularisation for a stable covariance estimate especially when 
the total sample size n is less than or comparable in size to the dimension p. Also, biasing the group 
covariance estimates to the pooled covariance matrix may not be appropriate in some situations. 
Thus Friedman introduces further regularisation by providing an option for regularising the 

eigenvalues of l;(A), using a second regularisation parameter 'Y, (0 < 'Y < 1 ). Consequently the 
estimate of li used is given by 
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1; (A., Y) = (1 - y)l; (A.) + � trace[ti (A.)]  I (2.4) 

where i:i (A.) is given in (2.3) and I is the identity matrix. Note that shrinkage using 'Y have the 

effect of decreasing the larger eigenvalues and increasing the smaller ones to counter the bias in the 

sample estimates of the eigenvalues of the covariance matrices. 

The possible (A,Y) combinations may be thought of as a plane with four comers. 

I 

1 �------------���� SEDF 

SQDF 

I / SLDF 

.. 
o 1 

The bottom left vertex (A. = 0, y = 0) corresponds to the SQDF, (1..=1 ,  y=O) gives the SLOF, (A.=1, 

y:=1) yields a discriminant function based on minimum euclidean distance between groups, while 

(A=O, y=l)  yields a weighted minimum euclidean distance function where the group weights'are 

inversely proportional to the average variance of the measurement variables in the group, that is, 
trace[Sk]/p. If 'Y is fixed at zero and A. is varied, intennediate rules between the SQDF and the 

SLDF are obtained. If A. is fixed at 1 and y increased from 0, one obtains an analogy to ridge 

regression for the SLDF. 

3. SELECTING A. AND Y VALUES AND TIE-BREAKING 

In practice, optimal values for the regularisation parameters A and y are  not known beforehand, and 

Friedman suggests they be estimated from the training data. The selected A, y combination is that 

which gives rise to the minimum cross-validated estimate of the overall error rate associated with 

the regularised discriminant rule. 

A grid of points is chosen on the A,  y plane (0 � A, y � I), containing typically between 25 and 50 
points. Using the A, y values to create the classification rule at each point, cross-validation is used 

to estimate the misc1assification risk for each combination of Q.., 'Y), and the point (A, 'Y) with the 

lowest estimated error rate is used as an estimate of the optimal values of A and 'Y. This two-
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parameter optimisation problem would require excessive computation were it to be implemented in 

a straightforward way. However, Friedman developed updating formulas for the computation of the 

regularised sample covariance matrix and its inverse when a different observation is successively 

omitted from the sample, as during cross-validation. 

Rayens and Greene ( 199 1 )  noted two criticisms of the model selection procedure of Friedman. 

Firstly, it was stated that the minimum cross-validated estimate of the misclassification risk is often 

constant for a range of 0.., y) combinations. Hence the optimal choice of A and y for the model will 

often not be uniquely determined. Friedman employed a strategy of maximum regularisation 

where, for all points yielding the minimum error rate on the 0.. , y) grid, that point (A, y) is selected 

which gives rise to the largest value of y for the largest value of A .  Secondly, Rayens and Greene 

( 199 1 )  demonstrated a situation that can and does occur where only a very small proportion of the 

sample data influences in any way the optimal choices of A and y, and the remainder of the sample 

observations are correctly classified for almost all points on the A, y plane. This occurs especially 

when the groups are well separated. 

Friedman ( 1989) performed a simulation study to compare the SRDF with SQDF and SLDF in 

terms of their estimated overall error rates. The simulation conditions represented a wide range of 

situations in terms of the general structure of the group means and covariance matrices. Some of 

these conditions were chosen because they were expected to be unfavourable to the SRDF in that 

any regularisation away from the SQDF or SLDF would be detrimental to the discrimination 

process. Other conditions were chosen because they were expected to be favourable to 

regularisation. The six conditions, defined in terms of the popUlation covariance m atrices and 

means, which are also those employed in the following simulation studies in this paper, are: 

1) Equal spherical population covariance matrices. A 'spherical' matrix is one where all 

the eigenvalues are similar in magnitude. 

2) Unequal, spherical population covariance matrices. 

3) Equal, highly ellipsoidal population covariance matrices with group mean differences in 

the low variance subspace. 'Ellipsoidal' in this case implies that there is a large 

difference in magnitude between the smallest and largest eigenvalues. 
I 

4) 

5) 

6) 

Equal, highly ellipsoidal popUlation covariance matrices with group mean differences in 

the high variance subspace. 

Unequal, highly ellipsoidal population covariance matrices with zero mean differences. 
• 

Equal, highly ellipsoidal population covariance matrices with non-zero mean 

differences. 
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3.1 Selection of values for the regularisation parameters when the choice is not uniquely 

detennined by the minimum cross-validated error rate 

In the previous section we noted that the optimal choice (i:. ,ry) of (A , 'Y) is very often 

not uniquely determined. It is of interest to study the effect of a different procedure than that 

employed by Friedman ( 1989) for selecting the values to use for the regularisation parameters. A 

simulation study has been performed under the same conditions as in the previous section but 

employing a policy of minimum regularisation in the advent of the minimum cross-validated error 

rate not being uniquely determined. If there is more than one point on the (A, 'Y) grid associated 

with the minimum cross-validated error rate, that point is chosen having the smallest 'Y value for the 

smallest A value. This method will be denoted SRDF-l and is compared with SRDF which follows 

the opposite policy of maximum regularisation to break ties. In all cases there are 3 populations or 

groups, and sample sizes are set to be just larger than the dimension p in each case, so as to avoid 

singularity in the group covariance matrix estimates. The (A, 'Y) grid of points consists of 25 points 

and is defined to be the same as that used in Friedman's study. Results comparing the estimated 

error rates (e, averaged over 1 00 simulations) of the SRDF and SRDF- 1 rules for four of the 

simulation conditions (described in Section 3) are in Table 1 .  Also shown are the average values of 

the two SRDF regularisation parameters A and 'Y. The standard errors of e for both SRDF and 

SRDF- 1 ranged from 0.002 to 0.006, according to the magnitude of e, while the standard errors of ):. 

and 'Y ranged from 0.01 to 0.03. 

Table 1 - mean values of e, A, 'Y (that is, e[):., 'YD for various values of p. 

Condition 1 
SRDF 

SRDF- 1 

Condition 3 

SRDF 

SRDF- I 

Condition 4 

SRDF 

SRDF-1 

Condition 5 

SRDF 

SRDF- I 

p=6 p=10 p=20 
. 1 1  [.87 •. 78] . 12 [.85 • .  8 1] .12 [ .80 • .  8 1] 

.12 [ .15 •. 67] .14 [.20 • .  69] . 12 [ .24 • .  80] 

.07 [.87 •. 05] . 12 [.89 • .  04] . 15 [.87 • .  04] 

.08 [.41 •. 02] . 13 [ 56 • .  03] .16 [ .73 • .  02] 

I 

.06 [.85 •. 58] .10 [.86 • .  62] . 1 1  [.79 • .  67] 

.07 [ .15 •. 50] .10 [.26.55] . l l [32,.67] 

.20 [.04 •. 12] . 12 [.04 • .25] .03 [.04.35] 

.18  [.01 •. 10] . 1 1  [.01 • .  26] .03 [.02,.26] 
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The first and major finding from the present study comparing SRDF- l with the SRDF is that the 
cross-validated error rate surface over the A, y plane is often very flat at its minimum. In such 
situations the error rate estimate will be very similar under both methods for dealing with ties, even 
though the assessed A and y values are quite different. This would indicate that employing a policy 
of minimum regularisation does not have much effect on the performance of the SRDF in most of 
the parameter settings considered, and indicates the degree of homogeneity in the cross-validated 
error rate response surface over the A, y plane. In particular, the choice of A can be considerably 
less precise than the choice of y in determining the performance of the rule in terms of its error rate. 
In conclusion, altering the way ties are broken in the search for the optimum values of A and 'Y does 
not have a great influence on the performance of the SRDF. Some of the parameter configurations 
here favour a greater degree of regularisation and some a lesser degree, but the difference in error 
rates was slight. 

4. USEFULNESS OF S RDF FOR VARIOUS RATIOS OF SAMPLE SIZE TO 

DIl\1ENSION 

From the study by Friedman ( 1989) as well as in the previous section it is clear that the SRDF has 
proved itself at least equal to but usually superior to the other classification rules under a fairly wide 
range of situations. The superiority is greatest in the larger dimensional settings (p> 10). The 
comparisons with the SQDF and SLDF indicate that the advantage the SRDF has over the other 
classification rules is a result of allowing for eigenvalue shrinkage. A question which becomes of 
interest is: to what extent do the benefits of regularisation, in particular eigenvalue shrinkage, 
diminish as the sample size to dimensionality ratio increases? 

A (further) simulation study was implemented in the manner of Friedman ( 1989) (and the previous 
section), using the same six simulation conditions. In those studies, the ratio of training sample size 
to dimensionality (n/p, denoted r throughout this section) is approximately between 0.5 and 2. We 
investigate the performance of the RDF relative to the other classification rules over a wider range 
of values of r. It would be anticipated that eigenvalue shrinkage would no longer be useful for 
discriminating once the training sample size increases past some point sufficiently larger than p. 
The various r values ratios employed were 1 .2, 1 .5, 2, 3, 5, 10 for dimensions 6, 10 and 20. 
The (A, 'Y) grid of values for use in the model selection procedure of the RDF is defmed by the outer 
product of A= (0, .25, .5, .75, 1 )  and r= (0, .25, .5, .75, 1 ). The entire training sample is 3n in each 
case, the test sample is 200, and 50 replications of each experiment were performed. Average error 
rate, e is given for each classification rule: Three sets of results are shown in Table 2 but comment 
is made on each of the six simulation conditions. The standard error of e is in the range 
10-3 to 10-2• 
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Table 2. Values of e for various combinations of r and p 

Condition 2. p=6 p=10 

r value 
1.2 1.5 2 5 10 

SRDF 0.22 0.20 0.20 0.17 0.16 

SLDF 030 0.26 0.25 0.20 0.18 

SQDF 053 0.43 034 0.19 0.17 

SEDF 0.23 0.22 0.22 0.19 0.18  

Condition 4 

SRDF 0.08 0.07 0.07 0.06 0.06 

SWF 0.12  0.10 0.09 0.06 0.05 

SQDF 0.43 0.29 0.18 0.07 0.06 

SEDF 0.07 0.07 0.07 0.06 0.06 

Condition 5 

SRDF 034 0.29 0.19 0.14 0.10 

SLDF 0.61 0.60 059 0.60 0.62 

SQDF 039 0.25 0.1 8  0.10 0.08 

SEDF 059 0.59 059 0.60 0.62 

r value 
1.2 1.5 2 5 10 

0.20 0.17 0 .15 0.13 0. 10 

0.28 0.26 0.26 0.21 0.18 

0.52 0.43 035 0.19 0.14 

0.24 0.22 0.21 0.20 0. 18 

0.10 0.10 0.10 0.08 0. 1 1  

0.14 0.13 0.1 1  0.08 0.08 

0.45 032 0.23 0.12 0.09 

0.10 0.10 0.09 0.10 0.09 

0.15 0.12 0.09 0.03 0.06 

0.59 058 059 0.60 0.61 

0.29 0.17 0.10 0.03 0.02 

0.59 058 059 059 0.61 

p=20 

r value 
1.2 1.5 2 5 10 

0. 13 0.12 0.10 0.12 0.09 

0.28 0.26 0.24 0.20 0.19 

055 0.47 037 0. 18 0.12 

0.23 0.22 0.21 0.19 0.18 

0.12 0.12 0.10 0.09 0.09 

0.16 0. 15 0.13 0.10 0.13 

0.48 039 0.30 0. 16 0.10 

0.12 0.12 0. 1 1  0. 10 0. 1 1  

0.03 0.02 0.02 0.00 0.00 

0.58 057 0.59 0.61 0.62 

0.20 0.10 0.04 0.00 0.00 

057 059 0.59 0.61 0.61 

Eigenvalue shrinkage appears to enhance the classification process under conditions of equal, 

spherical covariance matrices only for r < 3. For larger ratios the advantage the SRDF enjoys over 

the other methods disappears. The SQDF shows the most dramatic improvement in error rate as the 

r ratio increases, owing to improved parameter estimates through larger sample size. 

In the situation of unequal, spherical population covariance matrices SRDF proved superior for all r 

values studied, especially the smaller values, indicating the benefit of eigenvalue shrinkage which 

biases the covariance estimates towards the appropriate value (a multiple of the identity matrix) in 

these circumstances. 

I 
Eigenvalue shrinkage proves to be of no benefit when the population covariance matrices are equal 

but highly ellipsoidal with mean differences in the low variance measurement subspace. This is 

because if the covariance matrix eigenvalues are biased towards equality, the variance in all 
, 

subspaces is equalised and hence in this case the mean differences will become obscured. 

Conversely, when the mean differences are exhibited in the high variance subspace, eigenvalue 
shrinkage proves useful in reducing

-
the variance in those subspaces where mean differences are 

exhibited. The SRDF has a lower error rate than those rules with no eigenvalue shrinkage for r less 

than 3. At r = 3 and larger, SLDF performs as well as the SRDF. 
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In the case of unequal, highly ellipsoidal population covariance matrices with either zero or non­

zero differences between the means, a small amount of eigenvalue shrinkage enables the SRDF to 

out-perform the SQDF, but only when the sample size is less than twice the dimension. In this 

case, eigenvalue shrinkage is generally not desirable since the covariance matrices provide 

substantial information needed for discrimination. A small degree of eigenvalue shrinkage is 

beneficial in counteracting eigenvalue bias in those situations where r is small. For larger values of 

r the SQDF's performance is comparable to that of the SRDF, indicating eigenvalue shrinkage loses 
its effectiveness. While the average 'Y value used in the SRDF is usually small, there is substantial 

variation, indicating that under these fairly difficult discrimination conditions (especially zero mean 
differences), selection of 'Y is sensitive to peculiarities in the data. 

In conclusion, this simulation study underlines the usefulness of the eigenvalue shrinkage technique 

as employed by the SRDF. The advantage that it affords over the other rules is strongest when the 

training sample size from each group is small in relation to the dimensionality, p. Furthermore, 

often that advantage remains, even when the sample size increases to several times that of the 

dimension. 

5. INVARIANCE 

In the simulation results reported in the earlier sections it was noted that the regularised 

discriminant function is not generally scale invariant. The cause of this is the presence of the 
eigenvalue shrinkage parameter 'Y. - Thus it is of interest to examine the effect of removing this 

parameter from the model and comparing the performance of the resultirig discriminant functions 

with the SRDF. This would result in a reduced set of regularised models between the SQDF and 
" (l-A)(n .-I) i + A� 

the SLDF only. In this situation 1; (A) = 1 1 
• 

(I-A)(nC1)  + A(n-i) 

As mentioned in Section 2, this set of alternatives is rather restrictive. Further the resulting model 

may not provide appropriate regularisation if the group covariance matrices are of quite a different 

nature. In such a situation, it may be useful if each covariance matrix is shrunk to the pooled 

estimate by an appropriate degree, again estimable from the training data. Using such shrinkage 
I 

could go some way to overcome the problem of inappropriate regularisation, as the model would be 

more sensitive to variations in the 'shape' between the various populations. In the single parameter 
regularisation model, it may occur that in the selection of A,  a large proportion of the training 

• 

observations misclassified by cross validation come from one group. This may be in part due to the 

shrinkage being inappropriate for that group but appropriate for the other groups. The following 
-

model is proposed to obtain regularised and group covariance estimates: 
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where i=1 . . .. . K groups and; is the estimate of the pooled covariance matrix. Observe that the k 

regularisation parameters � (i= 1 . . . K) control the degree of shrinkage of the individual group 

covariance matrix estimates towards the pooled estimate. The value Ai=O gives 1;(Ai) = 1; 
and �= I  yields 1;O"i) = ; . Each � is obtained by minimizing the group conditional cross­

validated error rate over the range 0 :5  Ai $ I ,  i = I . . . . . K. Each 1; = S i in the SQDF in equation 

(iii) of (2. 1 )  is replaced by 1;O"i) for discriminant analysis. We shall call the resulting rule SRDF-

M, (modified SRDF). Section 6 reports on a further simulation study to investigate the relative 

performance of the scale invariant SRDF-M compared with the SRDF and other standard 

classification rules. 

6. EFFECT OF OMITTING EIGENVALUE SHRINKAGE PARA METER 

Monte Carlo simulation studies were performed again under the same conditions as in the previous 

two studies reported in Sections 4 and 5. Results for three conditions only are given in Table 3, 

comparing the performance of SRDF-M with the other approaches. Once again the standard errors 

of the e values fall in the range 10-
3 to 10 -

2. The average regularisation parameter values in Table 3 

have standard errors in the range 0.01 to 0.03. Discrimination in each situation is between three 
groups, hence for the SRDF-M method the average values of A for each group are given 

(�l '  �2' �3)' Also given are the average minimising cross-validated error rates for each group 

(ecv(l)' ecv(2)' ecv(3» · 

One immediately observes that having the option to use the regularisation parameter 'Y and shrink 

the covariance matrix eigenvalues to equality undoubtedly enhances discrimination in many · 

situations; and not only when the populations are spherical. This type of shrinkage reduces the 

variance which, despite the introduced bias, is beneficial for discrimination especially in the high 

dimensional setting. This extra variance reduction factor, apparently explains why the minimum 

cross-validated error rate for SRDF-M underestimates the actual error rate (assessed from the test 

sample) by a greater degree than for the SRDF. 

The magnitude of the minimum cross-validated error rate over the whole training sample for SRDF­

M is at a comparable level to those for the SRD�, meaning it is the actual error rate which is usually 

higher for SRDF-M. There is also often a large variation in the corresponding (cross-validated) 

error rates for each group. In some case the average minimum error rate for one group was twice as 

large as for another, and was extremely variable. 
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Table 3 - Comparison of error rates and parameter values for SRDF and SRDF-M and other rules 

Condition 1 

SRDF: e [�, y] 
SRDF-M: e [�l' 5:.2' 5:.iJ 

SLDF 

SQDF 

SEDF 
SRDF: ecv 

SRDF-M: ecv(1),ecv(2),ecv(3) 

Condition 4 

SRDF: e [).., Y] 
SRDF-M: e [)..l' )..2, );.iJ 

SLDF 

SQDF 

SEDF 
SRDF: ecv 

SRDF-M: ecv(l),ecv(2),ecv(3) . 

Condition 6 

SRDF: e [�, Y] 
SRDF-M: e [�l' 5:.2, );.31 

SLDF 

SQDF 

SEDF 
SRDF: ecv 

SRDF-M: ecv(l),ecv(2),ecv(3) 

p=6 

.1 1 [.87,.78) 

.14 [.79,.91 ,.92) 

.13 

.23 

. 1 1  

.09 

.17,.09,.09 

.06 [.85,.58) 

.08 [.86,.88,.86) 

.07 

.16 

.07 

.04 

.07,.06,.06 

.06 [. 10,.19) 

.13 [ .1 1,.14,.88] 

.20 

.06 

.20 

.04 

.05,.04,.01 

p=10 p=20 

. 12  [.85,.8 1) . 12 [.80,.8 1) 

.17 [.81,.93,.87] . 16 [.84,.90,.83) 

.16 .15 

.39 .42 

.12 .12 

. 10 .10 

.17, .12, .10 .21,.13,.12 

.10 [.86,.62) . 1 1  [.79,.67] 

. 14  [.80,.88,.87) . 15 [.80,.87,.88) 

.13 .14 

.36 .38 

. 1 1  .1 1 

.07 .10 

.15,.09,.09 . 16,.09,. 1 1  

.06 [. 10,.29) .02 [ .07,.35] 

.21 [.1 1, .18,.85] .22 [.07,.13,.89] 

.21 .20 

.10 .06 

.20 .17 

.03 .01 

.09,.06,.01 .02,.01 ,.00 

When the group co variances are spherical and set to be equal, SRDF-M yielded error rate estimates 

of between 30% and 40% higher than the SRD� Under these conditions, eigenvalue shrinkage (to 

equality) clearly enhances discrimination. Hence the SEDF performs well. The mean minimum 

cross-validated error rate over all groups underestimated the actual error rate by around 25% for p $ 

10, but by only about 5% for p = 20. The �roup conditional mean minimum cross-validated error 

rates differed significantly, and their stand'ard deviations were also large. 

If the group covariances are spherical but unequal, SRDF-M gives error rate estimates around 70% 

higher than for SRDF, and worse for larger dimensions. It is clear that under such conditions, 

eigenvalue shrinkage is very desirable in order to reduce variation in the higher dimensions. The 

mean minimum cross-validated error rate over all . groups underestimated the actual 

13 



misclassification risk by 30%-40%, although observations from the higher variance groups were 

more frequently misclassified. 

The SRDF-M performs comparably to the SRDF under conditions of equal but highly ellipsoidal 

group covariances. This is not surprising since eigenvalue shrinkage is counterproductive in this 

situation. In the case where the group mean differences are concentrated in the low variance 
subspace, and therefore more pronounced the ii' (i = 1 ,  . . .  , k) values are very close to one, and the 

performance of SRDF-M approaches that of the SLDF, which is the optimum rule in these 

conditions. 

When the group means are concentrated in the high �ariance subspace, SRDF-M is less successful 

compared to the SRDF. The high degree of covariance shrinkage towards the identity matrix 

enhances discrimination, because of the reduction in variance achieved. This is why the SEDF 

performs as well as the SRDF under these conditions, each outperforming SRDF-M by about 40%. 

The minimum cross-validated error rate for S RDF-M underestimates the actual error rate by 

between 10% and 20% when the group mean differences are more exposed in the low variance 

subspace, and between 30% and 40% when the means are obscured by high variance. 

The [mal situation looked at is when the group covariances are unequal and highly ellipsoidal. The 

SRDF-M does not perform well here. In fact the minimising cross-validated error rate severely 

underestimates the actual error rate for SRDF-M, especially for the high dimensional settings. This 

is a curious phenomenon which exhibits itself strongly only in these simulation conditions where 

the groups have high and unequal variance. The reduction in variance obtained by eigenvalue 

shrinkage is not the complete explanation for otherwise SRDF-M should perform comparably to the 

SQDF, but it does not. It should be noted that the error rate estimates for SRDF-M also have 

unusually high variance under these conditions. An explanation is that under these conditions the 
best rules are those where A. is close to zero with low variability. Since each A. i  is obtained from 

such a small number of data points, its variability is high. 

One other feature of the performance of SRDF-M under these conditions is that A3 is much higher 

than Al or A2. Now it happens that group 3 does not have quite the same extreme ellipsoidal nature 

of the other two groups. Significant shrinkage of the group 3 covariance matrix to the pooled 

covariance appears to lead to observations fr�m that group becoming indistinguishable (to the 

classification rule) from those of the other high variance groups. It is noted that if a policy of 

minimum regularisation is used to break ties (similar to that employed by SRDF- I in Section 3.1), 
SRDF-M is enhanced because smaller values of � are selected. 

In conclusion, the proposed regularisation model SRDF-M was not as successful as the SRDF. 

This clearly shows the importance of eigenvalue shrinkage, especially when p is large. The 
attempt to make SRDF-M more sensitive by employing a separate A for each group caused other 

problems in certain circumstances as described above. If a solution to the problem of lack of scale 

14 



invariance is to be found, other techniques need to be devised to replace eigenvalue shrinkage 
�hile ensuring the accuracy of classification attained by the SRDF is not compro�ised. 

7. CASE STUDIES 

Case Study 1: The data considered here consists of 3 variables measured on each of 10 insec� 
Chaetocnema, (Lindsey et a1. 1987). The variables are as follows, all measured in microns. 

Xl:  the width of the fIrst joint of the fIrst tarsus 
x2: the width of the fIrst joint of the second tarsus 
x3: the maximal width of the aedegus 

Each insect was classifIed to one of the species according to its measurements of X l '  x2 and x3 ani 
�e error rate for each rule was assessed using the technique of cross-validation. 

The error rates for SRDF, SQDF, SLDF and SEDF were 0.03, 0.03, 0.07, 0. 17 respectively. Th 
values of � and "f for the RDF were 0.97 and 0.43 respectively. The model selection procedures fc 
the SRDF chooses a value of A. close to 1 on average, and still yields a similar error rate to that c 

the SQDF. This is to be expected since r is relatively large (r = 3 .3). Hence shrinking to the poole 
covariance makes little difference in this example. On the other hand, the degree of eigenvalu 
shrinkage should not be large, as evidenced by the poor performance of SEDF. This was expecte 
due to the high ellipsoidal nature of the covariance estimates. 

Case Study 2:  The data considered here relates to three types of pathological lung cancer, (Hon 
and Yang, 1991). Each type is described by 56 variables, the variables taking on integer values l -l 
The number of training samples are very small: 9 from the fIrst, 13 from the second and 10 from th 
third type of cancer (group), rendering the problem very ill-posed. Each patient was classifIed t 

one of the types of cancer according to hislher measurements of the 56 variables and the error ral 
for each rule was assessed using the technique of cross validation. Note that in this data set r = . 

which is small. The error rates for SRDF, SQDF and SEDF were .375, .688, and . 8 1 3  respectivel: 
That is, SRDF correctly classify 62.5% of the observations, while other two rules only about 3 1  ( 

. I and 19% respecuvely. 

The results of this case study show that if the SRDF is used in higher dimensional situations, this 
• 

likely to reduce the error rate when compared to the application of other rules. If the grou 
covariance matrices are identical, it is clear that the, SLDF will be the only method capable of ou 
performing SRDF (Aeberhard et al. ( 1994» . 
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ABSTRACT 

This article considers the problem of statistical classification involving mul­

tivariate normal populations and compares the performance of the linear 

discriminant function (LDF) and the Euclidean distance function (EDF) . Al­

though the LDF is quite popular and robust, it has been established (Marco, 

Young and Turner, 1 989) that under certain non-trivial conditions, the EDF 

is "equivalent" to the LDF, in terms of equal probabilities of misclassifica­

tion (error rates) .  Thus it follows that under those conditions the sample 

EDF could perform better than the sample LDF, since the sample EDF 

involves estimation of fewer parameters. Simulation results, also from the 

above paper, seemed to support this hypothesis .  This article compares the 

two sample discriminant functions through asymptotic expansions of error 

rates, and identifies situations when the sample EDF should perform better 

than the sample LDF. Results from simulation experiments are also reported 

and discussed. 

1 Author to whom all correspondence and enquiries should be addressed 
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1 .  INTRODUCTION 

In parametric statistical discriminant analysis, the linear discriminant func­

tion (LDF) , which is based on assumptions of multivariate normality and 

equal covariance matrices, is quite popular because of its robustness and sim­

plicity. Clearly, there are situations when the LDF is inappropriate and re­

lated competitors like the quadratic discriminant function (QDF), Euclidean 

distance function (EDF) or regularized discriminant function (RDF) may be 

used instead; see, for example, McLachlan ( 1992, Chapters 3 and 5 )  and 

Friedman ( 1989) . In this article we are concerned with the performances of 

the LDF and the EDF, following results in Marco, Young and Turner ( 1987). 

In their article, Marco, Young and Turner describe and discuss in detail the 

two discriminant functions and the error rates associated with them. Before 

discussing this article (plus related ones) in detail, we briefly introduce the 

two discriminant functions and the relevant notation. 

Suppose that two multivariate normal populations have p-dimensional 

mean vectors ILl and IL2, and (p x p) covariance matrices �l and �2 . The 

usual (consistent) sample estimators of these parameters (from training data) 

are denoted by X I ,  X2 , Sl and S2 respectively. For the two-population situ­

ation the sample versions of these discriminant functions (i .e. sample linear 

discriminant function, SLDF, and sample Euclidean discriminant function, 

SEDF) - can be expressed as follows: 

1 . SLDF: If it can be established that �1 = �2 = �,  say (or it is as­

sumed so) then one would use the SLDF which allocates an object 

with observation x to population 1 if 

(I) 

where 

and k is some appropriately chosen constant (see McLachlan ( 1992, 

Chapter 3) for example) . If £(x) > loge k, X is allocated to popula­

tion 2 .  
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2 .  SEDF: If � = I in the LDF or the information in the covariance matrix 

is deliberately ignored for the purpose of discrimination, one gets the 

SEDF, which allocates an object with observation z to population 1 ,  

if 

(2) 

where 

(otherwise it is allocated to population 2) .  

There has been considerable interest in  the literature in the relative 

performances of these discriminant functions. These comparisons have usu­

ally been based on various measures of estimates of error rates (probabilities 

of misclassifications) since direct algebraic evaluations of these probabilities 

have proved intractable. The following sources provide relevant background 

for this study. 

1 .  Raudys and Pikelis ( 1980) , who performed a simulation study to com­

pare the SLDF, SEDF, the sample quadratic discriminant function 

(SQDF), and a variant of the SLDF for independent measurements 

(i.e. with off-diagonal elements of � being set to zero) ;  see McLachlan 

( 1992, Section 4.6) for the details about the SQDF. The relative perfor­

mances of these discriminant functions when the populations are spheri­

cally normal were evaluated. Since computations of reliable estimators 

of error rates have been traditionally difficult, numerical integration 

techniques were used in evaluating the integrals in the definitions of 

the probabilities of misclassification. It was concluded that the simpler 

SEDF performed better than the SLDF when p is large relative to n. 
In fact the SEDF was found to perform at least as well as the SLDF 

even for non-spherical covariance structures. 

2. Marco, Young and Turner ( 1987) compared the SLDF and SEDF un­

der conditions derived to make the two classifiers "equivalent" or "non 
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equivalent" . The LDF and EDF were defined as "equivalent" if they 

have the same true error rates (i .e. assuming known population param­

eters) .  The conclusion, based on simulation studies only, was that the 

SEDF generally performed better than the SLDF except when the Ma­

halanobis distance (�)  between the two populations was substantially 

larger than the corresponding Euclidean distance. Also, the SEDF per­

formed at least as well as the SLDF when the population parameters 

were set so as to achieve either equivalence or non equivalence of the 

classifiers. 

This article follows directly from the Marco, Young and Turner paper, 

and some results in their paper will be discussed in more detail later. 

3. Other related work include Peck and van Ness ( 1 982) , van Ness ( 1979) ,  

Lim ( 1992), Friedman ( 1 989), Greene and Rayens ( 1989) ,  and Rayens 

and Greene ( 1991 ) .  The last three articles are concerned with regu­

larised discriminant analysis whereby, depending on the values of other 

parameters an (effectively) quadratic discriminant function may be­

come a linear (or even Euclidean) discriminant function. Although 

preliminary empirical and simulation results in those articles suggest 

that these regularised discriminant functions (RD Fs) can perform sur­

prisingly better than the other discriminant functions, using RDFs is a 

highly computer-intensive procedure and their properties are still being 

evaluated by researchers (mainly through simulation experiments) .  In 

particular, regularised discriminant functions are not yet abundantly 

available in commercial statistical software. 

In view of the limited knowledge about , and lack of availability of soft­

ware for RDFs, it is still relevant to investigate the relative performances of 

the SEDF and SLDF. As mentioned earlier, previous articles have reported 

comparisons based on simulation experiments and 'brute force' numerical 

integrations of very complicated probability functions (following basic def­

initions of error rates or probabilities of misclassification) .  In this article, 

following arguments from Marco, Young and Turner ( 1 987), we highlight 
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situations where the SEDF performs better than the SLDF. We also report 

results from asymptotic expansions of the error rates associated with these 

discriminant functions, and results from some simulation studies. 

2. IMPLICATIONS OF RESULTS FROM MARCO, YOUNG 
AND TURNER (1987) 

This paper derives conditions under which the LDF and the EDF are "equiv­

alent" (i.e. have the same error rates for known population parameters) .  The 

autho�s also report results of simulation studies to compare the SLDF and 

SEDF not only under conditions of equivalence but also under certain situ­

ations of "non-equivalence" . 

To be specific, if k = 0 in the expressions ( 1 )  and (2) then it  is well 

known that the "true" error rate (i .e. when all population parameters are 

known) for allocating an object from population i to population j (j =/: i) by 

the LDF is 

(i =/: j  = 1 , 2) (3) 

where 

is the Mahalanobis distance between the two populations and �( .) is the 

standard normal distribution function. The corresponding error rate for the 

ED F (details in Marco, Young and Turner) is 

(4) 

The overall error rates are obtained by summing the errors for j = 1 , 2 

in expressions (3) and (4). Since k = 0 here, these overall error rates (to be 

denoted here by PL and PE) would be equal to the corresponding error rates 

given in those expressions. That is, 

PL = p�DF 
lJ (j =/: i = 1 , 2) 



and 
PE 

= p.�DF 
'J (j I: i = 1 , 2) .  

Marco, Young and Turner proved the following related results. 

(5 )  

( i) Let V be a p X P full rank matrix and F any p X 1 matrix with pseudo 

inverse F+ . If FF+ and V-I commute then 

(ii) If we add the requirement that V be symmetric, then 

[ , -1 ] 1 /2 
_ F'F 

F V F -
[F'VFjI/2 

(6) 

(7) 

(iii) If we set F = (ILl - 1L2) and V = � in result (ii) where (ILl - 1L2) and 

� satisfy the requirements for results (i) and (ii ) ,  then PL = PE. 

The authors argue that in view of result (iii) " . . .  in many practical 

situations the SEDF might perform better than the SLDF since considerably 

fewer parameters must be estimated for the SEDF" . Thus, since " . . .  the 

performance of the SLDF deteriorates significantly as the dimension becomes 

large relative to the training sample sizes, the computationally simpler SEDF 

may be the preferred discrimination algorithm in this situation".  In view of 

this last argument , the authors conjectured that "the SEDF may perform as 

well as the SLDF even for (some) 'non-equivalent' situations" . The authors 

then performed a simulation experiment for a very special structure of � and 

concluded that there were indeed situations when the SEDF performed better 

than the SLDF. They found that the "improvement of the SEDF over the 

SLDF is highly dependent on the ratio of Mahalanbis distance to Euclidean 

distance" . In particular, "whenever this ratio is small, the SEDF tends to 

outperform the SLDF, (and) when the ratio is large the reverse is true" . 

One possible explanation for the observed relative behaviours of the 

two discriminant functions follows from Peck and Van Ness ( 1982) who con­

jectured that all this is due to the relative effects of the errors in  estimating 

� to that in estimating 1'1 and 1'2 , and the relative seriousness of these ef­

fects depends on the sizes of the Mahalanobis and Euclidean distances; see 
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the original article or Marco, Young and Turner, for further details and il­

lustrations. Of course, in "non-equivalent" situations when the LDF has a 

lower (true) error rate than the EDF, it  would be expected that the SLDF 

would perform better than the SEDF. 

On the matter of when the EDF performs better than the LDF, con­

sider the proof of result (iii) in Marco, Young and Turner (1987) , where, if 

the conditions for the result are satisfied, then 

By swapping :E and :E-1 in the above result, we get the equivalent result 

that 

where /:1E is the Euclidean distance between the two populations. Thus the 

size of the ratio between the distance functions can be reduced to an explicit 

function of the elements of I'I !  1'2 and :E. 
Without loss of generality, one can set 1'2 = (0, 0, . . .  , 0)'. Marco, 

Young and Turner ( 1987) set the values of 1'1 = (m, m, . . .  , m)' under "equiv­

alence" and 1'1 = (m* , 0, 0, . . .  , 0)' under "non-equivalence" , where m and 

m* are appropriately chosen scalars so that the Mahalanobis distances can 

be set equal (under equivalence and non-equivalence) for purposes of c0!ll­

parison. In this article, we concentrate on the "equivalence" situation since it  

provides fair comparison between the two discriminant functions (both being 

optimal Bayes procedures for known population parameters under "equiva­

lence" ) . Since 1'2 = (0 , 0 ,  . . .  , 0)' and 1'1 = (m, m,  . . .  , m)' in this situation, 

it follows that bok = pm2 and 

/:12 E 
/:12 

where :E = {(Jij } .  

(��) ( 10) 

Thus the only factors which determine the size of the ratio of the 

two distance functions are the elements of the covariance matrix, :E. If, as in  
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Marco, Young and Turner ( 1987), standardisation is done and the covariance 

matrix is effectively a correlation matrix, then it follows that in general high 

positive correlations yield large values of L Uij . If there is no standardisation 
i,j 

of the observation vectors then large (small) variances and/or large positive 

(negative) correlations would result in large (small) values of L Uij . 
i,j 

Note that in their discussions Marco, Young and Turner ( 1987) refer to 

the size of the ratio of t:,. 2 to t:,.�, which is the reciprocal of the ratio in ( 10) .  In 

terms of the ratio in ( 10 )  these authors' simulation experiments suggest that: 

SEDF performs better (worse) than SLDF when L Uij is large (small) .  It can 
i,j 

be concluded that it  is the type and extent of correlations (or covariances) 

among the observations which determine this observed behaviour. 

3. ASYMPTOTIC EXPANSIONS AND EVALUATIONS 

In this article the asymptotic expected error rates were obtained using Taylor 

series expansions of the conditional error rates (i.e. conditional on Xl ,  X2 
and S) and taking expectations over the distributions of fLb fL2 and S. In 

particular, if 1i(. )  is a differentiable function of parameters (PI , P2 , . . . , P3 ) '  
where (Pt , P2 , . . .  , P3 ) '  are consistent estimators of (/31 , /32 . . . , /33) ' then 

the Taylor series expansion of E(11.) about the point (/3t , /32 . . . , /3$) can be 

expressed as 

For our expansions 1i(.) = <lJ( . ) ,  the standard normal distribution func­

tion, and PI ,  P2 , . . .  , P3 are the elements of X I , X2 , S. The expansions are 

evaluated at the point (fLbfL2 , �) .. 

The two asymptotic error rates considered here are the expected "ac­

tual" (i .e. unconditional) and the expected "plug-in" (i .e. conditional) error 

rates. For these error rates, the function 1i(. )  takes the following forms (for 

misclassification of an object from population 1 to population 2),  where the 
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two subscripts 'A' and 'P'  refer to the "actual" and "plug-in" error rates 

respectively: 

and 

PLDF _ if.. ( 1 [( - - )'S-l ( - - - )]1/2) 21 {P) - 'It - 2  
Xl - X2 X l - X2 

( 12) 

Corresponding expressions for misclassifying an object from popula­

tion 2 to population 1 are similar. Several results in Okamoto ( 1963) were 

used in obtaining the asymptotic expansions. 

In a series of papers, McLachlan (1972, 1973, 1974a, 1974b) obtained 

asymptotic expansions of error rates for the SLDF. No such results appear 

to have been obtained for the SEDF. We believe this is partly due to the fact 

that for the SLDF the function 1i(.) can be reduced to a relatively simple 

function (usually referred to as "canonical form" ) through a linear transfor­

mation of the observation vector. This simplifies the algebra considerably, 

and makes the final result dependent on only a few parameters (see, for ex­

ample, McLachlan ( 1972,1 973)) .  Unfortunately, no similar trick can be used 

for the 1i(. )  function for the SEDF. The canonical form that has been tra­

ditionally adopted (after the transformation) has been ILl = (.6. , 0 , 0, . . .  , 0) ' , 
IL2 = (.6., 0, 0 ,  . . .  , 0)' and ::E = I, which would not allow us to investigate the 

distinction between SLDF and SEDF. Hence, such an investigation would 

require that a particular structure of ::E be assumed. Consequently each 

asymptotic expansion takes a different form,  depending on (i) the assumed 

structure of ::E, (ii) whether the expansion is obtained under "equivalence" or 

"non-equivalence" , (iii) whether the expansion is for the SLDF or the SEDF, 
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and also (iv) whether the expansion is for the "actual" or "plug-in" error 

rate. 

For example, the expansion (up to first order) of the conditional error 

rate associated with the LDF under "equivalence" conditions is of the form 

where the quantities ::l4>JO! are obtained separately for each assumed structure 

of 1-'1 , 1-'2 and �, for any variables 81 and 82 . The full algebraic expressions 

of the asymptotic expansions are too complicated to be put in this paper. 

Interested readers can get them from the authors. However, for the purpose 

of completeness and to give some idea about computational requirements, 

we give partial details of one of the expansions in the appendix. 

Two different structures of � were considered, and they will be denoted 

as �A and �B, where 

1 p p p 1 P p
2 

pp-l  

P 1 p p p 1 . P pp-2 

�A = P P 1 and �B = / p 1 ( 14) 

p p 1 pp-l 
pp-2 1 

4. NUMERICAL EVALUATIONS AND DISCUSSION 

Appropriate values of p (both positive and negative) and other parameters 

were chosen for the numerical evaluation of the asymptotic expansions. We 

follow the work of Marco, Young and Turner ( 1 987) where, in the situation 

of "equivalence" the value of the parameter m is given by 

( 15) 
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For "non-equivalence" , its counterpart (i .e. m*) is given by 

( 16 )  

The sample sizes were taken to  be equal at nl = n 2  = 50, and dimen­

sions of the observation vectors used were p = 4 and p = 8. We present and 

discuss here a very limited set of results; several other results obtained under 

much more extensive conditions are available from the authors. 

One table (TABLE I) is presented to illustrate the order of magnitudes 

of the various error rates. In the notation and discussions about TABLE I 

the various error rates are referred to as follows: 

ei., e:E: true error rates (i .e. for known population parameter values) 

for the SLDF (subscript L) and SEDF (subscript E) . 

eL, eE: asymptotic expected actual (i.e. unconditional) error rates. 

h, eE: asymptotic expected plug-in (i .e. conditional) error rates. 

eSL , eSE: mean cross-validation error rates from 100 simulation 

experiments using computer-generated data. 

Note that several other estimates of error rates (e.g. bootstrap and 

resubstitution) were obtained from the simulation experiments. However, 

previous work (e.g. Ganeshanandam and Krzanowski , 1990) suggest that 

the cross-validation error rate is one of the better and reliable ones to use. 

Also, although results for the asymptotic expected plug-in error rates (i .�. 

h and eE) are given, it is well-known that this particular error rate is biased 

(usually too optimistic) . Henceforth, results about this error rate will not be 

discussed or referred to. 

It is easier to visualise the relative performances of the SLDF and 
SEDF, through a graphic presentation of their error rates. Define the differ­

ences between the estimated and true error rates as: 
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AL - eL - ei, = difference between the expected error rate and 

true error rate for the SLDF. 

AE eE - e£ = difference between the expected error rate and 

the true error rate for the SEDF. 

ASL - eSL - ei, = difference between the simulated error rate and 

the true error rate for the SLDF. 

ASE eSE - e£ = difference between the simulated error rate and 

the true error rate for the SEDF. 

Graphical displays of values of IAL I ,  IAE I ,  I AsL I and IAsE I for various 

values of the Mahalanobis distance (.6.) and levels of correlation among the 

observations are presented in FIGS. 1 to 3. Results for positive autocorre­

lation structures are presented in FIG. 1 (� = �A ) and FIG. 2 (�  = �B) ' 
while results for negative autocorrelation between neighbouring observations 

with � = :EB are presented in FIG. 3. Since FIGS. 1 to 3 show absolute dif­

ferences between the error rates, they hide any bias that an estimator might 

tend to have. Consequently, we have provided FIG. 4 which displays values 

of AL, AE , ASL and ASE, to illustrate this bias issue. 

The main features of these plots and results are the following: 

• For positive p (FIGS. 1 and 2) it is interesting to note that I AE I  tends 
-

to decrease as p increases while I AL I  tends to increase. 

• It was hypothesized in Marco, Young and Turner ( 1987) that the SEDF 

performs better than the SLD F if the ratio .6.2/.6.}; is large. It was 

also established in Section 2 that this condition can be reduced to 

the size of L (Tij . Since large p means large L (Tij , a comparison of 
ij ij 

the plots of IAL I and IAE I  for a given value of p indicates that the 

asymptotic expected error rates provide support for those arguments 

and conjectures. Plots of AL and AE in FIG. 4 also support these results. 

• The plots in FIGS. 1 and 2 might appear to suggest that the expected 

error rate associated with SLDF tends to initially decrease with � and 

then increase as � increases further. The plots in FIG. 4 clarify this 
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matter, since >"L initially underestimates the true error rate (when D. is 

small) and this estimation improves as D. increases until it overestimates 

the true error rate for very large D.. 
• The plots for the simulated error rates in FIGS. 1 and 2 suggest that 

for positive p, l>"sE I tends to be smaller than l >"sL I , and FIG. 3 suggests 

that for negative p, the reverse happens. Note that although it is the 

absolute values of the simulated error rates which are plotted in FIGS. 

1 to 3 ,  plots of >"SE and >"SL would be very similar, indicating that the 

simulated error rates tend to be generally larger than the . true error 

rates (not surprisingly) .  

• From FIG . 4 ,  an interesting difference between >"L and >"E is that as p 
increases >"E decreases from positive values towards zero. Meanwhile, 

>"L decrease from positive values through zero, to negative values. 

• When we compare the results for � = �A with those for � = �B we 

find the corresponding values of I>"L I ,  I >"E I ,  l>"sE I and l >"sL I are quite 

similar. In fact, it can be seen from the orders of magnitude of these 

differences in error rates that the estimation of the error rates provided 

by the asymptotic expansions are quite reasonable in both cases. This 

is confirmed by the simulated error rate� being of similar order of mag­

nitude. It appears however, that when p is negative and D. is large 

the approximation provided by eE is quite inaccurate. The proble� 

is worsened as p increases. This asymptotic expansion is therefore not 

recommended for approximating the error rate under this situation. 

Note, however, that the simulated error rates are also unusually large 

under this situation (FIG. 3) .  

5 .  CONCLUSION 

The sample linear discriminant function (SLDF) is still the most popular 

classifier among users of discrimination procedures, in spite of its drawbacks. 

Meanwhile, the sample Euclidean discriminant function (SEDF), which is a 

1 �  



simpler version of the SLDF, has been shown to (surprisingly) perform better 

than the SLDF under some circumstances. It is established algebraically 

in this article that the relative performances of the SLDF and SEDF are 

determined by the type and extent of correlations (or covariances) among 

the observations. This result explains and supports previously published 

conjectures and simulation results on this matter (Peck and Van Ness (1982) ; 

Marco et al ( 1987) ) .  

Asymptotic expansions of the error rates associated with the two dis­

criminant functions are given for two specific structures of the covariance 

matrix, :E .  Although several expansions are available in the literature for 

the SLDF, similar expansions are not available for the SEDF, because of the 

fact that its error rate function cannot be reduced to a function of only a few 

parameters. Consequently, any asymptotic expansion of the error rate for 

the SEDF (and hence comparison with the SLDF) is likely to be "messy" , 

and feasible for particular structures of :E only. Two such structures of :E 

are adopted in this article, and the asymptotic expansions (and subsequent 

numerical evaluations) provide support for the earlier conjectures and simu­

lation results about the relative performances of SLDF and SEDF. 

Comparisons of the asymptotic expansions with the simulated cross­

validated error rates indicate that the asymptotic expansions are quite rea­

sonable, except under certain parameter configurations, which are identified 

in this article. This article also identifies situations when the two estimated 

error rates provide biased estimates of the true error rates. 

APPENDIX 

ASYMPTOTIC EXPANSION FOR THE CONDITIONAL 
ERROR RATE OF LINEAR DISCRIMINANT FUNCTION 

UNDER CONDITIONS OF "EQUIVALENCE " WITH 
COVARIANCE MATRIX OF THE FORM :E = :EA . 

The probability, conditional on the samples, that the Linear Discriminant 

Function misclassifies an observation from group 1 into group 2 is: 

pLDF _ q. (_ [ILl - HXI + X2)] 'S-I (XI - X2) ) 
21 (A) - [(Xl - X2)'S-1 :ES-1 (Xl - X2)P/2 

_ .li 

(A . I )  



For the error rates of the LDF and EDF to be equivalent, the popula­

tion means must be set so that 

where 

1'1 - (m, m, . . .  , m)' 

1'2 - (0, 0, . . .  , 0)'. 

The Taylor Series expansion (up to first order approximation) is 

Taking expected values of the expansion yields 
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where 

Thus the following quantities need to be obtained 

82�( . )  82<J>( . )  82 <J> ( . ) 
8Xli8xlj ' 8X2,8x2j '  8skl8s,j . 

Under "equivalence" P2 = 0, and we may write equation (A. 1 )  as 

where 

B - r - 'S-l �S-l - ] -
1/2 r 1 - 'S-1 - ] - Xl LI Xl PI 

-
2Xl  X l · 

This expression is used to obtain the desired quantities: 

82 <J> ( . ) 
8Xli8x1j 
82�( . )  

8X2,8x2j 
82 <J> ( . ) 

8Skl8sij 

-<p(-B) [ 
_
82B

_ 
_ B 8! 8! ] 

8Xli8x1j 8Xl, 8xlj 
-4>(-B) [ a'B _ B aB aB ] 

8X2i8x2j 8X2i 8X2j 
-<p(-B) [ 82B _ B 8B 8B ] . 8skl8s,j 8sH 8s,j 

(A.5) 

(A .6) 

(A.7) 

The asymptotic expansion for the probability in equation (A.1 ) would be 

obtained after collection and evaluation of all these expressions. 
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true 

EDF(eE) 
LDF(eiJ 

.3721 
.3618 
.3654 
.3618 
.3618 
.3618 
.3634 
.3618 
.3642 
.3618 

.3222 
.3085 
.3133 
.3085 
.3085 
.3085 
.3106 
.3085 
.31 1 7  
.3085 

.2328 
.2146 
.2209 
.2146 
.2146 
.2146 
.21 73 
.2146 
.2188 
.2146 

p = 4 
actual plug-in 

EDF�eE� 
LDF eL 

EDF�eE� 
LDF eL 

.7889 
.3643 
04549 
.3614 
.3788 
.3597 
.3673 
.3548 
.3659 
.3400 

.6022 
.3167 
.3636 
.3128 
.3205 . 
.3ll0 
.3139 
.3076 
.3135 
.2980 

, , 

.3848 
.2290 
.2539 
.2240 
.2219 
.2220 
.2201 
.2200 
.2208 
.2153 

.6551 
.3250 
.3841 
.3350 
.3470 
.3373 
.3541 
.3378 
.3597 
.3378 

.5125 
.2790 
.3264 
.2837 
.2994 
.2867 
.3052 
.2873 
.3095 
.2874 

.3365 
.1762 
.2291 
.1915 
.2112 
.1951 
.2158 
.1959 
.2189 
.1959 

TABLE I 
p = 8 

simulated true actual plug-in simulated 

EDF�eSE� 
LDF eSL 

EDF�eE) 
LDF eiJ 

EDF(eE� 
LDF(eL 

EDF�eE) 
LDF _h) 

EDF�eSE 
LDF eSL 

A370( .062) .3706 ** * *  04594(.059 
.3766(.068} .3618 .3815 .2875 .3932(.06� 
A008( .052) .3644 .6034 .4346 .4286(.057 

.3858(.064} .3618 .3729 .3009 .3986(.061 
.3828( .055) .3618 .4001 .3261 .3858(.060 

.3852( .065} .3618 .3695 .3037 .3936(.063 
.3696( .064) .3636 .3725 .34 17 .3616( .054: 

.3812( .065) .3618 .3615 .3044 .3832(.059 
.3646( .069) .3660 .3692 .3549 .3750( .057: 

.3786(.066) .3618 .3361 .3046 .3984(.072 

.3948( .06 1) .3203 * *  .9497 A292( .053: 
.3288(.052} .3085 .3395 .2350 .3266(.058 
.3476( .059) .3 1 19 .4717 .3595 .3632( .060: 

.3192(.057} .3085 .3282 .2524 .3360(.060 
.3156( .059} .3085 .3347 .2857 .3364( .052; 

.3136(.057} .3085 .3245 .2562 .3368(.061 
.3174( .058) .3 109 .3176 .2973 .3184(.051 ;  

.3280(.061} .3085 .3189 .2570 .3410(.059 
.3162( .054) .3 140 .3170 .3079 .3070( .061) 

.3250(.053} .3085 .3022 .2573 .3394(.057 

.2952( .058) .2302 .6843 .5695 .3564( .060) 
.2226(.052) .2146 .2590 .1394 .2334(.052 
.2496( .053) .2190 .3046 .2458 .2618( .057) 

.2252(.055) .2146 .2442 .1612 .2350(.059 
.2200(.048) .2146 .2296 .2043 .2384( .054) 

.2262(.052) .2146 .2400 .1661 .2478(.055 
.2234( .050) .2178 .2225 .2122 .2368( .050) 

.2258(.045} .2146 .2367 .1671 .2430(.055 
.2286( .050) .2219 .2246 .2201 .2274(.049) 

.2266(.052} .2146 .2281 .1676 .2384(.059 
. . . . . 

:ates that for those conditIOns the asymptotic expansIOns Yield estimates out of bounds for probablhtles . 

TABLE 1. The true, expected actual, expected plug-in and mean simulated 
(�th standard deviation) error rates of the SEDF and SLDF in the case of 
'equivalence' with :E = :EB and various p. 
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FIG. 1 Displays showing the absolute difference between the true error rate 
and a) the expected actual error rate (Le. the evaluated asymptotic expan­
sions) (graphs (i) and (ii ) ) j  and b) the simulated error rates (graphs (iii) 
and (iv) ) for E = EA , dimension p=(4,8), and various Mahalanobis distance 
squared (.6.2) and p. . 



II) -
1"11 � 
� 0 
� � Q) 
Q) :l ID  � ,... - 0 E ' 0 0 
� -
Q) 
u 
c Q) 
� 

� ID ,- 0 'tl o  
III ' _ 0  
:l 

� O  .0 ' 

Expected Error Rate (p=4) 
\ 

\ 
\ 

\ 
\ 

.. " 
" 

, 
" 

" 

• - EDC rho=O,O 
• - EDC rho=O,4 
• - EDC rhO=O,65 
• - - lDF rhO=O,O 
• - - LDF rhO=O.4 
• - - lDF rhO=O,65 

" ... - -- -
,, - -e -:.,. - -

..... " - - " .... - -
1\ • ,. - o:::::S::: 

t= �f' >' .--> ,t � ... .,..,." 
- - - t 

II) � 
� � 0 � � Q) (") Q) O 
2 0 -
E 
O N  '= 0  
B O 
c Q) ' 
� Q) ,... ::: 0 :0 0 
Q) -
:l 
C o  1/1 ' .0 0  

\ 
\ 

Expected Error Rate (p=8) 

\ -

- - � .... -- - ...... 

\ - " " r ,, -y "  ...... 
/ \ ,, /  

" 
/ ..... ,, "  � 

- - - -
-

_ 

.... 

. ;' 
/ . • 

0 <t 0,5 1 .0 1 .5 2.0 2,5 <t 0.5 1 .0 1 .5 2.0 2.5 

III 
U 
C 
III 
� � ID ,- 0 'tl o  
! O 
:::l 

Mahalanobis distance squared 
Fig,2 (Q 

Simulated Error Rate (p=4) 
� 

\ 
'\ - -'" " 

- - .... _" 
,- - - - - .... " ....... 

" 
_ ....... ....... " 7 

- -) " 

! 
e � 
e � (") Q) o 
� o 
� -
E 
e N - 0  Q) O U 
C 
III � 
� o  'tl . 
III 0 
'5 

Mahalanobis distance squared 
Fig,2 (iQ 

Simulated Error Rate (p=8) 
, " 
� 

.......
....... . - � 

....... /� .......
...... 

_ - ...... 
/ 

....... , ....... - ...... / / _ ....... -.- -/ --. - -� ....... - / 
....... - .. 

....... .... 

C o .2 0 L-.---.....--__ r------r---� � .0 
<t <t 0,5 1 .0 1 .5 2.0 

Mahalanobis distance squared 
FI9.2 QiQ 

2.5 0,5 1 .0 1 .5 2,0 2.5 
Mahalanobis distance squared 

FI9.2 (IV) 

FIG. 2 Displays showing the absolute difference between the true error rate 

and a) . the expected actual error rate (i .e. the evaluated asymptotic expan­

sions) (graphs (i) and (ii»j and b) the simulated error rates (graphs (iii) 

and (iv» for :E = :EB, dimension p=(4,8) , and various Mahalanobis distance 

squared (A2) and positive p. 
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FIG. 3 Displays showing the absolute difference between the true error rate 

and a) the expected actual error rate (i.e. the evaluated asymptotic expan­

sions) {graphs (i) and (ii)) j  and b) the simulated error rates (graphs (iii) 

and (iv)) for E = EB, dimension p={4,8), and various Mahalanobis distance 

squared (62) and negative p. 
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