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ABSTRACT 

This thesis reports on a series of experiments designeG to study 

the response of 'Grasslands Maku' to defoliation and thereby extend the 

understanding of growth and production of Lotus peduncuZatus . Morphol­

ogical s truc turing , production and nonstructural carbohydrate sta tus of 

'Grasslands Maku' were assessed for different defolia tion regimes in 

two separate field experiments . The rela tive importance of several 

residual plant fac tors and assimilate par titioning in early shoot 

regrowth, was s tudied in controlled environmental conditions . 

i 

In the first field experiment, seasonal differences in the 

partitioning of growth were recorded , with the spring to mid-summer 

period being dominated by aerial shoot growth and the late-summer , autumri 

period by underground growth. Of the underground components, rhizome 

growth was the most responsiv� to seasonal and defoliation changes and 

it was this horizontal stem system that formed the basis of basal shoot 

initia tion . 

Canopy growth became increasingly dominated by rhizome shoo ts as 

cutting height and frequency decreased and stubble shoo ts, stubble and 

dead matt r declined . Following defolia tion, regrowth was consistently 

slow during the first two to three weeks; thus produc tion increases 

were achieved where regrowth intervals were extended and subsequent, 

higher growth rates were allowed to be ex�res��d. Higher cutting 

improved shoot regrowth, particularly in the stubble shoot pool, but 

increased within-canopy dry matter losses that were related to death 

and decomposi tion processes, resulted in little, if any improvement in 

net produc tivity .  

Shoot regrowth responses resulting from highet cutting were primarily 
, 

related to increa�es in the size of the residual shoot pools from which 

regrowth commenced . Residual shoot number and individual size were 

therefore important determinants of early regrowth . Any direct influence 

of residual nonstructural carbohydrate status on regrowth appeared to 

be principally confined to the rhizome shoot pool for the first few 

days of regrowth . The importance of accumul.ated starch would appear 

t o  be related to the provision of metabolic substrate for underground 

respiration during late au tumn to early spring . 



ii 

Where defoliation is incomplete, residual stubble would appear to 

be an important source of current and redistributed assimilates du�ing 

early regrowth. Following defoliation, redistribution of carbon compounds 

to shoot growth was principally confined to the rhizome shoot pool . 

Total shoot growth increasingly dominated the partitioning of current 

assimilates as plants recovered from de1oliation . Where defoliation is 

incomplete it is proposed that assimil ate ucilization is a more important 

l imitation to early shoot regrowth than assimilate supply. 

The defoliation responses recorded with 'Grasslands Maku' in these 

ex�eriments are finally considered with regard to the role of L. pedunculatus 

in agriculture . Management guidelines are proposed and improved re�·Jwth 

characteristics , necessary for any further extension of L. peduncu latus 

into grasslands farming, are suggested. 
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CHAPTER 1. I NTRODUCTI ON AND OBJECT IVES 

In New Zealand , Lotus peduncu Zatus Cav . ( syn : Lotus u Ziginosus 

S chk ; Lotus majoP S co p . Sm . )  has b een an impor tant pioneer legume in 

we t ,  infertile areas where o ther legumes have fai led to es tab l ish 

1 .  

o r  pers is t .  I t  was considered to have been introduced into New Zealand 

b e tween 1860 and 1870 ( Thomson , 1922) and its early success as a 

component o f  s eed mix tures oversown into unfertil ized bush burn areas , 

was repo rted by Levy (1932). Levy ( in MacDvnald , 1946) fur ther 

des cribed the performance of L . peduncu Z atus in h igh rainfall , No r th 

I s land areas as "spl end id" , par ticularly on loos e textured hill 

country s o i l s . By 1948, Saxby (1948) repor ted that the d is tribution 

o f  L. peduncu Zatus was widespread throughou t  high rainfall areas of 

N ew Zealand . At tha t time he r ecommended its  us e in mo is t ,  s ummer 

h i ll coun t ry where l i t tle or no topdress ing was poss ible , and such 

a recommenda t ion is s t ill applicable . 

L .  peduncu Zatus has also been o f  value in the developmen t of  

waterlogged ,  pea t  swamp lands in New Zealand (Levy , 1922) . Saxby 

(1940) repo rted i ts use with Ho Zcus Z anatus L .  in such condit ions and 

more recently a s imi l ar pas ture was advoca ted for the development of  

Wes tland Pakihi soils (During e t  a�, 1964 ) . In summariz ing the p lace 

o f  L. peduncu Z atus in ' Grasslands of New Zealand ' ,  Levy (1970) 

cons idered its hab i ta t  to be soils of low to average fer t il i ty in 

very wet to average mois ture cond i tions . He fu� ther conSidered i t  

to b e  o f  good value o n  waterlogged , pea t ,  heavy second class and wet 
hill land ; moderate value on we t fertile land; l ittle value on 

fertile and friable land; and useless on d ry h ill land . 

In 1973, ' Gras s lands Maku ' te traploid L. peduncu Z atus was r eleased 

and placed on the New Zealand Lis t of  Acceptable Herbage Cul t ivars 

(Arms trong , 1974). With the release of  thi s  cul t ivar , and recent 

_developments relating to soil fer til i ty and insec t probl ems , interes t 

in L. peduncuZ atus , as a legum� for bo th unimproved and improved 

pas tures , has increased in New Zealand . The pos s ibil ity  o f  reduced 

phosphat ic fer tilizer inputs into grass lands farming has promp ted 

interes t in pas ture plants bet ter ab le to recover and / o r  e f f ic ient ly 

use soil  phosphate . The adap tab i l i ty of  L .  peduncuZatus to low 



2 .  

fertility condi t ions ( Klapp , 1 9 38 ; Crush, 1 9 74 ; Nordmeyer & Davis , 

1 9 76 )  has been reported in the l itera ture . Fur thermore ,  L. pedunculatus 

has also b een i dentif ied as being resis tant to several insec t  pests , 

mos t  no tably grass grub (Coste ly tra zea landica) and porina (Wiseana cervinata) 

( Farr�ll & Sweeney , 1 9 7 2 , 1 9 74 ) . The possible use o f  this resis tance 

in the development of pas tures res is tan t to grass grub has been 

outl ined by Kain and Atkins on ( 1 9 7 5 ) . 

Because o f  these developments , i t  can be cons idered thal the future 

ro l e  of  L. pedunculatus in agri cul t ure may extend further than tha t 

o f  being a p ioneer legume . The ab i l i ty tJf L. peduncu latus to 

s uc cess fully compe te within defol iated , compe t i tive pas tures i s  poor 

however (Levy ; in MacDonald , 1 94 6 ) , and recent work with ' Grass lands 

Maku ' ( Shea th e t  a�, 1 9 7 6 ; Brock & Cha rlto n ,  1 9 7 7 )  conf irms tha t the 

s ame problems o f  estab l ishment and persis tence s t ill exist in mixed 

grazed swards on medium to high fer t i l i ty soils . No pub l ished work 

has been s p e c i f ically d irec ted towards de termining the growth pa t tern 

o f  L. peduncu latus, in o rder to identify the f a c tors involved in 

i ts poor perfo rmance under these cond i tions . S imilarly , in co ndi tions where 

the rel a t ive competi tive ab il i ty of L. pedunau la tus is good , whole 

plan t  and / o r  herbage production responses to d i f f erential defo l ia tion 

have no t been determined . As such� there is l i ttle info rma t ion upon 

whi ch appropriate management s chemes or breeding programmes c an be 

based in o rder to achieve maximum pers is tence and/or produc t ivity of 

L. peduncu latus . I t  was cons idered that to achieve these ob j ec tives , 

basic info rma tion on the res ponse of  L. pedunau la tus to defoliation , 

was required. 

This thesis repo r t s  on a s eries of exper iments designed to determine 

the response of L. pedunculatus c v .  ' Gras s l ands Maku ' to defolia tion . 

The obj e c t ives of  thi s  wo rk were : 

( i) To define the morpho logical charac teris tics of  ' Grasslands 

Maku ' ,  and in terms of  numbers and dry weights , de termine 

the respons e of aerial and underground plant components to 

different defolia tion regimes and s easonal changes . 

( i i )  T o  determi, e dry ma t ter production l evel s and patterns in 

all aerial components dur ing regrowth periods of several 

defolia tion regimes . 



3 .  

( iii)  To identify the princ ipal p lant fac to r ( s )  determining 

r egrowth rates of ' Gras slands Maku ' following de£ul iation . 

( iv) To d etermine the pat tern of as s imilate part i t ioning 

b e tween plant components of defol ia ted ' Gras slands Maku ' .  

The response o f  aerial and underground morpho logy and growth 

to d if ferent defoliat ion regimes and changing s easons was asses sed 

in two f ield experiments involving pure ' Gras s lands Maku ' swards . 

From a po t exper iment conducted in a controlled environment ,  mo re 

d e tailed informat ion was provided as to the relat ive impo rtance of 

res idual leaves , shoo ts and nons truc tural carbohydrates in early 

r egrowth . F inaily , c14 t racer techniques were used to determine the 

d is tribut ion and redis tribution of carbon compounds fol lowing defoliation . 

I n  all experiments , p lants tha t were s tudied pos s es sed rhizomes and 

were therefore cons idered as estab l ished plants . Consequently , the 

results and dis cuss ions presented in this thes i s  are no t rel evant to 

e s t abl ishing , non-rhi zoma tous s eedl ings . 



CHAPTER 2 .  LITERATURE REVIEW 

L i terature pertaining to the nomenclature , morphology , breeding 

and agricul tural impor tanc e and charac teris tics of L. pedun cuZatus 

is reviewed in the f irs t s ec t ion of this chap ter . The ext ent of  

this informa tion is l imited however , and l i ttle of i t  spec ifically 

relates to the aspects  cons idered in the s er ies of  experiments 

sub sequently repor ted in this thes is . Theref ore , l i terature that is 

relevan t to the topi c s  s tudied is reviewed in subs equent s ec t ionci of 

this chap t er with par ticular reference to o ther forage plants having 

s imilar growth charac terist ics to tho se of L. peduncuZatus . 

P a t t erns and relationships o f  plant component growth ; defo l i a tion 

management and dry mat ter produc t ion ; nons truc tural carbohydrates; 

4 .  

and assimilate par t i t ioning are aspec ts that are cons idered in thes e  

subs equent sec tions , par t icularly with regard t o  Lotus cornicuZatus L . , 

Medicago sativa L .  and Coroni Z Za varia L .  Cons iderable experimenta t ion 

on the management o f  L. cornicuZatus has occurred in the pas t and 

as this legume is closely related to L. pedunau�atus , l i terature on 

the former species iS emphas ised . Becaus e of the extent of phys iological 

experimentation and the urtders tandirtg of  shoo t dynamics in M. sativai 

this species is also reviewed in dep th . Physiolog ical and growth 

charac ter istics of C. varia appear to be intermediate bet�een L. aorniculatua 

and M. sa tiva and for this reason , appropriate literature on the 

former s pec ies is included . 

2 . 1  Lot us peduncuZatus(syn. Lo tus u�iginos us ) . 

The Mediterranean bas in was cons idered by S eaney and Henson 

( 19 7 0 )  to be the centre o f  origin of  the genus Lotus , as i t  is in 

this region that the d ivers i ty o f  the eigh ty species wi thin the genus , 

is grea tes t .  Of these s pec ies , five were cons idered by MacDonald 

( 1 9 4 6 )  to be of  agricul tural importance ,  namely the annuals :  Lotus 

angus tissimus L .  and Lo tus hispidus Desf . and the perennials : Lotus 

tenuis Walds t . ,  Lo tus corniculatus L .  and Lotus uZiginosus S chk . 

There has b een , and s till  is cons iderable confus ion surrounding 

the classif ication and nomencla ture o f  L .  uZiginosus S chk . Workers 

in the early part of thi s  c entury were repor ted by MacDonald ( 1 94 6 )  



to have us ed L .  uliginos us S chk . and Lotus major Scop . ( Sm . )  

synonymously and more recently Clapham et a l . ( 1 9 6 2 )  and H ealy ( 1 9 76 )  

cons idered that L .  pedunculatus Cav . also referred to the same plant . 

In contras t ,  Bal l ( 1 9 6 8 )  in ' Flora Europaea ' classif ied and 

d iscus s ed L .  uliginosus S chk . and L .  pedunculatus Cav . s epara tely . 

He cons idered tha t the lat ter spec ies was rare and confined to the 

Iber ian peninsula , whereas L .  uliginosus S chk . was dis t r ibuted 

throughout Europe , the nor thern ar.d eas tern l imits being 60°N and 

25°E r es pec tively . 

Forde ( 1 9 74 )  o u tl ined the ef fec t of  this taxonomic confusion 

5 .  

on nomenclature usage in New Zealand . ' Lo tus maj o r ' has been the mos t  

popula r  common name and up until 1960 , L .  uliginos us S chk . was the 

spec i f i c  name in us e .  Based on the princ iple of  priority , L. peduncula tus 

Cav . was adop ted subs equent to that date and i t  has pers i s ted 

becaus e of the unc ertainty as to the exis tenc e  of  features tha t readily 

d i s tingui sh the two propos ed s pe cies . At  present L .  peduncula tus Cav . 

is used in Aus tralasia and No r th America , whereas L .  uZiginosus S chk . 

is used in Europe . Because o f  the general taxonomic uncertainty and 

current agronomic usage , L. peduncula tus Cav . will be us ed in a b ro ad 

s ense to include L .  u Ziginosus S chk .  Thus , the s tudy plant repor ted 

in this thes is was cons idered as ' Grasslands Maku ' ,  L .  peduncula tus Cav . 

The mo s t  no tab l e  fea ture distinguish ing L .  peduncuZ atus f rom the 

remainder of the species in the genus LotuB is the ini t ia tion and growth 

o f  hori zontal s tems f rom an underground roo ts tock compris ing a c rown 

and t aproot (MacDonald , 1 94 6 ) . S ince this horizontal s tem growth i s  

predominantly underground , i t  i s  generally referred t o  a s  rhi zome 

growth (Howell ,  1 94 8 ; Barnard ,  1969 ; Levy , 19 70) . However ,  i t  is 

recognis ed tha t  s uch growth can also o ccur above ground,par ticularly 

when associated with dens e vege tation , and as such thes e s t ems have 

been referred to as s tolons ( Clapham et al., 19 6 2 ;  Barnard , 1 9 6 9 ; 

Healy , 1 9 7 6 )  o r  runners (MacDonald , 1 9 4 6 ) . Thi s  above ground form 

of  l a teral growth i s  mo s t  evident benea th mat ted , browntop growth or 

in mid-late summer benea th uncut  lo tus s tands held for seed ( Sheath , 

personal observation) . 
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B ranching rhizome systems , plus associated adventitious and nodal 

roo ts ,  resul t in a dense d i s t r ibution of roo ts in the upper s o il 

region (MacDonald , 1946)  and l eads to the turf forming hab i t  o f  

L .  pedunc uZatus r eferred t o  b y  Howell ( 1948) , Levy ( 1 9 70 )  and 

Lambe r t  e-t a Z . ( 1 9 74) . As well as continued rhi zome branching from 

underground nodal s i tes , axi llary shoot growth can also give rise to 

as c ending stems ( Howell , 1 948) wh ich can be des cribed as d ecumbent 

wi thin sparse vege tation but  becoming ;no re erec t w i thin dense growth 

(Barnard , 1 9 6 9 ) . While underground, these s tems produce s tun ted s cale­

l ike l eaves , but upon emergence from the soil , tbey develop the no rmal 

pentafolia te form (MacDonald , 1 946) . Wi thin the genus Lotus , the 

number of l ea f l e ts per l eaf varies from two to mor e  than thirty 

(MacDonald ,  1 9 4 6 ) . However , in L .  p eduncuZatus there are f ive 

l ea f l e ts , three a ttached to the terminal , and two smaller ones to the 

base,o f  the pe tiole . The s tipules of thi s  leaf sys tem exis t as 

small erec t proj ec tions on the s tem below the bas al pair o f  l eaflets . 

(MacDonaid ,  Zoc. cit. ; Heyn , 1 9 7 6 ) . 

Axillary shoot growth can also o ccur at above ground nodal 

pos i t ions from the axile of expanded l eaves and it is this hab i t  

whi ch mo re clearly charac terises the inde termina te , branching na ture 

o f  growth in L .  peduncuZatus . From s imilar po s i t ions , under the 

s timulus of long days , reproductive o rgans develop (Thomas & 

Forde , 1 967) . 

L .  pedunau Zatus was recognised as a pot ntial forage legume 

during the 1 8 th and 19th centur ies in Europe (MacDonald ; 1 9 4 6 ) . 

However , ac t ive encouragement of  its  cul t ivation d id no t o ccur uHtil 
the middle o f  last  century when i t s  use was advoca ted in the we tlands 

o f  France and Germany . Heddle and Ogg ( 1 933)  and Klapp ( 1 9 38 )  

r epor ted tha t  wet ,  acid , infer t il e  soil conditions favoured the na tural 

o cc urrence o f  L .  peduncuZatus in European pas tures . In we t upl and 

areas of B r i ta in however , unsatis fac tory p er formances of introduced 

. L .  peduncuZatus have generally resul ted from poor es tab l ishment and/or  

poor  persis tence due to  heavy grazing o r  winter f rost ing ( Thomas , 

1 9 3 5 ; Cowl ing , 1954 ; Copeman & Rober ts , 1 960 ; Davies , 1 9 6 9 ) . 

Only more r ecently has Charl ton ( 1 9 7 5 )  favourably repor ted on i ts 

po tential usefulness when oversown into wet upland pas tures o f  S co tl and . 



As in New Zealand , L .  pedunculatus has been cons idered as a 

p ioneer l egume in the development o f  poorly d rained , aci d  swamp areas 

in Aus tralia ( F ilan ,  1 9 6 3 ; Macadam , 1 9 66 ; · Barnard , 1969 ) . Barnard 

( loe. ci t .) no ted its ab il i ty to wi ths tand prolonged submergence and 

i ts inab il i ty to tol erate drough t . Thus , high ra infall and/or 

soil mois ture were cons idered essen t ial for satisfac tory persis tence 

and produc t ivity . 

7 .  

On acid coas tal s o i l s  of  the N . W .  Pacific region of Nor th America , 

L .  pe dunculatus has p ers is ted and produced in pas tures o f  low pH and 

natural f e r tility where o ther legumes have fail ed (Howell , 1948) . 

S imilarly on we t ,  acid f ragipan soils in Oregon , Heath ( 1 969 , 1 9 70 )  

repor ted the s ucces s ful growth of  L .  pedunculatus i n  asso c ia t ion with 

Fes tuca arundinacea S chreb . Under these condi tions , Hea th cons idered 

a more winter hardy eco type had naturally developed , as cul t ivars 

s u itable fo r coas tal cond i tions had previous ly been winter kill ed in 

tha t  local i ty . L. pedunculatus has also been used as a fo rage legume 

in Florida , al though i ts s usceptib i l i ty to d is eases under mo is t ,  

warm summer conditions has been a maj o r  l imita tion ( S eaney & Henson , 

19 70) . 

O . E . C . D .  accep tance of Nor th American bred cul tivars ' Columb i a ' 

and ' Beaver• o ccurred in 1 9 6 7  ( O . E.C . D.1 1 9 6 7 )  and more recently cv . 

1 Marshfield ' was released (Bill ings & Swanson� 1 9 74 ) . This lat ter 

cul t ivar was recommended for us e as a tbtage or s tabil iza t ion l egume 

on wet ,  f ine te�tured ; acid soils located in co as tal uplands and 

grown in asso ciation with ALopecurua p�atenais L . , PhZeum pratenae L . , 

o r  Pha laris arundinacea L .  

Under low soil pho sphate cond it ions , Brock ( 1973)  recently 

identif ied L. pedunculatus as b eing more produc t ive and b e t ter abl e  

t o  recover so il phos phate than ' Gras s lands Huia ' white c lover . 

S imilarly , s uperior phospha te up take in L .  pedunculatus has also been 

noted by Crush ( 19 74 )  and he rela ted this to greater root hair 

develo pment relative to the o ther l egumes s tudied . On acid soils, 

L .  peduncula tus responds to lime less than white c lover and al though 

correc t ion o f  soil pH may be b enefic ial , i t  is no t ess ential for 

nodula tion , es tabl ishment and growth of L. pedunculatus (Greenwood , 

19 6 1 ;  Lowther , 1 9 7 6 ) . This greater tolerance of  low pH soils would 

appear to be related to the acid to l erance of the alkali produc ing 
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Rhizobiwn lupini, s pec ific t o  L .  peduneula tus (Norris , 1965 ) . Because 

of its adaptab i l i ty to low phosphate and acid soil cond i tions , the use 

of L. pedunculatus has recen tly been advoca ted for the s tab i l i zation o f  

acid s ubsoils ( Nordmeyer & Davis , 1 9 76 )  and the oversowing o f  a c id 

tussock country ( Lowther , 1 9 76 )  in New Zealand . 

Lit tle exp er imental wor k  repor ted in the l i tera ture specifically 

indicates the regrowth and p roduc tion responses of  L. p edunculatus to 

varying defolia tion condi t io ns . What relevant informa tion there is 

available , generally develops indirec tly from l '  llter forms o f  s tudy 

or f rom general farming obs erva tions . 

In pas ture s pec ies evaluation work , Thomas ( 1935)  repor ted tha t 

all es tabl ished L .  pedunculatus plants were los t under a hard 

graz ing regime and in • s imilar s i tuation Davies (1 96 9 )  conc luded tha t 

the r eg rowth ab i l i ty o f  the species was poo r .  I n  a series o f  small 

cul t ivar evalua t ion trial s ,  produc tion was cons idered bes t when 

grazing pressure was low ,  par ticularly for the mo re vigorous , erec t 

tetraploid cul t ivars (Barclay & Lambert, 1970 ) .  Lamber t et a l . 

(1 974 ) made a s imilar sta tement based on improvements in lo tus production 

tha t co incided with a change f rom set s tocked to rotat ional sheep 

grazing . In ano ther evalua tion trial , Harris et a l .  (1 973) were 

promp ted to s ugges t that reduc tions in the tetraploid lo tus component 

within their ro tat ionally grazed swards were related to infrequent 

and then particul arly severe defoliation . Cu tting down to 2-3 cm , 

f ive to s ix t imes a year has also been s ugges ted as being too s evere 

to al low satis fac tory regrowth and produc tion of the L. pedunculatua 

cul t ivar , G4705 ( B rock,  1 973 ) . 

Howell (194 8 ) ,  when consi dering the use o f  this plant for wet 

a c id condi t ions , s ta ted tha t  common management sys tems for L. pedunculatus 

invo lved pas turing in spring , fo llowed by a s ilage and hay c ro p , 

wi th a re turn to pas turing in late autumn . Haying o f  spring g row th 

and then gra zing by beef cattle over the summer and autumn was also 

repo r ted by Heath (19 7 0 )  to encourage the spread and produc t ion of 

this legume . The management recommenda tions made for pros trate , 

L .  corni.culatus cul t ivars such as 'Emp ire ' ,  were considered to be 

appropriate for L .  pedunculatus (Anon , 1 967 ) . Whereas continuous 
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grazing by ca t tle was cons idered unl ikely to detrimentally affec t 

s tand produ c t ion,  the mo re select iv� and closer grazing hab i t  of sheep 

necess i ta ted the use of s ome deferred grazing sy s t em for this clas s 

of  s tock . However , wi th reference to wet , inf ertile tiituations 

whera companion comp e t i t ion was l ike ly to be minima l ,  Howel l  ( 1 948)  

s tated tha t  even the closes L ,-•as turing by sheep over extended periods 

had no t affec ted s tanJ produc tivity . 

The l ow competi tive ab il i ty of L .  peduncu latus was no ted by 

Filan ( 1 9 6 3 ) and he s tressed the need to control companion growth 

when grown in mixed swards . S imilarly , Bel l ( 1 940)  indica ted tha t 

ryegrass dominanc e during winter and early spr ing mus t  b e  res tric ted 

to ens ure the pers is tence of  L. pedunculatus in mixed ryegrass 

swards . Maximum growth of L .  p edunculatus was repor ted by S uckl ing 

( 1 960)  and tevy ( 1 9 7 0 )  to occur over summer , wi th l i t tle produc tion 

o ccurring be tween late autumn and early s pring , inclusive . 

In N ew Zealand , a breeding and selec t ion programme was ins t igated 

in 1 9 5 1 to improve th e agronomic performance o f  L .  pedunou latus (Barclay 

1 9 5 7 ) . I ts principal obj ectives were to extend cool season production , 

increase to tal dry ma t ter yields and to increase seed s i ze and therefore 

s eedl ing vigor . Barclay ( 1 959 , 1 9 6 0 )  repor ted on the progress of  

th is programme and the final selec t ions were outl ined by Barclay 

& Lamb e r t  ( 1 9 70) . 

S uperior diploid New Zealand eco types were comb ined to produce 

' G4 7 0 1 '  and the col chicine trea tment of this s elec t ion resulted in 

' G4 70 2 ' ,  an auto te traploid wi th improved s eed s i ze and s ee dling 

vigour . Increased winter growth was bas ed on the intervar ietal 

hybridization of ' G4 70 1 '  and wint er active material from Caimbra , 

Por tuga l . Backcro s ses o f  the F 1 hybrid to the New Zealand and 

Por tuges e  parents resul ted in ' G4 703 ' and ' G4 704 ' respe�tively . 

Finally an auto tetraploid hybrid was produced by cross ing ' G4 70 2 ' 

(4N) wi th colch icine· treated Por tugese ma terial (4N) and then 

backcros s ing to ' G4 70 2 ' .  From this backcross , thirteen el i te 

plants were selected to form the nucleus of  ' G4 705 ' ,  now named 

' Grass lands Maku ' tetraploid Lo tus peduncu latus (Arms trong , 1 9 7 4) . 
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In the evalua t ion o f  these s elections , B arclay & Lambert ( 1 9 70 )  

repo rted that s easonal produc t ion pa t terns pr incipally reflec ted 

gene tic parentage . Thus , as the Por tugese content o f  the selec t ions 

increas ed , summer growth was reduced and winter growth was improved . 

The development o f  te traplo id ma terial doub led s eed s ize and the 

resul�ant respons e in s eedl ing vigor was mos t  evident in ' G4 7 0 5 ' .  

Growth o f  the tetraploid s el ec t ions was also mo re erec t and open 

rela tive to the dens e diplo id ma terial , and it was considered tha t  

such a hab i t  res ul t ed in the poor pers is tence of  the tetraploid 

s elec t io ns when hard grazed under set s to cked or s evere , infrequent 

regimes ( Harris et a l . 1 9 7 3 ; Lambert et a l . 1 9 7 4 ) . 

I n  1 9 7 3 ,  ' G4 7 05 ' was released as ' Gras s lands Maku ' and placed 

on the New Zealand L is t  of Accep table Herbage Cul t ivars . Arms trong 

( 1 9 74 )  referred to i t  as a hol low s temmed , s parsely hairy , non-bloating 

perennial legume tha t  spreads by bo th s to lo ns and shallow rhi zomes . 

Compared with d iploid ma terial , leaves and s tems are larger and the 

grow th pat tern is more erec t and open . Because o f  this hab i t ,  i t  

was s tated tha t  ' Grass lands Maku ' produc es maximum herbage when no t 

expos ed to heavy s e t  s tocking . 

2 . 2  Plant Component Growth : Pat terns and Relat ionships 

In his rev iew on the inter-relation o f  plant parts , Leonard 

( 19 6 2 )  presented the conc ept that once a p lant has suff icient pro duc t ive 

o rgans , mos t  no t ably leaves , then it wil l concentrate on improving 

i ts supporting o rgans such as s tems and roo ts . The ra t io o f  shoo t 

and roo t growth app ears to b e  dependent on the relative supply o f  

s al ts and wa ter to the shoo t and organic comp�unds to the roo t .  

L i tera ture was c i ted where increased shoo t / roo t  ratios were repor ted 

in response to reduced l igh t intens i ty ,  increased age ,  and increased 

mineral nutr i tion and mois tur e supply . Davidson ( 1 969 ) ,  following 

his wo rk on d i f f erential temperatures , s ugges ted that growth and 

s ub sequent roo t / shoot ratio s  were control l ed by the supply o f  

ass imilates t o  the who l e  plan t , and then b y  the relative ac tivi t ies 

o f  the two sys t ems . As edaphic and aerial conditions change , then 

so do roo t and sho o t  ac tivi t ies , so maintaining a bal anced economy. 

o f  minerals and carbohydrates wi thin the plant . 
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2 . 2 . 1  Growth o f  Shoots 

2 . 2 . 1 . 1  Lot us corniculatus 

Al though L .  cornicula tus is described as having branched 

s tems aris ing f rom a s ingl e  crown , the hab i t  of these stems varies 

such that two dis tinct forms exist within the range of agricul tural 

g eno t ypes ( S eaney , 1 9 7 5 ) . The North American types , who se present 

cult ivars are based on genot ypes referred to lh the early l it erature 

as var . arvensis� are mo re pros trat e ,  indeterminate , finer s temmed 

and s lower growing compared with the European types or var . v ulgaris . 

Mac Donald ( 1 94 6 )  des c r ibed those plants o f  the var . vulgaris type 

as havJng s tems ar is ing f rom an above-ground c rown region which , when 

in contact w i th the soil  surface, become white  and stoloniferous in 

appearance , b ut rarely roo t . The mo re pros trat e forms are o f  a 

s imilar hab i t , but some s tems do origina te below ground , growing s everal 

inches before emerging . MacDonald ( l ac . ci t . ) s t at ed tha t the wh ite 

underground po r t ion o f  thes e s tems po ssessed reduced but recognisable 

f o l iage leaves and rarely root . However , Wassom & Barne t t  ( 1 9 7 1 )  

h ave obs erved nodal roo t ing and shoo t formation on old woody prost�ate 

s tems in single spaced plant s of  L. corniau�a��s. 

Morp�ological charac t eristics were repo rted b y  Nit tler & Kenny 

( 1 965)  to b e  influenGed by environmental factors , with longer pho to­

periods and warmer temperatures resulting in more ere c t  growth , 

especially for the pros trate culUvars . The critical photoperiod 

required to induce thes e changes was 1 4- 1 5  hours , a s imilar period to 

that reported by McKee ( 1 9 63)  for the induct ion o f  flowering in 

L. corniculatus . 

In uncut L .  cornicula tus , the f ir s t  spring f l ush o f  shoots 

arises from the crown . ��wever , from then unt il mid-autumn , when new 

c rown shoo t s  are init iat ed for the sub s equent spring f lush , the 

crown remains inact ive as a shoo t producing organ (Smith , 1 9 6 2 ) . 

During the intervening period , L .  cornicula tus exhibit s an indet erminat e  

growth hab i t  with f lushes of shoo ts developing f rom upper axillary 

b uds at nodes on those  s t ems first  fo rmed in spr ing . Nelson & Smith 

( 1 968a) sugges t ed t hat it was reduc ing dayleng th and nigh t t emperat ures 

associat ed with autumn that induced crown shoot  activity . 
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With the cut t ing o f  s tems fo rmed from the f irst  spring flush o f  

c rown shoo ts , Nelson & Smi th ( Zoc . cit . ) found tha t shoo t regrowth 

was almo s t enti rely from upper axil lary b ud po s i t ions . S imilarly , 

for subs equent regrowth periods few shoo ts aros e from the c rown or 

nodal s i tes a t  the base of cu t s tems . Langille & Calder ( 1 9 7 1 )  

further repor ted tha t  increased cu t ting f requency and/or s everi ty did 

no t influence crown shoot numbers , but bo th prac tices increased s ide 

branching f rom no des on the s tubb le . 

2 . 2 . 1 . 2  Medica go sa tiva L. 

Grove & Carlson (1972) cons idered tha t  the crown in 

lucerne was a complex o rga n ,  cons i s t ing of  the perennial po r t ions o f  

previous stern growth and the tOfl of the taproo t .  :I.t was from thi.s combined 

region invo lving underground s i tes tha t Grandf ield ( 1 943)  cons idered 

crown buds arose . These pink/white  buds , as d is tinc t from green , 

leafy buds a t  the base of the s tubble , decreas ed in numb er and we:f.gh t 

during the spring , such that few and only small  crown buds exis ted 

in summer . Dur ing autumn their numb er and weight increased and these 

overwintered to pro duce the ini t ial s pring f lush of grow th . Few workers , 

however , c las s ify c rown buds as d id Grandf ield and mos t  include 

axil lary b uds s i ted at abovegro und nodes for an arbi trary l eng th 

o f  aerial s tem bas e . 

As Grandfield no ted , Nelson & Smi th ( 1 968a) reported that i t  was 

overwintered cro�n buds loca ted a t  or below the sell surface tha t 

formed the f ir s t  early spring f lush of  growth . When the first 
floral buds were visible , new b ud s  were fo rmed in axils of incomple te 

leaves a t  the base of these ear ly s tems and i t  was from these tha t 

regrowth almo s t  exclusively developed if cut t ing occurred a t  this 

s tage . S imilarly , a third flush of s tems developed at the basal 

nodes o f  the s econd f lush and bo th comb ined to form regrowth in any 

s ubs equent cuts . Thi s  sequence o f  mul t ib ranching s tem bases was 

also repor ted by S ingh & Winch ( 1 9 74a) , who fur ther no ted tha t 

regrowing shoo ts origina ted mainly from the s tubble of the mo s t  recently 

harves ted s tems . I t  was apparent tha t the younger and more viab l e  

the s tubb l e  s tem , the more pro l i f ic i t  was as a producer o f  r egrow th 

shoo t s . 
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Fo r bo th young and es tablished lucerne plants , the extent o f  

c rown b u d  fo rma t ion was l inked with overall assimilate produc tion and 

carbohydra te accumula t io n  at the crown ( Cowe t t  & Spragu e ,  1 9 6 2 ) . 

Thus , w i th increased l igh t inten s i ty , mo is ture , temperature and 

mineral nutri tion , g rea ter crown bud and s tem p roduc tion o ccurred . 

Cowe t t  & S p rague ( 1 9 6 3 )  fur ther reported however , tha t l igh t intensi ty 

and the p enetration o f  l ight to the ground had no direct effect 

on crown development and subsequent s tem produc t ion . Any affec t  

that occurred was med ia ted through total plant vigour and c rown s i z e . 

Cha t ter ton e t  a l . ( 1 9 74 )  also l inked the ex t en t  and rate of crown 

shoo t ini tia t ion wi th c rown s i ze and its associated carbohydra te 

levels . 

W i th increas ing cut t ing frequency , reduc tions in crown bud and 

shoot numbers were reco rded by Cowett & Sprague ( 1 962)  and Hodgkinson 

( 1 9 7 3) . Cutting heigh t  however , had l i t tl e  effec t on c rown shoo t 

forma t io n , al though to tal shoo t numbers were increased due to a 

greater s tubble shoo t  pool . Leach ( 1 968 )  also no ted tha t by varying 

defo l i a t ion int ens i ty and al ter ing the number of po tential shoo t 

s i tes , th e larges t source of shoo t number variation was related to 

the s tubb l e  shoo t c las s . However , shoo t numbe�s at the end o f  

regrowth were no t purely a re f l e c t ion o f  po ten tial shoo t si tes� as 

dominanc e  did o ccur wi thin shoo t populations . Hodgkinson ( loa . ait . ) 

found that within two weeks o f  cutting; 50% o f  the crown and 70% 

o f  the s tubb le shoo ts were inh ib i ted and grew no longer than 2 5  mm 

in l eng th . Tho se shoots  which were small and slow in initial growth 

rates were inhib i ted by their mo re rapid grow ing counterpar ts . 

The influence o f  this dominance was also no ted by S ingh & Winch 

( 19 74 a ) , where f inal shoot numb ers were o f ten only 50% o f  tha t recorded 

a t  earl ier peaks o f  s hoo t numbers . 

Fu rther varia tion in shoo t origin can o c cur within those lucerne 

cul t ivars possessi ng the creep ing roo ted hab i t ,  charac teris t i c  o f  

Mediaago fa laata (Avendo & Davis , 1 9 6 6 ) . Exogenous , adventitious 

buds arise  at intervals along ho rizontally g rowing , branched la teral 

roo t s  s ome 10-20 cm b elow ground (Murray , 1 9 5 7 ) . From thes e buds, 

aerial shoo ts can develop and may become ind ependent uni ts once 

their own assoc ia ted roo t sys tem develops . More s evere and/or 

frequent defolia t ion reduced bo th shoo t numb ers and roo t weigh t s  



al though shoo t numbers per unit roo t  wei ght increas ed (Carlson e t  a l . 

1964a) . Th es e  wo rkers also repor ted tha t  warmer temperatures , but 

more impor tantly sho rter days , inc reas ed the number o f  adventi t io us 

14 . 

s tem s it es , this la t ter response being l inked wi th hormonal relationships 

( Car�son e t  a l . 1964b) . In a fur ther s tudy on pho toperiodic control 

o f  advent i t ious s tem initiation , Carlson ( 1 965) repo r ted that shor ter 

interno des , less  apical dominance and more axillary shoot growth 

accompanied grea ter adventi t ious s tem numbers under sho r t  day 

s timula t ion . H e  sugges ted that adven t i t ious s tem development was 

inhib i ted in long days by the apical dominanc e o f  rapidly developing 

s tem apices , j us t  as axil lary buds are domina ted . 

Creeping roo ted lucernes are dis t inc t from rhi zomatous lucernes 

in tha t  rhi zomes are only initiated from the original axis and can 

b e  cons idered purely as b ur ied c rown shoo t s  (Murray , 1 9 5 7 ) . Somewhat 

s imilar to the pro s trate L .  corniculatus cul t ivars , s tems may roo t 

while unde rground with the ir t ips emerging from the soil as vege t-

a tive stems . I t  was propo s ed by Leach ( 1 9 7 7 )  that these pros trate , 

s lower growing rhizomatous lucernes had developed from wild popula tions 

that had b een subj ec ted to continuous grazing. Their greater pers is tence 

under s evere grazing was cons idered to be rela ted to a deeper crown and 

to less concentra ted shoo t f lushes . 

2 . 2 . 1 . 3 Coroni l la varia 

L ike lucerne , C. varia ( c rown vetch) produces two or more 

distinct flushes of crown shoots (Langille & McKee , 1968). Fo llowing 

defoliation, regrowth can develop from the crown region or from 

upper axi llary buds on cut  s tems , the extent o f  either depending 

on the stage of growth at cutting ( Brann & Jung, 1 9 7 4 ) . Before 

flowering, crown buds are unexpanded and low in number, and if  

d�foliated during this phase, regrowth is predominantly f rom axillary 

buds . Cutting at,or after flowering produces regrowth from crown 

buds . Brann & Jung proposed that crown vetch was intermediate in 

regrowth character between lucerne and L. corniculatus where crown 

and axillary bud development dominates regrowth respectively .  They 

also reported that greater crown shoot production occurred under 

7 . 5  cm rather than 1 5 . 0  cm cutting while Woodruf f  (1974) reported 

tha t  greater axi llary shoo t development occurred wi thin mor e  pro s t ra te , 

l ea fier cano pi es that were generated by frequent cut ting . 



2 . 2 . 2  Grow th of  Und erground Organs 

ln reviewing th e growth of underground organs , Troughton ( 1 9 5 7 )  

c i ted l i t era ture tha t repor ted a wide range i n  und erground organ 

we ights for d if ferent spec ies , a t  d ifferent locations and under 

d if ferent managements . The full range was 560 to 35 , 800 kg D . M . /ha , 

however the more common underground weights for grazed and cut  

swards varied b e tween 3 , 36 0  to  6 , 7 20 kg D . M/ha . 

2 . 2 . 2 . 1  S easonal Effects 0 1 1  Underground Organs 

S easonal varia tions in lateral and nodal roo t weights are 

the ne t resul t of the ini tiation and growth of  new roo ts and the 

cessation and death o f  old  roo ts . Higher soil mo is ture (Garwood , 

1 9 68)  and l ower tempera tures ( Takeda & Aga ta , 1 9 66 ; Beard & 

Daniel , 1 9 6 6 )  improve nodal roo t  ini t iation and as such ini t ia tion 

of new roo ts principally o ccurs dur ing mid-au tumn to early s pring 

( Jacques & Edmonds , 1 9 5 2 ; Caradus & Evans , 1 9 7 7 ) . 

Growth of  ini t ia ted nodal roo ts occurs during au tumn and winter 

but is mo s t  rapid in early to mid-spring ( Trough ton , 1 9 5 7 ; Garwood , 

1 9 68) . Reduced grow th and deteriora t ion of  old roo ts commences when 

plants beg in to flower and the decay of roo t s  continues through 

into the w inter , generally giving a gradual dec reas e in to tal 

roo t weigh t over thi§ period ( Trough tdfi , 1 9 5 i , 1 9 5 7 ; Jagques , 1 9 56 1  

aaker & Garwood , 1 9 5 9 ) , 
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w�en s tudying the rhizoma tous growth o f  f ive gras ses , Evans & Ely 

( 1 9 3 5 )  found that rhizome growth could oc cur at all t imes of the year 

when condi t ions were favourable for growth . However , development 

was mo s t  ac tive in late summer and au tumn , a period during which 

Arny ( 1 932)  wi th Agropyron repens L . , and S turkie ( 1 9 30)  wi th Sorghum 

halepensis L . , also iden t i f ied rhi zome grow th as being mos t  ac tive . 

Wi th th is latter s pecies McWhor ter ( 1 96 1 )  repor ted increas ed rhi zome 

growth a f ter flowering when l eaf g rowth was slow ,  which was in 

contras t to the pre-flowering perio d  where rapid leaf growth accompanied 

s low rhi zome growth . 

Seasonal changes in tap roo t we ibhts generally reflec t changes 

in organic reserves as these o rgans are of a mo re permanent na ture 
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than either rhizomes or nodal roots . Baker and Garwood ( 1 9 5 9 )  

repor ted tha t taproo t weigh ts of lucerne dropped during spring to 

a m inimum of 2 , 800 kg D .M/ha by mid-summer , and then increased to 

a maximum of 5 , 600 kg D . M/ha by early winter . Au tumn increas es in 

o rgan�c reserves in lucerne were es t imated by Willard ( 1 9 5 1 )  to 

b e  equival ent to a 600 kg/ha increas e in root dry weight . Greater 

taproo t weights in lucerne have also been asso ciated wi th lower 

amb ient temp era tures (Pearson & Hunt , 1 9 7 2 )  and shor ter days ( Carlson 

et al . 1 9 64a) . 

2 . 2 . 2 . 2  Defoliation Effects on Underground Organs 

Defo liation o f  a plant reduces i ts roo t ac t ivity by 

r e tarding further init i a t ion and growth , by promo ting redis tribution 

of organic compounds , o r  by advanc ing roo t ma turi ty and dea th 

( Trough ton , 1 9 5 7 ) . The magni tude o f  these changes induced by 

d efolia t ion depends on : growth hab i t , s tage o f  growth , defolia tion 

s everi ty and frequency and env ironmental condit ions . As such , roo t 

initiation , e longat ion and viab i l i ty decreases as defol iat ion frequency 

and sever i ty increases (Jacques & Edmonds , 1 9 5 2 ; Evans , 1 9 7 1 , 1 9 7 3 ) . 

I n  legumes , losses in b o th roo t  and nodule tissue occur following 

d efoliation , however the ex tent of these lo s s es , and the replac ement 

r ecovery , �aries wi th species . Butler et a l . ( 1 9 59 ) repor ted tha t 

rapid nodule loss and replacement oc curred with Trifo lium repens L. , 

which exhib i ted vigorous regro�th ; s lower loss es and recovery 

o ccurred wi th the l arger taproo ted , but s lower gro�ing 2�ifo Zium 
pratense L . ; and rapid losses plus s low recovery occurred with 

L .  pedunau latus . Thes e effec ts on roo t and nodul e viab i l i ty and 

growth can result in a poor explo i ta tion o f  both roo t occup ied 

and uno c cupied soil volumes (Mi tchell & Denne , 1 9 6 7 )  and in reduced 

ni trogen f ixat ion (Mous tafa e t  a l . l 9 69 ) . 

Taproo t weigh t reduc tions following defoliation generally 

invo lve the redis t r ibu t ion and u t il iza t ion o f  organic compounds 

(May , 1 9 6 0 ) . Wil lard ( 1 9 5 1 )  es t ima ted tha t such losses o f  organic 

compounds in lucerne were equivalent to 200 kg/ha of roo t  dry weight . 

For L. cornicuZatus and lucerne , increasing s everi ty and / o r  f requency 

of cutting reduced roo t weigh ts , al though the former species was 

more res pons ive to c u t t ing height and the l a t ter to f requency ( Smith & 



Nel s on ,  1 9 6 7 ) . Red uced taproot weight s  with inc reasing cu t t ing 

f requency has a l s o  been repor ted in l ucerne by Denni s et a l  . ( 1 9 59 ) 

and Langille & Warren (1 9 6 2 )  and in L. cornicu latus by Langill e  & 

Calder ( 1 9 7 1 )  . 

2 . 3  ·Defolia tion Management and Herbage Dry Ma tte r  Produc tion 

2 . 3 . 1  General Concepts 

The concep ts p ro posed by Wa tson (1 9 4 7 ,  1 9 5 8 )  relating crop 

grow th rates wi th lea f area index ( LAI ) and ne t assimila tion rate  

( NAR ) have been extended in to the ana lysis of  pas tun_- growth . 

Brougham (1 9 5 6 )  and Donal d  & .Black (1 9 5 8 )  high ligh ted the rel a t iu n­

ships betwPPn LAI , ligh t in terception and pas ture g rowth and as such , 

the l a t ter a u tho rs s tressed the need to maintain a LAI that would 

lead to maximum net photosyn thesis . Ba sed on LAI , growth r a te 

rela tionships ,  Donal d  (1 9 5 6 )  proposed tha t pas tu res should be managed 

whereby maximum dry ma t ter ( D . M . )  inc rements can be expressed for 

as long as possible; either by rota t ional grazing or by contin us 

grazing where stock density is j ust su f ficien t to remove feed LL ' 1  

is  produced . Resul ts of Brougham (1 9 5 9 ) suppor ted these sugges t iu l t :J 

and the high a nnual yields ob tained under specif ic graz ing freq uenci�s 

afid intensi ties were rela ted to the moximiza tiort of ligh t in terce p t ion . 

I t  would appear however , tha t g row th rates are no t j �s t  a 
f unc tion of ligh t i n t e r c e p t ion . W a t s o n  ( 1 9 5 8 )  reported a nega t ive 

r el a t ionsh i p  be tween LAI and NAR as mu tual shading of l eaves 
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increases , and the inf luence of falling NAR on growth ra tes , when 

reproduc tive developmen t occurs towards the end of a regrowth period , 

has been illustrated by Brougham (1 9 5 6 )  and Nelson & Smith (1 968b ) . 

Furthermore, Hunt (1964 ) concluded that once complete l igh t intercep tion 

was achieved , then the rate of D . M .  accumula tion depended on tissu 

death and decay . Hun t (1970) cons idered that declining growth ra tes 

during la ter stages of regrowth were principally at tribu ted to dry 

ma t ter l o s s es through tissue dea th and decay . Davidson & Birch ( 1 97 2) 

proposed tha t  where t i ssue readily decomposed and dead ma tter did no t 

accumula te , then optimal LAI, g rowth ra te relat ionships , as proposed by 

Donald & Black (1 9 58 ) , were like ly to occur . l n  contrast , if 

senescence and/or decomposi tion was reduced , then non-op timal LAI , 
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growth rate rel a t ionships , s imilar to thos e  repor ted by McCree & 

Troughton ( 1 966)  and Wil fong et al . ( 1 9 6 7 ) , were poss ible . 

Due to within-canopy losses , there is of ten a discrepency 

b e tween harves ted yield and gro ss D . M .  produc t ion and one is . 
general ly no t an accurate reflec tion of  the o ther , particularly under 

l ax defoliation ( Davidson & Birch ,  1 9 7 2 ) . In a cutting experiment , 

Morris ( 1 9 70 )  reco rded the highest gross pas ture produc tion , but 

the lowes t harves ted yield � wi th frequent lax defoliation , a response 

whi ch was the reverse to that for infrequen t , severe cutting . 

S imilarly , McLusky & Mo rris ( 1 964) and Jackson ( 1 974)  recorded 

the highes t harves ted yields with infrequent , s evere defol iation 

because all D . M .  tha t was produced was harves ted . S imons et a l . 

( 1 9 7 2 )  measured no res pons e to laxer defol iation because new growth 

and tissue death occurred below cu tting height in the lax treatments . 

I t  was becaus e o f  thes e wi thin canopy morphological and D . M .  changes 

tha t  Ollerenshaw ( 1 9 74 )  considered vertical cut ting heights 

did no t indicate the true na ture of  defol iation intensity . 

Po tential growth rates also depend on the meris tema tic ac t iv i ty 

o f  the canopy as it determines the plant ' s  ab i l i ty to utilize 

energy in growth processes (Blaser et a Z . 1 9 6 6 ) . For exampl e  i n  

the regrowth o f  grasses , Lazenby & Rogers ( 1 9 6 2 )  and Davies ( 1 9 6 6 )  

highlighted the impor tanc e o f  tiller d�ns i ty and Sheatd & Winch 

( 1 9 6 6 )  and Jackson ( 1 9 74 ) , the impor tance of individual meris temat1t 

a c t iv i ty . In lucerne , the success of  any management sys tem largely 

depends on the presence of basal shoo ts a t  the c rown region that 

can commenc e immediate regrowth following defol iation (Leach , 1 9 6 7 ) . 

Thus , shoo t numb er and s tage of development are cri tical in determining 

regrowth . 

2 . 3 . 2  Lotus cornicu latus 

Depending on the growth hab i t  invo lved , the respons e to 

defo l iation d if fers be tween the various cul tivars of L. cornicu latus . 

The semi-erec t ' Empire ' types are mo re persis tent and produc t ive 

under intens e defolia t ion than the erec t European types and as such , 

are recommend ed for grazing (Seaney , 1 9 7 5 ) . The later types 

are readily defoliated and non-persis tent u nder frequent ,  s evere 

grazing and are the refore generally used for baying . When cons ider ing 



haying regimes , 2 t o  3 cuts per annum appears o p t imum as further 

inc reases in cut t ing f requency r educes pro du c t ion (Langil l e  et a l. � 

1 9 6 8 ; Langille & Cald er , 1 9 7 1 ) . Produc t io n  increases have b een 

ach i eved by delaying the f i rs t  cut and al low ing the highly pro du c t iv e  

spri �g growth period t o  cont inue thro ugh to comp l e te f lowering 

(Pa rsons & Davis , 1 9 6 1 ; Twaml ey , 1 9 6 8 ) . However , in order that 

sub s eq uent spring g rowth is no t impaired , l a t e  harves ting in the 

low produc ing autumn period shoul d be avo ided (Gas s e r  & Lachance , 

1 9 6 9 ; S ea ney , 1 9 7 5 ) . 

Wh ere infrequent c u t t ing is  employed , there is  l i t t l e  o r  no 

yield res ponse to inc r eas ing c u t t ing heigh t , al though the s i z e  

and hea l th of  the c rown and roo t  sys tem may be improved ( P i e r r e  & 

Jacob s , 1 9 5 3 ; Twamley , 1 9 6 8 ) . W i th mo re f req uent cut ting however , 

p e r s i s tence and produc tion responses do o c cu r  with inc reas ing 

laxity of defo l ia t ion , par t i cularly in a s s o c iation with the mo r e  

e r e c t  cul t ivars (Duell & Gausman , 1 9 5 7 ; Wa l l ,  1 9 5 7 ) . Smi th & Nelson 

( 1 9 6 7 )  p ropos ed tha t  these res po nses to higher cut t ing were relat ed 
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to the characteris t ically l ow ca rbohydra t e  res erves in L .  cornicu latus 

and the need to re tain a s e l f  s u f f icient res idual l eaf c omplement .  

Henson & S c o th ( 1 9 6 2 )  cons idered tha t the u s e  of  a 
·
continuou s  

graz ing s ys tem should only b e  recommended for c a t t l e  gra zing and s emi­

erect  ' Empire ' types , and even t hen pas tures should be managed s o  that 

a minimum of 10 cm grow th is p re s ent at a l l  times . With sheep or 

erect c u l t ivars , a deferred g r a zing sys t em invo lving a 5 - 1 0  cm 

residual fol lowing grazing , was cons ider ed e s s ent ial . Davis & 

Bell ( 1 9 5 7 ) ; Van Keuren & Davis ( 1 9 6 8 ) ; Van Keuren e t  al. ( 1 9 6 9 )  

have a l l  highligh ted the po s i t iv e  persis tency and produc tion responses 

o f  ro tat ional versus cont inuous grazing , by bo th sheep and c a t t l e . 

Only in early s pring is  there a basal f lush o f  sho o ts avail ab l e  

f o r  g rowth and any sub sequent r egrowth a r i s es f rom axillary buds o n  

res idual s tubb l e  ( Smith , 1 9 6 2 ; Nelson & Smith , 1 9 6 8a) . Shoo t 

extens ion from these s i tes is s l ow ,  par t icularly in autumn ( Keoghan & 

Tas s el , 1 9 7 4 )  and fol lowing ini t ial fal l s  in LAI af ter cu t t ing , 

Greub & Wedin ( 1 9 7 1 b )  repo r t e d  that one- two weeks were required to 

get a ne t accumul a t ion of l ea f . The i n f erior p roduc t io n  o f  L .  cornicu latus 

compared with l u c e rne recor ded by Nelson & Smi t h  ( 1 9 6 8b )  and Greub & 

Wedin ( 19 7 1a)  re la ted to poo r e r  LAI values and hence , growth r a t e s  



20 . 

over the ini tial regrowth periods . The former authors did repor t  

however , tha t L .  cornicu la tus had a greater o p t imal LAI range than 

l u cerne , as N A R was mai ntained f o r  a longer period during f lowe ring 

by continued f lushes of upper c anopy axillary g row th . I t  was cons idered 

by Keoghan & Tas sel ( 1 9 74 )  tha t  to improve the regrowth ab i l i ty 

o f  L .  cornicu la tus i t  would b e  neces sary to provide flushes o f  

l a rge basal shoo ts tha t can commenc e immedia te elonga tion af t e r  

h a rves t ,  a mo re erec t s tem habi t to improve l i g h t  utilization and 

a more vigo rous roo t sys t em to help in ini t ial regrowth . 

The comp e t i t ive ab i l i ty of  L .  cornicu latus i s  res t r i c ted by the 

na ture o f  i ts s low regrowth and therefore a non-aggressive companion , 

p ar t icularly during es tab l ishmen t and ear l y  s p r ing , is nec e s sa ry f o r  

l egume pers is tence ( Chev e t t e  e t  a l . 1 9 6 0 ) . The more compe t i t ive 

the companion , then the g rea ter L. coJ•iu ' , :u latus suf fers f r om the 

m ismanagement o f  overgraz ing (Wo l f  & Smi th , 1 9 6 4 ) . MacDonald ( 1 946)  

r eported tha t the mo s t  suitabl e  g r a s s  companions were tho s e  tha t  

p roduc ed a n  o pen sward s uch a s  Ph leum pratense� Dacty lis glomerata 

and Poa pratensis while Parsons & Davis ( 1 96 1 )  found tha t  a l a t e  

ra ther than an early s eason D .  gZomera ta cul t ivar was l e s s  competi tive 

and henc e mor e  compa t ib l e  with L. cornicu latus . 

2 . 3 . 3  Medicago sativa 

In r ev iew ing the e arly l i t era ture on lucerne managemen t ,  

Willard ( 1 9 5 1 )  and I�nghan( 1 9 6 7 )  bo th ind i c a t ed that frequency o f  

cut t ing was a p r incipal determina n t  o f  l u cerne persist ency and 

produc t iv i ty . Two t o  three cuts p e r  s eason , bas ed on a s tage of 

growth c r i t er io n· ,  appears o p t imum for D .M .  p ro duc tion . Thi s  s tage 

of  growth i s  ind ic a t ed by the a c t ive extens ion of basal buds a t  

the c rown r egio n  i n  response t o  the phys iological maturing of  the 

previous shoo t c rop , and it is the perio d i c i ty of this that 

determines cut t ing frequency ( Smi th , 1 9 6 2 ;  Leach , 196 7 ) . Con t i nued 

growth p as s ed the s tage where b as al shoo t extension has o ccurred 

may res u l t  in reduc ed yields , as  s enes cence and decay p ro c es s es 

become mor e  important and the chance of  new b asal sho o t s  b eing 

decap i t ated inc reas es (Keoghan , 1 9 6 7 ; Fues s & Tesar , 1 9 6 8 ) . 
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Highest yields are obtained when the number o f  shoo t s  availab l e  for 

immedi a te regrowth are greates t and i t  is the rapi d  init iation and 

extension of these shoo ts tha t  i s  essen tial fo r the quick res toration 

o f  an ass imila tory leaf sys tem (Leach , 1 9 68 ; Hodgkinson , 1 97 3 ; 

Cha t t er ton et a l . 1 974 ) . Shoot numb ers and their initial growth 

ac t iv i ty, plus the subsequent ini tial accumulat ion of leaf area, have 

b een cons idered as the main fac tors in ob ta ining D .M .  accumulation 

( Smith et al . ,  1 9 6 4 ; Hodgkinson , loc . cit. ) .  Leach ( 1 968)  repor ted 

that the number of shoo ts commencing regrowth wi thin the f ir s t  s even 

days accounted f o r  more variation in f inal l ucerne yield than d i d  

reserves or res idual leaf area . In subs equent work , Leach ( 1 969 ) 

concluded that to tal growth s ubs tanct:::!-3 in roo ts and shoo ts were no t 

the p rincipal de terminates of  regrow th and that the number o f  shoo t s  

to commence immedia t e  regrowth was mo re impor tant . Regrowth was 

dominated by thos e  shoo ts tha t commenced extens ion the earlies t and 

Hodgkinson ( 1 97 3 )  considered f inal lucerne yield variations were 

principally determined by the d i fferences generated wi thin the sho o t  

popu lations dur ing the f ir s t  week of regrowth . 

Where maximum produc t ion is  desired and cut ting is inf requent ,  

the presence o f  grea ter residual leaf following laxer cu t ting does no t 

improve produc tion (Langer & Keoghan , 1 9 7 0 ) , Roo t  res erves and shoo t 

regrowth �re high during initial regrowth in such a regime (Leach , 

1 9 67 ; Smith & Nelson, 1 9 67 )  and residual l eaf is of  a senes cen t  

and pho tosyn the tical ly inef fic ient na tura (Brown e t  al . t  1 9 6 6 ; 

Langer & Keoghan , 1 9 70 ) . Where defolia tion is too frequent however , 

and does no t co incide with basal shoo t f lushes and high carbohydrate 

reserves , then pos i tive produc t ion responses occur wi th increas ing 

cu t ting height (Ku s t  & Smith , 196 1 ; Langer & S te inke , 196 5 ;  Smi th & 
Nelson , 1 967 ; S ilva , 1 9 69 ) . Lax defol iation was considered by 

Leach ( 1 970) as b e ing mos t  benef icial in s i tuat ions where ini tial  

regrowth is  s low and / or the base of  the p lant is  leafy . As  such, 

improved regrowth through the retention of stubble leaves was 

greater at lower tempera tures and for l ea f ier , prostrate cultivars such 

as 'Rhizoma ' (Leach , 1 97 1 ) . 

In s tudies  conduc ted by Hodgkinson et a l . ,  ( 1 97 2 ) , the retentio n  

o f  s tubble leaves following 1 5  cm, hi gh c u t t ing improved taproo t 

dry weigh ts and i t  was concluded tha t  s tubble l eaf pho tosynthesis 
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replaced the need for redis tribut ion of o rganic compounds f rom the 

taproot  to new shoo t growth and shoo t respiration . Fur �hermore , 

pho tosynthates exp o r ted from the s tubble l eaves predominan tly went to 

their associated axillary shoo t and as a resul t ,  s tubble shoo t wei gh t s  

were enhanced . The pho tosynthetic efficiency o f  previously s enes c ing 

res idual leaves also increased wi th partial d efolia tton , a response 

tha t  was considered to partly involve changes wi thin pho tosynthet i c  

pro ces s es a t  the enzyme level . P earce & L e e  ( 1 966)  also repor ted 

that marked pho tosynthe tic adap tab ility of lucerne leaves was 

evident when they were swi tched b e tween low and high l ight intens i t ies . 

This type of adap tab i l ity to ligh t  intens i t ie s  was cons idered by 

Bj orkman ( 1 968)  to be related to the level s of carboxyla ting enzymes . 

Al though extra s ites for s tubble sho o t  growth may resul t f rom 

higher cutting , this pool as a whole is of l i t tle impor tance under 

infrequent cut ting (Langer & Keoghan, 1 9 70 ; Leach , 1 9 7 0 ) . Wher e  

cut ting is  frequent however , pos i tive production respons es t o  increas ing 

cu t ting heigh t are achieved by greater s tubb le shoo t growth (Hodgkinson , 

1 9 7 3 )  and i t  is in this s i tuat ion that the respons ivenes s  o f  the 

s tubb l e  shoo t pool to defoliatio n , is mos t  evident (Keoghan , 1 9 6 7 ; 

Leach , 1 9 68 , 19 70) . I t  should b e  no ted tha t  under low dens i ty , 

s paced plant or controlled clima te cond i t ions , the viab il i ty and 

importance o f  res idual leaf and s tubb le shoo t growth intreases (Langer 

& Keoghan'; 1 9 7 0 )  . 

2 . 3 . 4 Coroni Z Za varia 

Like lucerne , C .  varia has two to three flushes of  new c rown 

shoo t s  per annum and yields are maximized when cut ting coincides 

with these flushes ( Brann & Jung , 1 9 7 4 ) . Under a two to three cut 

regime there is l i t tle b enef i t  f rom high c u t ting . However , as 

defolia t ion becomes more f requent , pos i t ive persis tence and produc tion 

respons es occur w i th laxer management (Woodruf f ,  1 9 7 4 ) . 

2 . 4  Nons truc tural Carbohydra tes 

As well as an indicator of plant physiological s ta tus , non­

s truc tu ral carbohydrates ( N  C) can also b e  cons idered as a principal 

organic reserve tha t i s  o f t en essent ial for plant survival and 

produc t ion following environmental and �anager ial s tress periods  
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( Sheard , 1 9 7 3 ) . Cons ti tuents o f  the N C pool are var iab l e , b u t  they 

can b e  b roadly c lassed as p r edominan tly s ucrose p l us fructo sans 

in t empera te gras s es , and s ucrose plus s tarch in s ub tropical , 

tropical grass e s  and in memb ers o f  the Legumino sae Family (Oj ima 

Kunihiko and Takeshi I s awa , 1 9 68 ; Smi th , 1 9 7 3 a ) . Varia t ion in 

plant NC s ta tus c an be c ons idered as the resu l t  o f  net energy balances 

b e tween pho tosynthetic and r e s p iratory processes . Therefo re , whe ther 

NC are accumu l a ting o r  decl ining depends on plant growth rates , the 

s tage of p lant development and the environmen t (Wh i te , 1 9 7 3 ) . 

In  gener a l , changing NC l evels can b e  cons idered as b eing invers el y  

r e l a t ed to h e rb age growth (May , 1 9 60 ; Sonneveld , 1 9 62 ; B rown & Blaser , 

1 9 6 5 ) . Res t r i c t ions o f  grow th by nutrient defic ienc ies , wa ter s tress 

and low temperatures resul t in NC accumulation ( B l as er e t  a l . ,  1 9 66 ; 
' 

Whi te , 1 9 7 3 ) . In  contras t ,  where respir atory responses exceed tho s e  

of  pho tosynthe s i s , such as w i th increased night t empera tures , then 

NC may dec l ine ( Baker & J ung , 1 9 6 8 ) . 

2 . 4 . 1  S eas onal Changes in Nons truc tural Carbohydrates 

S easonal variations i n  NC are char a c teris t i c  o f  c l ima t i c  factors 

and o f  individual species , but genera l l y  late s p r ing minimum and 

autumn maximum values o c c u r  (We inmann , 1 9 6 1 ) . In uncut lucerne , 

t o t a l  nonstruc t ural carbohydrates ( TNC)  decline dur ing s pr ing until 

the f ir s t  crop o f  s t ems b e g in to ma tur e . Values then rise to a peak 

a t  f lowering b u t  again d e c l ine as a s econd flush of sho o t s  develop 

f rom the crown region ( Sm i th , 1 9 6 2 ; Cooper & Wa tson , 1 9 6 8 ) . 

S ub s equen t ly , a fur ther increas e in TNC occurs and even tua tes in 

an autumn maximum wh ich is domina ted by s tarch ac cumu l a t ion . Dur ing 

winter , s ta r ch is hyd r o l y s ed to s ugars and as r e s pira tion continues , 

overall TNC l evels d e c line ( Jung & Smi th , 1 9 6 1 ) . 

S easonal TNC pa t terns in L .  cornicu latus and C .  varia d i f f e r  f rom 

that of l u c e rne in tha t reaccumul a t ion of s tarch fol lowing the 

s p r ing decl ine do es no t o c cur until l a t e  summer (Smi th , 1 9 6 2 ; 

Lang i l l e  & McKee , 1 9 6 8 ; Woo druf f ,  1 9 7 4 ) . As a r esul t ,  low TNC 

l evels are present over mos t  of spr ing and summe r . Nel son & Smi th 

( 1 9 6 9 )  cons idered tha t the delayed ac cumul a t io n  and low l evels  o f  

TNC i n  L .  cornicula tus resulted f rom h igh respiratory d emand a t  
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high tempera tures and f rom the cont inual growth of  upper axi l lary 

shoo ts . Greub & Wedin ( l 9 7 1b )  s tated however , tha t  reac cumula t io n  

commenc e s  when temperatures are highes t and tha t  i t  was unl ikely t o  

b e  l inked to j u s t  o n e  ae rial growth fa c to r . They propo s ed tha t pho to­

period was the env i ro nmental s timul us tha t t r iggered the partit ioning 

of carbohyd rat es to the c rown and roots . 

2 . 4 . 2  Defo l ia t ion Ef fec ts on Nons truct ural Carbohydrates 

When luc erne is defo l ia ted , a c y c l i c  pat tern o f  ut i l i za tion and 

accumul a t ion of  TNC is superimpo sed on the g eneral seasona l  pat tern 

( Smith , 1 9 6 2 ) . For two to three weeks , ne t u t il i zation o f  NC may 

occur and it is greater when respiration is h igh and /or when the a t tain­

ment of a self suf f ic ien t l eaf complement is delayed (Reyno lds & 

Smi th , 1 9 6 2 ;  S i lva , 1 9 69 ; Reyno lds , 1 9 7 1 ) . The ef fec ts o f  repeated 

defolia t ions are cumu la tive , thus low TNC l evel s , resul t ing f rom 

prolong ed nega t ive energy balanc e s  and l imi ted NC replenishment , o c cur 

w ith s evere , frequent defo l i a t ion (May , 1 9 60 ) . Once low l evels are 

reached , l i t tl e  cy c l ing of NC is evident ( Fel tner & �1as sengle ,  1 9 6 5 ; � 
Robinson & Mas sengl e ,  1 9 6 8 ) . 

' 

S imil arly , when TNC l evels are low in L .  oo�nicu la tus and C .  varia 

l i t t l e  cyc l ing of NC occurs in r espons e  to defo lia tion (Nelson & 

Smi th , 1 9 68b ; Greub & Wed in , 1 9 7 1a) . Only when defo l ia t ion o cc urs 

duri ng the accumu l a t i ng autumn period are TNC util izatio n ,  res tora tion 

pat terns evident ( Greub & Wed in ,  1 9 7 lb ; B rann & Jung , I 9 7 4 ) . 

Work by Nelson & Smith ( 1 9 6 9 )  under cont ro l l ed temperature cond i t ions , 

showed tha t only a t  low tempe ratures, when TNC were ac cumu l a t ing , 

did TNC in L. cornicu latus respond to defo l ia tion . 

W i th in a spec i f ic regrowth cyc l e ,  NC cont inue to d e c l ine until 

a suf f ic ient leaf c omp lement develops whe reby current pho tosynthe t i c  

p roduc tion i s  s u f f i c ient t o  s a t i s fy the respirato ry d emands invo lved 

in the maintenance of exis t ing , and the g rowth of new , p l ant t issue 

(Wh i t e , 1 9 7 3 ) . U t il i z a t ion o f  NC in regrowing plants i s  therefore I 
influenced by the amount and ef f i c iency o f  pho tosynth e t i c  t is s u e  

remaining af ter d efol iat ion , as i t  determines t h e  adequacy o r  

inadequacy o f  current pho tosyn thes is to sus tain plant r es piratory 

pro c es s es . 



Lea f e  e t  a l . ( 1 9 7 4 )  repo r t ed tha t in a gras s sward the 

n ega tive c a rbon balance and regrowth lag phase was l ess when mor e  

r esidual l eaf was l e f t and pho tosynthesis recovered mo re rapidly . 
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I n  luc erne , S i lva ( 1 9 6 9 )  cons ide red tha t the c lo s er the r es idual leaf 

a rea was to that whi c h  p rovid es c ur rent pho tosynthate s e l f s u f f i c iency 

t hen the l es s  TNC b ec omes impo r tant . Booys en & Nelson ( 1 9 7 5 )  

f ound tha t  c urrent pho to synthe tic s uf f ic i ency was at tained ear l i e r  

i n  F. arundinacea fol low ing high e r  c u t ting and as a resul t ,  u t i l i z a tion 

o f  NC was r educed . Furthermo r e , leaf ex tens ion ceased b e ing th e 

d ominan t s ink ear l ie r , thereby allowing a grea ter expans ion of  o ther 

p lant part s and rea c c umu lation o f  NC . 

In d e fo l iated l u c e rne , th e abs o l ut e  amoun t of  NC u s ed unt i l  the 

minimum value of th e TNC cyc l e  is a t tained , is p ropor tional to p l ant  

s i ze and as sociated res pira tion ( Ueno & Smi th , 1 9 70) . As  s u ch , thes e  

l o s s es are g reates t i n  l arge plants , al tho ugh once independence o f  

a ccumula t ed NC i s  achiev ed , i t  is  these p l an ts that res tore leaf  

c omp l ement and TNC mor e  rap idly . Earl ier and mo re rapid accumul a t ion 

of TNC is  a l so a charac t eris tic of plants mo re tol erant of frequent 

defoliat ion ( Chatterton et a l . ,  1 9 7 4 ) . W i th the earl ier mob i l i za tion 

o f  ass im i l a t es to , and s tarch accumul atio n  in , the crown and tapro o t , 

basal sho o t  development is advanc ed and al though the causal r e l a t ionsh ips 

are no t known , the s e  charac teris t i c s  lead to mo re rapid regrowth i 

2 . 4 . 3  No ns truc tural Ca rb ohydrates and P l ant Regrowth 

The ac tual ro l e  that NC p lays in regrowing plants h as been �> trongly 

debated . G rab er e t  a l . ( 1 9 2 7 )  f i rs t proposed that elab o r a ted o rganic 

carbon and ni trogen were s tored then u t i l i zed following defoliation 

and as such , o rganic res erves were cons idered e s s ent ial for plant 

viab i l i ty and produ c tion . In s ub s equent r ev i ews on organi c res erves , 

We inmann ( 1 96 1 )  and Sonneveld ( 1 9 6 2 )  suppor ted these views b u t  May 

( 1 960)  ques tioned the emphas is that had been p l aced on o rganic 

res erves in determining regrowth and sugges ted that their func tion 

was p r imar ily in the maintenance o f  res p i r a to ry proces s es . 

Mo r e  recent wo rk invo lving c14 tracer tec hniques h as provided 

mo re d i r e c t  evidence as to the r o l e  of o rganic res erves in defo l ia ted 

plants . In  lucerne , Hodgkinson ( 1 9 6 9 ) ; S ilva ( 1 9 6 9 ) ; �earce et a Z .  ( 19 6 9 ) ; 

Smith & Mar ten ( 1 9 7 0 ) ; and S i ngh & Winch ( 1 9 74b ) , all repo rted h igh 



respirato ry los ses o f  c 1 4 initially located in the taproo t and o nly 

low propo r tions o f  c 1 4 inco rpo ra ted into new top growth . They 

concluded that s to red me tabo l izab l e  compounds in the taproo t o f  

lucerne were used mai nly a s  respira to ry subs t r a t e  and to a l e s s e r  

extent i n  regenera ting s hoo ts . 

The compos i t ion o f  p l ant o rganic res erves is generally considered 

to be domina ted by nons truc tural c arbohydrates ( Sheard , J 7 3 ) , 
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however work by Dav idson & Mi l tho rpe ( 1 966b ) w i th D. g Zomer•a t,a sugb �s t e d  

tha t o th e r  lab il e  organic compounds a r e  a l s o  involved . Ni trogenous 

c ompounds were impl i ca ted in sustaining res piration and ceg rowth 

f o l lowing defoliation . Smi th & S ilva ( 1 9 6 9 )  r epor ted tha t  l ess than 

five percent of the compounds t rans located f rom the roo ts  to the tops 

in reg rowing lucerne were ni trogenous Ct-J illpounds , however their m2 thuus 

of  s tudy take no accoun t of  i n  s i tu u til i za t io n  w i thin the root 

system . Whi l e  ni trogenous compounds appear to be a potential energy 

source , Whi t e  ( 1 9 7 3 )  s ugges ted th a t  unlike NC , they are no t a l terna t e ly 

s tored and u t ilized . 

W i th U. gZomeY'ata , Ward & Blaser ( 1 9 6 1 )  reco rded s uperio r abs o l u t e  

regrow th r a t es dur ing the f ir s t  twenty f ive d ays of  regrow ch in 

plants o f  an ini tia l l y  higher NC s ta tus . However , in reanaiys ing 

this same data , Davidson & Mil tho rp e  ( 1 9 u 6 a )  showed that  af ter f ive 

days , r e l a t ive growth ra tes were s imilar and independent o f  NC 

s ta tus . I n  their own wo rk � they found th at growth ra tes f o l lowing 

defo l ia t ion depended f irs t o f  al l o n  the dev e lo pment o f  pho tosyn the tic 

surfaces , the rate and ex tent of  which were d e t e rmined by the suppl y  

of  carbohyd rates t o  l eaves capab l e  of expanding . Initial leaf 

extens ion ra tes were posi tively rela ted to carbohydrate s ta tus , b u t  

af ter two t o  four days , relative g row th ra tes o f  low and h igh NC 

treatments were s imilar . Never theless , s ub s equent abs o l u t e  growth 

rates were dependent on early leaf surface developmen t , thus relb t ively 

small  ini tial d i f f er e nc es , resul ting from h igher NC s ta tus , were 

. magnified so long as expo tential grow th cont inued . Mor e  r apid leaf 

expansion and grea ter regrowth r a tes were also measured by Alb erda 

( 1 9 6 6 )  in L. peY'enne p lants of  a h i gher NC s ta tus . At lower l evels 

there was less NC u t i l i zatio n , and NC reac cumula tion and l eaf regrowth 

was delayed (Alberda , 1 9 7 0) . 



2 . 5 Carb o n  Par t i t io n i ng in Plants 

2 . 5  l Carbon Dis t r ibutio n  

The f low o f  carbon into o r  o u t  o f  a l eaf o r  shoo t sys t em ,  

greatly depends on thei r phys iological development as determined 

by age and s tage of g row th (Mil tho rpe & Moo rby , 1969 ) . Ho & Shaw 

( 1 9 7 7 )  cons idered tha t in young l eaves , as s imila ted and impo r ted 

carbon i s  inco rpo rated into pro tein and s truc t ural poly s ac charides 
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and only when ass imila t es in exces s o f  these r equirement s  are produ ced , 

are sucrose and s tarch formed f o r  sub s equent t r nnslocation to o �her 

o rgans . As a generalization , Wardlaw ( 1 9 6 8 )  s tated tha t  the t rans i tion 

from impo r t  to expo r t  of as s imi l a tes o c curred when the leaf was 

a third to a half o f  f ull expans ion . In s oybe ans , Thrower ( 1 9 6 2 )  

recorded this phas e at 5 0  percent full l eaf  expans ion ,  al though 

during the trans i tion , d irectional flow of as s imila tes was recorded . 

Mil thorpe & Moo rby ( 1 969)  cons idered that s uch b idirec t i.onal f low o f  

ass imila tes Would cont inue thro ugh until full leaf expans ion due to 

amino ac id impo r ta tion . 

Expo r t  pat terns o f  c 1 4  lab e l led ass imila tes are generally 

cha rac teri zed by an ini tial rap id expo r t  p e r iod followed by one w i th 

a cont inui ng b u t  decreas ing expo r t  rate (Wardlaw , 1968) . Ho f s tr a  & 

Nelson ( 1 969 )  repo r ted that for a broad range of s pecies this ini tial 

period l as ted approximately 80 minu tes , and i t  was during this t1u1e 
tha t spec ies differences in expo r t  r a tes an.d p ropo rtional a s s imil a te 

re tentions were g enera ted . I n  s ugar b ee t ,  a n  early rap id loss  o f  c14 
from the l ea f  s uc r o s e  poo l was repor ted by Joy ( 1 964 ) , al though 

expo r t  cont inued a t  a decreas ing rate for s everal days . In Pisur.r 

sativwn L . , Lovell e t  al. ( 1 9 7 2 )  repo ned tha t expo r t  o f  c14 was mos tly 

comp l e ted within 2 to 4 hours o f  f ixat ion , a nd tha t �hi ch remained 

wi thin the ass imilat ing leaf was inco rpo ra ted into s t ruc tural t is s ue . 

Working wi th lucerne , Hodgkinson and Veale ( 1 966)  found that the 

rapid expo r t  pha s e  lasted for 2 hours and that c14 los s es were 

princ ipally from the solubl e  e thanol l,ao l . Over the s ame period , C14 
in taproo t  tissue reached a maximum and then remained cons tant for 

the next 24 hours as l eaves continued to expo r t  a t  a declining rate . 
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As a general pattern , lower exporti ng leaves tend t o  translocate 

as s imilates to roots while those higher up the s tem translocate to 

the shoo t apex (Wardlaw , 1968) . Under condi tions o f  ass imilate 

deficiency , expanding shoo t s  appear to have priori ty over roo t and 

bud growth . The relative ability o f  these two l a t ter component s  to 

ob tain as simila t es does vary however ,  with the roo t  being a s uperior 

c ompetito r  when the s tem apex is intac t and convers ely when the stem 

apex is  removed . Wardlaw ( 1 968)  relat ed this effec t to growth 

s ub s tances and their influenc e on sink activi ties . 

The direc t ion and extent of assimilate expo r t  appears to b e  

principally influenced b y  pho tosynth e t i c  ac tivity and the s treng ths 

of competing s inks as de termined by th e number , s i ze and growth rates 

of  the util i z ing organs (Mil tho rpe & Hoo rby , 1 9 69 ) . Working with 

P .  sativum , Lovell et a l . ( 1 9 7 2 )  found that expor t  from expanded 

l eaves was h ighes t when ass lmilate sources were reduced by par tial 

defoliation , but  this was only so when the ac t ive apex s ink was 

l e f t  intac t .  When th e apex was removed , partial leaf defol ia t ion did 

no t s ignificantly influence expo r t  pa t terns and in fac t ,  as s imilate 

export was r edu ced in plants with a full lea£ complement .  Where 

conditions are favourab le for pho to synthes is i t  would appear that 

as s imilate export is co ntrolled mo re by ac tive s ink utilizatio n  than 

assimilate pro duc tion (Wardlaw , 1 9 6 8 ; Mil thorpe & Moorby , 1 9 69 ) . 

When' c ons idering regrowing lucerne , i t  is evident tha t early 

shoo t growth re tains mo s t  of i ts own ass i�ilate . As to tal plant 

assimilation increas ed over the f irs t 14 to 21 days of  regrowth , 

Pearce et a l . ( 1 969)  found that shoo t retention o f  ass imilates 

remained h igh at approximately 80 percent . Thereafter , propor tional 

re tentions declined as as simila te dis tribution to roo t components , 

particul arly the tapro o t ,  increas ed . This al t eration in dis tribution 

coincided w i th the reaccumula t ion o f  nons truc tural carbohydrates in 

the crown and taproo t .  Wolf ( 1 9 6 7 )  also repor ted tha t  during early 

s tages of regrowth , assimilate� were principal ly re tained within the 

l eaf and i t  was only when shoots were more matute and l es s  ac tive 

in growth that extens ive c14 expo r t  to the taproot  was evident . 

In contras t to thes e  workers however , Hodgkinson ( 19 6 9 )  recorded 

increas ing shoot retent ions with time , where af ter 6 days of regrowth , 

7 1  percent o f  ass imilates were r e tained as compared wi th 89  percent 

a f ter 40 days of regrowth . Thes e d ifferences b e tween workers may 

however , reflect  the time differences b�tween labelling and harves t ing 
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which for Hodgkinson ( 1 9 6 9 )  was 3 hours and for P earce et a Z . ( 1 9 69 ) ,  

4 8  hours . 

2 . 5 . 2  Carbon Redis tribution 

When al l or nearly all leaf is removed dur ing defol ia tion , it  

i s  inevitable tha t  o rganic reserves are ini t ially used fo r new leaf 

g rowth and resp ira tory processes in new and exis t ing tis sues . 

Fo l low ing defoliation o f  lucerne , Hodgkinson ( 1 9 6 9 )  found tha t  

l abelled c 1 4  organic compounds moved from res idual plant par ts into 

f irs t formed l eaves and new shoot s tems during the firs t 20 days o f  

r egrowth and that thi� movement was greater uader condi tions tha t 

promo ted mo re rapid s hoo t growth . However , o f  the loss es associa ted 

w i th the ne t decline in c 1 4 , par ticularly from the tapro o t , respira tion 

accounted for 56 percen t during the f irs t 10 days of regrowth and 

8 1  percent during the s ubs equent 10 days . In los ing 50 to 6 6  

per cent o f  o riginal taproo t ac tivi ty , i t  was cons idered tha t s tored 

me tabo lizab l e  compounds were principal ly used as resp ira to ry sub s trate , 

and to a lesser ex tent in the regeneration o f  shoo ts . 

Aga in with lucerne , Pearce et a Z . ( 1 9 6 9 )  found tha t redis tribution 

of c 1 4 f rom the taproo t to shoo t regrowth , following cu t ting , was 

mos t  ac tive 3 to 1 5  days following defolia tion , af ter which net 
. 1 4  inc reas es in shoo t C con tent ceas ed . Af ter 28 days , 70 percent 

of  original taproot ac tivi ty was lost  and 19 percent had b een translocat ed 

to new top growth . S imil ar l evels o f  c 1 4  redistribution to new 

shoots were al so repo r ted by Silva ( 1 969)  for lucerne whi l e  S ingh 

& Winch ( 1 9 74 b) repo r ted that af ter 1 2  days , 80 percent o f  original 

taproo t c l 4  was los t  through respiration o f  which 20 percent had 

o ccurred in new shoo ts . 

Following frac tiona tion o f  res idual c14 in lucerne , Smi th & 

Marten ( 1 9 70 )  repor t ed tha t 90 percent was loca ted in the s tarch 

pool . O f  the original l abel led nons truc tural carbohydrates , 40 

percent was incorpora ted into s truc tural t issue , the remainder 

being resp ired and los t .  High utiliza tion of previously s tored 

nons truc tural carbohydra tes was indica ted by the 7 1% lo s s  of ac tivi ty 

within this pool and i t  was concluded tha t s tored nons truc tural 

carbohydra tes in lucerne roo ts s erve as a res ervo ir of  carbohydrate 
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availab le to , and u t i l i z e d  by , th e entire p l a n t . I n  contras t ,  l i t tl e  

n e t  change Wi th t ime i n  c rown and S tubb le C 1 4 \"JaS r e  >O r ted b y  

Hodgkinson ( 1 96 9 )  �nd a s  a resul t , i t  was considered that thes e 

c omponen t s  made li t t l e  direc t contribution to new growth of  luce rne . 

Where assimil ate d i s tribu tion i s  es timated by subs equen tly 

de termini ng the loca t io n  of  c 1 4 wi thin the p l an t  following exposure 

to c 1 4 pul s e ( s ) , i t  is apparent tha t such es t ima tes can b e  c onfounded 

by d i f f e r en t ial res p i r a t ion l o s s e s  anJ cont inued redis tribu t ion . 

I n  cons ider ing the carbon balance p resented fo r  P. sativwn b y  Min{ . i.n 

& Pa te ( 1 9 7 3 )  the prob lems of interpreta tion are evident . O f  th e 

ini tial c arbon fixed , 7 4  per cent was expo r ted f rom the a s s imila t ing 

t is s ues to be low ground organs where roo ts and no dul es cons umed 

7 and 5 p e r c ent  respe c t ively for growth ,  35 and 1 2  percent in res p i ra t ion 

and 15  perc ent was again re turned to  the sho o t via the xyl em as 

amino a c i d s  genera t ed by ni trogen f ixa tion . As a resul t o f  redis t r ib ut ion 

it was es tima ted tha t 37  percent of carbon invo lved in shoo t grow th 

came f rom c arbon c ompounds re-expo r ted from the roo t regio n . 

Resp ira t ional los s e s  rela tive to c a rbon inco rpo ration also varied 

between t i s sues and th i s  is of impo r tance when high and rapid c 1 4 
loss es  o c c u r  fo llowing ass imi l a t io n . Of the o r ig inal plant a c t iv i ty 

meas ured by Small & Leonard ( 1 9 6 9 )  in P. sa tivum and T. subterraneum ,  

s l igh tly mo re than 4 0  percent was los t through respiration wi thin 

24 hours o f  labell ing and for a s imilur t ime p eriod �yl e  & Powe l l  

( 1 9 74 ,  1 9 7 5 )  repo r ted a 25 p e r c e n t  dec l i ne in to tal plant a c t iv i ty 

in Lo liwn spp . 



CHAP TER 3 .  MORPHOLOGICAL CHARACTERISTICS OF 

LOTUS PEDUNCULATUS CV . ' GRAS SLANDS MAKU ' 

3 . 1  I n t roduc tion 

3 1 . 

As , .edaphic and aerial condit ions change , then su does the rela t i ve 

growth o f  roo ts  and shoo ts , thereby maintaining a b alance o f  assimilated 

sub s t r a te wi thin the plant ( Davidson ,  1 9 6 9 ) . Cons equently , roo t  

init ia tion , g rowth , death and ac cumula t ion o f  o rganic compounds all 

respond to changing environmen tal condi tions and d efol iation intens l t ies 

(Willard , 1 9 5 1 ; Trough ton , 1 9 5 7 ; Baker & Garwood , 1 9 59 ;  May , 1 9 60 ) . 

S imilarly , the p a t tern and s truc tuEe o f  shoo t growth d iffers f o r  dif feren t 

s easons and defol iation reg imes ( Cowe t t  & S p rague , 1 9 6 2 ; Nelson & Smi th , 

1 96 8 a ;  Leach ; 1 9 6 8 ) . Cons i derab l e  variab ility can therefore occur in 

the mor phological s truc turing of  defol iated plants growing under 

d i f f erent cond i t ions . 

Shoo t grow th in s eedl ing L .  peduncu la tus ini t ially cons i s t s  o f  

a p r imary s tem and then subsequen tly , p n l rs o f  axillary shoo ts  may develop 

from the co tyl edonary node . As this node swel l s , a s eedl ing crown is 

formed and it is  f rom this region tha t rh i zome g rowth may eventually 

occur . From ob s e rvat ions made in the field in the lower No rth I s l and 

and South I s land o f  New Zealand , it would appear tha t the ini t ia t ion o f  

s uch growth in es tabl ish ing plants predominan tly o c curs in late summer 

to early autumn , but  is delayed by inc reas ing p l a n t  compe t i t ion o r  

s lo\ller growing co nditiona . I t  i s  propos ed for this s tudy that the 

development of rhi zoma tous growth marks the beginning of the es tabl ished 
plant phas e . 

The dominant morpho logical f eature o f  es tabl ished L .  peduncu latus 

was considered by MacDonald ( 1 9 4 6 )  to be its rhi zome growth . This growth , 

plus i ts as s o c ia ted roo ts , results in a turf forming hab i t  and a dens e 

d i s t r ibution o f  roots in the upper soil p ro f il e . Axillary sho o t  grow th 

f r om rhi zome nod es gives r i s e  to ascending s tems and from these aer ial 

s tems fur ther axillary grow th may d evelop f rom above ground nodal pos t ions 

( Howel l , 1 94 8 ) . As a resul t ,  cano py g rowth o f  L .  pedunculatus is o f  an 

indetermina te , b r anching hab i t . 



3 2 . 

A knowledge o f  the morphological charac teris tics , and their response 

r � t terns , was cons idered necessary in unders tanding the growth and 

produc tion patterns of L .  peduncu latus . As seasons change and defo l ia t ion 

managements d if fer , i t  was cons idered tha t variat ions in morphological 

s truc ture would ind icate changes in emphasi s  in the par ti tioning of  

grow th b e tween plant componen ts . The influence o f  cl imatic condi t ions 

and agronomic managemen t on shoot  grow th was also o f  impor tance ,  part icularly 

in rela t ion to their po tential and ac tual numbers , g rowth pat terns and 

place of o rigin . 

During 1 9 7 5- 7 6 , a field experiment was conduc ted in order to 

quan t ify above and below ground morpho logical charac teris t ics o f  

es tab l i shed t .  pedunculatus c� ' Grass lands Maku ' and to show how th 2se 

charac ter is tics var ied wi th dif ferent s easons and defoliat ion managements . 

This chap ter presents and d is c usses the resul ts o f  this experiment 

wi th regard to the pat tern and s tructure of roo t ,  rhi zome and shoo t 

growth . 

3 . 2  Experimental 

On 1 9 / 1 1 / 74 , 1 Gras slands Maku ' at 4 . 5 kg/ha ( inoculated with rhizob ium 

s tra in : CC8 1 4 S )  was disc drilled into the area on whi ch the 1 9 7 5-7 6 

f ield experiment ( Expt . I ) was subs equently es tabl ished . Herb icide 

s praying of  2 , 4DB ( 2 , 4 -dichlorophenoxy butyric ac id)  at 2 . 8  1 a . i . /ha 

was conduc ted on 3 / 2 / 7 5  and 30% po tas s i c  superphos phate at 190  kg/ ha , 

was broadcas t o n  2 1 / 3 / 7 5 . Du r ing the summer-autumn period o f  es tablishment 

the area was l i ghtly topped three times . 

The experimental s i te was loca ted on a Tokomaru silt loam ( Cowie , 

1 9 7 2 )  a t  Massey Univer s i ty . S o il quick- tes t analyses of samples taken 

on 9 / 7 / 7 5  for the 0-7 . 5  cm and 7 . 5- 1 5 . 0  cm dep ths were : pH - 6 . 1 ,  6 . 2 ;  

K - 5 ,  4 ;  P - 9 ,  8 .  Gradwel l  ( 1 9 74 )  repor ted the so il physical 

p roperties of this soil type . Appendix 1 presents weekly soil mo is ture 

determina tions (% of oven d ry weigh t)  measured within the experimental 

area over the trial period , and Appendix 2 presents monthly c l imatic 

dd · a  recorded 1 km from the experimental area . 
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The mo s t  no tab l e  environmental fea tures tha t o ccurred b e tween the 

spring o f  1 9 7 5  and 1 9 7 6 , the period over which Experiment 1 was 

c ondu c t ed , relate to low , late s ummer and aut umn temperatures and soil  

moi s ture (Append ix 1 and 2) . Exc ep t  during January and more par t i cularly 

February 1 9 7 6 , when t emperatur es were lowe r  than would no rmally b e  

exp e c t ed , daily maximum , minimum and 1 0  c m  s o il temperd tures were 

a pproxima t ely s imilar to the appropriate mean monthly recordings . 

A l t hough rainfall during Februa ry and March 1 9 7 6 , was no t too d i s s imilar 

from the appropr iate mean monthly rainfal l s , there was a s t eady 

d e cline i u  s o il mo i s t ure during these months . The minimum values 

r eached at the peak o f  this s tr e s s  per iod were below the -1 bar soil 

mois ture e quival ent of app roximat ely 20% O . D . W . , a po int at which 

p l ant growth is r es t r i c t ed on th i s  s o il type ( S ca t t er ,  pers . conoo . ) . 

At the lowes t soil d ep th sampled , values reached the c4%  mo i s t ure level 

d e s igna ted as wilt ing po int by Gradwell ( 1 9 7 4 ) . 

The s ix defo l ia t ion treatment s  of  Experiment I were as follows : 

S F : c u t t ing down to 1 . 5 cm every three weeks 

MF : 1 1  1 1  1 1  5 . 0 cm 1 1  " 1 1  

LF : " " 1 1  9 . 5  cm " " 1 1  

S I : " 1 1  1 1  1 . 5 cm " s ix 1 1  

MI : " 1 1  " 5 . 0  cm 1 1  1 1  1 1  

LI : 1 1  1 1  1 1  9 . 5  cm 1 1  1 1  1 1  

The f ir s t  and las t cuts were made on 9 / 9 / 7 5  and 18/ 5 / 7 6 respec t ively , 

the las t c u t  being d e t e rmined by the failure o f  growth in LF and L I  

t o  exceed cut t ing h e igh t . Treatments were randomized within each o f  

f our blocks and each p l o t  c ons i s t ed of  2 x 2 m plus 2 x 5 m areas . 

From the f o rmer area all mown y i eld data were collected and the lat t er 

area provided sampl e  s i tes for des truct ive h arves ting . Cu t s  were mad e  

with a s ic kl e-bar mower and defol iat ion w a s  complet ed wi th a r e e l  mower 

for the two , 1 . 5 cm c u t ting height treatmen t s . All cut h erbage from 

the ' non-des tru c t iv e ' area was c o l l e c t ed , weighed , s ub s ampled for dry 

mat ter d e termina tions and then discarded along with the material from 

the remainder o f  the plot . Hand weeding , par t icularly the rogue ing 

o f  volunteer whi t e  c lover , was conduc t ed throughout to maint ain 

s ampl e  areas as pure ' Grass lands Maku ' .  



34 . 

A grid pattern of  0 . 5  x 0 . 5  m was formed for the ar, Js alloca ted 

to des truc t ive subsampling and for each plo t ,  three grid positions 

were randomly allocated to each sample date . Sod s amples of  approx­

imately 30 x 30 x 20 cm were taken before and af ter each cut to 

p rovide ma terial for f inal and res idual plant component analyses 

respec tively . Each sod was individually soaked in wa ter for at leas t 

1 5  minutes , washed free o f  soil and then d isentangled . Wi thin 

each sod s amp l e  all damaged plants and plant par ts were dis carded and 

the remainder were ranked in s i ze . Five plants per sod were then 

s elec ted on a sys tema tic bas is to represent the full plant s ize range . 

Bo th final and residual plant subsamples were then s tored at 3°C until 

dissec tion when all f ive subsample plants were bulked and mean va lues 

on a per plan t  basis recorded . Drying of all plant ma terial for dry 

weight de terminations was conduc ted in a i r  dry ovens at 80°C for 

16 hours . 

To minimize poss ible sampl ing effects on r emaining plant growth , 

sods  of  ' Grasslands Maku ' f rom outs iJd the experimen tal area were 

trans planted into the sub-sampled areas . From the remaining grid 

position , a 0 . 1  m2 quadra t cut to ground level was taken for de termining 

r es idual dry ma tter and leaf area . 

The divis ion of  plant par ts used during dissec tions are represented 

d iagrama tically in Figure 1 and the ir nomencla ture and def ini tions 

are as follows : 

( 1 ) Primary c rown and taproo t ;  the dominant crown and taproo t sys tem 

in a mul ti-crown plant ; a compos ite organ cons is ting of  an aggregat e  

of  indiscrete s t em bases ( c rown) and an ass o c iated primary 

taproo t .  

( 2 )  Rhizome ; ho rizontally growing s tems at , o r  predomina tely below 

the soil  surface ; supports adventi tious and nodal roo ts ; 

rhizome component ceases on an individual s tem sys tem at the 

las t roo ted node . 

( 3 ) Secondary crown and taproo t ;  a swollen node within the rhi zome 

sys tem at which a woody roo t sys t em develops . 

( 4 )  Fib rous roo t ;  adven titious and nodal roo t s ; incluJes nodul e tissue . 

( 5 )  S tubble ;  an above ground , l iving shoo t wi thou t an intac t 

terminal apex ; exc l udes any intac t sub tending axil lary shoo ts . 



F I G U R E  1 :  A d iagrama t ic representat ion o f  the mo rpho logy o f  ' Gras s l ands Maku ' ,  Lo tus peduncu latus . 
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( 6 )  Rhizome shoo t ;  a sho o t  developing f rom a rhizome axillary ( 6a) 

o r  terminal apex ( 6b )  po s i t ion at o r  below the soil surface ; 

associated with nodal roo ting ; the apex is emergent above the 

soil sur f ac e . 

( 7 )  Rhi zome shoot  initial ; an und erground axil lary shoot whos e  apex 

is below the so il surf ac e and produc ing s cale l eaves ; included 

as rhizome growth if i ts length exc eeds 2 cm . 

( 8 )  Crown shoo t ;  a shoo t ar ising from indiscrete s tem t is sue o f  the 

crown ; f rom a dorsal ( 8a) or lateral-ventral ( 8b) po s i t ion on 

the crown . 

( 9 )  Crown shoo t ini t ial ; as for ( 7 )  but  aris ing f rom ind iscrete 

s tem tis sue of the c rown . 

( 1 0 )  S tubb le shoo t ;  an axillary shoo t aris ing from an above gro und 

pos i tion on a s tem with the ten1inal apex removed . 

( 1 1 ) S econdary axil lary shoo t ;  as for ( 1 0 )  but the sub tend ing s tem 

has an in tac t Lerminal apex . 

( 1 2 )  Dead ; s tem and leaf tissue that was withered and brown . 

Data were col lec ted every three weeks for the f requently cut  

trea tments ( S F ,  MF , LF) and for all s ix treatments , every s ix weeks . 

Wi thin each h arvest date fac torial analys is of  variance tes ts 

indica ted tha t interac tions were common between cut ting f requency and 

s everity . For consis tency o f  analysis and presenta tion , main effec t s  

were no t cons idered and s ta t is t ical analyses were based on a randomized 

block des ign for bo th three and s ix trea tment harves ts . Chi-square 

tes ts for homo genei ty of error variances were separately conduc ted 

across harves t dates for three and s ix trea tment ., ; , ctlys es . A pooled 

analysis was then conduc ted on treatment and harves t date main effects 

and their interac tion us ing "PHANIE" , a s ta tis t i cal programme involving 

a random effec ts , spl i t-plo t in t ime mo del (Gordo n ,  pers . comm . ) . 

Where homogenei ty of  vari ance did no t exi s t  across harves ts , no 

treatmen t comparisons were made acro s s  harves t dates , al though the 

g eneral s igni f i canc e levels of  the main ef fec ts and their interac tions 

ere cons idered suf f iciently val id for comparative tes ts ( Co chran , 1 9 4 7 ) . 

Fo r all plant compo nents , data were collec ted every three and 

s ix weeks fo r the three and s ix-weekly cut ting treatments respec tive l y . 

However , for the more frequently cut treatments mos t  data will only 

be presented for sampl ing dates common to the inf requently cut 

trea tmen ts , i . e . : on a s ix weekly basis . In all cases where the 
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intermediate three weekly data points are no t presented , they would 

no t have al t ered the general s easonal and treatment trends . 

Unless specifically s ta ted , plant component data were cons idered 

on a per plant bas i s . A plan t  uni t was defined as a s t em sys t em 

invo lving above and below ground growth that was continuously l inked 

with a t  l eas t one c rown and taproo t .  Thes e  continuous s t em �ys tems 

were at t imes mul t i-c rown and tap roo ted but were nevertheless cons idered 

as one plant . 

3 . 3 Resul ts 

3 . 3 . 1  Underground Plant Componen ts 

The c rown , tap roo t ,  rhi zome and i lbrous root sys tems �ere 

collectively cons idered as fo rming to tal underground plant growth . 

The influence o f  s eason and treatment on the dry weight per plant o f  

thi� to tal growth i s  shown in F igure 2 and two general trends are 

evident . On a s easonal bas is , weight trends between trea tments were 

variable during spring and early summer , showed a rapid increas e f rom 

February through to May and then decreas ed during winter . On a treatment 

basis , the effec t s  o f  cut ting s everi ty and frequency interac ted . 

At a cut t ing height o f  1 . 5 cm , we ight increases were generally recorded 

wi th the longer regrowth interval ; at 5 . 0 cm no general response was 

evident ; and at a cut ting heigh t of 9 . 5 cm greater underground weight s  

occurred with a three rather than s ix-weekly cutting interval . 

Never the l es s , there was a general increas e in to tal underground 

weight per plant wi th increas ing cutting heigh t . 

There was a s i gnificant trea tment x harvest  date interaction in 

underground weigh t  per plant which was mo s t  obviously associa ted wi th 

the s evere , more frequently cut trea tment ( SF ) . This treatment 

decreased in weigh t  through until  January and then showed a much r educed 

autumn recovery . I n  contras t ,  the to t al underground weight per plan t  

o f  the three-weekly , lax cut trea tment ( L F )  rose throughout spring , 

summer and aut umn only to decrease over winter to a l evel s imilar 

to the previous spring . One fur ther po int to no te was the delayed 

late summer/autumn recovery of  the s ix-weekly cut trea tments whi ch 

showed a s ignificant improven1en t  only when , on 24 / 2/ 76 , reproduc t ive 

growth was removed by cut ting . 
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The marked redu c t ion in underground weight p e r  plant over the 

winter was the resul t o f  two fac tors . Over this per iod t h e re was 

a b reakdown o f  the rhi zome l inkage wi thin mul t i c r own plan t s  ( Pl a t e  1 )  

whi ch resul t ed in an inc reased plant numb e r , a s  d e f ined f o r  this s tudy , 

and a� ass o c ia ted redu c tion in per p l ant s i ze  f o r  the general 

popula tion . The fo rma t io n  o f  new p lant uni ts was mo s t  obvious in 

those trea tments wi th the larges t to tal underground componen t at the 

end of autumn ( Tab l e  1 ) . From du p l i ca ted , 0 . 1 m2 s o d  s .::tm p l c s , p r imary 

crm·m and tap roo t numb ers were de termined a nd co unts made on t\1e 

5 / 9 / 7 6 ind i ca ted tha t f o l lowing the increas ing then decreas ing un•l er­

ground growth phas es o f  au tumn and winter , tl tere was a resul tant 

increase in p lant dens i ty at the higher c u t t ing h eights . 

The s econd factor a s sociated w i th dec reas ing per plant weigh t s  

over the winter , was a d e f inite d e c r ease i n  abs o l u te underground 

wei ghts on a kg D . M . /ha basis ( Tabl e  2) . Ab s o l u te underg ro und 

we igh ts were es t i 1ila ted f rom known above gro und herbage y i e l d s  and 

above to b elow gro und ra t ios de termined f rom t o t al plant d i s s e c tions 

of f inal regrow th . Fo r all s ix cu t ting t reatments , weigh ts peaked 

a t  the 1 8 / 5 / 7 6  harves t and ther ea f ter , dur ing the next six weeks , 

showed on average a 30% weigh t reduc tion . As wi th per plant weigh t s , 

i t  was no t un til Feb ruary that increas ing to tal weights b � c ame evi d ent 

wi th the seasonal r espons e being mo s t  marked as c � t t ing h�ight 

increas ed . W i th valu�s either f a l l ing or remaining s ta t i c  prior to 

th is period o f  weight inc reases , there w e r e  �on ttas ting seas onal 

f l uc tua t io ns be tween treatmen ts. Weights f o r  th e 1 . 5 cm trea tmen ts 

were low at all harves ts and showed l i t t l e  seaso nal varia tion . 

39 . 

However , a t  a c u t t ing height o f  9 . 5 cm , par ticular J y for LF , s easo na l  

v ar ia t ion was cons iderab l e  and the doubl ing o f  to t�l underground weigh ts 

b e tween 1 3 / 1 / 76 and 1 8 / 5 / 7 6 was es t imated to b e  equivalent to an 

approxima t e  4 000-4500 kg D . M . /ha increas e . 

3 . 3 . 1 . 1  P r ima ry Crown and Tapr o o t  

Th e s t ructure o f  this system was variable between plants in 

bo th form and s i z e . Rhi zome growth o r igina ting f rom the c rown , developed 

f r om around i ts edge o r  undersurf ac e  and the numb er of s t ems invc lved 

varied from one to a c o u n ted maximum o f  nine t een . The taproo t ,  

al though mainly cons i s t ing of one main roo t ,  was o f ten fo rked w i th 



TABLE 1 .  Plant dens i t ies for pre-aut umn and po s t-winter s ampl ings 
( p lants per m2 ) .  

S ample Date 

Treatment 

S F  

MF 
LF 

S I  

MI 

LI 

Tmt .  mean S Ea 

b S ignf . l evel 

L . S . D .  ( 5% ) c 

1 3 / 1 / 7 6  

1 7 9  

1 70 

1 5 3  

1 5 5  

1 3 6  

1 5 9  

25 . 4  

NS 

5 / 9 / 7 6 

1 70 

2 1 7  

24 2 

1 8 2  

2 2 2  

2 2 5  

20 . 9  

* 

6 3  

a - S tandard erro r o f  treatment means within a harves t dale 

b - S ignificanc e l evels : probabil ity o f  s ta t i s t ical 

d ifferences : * < . 05 ;  ** < . 0 1 ; *** < . 0 0 1  

c - Leas t s igni ficance d i f ference : based o n  two-t ailed 

s tudent t t es t  a t  P < . 0 5  (Snedecor & Cochran , 1 9 6 7 ) . 

TABLE 2 .  To tal underground dry we igh t (kg/ha) 

Harves t Dat e 

Treatment 

S F  

MF 
LF 

S I  

MI 

LI 

Tmt mean S E  

S ignf l evel 

L . S . D .  ( 5% )  

21 / 1 0 

3289 

389 8 

3939 

280 2 

4078 

3529 

4 1 4  

NS 

2 / 1 2  

2 7 25 

4 1 14 

4 8 5 3  

30 1 4  

4 1 60 

4 1 9 3  

322 

* ** 
9 7 1  

1 3 / 1 

2 3 2 2  

3 5 2 4  

4600 

2 2 34 

2 / 8 1 

3 7 1 2  

3 1 1 

** 
9 35 

24 / 2  

24 2 7  

4 3 9 9  

544 5 

2552 

3229 

3 7 20 

326 

*** 
984 

6 / 4  

2858 

5 80 1 

8060 

4 38 5  

4406 

5896 

465 

*** 
1402 

Treatmen� x Harves t Date Int erac tion : *** 

1 8 / 5  

3 1 59  

6498  

9 2 7 6  

4 50 2  

5 9 7 5  

8 0 2 3  

5 4 3  

*** 
1 6 3 7  

29 / 6  

2434 

4 250 

6 3 3 1 

3069 

3 84 1 

59 1 4  

228  

*** 
6 86 

4 0 . 



P l a t e  1 :  A mul t i c rown and t aproo ted plant l inked by woody 
rh izome growth ; considered as one plant unit . 

4 1  

Plate  2 :  P r imary c rown and 
forked taproo t ;  p ink 
c rown shoo t ini t ials 
are also evident . 



up to t h r e e  l a t e ra l  ts, a r i s  f r om j u s t  b el o w  

t o  a s im i l a r  s i  a s  the r o o t 

in exc e s  2 0  cm wer e r e c o r d e d  i n  s om e  

The o f  t h e  

t r e a tme11 i n a s im i lar p a t t e rn a s  

t h e r e  'we r e  l a  

whi c h  r e s u l ted 

t�e and e nd o f  the ex per 

o f  S F ,  a l l  r e a t rnen t s  r ea c h ed a 

t a p r o o  var i e d  

d i d  t o  

o f  a s imi 

the crown , 

t 

s .  

w i th s ea s o n  and 

t ( 

a t  

o f  the i r  ini t i a l  we I t  a l s o  trea tment unab l e  

i t  h a d  a s 

t a p r o o  

r e du c e d  value 

t over the 

m i d - s umme r . 

and as s u ch , 

i a t ed wi th th e o th er l o w  c ut ( S I )  w e r e  

, howev e r  unl ike th e anua ry and 

a u t umn inc r e a s e s  re ev i d e n t . 1n i s  r e s p o ns e  w a s  t h e  

o n e  

0 

a t  

t 

3 . 3 . 1 . 2 

to the i n f l u en c e  o cu 

s u r f a c e  and 

P l a t e s  3 

n e tw o r k  o f  s 

when , c u t  t r e"-' tment s ,  r i zon 

imes t h e  f r o o t e d  s to l ons 

Th e rhi z om e  s y s t em was the 

c o mp o n e n t s  measured v a r i e d  

( Tab l e  4 ) . there w e r e  

t , and w i t h  the exc e p t io n  

i f f er e n c e  o v e r  the s ea s o na l  

c u t  t r e a tme n t s  tha t w e r e  

t 

t range . 

compo nen t l a t e  s ummer . 

d e f o l ia t e d  t r e a tment s ,  th 

and exp ans 

t h e  

o f  t h e  

w i tl1  

te 

t was t h e  . 5  

t h e i r  r h i zome 

c o n t r a s  , the mo r e  

c u  

f t h e i r  r h i zome 

Mo r e  

s umme r 

the r h i zome 

as s o c iat ed w i th 

d a ta wab t h e  

t h a t  w e r e  a l l 0 w e d  t o  

s 

t iv e  

4 2 .  



4 3 .  

TABLE 3 .  C rown plus tap:oo t dry we igh t (mg per plan t )  

Ha rves t Dat e : 2 1 / 1 0 2 / 1 2  1 3/ 1  2 4 / 2  6 / 4  1 8 / 5  2 9 / 6  1 0 / 8  

Treatmen t 

SF  649  4 2 7  3 7 3  5 74 7 4 3  640 7 4 3  7 34 

MF .  894 4 5 1  9 26 9 7 5 1 4 0 4  1 3 27  1 0 2 9  7 9 7 

LF 5 1 5 6 9 5  9 8 7  1 1 25 1 3 7 3  1 4 59 1 2 7 7  7 8 1  

S l  543 5 8 2  5 6 6  6 3 2  1 1 6 6  1 302  8 1 8 7 9 2  

MI 807 6 3 1  7 38 8 34 1 4 7 7  1 2 1 7  1 048  6 7 5  

LI 7 9 5  7 0 5  8 8 6  984 1 2 8 1  1440 1 0 50 7 7 4 

Tmt Mean S E  1 4 5 . 4  7 4 . 4  88 . 0  89 . 4  9 2 . 0 90 . 7  48 . 0  4 9 . 3  

S ign£ l evel NS NS *** *** ***  *** *** NS 

LSD ( 5 % )  264 2 69 2 I I 2 7 3  1 44 

Trea tment x H d c v �s t Date Int erac t ion *** 

TABLE 4 .  Rh i zome cy we ight (mg per plan t )  

Harves t Da t e  2 1 / 1 0 2 / 1 2  1 3 / 1  24 / 2  6 / 4  1 8 / 5  2 9 / 6  1 0 / 8  

Treatment 

SF 6 1 1 4 7 6  34 2 1 1 7  1 0 3 9  1 1 2 1  1 0 29 6 5 2  

HF 746  6 3 4  849  1 0 , 0  1 79 7  2 3 38 1 4 29  7 1 1  

LF 6 1 9 604 9 26 1 2 96 2005 2688 H i)4 7 8 0  

S I  6 9 9  6 3 4  538  4 9 6  1 54 8  1 56 2  1 1 9 9  680 

HI 608 6 6 �  8 7 1  6 32 1 9 4 5  1 89 2  1 39 6  8 5 7  

LI 7 1 2  7 20 8 7 9  688 1 6 5 7  2 1 60 1 4 24 7 5 7  

Tmt Hean S E  65 . 2  80 . 1  1 0 5 . 6  8L . 1  1 24 . 1  1 89 . 7  1 1 0 . 5  5 7 . 5  

S ign£ l ev e l  NS NS * ** '"** *** *** >'<** NS 

LSD ( 51.: )  3 1 8  247 3 7 4  5 7 1  3 3 3  

Tr ea tment x Harves t Da te I n t erac tion * * >'<  



4 4  

P l a tes 3 and 4 ( top to bo t tom) : Rhi zome component s : non-woody rh i zome ; 
woo dy rhi zome w i th a swo l l en nodal reg ion and concentra ted 
shoo t l o c i i ; basal po r t ion of  a t e rminal rh izome shoo t .  

/ 
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Swell at no da l o n  s ome o t h e  rhi zo m e s  

was obs t: rved in m i d - s umme r  and c o n t i nued the r e s t o f  

and au t wnn . I t  was rom thes e  no d e s  tha t o r i ty o f  

rh i z ome Th i s  new au tumn rh i z ome wi th 

tha t  r om t h e  e r  was f ro m  

th e o l d  1 r h i zome sy s t em b e c ause o f  t h e i r  whi t e  s uc c ul en t  s t em 

I t  was rom the f o rmer rh i zome tha t  the 

w i n ter rhizowP l o s s e s  t o  o c c u r r e d , f o r  a t  l a s t harves 

d a t e  o n  1 7 6  t h e  1 i e d  , , ,ume l e f t was i n  the 

o f  c o nnec b e tween the p r imary c rown swo shoo t 

f o  

. 1 . 3 t 

Th i s  c o n s i s ted o f  t s  f rom the 

a nd t a p r oo t ,  r o o t s  f ro m  

the zome s ys t em .  Th e t a l  0 i b r o u s  r o o  

a s s o c ia t e d  nod u l e s  and in 5 .  

F i b rous t 

2 1 / l O 1 2  l / 2  l I 2 9 /  

S F  3 6 1 2 3 2  8 1  3 1 2  9 9  7 9  

5 2 5  2 9 7 l 1 4  7 

3 2 2  24 3 7  2 7 5  2 9 5  

2 5 3  2 6 0  2 5 2  2 0 8  

<: J 

34 8 4 7  2 7 0  l 7 9  2 2 7  

L I  446  2 9 6  329  3 1 6  5 5  2 0  

8 

5 0 . 3  9 . 5 5 2 . 0  3 3 . 8  2 5 . 5  29 . 2 3 . 2  2 3 . 8  

s 

L S D  

* 

56 

tmen t x H a rv e s t D a t e  c 

1t; ** *-ld< * 

7 7  

* 
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Fibrous roo t  weigh ts  were cons i s t ently L)wer where 1 . 5 cm c u t t ing 

occurred , p art ic ula r l y  in t r ea tment SF . S easonal t rends would appea r  to 

p roduce two low po int s , these b eing in January and Feb ruary and again 

during w in t er . Fo l lowing the mid- s ununer low , there was an ir;.crease 

i n  new wh i t e  fib rou s roo t growth as soc ia ted w i th the expans ion of new 

rhi zo�e t is sue . At the end o f  au t umn , no b rown f ibrous roo ts aL iS i ng 

f rom o l d  woody rhizomes were eviden t and f ibrous roo ting was conf ined 

to th e n ewly produc ed autumn rhi zome sys t em .  I t  was on this new s t em 

grow th tha t fibrous roo ting fur ther developed in late winter to 

presumab ly reach a mid-spring peak s imilar t o  that r ecorded the p r ev i ous  

y ear . 

3 . 3 . 2  F inal Canopy Compo nen t s  

The d i s s ec ted components o f  tho s e  plants s ampled a t  the end u f  gach 

regrowth p eriod wer e  co l l ec t ively cons idered as cont r ib u t j llg to e i ther 

above or below ground grow th . W i t h in the f o rmer group , s tubbl e  shoo t s , 

rhizome shoo ts , secondary axi l l ary shoo ts , s tubb l e  and dead ma t t er were 

cons id ered to form f inal cano py growth . Because regrowth int erval s  

varied and ab so l u te weights o f  thes e  componen t s  at  the beg inning o f  
each regrow th pe r iod d i f fered f o r  t h e  d i f f erent defoliatio n  t r ea tments , 

abs o l u t e  f i nal we igh ts  of  the canopy components a t  any spec ific harves t 

were o f  l i t tle s igni f icance . Ther efore , the influenc e tha t defo l ia t io n  

and s easo� had on the s e  componen ts was assessed b y  d e termining the 

propo r t iona l con t r ib u t ion they mad e to f inal canopy dry weigh t . 

3 . 3 . 2 . 1  F inal Shoo t Grow th 

To be cons idered in the analys is o f  f inal shoo t grow th , 

s tubb l e  sho o ts had to  po ssess at  l eas t o ne expanded leaf and exc e ed 

3 nun in length , as v aly then wer e they cons i dered to s ignif icantly 

cont r ib u t e  to f inal c anopy y ield . S imilarly , rhi zome shoo ts  had to 

exceed 3 mm in leng th and pos s ess a terminal apex tha t was above 

ground l evel and produc ing true l e aves . I f  the terminal apex was b elow 

ground and produc ing s cale l eaves then the shoo t was referred to as a 

rhizome sho o t  initial . Secondary axil lary sho o ts develop i ng on i n ta c t  

shoo ts were no t separated and s o  they were inc l uded a s  p ar t  o f  the ;)arent 

shoo t . 
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TABL E  6 .  con tribut ion o f  s tubbl e  and rhi zome shoo t o  

f inal c anopy 

Harv e s t Date 2 1 / 1 0  2 / 1 2  1 3 / 1  24 / 2  

S tub le Shoo ts  

SF  2 3 . 1  1 5 . 9  6 . 1  1 7 . 9  7 . 2  . 6  3 . 7 

2 1 . . l  . l  1 1 . 9 . 6 4 .  3 . 6 

2 2  2 2 . 8  1 9 . 5  . I 5 . 7  . 4  2 . 7  

S I  L: J . 2 . 5  1 5 . 9  . 9  1 ' 1 3 . 3  2 . 5  

1 2 . 6  1 7 . 7  1 4 . 6  � . 6  1 1 . 9 . 8  3 . 2  

5 . 1  2 � 3  . 0  25 . 3  6 . 5  4 . 3 4 . 1  

2 . 2  2 . 3  . 2 . 2 . 0  • 7 
s 1::: '/c *  N S  N S  

6 . 5 . 6  . 6  

----- - -----
Rhi zome 

. 4  3 2 . 9  3 3 . 4  3 6 . 7  . 7 6 8 . 

2 7 . 7  2 7 . 7  2 . 9  

. 5  • 7 . 7 

I . 0  4 9 . 3  5 9 . 24 . • 7 

5 2 . 5  5 0 . 1  4 . 7 2 2 . / . o  

4 3 . 2  3 . 7  1 7 . . 4  4 3 . 4  5 4 . 2  

4 .  . 8  3 2 .  2 .  2 .  2 .  

-!;; * ;/:; 

( 1 2 .  . 4  6 . 8  . 5  6 .  . 5  

- Al s o  the 1 c o n t r ibu 



The c o n t r ib u t io n s  o f  shoo t s  t o  c anopy 

ma t te r  

Tab l e  6 .  

i s  the 

wi thin 

the end o i n d i v i d ua l  

mo s t  no tabl e  eature r e l a  to s tub , 

f o r  a nd LI o n  2 

;_ the p r o po r t io n  invo lved a t  a common 

d if f e r en i zes . The low values 

o f  c o ns id e r , . 

rh i z o me shou 

7 6  were due to the  

th is  f ir s t  Nev e r t h e l e s s ,  

the p er c en tage w i th i n  and b e tween harves 

s imilar u p  un t i l  24/  / 7 6 when t i r  

the 

were 

in 

o autumn , then 

b e tween t rea tments b u t  

i n  s tubb l e  

ions 

thos o f  zome 

/ 7 6 ,  there 

t s  

occur r e d . 

, no cons i s t en t  

in trea tments t h e r e  was a 

t propor  

sho o t s 

b o t h  

a 

4 8 . 

f f er -

e nc e s  

ts t o  

a 

3 . 3 . 2 . 2  

c o n t r ib u t i o ns o and 

Tabl e  7 .  Wherea s s 
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TABLE 7 .  P e r c entage c o n t r ib u t i o n  o f  s tubb l e  a nd mat ter  to  

cano py t 

H a rves t date  2 1 / 1 0  2 1 3 / l 24 / 2  

S tubb l e  

3 9 . 7  3 . 9 2 . 0  35 . 0  3 0 . 8  2 2 . 9  1 4 . 5 . 7 

3 9 . 4 1 . 6 3 4 . 3  2 7 . 2  1 8 . 6  8 . 5 l 

4 2 . 4  5 1 . 7  4 8 . 6  3 9 . 1  2 5 . 3  3 . 4 6 . 7 . 7  

s 2 9 . 9  . 5  8 . 6  . 3  8 .  2 . 5  6 .  

2 0 . 0  6 . 4 . 0  6 . 9 7 .  

2 8 . 0  2 3  5 3 . 8  3 3 . 2  3 . 8  

. 5  . 9 3 . 2  f 1 0 . 2 .  . 3  
i:: *·:k 

8 . 8  9 . 7  L1 . !! . 8 5 . 



From observa t ions made dur i ng d is s ec t ions , i t  was evident that 

s tubb l e  t issue death predominant l y  occurred above the h ighes t node 

s upport i ng an act ively growing s tubb le shoo t . S uch g rowth appeared 

50 . 

neces s a r y  to maintain s tubbl e t is sue v iab il i ty . vfuere no s tubbl e  shoot 

g rowth exis t ed , the s tubble s tem general l y  d ied back to  the f irs t roo ted 

node of t h e  rh i zome s y s t em .  

The marked inc rease in dead ma t ter during the d ry Narch s p e l l  and then 

the cont inued high level s over the remaind er of au t , , ., 1n and then wint e r , wou l d  

be  t h e  mos t s igni f icant features o f  the con t r ib u t lu n  d ead mat ter made to 

f inal c a nopy weigh ts ( Tab le 7 ) . From the 24 / 2 / 7 6 harves t onwards , there 

was a g eneral inc r eas e in dead ma t ter as cut t ing he igh t inc reas ed for bo th 

f req1 1 enc i es . Throughout the experiment perio d  howe v e ,· j there was no 

ev idenc e of c u t ting f req uency cons is tenL ly influenc lug the propo r t Lms o f  

dead mat ter . 

3 . 3 . 3  F inal Sho o t  Numbers and Charac t e r is t i cs 

The c l as s if ic a t ion of  tho s e  shoots  cons idered in the analys is o f  f inal 

shoo t numb ers was the same as tha t outl ined for final shoo t growth ( 3 . 3 . 2 . 1 ) . 

3 . 3 . 1 S tubble Shoo ts  

The general t rend o f  h igher f inal s tubble shoo t numbers w i th 

mo r e  s evere and / o r f r equent c u t t ing was mo s t  ev ident during the produc t ive 

spr ing and summer period ( Tab l e  8 ) . Des p i te lower abs o l u t e  numb ers 

during the dry p e r io d  fo llowing the 24 / '2/ 7 5 harves t and t hen the sub s equent ly 

coo l e r  p eriod o f  Ap i l  and May , s imilar trea tment responses d id cont inue 

in rel a t ion to  c u t ting heigh t b u t  nu t cut t i ng f requency . Over this 

per iod of poor g rowth , final s tubb l e  shoo t numbers WL re s imilar for bo th 

c u t t ing f requenc i es . Fol lowing the las t c u t , which was made on 1 8 / 5 / 7 6 , 

the two w inter s amp l es bo th r eco rded inc reas ingly lower stubb l e  shoo t 

numu e r s  and even t ually no t rea tment respons es . 

A l though mo s t  s tubb le shoo ts  developed at nodes sub tended by l eaves 

there was an inc r eas ing propo r t ion devel o p ing at non-s ub tended nodes 

on t h e  s tubbl e  when cut t i ng was mo re lax dnd/or inf requent and when 

the early autumn d ry period was experi enced . Al though up to three 

axi l l a ry buds , g enerally at  d i f f erent s t ag e s  of  development , were 
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8 Numb e r  o f  f s t ub b l e  shoo t s  ( pe r  

Harves t 2 1 /  2 / 1 2  1 3/ l / 2  6 5 2 9 / 6 

Trea 

. 6  2 0 . 2  1 9 . 0 3 ' '  1 2 . 4  1 4 . 3  8 . 3 2 . 4 

1 2 . 7  2 1 . 4 2 5 . 3  1 3 . 9  1 2 .  4 . 5 2 . 3  

L F  . 0  4 . 3 2 1 . 5  :3 . 7  6 .  1 . 7 3 . 1  . 7 
S I  . 5  8 1 6 . 4  1 2 . 2  6 .  8 . 3  5 . 9 

. 6  0 . 5  1 6 . 5  1 2 .  l 1 4 . 5  1 . 5  4 .  2 . 7  

Ll 6 . 5 8 . 8 1 1 . 6 9 . 4 8 . 8 2 . 8 2 .  

Mean S . 40 1 .  7 4  2 . 8 7  . 4 5 

"k?Y:-k. 1< i< #": "it; ·;k *  * * *  

( 5  4 . 2  5 . 2  8 . 6 1-t. 2 • 7 . 4  2 . 6 

Harves t * * *  

/ 0 2 / 2  4 2 9 / I 

9 . 5 20 . . 7 2 2  . 

5 . 8 . 4  1 2 . 0 

. 9 
. 7 . 4  1 2 . 9 l . 2 

7 .  2 2 .  . 0 2 .  

L I  4 . 4  7 .  7 . 0 5 .  

0 . 8 3  l .  2 2  . 9 7  

s "ilr; •k *  * * *  * * *  * 

5 3 . 6 8  2 . 8 0  2 . 9 3  2 .  7 7  2 .  2 . 0 7  

x Harv e s t  
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o b s e rved a t  s tubb le no des , i t  was rare to f ind mo r e  than one s tubb l e  

shoo t develo p ing i n  each no de ( P l a t e  5 ) . Thi s  was i n  con t ras t t G  the 

mul t i shoo t nodes fo und w i th i n  th e rh i zome sys tem . 

During early r e � r o w t h  s tubb l e  and rhi zome shoo t s  o f  a s im i l a r  s i z e  

d i f fered markedly i n  th e ir l eaf and s t ern comp l ements ( P l a t e  6 and 

a l s o  see Cha p t e r  6 . 3 . 3 ) . S t ubb l e  shoo ts were i n i t ially mo r e  l eafy b u t  

a s  regrowth p r cJceeded and rhi zome sho o t s  domina ted , s tubb l e  sho o t  

l eaves , and eve ntua l l y  tl1� sho o t s  t h ems elves , d i ed . I t  was gene r a l l y  

o b s e rved tha t  the f u r th e r  t h e  s uppo r t i ng no d e  was l o c a t ed f rom the 

f i rs t ground l evel , roo t e d  nod e  of the rh i zome s J s t em , the mo r e  l i le ly 

i t  was tha t  s tu b b l e  shoo t d e a th o c c u rr ed . 

3 . 3 . 3 . 2  Rh i zome S hoo ts 

1h e p a t t ern o f  increas ed rhizome shoo t numb ers o c c u r r ing w i th 

i n c r eas e d  c u t t i n g  � eve r i ty cont inued thro ugh the exp erimen tal per iod 

u n t i l  the 6 / 4 / 7 6  harves t ( Tab l e  9 ) . Dur ing the s ub s equent r e g rowth 

p e r io d ,  inv o lv ing the r e covery f rom d ry cond i t io ns , there was a 

gene ral f l u s h  o f  rhi zome s hoo t s , p a r t i cularly in a s s o c ia t io n  wi th the 

mo s t  laxly d e f o l ia ted t r e a tmen t s . Th ese shoo t nunrlJ e rs wer ma i n taine d  

dur ing ea r l y  winter b u t  had fal len by the t ime o f  th e l as t  s ample o n  

1 0 / 8 / 76 . The g r ea t e r  numb e r s  r e c o r d e d  for S F ;  compa red w i th S I , up 

un t i l  the b e g i nning of the early au t umn dry p e r i o d  was the o nly conH is t e n t  

response to c u t t ing frequency . 

Fo r bo th the s everely c u t  t r e a tments , an in p ar t i cu l a r  S F ,  

rhi zome sho o ts predomina n t l y  aros e f rom s i tes o n  the upper s ur f ac e s  

o f  rhi zomes , e s p e c i a l l y  a t  swo l l en no dal po s i t i o ns . I n  c o n t r as t ,  

rhi zome sho o t s  in the r emaining t rea tments f r equen t ly a ro s e  f rom the 

s ides o r  und e rsurface::. ut no des w i th i n  the rhi zome sys t em and o f t en 

the basal p o r t ion o f  t h e i r  s tems ind ica ted tha t u� to 2-3  cm o f  und er­

ground , ho r i zontal g row th had i n i t ia l ly o c c u r r ed b e fore the sho0 � 

b e c ame eme r g e n t  ( P l a t e s  7 and 8 ) . 

P r io r  to the autumn d ry pet i o d , rhi zome shoo t numb e r s , r e l a t iv e  to 

those reco r de d  fo r s tubb l e  shoo ts , w0re genera l l y  of a s im i l a r  ( S F  

and S I )  o r  r educed (MF , HI , L F  and L I )  o rder . Fo l lowing t h i s  d ry 

p e r io d  howeve r ,  the b i t ua t ion was reversed and rh i zome sho o t s  were 

p r edominan t in al l L r e a tm en ts . 



P l a t e  5 :  A s tubb l e  no de po s s e s s ing three axil lary shoo t s  a t  d i f fer en t  
s tages o f  d evelopmen t .  

P l a t e  6 :  Contras t i ng l eaf and s tem comp l ements  in rhi zome shoo t s  
( le f t )  and s tubbl e  shoo t s  ( r igh t )  during early regrowth . 
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P l a t e  7 :  A rh izome shoo t ch arac teris t ically dominat i ng two s tubble 
shoo t s  ( l e f t ) and a rhi zome shoo t wi th a basal underground 
po r t ion ( arrowed , r ight ) . 

P l a t e  8 :  Two rhi zome shoo t s  and s everal rhi zome shoo t init ials 
a t  d i f ferent s tages of  development .  

5 4  



taken b e f o r e  the 3 / 2 / 7  a f t e r  the 

76 harves t s , rhi zome s ho o t  ini t i a l s  were recorded , but no t rea tment  

d if f er e nces were evident and absolute numbers were l ow 

mean o f  0 . 8 per B e tween thes e  twv d a t es however , there 

a i nc r ea s e  in abs o l u t e  numb ers marked reatmen t 

the mo s no t ab l e  w i th trea tmen ts MF and 1 0 ) . 

Rh i zome shoo t i n i t ia l  i n  S F  were cons i s  numb e r  

tho s e  o f  the o th e r  cut  trea tments  a n d  fu r th e rmo r e , 

the r ema i cu t numb ers were t is r educed 

when l es s  f requent cut was 

TABLE o f  rhi zome 

t e  J /  2 

. 4  

4 . 3  

9 . 4 

s 

LI 

. 6 4 

s ·jt:. ·}; i:; 

LSD ( 2 . 2  

Treatmen t  X 

sho o t  :i.ni  

No rmal 

0 . 9 

4 .  . 5 

4 . 5 . 9  

2 . 7  
2 . 2 

2 . 3  

0 . 4 7  

7� -lc * * ** 

. 4  l .  

Harve:  

Abno rmal 

H a rves 

Harv e s t S E  

1 . 6 

" j  
• I 

. 5  

3 

t e  

( per 

4 

1 . 9 2 . 5  

4 . 5 . 2 

4 . 5  

0 . L  

3 .  

* * '�< 

. 7 

I n terac tion 

1 . 3 

. 1 2 

. 0  

0 .  

5 . 7 

5 . 9 

5 . 9  

4 . 7 

5 4 

5 

* 



ro und sho o t s  w e r e  p r e s e n t  a f t e r  

tho s e  tha t had no l b e c ome o r tho f o rme, 

7 6 , 

9 )  w e r e  i n  e xc e s s  o f  2 i n  t h  a n d  t he r e f o r e  

c l as s i f i e d  as pa r t  o f  t h e  rhizome s ys tem .  S wo l l en 

s i te s  f o r  bo t h  s L e  and t i - i n i t ia tion 

were 

rhi zome 

shoo t ini t ia l s , l a t eral of a s rhi zome , 

r is e  to ini t i a l s ,  d i d  o c cur . 

r e i  to as abno r mal i n  Tab l e  1 0 , 

t h e  par t o f  th i s  t l' : v e  p e r  the t e rminal ap e "� 

i n i t i a  ied and th e s t em s u e  

N o  s ta t i s t  s i c an t  d i f f e r ences w e r e  

o r  harves t e s , and 

errors a r e  p r e s en 

s h o o t  ini t i a l s  

3 . 3 . 3 .  

c rown t 

t h e  

f rom a x i l  

auturrm 

p o s i t io ns 

however , 

t i al s , 

t io ns 

s ho o t  1 ) . 
t rea tmen t s � 

o f  new rhi zome f rom th e c rown 

ventral rown shoo t s . 

a ro s e  

t 

) 

f o r  

c l a s s i f i c a t io n  and d ivi s i o n  o f  r e s idual ts 

to th a t  o u t l i ned for the i s  o f  t s . 

o r d e r  t h e  r e s idual s hoo t d e te rmina t io ns 

numb e r  o f  sho o t s  ava i l ab l e  f o r  imme d i a t e  

s 

the s i  f s ho o ts i nc l uded e a c h  class did vary b e tw e e n  p r e-

5 6 . 

) . 

pos t - c u t  l i n tac t s  s a s  



P l a t e  9 ( l e f t  to r igh t ) : Early rh i zome shoo t development rang ing 
f rom a l ea fy o r tho tropic rhizome sho o t  to an undergro und 
rh i zome shoo t ini t ial . 

P l a t e  1 0  ( r ight to l e f t ) : S tages o f  abno rmal rhizome shoo t 
apical dea th ; sub tended ax il lary bud dev e l o pmen t ;  
rhi zome sho o t  init i a l  g rowt h . 

ini t ial s ; 
resumed 

57 





59 . 

R"'sidual shoo t numb e r s  ) 

H a rv e s t Da 

S tubb l e  Shoo t s  

Tre a tment 

5 .  1 1 . 5  1 6 . 1  1 8 . 0  1 6 . 2 1. 2 6 . 7  

1 5 . 2  1 5 . 0  1 4 . 3  1 2 . 8  2 1 . 7  2 1 . 7  . 4  
LF 3 0 . 0  1 5 . 7  9 . 4 1 5 . 6  1 9 . 9  1 . 2 2 3 . 4  

S I  8 . 8  1 . 0  5 . 5  l O  . 9  7 . 9  . 2  8 . 9  

1 3 . 2  1 3 . 9  6 . 6 1 1 . 4 1 0 . 7  1 3 . 0  

L I  2 6 . 1  1 0 . 6  4 . 7  1 0 . 8  7 . 3  . 8  2 5 . 1  

Mean S 7 1 . 2 5  1 .  0 5  1 . 3 8  L 1 1 .  
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The we ight l o s s es t hat oc curred in underground organs during 

win ter can par t ly be assoc iat ed with general r e s p iratory l o s s e s  

invo lving the u t il i zat ion o f  s tored s tarch ( se e  Chapter 5 . 3 . 1 ) . A 

fur ther con tributor to  thes e l osses was L l . e  death of old rhi zome t i s s ue 

which appeared to b e  c l o s e ly related to d is eas e f a c tors . Les ions on 

rhi zome tissue , especially on the older s t erns , became conunon during 

lat e autumn and win t er and isolation of the involved pathogens indicated 

a s o il fungal complex exis t ed that invo lved Rhi zoctonia_. Phy tophthora 

and Co l leto trichwn des truc tivwn (Laundon , pers . conun) , Henson & S c o t h  

( 1 9 6 2 )  have a l s o  repor t ed Rhizoctonia so lani a s  a n  impor tant disease 

of underground organs and basal port ions of  aerial s tems in L.  peduncu latu s . 

J . 4 . 2  Crown and Taproo t  

The pr imary crown and taproo t can b e  considered a s  the c entral 

organ of a p lant uni t , in that it l inks the netwo rk of periph eral 

s t em grow th that domina tes the growth hab i t  o f £ .  peduncu la tua . Al though 

ther e was no obv ious retrac t ion in the leng th of this cent ral sys t em 

a t  a ny t ime , i t s  we igh t d id show marked s easonal variat ion and th e 

manipulation of  above-ground growth by cu t t ing , d id influence the 

ext e n t  and pat t e rn of the s e  s easonal we igh t changes . Probably o f  

grea t est  impo rtanc e were the relat ively l ow weigh t s  recorded where 

s evere and f requent cutt ing wa s employed , part icul arly as  the r edu tions 

were mo s t  no ticeab l e  dur ing s ummer . Th is response has impo r tant 

imp l i c a t ions in r e la tion to plant pers is t ence under cond i tions o f  

s umme r  mo isture s t r e s s  and s t o cking manag ements  invo lving con t inuous 

graz ing . Levy ( 1 9 7 0 )  does refer to L. peduncu la tus as be ing intolerant 

of dry condi tions and the reduc t ion in t he s iz e  of the taproo t sys t em 

under int ens e d e f o l ia tion may in par t f . rm the bas is  for such a c o�nent . 

The pat tern and extent o f  c rown shoo t ini t iat io n ,  as inf l uenced 

by s eason and managemen t ,  were s imilar to tho s e  recorded for c rown 

and t apro o t  we igh t s . However ,  w i thin a plant containing a rh i zome 

syst em , the c rown is  of l i t t l e  r elative impo r tance as a shoo t produc ing 

organ and t ends only to p rovide the bas is for  ini t i al rhizon1 expans ion . 

O f  thos e  crown sho o t s  that did develop , nearly a l l  aro s e  from l a t e ra l /  

ventra l pos i t ions growing ini t ial ly a s  ho r i zontal shoo t ini t ials and 

then a s  vertical aerial shoo t s . This t endency to grow away f rom the 

plant ' s  centre and produu: ! f ew dorsal crown sho o t s  is  well illus t rat ed 

by the hol low plant c entre in ab ove-ground growth , f r equently ob s erv ed 

in s ingle spac ed p l an t s  o f  L .  r•0duncu la tus . 



3 .  4 .  Rhi zome 

The o f  a rhi zome s y s t em i s  t h e  s t  

t f e a t u r e  in t h e  i c a l  s t ruc of ' Gr a s s l ands Maku ' 

a nd as s t a t e d  Ma cDo n a l d  ( 9!, ) t i s  the mo s t  no cab l e  f e a turt: 

i t  f rom t h e  r ema ind e r  o f  s p e c i es in t h e  g enu s Lo 
Var i a t ions i n  t h e  a ppearance o f  

t h e  ex t e n t  o f  rh i z om e  t h is w a s  p a r  

w h e r e  d i f f er en t  c u t t  

no 

b ec am e  l e s s  

s ev e r e  

c omp a c t  

rh i z ome exp an s i o n  inc r e a s e d , 

mo r e  o p e n , s hab i t  ( s e e  P l a t e s  1 1 - 1  

va ria c ions zome we 

and t r e a tm e n t  t r ends t o  t ho s e  o f  the rown a n d  t ap r o o t ,  th e 

o f  t h e  

r h i z ome 

much g r e at e r , 

c o nd i 

tha t  a mo r e  t rans i e n t , t empo 

and t ap r oo t . Fo t h e  

s y s t em c o ns i s  o f  

pons ive 

r o p p o r tuni t i es , wo ul 

f rh i z om e  

rh i zome t 

b e tween 

r e ad and c o  

s eas onal 

As an a l t e rnat to the c rowu 

dominant 

crown we r e  rom wh i ch 

r & 3 . 

t ini t i a t i o n  

f rom 

s ea s o na l  

th i s  s y s  

f rom the 

swo l l en no d e s  whi ch w e r e  s i  1 -

. 4 . 4  

c rown and t ap ro o t t e  1 4 )  . 

Ro o t  

f ib ro u s  r o o t  was ne t m e a s u r ement t wo 

t h e  f o rma t i o n  o f  new and t h e  d e a t h  o f  o l d  r o o t s  th 

d i f f e r e n t s ea s o n al r ns . f o rmat ion o f  new r o o t s , p a r  

a t  i t io n s  o n  rhi zome , comm en c e d  and 

t o  l a t e  sp I n  c o n t ras t t h e  d ea t h  o o l d  ro o t s  o n  

rh i zome t is st w  c ommenc e d  i n  s ummer and c o h  thro au t wnn 



P l a t e  1 1 :  A spreading , o pen p l a n t  h ab i t  typ ical o f  9 . 5  cm 
c u t t ing (LF) where underground growth was ex t ens iv e . 

P l a t e  1 2 :  I nt e rme d i a t e  plant h ab i t  o f  5 . 0  cm c u t t ing (MF) . 
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Plate 1 3 :  A comp ac t  plant 
hab i t  resul t ing 
f rom 1 . 5 ern c u t t ing 
and reduced 

P l a t e  14 : A dorsal view i ndicat ing concentrated shoo t loci 
a t  swo l l en rhi zome no des d is tant f rom the crown . 

rhizome expans ion . 
(SF) 
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and win t e r . Soper ( 1 9 5 9 )  repo r t ed that the d ecay o f  roo t s tructures 

was general l y  r es t r i c t ed to the oldest  roo t s  of aut umn harves t ed 

L .  peduncula tus plant s , although even then , root decay was much l e s s  than 

t hat o f  whi t e  clover . S imi lar seasonal p a t t erns o f  nodal root growth 

and dec ay to tho se observed in this experiment were repo r t ed in o ther 

pa s t ur e  p lant s by Jacques & Edmonds ( 1 9 5 2 ) , Trough ton ( 1 9 5 7 )  and 

Caradus & Evans ( 1 9 7 7 ) . 

Downward vert i c a l  growth o f  f ib rous roo ts f rom nodal pos it ions was 

uncommon and general ly f a il ed t o  ex t end b elow a depth of 5 cm from the 

s o i l  s u r f ac e . This t e nd ency t o  g row more hor iz ontal l y , comb ined w i t h  

t h e  ext ens ive nature o f  t he s uppo r t ing rhi zome t i s s ue , r e s ul t ed in a 

d ense s uper f ic ial roo t i ng h ab i t  s imilar to t hat report ed by MacDo anld 

( 1 946)  and O zanne et a l . ( 1 9 6 5 )  for L.  peduncu latus . The presence o f  

l arge l a cunae in the roo t  cor t ex o f  L .  peduncu latus ( Soper , 1 9 5 9 ) , comb ined 

with t h i s  d ense and shallow f ib rous roo t ing sys tem ,  may in part exp l a i n  

i t s  ab i l i t y  t o  s urvive and produce under wat erlogged condit ions (Barnard , 

1 9 6 9 ) . Furthermore , the h igh concentration o f  roo ts in the s uper f ic ial 

layers of the soil pro f il e  may also relat e t o  t he ab i l i t y  of L. pedunculatus 

to e f f i c i en t ly recover soil  phosphate under low fer t i l i ty cond i t ions , as 

i t  i s  in t his organic zone t hat p l ant avai l ab l e  phospha te p r edominan tly 

exis t s  u nd er such cond it ions (Walker & Adams , 1 9 59 ) . 

3 . 4 . 5 S tubb l e  Shoo ts 

W i th lower cutt ing height s ,  above-ground growth became mor e  

pros t r a t e  in hab i t  and sho o t  int ernode l engths were reduced . As 

a res u l t o f  thes e morpho logical  modif icat ions within the canopy , 

increa s ed cut t ing h e ight d i d  no t improve res idual s tubbl e  shoo t 

numb e r s  and in fact , grea t e r  f inal s t ubb l e  shoot numbers within a 

common regrow th per iod genera lly occurred with the more s everely c u t  

treatment s . I t  was apparent t hat greater s tubbl e  shoot  numb ers w e r e  

g enerally asso c iat ed with sma l l er canopies , a f ac t  that was f u r ther 

s uppor t ed by the l ower numbers general ly r e co rded where canopy growth 

was e x tended by increas ing regrow th t imes . Alo ng a s tem , and also 

w i th i n  a cut t ing treatment , the development of s t ubble sho o t s  d i d  

appear t o  be mor e  numerous a t  no dal s i t e s  sub tend ed by l eaves . This 

wou l d  b e  cons ist ent w i th t he treatmen t respo nses where lower r es idual 

and f inal numbers were r ecorded on the poorer l eaved s t ubb l e  of the 

s ix-w eekly cu t t i ng treatment s .  W i th L . cornicu la tus , Lang i l l e  & 



Cal der ( 1 9 7 1 )  repo r t ed that with both increas ing f requency and 

s everi ty of cut t ing , s ide branching f rom nodes on the s tubbl e  

increased and Greub & Wedin ( 1 9 7 1 a) found that of the axillary shoots  

remaining af t er infrequent c ut t ing , f ew were s ub tended by l eaves . 

n 8 . 

The reduct ion in stubble shoo t growth associa ted with the early 

autumn dry period would ind icate that mo isture s tr es s  and des i ccat ion 

s t r ongly inf luences the ex tent to which sub tending aJ•il lary shoots on 

s t ubble can d evelop . Because of the poo r viab ility o f  this shoo t 

sys t em under s tres s condit ions , i t  would appear that little b ehef i t  woul d  

b e  g ained from a management system purely des igned to  encourage their 

growth during dry cond i t ions . S imila rly , the viab i l i ty o f  s tubb le 

and as sociated shoo t s  was poo r dur ing winter f ro s t ing . Under such 

condi t ions t here would again appear to b e  l i t tle benefit  in es tab l ishing 

and retaining h igh s tubbl e  and s tubb le shoo t numbers within a winter 

canopy purely on the bas i s  of s tubb le shoot g ro�th . S tubbl e  shoo t 

vigour and viab i l i ty has also been no t ed t o  be poor in regrowing 

lucerne (Leach , 1 9 68 , 1 9 7 0 ) , part icularly the further the shoo t is 

f rom the crown reg ion . 

3 . 4 . 6 Rhi zome Shoots 

The importance and the p las t ic i ty o f  the rhi zome sys t em was 

f ur ther illus trated by the numb er of shoots developing from nodal s i tes 

at  or  und er t he soil surface . Through the inf luence of cutt ing heigh t , 

l arge differ ences in rhizome shoot numbers partic ipating in aerial 

growth were generat ed . During s pring and early summer , residual and 

f inal rhizome shoo t numb ers were generally lower where h igher cut ting 

occur red and t his was refl ec t ed in the low contr ibut ions rhizome shoo t s  

mad e  t o  f inal c anopy weights . Towards late summer there was a general 

increase in rhi zome shoo t initiation , as indicated by the increased 

number of rhizome shoot init ials and res idual shoo ts . This increase 

cont inued through autumn , part icularly under lax defoliation , however 

there was no comparable increas e in the number o f  rhizome shoo ts 

actual ly par t ic ipat ing in aerial g rowth unt i l  af t er the dry period in 

autumn ended . It  was apparent , and increas ingly so with laxer defol­

iat ion ,  that axillary shoo t s  from rhizomes were no t developing into 

aerially growing , leafy s hoo ts but were remaining underground as 

hor izontally growing , fleshy rhi zome shoo t ini t ial s . 



Following the dry period in which s tubble shoot death o cc urred 

there was a g eneral f l ush o f  aerially growing rhizome shoo ts , 

particularly wi th l axer cut ting . Mo s t  of the new shoo t s  pos s essed up 

t o  2 to  3 cm o f  whi te ,  f l eshy growth a t  their bas e  which wo uld sugge s t  

69 . 

a trans i t ion had oc curred with sho o t  ini t ials developing into leaf 

f o rming , aer ial shoo ts . This release of  init ials to aerial growth , 

combined wi th the greater tendency t o  produce l�afy rhizome shoo t s  under 

s evere defoliation , indicates that the size  and v igor of the above­

ground canopy greatly inf luences the number and d estiny of rhizome bas ed 

shoo ts . Fur thermore , the increase in rh izome shoo t  init ial s  that had 

l o s t  apical activity and t hen subs equently resumed growth from sul t �nded 

axillary buds fol lowing the dry period , further indicates that de ter­

mining processes exis t which dif f erent ially control the rol e  of rhizome 

shoo ts depend ing on the growth act ivi t ies of bo th above and b elow 

g round plant components . 

The trans i t ion of  axillary shoots  f rom ho rizontally growing 

rhi zomes to l eafy ortho t ropic shoo t s  which is appa rent in ' Grass land s 

Maku ' also o c curs in So lanum tuberosum (Wareing & Phillips , 1 9 70 ) and 
So lanum andi genum (Woo lley & Wareing , 1 9 7 2 ) . Such respons es in these 

two latter species can resul t from the removal of aerial meris tems 

and/or the appl ica t ion of exogenous hormones and as such , these 

two manipulations have been l inked in int erpret ing the t rans i t ion 

mechanism involved . Al though the growth of axill ary buds would appear 

to be ul t imat ely cont rol l ed by hormones , the func tional control 

mechanisms would seem to involve the ac t ive competi tion between 

regions of p lant growth for subs trates such as as s imilates , nutrients 

and water (Mc lntyre , 1 9 7 1 ; Jewiss , 1 9 7 2 ; Langer 1 9 74) . In S .  haZepense � 

B eas ley ( 1 9 7 0) report ed that axillary bud development was i nf luenced 

by t he dominance o f  above-ground herbage and bo th parent and lateral 

rhizome apices . As indicated by the varia tion in final sho o t  numb ers , 

t he extent to which axillary sho o t  d evelopment was dominat ed , relat ed 

posi t ively t o  cut t ing height and interval . Whe ther this increas ing 

. dominance was due to t he presence o f  grea ter amounts and mor e  ac t ive 

s tubble herbage with increas ing cut t ing height or larger and more 

rapidly growing shoo ts wi th both increas ing c ut ting heigh t s  or 

interval , canno t conf idently b e  det ermined f rom this experiment . 
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Al though rhizome b ased shoots became the predominant aerial 

component wi thin the canopy as winter progress ed ,  ap ical dominance 

wi thin these shoots was low and s econdary axi l l ary shoots b ecame 

numerous . On the ol der , poorly l eaved rhizome shoo ts , s econdary 

axi llary shoo t development was general ly at nod es no t sub tended by l eaves 

and towa rds the top o f  the parent s t em .  In contras t ,  secondary shoo t 

d evelopment on newly emerged , thick stemmed rhi zome shoo t s  was found 

at mor e  b asal nodes and it was these new rhizome shoo ts and assoc iat ed 

axillary shoo ts that dominated new s pring g rowth . Because of the 

f ew rhi zome shoo t ini ti als pres ent a t  the 29/ 6 / 7 6 harves t ,  it would 
appear tha t the thick s temmed shoots present in spring had developed 

f rom rhi zome shoot  init ials that had emerged by mid-winter . 

I n  s ummary , i t  was apparent that the emphasis in the partit ioning 

of plant growth d i ff ered markedly throughou t  the year , wi tlt aerial 

s hoo t growth dominat ing the spr ing / early s ummer petiod and underground 

growth dominat ing the l a te su�er/ au tumn perio d . The rhizome sys t em 

was the mo s t  not able plant component s tudied as  it was a large and 

highly res pons ive component tha t principally determined total plan t 

growth hab i t . I t  was also a region of act ive axil lary shoo t initiation 

f rom which rhi zome s hoo ts developed . V iab i l i ty o f  s tubble sho o ts 
during dry summer or cold winter condit ions was poor and as a resul t ,  

canopy grow th at these times was domina ted by rhizome shoo ts . 



CHAPTER 4 :  DEFOLIATION MANAGEMENT AND HERBAGE DRY MATTER PRODUCTION OF 

LOTUS PEDUNCULATUS cv . ' GRAS SLANDS MAKU ' 

4 . 1  I nt roduc tion 

Th e s upply of  as s imila tes  to , and the d emand of  assimila tes  b y , 

res p i r a t o ry pro c e s s e s  invo lved in the maintenance and forma t ion o f  
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plan t  t is s ue , s trongly influences the extent  of regrowth of  defolia ted 

pas t u r e  p l ants . Ass imila t e  s upply depends o n  the development o f  

pho tosynthetic pro cesses in p r evious and curren t  regrow th periods which 

are in t urn inf luenced by the f req uency and s everi ty of defo l i a t ion 

( Do na ld , 1 9 56 ; Brougham , 1 9 5 6 ; May , 1 9 60 ) . The pres ence o f  meris tema t i c  

regions i n  suff ic ient numb ers and at  suf f ic iently ac t ive s tages o f  

deve lopment t o  u t i l ize as s imila t e  s uppl ies , also inf luences the ab il i ty 

o f  plants  to regrow . Thus , the phy s iological s tate  o f  the p lant , as 

determined by env ironmental f ac tors and defolia t ion intens i ty ,  becomes 

impo r t an t  (Leach , 1 9 6 7 ; Jackson , 1 9 7 4 ) . 

L .  peduncu la tus has frequen t l y  b een referred to as being into�eran t 

o f  h ar d  g ra z ing and this has b een par ticula r ly so f o r  erec t ,  t et raploid 

cul t ivar s  ( Thoma s , 1 9 35 ;  Dav ie s , 1 9 69 ; Armstrong , 1 9 7 4 ; Lamb er t  et a l .  

1 9 74 ) . O nly where compe t i t io n  f rom companion spec ies i s  minimal , s uch 

as in  w e t ,  inf er t i l e  soil s , does i t  s e em l ikely that L.  peduncu latus 

can w i t hs tand severe defoliat ion (Howel l ,  1 9 48 ; Cha r l ton , 1 9 7 5 ) . 

Within d e f o l ia ted , compe t i tive sward s  i t s  poor regrowth ab i l i ty , persis t ence 

and hence product ion has b een no t ed by Levy ( in NacDonald , 1 9 4 6 ) ; 

Filan ( 1 9 6 3 ) ; S h ea th et a l  . ( 1 9 7 6 ) ; and B ro ck & Char l t on ( 1 9 7 7 ) . 

There has  however ,  b een no d e t ailed r e f e renc e to the pat terns and extent 

o f  L .  peduncu latus r egrow th tha t  al low thes e general defoliation 

respons es  to b e  explained . 

Y i e l d  data co l l e c ted from the 1 9 7 5 / 76  f ield exp er imen t ,  which has 

in p a r t  b een presented in Chap ter 3 ,  provided some info rma t ion on t h e  

produc tion responses of L .  peduncu latus c �  ' Gras s lands Maku ' t o  d i f f erent 

freque n c ies and s ever it ies of d e f o l i a t io n .  To further extend th is 

regrowth informa t ion , several mor e  c u t t ing t rea tme n t s  were evaluated 

in a s eparate f i e l d  exper iment during 1 9 7 6 / 7 7 . The p roduc t io n  l evels , 

ra tes  and compo s i t io n  of pur e ' Gras s l and s Naku ' meas u red in these f ield  

expe r iments are pres ented and dis cus s ed in this  Chap t e r . For bo th 



seed on 3 1 / 1 0 / 7 5 . Previously , the area had b een cult ivated out o f  

a grass-clover pas ture and then fallowed f o r  1 8  months . At sowing , 

7 3 . 

375  kg / ha superphos pha te fert il izer was b roadcast and for the control of 

broad-leaved weed s , 2 , 4 , DB ( 2 , 4 -d ichlorophenoxy butyric acid) at  a rate 

of  2 . 8 1 a . i . /ha was sprayed when s eed ling ' Grasslands Maku ' plants 

po ssessed 2-3 s t ems . To res trict white clover growth , etho fumisat e at 

5 . 0 1 a . i . /ha was appl ied in Augus t ,  1 9 7 6  and in an endeavour to  maintain 

a pure ' Grasslands Maku ' s tand , hand weeding of  the area on which Experiment 

2 was l ocat ed cont inued throughout the exper imental p eriod . P lant numbers , 

as d ef ined in Chap ter 3 ,  were count ed from dupl icat e ,  0 . 1  m2 sod samples 

taken on 30/ 1 1 / 7 6  and the mean plant dens i ty p lus its  s tandard error 

was 2 9 9  ± 80 per m2 , respect ively . 

The experimental area was locat ed on a Tokomaru s il t  loam ( Cowi e , 

1 9 7 2 )  for  which a mean soil mo ist ure value o f  20% O . D . W .  in the top 

30  cm o f  the soil profile was cons idered to  b e  approximately equival en t  to  

- 1  bar soil mois ture t ension ( S ca t ter , pers . comm . ) . Weekly soil 

mo is ture determinat ions were made wi thin the experimental area and when 

these l evels approached 20% O . D . W .  for the top 30 cm , overhead water ing 

was conduc ted . On the 18/ 1 2 / 7 6 . 23 / 1 / 7 7 . 1 5 / 2 / 7 7  and 28/ 3 / 7 7  appl ica tions 

of approximat ely 4 0  - 45 mm of wat er were made , such that soil mo isture 

in at  l east  the top 30 cm was res tored to f ield capacity as def ined by 

Gradwel l  ( 1 9 74 )  for this soil type . 

The experiment al area was no t defo l iated during the autumn and 

winter of 1 9 7 6 and whefi the cut t ing trea tments o f  £xperim nt 2 were £ 1rs t 

impos ed on 7 / 9 / 7 6 , t o tal canopy weight was 3 7 80 ± 302 kg D . M . /ha . The 
cutt ing treatments were as follows : 

RS cut t ing down t o  1 . 5 cm when over 50 percent o f  those maj or shoo ts 

with growth in the upper 5 . 0 cm layer , posses s ed reproduct ive bud 

d evelopment .  

SAS c u t t ing down t o  1 . 5 cm when over 50 percent o f  those mGjtor shoots 

with growth in the upper 5 . 0 cm canopy layer , possessed growing 

s econdary axillary shoo t s  at their upper nodes . 

6S cut t ing down to 1 . 5 cm every six weeks . 

61 c u t t ing down to 9 . 5 cm every s ix weeks . 

SAL a s  for SAS b ut cut t ing down t o  9 . 5 cm . 

LS al t ernat ion of  SAS and c ut ting down to 9 . 5 cm when over 50  percent 

of those maj or shoot s  wi th growth in the upper 5 . 0 cm c anopy layer 
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were o f  suff icient height sucn that their shoot apex was removed . 

Treatments  were randomly locat ed wi thin four blocks and the appropriate 

cuts were made over the ent ire 2 x 5 m plo t areas with a rotary mower . 

For each plot a ground level , 0 . 1  m2 quadrat cut , randomly locat ed within 

a p l o t  grid , was t aken before and af ter each cut and thereafter at 

approximat ely three-weekly intervals . Fol lowing det ermina t ions of  percent 

dry ma t ter and leaf area , as d etailed for Experimen t  1 ,  res idual , 

int ermediate and 1 inal dry ma t ter yields p lus appropriat e leaf area 

indices were e s t imated . 

From a cent ral po sit ion within each quadra t ,  a gro und level subsamp l e  

was s eparately taken and kep t  f o r  canopy s tructure determina t ions . The 

d is s ec t ion component s ,  as def ined in Chap t er 3 ,  were : dead mat t er , s tubb l e ,  

s tubbl e  shoot s ,  rhizome shoots  and s econd a ry axill ary shoo t s . The dead 

component included all brow n and wi thered tissue ; all leaf and s t em that 

had fal len to the ground ; and al l t is s ue left at tached to the plant 

fol lowing cut ting tha t had been damaged and therefore cons idered to 

have l i t t l e  va lue in plant regrowth . 

For d iss ec t ion , only shoot s  showing s tem extens ion or leaf expans ion 

and exceed ing 3 mm in length were cons idered to s ignif icantly cont ribu te 

t o  c anopy dry weight . Shoo t numbers as an indica tor of po ten t ial regrowth 

s it e s  following cutting would therefore have underes t imated the t rue 

value . Thos e  shoo t s  wi thin the subsample that were not loca t ed a t  the 

nod e  o f  o ther s tem tissue were assumed to have ar isen from an underground 

or igin and to have been cut at ground level . As s uch , it should be no ted 

t ha t  wi thin this group , class if ied as rhizome shoo t s , some would have 

orig inated from the crown region . Data presented in Chapter 3 do es 

indicate however , that the number of  shoo t s  origina t ing from the crown 

region is neg l igib le within the general pool of shoots  aris ing from s ites 

located a t , or  under the soil surface . Thus , for clarity of  pres ent ation 

this b asal pool will be referred to  as rhi zome shoo ts . From the count s 

o f  shoo ts wi thin each c l as s  and the dry weight of  ind ividual c omponent s ,  

determined af ter  drying a t  80°C for 1 6  hours , component shoot numbers and 

dry ma t ter yields , on an area basis , were d et ermined for each cut . 

Due to low tempera tures (Appendix 2 )  and s low growth dur ing late 

April  and May , the quadrat cuts taken on 1 7 / 5/ 7 7  were cons idered as the 

l as t  fot det��iriing the �ethage produ�fl§� of the cut ting �reatment s . 



Thus , to tal net herba ge produc t ion for each treatment was cons idered 

as the cumu l a t ive differ ence b e tween the res i dual and final dry matcer 

o f  ind ividual regrowth cycles during the 7 / 9 / 7 6  to 1 6 / 5 / 7 7  period . 

Except for t reatment RS, which was cut  on 1 6 / 5/ 7 7 , all o ther canopies 

were l e f t  intac t and quadrat cut s were made on 1 8 / 6/ 7 7  and 9 / 9 / 7 7  
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to i ndicate component changes within varyingly s tructured canopies over 

the wint er .  

Analysis  of  var ianc e tes ts conducted in bo th field experiments 

were based on a t':mdomized , complete b lock des i gn involving four rep l icates . 

4 . 3  Resul t s  

4 . 3 . 1  Experimen t 1 :  

Ab solut e  herbage dry mat ter values (D .M . )  and l eaf area indic@§ 

( LAI ) pres ent at the beginning and end of  each regrowth period are 

pres ented in Append ices 3 and 4 .  Wi thin a cut t ing height , res idual 

DM and LA! were cons istently lower when s ix rather than three-weekly 

cut t ing was employed . Obvious reductions in DM and LAI levels dur ing 

the dry then cool autumn period were evident in al l treatments .  

4 . 3 . 1 . 1  Net Herbage Produc t ion 

As no cons ideration was g iven to weigh t changes o ccurring 

within the c anopy b elow cut ting heigh t , mown D . M .  was cons idered 

invalid in determining produc t ion d i f f erences b e tween treatment s .  As 

res idual D . M .  decreas ed during spring and summer ,  mown D . M .  exaggera ted 

produ c t ion and conversely , as canopy weight acc umulated b elow cut t ing 

height during autumn , mown D .M .  underestimated actual produc t ion . The 

magni tude o f  these discrep ancies increased as c ut t ing heights increased 

and therefor e  i t  was cons i dered more valid to ass ess ne t production 

as the cumu l a t ive value of the differences between final and res idual 

D . M .  of each r egrowth cycl e . 

Ne t herbage produc t ion , as def ined above , i s  presented in Tabl e  1 3  

for three p eriods approxima tely repres enting spring , summer and autumn . 

During the s pr ing period , s ignificant ly lower p ro duc tion was recorded 

at each cut t ing heigh t when regrowth intervals were reduced and within 

bgth f requencies when the low *  1 . 5 cm cut ting height was employed . 

Fo r the summer period , there was again a cons is tent , ��gftive resp�nse 



( Figure 3 ) . Thi s  ini tial delay was mos t  marked for the 9 . 5 cm 

cut t ing heigh t , al though s imil ar ne t produc t ion was eventually a t tained 

for all three treatments . The individual nature o f  regrow th cycl es 

7 7 .  

was well illus t ra ted where mor e  frequent c u t t ing o ccurred , par t icularly 

at th� high cut t ing level . For t reatme nt L F , the al t ernat ion o f  nigh 

then l ow ne t reg rowth was common and is also ev ident in Appendix 3A . 

Similarly for treatment SF contras t ing regrowth patterns we r �  recorded 

for the two cycles of this s pr ing period . S low regrowth occurred in the 

f i r s t  cycle whereas init ial regrowth was rapid in the second cycl e . 

As with D . M .  accumula t ion , s ignif icant delays ln at taining net 

leaf area accumulation were also evident during many of the spring reg rowth 

cy cles ( Tabl e  1 4 ) . However ,  i t  is interes t ing to no te the cont inual ly 

high LAI present in L F  throughou t  both cyc l es and the decl ine f rom 

approximately 7 . 5  in LAI values towards the end of the regrowth cycl es 

o f  th e h igher , s ix-weekly cut  treatments . 

( i i )  S ummer Regrowth Cycle ( 1 3/ 1 to 24/ 2 )  
For the les s frequently c u t  treatments , the ini t ial delays i n  o � u t  

regrowth tha t were evident in the spring period , were o f  a much smal ler 

magnitude during the summer regrowth cyc le (Figure 4 ) . For this period , 

net regrowth curves of the three , inf requently cut treatments were 

d is t inc t ly d i f f erent . Init ial d elays in regrowth were greater for the 

1 . 5 cm cut and the overall rat e of increas e in ne t proudc tion was mo re 

gradual for the 9 . 5 cm cut . Fo r the mo re frequently cut treatments , 

summer regrowth rates were greater than those in spring , however the 

al terna t ion of high then low net regrowth , at  the 9 . 5 cm cut t ing heigh t , 

was s t il l  evident . 

D i f ferences in LAI between the six-weekly cut trea tments were much 

les s than tho s e  reco rded in s pring . Al l showed a s imilar pat tern o f  

inc reas ing t o  a maximum LAI o f  approximately 5 . 5  - 6 . 5 ,  then fall ing 

towards the end of the regrow th period ( Table 1 4 ) . Dif f erences in LAI 

values were also less marked b e tween the more frequently cut treatments 

and they too showed s igns of  level l ing o f f  during the firs t regrowth cyc l e  

a t  the h igher cut t ing heigh ts . 

4 . 3 . 2 Exper iment 2 

The cumula t iv� net growth o f  each o f  the three shoo t classes measured 
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Table 1 4 : 

S ample D�te 

Treatment 

SF 

MF 

LF 

Tmt Hean S E  

S I  

HI 

LI 

Tmt Hean S E  

S ampl e Date 

Treatment 

SF 

MF 

LF 

Tmt Hean S E  

S I  

HI 

LI 

Tmt Hean S E  
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Leaf area indices during a spring and summer regrowth cycle 

o f  Experiment 1 .  

Spring Cyc le 

2 1 / 10 28/ 10 4 / 1 1  1 1 / 1 1  1 1 / 1 1  1 8 / 1 1  25/ 1 1  

1 . 2 0 . 8 1 . 6 2 . 2  1 . 2 1 . 2 1 . 9 

2 . 6 2 . 5  3 . 1  3 . 4 2 . 2  2 . 9 3 . 6  

4 . 6  5 . 8 5 . 9  5 . 5  3 . 4 4 . 3 4 . 7  

0 . 1 5 0 . 1 3 0 . 1 8 0 . 24 0 . 1 8 0 . 1 7 0 . 1 7 

1 . 0 0 . 6 1 . 1  2 . 0  4 . 5 5 . 0  

2 . 2 1 . 8 2 . 2 3 � 4 6 . 6 7 . 4 

3 . 3  2 . 4 2 . 6 4 . 8  7 . 1  7 . 5  

0 . 24 0 . 1 1  0 . 1 9 0 . 1 9 0 . 28 0 . 2 7  

Summer Cycle  

20/ 1 2 7 / 1 3 / 2  10/ 2 10/ 2 1 7 / 2  24 / 2  

2 . 5  2 . 4 3 . 6 4 . 3 1 . 3  1 . 4 2 . 1  

2 . 8 2 . 6  5 . 4 5 . 0 2 . 0 2 . 5 3 . 0  

3 . 9  3 . 5  4 . 6 4 . 7  2 . 7  3 . 1  3 . 2  

0 . 2 1  0 . 1 5 0 . 1 7 0 . 20 0 . 1 8 0 . 1 7 0 . 1 8 

0 . 7 0 . 6  1 . 9 4 . 0 5 . 3 6 . 7  

0 . 9 0 . 8  1 . 9 5 . 2  5 . 5  6 . 4 

1 . 8 1 . 8 2 . 9 4 . 5  5 . 8 6 . 3  

0 . 1 6 0 . 07  0 . 1 6 0 . 1 7 0 . 09  0 . 2 3  

2/ 1 2  

3 . 0 

4 . 5  

4 . 7 

0 . 1 4 

5 . 7  

6 . 7  

7 . 0 

0 . 2 6 

2 / 3  

2 . 0 

3 . 7  

3 . 7  

o- . 1 6 

5 . 8 

4 . 5 

4 . 5 

0 . 2 1  
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and 9 . 5  cm ( e )  c u t t i ng he igh t s . 
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in this experiment was summed to g ive to tal net shoot produc tion for the 

period 7 / 9 / 7 6 to 1 6 / 5 / 7 7  (Table 1 5 ) . Ne t D . M .  produ c t ion for the 

canopy as a who le was cons idered as the cumulative diff erence b e tween 

residual and final D .M .  levels of each regrowth cycle , thereby taking 

into account D .M .  los s es resul t ing from the d eath and disappearance o f  

plant ma terial wit hin the cano py . 

Tab le 1 5 : To tal and component dry ma t ter produc tion in Experiment 2 (kg/ha) 

S tubble S hoo ts Rhi zome Shoots S econdary 
Axillary 

Shoots 

Treatment s 

RS 3 1 1  

SAS 29 1 

6 S  1626 

6L 4208 

SAL 5 1 60 

LS 3 7 1 9  

Tmt Mean S E  204 

S igni f Level * * *  

LSD ( 5% )  6 1 4 

1 1 3 34 

1 2 1 39 

9 249 

84 9 2  

8 2 5 7  

8033 

1 7 2  

* * *  

5 1 9 

8 58 

8 8 1  

5 9 0  

1 0 1 2  

7 9 6  

6 9 9  

6 6  

** 

200 

To tal Net 
Shoo t 

1 2503 

1 3 3 1 1  

1 1 465  

1 3 7 1 2  

14 2 1 3  

1 24 5 1  

1 82 

*** 

548 

To L e:ll Net 
Canopy 

1 0 5 1 3  

1 0955  

84 5 1  

9567  

90 1 7  

8244 

209 

* * *  

629 

To tal net shoo t product ion was highes t in those two treatment s ( 6L ,  

SAL ) that were cons is t ently cut a t  the 9 . 5 cm level . Whe ther cu t ting 

was based on the ex tent of secondary axillary development or on a s ix­

weekly basis , increas ing the c u t t ing heigh t f rom 1 . 5 to 9 . 5  cm , increased 

to tal shoot produc t ion . Within both cut t ing heights the use o f  

secondary axillary de� elo pment as a criterion for cutt ing improved 

pro duc t ion relative to the s ix-weekly cuts . At the 1 . 5 cm cutt ing 

height , longer regrow th per iod s  resul ted in increased total ne t shoo t 

produc tion fo r SAS compared with 6S . However , there was no further 

improvement for trea tment RS even though a further extens ion in regrowth 

interval resul ted f rom the us e of reproduc t ive development as a cri terion 

for c u t t ing . Wher e  l ax then s evere cutting was al terna ted , to tal sho o t  

produc t ion was superior to only that o f  t reatment 6S . 

From the dry ma t ter produc t ion values i t  was apparent tha t the 

s tubble shoot clas s was very res pons ive to d i f ferent intens i ties o f  

defo l ia t ion . Wh ere 9 . 5 cm cut t ing occurred , s tubble shoo t produc t ion 



8 2 . 

was s trongly encouraged , even when this was al terna t ed with low , 

1 . 5  cm cut ting . Within the more severely cut treatments , a grea ter 

amount of  s tubble shoot produ c t ion occurred with the more f requently cut 

6S . Neverthel ess , rhizome shoo t product ion in 6 S  s t ill dominated tha t  o f  

the o ther two shoo t c lasses involved i n  regrow th . This dominance occurred 

fo r afl the low cut t reatment s  and with regard to the rhi zome shoo t 

c l as s , produc t ion levels were s ignif icant ly higher when cu t t ing to 

1 . 5  cm was cons is tently employed . The extended phys iological development 

allowed within 6L dur ing th e summer resul ted in increased s econdary 

ax illary shoot  produc tion being recorded for tha t  treatment .  Overall 

however , produ c t ion from s econdary axillary shoo t s  was generally 

va r iable and of l it tl e  impo rtance . 

When dry mat ter los s es within the canopy are L ..!ken into cons iderat ion , 

treatment pa t terns in to tal ne t canopy produc t ion were J i f f erent 

f rom those for to tal shoo t produc t ion . I n  contras t to total shoo t 

produc tion values , highes t ne t canopy produc t ion was recorded for the 

two less frequent , severely c ut treatments . The lower ne t canopy 

produc tion values recorded for the mo re laxly cut tr eatments resul ted 

from D . M .  los s es of 30- 3 7  percent within the cano�y . Of the low cu t t ing 

heights , 6S produced the lowes t net canopy D . M . , a response whi ch was 
als o  par tly related to a high propo r t ion of  within-canopy lo sses . 

S imilarly with low shoo t p roduction and large losses, the al ternating lax , 

severe cutting treatment reco rded , along wi th 6S , th e lowes t ne t canopy 

production levels . 

TI1e dynamics of dry mat t er changes with in each canopy d i f f ered 

b e tween treatments and reg row th cycles within t reatments . As a resul t , 

cons i s tent gene ralized comments on regrowth patterns are diff icul t to 

make , thus each treatment wil l be cons idered individually . 

4 . 3 . 2 . 1  Trea tment RS ( F igure SA) 

The dominant form o f  shoo t grow th was undoubtedly that f rom 

the rhizome sho o t  class which , during per iods of maximum g 1·owth , 

exceeded produc t ion ra tes of  600 kg D .M . /ha/wk ( Appendix 5 ) . To 

ach i eve growth rates o f  this magnitude i t  did appear tha t rhi zome shoo t 

densi ties o f  2500- 3500 per m2 were required ( Figure 6A) . With in 

thr ee weeks such numbers were pres ent for regrowth c ycles 2 and 3 .  
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F I G U RE 5 a n d  6 :  Component dry matter  yields ( tonnes /ha) , shou t 

numbers ( x l 0 3 /m2 ) and LAI of  res idual , intermed­

iate and f inal harvests in ind ividual regrow th 

cycles of treatments RS (A) and SAS ( B ) . 
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F I G U R E  5 :  C o m p o n e n t d r y  ma t t e r  y i e l d s  f o r  t r e a t m e n t s  

R S  ( A )  a n d  S A S ( B ) . ( t o n n e s / h a ) . 
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However , in the f i rs t cycle , rhi zome shoo t numbers increased slowly 

and may in par t explain the very slow init ial three weeks regrowth in 

this cycle . 

S tubb l e  shoo t pro duction was minimal and tended to be related to 

ini tial s tages o f  regrowth . Dur ing su�b periods , s t ubble shoot numb ers 

increased to approximately 1 500 per m2 , but then decl ined as rhizome 

shoo t growth rates rapidly inc reased and s tubble shoo t growth rates 

decreased . Never theless , even a t  maximum numbers , s tubble shoots 

s till  contributed very li t tle to overall shoot produc tion . 

Within al l three regroWth cycles , secondary axil lary shoo t 

numbers and prod u c t ion values increas ed wi th t ime and develo ped to the 

grea tes t extent dur ing the s econd cycle . However , even during th is 

cycl e , when the i r  numbers peaked a t  2 33 0  per m2 , the mean growth rates 

for this component over two , three-week p e r iods were only 76 and 33 kg 

DM/ha/wk . 

The s everi ty of low cutting following extended regrowth periods 

was indicated by low and o f ten non-exis tent res idual shoo t numb ers and 

lea f areas . The inf luenc e o f  this on shoot  regrowth was par ticularly 

ev ident during the cool ini tial s t ages of cycl e 1 ,  but was less so 

dur ing the s igni f icantly f as ter growing initial periods o f  cycles 2 

and 3 ( see paired t-tests , Append ix 5 ) . I t  should be no ted however , 

86 . 

tha t dur ing ini t ial regrow th in all three cycles , the lower 95% 

confidence limi ts placed on net canopy growth rates were below tha t which 

represents zero growth rat e . 

An earlier defol iat ion dur ing the thi rd regrowth cycle would probably 

have improved t o tal produc t ion levels for this trea tment , as during the 

las t s ix weeks lodging of rhizome shoo ts b ecame evident . W i th th is , there 

was an asso c ia ted fall in rhizome sho o t  numbers , growth rates and to tal 

cano py leaf area . 

4 . 3 . 2 . 2  Treatment SAS (Figure SB) 

The increase in total net shoo t product ion (Table 1 5 )  o f  

th e four-cut , S AS trea tment , compared wi th the three-cut RS treatment, 

was due to the extra produc t ion recorded in SAS dur ing the autumn . 

Howeve r ,  as a r esul t o f  the extra cut and assoc ia ted dea th and disappearance 
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of plant mat ter , greater D . M .  losses o ccurred within SAS and a s  a 

resu l t  ne t canopy produc t ion was s imilar for the two treatments . Such 

los s es tended to o ccur more during the earlier s tages of regrowth and 

they do in par t contrib ut e  to ini tial ne t canopy gLowth rates in cycles 

1 and 3 no t being s igni f i cantly different from zero growth rate 

(Ap pendix 6 ) . 

As with RS , regrowth in treatmen t S AS was dominated by rhi zome 

sho o ts which reached maximum growth rates in excess of 600 kg DM/ha/wk 

and shoo t numbers o f  appro x imately 3000-3500 per m2 ( Figure 6B) . 

The slow build up in total shoo t numb ers during the firs t regrowth cycle 

was again in evidence and also became apparent in the las t cycl e . 

Nevertheless ,  i t  was during this las t cycle , when t empera tures and 

grDw th rates were fal l .lhg , tha t  rhi zome numb ers reached 4 800 p er m2 , 

the highes t value reco rded throughout l-I t e  experiment .  

Associated with s tubble shoo t numb er increas es during the early 

s tages of regrow th , were low but pos i t ive growth rates . However , with 

time , numbers cons istently fel l and s tubble shoo t growth rates b ecame 

nega tive . 

4 . 3 . 2 . 3 Trea tment 6S ( Figure 7A) 

As with treatment s  RS and SAS � where cu t ting to 1 . 5 cm was 

emp loyed , rhi zome shoo t produc tion domina ted r eg wwth in 6S , par t icularly 

wi thin the s econd three weeks of each cycle . Dur ing these per iods , 

rhi zome shoo t growth rates were at their highes t (Appendix 7 )  while 

rhi zome shoot numb ers continu ed to  increase to  maximum values of  

4000-4 500 per m2 ( Figure BA) . 

In contras t ,  the pa t tern of s tubble shoo t regrowth was more var iab l e . 

In cycles 2-5 , s tubble shoo t numbers quickly reach a maximum o f  4 000-

5000 per m2 dur ing the firs t three weeks o f  regrowth and then decl ined , 

a p a t t ern wh ich was s imilar to that o f  s tubble shoo t growth rates . 

However , during the slower growing cycles , 1 and 6 ,  s tubb le shoo t 

numb ers and growth rates cont inued to increase throughout bo th cycles . 

Under such cond i t ions , s tubbl e  shoo t contribution to shoot produc t ion 

was at its grea tes t .  

The different regrowth patterns in cycles 3 and 4 illus t ra te the 

inf luence of diff ering res iduals on subse quent regrowth . The eventual 
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F I G U R E  7 a n d  8 :  Component dry ma tter y ields ( tonnes /ha) , shoo t 

numb ers ( x l0 3 /m2 ) and LAI o f  res idual , intermed­

ia te and final harves t s  in individual regrowth 

cyc l es o f  treatments 6S (A) and 61 (B) . 
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s ize of  the canopy in cycle 3 was the largest measured for this treatment 

a nd fol lowing cut t ing down to 1 . 5 cm , the lowes t residual 
'
shoot  numb ers 

and l eaf area within this treatment , were recorded . The ini tial 

a ccumulation of shoot  numb ers and l ea f  area in cycle 4 was lower than 

for  the co r responding three-week p eriod in cycle 3 and accompanying 

this slow recovery were signif icantly lower to tal shoot and net canopy 

growth rates ( paired t - tes ts , Append ix 7 ) . 

The type o f  res idual , and sub s equent regrowth pattern , recorded 

in cycle 4 was very s imilar to that recorded in cycle 3 of the less 

f r equently cut  SAS trea tment . Comparisons b e tween the initial three­

week periods of cyc les 3 and 5 in trea tment 6S and cycles 2 and 3 in 

t r eatment RS , also indicate the s ens i t ivi ty of regrowth tci res idual 

charac teris t ic s . With s imilar cutting heigh ts , but on canopies of a 

s maller s i ze , trea bnent 6S possessed greater res idual leaf areas , shoot 

numbers and s ubsequent dry matter increas es . 

Excep t for  cycles 1 and 6 ,  where init ial growth rates were poor , 

ini tial net canopy growth r a t es in the r emaining cycles were s igr.if icantly 

greater thart zero ; this was irt direct contras t to the l�ijs frequen t s 

s everely cut SAS and �S . However , w i th mor� frequent cu t t ing in 6S , 
continuation o f  high rhi zome shoo t growth rates was res tric ted and this, 

combined with greater d ry mat ter losses within the canopy , led to lower 
to tal net cano py produc tion rela tive to th e o ther severely cut treatments , 

SAS and RS . 

4 . 3 . 2 . 4 Treatment 61 ( Tab l e  7B)  

Rel ative to treatment 6S , the s igni f icantly higher total net 

shoot produc t ion recorded in 61 was associa ted with improved s tubb l e  

shoo t  produc tion ( Tabl e  1 5 ) . S tubbl e  shoo t numbers were g enerally 

greater in the mo re laxly defol iated trea tment , particularly during the 

earl ier s tages of  regrowth in each cycle ( Figure 8B) . Only when r ap id 

growth in cyc l e  3 occur red , did s tubb l e  shoo t numbers s ignif icant ly 

f a ll from a p eak and growth rates become negativ e  (Appendix 8)  • In 

the remaining cycles , s tubble shoo t numbers and growth rates remained 

cons tan t or improved wi th t ime . Rel a t ive to the rhi zome sho o t  poo l , grow th 

ra t es from s tubb le shoo t s  were s imilar , if no t s i gnif icant ly gre�ter 

during cooler and/or initial regrow th periods and only in the lat ter 
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hal f  o f  cycles 2 to 4 did  the produc tion rates o f  rhi zome shoots  dominate 

thos e  of the s tubble shoot pool . 

Except for  cycle 4 ,  rh izome sho o t  dens i t ies o f  only 2000 per m2 

wer e  achieved in 6L ( Figure 8B) . Never t l�ti:les s , even with these lower 

numbers , rhi zome shoo t g row th rates were s igni f icantly lower than thos e  

o f  t reatment 6S i n  only the second and f i f th cyc l es . 

With the excep t ion o f  cycle 2 ,  net shoo t g ru�th rates during the 

f i r s t  hal f o f  each cycl e in trea tment 6L were similar to , or g rea ter 

than those in 6 S . However , due to larger wi thin- canopy losses in 6L 

over thes e periods , net canopy growth rates of th is treatment w·ere nev er 

s i gnif icantly greater than those of 6S . For the s econd hal f of each 

cycle , where rhi zome shoot  growth rates were generally s imilar in bo Lh 

t reatments , it was the added production resul t ing f rom an improved 

s urvival of s tubble sho o ts that generally increased ne t sho o t  and canopy 

produc tion of 6L over that of 6S . 

Following the large growth recorded in cycle 3 even lax cut t ing 

to 9 . 5 cm resul ted in low r es idual l eaf areas and shoo t numb ers . 

S ub s equent regrowth , par ticularly tha t o f  the s tubble shoot poo l , was 

poo r  and the regrowth pa t tern was very s imilar to that of 6S for the 

s ame period . I n  contras t ,  where res idual shoo t numbers and leaf area 

were greater , as in cycle 5 ,  init ial ne t shoo t and canopy r eg rowth was 

s ignificantly greater and no tably a�soc iated with rapid s tubb l e  shoot  

regrowth . 

4 . 3 . 2 . 5  Trea tment SAL ( Fi gure 9A) 

To tal rhi zome shoot  produc t ion ( Tabl e  1 5 )  and rhizome sho o t  

numb ers ( Figure lOA) i n  treatment SAL were s imilar to thos e  o f  trea tment 

6L . However , in contras t to the l a t ter t reatmen t , rhizome shoo t 

pro duc t ion in SAL predominantly occurred dur ing the cooler , less 

f requently cut per iods rather than during the sho r ter regrowth , summer 

p e r iods . The high s tubb l e  shoot product ion recorded in SAL also resul t ed 

f rom extended r egrow th intervals during coo l er periods and f rom the 

continued growth of s tubb l e  shoo t pool s  that were maintained by mor e  

f r equent cutt ing during the rapidly g rowing summer period . 
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I n  cycle 4 ,  treatments 6L and SAL were cu t to the same heigh t , 

however the res idual resul t ing from the cutting o f  the smaller SAL 
canopy contained , and then accumulated , more l eaf area and growing 

shoo ts . For the f irs t thre e  w eeks of regrowth , ne t canopy and to tal 

shoo t growth rates were s i gnif icantly h igher in SAL (Appendix 9 ) . 

9 6 . 

In the. subs equent p er io d  t o ta l  shoo t growth rates were similar in bo th 

treatments , al though contrib u t ions from the shoot  pools differed 

markedly . 

The depressing effects o f  longer regrowth ,  s evere cu t t ing and low 

res idual leaf areas and sho o t  numbers on initial regrowth were again 

illus trated between the third and fourth cycles of  treatments SAS and 

SAL , respec tively . S imilarly in the s econd three weeks of cycle 1 and 

in the firs t  period of the l as t  cycles , shoo t growth rates were 

s igni f icantly higher in SAL than SAS , primarily as a resul t of  greater 

s tubb l e  shoo t pro duc tion . 

4 . 3 . 2 . 6  Treatment LS  (Figure 9B)  

As wi th treatment SAL , regrowth patterns in  LS  were s trongly 

infl uenced by large dry ma t ter los ses within the c anopy which primarily 

occurred during the init ial regrowth s tages of  the s everely cut cycles . 

Due to s uch los ses , plus s low total shc u t  regrow th , ne t canopy growth 

rates over the f i rs t three weeks of  cycles 1 ,  2 ,  4 and 6 were no t 

s ignif icantly greater than zero (Append ix 1 0 ) . 

The severe cutting of  a l arge cano py , r es ul ted in regrowth 

pat terns for cycles 2 ,  4 and 6 being s imilar to the initial s tages of  

t reatments RS  and SAS . Res i dual leaf areas and shoo t numbers were low and 

following s low ini t ial regrowth periods , production was subs equently 

dominat ed by rhi zome shoo ts whose number p eaked at approximately 

2500- 3000 per m2 (Figure lOB)  . S tubble shoot  part i cipation in the 

regrowth of thes e cycles was minimal . 

I n  contras t ,  the lax defol iation o f  rapidly growing canopies 

produced high residual LAI and shoot numbers . As with thos e  cycles in 

61 and S AL possessing these res idual charac teris t ic s , initial shoo t 

growth rates were high and much of this can be a t t r ibuted to the s tubble 

sho o t  pool . The higher ini t ial growth rates recorded in cycles 3 and 



5 in LS , compared with the thi rd o f  SAL and f i f th o f  6L res pect ively , 

were primar ily the result o f  g rea ter s tubble sho o t  produc t ion in the 

former treatment ,  even though s tubble shoo t numb ers involved were 

s imilar . 

A . 3 . 3  Winter Produc t ion of Experiment 1 and 2 

I n  Experiment 1 ,  only D . M .  produc t ion reco rded up until 1 8 / 5 / 7 6  

was cons idered val id for trea tment comparisons i n  to tal ne t canopy 

produc t ion . At  thi s and subs equent dates , insu f f i c ient growth was 

pres ent to impos e  the 9 . 5 cm cut ting trea tments , thus no further 

9 7 . 

trea tment cuts were conduc t ed . However ; for the dif ferent s ized cano pies 

tha t r einained a f ter the 1 8 / 5 / 7 6  harves t ,  net canopy dry ma t ter changes 

tha t o ccurred during the winter of 1 9 76 were assessed by taking g round 

l evel cuts on 7 / 9 / 76 . For bo th cut ting frequenc ies , ne t canopy D . M .  

produc t ion over the s ixteen week period was nega tively related to 

previous cut ting heights ( Tabl e  16) . Al though cons istently lower , 

net pro duc tion o f  tho se t reatments previously cut every S ix week� was no t 

stat,is t ically d i f ferent from those cut more frequently \Vhen wi thin 

cutt ing heigh t comparisons were made . When cons idering th� dry weight 

of the canopy present at the beginning of this produc tion period ( see 
Appendix 3)  i t  is ev ident tha t its s i ze was nega t ively related to 

subs equent net canopy produc t ion recorded over the wint er . 

Tab l e  1 6 : Net d ry ma t ter produc tion during winter in Exper iment 1 and 2 

(kg/ha) . 

Experiment 1 - 1 9 7 6  

N e t  Canopy S tubble 
Shoo t 

S F  1 24 7 RS 58 

MF 754 SAS - 5  

L F  486 6S - 2 3 2  

S I  1052 6L - 2 5 7  

MI 635 SAL - 4 2 1 

LI 332 LS - 1 30 

Trot Mean S E  68 . 2  2 1 . 3  

S ignif l evel *** *** 
LSD ( 5 % )  198 64 

Experiment 2 -

Rhi zome S econdary 
Shoo t Axil lary 

Shoo t 

1 6 9 1 1 6 6  

5 54 1 36 

1 6 28 1 23 

1 7 30 1 4 2  

1 70 7  248 

1 8 3 7  1 6 6  

5 9 . 7  25 . 7  

*** ** 
1 80 7 7  

1 9 7 7  

To tal 
Shoo t 

1 9 1 6  

6 8 5  

1 5 1 9  

1 6 1 5  

1 5 3 5  

1 8 7 3 

5 7 . 3  

*** 
1 7 3  

Net  Canopy 

1 4 1 3  

6 5 1  

1 200 

805 

886 

1 5 5 5  

64 . 4  

* * *  
1 9 4  
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In Experiment 2 s imilar considera t ion was g iven to ne t D . M .  changes 

within d if ferent s t ruc tured canopies b e tween 1 6/ 5 / 7 7  and 9 / 8/ 7 7 . 

The components o f  the various canopies a t  the beginning of this period 

wi th the exception o f  RS , b e  es tabl ished f rom data pres ented for the 

las t  harves t date in Figures 5 ,  7 and 9 .  Only trea tment RS was cut  

on  this date and the res idual canopy o f  7 5 3  kg DM/ha cons is ted o f  only 

s tubb le and dead mat ter . The amo unt o f  s t ubble shoo t growth present 

can , 

a t  the 9 / 8/ 7 7 ha ·rves t was negl igible in all  treatments and thus the 

magni tude of negative ne t s tubb l e  shoo t produc t ion depended on the amount 

present at the s tar t of the winter per iod . This was gt� a tes t  where lax 

or mo re frequent cut ting had previously b een employed ( Tab 1e 1 6 )  . 

Rhi z ome shoot pro duc t ion dominated canopy D . M .  changes and i t  was only 

in treatment SAS , where ini t ial rhizume shoo t growth was equival ent t o  

1 9 20 k g  DM/ha , tha t  subs tantially lower ne t rhizome shoot produc t ion was 

recorded . Where initial rhi zome shoo t growth was below 750 kg DM/ha , 

then s im ilar net production o ccurred . Al though the absolute amount e f  

s econdary axil lary shoo t growth increas ed �ver the winter , i ts overal l 

contribution to to tal shoot g row th and res ponse to variable canopy 

s truc tures was minimal . 

To tal net shoo t growth was highes t where initially low rhi zome 

and s tubb le shoo t componen ts exis ted . As losses from the S tubb l e  

shoot  pool increas ed or net rhizome shoot gro�th decreas ed , then so did 

to tal net s hoo t  p ro duc t ion d ecreas e .  The d i fference between ne t shoo t 

and canopy produ c t ion ind icates the D . M .  losses tha t were incurred f r  m 

the s tubb le and dead mat ter components . S uch losses were greates t 

where previous ly l ax defo l ia t ion had occurred and a large s tubble , 

plus d ead pool , ini t ially exis ted . Ne t canopy production for 6L 

and S AL was therefore low .  However , it was treatment SAS , with l ow 

to tal shoot produc tion , that recorded the lowes t ne t canopy produc t ion . 

With initially smal l canop ies , where superior rhizome shoot produc t ion 

and reduced within-canopy los s es were meas ured , ne t canopy produc t ion 

was greates t . 

4 . 4  Discuss ion 

When comparing the two f ield  exper iments , cons idera t ion mus t b e  

given to two experimental fac tors that d i f f ered . Firs tly , the ro tary 

mower us ed in Experimen t 2 was more severe in defoliation than the 



s i ckle-bar mower used in Experiment 1 .  In  the former s i tuation lower 

res idual dry ma t ter and l eaf area generally resul ted , particularly at 

the 9 . 5 cm cutting height . The na ture o f  the res idual canopy in 

Exper iment 2 following a 9 . 5  cm cut could be cons idered as b e ing 

intermed iate between the 5 . 0 and 9 . 5  cm cuts of  Experiment 1 .  I t  was 

b ecause of such d i f f erences tha t Ollerenshaw ( 1 9 7 4 )  cau tioned the use 

of  ver tical cutting heigh ts as indica t ing the s everi ty of defoliation 

treatments . S econdly , the applicat ion of  wa ter to Experiment 2 to 

co rrec t soil mo is ture defici enc ies undoub tab ly influenced the d i f f erent 

absolute produc tion levels recorded fo r the two experiments . Never the­

les s , al though these d i ff erenc es exis ted , the regrowth pat terns and 

relat ive responses genera ted from th� two experimen ts were compl imentary 

to one another . I t  is impor tant to remember when d iscuss ing the 

res ul ts of both experimen ts however , tha t all th e work was conduc ted 

on pure ' Grasslands Maku ' swards and that competit ion from o ther p l ant 

species was el imina ted h¥ regular hand weed ing . 

4 . 4 . 1  S tubb l e  Shoo ts 

As Leach ( 1 9 6 8 )  repo rted with lucerne , it was the s tubb le shoo t 

9 9 . 

poo l o f  ' Gras slands Maku ' tha t  was mo s t  r�spons ive to changes in 

defolia tion pat terns . Whe re s imilar cut ting heights were employ ed , 

s t ubb l e  shoot numbers and their contribution to to tal shoo t regro�th 

inc reased �ith more frequent cutt ing . As ind i ca ted in Experiment 2 ,  

s tubble shoot regrowth fol lowed a basic pat tern . whereby growth r ates 

ini t ially increased but then decl ined as rhizome shoots began to do�ina te 

regrowth . The extent of these ini tial increas es was pos it ively related 

to cut t ing frequency , as was the d elayed decl ine in the vigor o f  the 

s tubb l e  shoot pool . 

The influence tha t  cut t ing f requency had on s tubble shoo t growth was 

princ ipally de termined through al t ering the s i ze o f  the canopy prior to 

cut t ing and thereby determining the na ture of  the res idual canopy . 

Where r egrowth intervals were ex tended and larger f inal canopies produced , 

res idual c anopies fol lowing c u t t ing were lower in po tential s tubbl e  

shoo t s ites and leaf area and appeared less conducive to s tubble shoo t 

regrow th . S imila r res ponses o c curred in t reatments with a f ixed cutt ing 

he igh t and frequency where s easonal effects influenced final canopy 

s ize . This was apparent following the large g rowth exper ienced in the 
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t h i rd cy c l e s  o f  6S  and uL in Exp e rimen t 2 and only through mo r e  f r equen t 

c u t t ing d u r i ng th is rapid g rowth p e r io d , as w l t h  t reatment SAL , was 

f in a l  canopy � i z e  res t r i c t ed and s tubbl e shoo t g rowth improved . 

Jones ( 1 9 7 3 )  wo rking \vi th Desmodiwn intortwn also repor ted tha t 

p r e-cu t cano py s i ze i n f l u en c e s  the nature o f  the res i dual c ano py and 

then , s ub s eq uen t regrowth . 

Wh ere c u t t ing h e igh t was th e only trea tment va r iab l e , p o t e n t i a l  

s tubb l e  s ho o t  numb e r s  may have b ee n  increased w i th h j gher c u t t ing b u t  

t h e  numb er o f  s tu b b l e sho o ts ac t u a l l y  par t i c i pa t i ng in regrow Lh were 

g e n e r a l l y  l ow e r  in Expe r imen t  1 and only s l igh t l y  imp roved in ExpeTiment 

2 .  Never t h e l ess , even w i th l im i t e d  imp roveme n t s  i n  shoo t numb e rs , 

s tubb l e  shoo t g rowth r a t e s  and c o u t r ib u t i. o ns to grmv th ill t reas e d  w i th 

l axer defo l ia t io n . Thi s  pro duc t i o n  response may r el u t e to the larger 

and mo re a c t ively g rowing na tu re o f  i nd iviuual s tubb l e  sho o ts r emaining 

a f t e r  s uch a c u t . The poss ibl e  i mp rovemen ts in ini t ial s tubb l �  shoo t 

g rowth r a t e s  due to the p r e s ence o f  l arge r , mo r e  ac t ively growing shoo ts 

w i th in a r e s idual canopy was also evid e n t  in cyc l es 3 and 5 of t rea tment 

LS . H igh s t ubb l e  shoo t g rowth ra tes were reco rded when l ax defol ia t ion 

o f  a prev i o u s l y  low c u t , b u t  rap i d l y  regrowing c anopy was employ ed . In 

l uc e rne , Leach ( 1 9 6 8 , 1 9 7 0 ) and Hodgkinson ( 1 9 7 3 ) h ave shown tha t 

i ni t lal s hoo t s i z e is po s i t ivel y r e l a ted to i ni t i a l regrowth r a t e s , 

s hoo t viab i l i ty and co n t ribution to o v e r a l l  p r o d u c t io n . 

1 00 . 

Rela ti ve to the r h i zome shoo t  pool , a no tab l e  f e a ture o f  the chti ngi ng 

s tubb l e  shoo C po pul a t io n s  was the rapid and o f ten l arg e i nc r eas e i n  
s hoo t numb e r s ini tially involved i n  ear l y  r eg row t h . Dur ing l a t e r  

s tages o f  regrowth howeve r ,  s tub b l e  shoo t numb e r s  o f ten d ec l ined , �vh e r eas 

o nly during the las t p rolonged r egrowt h c y c l e  of  RS in Exper iment 2 ,  
was this evident f o r  the rhizome shoo t  poo l . Th e timing and extent 

of s tubb l e  shoo t los s e s  a p p eared to be po s i t ively related to rh i zome 

sho o t  grow th ra tes , a rela tio nship t ha t  sugges t s inter-shoo t compe t i t io n  

was operat ive . In l u c erne , Leach ( 1 9 7 0 )  and Hodgkinson ( 1 9 7 3 ) 

have propo sed that c rown shoo t dominanc e over s tubb l e  shoo t s , par t icularly 

during r a p id regrowth , is related to inter-shoo t c omp e t i tio n  fo r mineral 

nut r i en t s . Such a r e l a t io nship may also oc cur in ' Gras s lands Maku ' ,  

as i t  was thos e  shoo ts  growing f rom roo ted rhi z ome nodes tha t domina t ed 

regrowth . 



4 . 4 . 2  Rhi zome Sho o t s  

Al though i t  was t h e  s tubb l e  shoo t popul a t ion that was t h e  mo re 

respons ive to d i f feren t defol ia tion patt erns , to tal shoo t grow th wi thin 

mo s t  regrowth cy cles was domina t ed by rhi zome shoo t s , par t ic ularly unde r  

mo re s ever e  d efol ia t ion . Abs o l u t e  rh izome shoo t produc t io n ,  and mor e  

no t ic eab l y  i ts contribu tion to  to tal shoo t produc tio n ,  increas ed w i th 

mo re s evere and / o r  infrequent cu t t ing . 

I n  mos t  regrowth cyc l es , ini t i al rh i zome sho o t  numbers and grcwth 

rates were low . Und e r  no treatments , even when c u t t ing was delay ed 

unt il  repro duc tive develo pment , was there any indication o f  a basal 

c lus ter of rhi zome shoo t s  dev elo ping in the canopy in res ponse to plant 

phys io logical ma turi ty . Even though a large po t ential for rhi zome 

shoo t growth ex is ts wi thin the rhi zome sys t em ( s ee Chap ter 3 . 3 . 3 ) 

there appears to b e  no p l ant process tha t gener a t es shoo ts  to a s ta t e  

whereby rapid , immediate rhizome shoo t growth c a n  commence once the 

canopy is d e f o l iated . One of  the principal fac tors in the s u ccess o f  

correc tly managed luc erne i s  the d evelopment o f  a basal f l ush of  crown 

shoo ts  whi ch can commence early , rap i d  regrowth following d e fo l i a t ion 

(Leach , 1 9 6 7 ; Keoghan, 1 9 6 7 )  and i t  i s  the f o rma t ion of such a shoo t 

pool  tha t Keoghan and Tas sel  ( 1 9 74 )  cons idered was e s s ent ial for any 

further improvement in the produc t ion po t en t ial  o f  L .  cornicu latus . 

The s l ow build-up in rhi zome sho o t  numb ers fo llowing c u t t ing mus t  
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in part b e  due to th e s low rel eas e o f  axi l l a ry buds from rhi zome nodes , 

par ticularly du ring s p r ing . Fur thermo re ,  the need to ac t iva t e  a trans i t ion 

of unde rground shoo t ini t ials into a vert ically growing , l eafy form 

may also add to the d e l ays in the es t ab l i shment o f  an ac tively growing 

shoo t popula tion . In  Expe r iment 1 ,  rhi zome shoo t development was found 

to be low dur ing spr ing/ early summer and to incl ude a ho r i zontal 

underground component during autumn ( see Chap ter 3 . 3 . 3) . 

The i n i t ial developmen t and g row th o f  rhi zome shoo ts may b e  

fur ther r e tard ed by the i r  basal  lo c a t ion w i thin t he canopy . Undoub tedly 

whi l e  underground , they are dependant on the supply of  grow th sub s t ra tes  

f rom o ther regions . Heinr icks et a l . ( 1 9 7 7 )  r e l a t ed the s low reg rowth 

of creeping roo ted l uc e rnes to the underground o r igin of shoo ts  and 

the dis s ip a t ion of energy requ i r ed to form them . Increas es  in rhi zome 



shoo t numbers and growth rates were also found to be poo rer during cool 

regrowth periods and this may be rela ted to low g round temperatures . 

L each ( 1 9 7 1 )  repo rt ed that shoo t ini tiation in lucerne was delayed 

with lowe r temp� ratures and that earl ier s tages of regrowth had 

higher opt imum temperature requirements . The ab ility o f  newly emerged 

rhi zome shoots  to condu ct rapid , independant g rowth mus t  also be 

r es tric ted by poor l ight  l evels at the canopy base and the low leaf 

comp lement of the rh izome shoo ts themelves . Compared with s tubb l,  

shoo ts that develop higher in the cano py j the l eaf complement o f  newly 

emerged rhj .�ome shoo ts was low ( s ee Chapter 3 .  3 .  ) )  ; a diff erence rhat 
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is l ikely to be related to light qual i ty and/or quant ity ( Broughanl , 1 96 2 ) . 

Rhi zome shoo ts we re undoub tably the maj o r  vo tential source o f  

shoot product ion in ' Grass lands Haku ' , y e t  the real ization o f  this 

po t ent ial th rough the manipula t ion of defoliation strategies was 

d i f ficul t .  With lax defol :! , t ion i t  was pu ssible to retain larger and 

mo re ac t ively growing rhizome shoo t s  within  the r esidual canopy but 

such a sys t em reduced rhi zome shoot numbers participating in regrowth . 

As a resul t, pos i tive rhi zome shoot produc tion res ponses to h igher 

c u t t ing did rto t occur and furthermore , an assoc ia t ion of lower rh i zome 

shoot numbe rs and grow th rates was ev ident dur ing late spr ing where 

c u t t ing waa high . 

Inc reases in rhizome shoot numb ers generally occurred wi th mo re 

frequent cu t ting ,  but rarely were these inc reases ref lected in improved 

rhi zome sho o t  growth . Under such a reg ime , expression of po tentially 

h igh rhi zome shoo t growth rates did no t occur . Wh ere regrowth 

int erval s  were ex tended , high growth ra tes event ually developed anu 

rhi zome shoo t p roduc t io n  was improved . However , this led to defoliation 

o f  large canopies which in turn resul t ed in poo r r esidual rh izome and 

s tubble shoot  popula t ions and s low ear ly regrowth . Undoub tably the 

presence of an excess number of activ ly growing rhi zome shoo ts at 

the time o f  cu t ting would be the i deal situation for encourag ing 

rhi zome shoo t produc t ion . This regrow th feature was no t apparent in 

' Grasslands Maku ' and it could no t be genera ted by defol iation 

management in these exper iments . 

4 . 4 . 3  Secondary Axillary Shoo ts 

The de elopment o f  axillary buds a t  above-ground nod es on shoo ts 

with an intact apex appeared to occur most frequent ly when the growth 
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o f  tha t apex was l ea s t  ac tive . Thus , s econdary axi l l ary slt< 1 0 t s  were 

mo s t  no t ic eabl e  a t  th e beg inning and end of each regrowth cyc l e  and 

during coo l wint er p e r iods . F o l l owing a s evere cut , g row t h  of axill ary 

buds in t he lower l t::af  axils of rhizome shoo ts was common and they 

accounted for mos t i f  no t a l l  o i  the ini t ia l  s econd a ry axillary shoo t 

produc t io n  tha t wa s r ecord�d in Experime n t  2 .  H01vever , as the 

g rowth ra tes of  the s t ·  pa r t ing rh izome shoo ts inc reas ed , further 

growth of these s ec o nd u ry ax i l l a ry shoo t s  ceas ed and few ,  if any 

o f  them , became suc c e s s f u l l y  es tabl ished wit hin the c ano py . To wards 

the l a t e r  s tages of r egrowth a fur ther flush o f  s econdary axi l l ary 

sho o t s  genera lly dev eloped and the mo s t  n'"'  r ked oc curred dur ing eh � third 

cyc l e  of  trea tmen t 6L whe re phys io log ical ma t u r i ty wa s allowed t o  

advanc e to t l ower fo rma tion . In the l a t t er par t  o f  this .: y c l e , g L-.:)W th 

rat es of 202 kg DM/ ha/wk were recorded for this sho o t  class , al though 

much o f  this can b e  a t tributed t o  r eproduc tive grow th which was i nc l uded 

w i thin this dry ma t t er poo l . A mo re val id ind ica t ion o f  the po ten t ia l  

p rod u c t ion o f  seconda ry axi l l ary shoo ts was s een l n  the s evere b u t  

inf requently c u t  t rea tments , RS and SAS , wh ere max imum growth ra t es o f  

only 7 5  kg DM/ha /wk w � r e  r ecorded . Ev en at  these r a t es the contrib u t ion 

of s econdary ax i l l a r y  shoo ts to to tal sho o t  grow th was low . 

4 . 4 . 4 S t ubb l e  and Dead Ma t t er 

W i th th e removal  o f  the t e rminal shoo t apex , the res idual t is sue 

of s uch a shoo t has , in i t s el f , l i t t l e  c apac i ty for f u r ther expan� ion . 

As s tubb l e , i t  can s u p po r t  s tubb le shoo t grow t h ; s upply g rowth 

s ub s trat es f rom a s s imila tory and remob il izat ion processes ; and even tually 

d i e , thereby ent e r i ng into the dead ma t t fo r pool . 

S tubb l e  d ry mat ter losses predominantly occurr ed du r ing the 

ini t ia l  s tages o f  regrowth and t ended to b e  mo s t  rapid dur ing warmer 

reg rowth periods . S uch los s es were general ly greater  in t r ea tmen ts 

c o n t inually d e f o l i a t ed under a l ax regime where greater ab s o l u t e and 

r e l a t ive s tllb b l e  components were generated within the cano p y . 

Undo ub t edly , i t  was the s t ubb l e  compo nent tha t was the maj o r  source 

o f  pl an t  ma t erial for  the dead compo nent o f  the canopy , par t icularly 

where l ax defo l ia t ion occurred . 

I 
The trans f er o f  s t ubb l e  t is sue t o  the dead poo l , and then the 

l o s s  of dry ma t t e r  through decompo s i l ion , formed a process within the 
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c a no py whe 1 . · · y  l arge d ry ma t te r  l o s s e s  w e r e  inc urred . Hhen mo r e  f requent , 

b u t  mo r e  pa r t i c u l a rl y  lax c u t t ing wa s emp l o y ed , a l arger s tubb l e  

c omponen t ex L s t e d  w i t h i n  t h e  cano py and t h es e d ry ma t t er lo s s es we r e 

g re; ;  t e r . Th e d i f f er enc es b e tween ne t c a no p y  and to t a l  shoo t g ro w t h  

r a L �S p r e s e n t e d  in Appen d i c es 5 - 1 0  ind i �a t ed t h e  ext ent o f  th e d r y  

m� I L  t e r  l o s ! � d ur ing r e g rowt h i n  Exp e r ime . .  t 2 .  Fo r L 1 1 e  severely c u t  

t r ea tmen ts max_�_ mum l o s s es w e r e  ap p ro x i tna t e l y  1 5 0 k g  Dr1/ ha/wk and 

they o c c u rr e J  d u r ing th e t h r e e  week period ;> u b s eq u en t  eo tha t p e r iod 

1-.rh e r e  s t ubb l e  t i s su e  l o s s e s  peaked . l n  c o n t ras t .  d r y  . d t  t e r  l o s s es 

within t h e  mu re l axly defo l i a t ed cano p ies w e r e  c u ns is t en t ' .> h i gh 

t h r ougho u t  mo s t o f  the r eg r ow th c y c l es and maximum l o s s es w e r e  in �he 

r ange o f  230-260 kg DM/ ha/wk . H igh w i t h i n- c anopy D . M .  los s es have 

a l s o  b e e n  r epo r t e d  b y Mo r r i s  ( 1 9 7 0 ) , Dav i d s on and B ir c h  ( 1 9 7 2 ) , 

Jackson ( 1 9 7 4 )  and S imons e t  a l . ( 1 9 7 2 )  whe re la rge res idual cano � ies 

of o ther pas tu r e swa r d s  w e r e  g e n� ra ted by l ax d e f o l ia tion . 

� 4 . 4 . 5 Leaf Ar ea 

As cu t t i ng b e c ame l e s s  freq u e n t  and / o r  mo re s evere , res idual 

l ea f  areas d e c r ea s ed and t h e o v e ral l degree of leaf  � �· nesc cnc e  increaH 0d . 

N et l eaf  area l o s s e s  o c c u rred d u r i ng t h e  f ir s t and o f ten s econ d  week 

of regrowth , a nd the s e lo s s es we r e  g r ea t e r  and mo re p rolonged w i t h  

l es s  f r equen t and / o r  mo re s evere c u t t i ng , par t ic u l arly during s low 

reg rowth cond i t ions . Th i s  s l ow accumul a t i o n  of l ea f  a rea d u r ing the 

ini t ial s tages of regrowth was a no t ab l e  c ha r ac t e r i s t ic of ' Gras s l anJ s 

Maku ' fo l lmv i ng d e fo l ia t ion . S low l e a f  n r ea inc reases dur 1ng e a r l:/ 
regrowth have a l s o  b e e n report  d in L .  uo�nicu la t us ( Ne lson & Smi t h , 

1 9 68b ; Gr eub & Hedin , 1 9 7 1 a , b ) , Mac�op i t i l ium a t�opu�pu�eus ( Jones , 

1 9 6 7 , 1 9 74a , b )  and D .  in to�tum ( Jones , 1 9 7 3 )  and a l l  of t h e s e l egumes 

a r e  charac t e r i z ed by s low regrowth and a poor C OT\lpe t i t i.ve ab i l i t y  in 

defo l ia t ed mixed swa rds . 

In Expe r iment 1 ,  maximum LAI were approxima tely 7 . 5  dur ing s p r ing 

and 6 . 5 in s ummer when g row th was mo re erec t and s temmy . Hax imum 

LAI values in Experiment 2 ranged b e tween 8 . 0 and 8 . 5 ,  and the  p at te rns 

LAI f o l l owed were s imilar to tho s e  of to tal shoo t g row th rates . During 

l a t e r  s t ag e s  of regrowth , d ec reas ing LAI values were recorded in bo th 

exper imen t s . However ,  i t  was ob s erved tha t  sene s cence o f  b a s al 

l eaves on a c t ively growi ng shoo ts  rarely occurred b efore LAI values 

of 5 . 5  to 6 . 0  were a c h i eved . Th is J e l ay in l eaf senes c ence probab ly 
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ac counts for the high LAI values that wer e frequently recorded in 

these experi!II€nts and it also illus trates the shade tolerant nature 

o f  L. pedunculatus that has prev iously been referred to by Levy ( 1 9 3 2 ,  

1 9 7 0 ) . 

4 . 4 . 6 Net Canopy Growth 

When these var ious growth components are cons idered together , 

the overall respons e of  ' Grass lands Maku ' to a defo l iation sys t em can 

b e  explained mo re confidently . The slow initial het tegrowth that 

was f irs t recorded in Experiment l ,  and wh ich seems to be the p rinc ipal 

'weak l ink i in regrowth , is the summed response of both pos i t ive and 

negat ive growth fac tors whi ch operate withi n  the canopy at diff eren t 

ra tes dep e tld ing on defol ia t ion management . Where cu t t ing i s  s ever e , 

to tal shoo c regrowth is slow and dry mat ter losses within the canopy 

o cc ur . With inc reas ing laxity , init ial shoot  regrowth ra tes may 

incr eas e but net canopy D . M .  changes will s t ill be small J if no t 

negat ive , due t o  even greater s tubble and dead ma t ter losses . As 

regrowth pro ceeds , increas ing to tal shoot g rowth rat es g radually 

domina te dry mat t er losses which may thems elves , dec reas e as the s tubble 

component dec l ines in size . 

Under severe d efo liation ini tial shoo t growth rates are improved 

wi th increas ing cut ting f requency due to the added r egrowth of an 

increas ed , but s t il l  temporary s tubble sho o t  pool . Where regrowth 

is mor e  rel iant on the rhi zome shoo t pool , as with l ess frequent 

cutt ing , then init ial regrowth is s lower , par ticularly during cooler 

cond i t ions . However ,  with inc reas ed r �growth intervals , the high 

growth potent ial o f  rh izome shoots is given a grea ter oppor tuni ty 

to be expressed , and as a result  dry ma tter produc t ion in bo th experiments 

was pos i t ively related to increas ing c u t t ing interval . Nevertheles s ,  

i wo uld appear that there is l i t tl e  bene f i t  to be gained by 

extending the regrowth interval until reproduct ive development occurs . 

The growth po tent ial of  s econdary axillary shoots appears to b e  low 

and there was no ev idence tha t  delay ing cut t ing unt il reproduc t ive 

development provided s hoots which coul d g ive an immedia te f l ush of 

regrowth . 
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By .1.11C.:reas ing the laxity o f  cutting , greater  init ial to tal shoo t 

growth rates o ccur as a resul t o f  an improved s tubbl e  shoo t growth 

component . This increased s tubb le shoot component is maintained for 

a long er period during regrowth f o llowing lax cut t ing , and when 

combined with rhi zome shoo t growth it l eads to increased total s hoo t  

produc t ion . If  total shoo t grow th is an indication of the compe t i t ive 

ab i l i ty o f  a e ..:� nopy , then lax defolia t i o n  would improve thtc pers i s tence 

and hence product ion of 'G rass lands Maku ' wi thin a comp e t i tive mixed 

sward . However , evert though t o tal shoo t production may be s ubs tant ially 

improved with laxer d efoliation , this may no t be §6 marked in the 

case of net canopy pro duc tion due to the l arge within-canopy D . M .  

ios s es incurred . Where lax , t hen severe cut t ing i s  alterna ted t the 

oppor tunity for high S U1bble artd dead ma t ter losses exis t and p eriods 
-

of slow regrowth o ccur fol lowing each severe defol iation . As a 

r es ul t ,  bo th shoot  and canopy produc t ion are low . McLusky and Mor ris 

( 1 9 6 4 ) , Mo rris ( 19 7 0)  and Jackson ( 1 9 74 )  have all reported that lax 

d efol ia t ion of  mixed swards maximize gross aer ial produc t ion , but i t  

is a s eve�e , inf r equent defo l ia t ion regime that normally gives 

maximum harves ted yield . 

Net canopy production would also s eem to be rela ted to ass imilate 

partit ioning pa t terns within the plant . I t  should be no ted that d ur ing 

the dry then cool au tumn period o f  Experiment l i  when net canopy 

product ion was low ; considerablQ  increases in underground dry weigh ts 

occurred ( s ee Chap ter J , 3 , 1 ) , The par t i tioning o f  d ry ma t ter appe ared 

to have favoured underg round gro�th during this period , a feature 

tha t was no t evident dur ing spr ing . In Experimen t 2 ,  soil mo isture 

was maint a ined above -1 bar by irriga tion and February/March temperatures 

were warmer (Append ix 2 ) . No general autumn s lump in produc t ion 

was recorded in this experiment al though it was no t unt il early March , 

approximately one month la ter than in Experiment 1 ,  that rhizome 

expans ion was obse rved to commenc e . Only towards the las t hal f  of 

cycl e  3 in treatment RS was there an obvious associa tion of poor 

canopy growth and underground expans ion . 

Lambert et a Z . ( 1 9 7 4 )  ranked autumn g rowth o f  G4 705 , L .  pedunou Zatus 

behind that o f  summer and sp ring and in L .  oornicu latus s l ow autumn 

regrowth has been repo rted by Ga6ser & Lachanc e ( 1 9 6 9 ) ; N el son & 
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Smith ( 1 968a) ; and Keoghan & Tass e l  ( 1 9 7 4 ) . S imilarly in luc erne , 

Smith e t  a l  . ( 1 9 6 4 )  sugges ted that the low emphasis of pho tosynthat e  

par titioning t o  expanding shoo ts during au tumn was related t o  comp e t i t ion 

from pre-wintering processes such as carbohydrate s torage . Cer tainly 

in Experiment 1 ,  the autumn p rodu c t ion s lump co inc ided with a period 

of rapid nons truc tural carbohydrate accumulation in underground 

o rgans ( s ee Chap ter 5 . 3 . 1 ) . 

4 . 4 . 7  Proposed Hanagement 

Wheh considering the responses o f  ' Grass lands Maku ' to defoliation , 
. i t  is t emp ting to propose a general management outline tha t  might 

b e  cons idered op timum for L .  peduncu la tus . The fo frilation of  such 

a propo sal is dif f i cult however , as the requirements for maximizing 

net p roduct ivity and competitivenesB , as indica ted by to tal shoo t 

production patterns , appear to conf l ict . I f  persis tence and subs equent 

produc t ivi ty of the lotus component �ithin a mi�ed competitive 

sward is to be mainta ined or enhanc ed , then ne t produc tivi ty may have 

to be sacrificed . I t  is  with this in mind t hat the fol lo�ing outl ine 

has been fo rmulated , as it is l ikely that in mo st s i tuations , 

L .  peduncu latus will be considere d  as par t o f  a mixed , competi t ive , 

grazed sward rather than as a bayed pure s tand . 

Under cool cond i t ions recovery from defol ia tion is s low , thus 

regrowth intervals should be l eng thened in o rder that eventual 

high growth ra tes can o perate for a greater time period . However , 

r egrowth intervals need no t be extended pas t a stage of d evelopment 

where g rowth of s e c -.� ndary axil lary shoo ts o c curs on the maj ori ty u f  
large rhizome shoo ts wi thin the c anopy . Any d efol iations over such 

a period should be lax and al though this may encourage greater wi thin­

canopy losses , the extra s tubb le shoo t g row th that eventua tes will 

improve ini tial and subseque n t  to tal shoo t g rowth rates . The 

r.egrowth b enefi ts resul ting from l ax defolia tion will be less  during 

winter fros ting conditions , as rhi zome shoot growth dominates and 

s tubble shoot  viab i l i ty becomes negl igibl e .  However ,  the maint enance 

of a larger canopy will provide a bet ter b as is for more rapid initial 

spring growth . 
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As temperatures and/or the po t ent ial for growth increases , 

s econdary axillary sho o t  develo pment i s  s till  a s at isfa c to ry criter ion 

f o r  defo l i a t ion t ime . Thus , its  continued use would require increased 

d efoliat ion frequency . I f  mo is ture availab i l i ty is suf f i ci ent f o r  

g rowth over these warmer periods , and cont inuous growth w i thin the 

c anopy is required , then lax defol iat ion should be maintained throughout , 

even though cons iderabl e  w ithin-canopy dry matter l osses will o ccur . 

I f  on the o ther hand s o il mo is ture availab i l i ty i s  low ,  o r  higher net 

produc t ion f rom the canopy is required , L i ten defol iation c an become 

more severe . This change will res ult in reduced canopy losses and 

t he inf erior shoo t growth rates tha t generally associate with mo re 

s evere defo�iat ion , p ar t i cularly during the init ial s tages o f  regrowth , 

w il l  be less  marked undec  warmer condit ions . 

In summary , it  would appear that the pr inc ipal component o f  

potential r egrowth i s  associat ed with the rhi zome shoo t pool and that 

the s tubble shoot pool exis ts as a mo re superfic ial , temporary growth 

component . The failure o f  the rhizome shoot pool to qui kly recover 

f rom defoliat ion and show rapid irtit ial regtbWth would s@em to be the 

maj or fac t o r  l imi t ing the competitiveness and produc tion of ' Grass l�nds 

Maku ' under defoliatio n . 
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were det ermined in two s epara t e  f ield experiment s  which have previously 

b e en detailed in Chap ters 3 and 4 .  

5 . 2  Exper imental 

. 

I n  Exper iment 1 ,  the plant ma terial used fo r de termining res idual 

plant TNC s ta tus was t h e  s ame as tha t used for res idual sho o t  numbers 

(see Chapter 3 . 3 ) . As d iu rnal variation in TNC l evels occurs 

(Lechtenberg et a l . 1 9 7 1 ) , sod sampl irtg was conf ined to between 1 100 

and 1 200 hours on the day of cutt ing and once washed , plants were s tored 

at 3C unt il shoo t count ing and dissec t ion . When shoo t counts were 

comple ted , plant par ts were s epara ted into two group s : 

( a) Central Sys tem : primary c rown plus taprbo t .  

( b )  Peripheral Sys t em : rhizome , s tubbl e  and shoot tis sue . 

The tissue o f  a l l  f ive sub s amp l e  plants was bulked into thes e  two 

groups for each plot and then f rozen within 8 hours of  sod s ampl ing . 

I t  was considered that dead material was o f  l i t tl e  impor tance in 

regrowth , thus i t  was discarded and only l ive res idual plant t issue 

was analysed for TNC s ta tus . Similarly , fibrous roo ts were discarded 

as accurate d is s e c t ion of this component would have prolonged potential 

respiratory TNC losses . For s ampl e da tes , 29/6/ 7 6  and 10/ 8/ 7 6 , 

no f ield cuts were conduc t ed , however the remainder of  the s ampl ing 

procedure was s imilar to that out l ined above . 

In Exper iment 2 ,  sod samples were taken on 30/ 1 1 / 76 and 2 5/ 4 / 7 7  

from 0 . 1  m2 areas where ground level q uadrat cuts had previous ly been 

t aken for y ield determina tions . As in Experiment 1 ,  f ive plants were 

sy s tematically s e lected to represent the f ull s i z e  range and these 

were then disse c t ed , bulked and fro zen as two groups for each p lo t ,  

namely crown plus taproo t t issue and rhizome t is sue . Thus , o nly 

underground growth was ana lysed for TNC l evels and again dead and 

f ib rous roo t t issue was dis carded . 

Within 4 8  hours of  s ampl ing , the fro zen , dissec ted mat er ial was 

placed in a vacuum oven ( 1 . 0  mm Hg) f it t ed with a refrigerator co i l  

( - 2 5  C )  and dryi ng cont inued f o r  a t  leas t 7 2  hours . Freeze drying was 

cons i dered by Smith ( 1 9 73b ) as the mo s t  reliant drying proc edure with 

r egard to TNC determina tions o f  l egume tis sue . Af ter drying , weights 

were recorded for  each bulked sys tem and the tissue was then ground 

to pass through a 0 . 5  mm mesh . Nelson & Smi th ( 1 9 7 2 )  repor ted that 



interconvers ion o f  carbohydra tes can be mi imi zed by drying and s to ring 

t is sue a t  low temperatures , low t issue mo is ture levels and fo r minimum 

t ime per iods . Therefore , ground t issue was s tored in s ealed vi< l s  

at - 3  C and analyses were conduc ted within four weeks of  th e init ial 

f ield sampl ing . 

1 1 1 . 

The analy tical p t'oc edure used for determining TNC levels was 

essen t iaily tha t  des cribed by Haslemore � koughan ( 1 9 7 6 ) . The principal 

s teps involved and the sl igh t mo dif ications used are outl ined in the 

following sec t io n . 

( a )  S ugar : 

Plant ma terial ( 5 0-60 mg ) was extrac ted with 5 ml , 6 2 . 5% 

(v/v) methanol a t  5 5C for 1 5  minu tes . A 4 ml aliquo t of th is extrac t 

was taken , from which non-carbohydrate , interfering materials ( pigment s , 

pheno l s )  were precip itated by the addi tion of  0 . 1  ml saturated lead 

ac etate while l ip ids were removed by shaking wi th 5 ml chloroform . 

Solub l e  sugars were retained within an upper aqueous , methanol layer and 

the amount pres ent in a 50 �1 al iquo t was d e termined by the phenol­

sulphuric procedure (Dubo is e t  a Z . 1 9 5 6 ) . S tandards of 2 . 5 and 5 . 0 

�g sucro s e  were also processed and absorbances read at 490 nm . I n  

this extrac t ion some sho rt chain fructosarts would have been included 

(Has l emore & Roughan , 1 9 7 6 )  al though their levels in leguminous tissues 

are general ly low ( Smi th , 1 9 7 3a ) . 

( b )  S tarch : 

Following the 6 2 . 5% methano l extrac t ion , plant tissue was 

washed twice with 1 00% methanol and then boiled as an aqueous suspension 

fo r 60 minutes . Hydrolys i s  o f  the resultan t , gelatinized s tarch was 

then achieved by i ncuba t ion w i th 0 . 1  ml o f  an amyloglucos idase prepara t ion 

(purif ied from Agidex L iquid Concentrate - s ee Haselmore :& Roughan , 

1 9 7 6 )  a t  55C for 60 minutes . Free glucose in lOO �1 of the d il uted 

s tarch hydrolysate  was then determined by the glucose oxidase method 

(Kilburn & Taylor , 1 9 6 9 ) , a s  were s tandards of  25  and 50 �g glucose . 

A magenta colour was produced by adding 5 ml , 1 8N sulphuric acid and 

abso rb ances were read at 540 nm . Four , 8 mg s tarch s tandards were 

processed in the same way for each analyt ical run and the mean recorded 

s tarch y ields ranged from 9 3  to 98  percent . Plant t issue s tarch 

levels were approp r iat ely adjus ted to repres ent lOO percent s tarch 

yield s . S imilar pro cedures involving the enzyme hydrolysis of  poly-
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s a c charides and d i s a c charides to g l u�os e monomers ha v �  proved to b e  

s a t is fac t o ry i n  t h e  J e t e rmina t io n  o f  TNC in s tarch-accumu l a t ing l egumes and 

C4 gras ses ( Smi th , 1 9 6 9 , 1 9 7 3a ) . 

S ta t i s t i c al analyses for b o th exp e r imen t s  were based o n  a 

r andomized b l o c k  des ign and for Experiment 1 data were fur ther c o n s i d er e d  

wi th a s pl i t -b l o c k  in t ime anal y s i s  as o u t l ined in Chap ter 3 . 2 .  Exper­

imental and t reu Lment  d e ta i l s  for Ex p , • r imen t s  1 :J n d  2 have been o u t l ined 

in  Chap ters 3 and 4 ,  respec t ively . 

5 . 3  Resul ts 

5 . 3 . 1  Expe riment 1 

I n  th is  exper ime n t  TNC were d e termined on res idual p l an t  mat e r ial 

tha t was s amp l ed immed ia tely f o l lowing each c u t . Howev e r , resul t s  o f  

th ese d e t ermina t ions a r e  only presented on a s ix-weekly b a s i s  and 

Lherefo re TNC val ues o f  th e three-wee kly c u t  t r eatmen ts only rela t e  to 

every s econd harves t J _t te wh Lch was commo n  to the six-week) y c u t  t rea tments . 

Omiss ion o f  the  intermed ia te data poin ts d i d  no t inf luenc e trea tmen t  

o r  seasonal TNC pa t te rns f o r  t h e  mo re f req u en tly cut  plants . 

The TNC l evels o f  the s epara t e l y  analy s ed c entral and p er ipheral 

plant sys t ems , as  def ined in the exper imen tal  sec tio n ,  were c al c ulated 

b y  summing the appropriate 62 . 5% methano l  ex t rac ted sugar levels and the 

enzyme hydroly sed s tarrh levels . By weigh t ing the TNC o f bo th sys t �ms , 

on a dry ma L ter basis , total  res idual pl ant TNC levels were d e term i1111 d . 

Thes e  la t t er values , which do no t inc lude dead or f ibrous roo t t is s t� < · , 

are presented in Figure 1 1  as a percentage o f  analysed dry weigh t . 

Ma rked s easonal t r ends in to tal res idual pl ant percent TNC were evident 

and all  t rea tments s h owed a somewhat s imilar s easonal pa t t ern . During 

s p ring , concent ra t io ns dec l ined to a Dec emb er minimum and then s t eadily 

ros e  ove r  summer and autumn t o  p eak dur ing April and May . Values again 

declined over win t er to l evels that were somewha t s imilar t o  tho s e  o f  

the prev ious spr ing . 

There was however ,  a s igni ficant t rea tment by harves t d a t e  inter­

ac t ion ( P  < . 00 1 )  which indicated that the basic seasonal p a t t e rn was 

d i f f erent ially mo dif ied by vary ing def o l ia tion regimes . 1be spr ing 
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decline was mo s t  rap id in treatment SF and b ecause of  the low minimum 

l evel atta ined , p erc ent TNC were s ignif icantly lower than those o f  

MF and LF until the l a t e  autumn peak . In contrast to the pos i t ive 

relat ionship between percent TNC and cutt ing height in this more 

frequent ly cut regime , no such relationship was evident wi thin the 

s ix-weekly cut t reatment s .  The increas ing percent TNC phase was 

1 1 4 .  

also delayed with these lat ter t r ea tments ,  al though s imilar peak values 

to those of the three-weekly cu t t r ea tments were eventually at tained . 

General t rends indic a t e d  that wi th 1 . 5 cm c u t t ing ,  TNC conc entrat ions 

increased with longer regrowth intervals . In contras t ,  no cons is tent 

response to cutt ing f requency was recorded for the 5 . 0 cm cut ting 

heigh t  treatment s and where 9 . 5 cm cutt ing was employed , TNC l evels and 

regrowth interval s  were nega t ively rela ted . 

5 . 3 . 1 . 1  C entral Sys tem To tal Nons truct ural Carbohydrat es 

S ugar concentrat ions in the crown plus taproo t were no t 

s ignificant ly influenced by defo l ia tion management but marked s easonal 

varia tions were evident ( Tab le 1 7 ) . Conc entrat ions decl ined during 

s pring and s ummer and reached minimum values in April . Over late aut umn 

s ugar levels again inc reas ed to a t tain maximum winter values . Within 

the s tarch poo l ,  conc ent rations also fell during spring , par t icularly 

for the 1 . 5 cm cut t rea tments . A phase of  inc reas ing s tarch concentrations 

then commenced in Decemb er and January and cont inued unt il April . 

Initial increases were mos t marked for treatment s MF and LF and for 

the lat ter t reatment this superio r i ty cont inued through to the mid-

autumn peak . For the more laxly defol iated trea tments , s tarch concentrat ions 

decreas ed during late autumn and these decreases continued for all 

treatments over the sub s equent winter . 

The ab solute weigh ts of  TNC tha t  are pres ented in Tabl e  1 7  for the 

central sys tem were det ermined f rom the dry weight and percent TNC 

values of the crown plus taproo t components . Absolute TNC dropped 

during s pring until  December and then recovered to attain a peak in 

late autumn . The extent of  this recovery was l eas t where 1 . 5 cm cut t ing 

was employed and mos t  marked for treatment L . F .  The peak weigh t s  

recorded in lat e au tumn were pos i t ively related to cut ting height , 

however these diff erences gradual ly disappeared as TNC l evels decreas ed 

during winter . Wher e  treatment d i f f erences occurred in absolut e TNC 



Tabl e  1 7 :  

Harves t 

Nons t ruc tural carbohy d ra Le s ta tus of  the central plant 

system in Experiment 1 .  

1 1 5 .  

Date 9 / 9  2 1 1 1 0 2 / 1 2  1 3/ 1 24 / 2  6 / 4  1 8/ 5  2 9 / 6  . 1 0 / 8 

Harves t 
Mean 4 . 2 

S ugar (%  of  dry weight )  

2 . 4 2 . 4 1 . 6 1 . 4 1 . 3 2 . 6 3 . 6 

Harves t H l ; . n  S E :  0 . 04 Harves t M�an LSD ( 5%) : 0 . 1 0 

Tre::.t tment S tarch ( %  o f  dry weigh t )  

S F  1 5 . 2  9 . 8  4 . 9  1 1 . 8  1 6 . 8  23 . 7  2 3 . 6  1 6 . 8  

MF 1 6 . 7  1 2 . 4  8 . 0 15 . 8  1 7 . 4 26 . 7  2 3 . 3  1 8 . 3  

LF 1 6 . 6  1 3 . 4 8 . 1  19 . 9  1 8 . 7  28 . 3  2 3 . 2  1 7 . 9  

S I  1 6 . 3  9 . 0 7 . 3 1 1 . 0  1 6 . 5  2 2 . 8  2 2 . 8  1 5 . 4  

MI 1 3 . 2  1 1 . 7  8 . 3  12 . 2  1 7 . 1  26 . 1  2 3 . 4  1 8 . 3  

LI 1 5 . 0  1 3 . 3  7 . 3 14 . 3  1 6 . 4  26 . 8  2 3 . 7  1 8 . 4  

Tmt Mean S E  
0 . 8 1  0 . 70 0 . 6 1  0 . 68 0 . 65 1 .  " 7  0 . 68 0 . 6 6  

S igni f  l evel 
NS * * *  * )�** NS * *  NS * 

LSD ( 5% )  2 . 1  1 . 8 2 . 1  3 . 8  2 . 0 

TNC Wei ght ( mg per plant)  

S F  1 39 7 1  4 1  78 1 2 1  1 9 7  209 1 83 

HF 87  9 2  5 7  124 1 5 7  3 7 2  329 2 20 

LF 1 1 8 6 7  64 225 294  525  36 1 1 9 6  

S I  1 04 7 1  5 3  6 7  1 6 2 2 20 2 9 2  1 68 

HI 86 1 0 7  6 3  1 28 2 0 7  396  378  204 

LI 1 2 1 1 6 9  74  1 36 1 74 4 2 5  3 6 7  2 0 7  

Tmt Mean S E  
14 . 9  1 1 . 7  9 . 9 2 1 . 0  2 2 . 6  5 1 . 3  1 8 . 5  1 5 . 4  

S igni£ l evel 
NS * NS *** * * * *  * * *  NS 

LSD ( 5 % )  3 5  6 3  68  155  5 6  

6 . 4 

1 1 . 8 

1 2 . 5  

1 0 . 7  

1 1 . 7  

1 0 . 6  

1 2 . 1  

0 . 6 6  

N S  

1 04 

1 8 1  

1 4 6  

1 5 1 

1 6 9  

1 4 9  

1 9 . 0  

NS 



levels , the p r inc ipal factor invo lved was tha t of crown and taproo t 

dry weight var iat ion ( see Chap ter 3 . 3 . 1 . 1 ) . 
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5 . 3 . 1 . 2 Peripheral Sys tem To tal Nons truct ural Carbohydrates 

The per ipheral plant system cons is ted of underground rhi zome 

growth and above-ground s tubble  p lus res idual shoot  growth . Whereas 

rhi zome d ry we ights were inilirec t ly influenced by defo l iation , the 

compo s i t ion and quan t i ty of th e aer ial res idual was d irect ly determined 

by bo th cutting he igh t and frequency ( see Chapter 3 ) . Al though the t issue 

compo s i t ion of this b ulked per ipheral sy s t em varied with dif ferent cut t ing 

heights and frequencies , no s ignif icant tr eatment effects were reco rded 

in rel a t ion to sugar concentra t ion ( Table 1 8 ) . Seasonal differ ences did 

exis t however , and as wi th the central pl ant sys tem ,  sugar concent ra t ions 

peaked in winter and then decl ined through spring and summer to minimum 

values in April . 

Al though percent s tarch l evels were much lower than thos e  of the 

central plant sys tem , s imilar seasonal and t reatment trends were recorded . 

Fo l lowing decreases during spr ing , s tarch levels s tar ted to rise in December 

and reached peak values in May . Th ese percentage increases would have 

been due to increas ing s tarch s to rage as wel l as to an inc reas ing proport ion 

of s torage rhi zome t issue rel a t ive to above-ground g rowth . I ncreas es 

were again mos t  no table  in t reatments MF and LF , al though at the late 

au tumn peak , and over the sub s equent decreas ing winter phas e ,  t reatment means 

were not s ignif ic ant ly different . 

As the res idual aerial component remained relat ively cons tant with 

time , s easonal variation in abso lut e TNC followed changes in TNC 

conc en trat ion and changes in the dry weigh t of the rhizome sys tem .  As 

a resul t ,  decreas es in TNC we igh t were recorded in wint er and s pr ing while 

TNC accumula tion occurred dur ing summer and autumn ( Tab l e  1 8 ) . W i th 

increas ing cut t ing height , th e d ry weigh t  of the peripheral sys ten1 i ncreased 

as a res ult  of a larger res idual canopy and a more expansive rhizome 

sys tem . Thus , ab solute TNC l evels weFe h igher and the commenc ement 

of the accumulat ing phase was earl ier where cut t ing height was inc reas ed . 

As the last  cut  was made on 1 8/ 5 / 7 6 , the losses of TNC per plant 

over the winter , as indicat ed by the two winter sampl ings , were no t 

related to defol i at ion . The concent ration o f  TNC declined over this 
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Tabl e  1 8 : Nons truc tural carbohydrate s ta tus o f  the per ipheral plant 

sys tem in Exper iment 1 

Harves t 
Date 9 / 9  2 1 / 1 0 2/ 1 2  1 3 / 1 24/ 2 6/4  1 8/ 5  

S ugar ( %  o f  d ry weight)  

Harves t 
Mean 7 . 9  4 . 3  3 . 6  

Harves t Mean S E :  0 . 09 

Treatment S tarch ( %  o f  

S F  6 . 2 3 . 5 2 . 2 

MF 7 . 1  4 . 0 3 . 2  

LF 6 . 5 4 . 5 2 . 9 

S I  7 . 5 3 . 3  2 . 6  

MI 6 . 2 5 . 5  3 . 2  

LI 6 . 1  4 . 8 2 . 1  

Trot Mean S E  
0 . 44 0 . 1 8 0 . 26 

S ignif Level 

* * * *  * 

LSD ( 5 % )  1 . 3 0 . 5 0 . 8 

TNC Weigh t 

SF 1 4 7  1 1 3  6 1  

MF 1 7 8 1 34 85 

LF 263  1 3 3 1 1 1 

S I  185  1 1 3 'J 7  

MI 1 5 2  2 1 3  8 7  

LI  294  282  109  

'i'm t Mean S E  
30 . 3  3 1 . 3  1 2 . 5  

S ignif Level 
* * *  * 

LSD ( 5 % )  9 1  9 4  38 

2 . 2  2 . 8 2 . 0 4 . 3  

Harvest  Mean S E :  0 . 24 

dry weight 

4 . 7  9 . 2 1 1 . 5  14 ; 8 
7 . 7  9 . 9 1 4 . 8  1 5 . 6  

7 . 6 1 0 . 8  1 5 . 7  1 6 . 1  

5 . 8  9 . 0 l lt • 3 1 6 . 5  

5 . 6 9 . 6 14 . 6  1 6 . 4  

5 . 0 8 . 8  14 . 2  1 6 . 8  

0 . 40 0 . 5 2  0 . 7 5 0 . 5 1  

*** NS * NS 

1 . 2 2 . 2  

( mg per plant ) 

7 7  1 4 1  2 1 9  402  

153  265 56 1 6 1 8  

3 1 5  406 7 19 609 

95 226 262 5 1 2  

1 2 7  30 7 4 6 1  7 26 

200 289  582 7 1 8 

24 . 4  3 8 . 6  7 5 . 6  4 8 . 8  

*** * *** * * *  

73 1 1 6  227  147  

29/6  

4 . 9 

1 2 . 3  

14 . 7  

1 3 . 9  

1 2 . 8  

1 4 . 5  

1 3 . 9  

1 . 0 1  

NS 

284 

354 

405 

366 

387 

4 2 6  

4 2 . 4  

NS 

1 0 / 8  

6 . 7  

6 . 5 

7 . 1  

7 . 0 

7 . 5 

6 . 6  

6 . 9 

0 . 50  

NS  

145  

196  

1 7 3  

180  

2 1 3  

1 9 6  

20 . 3  

NS 
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p e r iod and o rgan d ry we igh ts wer e r educed as a result of  rhizome 

d ecompo s it ion and the p roduct ion of smal l er pl ant uni ts f rom vege t a t ive 

p ropagat ion ( s e e  Cha p t e r  3 . 3 . 1 ) . 

Higher ab solute TNC l evels were reco rded wi thin the p e r ipheral 

rather than the cent ral p l ant sys t em and the ex tent  of this d i f f e r ence 

was mos t evi dent within the more l axly c u t  t reatments and in late autumn 

when rhizome growth and TNC accumu l a t ion had peaked . Jus t as cut t ing 

f r equency had l i t t l e  c o ns is tent inf l uence on absolute TNC l ev e l s  w i thin 

b o th sys t ems , the relat ive impo r t ance b etween the storage regions d id 

no t appear t o  respond t o  varied r egrow th int erval s .  

Fo r t h e  6 / 4 / 7 6  s amp l i ng ,  the p er ipheral sys t em was f ur ther s eparated 

and TNC s ta tus of the rhizome and aer ial r e s idual components were 

s e parately d e t e rmined ( Tab le 1 9 ) . I n  the above-g round t is s ue , sugar 

co ncent rat ions were higher than t ho s e  recorded wi thin the rhi zome sys t em 

and these were in turn higher than the v alues recorded wi thin the c entral 

pl ant sys t em at  the s ame s amp ling dat e . I n  contras t , s tarch concent rat ions 

w e r e  marked ly higher wi thin the rh i z ome f rac t ion of  the p e r ipheral 

s y s t em al though they were st ill l ower than tho s e  recorded in t he c rown plus 

t aproo t . B ecause of  the high s t arch concentra t ions within the rh i zome 

t is s ue ,  it  was this component that pr inc ipally determined TNC l evels o f  

the per ipheral sys t em . 

Tab le 1 9 : Nons tructural  carbohydrate s ta t u s  o f  t he rh izome and above­

g round frac t ions o f  the p e r ipheral sys tem sampled on 6 / 4 / 7 6  

( %  o f  dry we igh t ) 

Above-ground Fract ion Rhizome Frac t ion 

Tr ea tmen t % S ugar % S t arch % Sugar % S ta rch 

SF 2 . 5 4 . 8 1 . 5 1 4 . 3  

MF 2 . 8 5 . 7  1 . 8 1 8 . 1  

LF 2 . 9 5 . 9  1 . 8 1 8 . 8  

S I  2 . 8  4 . 6 1 . 7 1 7 . 7  

MI 2 . 6 5 . 6 1 . 8 1 8 . 9  

LI 2 . 9 5 . 1  1 . 9 1 8 . 3  

M ean S E  0 . 1 6 0 . 43 0 . 1 1  0 . 9 5  

S ignif Lev e l  NS NS NS * 

LSD ( 5% )  2 . 8  
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5 . 3 . 2  Experiment 2 

5 . 3 . 2 . 1  Spring S ampling 

All s ix : reatments were sampled on 30/ 1 1 / 7 6  at v arious s tages o f  

regrowth and then subsequentl y ,  sugar and s tarch l evels were determined 

for  the rhizome and c t•own plus tap roo t component s . The two carbohydrate 

fract ions were summed to  g ive percent TNC and thes e values , along with 

component dry weights are present ed in Table 20 . In all trea tment s ,  and 

for  both components , perc ent TNC values were low and of a s imilar magnitude 

to those prev ious ly recorded in the late spr ing of Exper iment 1 .  TI1 c 

sugar fract ion a t  th is sampl ing , as a mean of  all s ix trea tment s ,  was 

1 . 3 percent of d ry weigh t for bo th rhi zome and c rown plus taproo t t is sue . 

There was no evidence o f  enhanced TNC in assoc iation with extenJud 

regrowth intervals and only treatment SAS , which was cut to 1 . 5 cm one 

week prior to sampl ing , had a s ignif icantly reduced TNC concent rat ion . 

No s ignif icant treatmen t d i f f erences in underground organ weigh ts were 

recorded and as a resul t ,  absolute TNC l evels were not s igni f icant ly 

different between t reatments . 

5 . 3 . 2 . 2 Autumn S ampling 

Percent TNC recorded in the autumn s ampl ing ( 26/ 4 / 7 7 ; 

Table 20) were markedly h igh er than those  measured in late s p r ing and 

this is in agreement with the seasonal trends recorded in Experiment 1 .  

The s ugar frac tions of  the TNC values did no t d iffer s ignif icantly 

b e tween treatments and were approximately 3 . 5  percent of dry weigh t 

f o r  both s to rage regions . Al though TNC concent ration was greater in 

the c rown plus taproo t than in the rhizome t issue , it was the l eas t 

r espons ive to the defo l iat ion t reatments imposed . H ighes t TNC 

concent rat ions and dry weigh ts in the crown plus taproot were recorded 

for treatment RS where ,  prior to sampl ing , regrow th had occurred for 

twelve weeks . Between the remaining treatments however , there were 

f ew s ignificant treatment dif ferenc es which was in contras t to the 

rh i zome sys tem , part icularly in relat ion to dry weights . 
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Table 20 : TNC concentrations ( %  dry weigh t )  and dry weigh t s  (mg / plant)  

of underground organs during late spring and autumn in 

Experiment 2 .  

LRa Rhi zome Crown plus Taproo t To tal Underground 

Treatment %TNC Dry W t .  % TNC Dry Wt 
. 

La te S pring ( 30 /  1 1  / 7 6 )  

RS 1 2  5 . 4  146 6 . 9 366 

SAS 1 4 . 1  1 2 2  5 . 4 397  

6S 6 5 . 4 1 5 2  7 . 5 4 0 1  

6L 6 5 . 9  14 1 8 . 8  366 

SAL 4 5 . 2  1 26 6 . 7  34 1 

LS 6 4 . 8  1 10 6 . 6 3 7 1  

Tmt Mean S E  0 . 40  1 2 . 9  0 . 49  60 , 4  
S ignif Level NS NS ** NS 

LSD ( 5%) 1 . 5 

Autumn ( 26/ 4 / 7 7 ) 

RS 1 2  2 2 . 1  1005 26 . 1  952 

SAS 6 1 8 . 0  5 6 1  2 1 . 9  783 

6S 3 1 6 . 0  23 1 2 3 . 4  560 

6L -3 20 . 0  5 7 1  24 . 7  86 7 

SAL 3 1 7 . 4  600 24 . 1  623 

LS 3 1 5 . 7  455 2 2 . 7  7 5 1  

Tm t  Mean S E  0 . 9 6  38 . 3  0 .  7 8  7 5 . 6  

S ignif Level * * *  * * *  * * 

LSD ( 5%) 2 . 9 1 . 1 5 2 . 3  22 . 8  

LR
a 

- l ength o f  regrowth period (wks ) f rom the t ime o f  

cu t t ing to the sampl ing da te . 

%TNC 

6 . 5 

5 . 2  

6 . 9 

7 . 9 

6 . 2  

6 . 3 

0 . 46  

* 

1 . 4 

2 3 . 9  

20 . 5  

2 1 . 2  

2 2 . 7  

20 . 8  

20 . 0  

0 . 6 3  

* * *  

1 . 9 
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Within the rhi zome sys tern , shor t t u :m e f fects of the impos ed 

d e fo liation treatments were evident i n  the dif f e rent TNC concentra t ions 

reco rded for the autumn sampling . High er concentrations were r eco rded 

where regrowth i ntervals  were extended ( Treatment RS ) and where previous 

d e fo lia t ion was lax ( Treatment 61) . Where 1 . 5 cm cut ting occurred 

only three weeks before sampl ing ( Treatments 6 S  and LS ) lower TNC 

l evels were measured . Long term t rea tment e f f ec ts were apparent w i th 

regard to  rhizome dry we igh ts and where c u t t ing had con tinuously b een 

low , there was a pos i tive dry weigh t response to increasing cut ting 

interval . A respons e  in TNC concentra t ion to lax defolia t io n  was also 

evident , as values af ter a s imilar regrowth per iod were higher in 

treatment 61 compared w i th 6S . 

Al though the comb i ned TNC concent ratio ns o f  the underground 

components were s igni f i cantly d i f f erent , the magnitude of Lhe d i f f erences 

was minimal compared with those of o rgan d r-y weigh ts . It was princ ipal ly 

due to this l a t ter f ac to r tha t absolu te TNC levels were highes t in 

treatment s RS and 61 . Where the expans ion o f  the rhizome sys t em was 

poo r , as in t rea tment 6S , the lowes t weigh t of underground TNC was 

reco rded . 

5 . 4 Dis cus s io n  

I n  terms o f  percentage uni t  changes , s tarch was the mor e  respons ive 

carbohydrat e f raction and the seasonal pa t tern i t  fo llowed , princ ipally 

d e termined TNC seasonal pa t terns . Concentrat ions of both carbo iyJ L � te 

f rac t ions were influenced to a grea ter extent by s eason than defolia tion , 

however the s easonal pa t terns they f o llowed dif fered consi derably . 

Whereas s tarch levels f ell during late autumn and winter , sugar 

l evels increas ed . Increas ing sugar and decl ining s tarch concentra t ions , 

a s  s tarch is hydro lysed to sugars , have also b een repor ted f o r  lucerne 

( Jung & Smi th , 1 9 6 1 ) , L. cornicu latus (Nelson & Smi th , 1 968b ) and 

r ed clover ( Smith , 1 9 5 0 )  during late autumn to early spring . Decli ning 

TNC values in ' Grasslands Maku ' over this s ame period ind icated 

a net usage of accumula ted carbohydra te .  Whe ther this usag e  relates 

t res pira t io n  in underground organs a nd/or to the remob i l i z a t ion o f  

c arbohydrates t o  aerial sho o t  growth , canno t b e  conclus ively determined 

f rom these experiments . However , in o ther forage legumes declining 

TNC over s imilar peri o d s  have been rela ted to roo t respiration 

(Weinmann , 1 96 1 ) . 



The grea ter par ti tioning of  ass imi la tes to s to r ed s tarch b e tween 

December and May in Experiment 1 co inc ided wi th the expans ion o f  

underground organs . I t  i s  unl ikely that the accumulation o f  TNC 

was the causal factor in und erground growth , as i ts expans ion was 

greater and mo re prolonged than tha t of s tarch s torage . More l ikely , 
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a commt n·t environmental trigger s t imul ated greater ass imilate part i t ioning 

to underground o rgans and resul ted in both improved s torage and growth . 

In L .  cornicu latus� Greub & Wedin ( 1 9 7 l a) proposed that this s t imulus 

was related to pho toperiod al though Nel son & Smith ( 1 969)  also found 

that the accumula t ion o f  TNC was l imited by high temperatures . 

A resurgenc e in crdwn and rhi zome shou t numb ers also coincided 

with th e accumulation of TNC in Experimen t 1 .  Whe ther this relationship 

was ind i rectly l inked to a common s timu l us or more d irectly to increased 

par t i tioning of  ass imilates to underground organs again , canno t b e  

conclus ively det ermined . I n  l ucerne , Cowet t ;l ltJ Sprague ( 1 9 6 2 )  

pos i tively l inked c rown TNC ,  shoo t numbers and shoo t vigo r and Cha t ter ton 

et a l . ( 1 9 74 )  s ta ted that their data indicated tha t high crown carbo­

hydrate levels no t only provided energy required for growth proces s es , 

but also func tioned in the ini tiation and act iva tion phase o f  b ud 

development . 

Al though TNC concentra tions were highest within the crown plus 

taproo t ,  it was the principal sto rage o rgan only when rhi zome grow th 

was l imi ted . Whe re expans ion o f  the rh izome sys tem was encouraged by 

lax and/or infrequent defol iation , then the rela t ive impo rtance of 

the cen tral plan t  sys tem d ecl ined . I t  was also apparent tha t whereas 

time influenced b o th TNC concentra tion and s torage o rgan dry weigh ts , 

the e f f ec t  of  d i f ferent ial defoliation was more conf ined to varying 

organ s ize . I t  is interes ting to no te cherefo re , that at any one 

t ime TNC concent rat ions were generally s imilar and seemed to b e  

determined b y  seasonal fac tors , thus the varia tion i n  absolute TNC 

was principal ly an express ion o f  defo l ia t ion effects on underground 

o rgan expans ion . Langille  e t  a l . ( 1 9 6 8 ), working with L. corniculatus 

also found tha t  s easonal patt erns domina t ed TNC conc entrations and tha t 

the effects of diff erent cutt ing regimes were primarily reflec t ed 

in the s ize o f  the crown and t aproo t .  

In the spring sampl ing o f  Experiment 2 ,  TNC concentrations and 

s torage organ weigh t s  showed l i ttle varia tion between treatments , 

yet when nons truc tural carbohydrates were accumulating a t  the autumn 



s ampling, TNC concentra tions , and mo re particularly organ weights , 

responded to lax and inf requent defol iation . I n  terms o f  absolute 

TNC , this contras t sugges ts that i t  is defoliation over the autumn 

period tha t is mos t  c r i t i cal in determining TNC accumulation . Greu� & 

Wedin ( 1 9 7 1b )  working with L .  cornicula tus also showed tha t only 

during
'

the accumulating autumn p eriod d id TNC concentration respond 

to differ ential defo l i at ion . Fo r the same s pecies , Nelson & Smi th 

( 1 969 ) repo r ted that only under cool tempera tures , that al lowed TNC 

to accumulate , did TNC concentra t ions cycle in response to defoliation . 

From the nons tructural carbohydrate determina tions conduc ted in 

these experiments ,  it is diffi cul t to conclus iv�ly es tab l ish the 

impor tanc e and ex tent of  TNC dep.l et ion and res to ration processes 

in the regrowth of  ' Grasslands Maku ' . I n  Exper iment 1 ,  high�r TNC 

concentra t ions were f requently reco rded for plants that had regrown for 

three rather than s ix weeks prior to sampl ing . I f  TNC concentrat ions 

were s trongly influenced by defo l ia t ion it migh t be expec ted that lo�er 

l e�els �ould have occurred with more frequent cutting . This did no t 

occur . 

Lower nons truc tural carbohydrate usage in respiration and growth 

may have b een refl ec ted in the higher absolut e TNC l evel s  recorded in 
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l ax ra ther than s everely cu t plants . However , these cut t ing heigh t 

responses may also ind i cate an earl ier , or even uninterrup ted , par t i t io ning 

of as s imi l a tes to underground orgarts �hich �aa expres sed as greater 

s torage o rgan weigh ts and TNC accumulation . This la t ter relationship 

would s eem more l ikely as i t  was organ s i ze rather than TNC concentration 

that princ ipally responded to higher cut ting . L. coPnicuZatus (Nelson 

& Smith , 1 9 6 8b ; Greub & Wedin , 1 9 7 1a) , C. vaPia (Langille & McKee , 

1 9 6 8 ; Woodruff , 1 9 7 4 )  and 0 .  viciifo lia ( Cooper & Wilson , 1 9 6 8 )  

have s imilar seasonal TNC pat terns t o  that of ' Grasslands Maku ' and 

all show l imi ted TNC cycl ing in response to defo l ia t ion . 

Regrowth charac teris tics o f  ' Grasslands Maku ' would sugges t tha t  

res idual TNC was no t o f  maj or impor tance i n  determining regrowth rates 

and produc tion . In Experiment 1 ,  canopy p roduc t ion was h igh in late 

spring/ early summer when TNC l evels were at their lowes t and conversely , 

produc tion was low in au tumn when TNC level s were high ( Chap ter 4 . 3 , 1 , 1 ) . 

Fur thermo re , it is ptissible that autumn TNC accumula tion may well have 

played a part in l imi t ing the par t i t ioning o f  assimilates to , and 
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growth o f , aerial herbage . In Experiment 2 ,  ini t ial regrowth rates 

were again h ighes t in late spring and summer when TNC values would have 

b een at the i r  lowes t level s . Within the s ame experiment , initial 

regrowth rates were no t improved when the regrowth interval of severely 

cut trea tment s were lengthened e .  n though greater abso lute TNC 
levels would h ave been present . The role of  higher abso l ut e  TNC levels 

in de termining the pos i t ive shoot production responses to lax defo l ia t ion 

is diff icul t to ascertain as thi s response is confounded by increased 

res idual shoo t numbers , shoo t size  and leaf area . However , on a net 

canopy product ion basis there was no app�rent ini t ial advantage to 

lax defo liation and higher TNC levels . 

In terms o f  a d irect func tion in early regrowth and herbage 

pro duc t ion , accumulated TNC would appear to be of l imi ted value where 

defolia tion is incomplete . The importance of  accumulated TNC is more 

l ikely to b e  associated with providing a subs trate for underground 

respiration during late au tumn ,winter and early spring and hence m�intain 

a basis for shoot ini tiation and herbage produc tion . 



CHAPTER 6 :  THE IMPORTANCE OF S EVERAL RES IDUAL PLANT 

FACTORS IN DETERMINING EARLY REGROWTH IN LOTUS 

PEDUNCULATUS cv . ' GRAS SLANDS MAKU ' 

6 . 1  I ntroduction 

Accumulat ed organic res erves in defoliated plant s can s erve as 

a sub s trate for b o th respirato ry and growth processes (Hodgkinson , 
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1 9 6 9 ; Pearce e t  a l . 1 9 69 ; Smith & Marten , 1 9 7 0 ; S ingh & Winch , 

1 9 7 4b ) . However ,  their direct inf luence on regrow th would appear to be 

conf ined to  only a few days following defol iation ( Davidson & Mil thorpe , 

1 9 6 6 a )  and this becomes of less importanc e as the associated leaf 

complement increases ( S ilva , 1 9 69 ; Leafe et a l . 1 9 7 4 ; Booysen & 

Nelson , 1 9 7 5 ) . Fur thermore , regrowth is not only det ermined by the capac i ty 

of the plant to supply energy , b ut also by the capacity to utilize  it , 

as det ermined by the s tage of  development and number of meris tems 

( Bl aser et a l . ,  1 9 6 6 ;  Sheard , 1 9 7 3 ) . In lucerne res idual shoot  s ize 

and number have b een shown to be principal determinant s of regrowth 

(Leach , 1968 , 1 9 69 , 1 9 7 0 ; Hodgkinson , 1 9 7 3 ) . 

Previous f i eld work involving Lo tus pedunau Zatus , cv . ' Grasslands 
' 

Maku , ( s ee Chap ters 3-5) , has indicated that season , rather than 

defol iat ion , is the dominan t factor in det ermining TNC variatio n .  

Fur thermore ,- there was l i t t le evidenc e tha t  pos i t ively related regrowth 

with res idual p lant TNC s ta tus . I n  cont rast however , defoliat ion height 

markedly influenc ed regrowth rates and pa tterns , but as  leaf area , 

shoo t s ize and shoo t number al l varied , the operat ive factors were no t 

conclus ively iden t ified . Early regrowth o f  ' Grasslands Maku ' in the 

f ield is characterist ically s low , however the rates and pat terns o f  

regrowth depend on the extent to which the var ious shoo t pools par ticipate . 

Therefore , the or igin and growth charac teris t ics o f  res idual and s ubs equent 

shoot populat ions are impor tant fac t ors it1 determining regrowth . 

This chapter p resent s and discusses the resul t s  of  an experiment 

( Experiment 3) des igned to provide mo re d etailed informat ion on the 

res ponse of L. peduncu latus cv . ' Grasslands Maku ' to defo l ia t ion when 

grown und er cont rolled environmental co nd itions . During a 28 day 

regrowth period , relationships were sough t between shoot r egrowth and 

s everal res idual plant factors , namely : to tal nons t ructural carbohydrates 

( TNC) , leaf area , shoo t number and shoo t s ize . 



6 . 2  Exper imental 

On 3 / 1 / 7 6 , sods o f  pure ' Grasslands Maku ' were taken from an 

area previously described in Chap ter 3 and adj acent to Experiment 1 .  

Plants were washed and separat ed and follow ing the removal of  s t em 

growth ; crown plus taproo ts were grad �u into various size ranges . 
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Those that fell within an approximate dry weight range o f  500 to 800 mg 

were subs equent ly transplant ed into a soil mix at three p er po t .  

The soil used was a s t erilized mi� o f  70  p ercent Opiki silt  loam and 

30 percent Manawatu sandy sil t and prior to potting the equival ent 

of 8 mg o f  30 percent po tassic s uperphosphat e  per po t ,  was added . 

The three transplants were arranged in a l ine within each f ive l itre 

plas tic po t ,  with the two per ipheral t rans plants being placed agains t 

oppos i t e  s id es of  the po t .  Once trans plant ing was comple ted , Rhizobium 

strain CC 8 1 4S was app lied in wa ter . 

Plants were then grown under glasshouse cond itions , being wat ered 

da ily and cut every two weeks . Wh ere individual transplants failed 

or were s low to es tabl ish , the pot  was dis carded . On 9 / 5 / 7 6 , one 

day prio r  to ent ering the growth room , 1 20 po ts were bio cked into 

f ive repl icates based on their uniformi ty of estab l ishment . As blocks , 
these plants were then grown under cont rolled climate room condit ions 

( s ee Appendix 1 1 :  Experiment 3) and were cut twice , dgWn to 2 cm , 

at weekly int ervals . Pots were randomly allocated to  four treatment s 

and s ix sample dates on 3 / 6 / 7 6  and then half were cut down to 2 . 0 cm 

and the other hal f to 5 . 0 cm . 

To create plant s of lower TNC s tatus , half the pots o f  b o th 

cut t ing heights f rom three b locks were placed in a 2 5C day/ 20C 

night environment on 8/ 6 / 76 . Light was excluded by enclos ing the 

layered t rolleys cont aining the pots with b lack poly thene sheeting . 

The following day the remaining two blocks were s imilarly treated . 

Air was pumped through tubing int o each enclosed sys tem and each day , 

plants were exposed t o  ten minu tes o f  l igh t . Af ter 48 hours o f  dark 

pretrea tment, p lant s  were removed , and along with those from the appropriate 

blocks which had remained in the original environment , they were 

aga in cut down to 2 . 0  or 5 . 0  cm heigh t . Thus , the treatments imposed 

wer e :  



L . L .  low nons tructural carbohydrat e 2 . 0 cm cut ting heigh t 

H . L .  h igh 1 1  1 1  2 . 0  1 1  1 1  1 1  

L . H .  low 1 1  1 1  5 . 0 1 1  1 1  1 1  

H . H .  h igh 1 1  1 1  5 . 0 1 1  1 1  1 1  

Al though allocated randomly into f ive initial b locks , po ts of  s imilar 

treatments .  when returned to the growth room , were locat ed together 

so that be tween treatment interf erenc e was el iminat ed during regrowth . 

I t  is unl ikely that any environmental b ias o c c u rred with this layout 

as po ts within tro l l eys and t rol leys wi thin the room were rotated 

every two d ay§ ; 

Fol lowing the f inal cut , those plants a llocated to day 0 anal ys es 

were washed free of s o i l  and separated . The central plant o f  each po t 
was retained and s tored l n  darknes s  a t  3 C unt il dissec t ion , while  

the remaining two were dis carded . Dissected components were : s tubb l e  

shoots , rhi zome shoo t s , s tubble , rhizome , c rown plus taproo t ;  f ib rous 

roo t  and dead ma ter ial and their classi fication was s imilar to that 

outl ined in Chapt er 3 . 2 .  The aerial component s  were separately 

subsampl ed and dissected into leaf and s t em and then leaf area dete r­

minations were made as described in Chapter 4 , 2 ,  Dissected material 

was s tored at 3C unt i l  vacuum oven dry ing ( 1 6 hours , 2 . 0  mm Hg , 40C) 

and then dry weights were reco rded . Appropriate po ts wer re�oved t 
0800 hours on regrowth days 3 ,  7 ,  1 3 ,  20 and 28 � and s imilar det ermin� 

at ions were made . 

Dried s tubb le shoots , rhizome shoots , s tubb l e ,  rhizome and crown 

plus taproo t were s eparately ground to pass through a 0 . 5 mm s ieve . 
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Ground sampl es were then s tored a t  - 3C in s ealed glass vials for s ubs equent 

sugar and s tarch analys es . Analyses were conducted on a three rep l icate 

basis as tis sue from the appropriate  treatment s  in repl icat e s  two 

and three were bul ked , as were tho s e  of  four and five . The analy t ical 

procedures used for det ermining sugar and s tarch percentage l evels 

wer e  s imilar to those outlined in Ch�pter 5 . 2 .  

Data were s tatis tically analysed by a 2 x 2 fac torial analysis  o f  

var iance . However , a s  treatment main effects frequently interac ted , 

only treatment means are presented in the te�t . Fol lowing log 1 0  trans form­

a t ion , shoot dry weigh t data were f i t ted to the l inear equat ion 
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log 1 0  D .  W t  b x days + a 

for  regrowth days : 0 to 7 and 7 to 28 . Relative growth rates 

( R . G . R . )  were calculated for bo th ind ividual and co llective shoot dry 

weights in accordance w i th the equat ion 

log D . W . 2 - log D . W . l 
R . G . R .  

6 . 3 Resul ts  

6 . 3 . 1  Shoo t Regrdw th 

On a per plant bas is , to tal shoo t dry weigh ts were cons idered 

a s  being the sum of  s tubbl e  and rhi zome shoo t d ry weights ( Tabl e  2 1 ) . 

On day 0 s igni ficant d i f ferences in shoot dry weights only exi s t ed 

b e tween cutting heights and in absolu t e  t erms thes e differences 

cont inued to increas e with time . As such , net regrowth in bo th shoot 

c l asses over the 28 day period was greater where h igher cut t ing was 

employed , par t i cularly where init ial TNC levels were higher . 

Where cut t ing to  2 . 0 cm was employed , total shoot weigh t s  were 

c onsis tently h igher for those plants that had an ini t ially h igher TNC 

s t atus , however thes e d ifferences were no t s tat i s t ically s ignificant 

( P< . 05) . Mor e  marked were the res pons es to h igher TNC where plants 

were cut to 5 . 0 cm , par ticularly from day 7 onwards . I t  is evident 

when cons idering the two shoot classes , tha t the response in t o tal 

shoot dry weigh t to TNC s ta tus for the 2 . 0 cm cut , was almo s t  compl e tely 

r e lated to  the rhi zome shoot poo l . Where h igher cut ting oc curred , 

again rhi zome shoo t growth was more respons ive to the TNC treatment , 

part icularly over the l as t two weeks o f  regrowth . 

When cons ider ing the contr ibution of  the two shoo t c la s s es to 

t o tal shoot regrowth , i t  should be no t ed that from day 1 3  onwards the 

rhizome shoo t pool b ec ame dominant .  As a resul t of the more respons ive 

nature of thi s  componen t ,  this dominance d id appear to be greater 

at the higher TNC and/or  cut ting l evel . 
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Table 2 1 : To tal , s tubbl e  and rhizome shoot dry weight s  ( mg per plant) 

Days of Regrowth 0 3 7 1 3  20 28 

Tot al S hoo t s  

tL 5 3  9 4  2.60 7 6 5  1 84 6  34 8 3  

HL 7 1  150 358 9 30 2049 4 6 7 4  

LH 269  393 74 1 1460 2590 5425  

HH 258  50 1 1006 1 8 16 3332  749 8 

Trot Mean S E  1 6 . 4  39 . 0  5 3 . 3  6 6 . 4  94 . 9  1· 0 3  . 3  

S ignif Level * * *  * * *  * * *  * * *  * * *  * * *  

L . S . D .  (5%)  5 1  1 20 164 205 2 9 3  1 24 3  

S tubbl e  Shoots 

LL 2 8  56 1 39 4 2 1  7 8 7  1 2 2 1  

HL 3 7  80 1 7 4  4 28 7 50 1 3t H 

LH 1 4 3  242 4 39 6 8 1  1 1 65 20 1 5 

HH 1 54 3 1 3  5 34 865  1 3 1 0  270 1 

Trot Mean S E  9 . 4 23 . 1  35 . 4  44 . 9  7 6 . 6  1 5 7 . 9  

S ignif Level * * *  * * *  *** *** *** * * *  

L . S . D .  ( 5% )  2 9  7 1  109 1 38 2 36 4 8 7  

Rhizome Shoo �s  

LL 2 5  39 1 2 1  34 3 1059 2262 

HL 34 70 1 8 3  50 1 1 29 9  33 1 3 
LH 1 2 5  1 5 1  30 1 7 79 1 4 25 3409 

HH 104  1 88 4 7 1  9 5 1  20 2 1  4. 7 9 1  

Tro t  Mean S E  9 . 2 1 7 . 5  25 � 0 4 3 . 5  59 . 0  325 . 9  

S ignif Level * * *  * * *  *** * * *  * * *  * * *  

L . S .D .  ( 5%)  2 9  54 7 7  1 3 4  1 8 2  1005 



Rela t ive g rowth ra t es ( RGR) o f  the c o l l ec t ive to tal ,  s tubb l e  e nd 

rhi zome shoo t pools , calcul ateJ on a dry we igh t bas is , ar e p r e s ented 
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in Figu re 1 2 . Data point s are l o cated a t  t he mid-point o f  each applop­

r ia t e  regrow t h  per io d . Where 2 . 0 cm c u t t ing o c curred , t o t a l  and rl ti zome 

sho o t  "RCR were g re a r er in h igher TNC p l an t s  f o r  t h e  f irs t three days 

o f  regiowth , b ut the reaf t e r  they were s im i l ar or  low � r  than tho s e  o f  

low TNC plant s . Where p l ants  were c u t  t o  � - 0 cm , b o r h  s tubb l e  and 

r h i zome shoo t pools of higher TNC s ta tus had g r e a t e r  RGR f o r  the f ir s t  

3 and 7 day s o (  r egrowth , respect ivel y . As a resul t , to tal shoo t RGR 

were greater in high e r  TNC plants f o r  t h e  f irs t 7 days , b u t  thereaf t e r  

t here were n o  marked t rea tmen t dif f er ences b e tween the two TNC 

l ev e l s . 

Exc ep t for  t h e  l as t  e igh t day s o f  reg rowth , shoo t RGR were coas i s t en t ly 

lower where h igh c u t t i ng was employed . The s e  reduct ions we re  mo s L  

marked where TNC l evels were low . Fo r a l l  treatment s , RGR o f  the 

s t ubb l e  shoo t pool d e c l ined with time , wl te reas in the rhizome s ho o t 

poo l , with the exc ep t ion o f  treatment H L , values increas ed to a 

maximum during d ays 3 to 7 ,  and t hen d e c l i ned . This lat ter pat t ern , again 

with th e ex cep t io n  of HL , was also evident for to tal shoo t regrow th . 

The relat ionships o f  log 1 o  shoo t dry weigh t  to regrow th d ays  

were det ermined w i th l inear reg ress ion analys is f o r  t o ta l , s t ub b l e  a nd 

rhi zlltne sho o t  r egrowth during days 0 to 7 and 7 to 2 8  ( Tab l e  2 2 ) . 

The regress ion s lo pes ( b  values)  o f  these relationships ropresent th� 

prod i c t ed average RGR dur ing . 1ppro pria te  r eg row t h  pe riod s , wh i l e  t h e  
c o ns tants ( a val ues ) repres ent , f o r  the f i t t ed regress ion , p ro j e c t &rl 

shoo t  d ry weigh t s  at the  s tart o f  th e appropriat� regrow th p e r io d . 

Fo r the regrow th p eriod , day 0 to 7 ,  regress ion s lopes were always 

g r eater wi th l ow c u t t ing , but the d i f f er ences were only s ta t is t ically 

s ignifiant for low TNC s tatus plant s . Onl y w i th 5 . 0 cm cut ting were 

r e g r es s ion s lo pes greater for  higher TNC p l ants and signi f i cant 

d i f f erences were conf ined to rhizome and to tal shoo t regrowth . 

Fo r t h e  7 to 28 day regrowth perio d , regression slopes were no t 

s ignif ican t ly d i f f e rent b e tween TNC t rea tments wi thin each c u t t ing 

h e ight and sho o t c l ass . However , in al l sho o t  c las ses and f o r  b o th 

TNC level s , s igni f icant ly lower regression s l o pes and higher in tercep ts 

were r eco rded where 5 . 0 rather t han 2 . 0 c m  c u t t i ng oc curred . S igni f i c­

ant ly grea t e r  regres s io n  cons tants for  p l ants  o f  higher TNC s ta t us were 
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Tabl e  22 : Shoot dry weight relat ionship wi th regrowth t ime . 

LL 

HL 

LH 

HH 

LL 

HL 

HH 

LL 

HL 

LH 

HH 

Regrowth Period , 0-7  Days 

b value S E
b 

a value S E  
a 

S tubble Shoo ts 

. 103] 
NS J . 0 1 3 7 �0 9 7  * . 0 1 40 

NS . 069] 
NS 

. 0095 

. 07 5  . 00 9 1  

1 . 454] r 
* 1 . 598 
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. 84 1  
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. 7 89 
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(log D . Wt = b x days + a;  for days 0-7 and 7 -28f 

Regrowth Per iod , 7-28 Days 
. 
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1 . 695] . ] . 0 630 
� * 

* [ 1 . 882 * : . 0464 : 2 . 0 74] * . 04 2 3  
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. 0026 
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* 2 . 5 3 ll Ns 
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. 9 2 7  
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. 9 39 
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A - S ignif icance l evels were determined on a paired t-test bas is 
._. 
w 
N . 



conf ined to rhizome s hoo t regrowth and to tal shoot  regrowth where 

5 . 0 cm cut t ing occurred . 

Average ind ividual shoot we ights were cal culated for each shoo t 

c lass by d ividing the appropria t e  shoo t dry we�5hts per p lant with 

shoo� numb ers ( Tabl e  2 3 ) . Where 2 . 0 cm cut ting occurred , individual 

s tubb le and rhizome shoo t dry weights were co ns : s �ently higher in 
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plant s o f  an init ially higher TNC s ta tus , but the differences were 

s tatis tically non-significant . For the 5 . 0 cm cut treatment s , ind ividual 

shoot weigh ts were again grea ter for higher TNC t reatment s  and these 

were s ta t is t i c ally s igni f i cant wi thin the rhizome shoo t poo l . Ind ividual 

shoot  s i zes at the end of the experimental regrow th period were higher 

within the rhizome sho o t  pool and where 5 . 0  ra ther than 2 . 0 cm cutt ing 

was used . 

RGR for  individual shoo t dry weights were calcula ted for  bo th 

shoo t pool s  and th es e are shown in Figure 1 3 .  W i thin the s tubble 

shoo t c lass , individual shoo t RGR wi thin both cut ting heights res ponded 

incons is tently to TNC s tatus . With 5 . 0 cm cut t ing the response pattern 

was s imilar to  that of to tal s tubble shoo t RGR ( s ee Figure 1 2 ) , 

however a t  2 . 0 cm the patt ern d i f f � c ed in tha t initial values were 

lower for higher TNC treatments . Ind ividual rhizome shoo t RGR 

responded t o  different TNC levels in a s imilar pattern to that
' 

for the 

collec t ive rhizome shoo t pool , altho ugh the pos i t ive response was 

more pro longed where 5 . 0 cm cutting o ccurred . 

Wher e  5 . 0 cm rather than 2 . 0  cm cut ting was employ J individual 

sho o t  RGR wer e  generally lower and this was par t icularly so for the 

lower TNC treatments . Contras ting t rends o f  RGR with t ime occurred 

between the shoo t clas s es . Whereas values showed a rapid initial 

decline in the s tubb l e  shoo t poo l , o nly af ter s even days o f  regrowth 

did a gradual decl ine become evi dent within the rhizome shoo t class . 

6 . 3 . 2  Shoo t Numb ers 

Over the ini t ial s even days of regrowth , shoo t numbers tended 

to increase more rap idly , and wer e  therefo re g enerally greater , in 

highe r TNC treatments (Table 24 ) . However , fo r bo th cutt ing heights 

and bo th shoo t pools these responses were no t s tatis t ically s igni f ic ant 
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Tabl e  23 : Individual s tubble and rhi zome shoo t dry weights ( mg per shoo t )  

Days o f  Regrowth 0 3 7 1 3  2 0  2 8  

S tubb l e  Shoots 

LL 0 . 7 1 . 3 2 . 1  3 . 6  6 . 4 1 1 . 5  

HL 1 . 1  1 . 6 2 . 1  4 . 2 6 . 6 1 3 . 0  
LH 2 . 3 3 . 3  4 . 7  6 . 3  1 0 . 3  2 1 . 0  

HH 2 . 4 4 . 0 5 . 1  8 . 0  1 2 . 3  2 2 . 8  

Tmt Mean S E  0 . 1 3 0 . 20 0 . 2 1  0 . 4 5  0 . 5 1  1 . 3 7 

S i gnif Level *** *** *** *** *** ***  

LSD ( 5 %) 0 . 4 0 . 6  0 . 6  1 . 4 1 . 6 4 . 2 

Rhi zome Shoo t s  

LL 1 . 1  1 . 4 2 . 5  6 . 1  1 3 . 7  3 3 . 8  

HL 1 . 5 2 . 1  3 . 3  7 . 4 1 6 . 3  4 1 . 0  

LH 3 . 6  4 . 4 6 . 3  1 1 . 5  2 3 . 2  54 . 4  

HH 3 . 5  4 . 9 7 . 9 1 6  . 1  3 2 . 8  74 . 1  

Tmt Mean S E  0 . 29 0 . 28 0 . 3 2 0 . 8 1 0 . 8 1  3 . 9 7  

S ignif Level *** *** *** *** * ** ** *  

L S D  ( 5 % )  0 . 9 0 . 9 1 . 0 2 . 5 2 . 5 1 2 . 2  



A 

0�------�------�------�------r-------r---

8 

- ... ... ... ........ _ _  ...,. _ _ _ ... 
,._ - - ... · - - - - - -.A• - - - .. 

/ / / � 

0 5 

F I G U R E 1 3 :  

10 1 5  20 25  
Days 

RGR of inJ ividual s l ubble (A) and rhi zome ( B )  

shoo ts . 

...,...,_.....,.,._ LL 
ee--ee HL 

� - - """ LH 
• - - .. HH 

1 35 .  



1 36 . 

Tabl e  2 4 : S tubbl e  and rhizome shoot numb ers (per plant)  

Days of  Regrowth 0 3 7 1 3  2 0  2 8  

S tubb l e  Shoo ts 

LL 38 45 6 7  1 1 5 1 24 1 0 6  

HL 3 2  5() \, 84 1 0 1  1 1 5 1 0 7  

LH 6 1  7 3  9 5  108 1 1 3 9 7  

HH 6 4  7 8  104 1 1 0 106  1 1 8 

Tmt Mean S E  4 . 0 5 . 2 7 . 3 6 . 5 8 . 2 7 . 3 

S ignif L evel * ** * * *  * NS NS NS 
LSD ( 5% )  1 2  1 6  2 2  

Rhi zome Shoo ts 

LL 2 3  29 48 56 7 8  6 7  

HL 2 3  3 3  56 70 80  8 1  

LH 36  35 49 68 6 1  6 4  

HH 30 39 60 60 7 0  6 4  

Tmt Mean S E  2 . 6 2 . 3  5 . 5 5 . 5  5 . 8 4 . 4 

S ignif l evel * *  NS NS NS NS NS 

LSD ( 5% )  8 
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(P< . 0 5 ) . W i th lower cut ting , ini t ial shoot numb ers were reduced , 

but after s even and thirt een days for the respective rhizome and 

s tubbl e  shoo t classes , any such aff ects had disappeared . Generally 

f rom day thirteen on�ards shoot  numbers h ad s tab il ized , al though in 

absolute t erms , shoot number increases had b een ma rkedly greater w i thin 

the s tubble shoot poo l . 

6 . 3 . 3  Residua l __ Lea f Area , S tubb le Weigh _t and Underground Weigh t  

Following the f i nal cut , the majori ty o f  the res idual l ea f  area 

was ass o c ia ted with the s tubbl e  component ,  par ticularly for the 2 . 0 cm 

cut treatments ( Tabl e  2 5 ) . As regrowth proceeded , the relative 

impor tance of this l eaf pool decreased , al though even a t  day 7 it 

cont ributed approximately one hal f and one third ot  the to tal p lant 

leaf area for the 2 . 0 and 5 . 0 cm treatments , respec tively . Generally , 

h igher s tubb le l eaf area resulted and pers is ted with the h igher 

cut ting l evel , although over the l as t  rapidly reg rowing period , s tubbl e  

leaf area showed a sharp dec l ine in the 5 . 0  cm c u t  trea tments . 

Within both shoo t pools , l eaf areas were con� is tently grea ter 

where TNC were ini t ially higher and thi� was particularly so with 5 . 0 cm 

cu tting . However , o f ten these differences failed to reach s tatis tical 

s ignif icance . As with shoo t dry weights , l eaf areas in bo th classes 

pos i t ively responded to higher cutting but in contras t ,  th e rhi zorue 

shoo t poo l did no t dominate f i nal plan t  l eaf area as it did sho o t  

regrowth on a dry weight basis . 

Leaf to s t em dry weight ra tios for s tubble , s tubb l e  shoo t �nd 

rhizome shoo t growth , are presented in Appendix 1 2 .  The mos t  no tab l e  

f ea ture was the markedly higher l eaf t o  s tem ratios recorded in the 

s tubble s hoo t pool compared with the rhizome shoo t poo l , par ticularly 

dur ing the early s tages o f  regrowth . 

S tubble dry weight showed l it tl e  response to dif ferences in 

either ini tial TNC s ta tus or cut ting heigh t ( Tab le 26 ) . This l ack 

of variation mus t in part be a reflection of the prev iously common 

cut ting p rocedure impos ed on all plants prior to the f inal two cut s . 

The mos t  o bv ious trend in s t ubb l e  dry weigh t was the general decl ine 

that continued throughou t  the regrowth period . No cons is tent t r ends 
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Tabl e  2 5 : Leaf area of stubbl e , s tubble shoo ts and rhizome shoots  

( cm2 per plant)  

Days o f  Regrowth 0 3 7 1 3  20 28  

S tubb l e  

LL 7 6 . 0  55 . 2  7 3 . 0  5 8 . 0  80 . 6  8 1 . 2  

HL 105 . 0  7 2 . 2  68 . 8  7 2 . 2  7 8 . 8  88 . 0  

LH 1 5 7 . 6  1 38 . 4  1 0 1 . 8 109 . 0  1 28 . 4  84 . 0  

HH 1 7 8 . 2  144 . 8  1 1 7 . 4 104 . 6  1 38 . 0  96 . 4  

Tmt Hean S E  1 9 . 7  1 5 . 6  9 . 9 7 . 4 10 . 7  1 6 . 2  

S ignif Level *** *** *** * * *  * * *  NS 

LSD ( 5 % )  60 . 8  48 . 2  30 . 7  2 2 . 9  33 . 0  

S tubb l e  Shoo ts 

LL 6 . 2  1 0 . 0  3 3 . 8  106 . 6  2.�0 : �  4 1 4 . 2  

HL 9 . 2 2 2 . 0  4 9 . 6  1 0 8 . 6  269 . 8  5 10 . 2 

LH 44 . 8  70 . 6  1 1 8 . 6 1 9 0 . 2  403 . 8  696 . 2 

HH 4 5 . 6  7 3 . 4  1 53 . 2  240 . 6  469 . 8  9 30 . 4  

Tm t  Mean S E  4 . 1  7 . 5  1 2 . 7  1 2 . 3  27 . 0  7 3 . 1  

S ignif Level *** *** * ** * ** * * *  *** 

LSD ( 5% )  1 2 . 8  2 3 . 3  3 9 . 2  3 7 . 8  83 . 2  224 . 5  

Rhi zome Shoo ts 

LL 5 . 4 9 . 2 2 5 . 0  85 . 6  333 . 6  666 . 0  

HL 5 . 6 1 5 . 6  3 7 . 6  1 3 1 . 4  365 . 6  709 . 4  

LH 40 . 2  44 . 4  80 .4  1 8 3 . 8  389 . 6  9 1 3 . 0  

HH 30 . 0  4 9 . 2  1 28 . 6  2 20 . 2  5 5 7 . 2  1 0 7 1 . 2  

Tmt Mean S E  2 . 9 3 . 8 5 . 3 1 3 . 8  29 . 5  70 . 9  

S ignif L evel *** *** * ** * * *  * * *  * * *  

LSD ( 5% )  8 . 9  1 1 . 6 1 6 . 3  4 2 . 5  90 . 9  2 1 8 . 4  
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Table 26 : S tubble and to tal underground dry weigh t  (mg per plant)  

Days of  Regrowth 0 3 7 1 3  20 28 

S tubble 

LL 1 0 20 9 9 1  1 0 0 1  800 808 7 5 3  

HL 10 7 1  1 0 7 2  9 28 7 6 7  7 2 3  748  

LH 1 1 7 9 1 0 36 1 0 9 1  7 8 7  9 8 7  8 3 1  

HH 1039  1 088 9 7 5 1 0 24 994 882  

1\nt Mean S E  9 2 . 0  1 2 1  . 8  1 1 1 . 2 6 1 . 9  66 . 8  5 3 . 6  

S ignif Level NS NS NS ** * NS 

LSD ( 5 % )  1 9 0  206 

To tal Underground 

LL 2822  2822  34 26 2 5 6 2  24 7 7  3034 

HL 2 7 2 1  3056 3 247 2 7 6 7  2 7 8 6  2864 

LH 34 1 8  2825 2 7 32 2869 2788 359 3 

HH 2875  2898 2 7 34 2 7 64 28 1 0  3 7 6 2  

Tmt Mean S E  263 . 2  268 . 0  2 28 . 7  254 . 6  1 8 7 . 3  24 2 . 9 

S ignif Level NS NS NS NS NS ** 

LSD ( 5%) 747 

with time were evident in to tal underground �y weight and the only 

no table varia t ion was an increas e in this component during the las t 

regrowth p er io d  o f  the 5 . 0 cm cut treatments . Of all plan t  components , 

i t  was tho s e  located underground tha t were the mos t  var iable , par tic­

ularly with r egard to f ibrous roo t growth which appeared to b e  great er 

where a larger rhi zome and/or a small er crown plus tapro o t  sys tem 

occurred . 

6 . 3 . 4 Nons tr�ctural Carbohydrate S tatus 

S tubb l e  shoo t ,  rhi zom� �ho o t  and stubble TNC concentrations 

were cOhs i dered as th e sum of their respec tive 6 2 . 5  percent methano l 

extracted s ugar and enzyme hydrolysed s tarch l evels ( Figure 14A , B , C) . 
Percent s tubb l e  shoot TNC s ignif icantly dif f ered between trea tments ortly 
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at day 0 ,  immed iately fo llowing the dark pretrea tment . S ugar l evels 

were lower in treatments LL and LH, however by day 3 they had recovered 

to values comparabl e  with thos e  o f  the remaining two treatments . 

Over this three day period there was a general increase in b o th 

sugar and s tarch frac t ions but thereaf ter , TNC remained .a t  a rel atively 

s ta�l e l evel o t  6 . 0 to 7 . 0 percent . If variations did o c cur they 

were pr inc ipally related to the s tarch frac t ion . 

Within the rhizome shoo t pool the lower sugar and TNC l evels 

evident a t  day 0 ,  in thos e  plants that were pretreated in darkness , 

w ere s ti l l  apparent on the third day . Thereaf ter however ,  treatment 

d i f f erences were incons i s tent . Rhi zome shoo t TNC level s continued 

to increase as regrowth progressed and o ther than during the firs t 

three days o f  regrowth , these inc reases were pr inc ipally related to 

the s tarch f raction . 

I n  tho s e  treatment s  that had b een dark pretreated , p ercent TNC 

were s ignif icantly lower in the s tubble component at the § tart o f  

regrowth . B y  day 3 thes e  diff erenc es had disappeared and i n  fac t were 

reversed on the seventh day . Therea f ter , there was a gradual inc reas e 

in the s t ar ch frac tion , parti cularly where 5 . 0 cm cut ting had o c curred . 

As a resul t ,  s ignificantly higher TNC concentrations were recorded 

in the higher cut trea tments for the las t two regrowth periods . 

Nons truc tural carbohydrate s tatus in the s tubb l e  was much lower 

than that of bo th shoo t pools and this was par ticularly so with regard 

to the sugar fraction . 

The TNC s tatus o f  the rhi zome and crown plus tapro o t  components 

were cons idered in a s imilar manner as were thos e  o f  the aer ial plant 

components ( Figure 14D , E) . TNC l evels in rhi zome tissue gave no 

indicat ion that the one dif ferent ial cut g iven prior to day 0 had any 

affect  on TNC s tatus . Pre treatment in the dark did however , reduce 

s tarch and TNC l evels and thes e  reduc t ions were s t ill consis tently 

evi dent on the third regrowth day . During the f irs t th i rteen days o f  

regrowth , TNC levels were s imilar to their original values , but 

thereaf ter they increased as s tarch accumulated , par ticularly where 

5 . 0 cm cut ting had occurred . 



1 4 � . 

F I G U R E 1 4 : Nons t ruc tural carbohydrate l evels ( %  dry weigh t )  in 

s tubble shoo ts (A) ; rhizome shoot s  (B) ; s tubble ( C ) ; 

rhizome (D)  and crown plus taproot ( E) . 

% sugar  

%starch 

I /... S D ( 5  Z) for -7;1/C {eve. Cs. 
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On all s ample dates there was evidence o f  reduced crown plus 

tap roo t s tarch and TNC l evels in treatments that were ini t ially 

pre t reated in the dark . S ubsequent to day 3 ,  cut t ing height a f f ec t s  

were further super impo s ed . Increas ing s tarch and TNC l evels b ecame 

mos t  evident af ter day 13 and these increases were mos t  marked where 

5 . 0 cm cut t ing and/or h igher TNC were the init ial treatments . TNC 

patte�hs and l evels were somewhat s imilar in bo th underground compon­

ent s , al though TNC in the crown plus taproot  t issue cons is ted o f  a 

greater s tarch f rac t ion . 

6 .  4 Dis clle s ion 
---==-....=.:.:._.:.: __ 

In terms o f  abso l u te g ro w th ra tes and ne t ragrowth , trea tment 

respons es in this exper iment were mos t  evident where cu t t ing heights 

d i f f ered . As in the f ield experimen ts ( see Chap ter 4 . 3 ) , shoo t growth 

rates and ne t shoo t produc t ion were great er where higher cut t ing 

o ccurred . However , these produc t ion responses were no t rela ted to 

the presence o f  shoots  or shoo t poo ls with higher RGR po tentials . Shoot 

RGR appeared to be invers ely rela ted to their wei ghts , thus even with 

greater res i dual leaf areas , shoo t RGR were lower in higher cut plan ts . 

Consequently , the regrowth advantage o f  higher cutting was to increase 

the weight of the res i dual shoo t pools from wh ith regrowth commenc ed . 

This highl igh ts the impo rtance o f  res idual sho o t  size and numb er in 

d e termining regrowth potential , a relationship which has also been 
r epo rted in lucerne by Leach ( 1 9 6 8 , 1 9 69 , 1 9 7 0 )  and Hodgkinson ( 1 9 7 3 ) . 

In th is experiment , as in f ield Exper iment 2 (see Chapter 4 . 3 . 2 ) , 

improved r egrowth was apparent where ind iv idual , res idual shoo ts were 

larger . In the lat ter experiment , responses to ini tially larger shoo ts 

were mos t  evident in th e s tubb le shoo t pool where growth was pro longed 

and produc tion enhanced with higher cut ting . However , in this po t 

experiment b o th s tub ble  and rhizome shoo t pools responded equally to 

h igher cutting in terms of absolute we i ghts . I t  is l ikely tha t shoo t 

dominance was no t as great in Experiment 3 ,  where spaced plants were 

g rown in an ar t i f icial environment ,  and as s uch the rela t ive b enef i ts 

o f  higher cutt ing and l arger res i dual shoo ts in the s tubb l e  shoo t 

pool would no t have b een as marked as in the f ield . 



The impor tanc e o f  res idual shoot numbers in determining the 

s i ze of the res idual shoo t poo l , and hence early regrowth rates , was 

apparent in bo th the f ield and this po t experiment . Bowever , one 

contras t ing f eature be tween these experiments was the increase in 

res i dual shoot  numb ers , par t icul arly rhi zome shoo ts , tha t occurred 
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wi th higher cut ting in Experimen t 3 , but no t in the field experiments . 

Becaus e only one pre-treatment cut  was employed in the former experiment ,  

it is unl ike l y  that any morpho log ical adap tat ion of t h e  canopy could 

dccur , in response to cutting height , as it d id in the f i eld exper i ments . 

However , increased r es idual shoo t numbers recorded in this po t expec Lment 

d id add ano th er d imension to cutt ing he ight res ponses and again 

illus trated their impor tanc e in determining the s ize of the res idual 

shoot  population and �ub sequ�nl  regrowth, pa rticul arly in the rhi zome 

sho o t  poo l . 

Regrow th charac teris tics o f  s tubb le and rhi zome shoo t s , whe ther on 

an individual or collec t ive basis , were quite d i f ferent . Ind ivid ua l  

shoo t RGR were ini tially higher i n  the s tubbl e  shoo t poo l and then 

values rapidly d e c l ined with t ime . In contras t ,  ind ividual r hizome 

shoo t RGR showed only a gradual dec l ine with t ime and as a resul t 

higher values were reco rded within this pool dur ing the last  two 

w�eks o f  regrowth . When compar ing both shoo t poo ls on a collective 

b asis , thereby invo lving shoot numb ers . diff erences in RGR pa t terns 

were s till evident , but  l ess marked . The rap id dec line in ind ividual 

s tubble shoot  RGR was part ially compensated by a more rapid increase in 

s tubble sho o t  numbers as compared wi th the rhi zome shoo t poo l . N ever­

theles s , RGR of the rh izome shoo t pool were greater over the las t 

two weeks o f  r egrowth and as a resul t i t  was this component that 

eventually dominated aer ial growth . 

S imil ar pat terns involving rapi d  early s tubb l e  shoo t regrowth , 

fol lowed by rhi zome shoo t dominance , were also recorded in f ield 

Exper iments 1 and 2 { s ee Chap ter 4 . 3 ) . Fur thermore , the lower RGR 

of rhi zome shoo ts , and the s lower inc rease in th�ir  number during 

early regrowth , aga in illus trate the d elayed na ture of regrowth in 

this shoot  pool . 

The inc reases in RGR between day 3 and 7 ,  tha t  were a f eature 

of the rhi zome shoot  pool , can only b e  partly explained by ind ividual 

shoo t RGR . The lower RGR values recorded during the f irs t three days 

of regrowth were also a ref lec tion o f  low increases in rhizome shoo t 



number . This fact , combined with d i f f erences in RGR trends between 

the two shoo t classes over the f ir s t  seven days , sugges ts that shoot  

numb er , as  a regrowth factor , i s  mo re res tric tive and of  greater 

impor tance in rhi zome shoo t regrow th . 

The greater regrowth respons e to higher TNC s ta tus that was 

reco rded when cut ting was to 5 . 0  cm rather than 2 . 0 cm , mus t in 

part be explained by the relative s i ze of the res idual shoot  poo l s . 

I t  is l ikely tha t the larger shoot pool generated w i th higher c u t t ing 

was ab l e  to explo i t  more ful l y  the RGR res pons es tha t occurred during 

tl t e  f i rs t f ew days o f  regrow th where TNC l evels were ini tially h igher . 

D i f f erences in sl1oot regrowth that were generated by d if ferent 

ini t i a l  TNC l evels were mo re evident within th� rh izome shoo t pool 

than the s tubb l e  shobt poo l . With 2 . 0  cm cutting , any absolute 

regrow th advant ag e  gained by the s tubbl e  shoot pool in higher TNC 

plants dur ing the f irst three days , was sub sequently lo s t  as RGR 

values decl ined b elow those o f  low TNC plants . Due to ind ividual shoo t 

responses , greatef  rhizome shoo t RGR were also recorded for higher 

TNC plants unt i l  the thi rd day . However , unl ike the s t ubb le shoo t 

poo l , th is early advantage was mainta ined and resul ted in grea ter 

ab solute shoo t d ry we igh ts and growth rates fot higher TNC plants . 

At the 5 . 0 cm cutt ing heigh t ,  greater s tubble shoo t weights and 

grow th rates in h igher TNC plants princ ipally depended on the ini t ial 

advant age gained by higher ind ividual and col lec tive sho o t  RGR during 

the f i rs t  three days . Within the rhi zome shoo t class , individual and 

col l ec t ive shoo t RGR showed a respons e to TNC up until the day 7 

harves t and as a resul t i t  was thi s  component that was mos t respons ive 

to TNC in terms o f  ab solute weigh ts and grow th rates . 

I t  is l ikely tha t  the l imited respons e of s tubb l e  shoo t s  to 

ini t ia l  TNC s ta tus is the resul t of a more f avourable supply o f  current 

pho tosynthates to this shoo t poo l . By b eing located in th� axil o f  

s tubbl e  l eaves they are in close proximity t o  an immed iate source o f  

carbohydrate fol lowing defo liation and thi s  sourc e ,  during the f irs t 

week o f  regrowth , was a maj or component o f  the to tal l eaf complement .  

In lucerne , Hodgk inson et a l . ( 1 9 7 2 )  repor ted tha t s tubbl e  shoo ts 

were a maj or rec i p i ent o f  expo r ted s tubb l e  l eaf pho tosynthates . 



By being located higher wi thin the canopy and by having a greater 

l ea f  complement , s tubble shoo ts may also have a greater capaci ty to 

produce assimilates as compared with rhizome shoo ts . An earlier 

a t tainment o f  s tabl e  sugar l evels within the s tubble shoot  pool 

fol lowing cu tt ing would lend s upport t o  this proposal . 
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I n  contras L ,  the immediate supply o f  pho to syntha tes to rhi zome 

shoo t s  is l ikely to be mo re res tricted due to the ir basal  locat ion and 

poorer l eaf complement . The po s i tive response o f  rhi zome shoo t 

regrowth to higher init ial TNC s ta tus may sugges t a d irect involvemen t 

of TNC accumulated in tho s e  o rgans from which rhi zome shoo ts developed . 

However , if this i s  s o , the amount d f  red is tribu ted TNC is l ikely to 

be small as there was no indicat ion of a depletion pa t tern in rhi zome 

TNC l evel s . Furthermore , the delay ih a ttaining comparable sugar 

levels in rhi zome shoo ts , tha t  d i ff ered in ini t ial TNC s t atus , \TOuld 

also sugges t tha t th@ buf f ering c apacity of accumulated undergrdund 

TNC may be l imited in terms of shoo t regrowth . 

I n  this experiment , differences in res idual TNC wers artific ially 

created by dark pre- treatment . I t  was apparent that any d irec t 

e f f e c t  these d i f ferences had on r egrowth was conf ined to the f i rs t 

s even days . Thereaf ter , ab solute weigh t and growth rat e responses 

were related to the diff erent amounts o f  shoo t growth tha t had b een 

genera ted during the ini tial s tages of regrowth . Res idual plant TNC 
was therefore a d e termining factor of shoo t r egrowth in this �xper iment ,  

however whe ther thi s  i s  so under normal f ield cond itions is ano ther 

ma t ter . I t  should be no ted tha t  residual shoots which were no t 

pre- treated in darknes s  had ini t ially lower TNC l evels than those  a t  

which they eventually s tab il i zed . This probably reflects their 

previously shaded and dominated history . However , accumula tion o f  

sugar i n  these shoots  (HL , HH) was such that b y  day 3 sugar l evels 

were no t s ignif icantly d i f f erent from tho s e  at subsequent sampl ings . 

This would indicate that residual shoo ts were suff iciently s trong 

enough ' s inks ' to rect ify init ially low as s imila te level s . Under 

f ield condi tions where defol ia t io n  is incomplete , as in th is experiment , 

i t  is unl ikely tha t  res idual TNC i s  a maj or determinant o f  early 

regrowth . 



The low TNC l evels recorded in rhizome and crown plus tapro o t  

tissue on day 0 would be a r e f l e c tion o f  the low and f re quent cutting 

p ro ce dur e used p r io r  to the experimental r egrowth period and o f  

trans f err ing t h e  plants from a n  autumn to a n  ar t i f icial spring envi ron-

ment . Fo llowing the final cut the re was no indicat ion o f  ne t TNC 

utili zation in thes e organs and this may in par t be a funct ion of the 

low absolute TNC l evels invo lved . Nelsdn & Smi th ( 1 9 6 8b , 1 9 6 9 )  and 

Greub & Wed in ( 1 9 7 1b )  repor ted tha t util i za t ion and accumula tion 

pat t e rns were only evident wi thin the tap roo t of L. eornicu latus 

when TNC l evels wefe  high . 

However ;  the abs ence o f  TNC util i zat ion trends in this exper iment 

may also be related to the fac t tha t  defoliation was no t comp l e t e  and 

cons id erab l e  l ea f  remained within res idual c anopies , par ticularly in 

as so c ia t ion wi th the s tubble component . Wi th such a res idual leaf 

compl ement a greater proportion o f  resp i ratory demands would have 

been m e t  by current pho tosynthesis , ther eby r educing the need to 

ut i l i ze accumul ated TNC . The non-expfins ive na ture o f , and the low 

levels o f  ac cumula ted TNC in s t ubble tis sue �oul d indic a t e  that the 

s tubb l e  component was no t a highly ac t ive ass imilate s ink (Wareing & 

Patrick , 1 9 7 5 ) , yet a maj or proportion o f  to tal l eaf area was 
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associated w i th this s ame component dur ing early regrowth . I t  is 

therefore l ikely , tha t  s tubbl e  l eaf was an impor tant source o f  ass imilates 

for early growth and r espiration in o ther p l ant parts . Hodgkinson e t  al 

( 1 9 7 2 )  cons idered tha t stubb l e  l eaf pho tosynthesis in p ar t ially 

defol i a t ed lucerne replaced the need for r edis tribution of o rganic 

compounds f rom the taproo t to new shoo t growth and res piration . S i lva 

( 1 969)  with l ucerne , and Greub & Wedin ( 1 9 7 1  a , b)  with L .  cornicu Zatus, 

have al s o  report ed low net TNC u ti l ization following incompl et e 

defol ia t ion . 

Ac cumula tion o f  TNC dur ing the las t two weeks of r egrowth was 

principally conf ined to rhizome , crown and taproo t tissue . The 

extent to which the s tarch f rac t ion inc reased over this perio d  

was apparently related to absoiute aer ial growth a s  the increases were 

greates t in those plants that responded to higher ini t ia l  TNC and / o r  

cut ting l evels . Ear l i e r  and mo re rapid reaccumulation o f  TNC has 

also been repor ted by Alberda ( 1 9 7 0 )  and Booys en & Nelson ( 1 9 7 5 )  

f o r  plan t s  tha t regrew and re-es tabl ished l e af area more quickly 

following cut ting . 
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In summa ry , i t  would appear tha t  the nature o f  the res idual 

shoot  popul at ion is a pr incipal determinant of ' Gras s l ands Maku ' 

regrowth . In partial ly defolia ted p lants any d irect inf luence that 

TNC may have on shoo t r egrowth appears minimal and conf ined to the firs t 

few days o f  regrow th . 



CHAPTER 7 :  THE PARTITIONING OF c 1 4 LABELLED ASS IMILATES 

IN DEFOLIATED LOTUS PEDUNCULA TUS cv . ' GRAS SLANDS MAKU ' 

7 . 1  I ntroduction 

1 50 . 

The partit ioning of  carbon compounds b e tween var ious plant par ts 

is the net res ul t of the dis tribution of current , and the red i s t r ibution 

of previous ly f ixed ass imilates . The d i s tribution of curren t pho to­

syntha t es is princ ipally de termined by the relative ac tivities o f  

util i z in£ organs , thus the numb er , s ize , growth rate , age and phys iol­

ogical s t atus o f  these s inks become important (Wardlaw , 1968 ; Mil thorpe 

& Moo rby , 1969 ) . Redis t ribution of o rganic compo unds is continual 

(Minchin & Pate , 1 9 7 3 )  and it b ecomes mo re marked when current as s tlfiilate 

defi c i enc ies occur . Fol lowing defol iation therefore , organic cowpounds 

may be remob ili zed for res pira t ion processes and for the par tial 

suppor t  of new l ea f  growth (Marshall & S agar , 1 9 6 8 ; Hodgkinson , 1 9 69 ; 

Pearce et a l . ,  1 9 69 ; Smi th & Marten , 1 9 7 0 ; S ingh & Winch , 1 9 74b ; 

Ryle & Powell , 1 9 7 5 ) . 

In current s tudies with L .  pedunou l a tus c v . ' Grass lands Maku ' ,  

grea t er shoo t produc t ion and larger underground dry weights were 

reco rded where h igher cut ting occurred ( s ee Chap ters 3-6 ) . I t  was 

propos ed that a pr incipal factor in determining shoot produc t ion was 

the s iz e  of the res idual shoo t popul ation that could commence immedia te 

regrowth following defo l ia t ion . Shoo t r egrowth also r esponded to 

d i f fer ing residual plant TNC l evels ( see Chap ter 6 . 3 . 1 ) , however 

there was no evidence to sugges t that such respons es were d irec tly 

l inked to the red is tribu t ion o f  organic compounds . Early regrowth 

in ' Grasslands Maku ' is charac terist ically s low , yet it is during the 

f irs t one to two weeks of regrowth that these trea tmen t and pro duc t ion 

diff erences es tab l ish thems elves . Whe ther these responses ul t imately 

resul ted from d i f f eren t a s s imilation rates or from diff erent par t i t ioning 

patterns could no t be conclusively determined f rom thes e experiments . 

This chap ter repor ts on two experiments tha t  were conduc ted to 

assess the pattern of assimilate par titioning during the early s tages 

of regrowth in L. peduncu latus cv . ' Grass lands Maku ' .  The impo r t ant 

sources and s inks of  ass imilates were identified and considered with 

regard to dry weight changes o f  above and b elow ground plant components 
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following cutting to two dif f erent heigh t s . Current as s imil a te 

distrib u t ion was assessed by the f ixa tion and subsequent l o ca tion of  c 1 4 
at three s eparate s tages of regrowth ( C 1 4 Distribution experiment) . 

Redis tribution o f  o rganic compounds dur ing th e f i rs t 14  days o f  regrowth 

was es t ima ted by determining activity l evels in th e various components 

o f  s�quent ially harv es ted plants tha t  had as s imilated and dis tributed c 1 4 
pr ior to cutt ing ( C 1 4  Red is t r ibution experiment) . 

7 . 2  Exper imental 

On 6 / 9 / 7 6 ,  i nocula ted seed ( Rhi zob ium s train , CC8 1 4 S )  of ' Grasslands 

Maku ' was sown into a s teril ized Opiki s il t  loam , Manawatu sand:r s i l t  

( 1 : 1 ) soil  mix t o  wh ich the equival e1 1 t: o f  2 g ,  p e r  1 . 2 l i tre po t ,  o f  

30 per cent po tas s ic superphospha t e  had been added . P lants were grown 

under glas shous e cond i tions ( 25C maximum ; 1 5C minimum) and were 

thinned to o ne per po t by 26/ 1 0 / 7 6 . Until 1 3/ 1 2 / 7 6 aerial g rowth was cut 

to 2 . 0 cm every week . On this l a tter date , plants were selected and 

then s eparately grouped for either the c 1 4 Red is tribution or 

Distribution experiments . Within each experimental group , f ive b lo cks 

were fo rmed and wi thin each block , plant s were randomly al lo cated to 

two cut ting height trea tments and to four and three s ampl ing dates 

respec t ively . To encourage aerial grow th in the central reg ion 

of each po t ,  plas tic mesh ( 1 . 7  mm gauge ) was placed around the periiDe ter 

o f  individual pots and each mesh cyl inder was raised or lowered in 

accordance wi th cut t ing and regrowth schedul es . Plants continued to 

grow under glas shous e cond i tions and each week they were cut to a 
height o f  2 . 0 or 7 . 0 cm accord ing to their trea tment alloca tion . 

Plant material tha t was used in the c 1 4 Red istribution experiment 

was trans f erred to a controlled c l imate room ( S ee Appendix 1 1 : Experiment 

4 . ) on 3 1 / 1 / 7 7 . S even and eigh t  days later , plants of three and two 

replica tes respec t ively , were exposed to c 1 4 02 and two days af ter 

exposure , all were cut to their appropriate 2 . 0 or 7 . 0 cm heigh ts . 

Those ten plants allo cated to reg rowth day 0 were subs equently washed 

f ree of soil  and dissected , as were further sets  ol plants on the third , 

seven t h  and fourt eenth regrowth d ay . 

P lants used in the c 1 4 Distr ibut ion exper iment were trans ferred 

to the same grow th room on 14/ 2 / 7 7  and f ive days later ·were cut to 

their app ropriate 2 .0 or 7 . 0 cm hei gh ts . Two days af t er cut ting , ten 



plants were exposed to c 1 4 02 and 24 hours l at er they were washed and 

d issected . Two further sets o f  ten plauLs were similarly t reated 

on the s ix th and thirteenth day of regrowth . A relat ive t ime scale 

summariz ing the t ime s equence o f  bot h  experiment s  is presented in 

Appe�dix 1 3A .  

Rad io ac t ive c 1 402  was generated in a sealed trap by react ing 

aqueous Na2 c 1 4 0 3  with 2N H2S0 2 . Bat ches of 1 . 2 5 m Ci , c 1 4o2  were 

s eparat ely produced and placed in a 25 ml air column from whi ch 1 ml 

subsampl es of the rad ioac t ive gaseous mix wer e subsequently taken . 

Adj us table mer cury columns maint ained atmospherie pressure within 
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t his air c olumn and ensured cons is tent subsamp] c Vo hnnes and zc tivit ies . 

S ingle plants were sealed in glass chambers ( 1 4 l i tre volume ; 3mm thi ck 

glas s )  that were loca t ed in the controlled c l imat e room , and they were 

��n exposed to c 1 402 by inj ect ing a 50�  Ci subsample through a neoprene 

s eal . Throughout the 30 minute expo sure period , the atmosphere 

in the chamb er was mixed by a rotat ing fan located adj acent to the 

plant canopy . Tempera tures within the chamb ers incr eased from 1 7 C  

t o  approxima tely 2 3 C  dur ing the exposure periods . Exposur� o f  plants 

to c 1 4
02  was c onf ined to between 1 2 . 00 and 1 6 . 00 hours , a per iod tha t 

repres ent ed six to ten hours o f  previous growth room irradiance .  

Onc e exposure was comp l eted , res idual c1 4o2 remaining within the glass 

chamb er was removed by pumping its gaseous cont ent s through two 

aqueous NaOH t raps via an outlet tube sys tem .  

On the appropr iate regrowth day , those plants required for growth 

analys i s  were removed from the growth room at 1 3 . 00 hours and once 

washed free o f  soil , th ey were s tored in darknes s  at 3 C unt i l  dissected . 

The dissec t ed component s were : stubbl e  shoo t , rhizome shoo t ,  s tubble , 

rhizome , crown plus taproot and f ibrous roo t as def ined in Chap ter 3 . 2 .  

Dis sected mater ial was s to red at 3C until drying in a vacuum d ry oven 

2 . 0  mm Hg , 40C , 16 hr) . Once dry weights were det ermined , all component s 

were spearat ely ground to pass thro ugh a 0 . 5  mm s i eve and then s tored 

at -3C in s eal ed glass vials . 

Bes ides those involved in the experimental t reatments ,  two further 

p lants were a l located to each sample day in order to est imate background 
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radioac tivity within the cont roll ed c l imate room . O ther than no t 

b eing expos ed to c 1 4 0z wi thin a glass ch amber ,  thes e plants were 

handl ed in a s imilar manner to that of the t reatment plant s , with one 

b eing cut down to 2 . 0 cm and the o ther to 7 . 0 cm at the beginning o f  

the appropriate experimen tal period . A c  no harvest d id to tal rad ioac t iv i ty 

l evels wi thin these check plants exc eed 3 percent o f  the total wi thin 

the correspond ing treatment p lan ts . Es t ima tes of plant leaf ar�a 

at each sample dat e ,  were also determined from these plant s as 

des c r ibed in Chap ter 4 . 2 . 

A l iquid combust ion procedur e ,  s imilar to that out l ined by 

S h imshi ( 1 9 6 9 ) , was employed to re l ease c 1 4 from th e ground experimental 

p lant mater ial . Approxima tely 50 mg of plant tis sue was weighed into 

a 100 ml screw top g la��  j ar into which a 15 mi g lass vial containing 

1 0  ml , 1N NaOH was a l so placed . To the larger , outer j ar ,  20 ml of 

cold saturated chromi� acid (K2 Crz07  + 18N HzS04 ) was then added and 

immediat ely , th e combus tion system was s ealed wi th a rubber l ined 

s c r ew l id . Combus t ion pro ceeded for 3 hours at 105°C .  Fol lowing 

a one hour coo l ing period , at room tempera ture , the inner NaOH 

t rap was removed and its vo lume was wga in mad e up to 10 ml by the f urt her 

add it ion of 1N NaOH . Combust ion effic iency was est ima t ed with each 

c ombus t ion run by inc lud ing two standard radioactive tissue s ampl es . 

I n  Appendix 1 3B , act ivity l evels in a s t andard c 1 4  t is sue sampl e  are 
presented for the outl ined method and o ther t issue , chromic acid 
c omb inat ions . 

A 0 . 5  ml subsample was taken from the NaOH-Naz C 1 4 0 3  trap and 

added to 1 0  ml o f  a l iquid s c intillat ion cocktail that cons isted o f  

a two to one to luene sc int illat ion solution ( 0 . 5% P t erphenyl 

-C6H s . C6 H4 . C6 H s ) , Tri ton X- 100 detergent mix , p lus 1 0  percent 

d is t illed water (Pat terson & Greene , 1 96 5 ) . Radioac t ive measurements 

were made in a Beckman 15350 l iquid s c int illat ion spectrome ter wi th 

a gain sett ing of 490 and a window sett ing of 50 to 1 , 000 . For each 

s ample ,  counts were integra ted over a 10 minute period g iving mean 

counts per minute ( c . p .m . )  wi th standa rd erro rs that ranged from 

1 to 3 percent . Previously det ermined bl ank activit i es were sub trac t ed 

and individual sample c . p . m .  values we re then co rrec t ed by a quench 

fac tor , ( 6 5-73%)  based on a s tandard c 1 4  quench curve , to give 

d i s int egra t ions per minute ( d . p .m . ) .  



Data were s tatis t ically analysed as a randomi zed block des ign 

w i thin each sample date and a pooled analys is was conduc ted across 

s ample dates as des cribed in Chapter 3 . 2 .  

7 . 3 Res ul t s  

7 . 3 . 1  c 1 4 Dis tri bution Experiment 
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Component dry weigh ts recorded on regrowth days 3 ,  7 afid 1 4  are 

presented in Table 27  for the 2 . 0 cm ( L )  and 7 . 0 cm (H) cut treatments .  

O ther than rhi zome shoot  init ials , all component dry weigh ts were 

s ignif icantly greater where higher cut t ing occur red . Dry weights in 

non-shoo 1. components t ended to b e  lower in thos e  plants sampl e�J on day 

1 4  but generally , trends with time , were incons is tent . Es t ima ted leaf 

areas for sampl ed plants , i . e .  one day af ter c 1 4 02 expo sure , are presented 

in Appendix 14 . All aerial growth was conf ined to within the plas t ic mesh 

aprons , thus LAI were de termined on the basis o f  po t surface area . Fo r 

thi s  experiment , l eaf areas were generally high and even for the low 

cut treatment ,  after only three days regrowth , a LAI of 1 . 1 was measured . 

Spec i f i c  a c tivit ies o f  plant components sampled on regrowth days 3 ,  

7 and 14 , one day af ter exposure to C 1 4 0 2 ; are presented ift Tab le 28 . On 

day 3 all component spec i f i c  ac t ivit ies were lower in those plants where 

h igh cut ting had previous ly occurred . At subs equent sample dates , 

relative treatment differences were smaller in all aerial components 

b u t  were maintained in underground growth . H igh specific ac t iv ities 

were recorded in s tubb le shoo ts and rhi zome shoo ts , the former pool 

b e ing consisten tly higher for all treatments and sample dates . 

Absolute activity l evels in underground organs were generally 

l ower in treatment H ,  b u t  for mo s t  s i tuations the diff erences between 

h igh and low cutting were no t s tatis tically s igni ficant ( Tab le 29) . On 

an individual and collec t ive basis , ac t ivity in underground components 

showed no consi s tent trend with t ime . The extent and dura tion of 

activity changes differed between aerial components during regrowth . 

Whereas values decl ined wi thin the s tubb le ; activity in both shoo t poo l s  

i nc reased a s  regrowth cont inued . Therefore , increas es in to tal plant 

a c t iv i ty at successive l abellings were related to the shoot components 

of aerial growth . Where h igher cut t ing had previously oc curred , 

greater leaf areas were p res ent a t  the t ime o f  c 1 402  exposure , however 

corresponding increas s in to tal plant activity were no t evident at any 

o f  the three sampl ing dates . 



Tab l e  2 7 : Dry weigh ts of p lant components during regrowth in the c 1 4 

D is tr ibut ion experiment (mg �er plant ) 

Regrow t , ,  Day 

3 7 1 4  

Stubb l e  shoo t s  

L 1 9 3  
( *'>'• , 2 5 ) A 

390 8 2 1  
( )�** , 1 4 )  

H 402 754  1 3 1 4  

Rhizom e  shoo ts 

L 1 55 396 907  
( * , 2 6 )  ( ** "�· , 4 0 )  ( * , 86 ) 

H 329 828 1445  

S t ubble 

L 2 1 36 1 8 36 1 79 0  
( **"�< , 4 9 )  ( *** , 1 02)  ('1<** , 6 1 )  

H 4 568 4 1 50 3959 

Rhizome shoo t init ials 

L 76 1 0 1  4 1  
(NS , 2 2 )  ( NS , 1 6 )  ( * , 6 ) 

H 1 40 104  74  

Rh izome 

L 9 38 9 8 1  7 74 
( '>'<* , 5 5 )  ( NS , 85)  ( * ,  3 1 )  

H 1 243 1 065  906 

Crown plus t aproo t 

L 632 657 467 
( * , 5 3)  ( ** , 30) ( *** , 30 )  

H 966 1054 894 

Fibrous root 

L 824 7 9 2  854 
( * , 9 9 )  ( * , 5 2 )  ( * , 56 )  

H 1 3 7 6  1 1 8 7  1 1 9 3  

A :  s ignificance level ,  treatment mean SE . 

1 5 5 . 
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Tab le 28 ; Specif ic activ i ty o f  plan t  components in the c l 4 Dis tribution 

experiment (d . p .m .  X 1 0 3 per mg dry weigh t )  

Regrowth Day 

3 I 1 4  
·-

S t ubb le shoots 

L 1 3 . 9  1 3 . 5  8 . 6 
( ** ' 1 .  2 )  ( ** , 0 .  7 )  ( NS , 0 . 9 )  

H 6 . 3 8 . 2  6 . 5 

Rh i zome sho o t s  

L 1 1 . 4 10 . 4  7 . 8 
( i d; 

' 1 .  0 )  ( * 0 . 8)  (NS , 0 .  7 )  
H 4 . 7 5 . 3  5 . 6  

S tubble 

L 3 .  l 2 . 4 1 . 2  
( i•* , 0 . 2 )  ( * , 0 . 2 ) (NS , 0 . 1 ) 

H 1 . 2 1 . 4 0 . 9 

Rh izome ini t ials 

L 7 . 5  5 . 6 7 . 6 
(NS , 1 . 1 ) (NS , 0 .  6)  ( * , 0 . 6 )  

H 4 . 5 4 . 6 3 . 5  

Rhi zome 

L 2 . 4 1 . 7 
2 . 3

( NS , ( ** , 0 .  2 )  ( ** , 0 . 1 ) 0 . 3)  
H 1 . 0 1 . 2 1 . 7 

C rown plus taproo t 

L 1 . 6 1 . 1 1 . 7 
( ** , 0 . 1 ) ( * , 0 . 1 ) (NS , 0 .  2) 

H 0 . 7  0 , 8 1 . 1  

Fibrous roo t 

L 1 . 8 1 . 8 2 . 9 
( *1<

' 
0 . 1 ) (NS , 0 .  2 )  ( * ,  0 .  2 )  

H 0 . 8 1 . 2 1 . 6 
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Table 2 � : Absolute act ivity components in the c 1 4  Dis tribut ion 

experiment ( d . p .rn .  x 1 0 6 per plant ) 

Regrowth Days 

3 7 1 4  

S tubble shoots  

L 2 . 6 8 A 5 . 2 1 7 . 09 
(NS , 0 . 33 )  (NS , 0 . 3 1 )  ( NS , 0 . 78 )  

H 2 . 5 3  6 . 1 6 8 . 5 5  

Rh izome shoo t s  

L 1 .  7 6  4 . 08  7 . 04 
( NS ,  0 . 4 0 )  ( NS , 0 . 32 )  ( NS , 0 . 68)  

H 1 . 54 4 . 36 8 . 20 

S tubble 

L 6 . 69  4 . 4 6  2 . 0 5  
( NS , o . 1b )  ( NS , 0 . 5 1 )  ( * ,  0 . 26 )  

H 5 . 5 7 5 ; 7 8 3 . 4 1  

Aer ial components 

L l l . U  1 3 . 74 1 6 . 1 8 
(NS , 1 .  2 5 )  ( NS , 0 . 85)  (NS , 1 . 6 3 )  

H 9 . 64 1 6 . 30 20 . 1 7 
B 

Rhi zome shoo t int ials 

L 0 . 5 6  0 . 56 0 . 3 1  
( NS , 0 . 1 7 )  (NS , 0 . 0 7 )  (NS , 0 . 05 )  

H 0 . 6 3  0 . 4 7  0 . 26 

Rhizome 

L 2 . 24 1 . 7 1  1 .  7 9  
( * * , 0 . 1 1 )  ( NS , 0 . 1 4 )  (NS , 0 . 28 )  

H 1 . 2 8  1 . 2 5  1 . 56 

Crown plus taproo t 

L 1 . 0 1  0 . 7 5  0 . 8 1  
(NS , 0 . 0 9 )  (NS , 0 . 0 5)  ( NS , 0 . 1 2 ) 

H 0 . 7 0  0 . 8 1 1 . 0 1  

Fibrous roo t 

L 1 . 4 5  1 . 39 2 . 4 1  
(NS , 0 . 1 7 )  ( NS , 0 . 1 1 ) (NS , 0 . 20 )  

H 1 . 1 6 1 . 44  1 . 89 

Underground components 

L 5 . 26 4 . 40  5 . 3 2  
(NS , 0 . 4 1 )  (NS , 0 . 28)  (NS , 0 . 4 9 )  

H 3 .  7 7  3 . 9 7  4 .  7 2  

To tal plant 

L 1 6 . 39 1 8 . 14 2 1 . 50 
(NS , 1 . 5 6 )  ( NS , 1 . 05)  (NS , 2 . 0 6 )  

H 1 3 . 4 1  20 . 2 7 24 . 89 

( ) A s ignifi cance! for between trea tment comparisons , 

j B  treatment mean SE . 
s igni f icance l evel for b e tween harves t comparisons o f  the 
component m�ans , L . S . b .  (5%)  
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In plants s ampl ed on day 3 , i . e .  one day af ter exposure to c 1 4 02 , 

approxima tely 40 percent o f  to tal p lant radioac tivity was loca ted 

with in the s tubble component ( Tab l e  30 and F igure 1 5 ) . Proport ional 

values for this component , and for the remaining component s  at the day 

3 sampl e ,  were very s imilar for both c· u t l i ng heigh t s . At th is s ta�:,--: 

of  regrowth , s l ightly mo re than 30 percent of totu " plant ac t ivity 

had b een t rans located to u n d e r g r o und o rgans , the maj ority o f  which was 

loca ted in rhi zome and f ibrous roo t t iss ue . Within the shoo t poo ls , a 

grea t er percentage of to tal ac tivi ty was loc ated in s tubb le shoo ts 

rather than rh izome shoo ts . 

Tabl e  30 : Percentage dis tribution of to tal plant ac t ivi ty be tween 

componen t s  in the c 1 4  D i s t r ib u t ion experiment 

Regrowth Day 

3 7 14 

S tubb l e  shoots 

L 1 6 . 0  28 . 8  3 2 . 7  
(NS , 1 .  0 )  (NS , 0 . 6 )  (NS , 1 .  2 )  

H 1 8 . 9  30 . 4  34 . 3  

Rhi zome shoots 

L 10 . 6  2 2 . 3  3 2 . 5  
(NS , 0 . 6 )  (NS , 1 .  5 )  ( NS , 1 . 0 )  

H 1 1 . 5  2 1 . 5  33 . 0  

S tubb l e  

L 4 1 . 6  24 . 7  9 . 6 
(NS , 1 .  5 )  (NS , 1 . 6 )  ( ** , 0 .  :� ) 

H 4 1 . 5  28 . 5  1 3 . 7  

Rhi zome shoot ini t ials 

L 3 . 3  3 . 0 1 . 3 
(NS , 1 . 1) (NS , 0 . 3 )  ( NS , 0 . 3 ) 

H 4 . 7  2 . 3  0 . 9  

Rhi zome 

L 1 4 . 0  9 . 4 8 . 3  
( * , 1 . 0 )  ( * ' 0 . 6)  ( NS , 0 . 8 )  

H 9 . 6 6 . 2  6 . 3  

Crown plus taproo t 

L 6 . 2  4 . 2 3 . 9 
(NS , 0 . 9 )  (NS , 0 . 3 )  (NS , 0 . 6 ) 

H 5 . 2  4 . 0 4 . 0 

Fibrous roo t  

L 8 . 8 7 . 6 1 1 . 7  
(NS , 0 . 4 )  (NS , 0 . 3 )  ( ** ,  0 . 4 )  

H 8 . 6  1 . 1  7 . 7  
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At subsequent labell ings , propo r t ional values followed s imilar 

pat terns for bo th treatments but they dif f ered markedly b e tween the 

various p lant components . On days 7 and 1 4 , s l ightly more than SO 

and 65 percent of to tal plant ac t ivity was respectively located in 

to tal shoo t growth . Wi thin the s tubbl e  shoo t pool propor t ional increases , 

wi th t ime , were les s rapid than thos e of the rhizome shoo t pool and 

as a resul t s imilar values were reco rded for both poo ls of the day 14 
s ample plant§ . As regrowth cont inued the pro po rtion of ac t iv i ty 

located in the s tubble decl ined with succes s ive labell ings and only 

10 to 1 5  percent W D !.>  reco rded for the las t  sample date . Between 

the f irst and s econd lab el -sample periods , propc •· t ional ac t iv i ty 

in individual and collec tive underground components also decl ined , 

a l t hough for the las t p erio d ,  values had s tabi l ized . 

7 . 3 . 2  c 1 4  Redis tribut ion Experiment 

Two days af ter expo sure to c 1 4 0 2 , all plants were cut down to 

e i ther 2 . 0 (L )  or 7 . 0 ( H )  cm and the res idual and subsequent plant 

component dry weights that were recorded , are presented irl Tab l e  3 1 . Of 

the aerial components ,  b o th stubble and s tubble shoot dty weights  

were greater where higher cut ting o ccurred , however i t  was no t unt il 

day 14 tha t a s ignif icant t rea tment differenc� was evident wi thin the 
rhi zome shoo t c lass . The long term ef f e c t  o f  eight weeks d i f f erential 
cutt ing was evident in all underground components , and for all 

s ampl ing da tes , cut t ing height and dry weights were pos i t ively related . 

With in each non·-shoo t component , no cons i s tent dry weight changes were 

reco rded in e i ther treatment dur ing the four teen day regrowth period . 

S im ilarly , rhi zome and c rown plus taproo t TNC concentrations varied 

l i t tle with t ime , although h igher values were recorded in the h igh 

cut plants (Appendix 1 5 )  . 

The generally lower specific ac t ivit ies o f  res idual plant 

components in treatment H ,  mus t in part refl ec t a dilut ion o f  c 1 4 

thro ughou t a l arger plant system ( Tabl e  3 2 ) . Specific ac tiv it ies were 

h ighest  within the two shoo t clas ses , al though it was within thes e  

s ame rapidly growing components that the decl ine i n  spec i f ic ac tivity , 

with time , was mo s t  rapid . Never theles s , even within the less expans ive 

components , decl ining speci fic  ac tiv i t i es were also recorded . 
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Tab l e  3 1 : Dry weight s  o f  plant components during regrowth in the c l 4  

Redis tribu t ion exper iment (mg per plant) 

Regrowth 

0 3 7 1 4 

S tubb l e shoots  

L 66 1 1 8 230 685  
( * * , 1 8) ( >�* ' 2 1 )  ( *'1< '  34)  ('1< ' 6 6 )  

H 2 1 7  293  500  1 0 3 1  

Rhizome shoots  

L 58 1 7 0  34 3 8 1 5  
(NS , 8 )  (NS , 3 1 )  (NS , 30)  ( * ,  5 1 )  

H 7 7  24 3 4 5 5  1 0 8 3  

S tubb l e  

L 1 584 1823  1 704 1 654 
( *** , 7 2)  ( *** , 1 0 2 )  ( '1<** ' 8 7 )  ( *** , 64 . 8 ) 

H 3600 389 1 3648 3 7 35 

Rhizome shoot  init ials 

L 56 4 5  5 5  1 0 5  
(NS , 1 2 )  ( *** , 6 ) ( * ' 1 4 )  (NS , 1 8 )  

H 65 9 5  1 3 8  1 1 3 

Rhizome 

L 64 3 832 84 2 7 6 3  
( * , 5 3 )  ('1< ' 6 5 )  (NS , 70)  (NS , 5 6 )  

H 983  1 1 84 1 088 9 1 2  

Crown plus t aproo t 

L 3 9 3  4 7 3  5 1 8  4 6 5  
( * ' 4 4 )  ( * ,  5 7 )  ( ** * ,  1 4 )  ( *** , 26)  

H 8 1 6 837 867 7 7 4  

Fibrous root 

L 80 1 89 5 904 9 7 5  
( * , 6 7 )  ( * * , 30 ) (NS , 85) ( * , 5 1 )  

H 1 050 1 104 1 0 86 1 20 1  
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Tab l e  3 2 : Spec i f i c  act ivi ty o f  p l ant components in the c 1 4 Redistribution 

experiment (d . p .m .  X 1 06 per mg dry weight ) 

Regrowth Day 

0 3 7 14 

S tubbl e  shoo t s  

L 5 . 8 3 . 0  1 . 4 0 . 4 
( NS , 0 . 6 ) ( * , 0 .  2 )  (NS , 0 . 2 ) (NS , 0 . 1 ) 

H 3 . 5 2 . 0 1 . 4 0 . 5 

Rhizome shoots 

L 7 . 9  3 . 6  1 : 7 0 . 6 
( * , 0 . 8 )  ( i, , 0 .  2 )  (NS , 0 . 2 )  (NS , 0 . 1 )  

H 3 . 1  2 . 6  1 . 5 0 . 6 

S tubb le 

L 2 . 0 1 . 1  1 . 0 0 . 5  
( * , 0 .  2 )  ( ** , 0 . 04 ) ( ** , 0 . 1 ) ( 0  . 0 6 )  

H 0 . 9  0 . 7  0 . 6 0 . 4 

Rhizome shoot init ials 

L 6 . 7 4 . 0  2 . 3 1 . 3 
( * , 1 . 4)  (NS , 0 . 5 )  (NS , 0 . 5 )  ( NS , 0 . 1 ) 

H 2 . 9 2 . 9  1 . 6 0 . 9  

Rhizome 

L 2 . 3 1 . 7  1 . 4 1 . 1  
(NS , 0 . 3 )  (NS , 0 .  2 )  ( * , 0 . 1 ) ( * , 0 . l )  

H 1 . 5 1 . 3 1 . 0 0 . 7 

Crown plus t aproot 

L 2 . 0 0 . 9 0 . 8 0 . 7  
( * , 0 .  3) (NS , 0 . 1 ) ( * , 0 . 04 )  (NS , 0 . 0 5 )  

H 0 . 8 0 . 7  0 . 6  0 . 5 

Fibrous roo t 

L 3 . 1  1 . 7 1 . 4 l . O 
( * ' 0 . 2 ) ( NS , 0 . 1 ) ( * , 0 . 0 7 )  ( NS , 0 . 0 8 )  

H 1 . 7 1 . 4 l . O 0 . 7  



Immed iately following cut t ing , residual c l 4 levels were highes t 

in the s tubble , a component that woul d  have principally consi s ted 

of the residue of those  shoo ts that were previously exposed to c 1 4o2 , 

but subs equently defol iated ( Tabl e  3 3 )  . To tal underground activ ity 

was greater than that o f  any o ther collec t ive pool on day 0 and this 

relatlve ranking was ma intai ned throughout the four teen day regrowth 

period . A ctivity level s  in s tubble and all underground components 

were progress ively lower at success ive sample da tes . Underground 

dry we ights responded pos i tively to cutt ing heigh t , but cons i stently 

higher ac t ivi ties were no t evident in treatment H for these o rgans . 

Fo r bo th shoo t classeg ; low res idual activity l evels were recorded , 

however during subsequent regrowth , activity p a t t erns d i f f ered . 

Whereas activ ity within the s tubbl e  shoo t pool decl ined wi th time , 

l evels with in the rh izome shoo t pool increased be tween day 0 and 3 

and then declined gradually or remained s tab l e . 

As to tal plant ac t ivity decl ined , there was littl e  variation in 

the pro po r t ion of to tal plant c 1 4  recorded wi thin individual or 

compos i te underground componen ts ( Tab le 34 and Figure 1 6 ) . At all 

four samp l e  da tes , approximately 55 percent o f total plant ac tivity 

in treatment L was reco rded in underground growth and only on day 3 ,  

did values no tably vary from approximately 4 5  per cent in trea tment H .  

Rhi zome and f ibrous roo t growth dominated underground ac t ivity with 

rhizome sho o t  ini tials and the crown plus taproo t  being oniy minor 

components . In both treatments , the percentage o f  to tal plant 

act ivity located· in the s tubble declined with t ime and this decreas e  
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was more marked where 2 . 0 cm cut ting occurred . H igher proportional 

values were recorded in the s tubb l e  and s tubbl e  shoo t pool s  with 7 . 0 cm 

cut ting , a response that reflec ted the greater weight of bo th components .  

The p ercentage of to tal ac tivity loca ted in to tal shoot growth increas ed 

at success ive harves ts and as values remained relatively cons tant within 

the s tubbl e  shoot clas s , these increases were principally related to 

the rhi zome shoo t poo l , particularly for trea tment H .  

Ac tivity levels reco rded o n  regrowth day 3 ,  7 and 1 4 , express ed 

as a percentage o f  thos e o r iginally recorded on day 0 are presented in 

Tabl e  3 5 . Al though no t s ta t i s t ically signi f icant , to tal plant 

percentage values were cons is tently lower throughout the four teen day 

regrowth period where low cutt ing occurred . Fo r both treatments , 

approximat ely half o f  the original to tal plant activity was lost  during 
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Table 3 3 : Absolute ac tivity of  plant components in the c 1 4 Redis tribution 

experimen t  ( d . p . m .  x 1 0 6 per plan t ) . 

Re growth Day 

0 3 7 14  

S tubble sho o ts 

' L  0 . 39 0 . 36 0 . 3 2 0 . 28 
( * , 0 . 08 )  ( * , 0 . 04)  (NS , 0 . 0 9 )  (NS , 0 . 0 7 )  

H 0 . 7 6 0 . 5 7  0 . 68 0 . 50 

Rhizome shoo t s  

L 0 . 46  0 . 6 2 0 . 58 0 . 4 7  
(NS , 0 . 0 6 )  ( NS , 0 . 0 6 )  ( NS ,  0 . 0 8)  ( NS , 0 . 1 0 )  

H 0 . 2 3 0 . 60 0 . 6 6 0 . 6 5  

To tal shoo t s  

L 0 . 85 0 . 9 7  0 . 90  0 .  74 
NS , 0 . 1 3 )  ( NS , 0 . 0 8 )  (NS , 0 . 1 7 )  ( NS , 0 . 1 6 )  

H 0 . 99 1 . 1 7  1 . 3 5  1 . 1 5 

S tubble 

L 3 . 24 l .  9 7  1 . 7 1 0 . 83 
(NS , 0 . 24 )  ( NS , 0 . 1 7 )  ( NS , 0 . 1 9 )  ( * , 0 . 1 4 )  

H 3 . 34 2 . 6 1  2 . 28 1 . 4 3  

Rhizome shoo t ini t ials 

L 0 . 3 7 0 . 1 8 0 . 1 4 0 . 1 3 
(NS , 0 . 09 ) ( NS , 0 . 04 )  (NS , 0 . 0 3 )  ( NS , 0 . 0 1 )  

H 0 . 1 9 0 . 28 0 . 2 3 0 . 09  

Rhizome 

L 1 . 50 1 . 4 2  1 . 2 3 0 .  7 8  
(NS , 0 . 0 7 )  ( NS , 0 . 1 7 )  ( NS ,  0 . 08 )  (NS , 0 . 0 3 )  

H 1 . 50 1 . 60 1 . 0 5  0 . 65 

Crown plus taproot 

L 0 .  7 7  0 . 4 5  0 . 4 3  0 . 3 1 
(NS , 0 . 0 6 )  ( NS , 0 . 1 2 )  ( NS , 0 . 0 3 )  (* , 0 . 0 2 )  

H 0 . 64 0 . 5 7  0 . 5 2  0 . 3 8  

Fibrous roo t  

L 2 . 44 1 .  5 1  1 .  2 1  0 . 95 
(NS , 0 . 2 5 )  ( NS , 0 . 1 0 )  ( NS , 0 . 06 )  ( NS , 0 . 1 0 )  

H 1 . 82  1 . 5 3  1 . 0 3  0 . 87 

To tal underground 

L 5 . 08 3 . 5 6 3 . 00 2 . 1 7 
(NS , 0 . 3 7 )  ( NS , 0 . 26 )  (NS , 0 . 1 4 )  (NS , 0 . 1 2) 

H 4 . 1 5 3 . 98 2 . 84 2 . 0 0  

I * , 0 . 40 
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Table 34 : Percentage dis tribut ion of to tal plant act iv i ty between 

components in the c 1 4  Redis tribution experiment 

Regrowth Day 

0 3 7 1 4  

S tubble shoo ts 

L 4 . 0 5 . 4 5 . 8  7 . 3  
( * ,  0 . 9 )  ( * ' 0 . 4 )  ( * ,  1 . 2) (NS , 1 . 1 ) 

H 9 . 0 7 . 3  1 0 . 4  1 0 . 8  

Rhizome shoo ts 

L 4 . 8 9 . 5 1 0 . 3  1 2 . 2  
( * , 0 . 4 )  (NS , 0 .  6 )  (NS , 0 . 9 )  (NS , 1 .  2 )  

H '2 . 7  7 . 7 1 0 . 3  14 . 1  

S tubble 

L 34 . 3  30 . 5  29 . 9  2 2 . 2  
(NS , 2 . 1 )  (NS , 2 . 1 ) ( NS , 2 . 5 ) ( ** ,  1 . 2 )  

H 39 . 4  33 . 6  35 . 4  30 . 9  

Rh izome shoot initials 

L 4 . 0 2 . 8  2 . 3  3 . 5 
( NS , 0 .  7 )  (NS , 0 . 5 ) ( NS , 0 . 3 ) (NS , 0 . 5 )  

H 2 . 2 3 . 6 3 . 4 2 . 2  

Rhizome 

L 1 6 . 7  22 . 0  2 1 . 9  2 1 . 7  
(NS , 0 . 9 )  (NS , 1 . 6)  ( * , 1 . 0) ( * , 1 . 4 )  

H 1 7 . 7  20 . 6  1 6 . 4  14 . 5  

Crown plus taproo t 

L 8 . 3 6 . 8 7 . 6  8 . 2  
( NS , 0 . 6 )  (NS , 1 . 4 )  (NS , 0 . 4)  ( NS , 0 .  7 7 )  

H 7 . 5 7 . 3 8 . 0 8 . 4 

Fibrous roo t 

L 2 7 . 8  22 . 9  2 2 . 3  2 5 . 0  
(NS , 2 .  7 )  (NS , 1 .  9 )  ( NS , 1 . 8) ( **

, 
0 . 8 ) 

H 2 1 . 5  19 . 7  1 6 . 0  1 9  . 1  
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Tab le 35 : Ac t iv i ty levels of plant components , as a percen tage o f  their 

original ac t ivity on day 0 ,  in the c 1 4  Redis tr ibut ion 

experiment .  

Regruw th Day 

3 7 1 4  

S tubb l e  shoo ts 

L 9 5 . 3  8 2 . 1  7 4 . 3  
(NS , 1 0 . 6 ) (NS , 1 2 . 8 ) ( NS , 9 .  7 )  

H 7 6 . 0  88 . 9  66 . 3  

Rhi zome shoo ts 

L 1 3 5 . 8  1 28 . 1  1 0 j . 3  
( * , 2 3 . 0 )  ( * , 1 9 . 8) ( * , 2 3 . 1 ) 

H 2 6 1 . 8  288 . 4  28 1 . 4 

S tubb l e  

L 6 3 . 8  54 . 2  24 . 7  
(NS , 7 .  7 )  ( NS , 6 .  2)  (NS , 5 . 9 )  

H 7 9 . 3  69 . 0  4 1 . 9  

Rhi zome shoo t ini t ials  

L 4 9 . 2  36 . 7  34 . 9  
(NS , 4 3 .  2 )  (NS , 30 . 1 ) (NS , 1 3 . 8 ) 

H 149 . 5  1 25 . 7  4 9 . 1  

Rhi zome 

L 9 5 . 3  8 3 . 5  50 . 9  
(NS , 1 6 .  3)  ( NS , 4 .  7 )  (NS , 5 . 2 ) 

H 1 04 . 2 7 3 . 0  43 . 2  

Crown plus taproo t 

L 5 9 . 4  54 . 8  40 . 1  
(NS , 1 7 . 3) ( NS , 14 . 9 )  (NS , 1 1 . 2 )  

H 88 . 7  80 . 2  58 . 4  

Fibro us roo t 

L 6 1 . 3  50 . 1  3 7 . 8  
(NS , 1 3 . 5 ) (NS , 8 . 0 )  (NS , 6 . 0 )  

H 8 5 . 1  58 . 6  48 . 2  

To tal plant 

L 7 2 . 9  6 2 . 4  4 2 . 1  
(NS , 7 . 4 )  (NS , 4 . 3 )  (NS , 5 .  2 )  

H 90 . 5  7 7 . 2  53 . 1  
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the experimental period . The r elative pat t erns o f  net ac t iv i ty changes 

d if f ered markedly b e tween the var ious plant components .  O f  tho s e  

located underground , ac t ivity lo sses were eventually o f  a s imilar 

relat ive magnit ud e ,  although they were init ially more rapid within 

c ro�n plus tapro o t  and f ibrous root tissue . Data as soc iated with 

rhi zome shoo t init ials were highly var iab l e  and may have reflect ed 

their t rans fo rma t io n  to aerially growing rhizome shoo ts . 

The grea tes t decl ine in C 1 4 , rela t ive tO day 0 ,  WdS reco rded 

with in the s tubble component and this was par ticularly so for treatment 

L where , at th e end o f  the experimen tal period , only 24 . 7  percent o f  

the o riginal ac t ivity remained . Comb ining the two treatments , los s es 

in t he s tubble shoot class accounted for only 30 percent of their 

orig inal ac tiv i ty , and wi thin the rh izome shoo t pool net a c t iv i ty 

gains were made . The larger , relative increas es that were reco rded in 

rhi zome shoo ts of t rea tment H may in par t reflec t the low dry weights and 

to t al ac tivit ies o f  this poo l on day 0 .  However , the s tabl e  nature o f  

act ivi ty i n  this component d if f ered ma rkedly f rom that o f  the o ther 

component s .  I n  t reatment L ,  increases in rhizome shoo t activity los s es 

were less rap id than those o f  the s tubble and underground components . 

7 . 4 Discussion 

7 . 4 . 1  c 1 4  Dis tribut ion Experimen t 

I rrespec t ive o f  s ize and pho tosynthe t ic capac i ty , each plant in the 

c 1 4  Dis tribution Exper iment was exposed to 50� C i ,  C 1 40 2 . Consequently , 

abs o lu te level s of pho tosynthe t ically ass imilated c 1 4  did no t ind icate 

the t rue pho tosynthe t ic act ivi ty o f  the trea tment plan ts . Furthermore , 

i t  is l ikely that during each exposure w i thin the s ealed glas s  chambers , 

C02 l evels quickly became a l imi ting factor in pho tosynthesis . As 

a resul t ,  plants w i th a grea t er leaf canopy would not have been abl e  to 

fully explo i t  their pho tosynthetic pot ential . This was mos t  obvious 

at each exposure-sample period where tot al plant ac t ivit ies d id no t 

d i ffer signif ic an tly b e tween the two c u t t ing heigh t treatment s . The 

f a c t  that to tal ac t ivi ty increased at suc cess ive labell ings in this 

experiment does indicate however , that as new shoots grew and dominated 



older s tubble t issue , a more e f f ic ient pho tosynthe tic canopy developed . 

I t  i s  unlikely tha t the c 1 4  dis tribut ion patterns , recorded in plants 

24 hours after c 1 4  ass imi l a t ion , would have been greatly influenced by 

the s e  experimental short- comings , as they would have occurred for only 

a sho rt period wi thin the 14 hour day pho to p e r iod under which the 

p lants were grown . 

Translocation u f  c1 4  f rom assimilat ing organs is generally rapid 

over the f irs t 1 to 2 hours fol low ing f ixa tion and then it cont inues 

. 1 L  a s lower rate ( Hodgkinson & V�al e ,  1966 ; Ho f s tra & Nel�on , 1 9 6 9 ) . 

Ther efore , i t  i s  obvious tha t  c 1 4  dis tribution pat terns will vary as 
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the t ime from exposure to s ampl ing changes . A 24 hour delay was s el ec t ed 

for use in the c 1 4  Dis tribu t ion experiment repo rted in this chap ter , 

as i t  was cons idered tha t such a period enabled the incorpo ration of 

c1 4  into s tructural tissue , and the trans l o cation of c 1 4  to o ther 

components , to be virtually comple ted . 

Ac tivi ty l evel s  recorded in aerial components , 24 hours after c 1 402  

exposure , would have been the ne t resul t of  ass imilatory , respiratory , 

impor t  and export  p rocesses . I t  is unl ikely tha t the decl ine in 

c 1 4  re tained wi thin the s tubb l e  at success ive labelling t imes resul ted 

from increased resp iration or expo rt to underground organs . More 

l ikely the decl ine reflects reduced rates of as s imilat ion as shoo t 

regrowth pro gress ively shaded the mo re bas al s tubble component . 

Where defo l ia tion is incomplete and f requent , s tubbl e  l eaf is a 

maj o r  component o f  residual plant leaf area in ' Grasslands Maku ' .  

In Experiment 3 ,  where environmental cond i tions were s imilar to those 

of this experiment , stubbl e  lea f  accounted for 88 percent and 65-70 

percent o f  residual plant l eaf area following 2 . 0 ern and 5 . 0 ern 

cut t ing , respec t ively ( Table 2 5 ) . During the early s tages o f  regrowth 

in this c 1 4  Dis trib ution exper iment , s tubbl e  l eaf would appear to 

have been a maj or source o f  current pho tosynthates . Ass imilate 

retention in young expanding shoots is high (Wolf , 1 9 6 7 ; Pearce et a l . � 

1 9 69 ) , therefore mos t ,  if no t all , o f  the underground activity recorded 

a t  day 3 sampl e  o f  the c 1 4 D is tribution experiment would have originated 

f rom s tubbl e  rather than sho o t  ass imilation . As ac t ivity l evels 

present in undergro und organs on that day were s imilar to those  fo r 



subs equent labell ings , i t  would appear tha t  during early regrowth the 

s tubb l e  component was an equally satisfac tory source o f  assimilat es 

fo r underground o rgans as sub sequent canop ies compris ing more new shoot  

growth . This may par t ly explain why there i s  little evidence of  

declining underground dry weigh ts and nons tru ctural carbohydra tes 

fo llowing incomp l e te defol iation in this experiment and in Experiment 3 

( Chap ter 6 . 3 ) . 
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Approximately 40 percent o f  to tal p lant ac tivity s ti l l  remained 

within the non-expanding s tubb l e  component of  day 3 sampl e  plants . H igh 

spet i f i c  ac t ivi ties indica ted tha t  shoo ts were strong , ac tive s inks 

and i t  is unl ikely that reta ined s tubbl e  c 1 4 wouid have been so high 

if  more rapidly growing organs were deficient in ass imilate . I t  would 

therefo re appear that where s tubble leaf i s  a major ass imilate sourc e , 

early shoo t regrowth i s  no t l imi ted by as s imilate supply . Mo re l ikely 

it is the abi l i ty o f  the plant to use ass imil ates in regrowth that is 

the impo rtant , init ial l imita t ion . As regrowth continued , assimila te 

distribution was incr eas ingly dominated by the two sho o t  poo l s . 

This would indicate that it i s  no t unt il adequate shoo t popula t ions are 

estab l ished that current pho to syn thate supply may become a l imi ting ' 

regrowth fac tor . 

I t  should be no t ed however , that in this experimen t ,  where an 

ar t i f ic ial environment was employed , the apparent impor t ance o f  

s tubbl e  l eaf ass imilation may have b een overes timated . S tubb l e  l eaf 

viab i li ty was obviously enhanced under the l igh t regime and highly 

favourab l e  growth room environment to which they were expcs·ed . In 

lucerne , Langer & Keo ghan ( 1 9 7 0 )  also repo rted that the abundance and 

longev i ty o f  bas al leaves tended to be greater in spaced p lant s , 

espec ial ly in contro l l ed environments . 

P r io r  to Day 0 o f  the c 1 4  Dis tribut ion experiment , plants were 

cut to two d if ferent heigh ts on a weekly basis and as a resul t 

greater underground dry weigh ts o ccurred where higher cu t t ing was 

employed . Dur ing the four teen day regrowth p eriod in this experl.ment 

there was no evidence that sugges ted a greater proportion of ass imilat ed 

carbon was par t i t io ned to underground organs where 7 . 0 rather than 

2 . 0 cm cut ting. oc:curred.Therefore, it would s eem that the l arger under­

ground weights reco rded in this experimen t wi th high cut t ing , princ ipally 
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reflec ted greater absolute as s imilation rates . Never theless , it is 

pos s ib l e  tha t the proport ional dis tribut ion of as s imilates to underground 

components may have increas ed , as shoot  grm¥.th rates declined , if the 

experimental perio d  had been ext ended . I n  Experiment 3 ,  where 

envi�onmental condi tions were s imilar to this experiment , an increas ing 

emphas is in the part itioning of assimilates to underground o rgans , 

as ind i cated by the accumulat ion o f  TNC , did no t occur until the third and 

four th week o f  regrowth ( Chap ter 6 . 3 . 4 . )  

O f  the plant components analysed in this expe r i ment i t  was f ibrous 

roo t growth tha t was the mo s t a typical and this probably reflec t ed 

pot condit ions �ere adequa te mo is ture , low soil compac t ion and 

minimal top to roo t tempe ra ture d i f f erentials occu rred . The rel a t ively 

large d ry wei gh t s  recorded fo r this component prubably indicate a 

grea ter level o f  assimi l at e  util ization by fibrous roo t g rowth in 

these experiments than would no rmally be expec ted in f iel d cond i t ions . 

7 . 4 . 2  c l 4 Redis tribution ExoerimP.n t 

Init ial to tal and proport ional activ i ty l evels recorded on day 0 
of th e c 1 4 Redis tribut ion experiment ref l ec t  the experimental pro cedures 

employed . As in the c 1 4  Dis t r ibut ion experiment ,  the greater l eaf 

cano p ies of  high cut plants were unabl e t o  fully explo i t  their pho to­

synthe tic po tential and as a r esul t, s imilar underground activities 

were r ecorded for the two treatments . In fac r ,  propo rt ional underground 

activity level s  were lower whe r e  h igh c u t t ing occurred � as greater l�vels 

of res idual aci t ivity were l e f t  wi thin the aerial components . 

Never theles s ,  ac t ivity changes between and within components , following 

day 0 cutting , ind icated c 1 4 redis tribution pat terns tha t resul ted from 

resp iratory , import and expor t  processes . 

The decl ine in total  plant activi ty measured during the four t een 

day regrowth period of the c 1 4  Red is tr ibut ion experiment would have 

principally resul ted from respiratory losses . This d ecl ine was greater 

within the low cut treatment , indicating tha t a greater use o f  previously 

ass imila ted carbon was made by those plants . In ei ther treatment however , 

this usage was no t at the net expens e o f  previous ly accumul a ted under­

ground nons truc tural carbohydrates . 
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As to tal plant ac tivi ty decl ined wi th t ime , only the s tubble 

showed a cons is tent decline in the proportional d is tribu tion of  to tal 

plan t  ac t ivi ty between the various component s . This decrease may have 

resul ted f rom the net expo� t o f  c 1 4  and/or f rom rela tively grea ter 

respiratory losses , a l though the latter is less l ikely due to the non­

expans ive nature of the s tub ble  component . Expor t of  l abelled o rganic 

compounds to s tubbl e  shoo ts was probable and may in par t explain the 

slower decl ine in to tal activity recorded for this shoo t pool . However , 

red is tribu t ion of c 1 4  f rom s tubbl e  to underground o rgans may also have 

occurred . During the f irs t three days , \vhen the decl ine in s tubbl e  

ac t ivity was mo s t  rap i d , there was l it tle change in rhizome ac t ivity 

l evel s .  Of  the underground organs , this latter component would have 

been th e mos t  closely l i nked �i th the s tubb l e  pool , and its  init ial 

ac t ivity pa t tern cont ras ts with tho s e  of  the re111aining underground 

components . 

Th e  cons tant proport ion of to tal activ i ty recorded in the underground 

component s  during regrowth , ind ica ted that c14 losses followed a s imilar 

pat tern to that of the to tal plan t . Thi s  migh t suggest  that respiration 

ac count ed for much of the los ses . There was no evidence o f  a l arge 

ne t export o f  organic compounds from underground organs and this may 

have resul ted from minimal red i s t r ibut ion and / o r  s imul taneous import ing 

from the s tubble . Cer tainly , large exports o f organic compounds f rom 

underground tis sue , as repor ted for more completely defo l iated lucerne 

(Hodgkinson , 1969 ; Pearce et a l . ,  1969 ; Smi th & Mart en ,  1 9 7 0 ) , 

were no t evident in this experiment with ' Grass lands Maku ' .  Again 

res i dual leaf canopies appeared to produce suf f ic ient assimilate to 

satisfy resp iratory and growth d emands . 

Ac t ivity increases wi thin the rhi zome shoot  pool during the firs t 

three days of regrowth d id ind i cate  the entry o f  labelled ' organic 

compounds into th is component .  This increase may have involved the 

impottation of c 1 4  l abelled compounds from the rhi zome poo l and/or  

the transformation o f  prev ious ly labelled rhizome shoo t initial s into 

aer ial l y  growing rhi zome shoo ts during early regrowth . These ini t ial 

inc �as es were mos t  marked for the high cut treatment and probably 

re f lec ted the small res idual rhi zome shoot populat ion that resul t ed 

from defoliation of  a previously rapid , regrowth cycle . The l imi t ed 

decl ine in rhizome shoot  activi ty was in contras t with the remaining 
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components and may have resul ted from the continu ing entry o f  c l 4  into 

this pool and/or the prev ious incorporation of c l 4 into more s tabl e  

s tructural tissue . I t  was evi dent f rom the redis tribution patterns 

that rhizome shoo ts , rath er than s tubble shoo t s , were mo re involved 

in the impo r ca tion of previously ass imilated carbon . In Experiment 3 

( s ee Chap ter 6 . 3 . 1 )  r egrowth rates also indica t�d tha t the rhizome shoo t 

pool was mo re respons ive to res idual plant TNC l evels . 

In summary , i t  would appear tha t  where defo liation o f  ' Gras s l ands 

Maku ' is incomplete , res i dual s tubb l e  is ini t ially a maj o r  po tential 

source o f  previous ly and currently assimilated carbon . Impor ta tion 

of ac cumulat ed organic compounds appears mos t  l ikel y  to o c cur in the 

rhi zome sho o t  pool , al though the to tal amount of carbon would be minimal 

to that invol ved in respiratory losses . The continual loss  of previously 

assimilated carbon ind ica tes the cont inual turnover of  o rganic compounds . 

During the early s t ages o f  regrowth , shoots increas ingly domina te the 

d is tribu t ion of  current pho tosynthates and it would seem tha t  fol lowing 

p art ial defoliation , i t  is the ab i l i ty to utilize ass imila tes rather 

than produce them , tha t l imits regrowth . Cut ting heigh t responses , 

in terms o f  underground dry weigh ts , were no t related to d i f f erent 

partitioning pat terns , therefore it is l ikely that such differences were 

related to the ab solute supply of assimilates as det ermined by the 

pho tosynthe t i c  capac i t ies of the aer ial canop ies . 
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CHAPTER 8 :  GENERAL DISCUS S I ON 

In determining the respo1'"' e o f  ' Grasslands Maku ' to defol iation , 

the series o f  experiment s repor ted in this thes is cons idered p lant 

morphology , canopy dry ma t t er produc t ion , nons t ructural carbohydrates , 

res idual plant factors as determinant s  of early regrowth and ass imilat e 

par tit ioning following defolia tion . 

Und er field cond i t ions , regrowth ra tes in defol iated ' Grass lands 

Maku ' ,  at t imes , exceeded 100 kg DM/ha/ day , yet  recovery was consis tently 

charact eri z ed by slow regrowth dur ing the f i r s t  two to three weeks 

af ter defol ia tion . When gro\vr1 as a pure sward , or where comp e t i t ion 

f rom companion spec ies is low , this s low phase will lead to reduced 

canopy pro duc t ion but it is unl ikely to be c r i t i cal in relation to 

the pers is tenc e of the lo tus toinpo nent . I n  cont ras t however , where 

rapidly growing compa�ions can express their growth po tential , the 

failure of ' Grass lands Maku ' to rap idly regrow f o llowing defoliation 

is l ikely to result in i t s  poor pers is tenc e and produc tion ; s imilar 

to that report ed by Sheath et al . ( 1 9 7 6 )  and Brock & Charl ton ( 1 9 7 7 ) . 

As in many legumes such as M. sa tiva (Leach , 1 9 6 7 ) , L .  cornicu Za tus 

( Smith & Nelson , i 9 6 7 ) , C .  varia ( Brann & Jung , 1 9 7 4 )  and M. atropurpureus 

( Jones , 1 9 7 4b ) , act ively growing apices in ' Grasslands Maku ' we :-e 

readily removed during defoliation and as such , init ial regrowth �as 
h ighly dependent on th e nature of th e res idual shoot  populat ion . 

Where defo liation was s evere and res idual shoo t numbers were low , mean 

regrow th rates for the first three weeks following defo l ia t ion rarely 

exceeded 90- 1 00 kg DM/ha/wk . The s i ze and the numb er o f  shoo ts 

available for , and eventual ly par tic ipat ing in early regrowth , were 

impor tant res idual plant factors in this �gntex t . 

Early regrowth and shoot production were enhanced where the 

growth of th e s tubb l e  sho o t  pool was en ouraged (Chap t er 4 . 3 . 2 ) . 

The p res ence of  this shoot pool incr eased the number o f  shoo ts 

partic ipat ing in early regrowth and this in t urn led to thes e  regrow th 

improvements . However , this pool was n1or e  super ficial than the rhizome 

shoo t poo l and nega t ive s tubb le shoot  growth ra tes were recorded 

towards the end of some regrowth cycles , Fur the mo re , s tubble shoot 

growth was encouraged by frequent and/or lax defolia tion which 

respect ively , limi ted pro duc tion and increased within-canopy dry matt er 

losses . 
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Delays in the format ion of  adequat e shoot popu lat ions were mos t  

evident in the rhizome shoot poo l and this was crit ical in regrowth 

for it was this same shoot poo l that eventually p rovided the bulk of 

shoot growth ( se e  Figure 5 ) . Pos s ib l e  rea sons for this delay have 

b een 9ut l ined in previous d iscus s ion s ec t ions , but  they princ ipally 

involve the ini t iation and locat ion of  rhi zome shoot ini t ial s . At 

no t ime during these s t udies was there any evidence of  a dis t inct 

flush of l eafy shoots developing in the basal region of the canopy , yet 

it is such a f lush , if it coincided with defo l iation,  tha t could 

provide a basal shoot populat ion able to commence immed ia t e  regrowth . 

Wh ere residual c anopies contained a l arge numb er of ac t ively growing 

shoots , ear ly r egrowth rat e s  inc reas ed two to three fold and ranged 

b e tween L00-JQO kg DM/ha/wk . 

The coincidenc e of  d efoliat io n with basal shoot f l ushes is  the 

key to maximiz ing lucerne prod uct ion ( Keoghan , 1 9 6 7 )  and the developmen t 

o f  s uch an associat ion in L .  cornicu latus was cons id ered by Keo ghan & 
Tass e l  ( 1 9 7 4 )  to be a maj or s t ep in the pos s ib l e  improvement o f  that 

s pec ies' product ion po t ent ial . S imil arly in L .  peduncu la tus , the 

d evelopment of p l an t s  that conc entrat e the release of shoo ts from bas al 

s i tes  would appear neces sary if satisfactory ear ly regrowth is to be 

achieved . However , such a plant wo uld requi r e  spec ial management .  a§ 

in the case of luc e rne , if it s persist ence and p roduc t ivity was to be  

maintained . Whet her this approach is  f eas ib l e  w i l l  dep end on the 

charact er izat ion of  growth habit and regrowth in o ther L .  peduncu Zatus 

g eno types , in o rder to ident ify appro priat e plant ma t er ial . 

In s everely gra zed mixed swards , d iploid L .  peduncu latus cul t ivars 

have perfo rmed bet ter than ' Grasslands Maku ' ( Harris et a l . ,  1 9 7 3 ;  

Lambert e t  a � ,  1 9 7 4 ) . I t  is l ikely that this improved p erformance 

relates to the great er ab i l ity of  thes e mo re pro s t rat e p lants to 

maintain larger res idual rhi zome shoo t and s t ubble  shoo t populations 

that can commence immediat e regrowth fol lowing defol iat ion . On the 

bas is of  pe rsis tenc e ,  and hence p roduc t ivity , pros trate diploid 

ma terial may well be mo re suited to s evere and/or  frequent grazing 

conditions where the production po t ential of ' Gras slands Maku ' is unab l e  

to be  expressed . However ,  this d o e s  mean that growth hab i t  and 

po ten t ial p roduc t ivity conf l ic t  (Arms trong , 1 9 7 4 ) . 
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Bec a us e o f  the need to re-establish a new , actively g rowing 

shoo t populat ion following defo l i a tion , L .  pedunculatus is at a 

d is tinc t disadvantage relative to tradit ional pas ture p lants such as 

L .  perenne or T. rep,:ns where act ively growing meris t ems are no t read i ly 

removed du ring grazing . Thi s  d isadvantage wou l d  appear to be  the key 

to Lhe poor regrowth and comp e t i t ive ability  of L. peduncu latus . Unless 

the tegrowth characteris tics of L. peduncu l atus , br pas ture m,magement , 

are radically changed , i t would therefore s e em unlikely tha t  it wil l  

b ecome a n  impor tant l egume component o f  gra zed , mixed swards where the 

relat ive c ompeti tive ab ility of L. peduncula tus is no t favoured by 

edaphi c  or clima t ic condit ions . 

Detai J ed growth analys es in Experiment 3 indicated that both 

shoo t number and ind ividual shoot we it)'  ts were important in determining 

the s iz e  o f  the res idual shoo t pool following defol ia t ion (Chap ter u . 3 . 1 ) . 

In the f ield , cu tt ing f requency s trongly inf luenced res idual shoo t 

numbers in ' Gras s 1and s Maku ' by de termi ning the ex t ent o f  canopy 

regrow th . Defo l iation o f  large c anopies resul t ed in low residual ahoot  

popul ations , thus res idual shoo t numbers were l eas t ,  and o f tt m  fAbs E!tit , 

where s evere , infrequent cu t t ing occurred ( F igure 6) . With h ighar 

cut ting , canopy development became mo re open and erect and rhi zome 

shoot numbers decreas ed . Because of these mo rphological adap tat ions 

in the f i eld , shoot numb ers showed l i t t l e  res ponse to diff erent cut t ing 

heights . 

H igher cu t t ing d id provide greater ini t ial shoot weigh ts and 

a l though RGR of the shoot pool s were lower , absolute growth rates and 

ne t shoo t produc t ion were inc reased ( Chap t er 6 . 3 . 1 ) . In the f i el d , 

produc t ion response s  to lax defol iation were mos t  obvious within the 

s tubbl e  shoo t poo l  whe r e  init ially larger shoots were abl e  to maintain 

higher growth rates for a longer period during regrowth . I t  was 

principal ly through the encouragement o f  growth in this pool that 

to tal shoot produc t ion was improved by up to 2 . 0 - 3 . 0 t D .M . /ha with 

laxer defoliation . However , i t  should also b e  no t ed that within-cano py 

dry mat ter losses , amounting to approximat ely 30 percent o f  to tal 

shoot production , o ccurred wi th high cutt ing and that th ese los s e s  

generally nul l if ied any n e t  cano py produc t ion benefits  gained by 

increased shoot regrowth ( Tab l e  1 5 ) . Nevertheles s , where management 

prac t ices provide larger residual shoo ts , it is appa�ent that shoo t 

regrowth and hence , the comp e t i t ive abi l i ty o f  ' Gras slands Maku ' ,  

wil l b e  improved , 



By extending r egrowth intervals f rom three to six weeks in 

Exp eriment 1 ,  and by reduc ing the numb er o f  cut s  from six to four in 

Exp eriment 2 ,  net cano py produc t ion in bo th s i tuat ions was improved 

by at l east 2 . 0 t DN/ha . The extent of  these respons es ind i ca t ed 
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that q def erred graz ing sys tem would be nec ess ary if the p o t ent ial 

performanc e o f  ' Gras slands Haku ' is to  be  r ea l i zed under graz i ng 

condit ions . Furthennu r e , the very s low e & . l y regrowth , already ment ioned , 

wo uld also indicat e the po � � n t ial l imi t a l lons o f  continuous o r  fr equent 

gra z ing in t erms of  canopy dry ma t te r  pro d uc t ion . 

No bene f i t  in dry ma t ter produc tion was ach ieved by p ro long ing 

regi6w th pas t the s tage where secondary axi l l ary shoo ts �ere r eleased 

and developed in the l ! () per axils o f  dominant shoots  within the canopy . 

Fur thermo r e , long fegrowth intervals also . l ead to large cano p ies and 

poo r res idual shoot populations if l enient defol iat io n can no t b e  

impl emetlted . I t  wo uld ther efore s eem tha t the mos t  appropriate r egrow th 

int erval f o e  ' Grass lands Maku ' is that wh ich enabl es the grea tes t 

expr ess ion o f  h igh sho o t  growth rates that o ccur in later reg rowth , 

but s till prov ides suf f i c ient residual shoo ts that can commenc e rapid  

immediate rP�TOvltl t ·. 

Lax , ro tational graz ing would appear to b e  the mo s t  appropr iate 

management that would provid e  the regrowth c r i t eria nec ess ary for the 
p ers is t ence and produc t ion of  ' Grasslands Maku ' in grazed swards and 

this may be b es t  ach ieved with cat tle rather than sheep . As in t reatment 

SAL of Experiment 2 ( s ee Chapter 4 . 3 . 2 ) , such a management may maximize 

early regrowth , to tal shoot product ion and the competitive ab il ity 

o f  the lot us component . However , i t  will also resul t in low ut il ization 

and high dry mat ter l o s s es within the canopy . 

Canopy s truc ture and net produc tion was an integrat ed func t ion 

o f  d ifferent sho o t regrowth pat terns and within-canopy dry mat ter 

loss es . Al though inc reas es in s tubb l e  shoot numb ers and weights were 

o f t en greater than for the rhi zome sho o t  pool during early regrowth , 

i t  was the lat ter poo l that increas ingly dominat ed canopy growth as 

r egrowth cont inued . Th i s  dominanc e r esul ted f rom the inab il i ty o f  

s tubb l e  sho o t s  t o  mainta i n  RGR a t  a l evel s imilar t o  that o f  rhizome 

s ho o t s  (Figure 1 4 ) . Thus , the dominanc e o f  the rhi �ome shoo t  poo l  
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over s tubble shoot s  was enhanced as regrowth intervals increased , 

al though it was delayed when higher cut t ing produced residual s tubb le 

shoo ts o f  g reat er init ial dry weights . S tcbble  death and subs equent 

decompo sit ion resulted in dry mat ter losses wi thin the canopy of  up 

to 1 50 kg DM/ha /wk where low cut t ing occurred and u p  to 250 kg DM/ha/wk 

where high cutt ing was employed . Becaus e of the ext ent of these losses , 

they were an impo rtant det erminant o f  ne t canopy pro duct ion pat terns , 

part icularly durin§ �a rly regrowth when s t ubble was a maj o r  component 

of canopy s t ruc t ure . 

Where defol i a t iun was severe and infrequent , res idual l ea f  area 

was low , if  no t abs ent , and generally o f  a senescent nature ( Figure 6 ) . 

However , where defoliat ion was less compl e t � ;  S t udies involv ing c 1 4  

part it ioning and nons truc tural carbohydrate determinat ions ind icated 

that res idual leaf can be a sat isfactory source of as s imilates f o r  

res piratory and growth demands dur ing early regrowth . In such canopies , 

wh ich were encouraged by lax and/or f r equent defoliatio n ,  s tubb l e  leaf 

appeared to be an impo r tant early source of  cur rent and previously 

f ixed as similataa . Wh ere rnana�ement pract ices ensure satisfac t o ry 

re2 1 dual shoo t populat ions , then res idual leaf area should also be nigh . 

Fo llowing defolia t ion , previously f ixed as s imila tes were red is tribut ed 

to the rhizome s hoo t pool ( Chap ter 7 . 3 . 2 ) and i t  was th is same shoo t 

poo l  that also responded to res idual nons t ructural carbohydrate levels . 

However , there was never any evidence o f  large net nons tructural 

carbohydrat e usage fol lowina l ncomplete defo liation and at no t ime 

did rto hs truc tural carbohyd rates have a g reater inf luence on regrow th 

rates , than d id the s ize of  the res idual shoo t pools . While 

shoo t populations were re-es tab l ishing following cut t ing , it appeared 

that ass imilate utiliza t ion , ra ther thact supply , was the more impor tant 

l imi t a t ion in regrowth . 

Because o f  their apparent minimal invo lvement in shoot r eg row th , 

accumulation o f  nons truc tural carbohydrates may be cons idered as 

ine f f ic ient in terms o f  shoo t produc tion . However , s to red s tarch would 

appear to be an impo rtant res pirato ry subs trate for underground o rgans 

dur ing winter and early spr ing and as s uch it plays an impor tant part 

i n  mainta ining a bas is for shoo t ini tiat ion and produc t ion . Concentra tions 

of TNC appeared to be princ ipal ly d e te rmined by s easonal f ac to rs with 



1 7 9 .  

undergro und values fall ing f rom late autumn peaks , of  25  to 30 percent , 

to late spring tro ughs , of 5 to 1 0  percen t . In contras t , defo l i at io n  

f requency , but mo r e  part icularly sever i ty , influenced t h e  s ize o f  

s t o rage organs and t h i s  was mo s t  no tic eab l e  dur ing the accumula t ing 

aut umn period and wi thin the rh i zome sys t em .  

The unde rground crown and taproo t o f  ' Grass lands Haku ' acted as 

a central l ink b e tw�\2n  a ne two rk of undergro und and aerial s tems . 

However , in comparison to th e s t ern sys tern tlw t i t  linked , this region 

was of l i ttle s igni f icance a s  ari ini tia to r of new growth in es tab l ished 

plants . Only dut ing late summer/ autumn did  new s t em growth arise f rom 

the c rown and this g enerally cont inued in the form o f  rhi zOmes . 

Nev e rt hel ess , under s tress cond i t ions the relative impor tance o f  

the c rown as an ini t iator of  new s tem grow th is likely t o  improve ,  

as the pr imary c rown plus taproo t appears to be a less trans i tory 

component than i ts assoc iat ed veripheral s tem sy s tem .  In previous 

wo rk , the author h as observed th is to oc cur as <1 resul t of s evere 

s ummer mo is ture st ress or wint er fros t ing and a s imilar S it uation is 
also pos s ible where  rhizome development is  res tric ted by s evere 

defol ia tion and/or  competi t ion . 

I n  thes e s tudies , the dominant f ea t ur e  o f  underground grow th was 

the expans ive nat ur e  o f  the rhi z ome sys tem and its impor tance as a 

region o f  shoo t ini t iat ion . Rh i zome expansion during late summer 

and autumn invo lved a large ac c umulation o f  dry ma t t er , much of which 

was diss ipated over the subsequent winter and spring as mul t ic rown 

plants  fragmented . At the �nd o f  this expans ion perio d , to tal 

underground dry weights  of up t o  8 . 0 to 9 . 0 t/ha were es t imated for 

some defol iat ion trea tment s and following the breakdown o f  mul t icrown 

plants , densit ies inc reased by 70 to 80 plants per m2 in the mo re 

expans ive treatments . This ini t ial expans ion and then vegetative 

propagation highl ights  the coloni z ing nature o f  L . peduncu latus . The 

ab i l i ty to spread , comb ined wi th i ts dens e  superficial roo t ing hab i t  

(HacDo nald , 1946) , a c id toleranc e  (Levy , 1 9 7 0 )  and e f f i c i ent phos phate 

uptake (Bro ck , 1 9 7 3 )  mus t  form the ba� is of  the succ ess of  L .  peduncu la tus 

in the s tabl izat io n  o f  acid subso ils (No rdmeyer & Davis , 1 9 7 6 ) . Because 

of  the s e  same charac t eristics , L .  peduncu la tus can also b e  cons idered 

as a po tent ial legume for coloni zing in ter-tussock areas of poo r ly 
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developed high country grasslands . Lowther ( 1 9 7 6 )  has already h ighl ighted 

the po t ent ial usefulness of  ' Grass lands Maku ' in such s ituati ons , 

al though Sco t t  e t  a Z . ( 1 9 7 4 )  and Musgrav e  ( 1 9 7 6 )  have r eported i t s  

suscep t ibil ity to dry summer and freez ing winter condi t ions . 

Expansion o f  underground growth mainly occurred dur ing late summer 

and autumn and was further enco ura ged during th is period by less f requent 

and/or  less s ever e defo l ia tion . I t  would ther efore s eem that i f  they 

were required , improvemen ts in roo ting depth and in the sp read o f  the 

rhi zome sys tem would be bes t achieved by l imit ing intens ive defo l iat ion 

over this period . 

I t  is pos s ible that  by act ing as a large compet i t ive s ink l t  · 1: 

as s imila tes , the expans ion of  underground o rgans may res trict aerial 

dry mat ter produc t ion and the r eby impinge on the agricul tu ral 

per fo rmance of  th e p lant . I n  Experimen( 1 ,  ne t canopy p roduc t ion in 

au tumn ranged from 500 to 900 kg DM/ha wh i l e  underground dry weigh t 

increases over the s ame period were es tima ted to be as much as 3 . 0 
to 4 . 0 t/ ha for the more expans ive treatments . Development o f  p lant 

mater ial less l ikely to promo te rhizome growth , as is evident in the 

Lotus cornicuZa tus x Lotus peduncu Za tus hybrid cv . ' Grasslands 4 7 1 2 ' ,  

may reduce the comp e t i t iveness o f  underground growth . HdWever , s uch 

a development would only o@ �ue c a s ful if the ctown satisfactorily 

replaced the rh izome sys t em as a shoo t pt'oducing organ . This is ut\l ikely , 

as crown activity in both L .  peduncu Za tus and L .  cornicu Za tus ( Smith , 

1962 ; Nelson & Smith , 19 68b) would appear to be low and seasonally 

determined . Even i f  the rhi zome sys tem in ' Grasslands Maku ' is a 

comp e t i t ive s ink , it  does at l eas t provide a bas is for shoo t fo rmat ion 

such that , unlike L .  cornicu Zatus , i t  does no t solely dep end on s tubble 

shoo ts for the maj o r ity o f  i ts regrowth fol lowing defo l iation . 

In conclus ion , i t  would appear t ha t  rapid , early regrowth of  

' Gras s lands Haku ' i s  primarily dependent on the presenc e ,  wi thin the 

res idual canopy , of  a shoot population tha t  contains intac t ,  actively 

expanding individuals . The re tent ion of  such a shoot population i s  

bes t achieved by lax defo l iation and b y  ensur ing s evere defolia t ion 

of  large canopies does no t occur . If the res idual shoo t popula t ion 

is unsatis fac tory , early regrowth will be poo r ,  and in grazed mixed 
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swards thi s  is l ikely to lead t o  low persis tence and pro duc t ion l evel s . 

Selec t io n  for rapid early regrow th , par ticularly wi th ref erence to the 

productiv e  rhi zome shoo t poo l , would appear to be ess ent ial in th e 

development of  a mor e  appropria te L .  peduncu latus plant for  grazed 

s i tuatJons . 
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APPENDIX 2 :  He teorologi cal Measurements , DS IR, Palmers ton Nor th 

Jan Feb Mar April May June July Aug Sept Oct Nov Dec 

Rainfall (nnn) 
1 9 28-75 Mean 8 1  7 0  6 7  7 9  89 9 7  8 7  89 73 87 76 94 

1 9 7 5  38 26 5 1  7 3  1 24 69 1 24 1 60 54 8 3  5 3  . 1 0 3  

1 9 76 89 6 1  79 5 1  109 2 1 5  1 20 1 3 2  7 8  1 4 0  65  7 5  

1 9 7 7 6 7  4 5  5 2  6 7  1 1 3  109 80 5 3  1 0 7  4 7  7 5  9 3  

Da ily Max . Temp (°C) 

1 9 28- 7 5  Hean 2 2 . 0  2 2 . 4  20 . 9  1 8 . 2  1 5 . 0  1 2 . 6  1 1 . 9 1 3 . 1  14 . 8  1 6 . 6  18 . 6  20 . 6  

1 9 7 5  24 . 9  24 . 1  2 2 . 2  1 8 . 9  1 5 . 7  1 2 . 3  1 1 . 9  1 3 . 3  1'4 . 4  1 6 . 7  1 7 . 0 1 9 . 3  

1 9 7 6  20 . 9  1 9 . 0  2 1 . 2  18 . 2  14 . 3  1 1 . 9  1 1 . 7 1 3 . 2  1 4 . 3  1 6 . 1  i. 7 . 3 20 . 2  

1 9 7 7  20 . 2  2 2 . 4  2 2 . 1  1 8 . 1  1 3 . 3  1 2 . 3  1 2 . 4  1 3 . 1  1 2 . 6  1 5 . 7  1 7 . 7  1 9 . 5  

Daily Hin. Temp (°C) 

19 28- 7 5  Mean 1 2 . 7  1 2 . 8  1 1 . 6 9 . 5  6 . 8  4 . 6 3 . 9  4 . 9 6 . 6 8 . 3  9 . 8 1 1 . 6 

1 9 7 5 1 5 . �  14 . 9  1 3 . 9  1 0 . 4  9 . 2  4 . 3  3 . 5  6 . 0 7 . 0· 9 . 8 9 . 5 1 1 . 1  

1 9 7 6  1 4 . 0  1 0 . 4  1 1 . 9 1 0 . 4  6 . 4 4 . 4 4 . 6 7 . 1  7 . 1  7 . 9 8 . 7  1 2 . 8  

1 9 7 7  1 2 . 3  1 2 . 8  1 2 . 2  9 . 4 4 . 9  5 . 5  5 . 1  6 . 5 4 . 9 8 . 1  9 . 4 1 0 . 9  

0 10 cm Soil Temp C 

1 940-75 Mean 1 8 . 7 1 8 . 3  1 6 . 4  1 3 . 2  1 0 . 2  7 . 7  6 . 6 7 . 6 9 . 9 1 2 . 5  1 5 . 2  1 7 . 5  

1 9 7 5  1 9 . 5  18 . 3  16 . 8  1 3 . 1  1 1 .0 6 . 7  5 . 8 7 . 7  9 . 5 1 2 . 7  1 3 . 5  1 5 . 4  

1 9 76 1 7 . 6  14 . 8  1 4 . 5  1 3 . 0  9 . 2  6 . 9 7 . 0 8 . 5 9 . 4 1 2 . 2  1 3 . 1 1 6 . 0  

1 9 7 7  1 5 . 9  1 7 . 1  1 5 . 8  1 2 . 6  7 . 7  7 . 2  6 . 6 7 . 9 9 . 7  1 1 . 8  1 3 . 1  1 5 . 4  

t-' \0 CO 
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Appendix 5 :  Growth rat es in t reatment RS (kg D . M . /ha/wk) 

St ubble Shoots Rhizome S hoo ts 2°Ax illary Shoo t s  Net Canopy To tal Shoot 

Regrowth 
Cyc l e  

l : l a 

1 ; 2 

1 : 3  

1 : 4  

2 :  1 

2 : 2  

2 : 3  

3 : 1 

3 : 2  

3 : 3  

3 : 4  

3 : 5  

To tal Shoot : 

9 bsc 
' 9 , 3  0 ,  

8 1 , 3 1 1 38 , 3 2 8 , 6  

-5 , 30 499 , 86 1 5 , 20 

- 1 6 , 4 0  687 , 1 0 1  36 , 2 1  

5 , 3  I:H , l S 1 6 , 2  

8 '  1 3  5 7 1 , 9 4 7 6 , 2 2 

0 ,  599 , 5 1  33 , 4 5  

32 , 2 2 1 30 ' 20 1 6 ' 10  

-6 , 7  60 i , 69 30 , 29 

- 1 7 , 1 6 33 1 , 66 - 7 , 1 2 

-8 , 10 55 , 3 3 4 2 , 26 

0 ,  7 2 ' 1 0  28 , 1 1  

a : - r egrowth per iod within cyc le 1 

b : - mean growth rate 

c : - s tandard error of mean growth ra t e  

RS : l : l  <RS : 2 : 1  

RS : l : l  <RS : 3 : 1  

t = 6 . 46 *** 

t = 7 . 5 5*** 

30 , 4 5  1 8 , 7  

7 9 , 3 7 2 2 7 , 5 1  

5 1 8 , 4 7  509 , 9 4  

6 1 3 , 38 70 7 ' 7 1  

9 2 , 2 7 1 0 2 ' 1 1  

5 2 2 , 2 3 655 , 26 

568 , 5 2 632 , 50 

106 , 6 1  1 7 8 , 20 

568 , 74 63 1 , 84 

.255 , 6 1  30 7 ' 7 7 

85 , 2 1  89 , 60 

7 7 , 5 1 100 , 3 7 
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Appendix 6 :  Growth rate in treatment SAS (kg D . M . / ha/wk) 

S tubble Shoots Rhi zome S hoots 2° Axi l lary Shoo ts Ne t Canopy To tal Shoo t 

Regrowth 
Cycle 

1 :  1 9 ' 1 0 : 5 , 1 8 0 ,  4 5 , 36 24 , 28 

1 : 2 8'3 ' 28 150 , 2 2 7 , 6 8 1 , 44 240 , 5 2  

1 : 3 4 1  , 40 50 6 , 1 9 33 , 7  537 , 6 2 580 , 54 

1 : 4 -75 , 3 1  5 1 6 , 9 3 7 5 , 7  357 , 80 5 1 6 , 1 1 2  

2 : 1  3 2 , 4  256 , 20 40 , 1 5 288 , 36 3 2 8 , 28 

2 : 2  -26 , 4  7 7  2 ,  63  1 0 , 2 1  609 , 50 7 5 6 , 56 

3 : 1  2 3 , 7  9 2 , 1 1  8 , 4 46 , 4 7  1 ..: 3 , 8  

3 : 2  - 2 , 14 5 7 7 , 5 2 35 , 20 46 1 , 2 5  6 1 0 , 29 

3 : 3  -22 , 1 1  65 1 , 3 2 7 7 , 39 707 , 3 7  706 , 3 7 

4 :  1 2 1 , 1 0 70 , 1 2 5 , 3 1 4 7 , 2 2 9 6 , 1 7 

4 : 2 2 , 5 332 , 30 6 , 3  252 , 29 340 , 1 6 

4 : 3  - 1 6 , 1 5 237 , 4 3  1 0 , 7  1 74 , 40 23 1 , 28 
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Appendix 7 :  Growth rates in t reatment 6S (kg D . M . / ha/wk) 

S tubble Shoots 

Regrowth 
Cycle 

1 :  1 8 ,. 1 2  

1 : 2  1 1 9 , 3 3 

2 : 1 93 , 1 5 

2 : 2  -9 , 1 9 

3 : 1  1 1 2 , 1 2 

3 : 2  -59 , 3 1  

4 : 1  4 1 , 3  

4 : 2  1 5 , 2  

5 : 1 1 1 5 , 1 9  

5 : 2  10 , 1 1  

6 : 1  33 , 1 8 

6 : 2  39 , 33 

S tubb l e  Shoo t 

6S : 2 :  1 > 6S : 2 :  2 

6S : 3 : 1  > 6S : 3 : 2  

6S : 4 : 1  > 6S : 4 : 2  

6S : 5 : 1  > 6S : 5 : 2  

Net Canopy 

6S : 3 : 1  > 6S : 4 : 1  

To tal Shoo t 

6S : 3 : 1  > 6S : 4 : 1  

6S : 3 : 1  > RS : 2 : 1  

6S : 5 : 1 > RS : 3 : 1  

Rhizome Shoo ts 2°Axillary Shoots Net Canopy Ta tal Shoo t 

3 , 6  

:L J 1 , 25  

1 55 , 1 5 

4 3 3 , 84 

2 2 1 , 1 3 

6 64 , 9 1  

1 0 7 , 1 1  

504 , 44 

1 6 7 , 2 2 

380 , 2 7  

64 , 1 0 

1 5 3 , 39 

0 ,  

7 ,  I 

4 , 6  

2 1 , 1 2 

25 , 1 4 

39 , 1 5 

1 2 , 7  

52 , 1 6 

0 ,  

14 ' 1 0 

0 ,  

1 2 , 5  

t 4 . 63** 

t = 2 . 85* 

t = 7 . 22*** 

t = 4 . 78** 

t = 2 . 7 1 >'< 

t = 8 . 30*** 

t = 9 . 45*** 

t = 3 . 10* 

-53 , 34 1 1 , 7  

2 60 , 3 1 357 , 40 

206 , 4 0  262 , 29 

346 , 4 5 445 , 7 3 

2 5 3 , 3 5 3 58 , 1 2 

4 9 1 , 4 9  644 , 82 

1 4 2 , 2 2 1 60 , 1 9  

4 70 , 1 8 5 7 1 , 5 1  

1 7 0 , 3 1 28 2 , 2 7 

4 1 7 , 4 5  404 , 4 2  

4 2 , 1 3 9 7 , 1 5 

89 , 30 204 , 30 
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Appendix 8 :  Growth rates in treatment 6L (kg D . M . /ha/wk) 

S tubbl e  Shoots Rhizome Shoots  2°Axill ary Shoots Net Canopy To tal Shoot  

Regrowth 
Cyc l e  

1 :  1 6.0 , 1 6 -3 , 24 0 ,  -30 , 2 1  57 , 2 1  

1 : 2 303 , 3 7 29 1 ' 7 1  0 ,  4 3 2 , 5 7 594 , 50 

2 : 1 4 2 , 1 2 9 , 24 0 ,  ' • d  , 5 1  5 1 , 34 

2 : 2  2 3 9 , 35 403 ,48  1 9 , 1 7 5 7 9 , 7 3 66 1 , 94 

J : l  230 , 24 270 , 1 8 2 1  ' 1 6 3 1 5 , 22 5 2 1 , 50 

3 : 2  - 10 5 , 4 3 676 , 65 202 , 29 6 2 9 , 65 7 7 3 , 5 1  

4 : 1  2 6 , 2 8 9 1 , 28 1 2 , 3  9 2 , 29 1 29 , 36 

4 : 2 3 5 , 26 6 1 1  , 4 9  69 , 26 4 7 9 , Lt l  7 1 5 , 5 7  

5 : 1  24 2 ; Ml 1 10 '  2 2  6 , 6  228 , 4 1  358 , 38 

5 : 2  14 7 ; 3 1  254 , 28 2 , 1 1 3 7 6 , 1 5 403 , 9 1  

6 : 1  7 2 , 1 2 57 , 1 6 0 ,  - 1 , 20 1 29 , 32 

6 : 2  5 6 , 20 93 , 1 7  6 , 4 7 5 , 26 1 )5 , 30 

Rhi zome Shoo t 

6L : 2 : 1  < 6S : 2 : 1  t = 5 . 1 6* *  

6L : 5 : 2  < 6 S : 5 : 2  t = 3 . 24* 

To tal Shoo t 

6L : 4 : 1  < 6L : 5 : 1  t = 2 . 4 9 * 

Net Canopy 

6L : 4 : 1  < 6L : 5 : 1  t = 2 .  7 1 * 



Appendi x  9 :  Growth ra tes in treatment SAL (kg D .M . /ha/wk) 

S tubble Sho o t s  Rhi zome Shoo ts 2°Axi l lary Shoot 

Regrowth 
Cycle 

1 :  1 3 1 , 22 

1 : 2 333 , 3 2 

1 : 3  7 2 , 7 1  

2 : 1  50 , 20 

2 : 2  2 1 8 , 8 1  

3 :  1 1 84 , 30 

4 : 1  249 , 3 1  

4 : 2  1 86 , 8 1  

5 :  1 1 80 , 8  

5 : 2  70 , 59 

6 :  1 74 , 1 4 

6 : 2  9 3 , 36 

To tal Shoo t 

SAL : 2 : 1 < SAL : 3 : 1  

SAL : 4 : !  > 6L : 4 : 1  

SAL : 1 : 2  > SAS : 1 : 2 

SAL : 6 : 2  > SAS : 4 : 1  

- 1 0 , 1 7 

28 9 , 1 6 

264 , 3 1 

9 3 , 1 3 

629 , 56 

36 1 , 1 0 

1 88 , 3 1 

4 9 1 , 9 7  

296 , 2 1 

229 , 50 

94 , 2 1 

5 7 , 4 9 

0 ,  

0 ,  

6 7 , 7  

3 , 1  

8 7 , 3 8 

2 7 , 1 7  

1 8 , 8  

10 7 , 42 

1 3 , 1 1  

1 1 , 1 9 

2 , 4 

4 , 1  

t = 8 . 0 2*** 

t = 3 . 60* 

t = 7 . 08 *** 

t = 2 . 66 * 

Net Canopy To tal Sho o t  

-58 , 6 3 2 1 , 1 2 

445 , 7 3 6 2 3 , 1 5 

1 5 3 , 24 4 0 3 , 49 

5 , 3 3 1 4 6 , 3 3 

853 , 7 6 9 34 , 1 0 1  

3 1 1 , 4 7  5 7 2 , 4 1  

2 5 3 , 29 4 5 5 , B9 

598 , 4 9  784 , 9 �  

3 39 , 4 9  489 , 2 2  

289 , 1 0 3 1 0 , 1 0 1  

104 , 3 2  1 70 , 2 2 

- 2 3 , 3 3 1 54 , 5 3  



Appendix 1 0 : Growth ra tes in treatment 

S tubb le Shoots  

Regrowth 
Cycle 

1 :  1 34 ' 1 6 

1 : 2 33 1 , 56 

2 : 1  2 1 , 6  

2 : 2  68 , 1 3 

2 : 3  - 1 , 29 

3 : 1  2 1 6 , 25 

4 : 1  1 2 , 6  

4 : 2 7 , 1 3 

5 :  1 3 2 3 , 14 

5 : 2  86 , 28 

6 : 1  1 0 , 5  

6 : 2  4 3 , 1 0 

To tal Shoo t 

LS : 3 : 1  > SAL : 3 : 1 

LS : 5 : 1  > 61 : 5 : 1 

Rhizome Shoo ts 

1 3 , 1 4 

308 ,64  

1 7 , 7  

284 , 2 1  

374 , 4 8  

366 , 30 

95 , 1 3 

5 22 , 50 

15LI , 24 

372 , 56 

44 , 10 

109 , 1 5 

t = 2 . 50* 

t = 2 . 4 7* 

206 . 

LS (kg D .M . /ha/wk) 

2°Axi l lary Shoo ts Net Canopy To tal Shoot 

0 ,  - 1 30 , 28 4 7 , 27 

1 3 , 7  4 1 2 , 70 6 5 2 , 3 2  

0 ,  - 30 , 28 38 , 1 2 

26 , 6  38 1 , 29 378 , 1 9 

6 , 5  1 9 7 , 22 3 2 1 , 6 3 

75 , 4 1  4 2 9 , 64 65 7 , 39 

10 , 3  40 , 26 1 1 7 ,  1 4  

56 , 1 8 489 , 39 585 , 5 1  

6 , 5 2 6 7 , 4 2 • ; ;J J , 35  

26 , 1 3 49 8 , 1 5 484 , 6 2  

b ,  -39 , 2 3 54 , 20 

6 , 5  1 1 9 , 2 7 1 5 8 , 1 9  



Appendix 1 1 :  Environment al de tails of the controlled c l imates in 

Exper iment 3 and 4 

Exp eriment 3 Experiment 

Tempera� ure (
o

C )  Day 18 

Nigh t  1 3  

Relat ive humid i ty ( % )  : lJay 65 

Nigh t  80 

Vapour p ressure deficit  ( -bars ) : 

Day 6 . 7  

Night 2 . 8 

Mean ligh t irradiance 
a

( W m- 2 ) 165  

Daylength (hr s )  1 4  

Commencement of  irrad iance (hrs ) 

0 000 

Daily nu tr ient feed
b 

(ml / po t )  2 50 

Lag durat ion c (hr s ) 4 

�
Pho t o synthet ically active range : 400-700 nm 

b 
Hoagland nutri ent solution ; minus N 

1 7  

1 1  

65 

80 

6 . 3  

2 . 4 

1 Y )  

1 4  

0 600 

1 50 

4 

c
Time durat ion over which temperatures changed 

4 

207 . 



zu� . 

A P P E N D I X  ! 2 : Leaf to s tem dry we i gh t  ratios of s tubb l e , s tubbl e  

shoots and rhizome shoo ts 

Days o f  Regrowth 0 3 7 l 3  20 28  

S tubble 

LL 0 . 23 0 . 26 0 . 29 0 . 2 7  0 . 2 7 0 . 2 1  

HL 0 . 34 0 . 28 0 . 28 0 . 38 0 . 34 0 . 24 

iH 0 . 56 0 . 43 0 . 54 0 . 57  0 . 36 0 . 1 9 

HH 0 . 5 7  0 . 4 7  0 . 52  0 . 53 0 . 39 0 . 1 8 

Tmt Mean SE 0 . 04 0 . 04 0 . 05 0 . 03 0 . 0 5  0 . 04 

S ignif Level *** * *** *** NS NS 

LSD (5%)  0 . 1 1 0 . 1 3 0 . 1 5 0 . 1 0 

S tubble Shoots 

LL 2 . 54 1 . 9 6  2 . 6 2  3 . 29 2 . 54 1 . 6 6  

HL 2 . 3 1  2 . 2 1 3 . 20 3 . 05 2 . 1 3  2 . 00 

LH 3 . 3 2 3 . 2 1  2 . 7 5 2 . 64 2 . 30 1 . 88 

HH 3 . 09 2 . 6 2 3 . 1 7  2 . 8 7  2 . 36 1 . 80 

Tmt Mean SE 0 . 34 0 . 1 9 0 . 20 0 . 2 1  0 . 14 0 . 1 8 

S ignif Level NS *** NS NS NS NS 

LSD ( 5%)  0 . 5 8  

Rhizome Shoo ts 

LL 1 . 1 4 1 . 0 :.!  1 . 2 3  2 . 3 3  2 . 3 7  1 . 50  

HL 1 . 0 2  1 , l1 lJ 1 . 3 1  2 . 2 3 2 . 0 1  1 . 3 7  

LH 1 . lt 4 1 . 4 2  1 . 66 1 . 90 1 . 85 1 . 4 2  

HH 1 . 58 1 . 4 1  1 . 9 2  2 . 1 0 2 . 05  1 . 09  

Tmt Mean SE 0 . 1 5 0 . 09  0 . 1 0 0 . 1 1  0 . 2 2 0 . 0 7  

Signif L evel NS * *** NS NS * *  

LSD ( 5 % )  0 . 29 0 . 3 2 0 . 2 2  



c l 4 

E 
� 

A P P E N D I X  1 3 :  

209 . 

Exper imental details o f  th e c 1 4 Redis t r ibut ion and 

Dis tribut ion exp e r iments .  

(A) Rel at ive t ime scale of  c 1 4  experiments . 

Redj..s tribut ion 
C S  

� 

experiment 
s 
� 

s 
� 

s 
+ 

c 1 4 Dis t ribut ion experiment 

- 2  0 

( B )  

( 1 )  50 

( 2 )  2 5  

( 3 )  1 0  

E 
+ 

2 

s 
I \-

4 

E 
� 

6 

Days 

E - exposure to c l 4 02 • 

s 
+ 

8 

C - cut ting down to 2 . 0  o r  7 . 0 cm . 

S - sampl e harves t .  

1 0  1 2  

S tandard t issue ac t ivity for several tissue , chrotnic acid 

comb inat ions ( d . p . m .  per mg d ry weight )  

mg 

mg 

mg 

b 
s t andard mean 

t issue + 20 ml chromic acid
a 

1 2 32 

t is s ue + 20 ml chromic ac id 1 29 8  

t i ssue + 20 ml chromic acid 1 2 7 3  

a - a recombus t ion of  the res idue o f  thi s  

procedure yielded the equivalent o f  

8 1  ± 20 d . p . m .  p e r  mg tls sue . 

b - mean o f  s ix repl icat es . 

5 2  

63  

59 

error 

E 
+ 

14 



I 

A P P E N D I X  1 4 : 

Treatment 

L ( 2  .. Ocm) 1 7 4 

H ( 7 . 0 cm) 580 

3 

2 1 0 . 

To tal plant l eaf area in the C 1 4  Dis tribut ion 

experiment ( one day af t e r  exposure ; cm2 per p lant ) 

Regrowth Day 

7 1 4  

( l . l ) A 398 ( 2 . 6 ) 59 2 ( 3  . 8 )  

( 3  . 8 )  9 9 2  ( 6 . 4 ) 1 334 ( 8 . 7 ) 

A :  leaf area expressed as l eaf area indices (po t area : 1 54 cm2 ) 

AP P E N D I X  1 5 :  

0 

Rh i zome L 1 0 . 2  

H 1 1 . 9 

Crown 
plus L 8 . 9  
taproo t 

H 1 1 . 8 

Rhi zome and crown pl us Lap roo t TNC in the C 1 4  

Redistribution experiment ( %  o f  dry weigh t )  

Regrowth Day 

3 7 1 4  

10 . 9  9 . 4 9 . 1  
( * , 0 . 3) ( ** , 0 . 2 ) ( * , 0 . 4 )  ( * * , 0 . 5 ) 

1 3 . 8  1 2 . 0  1 2 . 8  

I NS , Lo I 

8 . 9  8 . 3  7 . 1  
( * , 0 . 5) ( * , 0 . 7 ) ( * , 0 . 5 ) ( *** , 0 . 5 ) 

1 2 . 1  1 1 . 3  1 2 . 2  

1 Ns , 1 . 3 I 
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