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Abstract 

The science of geology has given rise to techniques for managing and analysing spatial 
data. The techniques often deal with samples that represent a continuum, such as mineral 
samples taken from various locations. Some animal health data is similar in nature to 
geo-statistical data, such as climate data or soil samples from various points on a farm. 
Animal health data is commonly discrete rather than continuous in space. Farms are 
represented as point or area features and attributes of the farm are attached to the features 
(Sanson R, 1993). Spatial analysis techniques were reviewed and comment made about 
their usefulness and validity in disease management. 
The spatial data available in New Zealand for managing diseases was examined. Spatial 
data at a farm level is available in the national database management system Agribase, 
which records details of rural enterprises. The level of data completeness in Agribase 
was determined. The number of farms without spatial references varied from 10 to 18 
percent, depending on the method used to update Agribase. Spatial data is available for 
cattle and deer herds in the National Livestock Database (NLDB). The number of herds 
without spatial data varied from 8 to 15 percent. Changes in the management of land 
information in New Zealand are resulting in an improvement in the quality and 
completeness of spatial data. 
To determine the likely spatial data requirements for endemic disease management, 
bovine tuberculosis (TB) data from the NLDB was analysed. Possible applications of 
spatial data in TB management were developed and tested on point themes and polygon 
themes, both at different levels of completeness. All of the applications of spatial data 
that were tested required that a minimu..111 of 85% of farms had spatial references. 
The data requirements for sentinel surveillance were examined. A survey of farms in the 
Wairarapa and Hawke's Bay was undertaken to determine the contribution that slaughter 
surveillance makes to the TB testing program. The resulting slaughter surveillance 
information was combined with TB testing data and examined using point themes and 
polygon themes, and at different levels of data completeness. Polygon themes were 
found to be the most useful for the display of surveillance information. Gaps in 
surveillance were only visible using polygon themes. The relationship between vector 
control operations, testing zones, and TB surveillance could be assessed with a polygon 
theme. 
The appropriate type of data for the detection of clusters of disease was determined. A 
cluster of fam1s with TB at Waipawa was used as an example. Polygon themes were 
preferred for cluster detection. Areas were superior to points in any spatial process that 
was concerned with contiguous farms. Measures of contiguity based on points were 
poorly sensitive and poorly specific, when compared with the actual contiguous 
properties. Some cluster detection processes were relatively insensitive to missing data. 
Spatial data is used in the response to exotic disease outbreaks. EpiMAN is a decision 
support system for the management of exotic disease outbreaks in New Zealand. The 
purpose is to provide rapid information on the location of people and animals and to 
automate many of the control activities. EpiMAN includes a simulation model called 
Interspread, which allows assessment of the effects of different control strategies. The 
performance oflnterspread was tested comparing point and area data at different levels 
of data completeness. Point data was recommended for use with simulation modelling, as 
it required less processing time. It was found that for spatial processes that use distance, 
point themes and area themes could not be used interchangeably. Interspread performed 
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differently with area data than point data. Some adjustment was required when shifting 
from one data type to another. An adjustment process was developed to account for the 
difference in distance between two point features and two area features. Incomplete 
spatial data had an effect on the simulation outcome of Interspread. Adjustment for 
incomplete data was also possible. 
In summary for the management of endemic and exotic diseases, farms should be 
represented as area features. Point coverage's can be generated from these area features 
and used in some applications, such as simulation models, and for labelling purposes. To 
function acceptably the applications tested required that 85% of farms or herds were 
represented spatially. 
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Introduction 
Modem information systems provide new tools for disease surveillance, control, and 
eradication. Animal health data can be examined from a spatial viewpoint using a 
geographical information system. The improvements of computing software and 
hardware and data management systems now allow a spatial component to be 
incorporated in disease management. There are a variety of spatial themes available. A 
simple and relatively inexpensive way for representing farms is to use a point theme. 
Alternatively a polygon or combination of polygons can be used to represent a farm. 

Spatial analysis techniques have been incorporated in to software, so that at a push of a 
button they can be applied to data. In this dissertation the spatial analysis techniques that 
are useful and valid for disease management were examined. The level of data quality 
and type of data that is required for disease management was assessed. The validity of 
using points or polygons to represent farms was explored in this dissertation. 

Chapter 1 contains a review of spatial analysis techniques. Chapter 2 reviews the quality 
of farm spatial data available in New Zealand. Chapter 3 assesses the spatial data 
requirements for disease surveillance. Chapter 4 assesses the spatial data requirements 
for the simulation models. Chapter 5 assesses the data requirements for disease cluster 
detection. Appendix 1 contains a paper headed "A cross sectional survey of cattle and 
deer movements in the Hawke's Bay and Wairarapa Regions of New Zealand." 
Information gained from this survey was used in Chapter 3 to assess the data 
requirements for TB surveillance. 
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Introduction 
The science of geology has given rise to techniques for managing and analysing spatial 
data. These techniques often deal with samples that represent a continuum. Some animal 
health data is similar in nature to geo-statistical data, such as climate data or soil samples 
taken from various points on a farm. Animal health data is commonly spatially discrete 
in its nature. Farms are represented as discrete point or area features and attributes of the 
farm are attached to the features (Sanson R, 1993). In this Chapter spatial analysis 
techniques are reviewed and comment made about their usefulness and validity in 
disease management. 
Spatial data analysis covers a range of techniques which can be used to explain or 
describe a process operating in space and its relationships to other spatial phenomena. 
Table 1 lists techniques for analysing spatial data. Simple point locations can only be 
analysed with respect to the presence of trends. Additional analyses can be conducted if 
attribute data is available for each location. The objective is to analyse the variation in 
attributes, conditional on their location. In the multivariate case, a vector of attributes is 
present at each location, one of which may be a temporal element. 

Space can be represented using two views, the entity view and the field view. 
The entity view describes space on the basis of discrete objects. Under this view 

spatial objects have features or attributes. These attributes can be nominal, ordinal or 
interval. The object is represented as a point, line or area feature. The feature used to 
represent an object such as a farm is significant. It affects the type of analysis that can be 
performed, and the degree in which the real world is being represented in the analysis. 

The field view represents space as a continuum using discrete points, lines or 
areas. A value at a given point is part of a subset of a continuum of values in that area. 

Variation in the mean value of the process in space is defined as a first order effect. It 
represents a trend or drift in the overall variation and in the mean value depending on 
location. A second order effect is the result of the tendency for neighbouring values to 
follow each other. There may appear to be an 'attraction' or 'repulsion' between local 
values. Table 2 and 3 show the techniques used for analysis of first and second order 
effects. In practice, a spatial process may involve first as well as second order effects. 
One component of variation may be dependent on the location, and another component 
on covariates. 

Point data 
Point data can be purely the location of an event or object. Points can be distributed in a 
clustered, regular or random pattern. Their distribution can be associated with the 
population-at-risk or other factors. In all cases the nature of the point data should be 
considered. Does the point feature represent a true point in the real world? 
Rainfall measurements can be collected at actual points. They represent a continuum of 
rainfall over the field, so they could be used to construct a surface depicting the variation 
in rainfall over a region. 
Points are often used to represent the location of areas, such as farms or towns. For many 
purposes, such as labelling, this creates no difficulty. Point features are easier to capture, 
store and analyse than area features, but they can significantly distort the spatial 
characteristics of the objects that they represent. Representing proximity as the distance 
between points can distort the true proximity between the farms. A difficulty with animal 
health data is that farm size is often clustered (large farms are found together and small 
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farms are found together). The distance between a large farm and its immediate 
neighbour is greater than the distance between a small farm and its neighbour. 
Points can represent discrete objects, such as water troughs, that are to all intents and 
purposes points in real life. In this case analytical techniques that use discrete points can 
be used with confidence. 

Point data and first order effects 

First order effects (trends across a region) can be explored using quadrate counts or 
kernel estimation. The region can be divided into squares and the number of events per 
quadrate counted. A three-dimensional histogram showing variation in intensity 
throughout the region can be constructed. This measure of intensity removes the 
exactness of the original locational data. To minimise this loss, a moving window 
approach can be used, where each estimate of intensity is calculated for the area of the 
moving window. The size of the aggregation affects the outcome. Kernel estimation uses 
the original point locations to produce a histogram of intensity. The smoothed value at 
any point is the weighted-average of all other values in the field. The weight arises from 
the probability distribution at that point and is referred to as the kernel (Diggle, 1985). 
This is essentially a risk surface for the occurrence of those events. Varying the 
bandwidth can control the degree of smoothing. Adaptive kernel density estimation 
involves varying the bandwidth to take into account the local intensity of events. 

Point data and second order effects 

Second order properties (apparent local attraction or repulsion) for point data can be 
investigated using the distances between points. Disease or production problems may be 
clustered in space. The ability to detect real clusters of disease (perhaps associated with a 
trace element deficiency or a reservoir host), rather than clustering due to chance is 
important. Clustering can be assessed using general or focused methods. The focused 
method relates to the clustering of events around a particular fixed point (Alexander and 
Cuzick, 1992). General clustering techniques detect the presence or absence of clustering 
when there is a heterogeneous population-at-risk. 
A point pattern from a random spatial process should follow a homogeneous Poisson 
distribution with no first or second order effects. This model of complete spatial 
randomness (CSR) can be used to assess if a point pattern is clustered, regular or 
random. Tests for this include: the index of dispersion test based on the quadrate counts; 
nearest neighbour tests; the Clark-Evans event to event test; and the Hopkins random 
point to event test. The distribution function of the nearest neighbour distances can be 
used. Clustering can be visually examined by comparing the probability distributions of 
the observed nearest neighbour distances with the distribution functions of CSR or other 
hypothesised models. 
The K function (Ripple, 1977) looks at all inter-event distances rather than just the 
nearest neighbours. K( d) is the expected number of events within a distance ( d) of an 
arbitrary event. This is graphically or statistically compared with hypothesised 
explanatory models or spatially random models. 
When assessing clustering it is necessary to adjust for underlying variation in the 
population-at-risk. The kernel estimate for the event (which is an event per unit area) can 
be divided the population density at that point; the result is a kernel estimate of events 
per unit of population. It is possible to establish a kernel density estimate for the 
underlying population density. The estimate of events per unit population can be 
replaced by the ratio between the two estimates of kernel intensity. It is also possible to 
use another process that is representative of population variation. 
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If a set of controls is available for each case a different approach can be used. The 
controls can be used to represent the distribution of the population-at-risk. Where there is 
no clustering in the cases relative to the controls then the cases are a random sample of 
both cases and controls. The hypothesis tested is that of random labelling of cases and 
controls rather than that of independence (Kingham, Gatrell and Rowlingson, 1995). The 
Cuzick and Edwards's test, which is available in the software "STAT!" is a case control 
test. The principle is that assuming disease clustering, the nearest neighbour to a case 
should be a case, rather than a control. The count of the number of cases whose nearest 
neighbours are cases rather than controls is the test statistic T(k). The expected value E(t) 
ofT(k) can be calculated under the null hypothesis, which is that cases and controls are 
sampled from a common spatial point distribution. 

Area data 
Area data can be associated with arbitrary administrative boundaries or with natural area 
features such as lakes or alpine zones. The data may be events associated with the area, 
or data values for the area. The area can be represented textually as hectares, or spatially 
as complex polygons, surveyed parcels, or grids. 
Proximity can be measured using a (n*n) spatial proximity matrix W, where w ij 
represents the spatial proximity of areas i and j. The matrix can be calculated using a 
range of methods. If two objects are considered to be in close proximity w ij = i. The 
element w ij can be set to 1 under a variety of conditions: 
1 where the centroid of i is one of the k nearest centroids to the centroid of j; 
2 where the length of the common boundary withj divided by the perimeter of i is 

greater than a certain proportion; 
3 where the centroid of i is within a specified distance to the centroid of j; 
4 where j shares a common boundary with i. 
The element w ij can equal 0 where the above conditions are not met. A series of 
proximity matrices can be used to represent different spatial lags. 

Area data and first order effects 

A simple way to assess variation in an attribute value globally is to use weighted 
averages of the attribute. The average is weighted by neighbouring values. The proximity 
matrix provides a method for determining a suitable set of weights. 
For data on a regular grid, summing the grid rows and columns can show broad spatial 
trends. The row and column means could be examined using ANOV A. Median polish is 
a technique that uses medians, not means, and thereby overcomes the problem of 
extreme values. The difficulty with median polish is that the direction of the grid bears 
no relationship to trends. Banding effects are seen due to the row and column basis of the 
method. 

Area data and second order effects 

Moran's I is closely related to the covariogram (discussed later) and Geary's C is related 
to the variogram. Both, I and C can be used to estimate the spatial auto-correlation at 
different lags. A correlogram can be used to show these correlation's. Local indication of 
spatial association can be seen using the Moran scatterplot and spatial lag pies. 
Quantitative estimates can be obtained using the G statistic by Getis and Ord (1992) or 
other indicators (Anselin, 1995). Large first order effects affect all of the above 
approaches. 
Clustering can be detected using Moran's I. Moran's I for the observed value is 
compared with n pe1mutations of the possible data value arrangements. If the observed 
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value of I is an extreme value in the permutation distribution, this shows significant 
autocorrelation. The observed Moran's I can also be compared to n random 
permutations in a Monte Carlo approach. 

Spatially continuous data 
The objective in analysing spatially continuous data is to understand the spatial 
distribution of values over the whole study region, given a set of values at sample points. 
This may enable predictions of values at other points or predict values in a variety of 
circumstances. 
Continuous data can be mapped using a variety of devices such as symbols, columns, 
colours and pies. A surface can be created using interpolation or triangulated irregular 
networks. Proportional symbols are often used, with the size of the symbol reflecting the 
data value. In the cases of circular symbols, the human mind perceives a circle of twice 
the area, as being less than twice the size. Overlapping circles make it difficult to 
visualise trends. It is often helpful to place the values within a range of classifications. 
The number of classifications recommended is (1 +3.3logn) where n is the number of 
observations. Other adjustments may be required to deal with outliers. It is possible to 
show continuity such as isobars on a weather map. 

Continuous data and first order effects 
The main techniques for examining global trends are spatial moving averages, 
tessellation and kernel estimation. Global trends can be described by a spatial moving 
average that interpolates values between a given number of neighbouring points. This 
smoothes the data and thereby reveals overall trends. A three point moving average is 
the unweighted average of the nearest three points. If more points are used the result is 
smoother. The process can also be adjusted for the distance between points. 
A tessellation (tiling) of observed sample points could be used to show trend. The most 
common technique is to use Delauney triangulation (triangulated irregular network or 
TIN). This method assigns to each sampling point a territory in which each point is 
closer to the sampling point than any other. The resulting polygon map is called a 
Dirichlet tessellation and the tiles are known as Voronoi or Thiessen polygons. The 
Delaunay triangles are a set of non-overlapping triangles with data points at the vertices. 
The data values represent the height of the vertices. The values at other locations can be 
taken from the sides of the triangle. Isolines can be drawn through points of equal value 
in order to generate a contour map. Repeated tessellation can be used in a process called 
natural neighbour interpolation. 
Polynomial regression techniques are utilised to fit successive groups of data points and 
create a smooth surface. This is the basis of spline smoothing. Kernel estimation also 
allows conversion of sampling points into a surface, using the value at the point rather 
than the number of points in a given area. This is in effect a more sophisticated moving 
average. 

Continuous data and second order effects 
Spatial dependence between attribute values measured at sampled locations taking into 
account their distance from each other is described using the covariance function 
( covariogram). In the presence of second order effects there is strongly positive 
covariance between observations a small distance apart and less covariance between 
values further apart. The covariance function describes how the variation in deviations 
from the mean value varies depending on the distance between sampling locations. The 
function assumes stationarity. A covariogram describes the covariance for varying 
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distances h between sample points. The correlogram shows the corresponding 
correlations at a given distance. 
A semi-variogram is a graphical representation of the variation between sampling points 
separated by a given distance and direction. It assumes stationarity and isotropy. For 
stationary spatial processes all three describe similar information. Examination of the 
sill, range and nugget enables the degree of stationarity to be assessed. 
An isotropic covariogram can be used to reveal the appropriate lags. Variograms at these 
lags could be run in two or three directions to explore the possibility of directional 
effects. 
Kriging is a weighted-moving-average technique for estimating the value of a spatially 
distributed variable from adjacent values while considering the interdependence 
expressed as a variogram (Isaaks and Srivastava, 1989). It allows the interpolation error 
to be mapped (Oliver and Webster, 1990). 

Space time interaction 
Interaction can be present in time as well as space. Space-time relationships can be 
assessed using three main methods. They all involve matrices of the spatial and temporal 
distance. The Knox method (Knox, 1964) compares the contingency table shown in 
Table 4 with that obtained from the Poisson distribution. The problems associated with 
this process include determining the classification thresholds and the non-independence 
of events. (Glick, 1979). Mantel's test (Mantel, 1967) uses numerical, rather than 
categorical, measures of closeness in time and space. Interest can be restricted to pairs 
that are meaningfully close. 

Discussion 
Techniques for analysing spatial data have been developed and are available for use with 
animal health data. The validity of using them depends on the nature of the data and the 
technique being applied. Care should be exercised when applying "push-button" spatial 
techniques to animal health data. There are a number of potential pitfalls. Some are: 
1 edge effects; 
2 variation in the population at risk; 
3 first order effects can impact on tests for second order effects; 
4 distortion of proximity if points are used to represent area features; 
5 and using continuous data analysis techniques on discrete data. 

The techniques used in this dissertation are marked with an asterisk in Tables 1, 2 and 3. 
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Table 1: Spatial analysis techniques for univariate and multivariate data 

Data structure Univariate Multivariate 
Purely locational data Nearest neighbour* Bivariate K functions 
Events or objects at points K functions Space time interactions* 
lines or areas Kernel density estimation Adaptive kernel density 

Kernel regression estimation 
Bayesian smoothing* Kernel regression 

Bayesian smoothing* 
Attribute data Spatial auto-correlation Multivariate spatial correlation 
Discrete or continuous values Spatial correlograms Spatial regression 
associated with points, lines, Variograms Co kriging 
or polygons Trend surface analysis Spatio-temporal models 

Kriging Spatial general linear models 
Cluster analysis* 

Table 2: Spatial analysis techniques for first order effects by data type 

Techniques Point data Area data Spatially Continuous 
data 

Descriptive analyses Intensity Spatial moving average* Spatial moving average 
Quadrate methods Median polish Tessellation 
Kernel estimation Kernel estimation Kernel estimation using values 
Kernel density estimation* 

Adaptive kernel density 
estimation 

Comparing observed Complete spatial randomness Nearest neighbour* 

distributions with CSR 
Index of dispersion 

hypothetical simple quadrate test 

distributions Nearest neighbour tests* 
Clark Evans test 
K function test 
Heterogeneous Poisson process 
Cox process 
Poisson cluster process* 
Simple inhibition processes 
Markov point processes. 

Bivariate or Chi squared test on sample 

multivariate patterns, quadrates 
Nearest neighbour methods* 

Time space interaction Knox method* 
Mantel method 
K Function method 

Interpolations Bayesian smoothing* Kernel regression Spatial tessellation 
Spatial moving averages* Bayesian smoothing ICM TIN and Thiessen polygons* 
Median polish Spatial moving average * 
Trend Trend surface regression (LS) 

Modelling first Order Homogenous Poisson process Kernel Regression Trend surfaces 

effects Monte Carlo Spatial principle Spatial general linear models 
components (for counts, proportions) 

Accounting for Kernel density estimate ratios Moran's I Co kriging 

Population at risk or heterogeneous Poisson process Geary's C Universal kriging 
Cox process Correlogram Disjunctive kriging 

other variables Poisson cluster process G statistic 
G statistic Lagrange multiplier 

* Techrnques applied m this d1ssertat10n 
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Table 3: Spatial analysis techniques for second order effects by data type 

Techniques Point Area Continuous 
Contiguity Nearest neighbour * Moran's I Covariance function 

Event to event Geary's C Covariogram 
Random point to event Correlogram correlogram 

KFunction K(d) G statistic Semivariogram 
Spatial Auto-correlation Moran's I* Contiguity 

Tests for Homogenous Poisson CSR Clustering; 

Clustering index of cluster size Moran scatterplot* 
Nearest neighbour* Spatial Jag pies 

Logistic regression and Spatial weights matrix 
Bivariate K- function Local indicator of spatial auto-

KFunction* correlation (Lisa) 
Geographical analysis machine 
Cuzick and Edward's Case control* 

Time space Knox method* 

interactions Mantel Method 
K function nearest neighbour 

Interpolations Bayesian smoothing* Bayesian smoothing Kriging 
Spatial moving averages* Trend surface regression Splines 
Median polish Kernel smoothing 
Trend surface regression (LS) 
Splines* 
Tessellation 

Modelling second Spatial Auto correlation Kriging 

order effects Multivariate spatial correlation Splines 
Spatial principal components Kernel smoothing 
Spatial regression 

Accounting for Adaptive kernel density estimation Moran's I* Co Kriging 

Population at risk heterogeneous Poisson process Geary's C Universal Kriging 
Cox process Correlogram Disjunctive Kriging 

or other variables Poisson Cluster Process G statistic TIN 
G Statistic Lagrange multiplier 

* Techniques applied in this dissertation 

Table 4: The Knox contingency table 

Time/Space Less than the Critical Distance Greater than the Critical Distance 
Less than the Close together and contemporaneous Far apart and contemporaneous 
Critical time 
Greater than the Close together with time gap Far apart with time gap 
Critical time 
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Chapter 2 

Evaluation of the quality of farm spatial data 

in New Zealand 
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Introduction 
There are many sources of spatial data that are potentially useful for disease 
management. To facilitate farm level data analysis the location and attributes of farms or 
herds is necessary. There are two sources of this information in New Zealand, Agribase 
and the National Livestock Database (NLDB). In this chapter the quality of the spatial 
data in these databases is assessed. 
The national livestock database (NLDB) is designed to facilitate the management and 
administration of Disease Control Programs. It is currently used in the tuberculosis (TB) 
control program. It deals with people, herds and farms. In the database, people are 
linked to their herds and herds are linked to farms. This flexibility allows for herds to be 
shifted from farm to farm or owners to change without the loss of historic herd 
information. When a herd is linked to a farm, the spatial references of the farm can be 
used. The resulting linkage allows spatial data analysis of herd information. 
Agribase is a national database of rural enterprises. Agribase is based on a concept of 
rural enterprises and includes forestry and horticulture as well as livestock enterprises. 
Conceptually, each enterprise or farm is characterised by a boundary and a point 
location, as well as details of the enterprise, such as stock numbers or hectares of crops. 
Agribase is a relational database with a central farm table and four subsidiary tables 
linked by the key field (farm_ID). The main table contains information about the owner, 
manager, as well as the trading name of the enterprise. Figure 1 shows the form used for 
data entry into the main table. 

Figure 1: Form used for data entry into the main table of Agribase 
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The Valuation department keeps records of land ownership. The department of Survey 
and Land Information (DOSLI - Now disbanded) digitised all land parcels in New 
Zealand. Land ownership can be linked to the digitised land parcels by a common field 
containing the legal description. Unfortunately the legal descriptions used by the 
Valuation department differ in form from those used by DOSLI. The link between the 
land ownership information and the digital cadastral database is only partial. 
The spatial references for farms in Agribase have been obtained by matching Valuation 
Roll-legal descriptions with legal descriptions in the Digital Cadastral Database (DCDB). 
The DCDB has a legal description and a static unique feature identifier (SUFI). The 
Valuation Roll has ownership details, a valuation number and a legal description. 
Electronic processes can match the legal descriptions and produce a table of "Valuation 
number-SUFI" pairs. The process matches approximately 7 out of 10 rural valuation 
numbers with at least one SUFI (land parcel) on the DCDB. The resulting "Valuation 
number-SUFI" table is used to link land parcels to owners. 
Area data for a farm in Agribase can be obtained by entering the valuation number(s) of 
the farm. If the valuation number is present in the "Valuation number-SUFI" table, then 
the SUFI's (land parcels) are assigned to the farm. 
Not all farms in Agribase have a spatial reference, as the linkage is partial. The 
percentage of valuation numbers linked to the DCDB varies from district to district. 
Linked farms may only have one of many land parcels represented. For example, ifthe 
legal description in the Valuation roll reads "Lots 1to10 DP 2468", the matching 
process may only link the farm to Lot 1 and Lot 10. More sophisticated matching has 
been attempted to umavel the valuation roll legal description. However with 
concatenated legal descriptions, not all lots are necessarily linked to a farm. Considerable 
improvements in the matching process have occurred during the course of this 
dissertation. In some areas manual matching of Farms to the DCDB has been undertaken. 
In Hawke's Bay, farmers are sent maps of their farms each year and they are requested to 
mark their boundaries and homestead location on these maps. This process is now used 
in the South Island and much of the North Island. Figure 2 is an example of one such 
map. The process allows land parcels to be directly allocated to farms. The land parcels 
are entered directly against the farm without using the Valuation SUFI table. This 
approach results in a higher degree of spatial reference than the valuation matching 
approach. 

Method 
The data from two regions was examined and tabulated. A comparison between the 
Hawke's Bay data and data from the Wairarapa was made. In the Wairarapa the spatial 
data is derived from the valuation matching process, whereas the Hawke's Bay data is 
derived from the manual matching process. Data completeness in the Hawke's Bay 
Region and Wairarapa Region was examined. 

Results 

Spatial references for Agribase 

Table 5 shows the degree of linkage to the DCDB and how it has been achieved. The 
number of farms in each farm-type, and the percentage of each farm-type that has co­
ordinate information, are shown. The percentage of each farm-type that have at least one 
SUFI (land parcel) and the percentage that have at least one valuation number are also 
presented. The percentage of each farm-type that has no spatial data is shown. The data 
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was split into the two groups. One group comprised the predominant farm-types that are 
of principal interest to TB or exotic disease control. The "other" group is composed of 
the many horticultural and miscellaneous farm-types, such as Ostrich farming. 
In the farm-types of principal interest, the Hawke's Bay had 10% of farms with no 
spatial reference, whereas the Wairarapa had 18% with no spatial data. There were 
overall 11170 SUFis in the Hawke's Bay data. Of these 8186 or 57% were obtainable 
using the valuation matching process. The remaining 43% were not in the Valuation­
SUFI table. 
Hawke's Bay farms with a valuation number had an average of3.52 SUFis. On average 
2.58 of these were in the Valuation-SUFI table. This shows that the valuation matching 
process is only finding on average 73 percent of the land parcels within a farm. Over all, 
16% of farms are not matched to any land parcels by the valuation matching process. 
The number ofland parcels per farm increases with the direct approach used in Hawke's 
Bay, as well as the number of farms with land parcels. Table 6 shows the percentage of 
farms with no spatial reference by predominant farm type. The valuation derived 
matching process used in the W airarapa appears to create missing data in a random 
pattern. The Hawke's Bay is missing Beef, Dairy and Deer farms at about the same 
frequency. Table 6 shows that the median and average size of farms with no spatial 
reference is much smaller than the ones with spatial reference. This may reflect the focus 
of Agribase data collection on farms with at least 5 hectares. 
Farms with or without spatial reference were compared as to when they were last edited 
in Agribase. Table 6 shows that farms with no spatial reference are much "older". The 
median time since the data was last updated was 9 months, in farms that had a spatial 
reference and 17 months, in farms that had no spatial reference. Farms with missing data 
had been in the database twice as long as farms that had spatial data. This suggests a 
redundancy problem. Some current farms need to be archived. The proportion of farms 
with spatial references may be greater if farms were archived at the appropriate time. 

Spatial references for the NLDB 

Table 7 shows the percentage linkage for each herd-type. The completeness of spatial 
referencing for NLDB herds is slightly better than for Agribase. In Hawke's Bay only 8 
percent of herds did not have a spatial reference, while 15 percent ofWairarapa herds 
had no spatial reference. The herd-type least likely to be spatially referenced is the 
miscellaneous herd type. Table 8 shows that the herds without spatial reference are 
smaller, reflecting the focus of Agribase on properties of 5 hectares or more. There is 
considerably less redundancy in the NLDB. The median time period since the last 
activity associated with a herd was under 12 months for each region. The herds without 
spatial reference had a longer median time since the last episode, but only by a few 
months. 

Discussion 
In the W airarapa the spatial references for farms have been derived from a valuation 
matching process and 16 to 19% of farms have no spatial reference. The farms that had 
spatial reference were estimated to be missing 27% of the land parcels that make up the 
whole farm. Small farms are under represented in the data set. This is a potential source 
of bias when analysing the data. Any process that was designed to make use of the 
spatial data in Agribase would have to be robust enough to cope with this level of farms 
that have no spatial reference and with farms that are only partially represented. 
The percentage of herds with spatial references in the NLDB was higher than the 
percentage of farms with spatial references in Agribase. This is a reflection of the high 
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level of usage associated with the NLDB. The difference between the Wairarapa and 
Hawke's Bay was considerable. Fifteen percent of herds in the Wairarapa had no spatial 
reference, compared with 8% in Hawke's Bay. This represents the difference in the 
source of the spatial data. Small or miscellaneous herds were under represented in the 
data set. This is a potential source of bias when analysing animal health data 

Table 5: Table of data quality for farm types in Agribase by region 

Region Predominant Number %of %of %of % of farms % of farms % of farms 
Farm type of farms farms farms farms with a with a SUFI with no 

with with a with a valuation but no spatial 
SUFl's XY valuation number but valuation data 

location number no SUFI number 
Hawke's Beef 902 78 82 72 3 9 18 
Bay Dairy 73 89 86 86 4 7 11 

Deer 146 84 81 84 7 7 16 
Pig 5 80 100 80 0 0 0 
Sheep 841 98 99 94 1 5 1 
Sheep-Beef 510 93 92 93 5 5 7 
Sub Total 2477 88 90 85 3 6 10 
Other types 1982 72 42 62 11 21 28 
Total 4459 81 69 75 7 13 18 

Wairarapa Beef 887 76 76* 95 19 0 24 
Dairy 612 91 91 99 8 0 9 
Deer 86 66 86 99 34 1 34 
Pig 12 67 12 100 33 0 33 
Sheep 1264 88 1264 100 12 0 12 
Sheep-Beef 214 62 62 97 35 0 38 
Sub Total 3075 82 82 98 16 0 18 
Other types 1530 53 53 77 24 0 47 
Total 4605 72 72 91 19 0 28 

* The percentages m 1tahcs show that co-ordmate data can be calculated for any farm 
with at least 1 SUFI. 

Table 6: Table of farm size and 'months since data entry' for farms with or without 
a spatial reference 

Region Farms with Number of Median Average Number of Median Average 
spatial farms with size of size of farms with number of number of 

reference spatial farms farms a 'last months since months since 
reference (Ha) (Ha) entry' date data entered data entered 

Hawke's Bay Present 3717 43 294 3178 9 16 
Missing 697 9 44 698 17 19 

iWairarapa Present 3670 62 453 3724 9 20 
Missing 593 12 85 674 17 45 
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Table 7: Spatial referencing by NLDB herd types 

Region Species Herd Type Number Number Percent of Percent of Average 
of herds of herds herds herds number of 

without without without XY land parcels 
land any land co- per herd 

parcels parcels ordinates 
Hawke's Cattle Breeding 1318 87 6.6 8.9 5.4 
Bay Drystock 807 68 8.4 13.8 3.5 

Dairy Drystock 3 1 33.3 33.3 1.0 
Dairy Herds 71 3 4.2 12.7 3.9 
Miscellaneous 188 43 22.9 40.4 1.9 
~II 2387 202 8.5 13.2 4.5 

Deer Breeding 267 18 6.7 11.6 5.3 
Fattening 11 1 9.1 9.1 2.5 
Miscellaneous 30 2 6.7 20.0 5.5 
Safari Park 1 0 0.0 0.0 1.0 
~elvetting 47 1 2.1 4.3 3.3 
All 356 22 6.2 11.2 5.0 

Both 2743 224 8.2 12.9 4.5 
Wairarapa Cattle Breeding 779 80 10.3 10.3 4.5 

Drystock 949 218 23.0 23.0 2.1 
Dairy Drystock 8 1 12.5 12.5 2.0 
Dairy Herds 270 9 3.3 3.3 4.9 
Miscellaneous 772 125 16.2 16.2 0.7 
All 2778 433 15.6 15.6 2.7 

Deer Breeding 138 15 10.9 10.9 2.9 
Fattening 6 0 0.0 0.0 4.3 
Miscellaneous 11 0 0.0 0.0 4.9 
Safari Park 3 1 33.3 33.3 0.0 
Velvetting 12 2 16.7 16.7 2.3 
All 170 18 10.6 10.6 3.0 

Both 2948 451 15.3 15.3 2.7 

Table 8: Spatial referencing by NLDB herd types 

Region Spatial Number of Median !Average Number of Median Average 
reference herds with size of size of herds with number of number of 

spatial farms farms 'months months since months 
reference since last last episode since last 

episode' data episode 
Hawke's Bay Present 2466 242 366 2480 5 9 

Missing 211 0 63 224 9 12 
Wairarapa Present 1696 67 771 1765 3 4 

Missing 285 4 71 451 5 6 
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Figure 2: Example of the maps posted annually to farmers in order to keep Agribase updated 

~ ~ ~ 
Owner 

Address 

To help us to help you in an 
outbreak or emergency, please 

./ Indicate or update your homestead 
location by placing an X on the map 

./ Confirm your farm boundaries on the map 
(add or cross off lines where necessary) 

. ./ Correct or add any farm details (printed in 
blue above) 

./ Complete the Stock and Crop Details 

./ Return this page in the reply paid envelope 
with your donation to the Rescue Helicopter 
Service 

I wish to donate dollars 

D to the Helicopter Trust in my area 
D to the following Helicopter Trust: --.,.-,---,--
0 I do not wish to make a donation at this time 
(Please tick one) 

My payment is by: 
D Cheque (Please enclose) 
0 Credit card: VISA MC Other ___ _ 

NumberLLU_JLLU_JLLU_JLLU_J 

Expires_/_ Card Holder Name - ----­

(Signature) 

ENDORSED BY 

....c~-~ 

~'.'.~-"~?i;; 
FEDERATED 
s::' .a. 1:2 llUI ii;;: 1:2 ~ 

0 iii 5.W. ·"'i' m Y.'C· 
MAF Quality Management 
AD/vl5icnoftheMlolsttyo!Aoriculture 

Supporting Rural Rescue Services 
Trading Name 

Farm/Station Name 
Phone 

Fax 
Number on Gate 344 

Total Hectares 511.30 

A--

• HS00092 

Stock and Crop Details 

Animals Number Plants Area (ha) 

Beef 400 Cereals 

Bee Hives --- Cropping 

Dairy ----- Flowers 

Deer ----- Forestry 

Dogs 12 Fruit/Nuts 

Goats 300 Native Bush 

Horses 12 Seeds 

Pigs ----- Vegetables 

Poultry ----- Viticulture 

Sheep 3000 Other 
(plluelpKlfy) 

I understand lha1 this information is stored in Agribase to 
be used by rescue services in rural emergencies and by 
MAF and allied organisations for managing responses to 
diseases, pests, residues, environmental quality issues or 
other problems lhat may limit New Zealand's productivity 
or ability to trade . 

Signed _______________ _ 

D Please tick this box if you do not want your farm to be 
located on any published farm location maps. 

Published !1om Agribau, 1ubjaci to Crown Copyright 

--=--~ 

A orod11_cJ .. oJ MA E.._Qua.litv~M.a11aoem.en 



Chapter 3 

Spatial data and disease surveillance 
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Introduction 
Spatial information is useful in surveillance for diseases that involve vectors or 
environmental risk factors. The bovine tuberculosis (TB) control program in New 
Zealand deals with herds and vectors of TB that are intimately associated with 
geographical factors. This chapter considers in what way spatial data can enhance the 
management of TB surveillance. The type of spatial data (point or polygon) and level of 
completeness that is required is assessed. 
TB testing is used to confirm that a herd is TB free and to detect TB in vectors. Wildlife 
in most areas of the country is free from TB. Cattle and deer are used as sentinel animals. 
TB testing is intensified in areas where TB is known to occur in wildlife and on the 
fringes of these areas. Spatial data can be used to visualise the spread and intensity of 
sentinel surveillance. The various types of spatial data available are shown in Figure 3. 
In the figure there are discrete point themes and area themes. The data layers that could 
be useful in TB control management include: 
scanned topographical maps; 
possum control information at farm level; 
possum control areas; 
TB testing and slaughter data at a farm level; 
livestock demography (such as herd types or the presence of sheep); 
and categorised land cover images. 
From the above layers it is possible to detect areas of inadequate coverage of TB 
surveillance and to assess their importance. 

Method 
Data was retrieved from the NLDB and from Agribase. It was manipulated in MS Access 
and linked to the DCDB in Arcview. Additional data on the slaughter of cattle and deer 
was obtained by a survey of farms in the Wairarapa and Hawke' s Bay Regions. The data 
was explored using Arcview and (with permission) an extension of Arcview called 
Spatial Analyst. The statistical software Egret was used for logistic regression. 
TB surveillance information was displayed and analysed using point and area data. The 
two data types were compared. The sensitivity of the methodology to missing spatial 
data was examined. TB testing data for deer and cattle in the year ending August 1997 
was examined in a study area comprising four NZ 260 series maps. Each map sheet 
covers an area 40 kilometres wide and 30 kilometres high. The area chosen contained a 
vector risk area, a fringe area, and a surveillance area. A vector risk area is an area in 
which wildlife are thought to have TB. Such areas are surrounded by fringe areas. A 
surveillance area for the purposes of the TB control program is an area where feral 
animals are believed not infected with TB. 

Results 

Detecting classification errors 

Area data at the farm level from Agribase was used to examine textual area 
classifications in and around the W aipawa vector risk area. Figure 4 shows the area 
classification around the Waipawa vector risk area. Classification errors can be seen, in 
that some herds in the fringe area are shaded red and they should be yellow. Area data 
may contain non-contiguous landparcels. These land parcels may appear to be classified 
incorrectly. This is the case with the small property shaded red in the top right hand 
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comer of Figure 4. If the boundaries of administrative areas are known then point data is 
better at disclosing classification errors. This is because the point normally relates to the 
home farm. 

Representing the extent and completeness of farms 

Figure 5 shows the distribution of the different cattle herd types. This information is 
essential when considering surveillance issues. The light-green areas represent farms that 
have fattening cattle rather than breeding cattle. In these herds slaughter surveillance is 
relied upon and testing is not routinely carried out. Figure 6 shows the same data using 
points. No appreciation of the extent of different herd types can be obtained from the 
point data. Nor is there any appreciation of the level of missing data. Figure 7 shows a 
similar comparison for deer herds. 
Figure 8 shows the cattle TB testing coverage in a surveillance zone over a 3-year period 
and a one-year period. This allows the extent of the TB surveillance to be examined. 
Breeding cattle herds in the surveillance zone are tested every three years. It is expected 
that in any one year the herds tested will evenly cover the whole region. The system is 
called "every third farm" testing. In this case, when testing was summed for 3 years, the 
coverage of the program is well distributed with approximately 70% of the land area 
covered. However on an annual basis, the "every third farm" policy has not achieved an 
even coverage and testing appears to be clustered. Using the area data theme in 
programming testing would allow the "every third farm" concept to be more consistently 
applied. 
Area data allows the calculation and display of stocking rates. Figure 9 presents testing 
density displayed using different colours to indicate intensity. Testing density was 
calculated as the number of tests per square kilometre per annum. The comparison using 
point data is shown in a variety of ways in Figure 14, 15 and 16. In Figure 14 colours 
have been used to indicate the number of tests. In Figure 15 different sized dots were 
used to display this information. These figures do not convey the information as well as 
Figure 9. In Figure 16 point data was converted into a surface through interpolation. 
Contours were created and splines were used to generate a smooth surface of testing 
density. Each of these methods conveyed a false impression of true spatial coverage of 
TB testing. The testing density surfaces do not communicate the surveillance information 
as well as the shaded area data in Figure 9. The enclosed figures show that surveillance 
information at a farm level is immediately more satisfying when displayed with area data 
than with point data. Gaps in the spatial coverage of testing can easily be distinguished 
from gaps resulting from missing data. 

Determining the distance from or proximity to other features 

Figure 7 shows the distribution and number of deer displayed with using area features 
and point features. The point coverage communicates less information than the area 
coverage. The area coverage shows the extent of the land used by deer farmers. This may 
be important if you wish to know the about deer farms that bound a river or forest. 
Careful examination of the area theme in Figure 7 reveals that 9 deer farms are adjacent 
to a river. The point data theme does not reveal this information. 
The GIS can generate a buffer of a defined width around each property. This could be 
set to represent the expected home range of possums or other TB vectors. This approach 
is useful in the Vector risk area. The buffer area can represent the extent of indirect 
sampling of the underlying possum population through cattle TB testing. Ideally, in a 
vector risk area there would be no land farther than the expected home range of possums 
from any TB testing activity. Figure 10 shows this assessment using area data. To the 
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right of the figure shaded in blue are areas that are more than 1600 meters from any 
testing activity. This part of the figure is an area that only tests every three years. The left 
of the figure is on an annual testing program. The distance from 'farms that test' can be 
used to show gaps in the surveillance program. Point data can not be used to detect gaps 
in the same way. 

Determining the cause of gaps in surveillance 

There are a number of reasons why a gap may appear in surveillance. Intense sheep 
farming can create significant gaps in the spatial coverage of the testing program. Figure 
8 shows three-year-testing data, the gaps are predominantly caused by sheep farming. 
Other gaps in the spatial coverage of testing may be the result of the predominance of 
fattening rather than breeding herds in an area. The gap in surveillance may disappear if, 
as well as testing surveillance, slaughter surveillance is included. If there is still a gap, 
the significance can be determined by examining the amount of vector control in the 
area, the type of land cover, and the proximity to TB in vectors or TB in domestic 
animals. Figure 11 shows the Waipawa vector risk area. Gaps in the spatial coverage of 
TB testing are shown in red. The gaps are associated with fattening herds (shown in 
yellow in Figure 21 ). There are also some land-parcels that are not allocated to a farm 
and some herds that lack a spatial reference. The extent of missing spatial referencing 
can be assessed by comparing "unlinked" testing numbers to "linked" testing numbers. 
Table 10 shows details of what testing information for the area concerned was not shown 
on the map. In this case 2 % of the testing data was missing. 
Figure 12 shows the type of vector control used in and around the vector risk area for the 
1997 season. The vector control data available includes the hours worked, the number of 
possums killed and the control method used. Figure 12 shows the hours of vector control 
activity per square kilometre (100 hectares). Gaps in the vector control activity are 
shown in red in Figure 13. The significance of the apparent gap in surveillance in Figure 
11 is greater in that it coincides with an apparent gap in pest control. The gap in vector 
control presented at the bottom right of Figure 13 is an artefact of the time period for 
which the data was retrieved. Vector control data is available at a farm level because the 
Hawke's Bay Regional Council uses Agribase as the basis of its' pest management 
recording system. 
Area data allows the calculation of the number of tests per annum per unit area. Table 9 
shows the testing density for herds in Hawke's Bay. The testing density is shown for 
deer farms, cattle farms and mixed deer and cattle farms. In areas such as Waipawa, 
where TB vectors are present, the testing is conducted annually and young stock are 
eligible for test. Deer herds in the annual testing areas (Fringe and Waipawa) have very 
high testing densities. They have 4 to 5 times the test intensity compared with 
neighbouring cattle herds. Figure 22 shows surveillance intensity in the Waipawa vector 
risk area. Note that the testing intensity of the deer herds is consistently high. From the 
point of view of using deer and cattle as sentinel animals an even testing intensity 
throughout the area is desirable. If the testing program was based on test intensity, deer 
herds could have the same testing intensity as cattle herds. As the deer in this area are 
grazed more intensively, and have non-specific reactivity problems, it could be argued 
for a reduction in the testing in these herds. In the Waipawa area only 1.6% of deer tests 
and 2.6% of cattle tests were not represented in the analysis. This gives confidence in 
data presented in Table 9 and in the figures representing testing. 
TB testing represents one part of the surveillance in an area. Before adjustments to the 
program are made, consideration needs to be given to the amount of slaughter 
surveillance in an area. 
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Table 9: Crosstabulation of tests per hectare per year by zone and type of farm for 
the Hawke's Bay 

Zone Code Purely deer farms Purely cattle farms 

Number Tests per Average Number Tests per Average size 
of farms Ha year size Ha of farms Ha year Ha 

Surveillance 56 1.62 50 1471 0.39 382 
Fringe 6 2.36 68 188 0.36 550 
Waipawa 6 3.87 40 284 0.71 213 
Total 68 1.88 51 1943 0.43 373 

Mixed cattle and deer farms All farms 

Surveillance 180 0.74 711 1707 0.47 403 
Fringe 47 0.77 550 241 0.50 545 
Waipawa 54 1.19 376 344 0.87 237 
Total 281 0.83 620 2292 0.53 393 

Table 10: Summary statistics of tests not spatially referenced by species and zone 

Zone Code Deer Deer Percentage Cattle Cattle Percentage 
tests tests not deer tests tests tests not cattle tests 
included included not included included included not included 

Surveillance 17909 1565 8.0 79099 1928 2.4 
Fringe 6588 112 1.7 30915 355 1.1 
Waipawa 13291 222 1.6 28994 779 2.6 
Total 37788 1899 4.8 139008 3062 2.2 

Assessing missing spatial data 

The sensitivity of the above techniques to missing spatial references was examined. 
Figure 18 shows that the image loses its contiguity as the level of missing data increases. 
False gaps in testing activity showed up when less than 85% of herds had a spatial 
reference In order to obtain a satisfactory depiction of testing levels in an operational 
area the results showed that at least 85% of herds must be linked to their land parcels. 
Figure 1 7 shows that missing spatial references are hard to detect when point data is 
used. 

Slaughter surveillance 

Inspection at routine slaughter represents an important component of surveillance for 
diseases. Currently positive TB findings at slaughter are reported, but negative 
information is not being utilised. In some areas large numbers of cattle are slaughtered. 
To obtain a fair impression of the actual TB surveillance in an area, both, testing and 
slaughter data need to be assessed. There is no record in the NLDB of the number 
slaughtered from a property in a given year. Addition of this information would 
represent a major yet simple enhancement to the NLDB. 
To obtain information on slaughter surveillance, a survey of farmers in the Hawke's Bay 
and Wairarapa regions was conducted. The survey is presented in Appendix 1. The aim 
was to develop a tool for prediction of the number slaughtered per annum from 
individual herds, using data already available in the NLDB. It was hoped that existing 
data currently recorded for individual herds could be used to estimate the number 

28 



slaughtered. Using the survey data a Poisson regression model was constructed that 
predicted the number slaughtered in individual herds. The model was run and the 
estimated number slaughtered from each farm was mapped in much the same way as the 
testing data. The variables from the national livestock database which were used in this 
analysis included: Region, herd-type, testing program, and testing data by stock class. 
When a herd is tested the number tested in each stock class is recorded. Stock are 
classified as being male or female and one of three age classifications: rising 1 year, 
rising 2 year or mature. 
Logistic regression was used to estimate the number of animals purchased and the 
number of animals slaughtered from each farm in the region. The model explained only 
50 percent of the variation in number slaughtered or purchased in the study herds. The 
goodness-of-fit of the model was assessed using the R squared estimate which was 
calculated based on the deviance of the intercept-only model and the deviance of the 
final model (Mittlbock Mand Schemper M, 1996). Recording the actual number 
slaughtered or purchased from a farm would be preferable to using the model. The model 
predictions were combined with testing data and used in this chapter to display total TB 
surveillance. 
The final Poisson regression models for prediction of the number of cattle and deer 
slaughtered are presented in Table 11 and Table 12. It includes the two categorical 
variables region (with two levels) and herd-type (with 5 levels). Stock and testing 
numbers are represented in units of 100. There was a statistically significant interaction 
between region and herd type. The expected count for each farm was calculated using 
NLDB data based on the following formula: E(Yj) =A. j = 'Aoexp(P1x1 + P2x2 + ..... Pnxn). 
Where P1 , P2 ..... P n are the coefficients corresponding to the predictor variables X1 , x2 .. Xn. 
and A.0 represents the baseline hazard rate when x1, x2 .. Xn. are zero. The resulting 
statistical models for the number of animals purchased and the number slaughtered are 
presented in Table 11 and Table 12 respectively. Both models explain about 45% of the 
deviance in the data. This suggests that the predictive capacity of the regression models 
is not sufficient to allow reliable prediction of number of cattle purchased and 
slaughtered on individual properties. 
The expected number slaughtered for each farm was calculated and visualised. Testing 
and slaughter surveillance was combined to obtain an overall impression of TB 
surveillance in a given area. Slaughter surveillance "fills in" most of the gaps in the 
testing program. The combination of slaughter surveillance and testing in some areas is 
such that a reduction of the amount of testing in the area could be considered. 
Figure 20 shows the surveillance achieved by the testing program and the total coverage 
gained by tests and slaughter. Figure 11 shows the Waipawa vector risk area and a gap in 
the testing coverage in the centre of it. Figure 21 shows that the reasons for the gap in 
testing include the presence of a large number of fattening herds and one or two farms 
with missing spatial references. Figure 21 also shows that when slaughter surveillance is 
included (estimated using the above model) the gap disappears. 
The inclusion of estimated slaughter data demonstrates the benefits that could be 
obtained from using real slaughter data. The ability to examine surveillance intensity 
allows the future testing to be programmed at a farm level rather than a control area 
level. It is recommended that slaughter data for each herd, be recorded in the NLDB each 
year by stock class, along with the total number of cattle and deer present, purchased and 
born. 

29 



Table 11: Final Poisson regression model for prediction of the expected number of 
cattle slaughtered 

Regression term Coefficient Standard Error P- Rate ratio 
Value 

Intercept 3.238 -0.0284 <.001 25.49 
Region = Wairarapa I Hawke's Bay -1.035 -0.0427 <.001 0.3551 
Herd type = Beef Breeding 1.119 -0.0269 <.001 3.062 
Herd type = Drystock 1.347 -0.0292 <.001 3.844 
Herd type = Dairy 0.9617 -0.0403 <.001 2.616 
Herd type = Miscellaneous <.001 1 
Program (annual or triennial testing) -0.1102 -0.0063 <.001 0.8957 
Number Tested 3 and 2 years ago 1 OOs 0.0371 -0.0011 <.001 1.038 
Number of sheep 1 OOs 0.0061 -0.0001 <.001 1.006 
Number of deer 100s 0.0987 -0.0023 <.001 1.104 
Cows tested that year 1 OOs -0.0653 -0.0054 <.001 0.9368 
Rising 2 year males tested that year 1 OOs 0.4686 -0.0040 <.001 1.598 
Rising 1 year cows tested that year 1 OOs 0.3983 -0.0149 <.001 1.489 
Rising 1 year males tested that year 1 OOs -0.136 -0.0118 <.001 0.8729 
Other Cows tested 1 OOs -0.3921 -0.0266 <.001 0.6757 
Bulls tested that year 1 OOs 0.3068 -0.0330 <.001 1.359 
Rising 2 year cows tested that year 1 OOs -0.3006 -0.0158 <.001 0.7404 
Other Males tested that year 1 OOs 0.131 -0.0195 <.001 1.14 
Wairarapa *Herd type Beef Breeding 0.3433 -0.0442 <.001 1.41 
Wairarapa * Herd type Drystock -0.259 -0.0463 <.001 0.7719 
Wairarapa * Herd type Dairy 0.5424 -0.0600 <.001 1.72 
Region. Herd type = Beef Breeding <.001 1 
Deviance of intercept-only model 129129 
Deviance of current mode! 70670 
R squared 0.45 

Table 12: Final Poisson regression for prediction of the number of deer slaughtered 

Poisson regression term Coefficient Standard P-Value Rate ratio 
Error 

Intercept 2.996 -0.0709 <.001 20 
Mature hinds tested that year 1 OO's 0.3139 -0.0097 <.001 1.369 
Number Tested 3 and 2 years ago 1 OOs 0.1588 -0.0058 <.001 1.172 
Rising 1 year hinds tested that year -0.9513 -0.1140 <.001 0.3862 
Rising 2 year hinds tested that year 2.092 -0.0719 <.001 8.099 
Herd type = Miscellaneous 1.147 -0.0773 <.001 3.147 
Herd type = Velvetting 0.0032 -0.0635 0.96 1.003 
Herd type = breeding <.001 1 
Number of Sheep 1 OO's -0.00647 -0.0005 <.001 0.9936 
Region = Wairarapa -0.2025 -0.0419 <.001 0.8167 
Region Wairarapa.Herdtype Miscellaneous -0.7546 -0.1060 <.001 0.4702 
Region Wairarapa.Herdtype Velvetting 0.3871 -0.1060 <.001 1.473 
Region Wairarapa.Herdtype=beef breeding <.001 1 
Rising 2 stags tested that year 100s -0.2685 -0.0604 <.001 0.7645 
Program (annual or biennial) 0.1948 -0.0328 <.001 1.215 
Rising 1 year stags tested that year 1 OOs -0.5092 -0.1180 <.001 0.601 
Deviance of intercept-only model 9878 
Deviance of current model 5616 
R squared 0.43 
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Assessment of clustering 

The type and completeness of data required to detect clustering was determined using TB 
as an example. A cluster of infected farms may indicate that a population of infected 
vectors is present in an area. Detecting clustering where a feral vector is involved is 
complex. Some assessment must be made of the likely size of the area occupied by the 
infected vector and hence the expected size of a cluster. 
In 1988, a population of possums at Waipawa in Hawke's Bay became infected with TB. 
This resulted in TB cases in domestic deer and cattle in the area. The cases first started to 
occur in 1991 and by May 1992 a control operation commenced following the diagnosis 
of TB in possums (Mackereth, 1993). Cluster detection techniques were applied to this 
disease episode to assess their usefulness for detecting and locating clusters. The 
methods were applied at different levels of data completeness to determine the sensitivity 
of the cluster detection methods to missing data. 
An area of approximately 30km by 40km centred on the known cluster of cases at 
Waipawa was selected. There has been 36 TB infected herds in that area over the last 8 
years. A random selection of 36 control farms not on movement control was made and 
compared with the cases. This was done with area and point data and is shown in Figure 
23 and Figure 24. Figure 23 shows the locations of a cluster of TB infected herds and a 
random selection of control farms. Figure 24 shows the farms at Waipawa (note that they 
are naturally clustered at townships and along roads). The cluster could be visualised 
using a neighbourhood technique shown in Figure 25. 
Of the cluster detection methods that use area data, Moran's I (Cuzick and Edwards, 
1990) was chosen. Moran's I is a test for spatial autocorrelation in disease rates. The 
calculation of Moran's I requires a contiguity file. This file defines the spatial proximity 
relationship between farms. Contiguity files were created by considering all farms within 
a given radius of a farm as contiguous. The contiguity matrix was also calculated based 
on two levels of spatial data completeness (90% and 63%). Moran's I was calculated 
using point data and area data. 
Table 13 shows the Moran's I values and their significance for area and point data at 
different levels of data completeness. The results show that clustering was detected more 
readily with area data than point data. Clustering was detected when using area data at all 
levels of missing data and at buffer widths of lOOm, 5000m and 7000m. Point data does 
not reflect contiguity as well as area data. 

Table 13: Moran's I values for area and point data in the Waipawa vector risk area 
at three levels of proximity 

Data type Immediate neighbours 5 km radius 7 km radius 
Moran's P value Number of Moran's p Number of Moran's I P value Number of 

I neighbours I value neighbours neighbours 
Area 100% 0.079 0.0003 5.8 127 
Point 100% - - 1.1 0.017 0.004 56 0.02 0.00002 92 

Area 70% -0.001 0.9 4.2 0.012 0.061 53 0.018 0.001 81 

Point 70% - - 1.1 0.002 0.64 40 0.012 0.044 65 

The search radius around a point encompasses fewer farms than around an area feature. 
To compensate for this effect, a larger search radius should be used with point data. 
Increasing the radius does not necessarily include the same farms in the contiguity file as 
using area data, but it does increase the number of farms considered to be contiguous. 
The extent, by which the radius should be increased, when switching from areal data to 
point data, is of interest to all spatial processes that use distance methods. The increase 
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should result in a similar number of contiguous farms as area data. Two approaches were 
applied to investigate this problem. 
With the first approach, a hypothetical radius was calculated for each farm, based on its 
area. The farm was considered to be circular for this purpose. To adjust the distance 
criteria when switching from area to point data, the average radius was doubled. In some 
processes it may be appropriate to add the actual "radius" of a farm plus the average 
radius of all farms. For the area under study the mean radius was 708 meters with a 43-
meter confidence interval. The median was 696 meters. Figure 27 shows the residual 
difference between the mean radius and the actual radius for each farm. 
The second approach was to plot the average number of neighbours against distance for 
point and area data. Figure 28 contains this plot. The increase in distance required to 
achieve the same number of neighbours can be read off the resulting graph. 
The Cuzick and Edward's test uses distances between cases and controls. The results are 
shown in Table 14. They indicate that clustering was detected when 90% or more of the 
cases were included and when considering 8 nearest neighbours. When a summarised 
probability was calculated for 1 to 10 nearest neighbours, clustering occurred at 90 and 
80 % data completeness, but not at 100% or 70%. 

Table 14: Results from applying Cuzick and Edward's test for clustering (at 8 
nearest neighbours) of cases at different levels of case data completeness 

Cases Controls Percent k nearest T(k) Sum of E(T) z p Bonferroni Simes 
of cases neighbours neighbours P* P* 

used that are 
cases 

36 114 100% 8 82 67.7 1.62 0.052 0.52 0.12 
32 114 90% 8 70 54.7 189 0.03 0.3 0.07 
28 114 80% 8 59 42.9 2.2 0.139 0.12 0.02 
25 114 70% 8 44 34.8 1.38 0.08 0.62 0.18 

• Bonferroni P and Simes P are summarised probabilities for 1 to 10 nearest neighbours. 

The Cuzick and Edward's test was applied at different levels of spatial data 
completeness. The results were inconclusive, probably as a consequence of the case 
control approach used. 

Recommended data type for the detection of clusters 

Area data is superior to point data in cluster detection, as it accurately reflects contiguity. 
Cluster detection methods that use point data are not recommended. Point data could be 
used to assess clustering if a contiguity file was made based on distances that represented 
the cluster size, and an adjustment factor. The adjustment from area to point data was at 
least twice the hypothetical mean radius of the farms involved. Missing data did reduce 
the ability of the cluster detection methods to detect clustering. At least 80% spatial data 
completeness was required in this example to achieve an acceptable sensitivity at cluster 
detection. 

Discussion 
Table 15 summarises the preferred type of spatial data for various TB management 
applications. Many of the functions are applicable to other diseases. The summary shows 
that area data is essential for most envisaged uses of the data. There were instances 
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where point data was useful, such as in the detection of classification errors. Point data 
is easily derived from area data. The results show that a surveillance system that uses 
spatial data should use area data. Point data has limited value on its own. Contiguous 
properties are shown clearly when area data is used. Point data will not represent 
contiguous properties to the same extent as area data. There are a number of methods for 
classifying farms as near or far away. It is possible to compare the actual neighbours 
seen in an area theme with those classified as neighbours in a point theme. If the size and 
shape of farms varies a lot, then the sensitivity and specificity of the classification using 
a point theme will be low. For disease control purposes it is sometimes desirable to 
examine the proximity of farms to a certain feature, such as bush or rivers. Area data was 
clearly an advantage in these circumstances. The assessment of the level of data 
completeness required to meet the needs of disease management was mostly done by 
visual appraisal. The effect on TB surveillance applications was tested by progressively 
reducing the level of data completeness until the image lost contiguity or a false 
impression was gained. It was clear that at 75% data completeness most of the methods 
were not applicable. False holes in the surveillance of TB were detected at 75% 
coverage, but not at 85%. 

Table 15: Table of the preferred data type for various TB control applications 

Likely Application Preferred data Level of completeness 
type required 

Detecting misclassification errors Point 85% 
Representing the extent and completeness of farms Area 85% 
Determining the proximity to other features Area 85% 
Determining the cause of gaps in surveillance Area 95% 
Assessing missing spatial data Area NA 
Assessment of clustering Area 80% 
Working with contiguous properties Area 95% 
Assessing TB surveillance Area 85% 
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Figure 3: Types of spatial data available 

Included below are classified land cover themes, scanned paper maps, 
possum control zones, roads and rivers, and farms represented 
as point and area features. 



Figure 4: Testing zones at the Waipawa vector risk area displayed 
as an attribute of farms. 

On the map below farms are shown as area features. 
The whole farm is shaded according to its testing zone. 
Note that some farms appear to be incorrectly classified. 
A small circle has been placed over some incorrectly classifed farms. 
This is an easy way to detect classification errors in textual data. 

Testing zones have been shaded with the following colours 

E:=i Fringe zone 
.. Surveillance zone 
.. Vector risk zone 
ffiftfil~ Unclassified land parcels 



Figure 5: Cattle herd type distribution shown with area data 

The area below is a small part of the W aipawa Vector Risk area. 
Farms have been shaded according to their herd-type. 
From the figure it is easy to see the extent of beef breeding herds (dark green) 
and beef drystock herds {light green). 
The same attribute is displayed using point data to represent farms in Figure 6. 
Note that the point coverage does not convey the same impression. 

Cattle herd type 
.. Beef breeding herds 
C=.J Beef drystock herds 
c:J Dairy Dry herds 
.. Dairy Herds 

Miscellaneous herds 
Ill Unclassified land parcels 



Figure 6 Cattle herd type distribution shown with point data 

The area below is a small part of the Waipawa Vector Risk area. 
The area shown is the same as is shown in Figure 5. 
The farms in the area are displayed as points. The herd types on 
each farm are shown by the colour of the point. 
Compare this figure with Figure 5. 

e Beef breeding 

e Beef Drys tock 

e Dairy herd 

e Miscellaneous 



Figure 7: The distibution and size of deer herds displayed with 
area and point data 
The area shown is part of the Waipawa Vector risk area. 
This figure shows the difference bewteen representing farms 
as area features and point features. 

Area data 

Point data 

IHiJ 0 - 500 deer 
.. 500 - 1600 deer 

• 1-500 deer 
500 - 1600 deer 



Figure 8: Coverage of cattle TB testing in a one year and three year period 
in a surveillance area 
The figure shows the extent of testing and its distribution 

Three year summary 

Tests per sqkm 
per year 

c=J 1-100 
c=J 100-260 

260 -1000 
.. 1000-5000 
!Bl] No testing 



Figure 9: Three year summary TB testing densities for cattle 
shown using area data. 

The area shown is on the eastern edge of the W aipawa Vector risk area. 
The righthand side of the figure is a surveillance zone. 
The le:fthand side is the vector risk area. 
TB Testing density was measured as TB tests per sq.km per annum. 

~ 3 - SO tests/sqkm/year 
c:J 51-69 

70-93 
.. 94-130 
.. 130-282 
.. 282ormore 
Ill No testing 



Figure 10: Figure showing the distance to (or from) farms that test. 

The area shown is a larger view of the area shown in Figure 9. 
The light green areas are farms that TB test. 
The bands of yellow orange and blue indicate distance from farms that test. 
Note that the blue areas are zones that are at least 1600 meters 
from farms that test. 

Distance to a farm that TB test in meters 
D o-400 
~ 400-800 
- 800-1200 
- 1200-1600 
- 1600-6000 



Figure 11: Map of the Waipawa vector risk area showing gaps in the 
TB testing coverage. 

The blue outline indicates the vector control area. 
The green areas are farms which test cattle or deer. 
The red areas show land at least one km from testing activity. 
Note that if there are sentienl animals in the 
yellow orange and red areas they are not being tested. 
Ideally testing of sentinels should occur throughout the vector risk area. 

Map showing the gaps in testing coverage 

D o-soom 
- 500-lOOOm 
- >lOOOm 

Distance to farms that test. 

The reasons for these apparent gaps in surveillance 
are explored in Figures 21. 



Figure 12: Vector control methods and hours worked in the 
Waipawa vector risk area in 1997 

Night shooting 
C:J Poisoning 

hours worked 
persqkm 

C:J 1-10 
.. 10-25 
.. 25-65 
.. 65ormore 

The green areas are areas where no vector control was undertaken! 



Figure 13: Apparent gaps in the coverage of possum control work 
in the 1996 1997 season 

The areas which had no possum control activity 
within one km are shown in red 

Investigation showed that the apparent lack of 
activity at the southern end of the vector risk area 
was due to the system of recording work done 
rather than a lack of activity 

Distance in meters to possum control work 
CJ 0 - 500 c::J Vector risk area 

I I 500-1000 ossum control work 
- 1000 or more 96 -97 season 



Figure 14: Representing surveillance with point data using pie 
charts and colours 
Pie charts area used here to show the ratio of cattle killed 
to cattle tested on farms in a surveillance area 

Cattle killed in 97 

- Cattle tested 97 

Test numbers 
over 3 years 

0 

1-500 

500-1000 

Note that it is difficult to adequately examine surveillance when points 
are used to represent farms 



Figure 15: Representing survellance with point data using bar charts 
and different sized dots 

A bar chart is used here to show the amount of cattle testing 
in two time periods. 

Different sized dots have been used here 
to depict the amount of testing. 

Test numbers 
over 3 years 
• 0 

1-250 
250- 750 
750-1500 

1500 or more 

This is not a very satisfactory way of presenting information. 



Figure 16: Representing surveillance with point data using testing contours 
and deviations from mean testing levels 

Deviations from mean testing levels 

Testing contours 
Contoun of Tested density> 0 
N 21-100 
N too-2so 
N 2so-43s 
N 43s-6so 
N 6so-900 



Figure 17: Visualising missing data with point data 

Two coverages of farms are shown below. In one coverage only 75% 
of farms are present. By comparing these coverages with Figure 18 
it can be shown that area coverages convey an understanding of what 
data is missing and point coverages do not. 
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Figure 18: Visualising missing data using area data 

95% data completeness 

750/o data completeness 



Figure 19: The effect of missing data on detecting gaps in TB testing coverage. 

The distance (meters) from the edge of farms that tested in the 1996 -1997 
testing season shown on two maps, 
one that inlcudes 95% of farms and one that inlcudes 75% of farms. 
Note that at 75% data completeness false gaps in surveillance appear (blue areas). 

95% data completeness 

75% data completeness 



Figure 20: Figure showing the contribution of slaughter surveillance 
to the TB surveillance program. 

This map shows TB tests per square kilometer per annum 
in the Waipawa area. 
.. . . .. 

Surveillance per sqkm 
mrnm 1-20 

21-50 
~51-75 
~ 76-150 
~ 150ormore 
!llJ] 0 

This map shows testing and slaughter. The total resulting surveillance 
is quite extensive. 



Figure 21: The contribution of fattening herds to the total TB surveillance 
in the W aipawa vector risk area 

The location and extent of fattening herds and unallocated land parcels 

Distance from farms with TB testing or slaughter inspection of stock. 

Distance to farms 
D o-400 

400-800 

- 800-1200 

- Farms with total 
surveillance density 

greater than 20 tests or slaughter 
inspections per sqkm per annum 

rL· ....... -
Note that when slaughter surveillance is included there are no ga 
in surveillance coverage (compare with Figure 11 ). 



Figure 22: Figure showing the high levels of TB surveillance per hectare 
in deer herds in the Waipawa vector risk area. 

D Deer farms 

Total Surveillance per 
I qj per annum 

1-50 
- 50-100 
- 100-200 
- 200-400 
- 400ormore - 0 
Slaughter inspections and tests from each farm in a given year were divided 
by the farm size to give an idea of surveillance intensity. Farms with deer 
herds have the highest resulting intensity of surveillance. They are shown 
with a blue border above. Deer herds have high stocking rates and 
consequently the testing intensity in these herds is high. 



Figure 23: TB infected farms at Waipawa since 1990 
and a random selection of farms 

Random selection of farms 

TB infected herds 



Figure 24: Point locations of all farms, TB infected farms, and 
randomly selected farms at Waipawa 
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Figure 25: Cluster analysis of TB infected herds at Waipawa 
compared with random controls 
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Chapter 4 

Spatial data requirements for simulation models 
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Abstract 
The spatial data requirements for simulation modelling were assessed by examining the 
effects on a simulation model of using different data types and by using incomplete data. 
An epidemic of foot and Mouth Disease (FMD) was simulated using the simulation 
model Interspread. When farms were represented as polygons the model results were 
markedly different from when they were represented as points. The polygon coverage 
resulted in 2 to 3 times as many farms becoming infected as the point coverage. This was 
due to the distance between area features in the polygon coverage being less than the 
distance between point features in the point coverage. Representing farms as points has 
many advantages. Point data is simple and inexpensive and requires less processing time. 
Adjustments were made to the spatial processes in the model that involved distance 
between features. The model was run using point data and these adjustments. Distance 
adjustments in the model resulted in similar model results for the point data coverage as 
the area data coverage. The distance adjustments were based on the size of the farms. 
The effect of missing data on a simulation model was found to be roughly proportional to 
the level of missing data. 

Introduction 
Simulation models are used in disease management. EpiMAN is a decision support 
system for use in the event of an outbreak of foot and mouth disease (FMD). The system 
is based on a number of different components. Interspread is a computer model that is 
used for the simulation and prediction of the outcome of a foot-and-mouth disease 
(FMD) outbreak under different control policies. This enables a manager to conduct a 
series of "what if' scenarios. The program models the dynamics of disease transmitted 
between farms in time and space. There are four infection processes modelled: Wind 
borne spread, local spread, movement related spread and dairy tanker spread. The 
distance measurements in Interspread were derived from point data available from the 
FMD outbreak in England in 1967/68. The program uses enterprise details such as the 
presence of deer, pigs, cattle, and sheep. A farm in Hawke's Bay was selected as an 
infected property. The model was then run and the resulting predictions recorded. 
The consequences of representing farms as point features or area features for simulation 
modelling were assessed using the predictions generated by the simulation model 
Interspread. Running the model with random dilutions of these coverages assessed the 
effect of missing data on the model. 

Method 
An FMD outbreak was simulated using an uncontrolled epidemic scenario and a 
controlled epidemic scenario. Each scenario was simulated based on area and point data. 
Each scenario incorporated 4 levels of data completeness: 100%, 90%, 80% and 70%. 
The Hawke's Bay livestock database is currently 90% complete. So the actual 
percentages were 90%, 81 %, 72% and 63%. Table 16 shows the results for each scenario 
by the different data types and levels of data completeness. The results are expressed as 
the average of 5 iterations and represent a 5-week epidemic period. Due to the processing 
time required only two levels of data completeness were assessed with area data in the 
uncontrolled epidemic scenario. 

58 



Results 

Data type 

The effect of data type area or point on Interspread was dramatic. This is probably 
related to the use of distance in Interspread. The distance between two farm boundaries is 
not the same as the distance between two farm centroids. Table 17 shows the percentage 
decrease in the number of infected properties or spread mechanisms associated with the 
decrease in data completeness. Table 19 shows that 2 to 3 times as much spread occurs 
with area data. Table 19 shows that, in an uncontrolled epidemic using area data, 750 
farms became infected. When points were used to represent farms only 413 became 
infected. In a controlled epidemic using area data 55 farms were infected. The number 
of infected farms decreased to 19 when point data was used. The decrease when using 
point rather than area data was reasonably constant when comparing between different 
levels of spatial data completeness. Table 19 shows that in the controlled scenario, 
regardless of the level of data completeness, the reduction in infected properties was 
about 60%. The decrease in the total spread mechanisms was also around 60%. 

Missing data 

Table 19 shows that regardless of data type decreasing data completeness resulted in a 
decline in infected farms and a decline in spread mechanisms. The results were more 
consistent in the uncontrolled scenario. Area data showed a higher sensitivity to missing 
data. The effect of missing data, on an uncontrolled scenario using points to represent 
farms, was to reduce the number of infected farms by about the same amount. If 30 % of 
the farms were missing, then the decrease in infected farms was roughly 30%. 

Adjustment of distance criteria when using point data 

The different results from the point and area coverage's stem from the use of distance in 
the simulation model. The distance between two farms is greater in a point coverage than 
an area coverage. Two approaches have been suggested to account for the difference. 
One method is to add twice the hypothetical mean or median radius to all distance 
measures related to the point coverage. This is satisfactory for a simulation model, 
especially where farm sizes are randomly distributed in the range. This was done the 
controlled epidemic scenario. The mean and mean radius for the point coverage was 
based on the known area of each farm. This assumed the farm had a circular shape. The 
mean of the hypothetical radius of each farm was 700m. The results are shown in Table 
21. When using point data the addition of twice the median radius to all distance 
measures used in the model produced similar results to the area data coverage. The main 
advantage of using adjusted point data is the speed at which the model runs. The 
adjustment was also used at different levels of data completeness. The effect of the 
adjustment is to increase the mean number of properties influenced by any given farm, 
bringing it to a similar level as area data. 
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Discussion 
Incomplete data did affect the predictions resulting from different scenarios. The target 
level of data completeness for EpiMAN was 70%. The results show that at 72% data 
completeness, the percentage of infected farms is 36% lower than was calculated at a 
90% level of completeness. 
Data type had a large effect on the outcome of the simulation model. Area coverages 
provide a real measure of farm size, shape, and contiguity of neighbouring farms. Point 
data is simple and inexpensive and requires less processing time. Adjustment has to be 
made for the type of data used. Similar results can be achieved with a point data 
coverage as long as adjustment is made in any spatial processes that involves the 
distance between farms. The adjustment can be adaptive using the size of each farm to 
calculate the hypothetical radius for each farm. The adjustment used above used the 
mean of all hypothetical farm radii. A textual field containing farm size was used to 
calculate the hypothetical farm radii. Farms are not randomly distributed in regard to 
size. Small farms are clustered and so are big farms. The extent to which this occurs 
affects the validity of a global adjustment. The influence of large farms and small farms 
is reduced and increased respectively by using a mean measure. Adaptive adjustment 
may be required when working with heterogeneous coverages. Examining the residual 
difference between the adaptive radii measurements and the mean radius for the coverage 
can assess this. Figure 27 shows the difference between adaptive radii and the mean 
radius at Waipawa. 

Table 16: Cross-tabulation of number of infected farms resulting from Interspread 
modelling stratified by spread mechanisms and control scenario. 

Epidemic Data type Infected Spread mechanisms and the 
type and farms number of spread events 

level of resulting 
completeness from the 

model 
Local Airborne Movement Dairy Total 

tanker 
Uncontrolled Point 90% 413 65 524 566 129 1284 

Point 81% 342 58 410 549 106 1123 
Point 72% 318 37 328 444 104 913 
Point 63% 297 31 273 463 92 859 

Uncontrolled Area* 90% 750 109 1188 668 113 2078 
Area 63% 443 67 781 461 94 1403 

Controlled Point 90% 19 1.6 10.4 6.6 1.6 20 
Point 81% 28 1.2 13.6 11.8 4 31 
Point 72% 14 1.2 4.2 7.2 1.6 14 
Point 63% 16 0.4 5.8 6.6 3.4 16 

Controlled Area 90% 55 1.5 37.5 15.5 5.5 60 
Area 81% 51 3.5 39.5 15 0.5 59 
Area 72% 35 2 19 12.5 0.5 34 
Area 63% 42 2 24 13 3 42 

*Results for l 1teratlon only. 
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Table 17: Cross-tabulation of percentage drop in number of infected farms and in 
spread mechanisms stratified by data completeness, data type and control scenario. 

Epidemic Data type Percentage Percentage drop in Spread mechanisms 
drop in 
infected 
farms 

Local Airborne Movement Dairy tanker Total 

Uncontrolled Point 90% 0 0 0 0 0 0 
Point 81% 17 11 22 3 18 13 
Point 72% 23 43 37 22 19 29 
Point 63% 28 52 48 18 29 33 

Uncontrolled Area 90% 0 0 0 0 0 0 
Area 63% 41 39 34 31 17 33 

Controlled Point 90% 0 0 0 0 0 0 
Point 81% -47 25 -31 -79 -150 -51 
Point 72% 26 25 60 -9 0 30 
Point 63% 16 75 44 0 -113 20 

Controlled Area 90% 0 0 0 0 0 0 
Area 81% 7 -133 -5 3 91 3 
Area 72% 36 -33 49 19 91 43 
Area 63% 24 -33 36 16 45 30 

Table 18: Summary statistics for farm radii in the coverage used with Interspread 

Farms Mean radius -95% cf +95 % cf Median Sd Skewnes Kurtosis 
3523 700m 675 725 520m 7.5 s 6 106 

Table 19: Cross-tabulation of number of infected farms and transmission events by 
adjusted point data type and spatial data completeness for controlled epidemic 
simulations 

Data type Complete Infected Spread mechanisms 
ness farms 

Local Airborne Movement Tanker Total 

Area 90% 55 2 38 16 6 60 
Point 90% 19 2 10 7 2 20 
Point+ 2r* 90% 64 4 41 22 2 69 
Point+2m* 90% 57 4 32 24 3 63 

Area 81% 51 4 40 15 1 59 
Point 81% 28 1 14 12 4 31 
Point+ 2r 81% 61 3 43 20 3 69 
Point+2m 81% 46 3 30 15 3 51 

Area 72% 35 2 19 13 1 34 
Point 72% 14 1 4 7 2 14 
Point+ 2r 72% 49 3 30 19 4 56 
Point+2m 72% 41 3 26 14 3 46 

Area 63% 42 2 24 13 3 42 
Point 63% 16 0 6 7 3 16 
Point+ 2r 63% 37 2 26 12 4 43 
Point+2m 63% 34 1 22 11 3 37 
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*Point + 2r represents point data including an adjustment of all distance criteria of plus 
twice the hypothetical mean radius. Point +2m represents the same adjustment using the 
median. 

Figure 26: Line chart of the number of infected properties resulting from a 
controlled epidemic under different data adjustment methods 
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Figure 27: Figure showing the residuals between the actual radius 
of a farm less the mean radius of all farms 

Note that the difference in actual and mean radius was clustered. 
This is due to clustering of farm size. Large farms are grouped 
together as are small farms 

. . . 

Farm radius less 
mean radius 

-700 to -400m 

-400 -to -lSOm 

• -150 to lSOm 

• 150 -to 400m 

• 400m or more 

The "radius" a farm was calculated by assuming its area was circular. 
The mean radius of all farms was subtracted from the radius of each farm. 
The resulting number is mapped. Light coloured dots are farms 
that are smaller than average. 



Chapter 5 

Spatial data requirements for cluster detection 
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Abstract 
Points or polygon can represent farms. Polygons form a mosaic of farms. A matrix can 
represent the proximity between farms. The matrix can include farms that share a 
common boundary, or farms within a given distance from the boundary. The only 
measure of proximity in a point coverage is the distance between points. This can distort 
the relationship between farms as farms that are geographically close together may be 
non-contiguous. In a point coverage large farms are further from their neighbours than 
small farms. The consequences of representing farms as points on cluster detection were 
assessed. The degree to which neighbouring farms where correctly classified as 
neighbours was assessed. 
The true relationship between farms was distorted when a point coverage was used. 
Adjustment was needed to account for the difference in distance between two point 
features as opposed to the distance between two area features. A simple adjustment was 
the addition of the hypothetical radius of the farm. The degree to which the true 
contiguity between farms is represented by a point coverage should be known before 
cluster detection methods are applied. 

Introduction 
In the study of diseases in domestic livestock, epidemiological data is often aggregated at 
the farm level. Farms can be represented spatially as points or area features. Such data 
can be used to detect clustering of disease in time and space. The effect on cluster 
detection of representing farms as point features or area features was assessed using 
Moran's I (Cuzick and Edwards, 1990). 
If farms are represented as polygons proximity can be measured using a (n*n) spatial 
proximity matrix W, where w ij represents the spatial proximity of areas i and j. The 
matrix can be calculated using a range of methods. If two farms are considered to be in 
close proximity w ij = r. The element w ij can be set to 1 under a variety of conditions: 
1 where the centroid of i is one of the k nearest centroids to the centroid of j; 
2 where the length of the common boundary withj divided by the perimeter of i is 

greater than a certain proportion; 
3 where the centroid of i is within a specified distance to the centroid of j; 
4 where j shares a common boundary with i. 
The element w ij can equal 0 where the above conditions are not met. 
Points are often used to represent farms. This can distort the true proximity between 
farms. The aim of this analysis was to determine the validity of using points in cluster 
detection. 
A cluster of bovine tuberculosis (TB) cases in domestic cattle and deer at Waipawa in 
New Zealand was used in the analysis (Mackereth 1993). The cluster of farms with TB 
in livestock was observed after the establishment of TB in a community of common 
Brushtail possums (Trichosurus vulpecula Kerr), a known vector of TB in New Zealand 
(Pfeiffer, 1993). 

Method 
The data coverage used for cluster detection was a 30-km by 40-km area at Waipawa in 
Hawke's Bay, New Zealand. The area included a known cluster of farms with bovine 
tuberculosis (TB) cases in domestic livestock. Over an 8-year period TB was diagnosed 
on 36 farms. There are 449 farms in the coverage used. Moran's I (STAT! Biomedware 
516 North State Street Ann Arbor, MI 48104) was applied as the cluster detection 

65 



method. Moran's I is a test for spatial autocorrelation in disease rates. Positive spatial 
autocorrelation means that nearby farms have similar rates, indicating spatial clustering. 
The test statistic Moran's I is the weighted product-moment correlation coefficient, 
where the weights reflect geographic proximity. Values ofI greater than zero indicate 
positive autocorrelation; values smaller than zero indicate negative autocorrelation. The 
null hypothesis is that disease rates are spatially independent. In the calculations shown 
here, 99 randomised simulations were run on each scenario and the distribution of 
Moran's I (randomised) was plotted and compared with the actual value from the non 
randomised data. If the value lies outside the simulated distribution its significance can 
be assessed. Two files are used in the calculation of Moran's I. A data file contains the 
disease rates for each farm. A contiguity file containing a list of farms considered to be 
contiguous for each farm. Selecting all farms within a given distance created the 
contiguity file. The search radius around a point encompasses fewer farms than the same 
radius around an area feature. The search radius should be greater if point data is used 
than if area data is used. Adjustment of the distance criteria used in the creation of a 
contiguity file resolved some of the differences between point and area data in cluster 
detection. The degree to which point data with adjusted distances adequately represented 
area data was assessed. Correct and incorrect classification of point data contiguity was 
assessed at different distances, using contiguity derived from area data as a gold 
standard. Some spatial processes use k-nearest neighbours as a measure of contiguity. 
This was also compared with actual contiguity based on area data. 

Distance adjustment for point data. 
The extent to which the distance needs to be increased to give a similar result as area 
data is of relevance for all spatial processes that use distance methods for estimation and 
simulation. The complexity of computation and the processing time is significantly 
reduced if fam1s can be represented as points rather than areas. Two approaches were 
used to quantify the required adjustment. In the first approach a hypothetical radius was 
calculated for each farm, based on its area. The farm was considered to be circular for 
this purpose. Twice the average or median hypothetical radius was used as the 
adjustment. A more sophisticated adaptive approach was to use the hypothetical radius 
of each farm. The aim of the adjustment is to allow the spatial simulation process to 
more correctly classify properties as being near or far away. The gold standard is the 
contiguity of the polygon coverage. The sensitivity and specificity of the representation 
of contiguity can be assessed by considering the number of correct and incorrect 
classifications. 

Results 
Table 21 shows the Moran's I values and their significance for area and point data. The 
results show clustering was detected more readily with area than with point data. Area 
data showed clustering when contiguity was based on distances of lOOm, lOOOm, 3000m, 
5000m and 7000m. Analysis of the area data indicated that each property had an average 
of 5.7 properties to be considered contiguous (within 100 m of the boundary) to it. The 
same analysis of point data resulted in an average of 1.1 properties within 1 OOm. There 
were insufficient farms in the point coverage within 1 OOm of each other to calculate a 
Moran's I. The effect of an adjustment of twice the median hypothetical radius was to 
raise the average number of neighbours from 1.1 to 9. 7. The hypothetical radius of each 
area feature in the coverage was measured. The mean radius was 708 meters with a 43-
meter confidence interval. The median was 696 meters. Figure 28 shows that the 
adjustment was slightly more than required to give a similar number of neighbours. The 
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adjustment did behave consistently. While the average number of contiguous properties 
increased with the adjustment it was of interest to what extent the actual contiguous 
properties were represented by the adjusted point data. Moran's I at lOOm was 
significant for area data but not for the adjusted point data, suggesting that the 
adjustment was poorly sensitive and specific. At greater distances the process was more 
reliable. From Figure 28 it can be concluded that an addition of 1070 meters to the point 
data search radius would result in a contiguity matrix with a similar average number of 
neighbours as a contiguity matrix derived from area data. This represents 1.5 times the 
mean and median hypothetical radius of the coverage used. 

Discussion 
Point data and area data can not be used interchangeably. It is necessary to examine the 
consequences of data type for the spatial processes being used. The results show that 
point data can not be used to represent farms in cluster detection. If adjustments are made 
based on the size of the farm it may be possible to used point data. The validity of the 
adjustment depends on the heterogeneity of the coverage in regard to farm size. Points 
may not accurately represent the true complexity of contiguity or proximity. The 
classification of near or far should reflect the spread mechanism of the disease being 
modelled. An assessment of the sensitivity and specificity of the classification of 
contiguous properties in a point coverage can be made by comparison to the equivalent 
area coverage. 
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Table 20: Summary statistics for the radius of farms at Waipawa for cluster detection 

Coverage Farms Mean -95% +95% Median Sd. Skewness Kurtosis 

lnterspread coverage 3523 700 675 725 520 752 6 106 

Table 21: Cross-tabulation of Moran's I values for TB infected farms in the Waipawa area using 5 different distances to define 
contiguity, stratified by data type. 

Data type Immediate neighbours 1000 meters 3000 meters 5000 meters 7000 meters 
Moran's I P value Number of Moran's I P value Number of Moran's I P value Number of Moran's P value Number of Moran's P value 

neighbours neighbours neighbours I neighbours I 

Area 0.079 0.0003 5.8 0.052 0.0001 14.2 0.035 0.000004 41.2 0.023 0.00001 75.7 0.023 0.00000 

Point - - 1.1 - - 5.8 0.036 0.00019 26.6 0.017 0.004 56 0.02 0.00002 

Point +2m -0.019 0.67 9.7 - - 19.1 0.021 0.002 46.2 0.018 0.0002 80.5 0.018 0.000003 
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Figure 28: The average number of contiguous neighbours in a given number of meters from a farm calculated with different data types 

Figure showing the average number of neighbours considered to be contiguous 
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Discussion 

Validity 

Geographic information systems are used to create a spatial model of the real world. 
Based on this model disease managers visualise livestock production systems and farms. 
The model of farms and herds is used to display stock or disease data. Spatial analysis is 
used to reveal clusters of disease, determine sentinel surveillance or other sampling 
requirements and to predict disease spread. It is important the limitations of the model 
are not forgotten. The validity of the model must be assessed for the specific disease and 
analysis technique being applied to it. The primary spatial data requirement for disease 
management is model validity. The completeness of the data, the management of 
proximity, and the nature of the specific disease process influence model validity. 

Data completeness 

Data completeness was examined on two New Zealand databases. Agribase and the 
National Livestock databases. For most disease management purposes they were found 
to have a sufficient level of data completeness. Incomplete data dilutes the field. The 
model is less populous than the real world. In this case disease spread may be reduced 
and the intensity of surveillance may be under represented. Missing data had an effect on 
disease spread and sentinel surveillance assessments. The effect was roughly 
proportional to the percentage of data that was missing. Some processes such as cluster 
detection were comparatively insensitive to missing data. Bias is a potential problem 
with the data available in Agribase and the NLDB. Small farms and miscellaneous farms 
were under represented. 

Representing proximity 

Of greater concern than missing data was the validity of using points to represent farms. 
Farms are made up ofland parcels. These land parcels can be contiguous or disjointed. 
The complexity of farming enterprises is such that even when all the land parcels are 
included, the model may not represent the actual land that the farmer grazes. Constant 
changes in land ownership and farming practice are difficult to represent in a spatial 
model. The concept of farm-neighbours is important when examining disease spread 
from one farm to the next. Representing farms as polygons enables the bounding 
neighbours to be enumerated. Using points to represent farms gives rise to a number of 
distortions of the relationships between farms. 

The first distortion is in the classification of neighbours based on distance rather than a 
common boundary. Polygon data allows a variety of measures of proximity to 
constructed. For a model of disease spread by direct nose to nose contact across a fence 
polygon data is essential. For a model oflocal airborne disease spread, all farms with in a 
given distance and direction from a boundary can be considered neighbours. The 
relationship between disease events on farms and the spatial distribution of a vector can 
only be represented with polygon data. The proximity matrix that can be constructed 
from polygon data is far superior to any measures of proximity based on point data. 
Cluster detection techniques based on point data may not be valid for this reason. If all 
farms were square and formed a uniform grid it may be valid to use points to calculate 
contiguity. In this case the classification of neighbours and the inference about the 
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influence between neighbours would be the same for the point coverage as the polygon 
coverage. In reality farms are all shapes and sizes. 
Another distortion that occurs with point data has to do with farm size. The distance 
between a farm and its neighbour is zero in a polygon coverage. In a point coverage it 
depends on the size of the farm. The position of the point is relevant. Is it in the centre of 
the farm? It can be argued that for spatial processes that involve larger distances these 
effects would become minor. This would be true if in the real world farms were 
randomly distributed with respect to size. 
A variation on this distortion arises because farms are not distributed randomly with 
respect to farm size. Large farms are often clustered together as are small farms. In 
cluster analysis the variation in the underlying population at risk is taken into account. 
No procedure is available to take into account variation in the distribution of farm size. 
Cluster detection methods based on point data may not be valid for this reason. 
In the real world a farm has a fixed number of immediate neighbours and this varies 
from farm to farm. Analysis on point data can be based on nearest neighbour or k­
nearest neighbours. This approach fixes the influence of each successive nearest 
neighbour for a farm. The process is not real and distorts the relationship between farms. 

Sensitivity and specificity of the representation of contiguity or proximity 
The proximity matrix from a point coverage can be compared to that from the 
corresponding polygon coverage and the number of farms correctly or incorrectly 
classified as neighbours can be enumerated. The polygon coverage could be considered 
the gold standard. From this comparison the sensitivity and specificity of the point 
coverage representation of neighbours can be calculated. 

Improving the representation of contiguity or proximity 

In this dissertation adjustments were made to point data methods to improve the 
classification of neighbours (and hence the proximity matrix). The simplest adjustment is 
to add the radius of each farm to any distance processes. The radius reflects the size of 
the farm it represents. Textual data on farm size can be used to calculate the radius of 
each farm. Hypothetically the distance between the centre of two adjacent circles that 
touch each other is the sum of the two radii. Treating farms as circles or varying size 
may be an improvement of treating them as points. This would help resolve difficulties 
arising out of differences in farm size and clustering of farms of similar sizes. The effect 
on contiguity can be assessed by calculating the sensitivity and specificity of the 
representation. 

Summery 
Spatial data was found to be useful for the management of sentinel surveillance, 
detection of disease clusters, modelling disease spread, and visualising textual data. For 
these purposes farms need to be represented as polygons. Area data inherently contains 
the spatial characteristics of interest. The maps comparing polygon and point data speak 
for themselves. 
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Appendix 1 

A cross sectional survey of cattle and deer movements in 
the Hawke's Bay and Wairarapa Regions of New Zealand 
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Abstract 
Movements of stock into and out of cattle and deer herds were investigated using a mail 
survey of cattle and deer herds in the Hawke's Bay and Wairarapa Regions of New 
Zealand. The survey quantified the number of deer or cattle, purchased, sold, 
slaughtered, born and present during the year commencing 1July1995. The information 
gained was combined with bovine tuberculosis (TB) testing data and use to access the 
contribution that slaughter surveillance makes to TB surveillance. Slaughter surveillance 
was shown to represent a significant and unique component of TB surveillance. 
Slaughter surveillance represented 71 % of total TB surveillance in cattle in the triennial 
testing areas of the Hawke's Bay and 25% of surveillance in the annual testing areas in 
the Wairarapa. In the study deer herds TB was mainly detected through slaughter, in the 
cattle herds it was mainly detected at test. 
The herd classification system used in the TB control program was compared to the herd 
composition found at survey. The TB control program makes assumptions about the 
behaviour of different herd types. The survey enabled these assumptions to be evaluated. 
Inspection at slaughter for TB is thought to have a lower sensitivity than the TB test. 
In the Wairarapa study herds the rate of deer with TB at routine slaughter was 14 times 
the rate at test. This raised concern about the performance of the deer TB test in field 
conditions. 

Introduction 
This paper presents the results of a cross sectional survey of herds in the Wairarapa and 
Hawke's Bay regions of New Zealand. The study was undertaken to determine the 
contribution of slaughter surveillance to the TB control program and to examine the 
accuracy of the herd classification system currently in use. 
The TB control program uses two methods of surveillance. The TB testing program and 
the examination of stock during routine slaughter. The contribution of slaughter 
surveillance is not known for any given area. National statistics show that the percentage 
of routinely slaughtered deer with TB is greater than the percentage detected through 
testing (1995-1996 and 1996-1997 Animal Health Board annual reports). To examine the 
contribution of slaughter surveillance to the TB control program the number of deer and 
cattle routinely slaughtered from each herd is required. This information is not available 
from the NLDB. This information was collected by survey and used to compare the TB 
testing program with the inspection of stock at slaughter. 
Each herd is classified in the NLDB as either a breeding or fattening herd. Different TB 
control policies apply to each herd type. These policies are based on assumptions made 
about the type of animals present and assumptions about the amount of movements 
associated with the herd. The relationship between the herd classification system and the 
movement of stock was examined. The relationship between the herd classification and 
the types of animal present in the herd was examined. 
The Animal Health board is planning to introduce a permanent identification system for 
cattle and deer. Information on the movement of stock was required to assess the 
logistics of a permanent identification system. 

Materials and Methods 
The study was conducted as a postal survey. A random sample of2020 cattle and deer 
herds stratified by region and herd type was selected. Each farmer included in the sample 
was sent a personalised letter and a questionnaire. Of 1002 returned questionnaires, 997 
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were used in the data analysis. There were 50 herds that did not have any cattle or deer at 
the time of the survey. Eighty-seven questionnaires were returned with an incorrect 
address by the post office. Table 16 shows the sample frame, the sample, and the 
number returned. The questionnaire asked for information about the number of deer or 
cattle purchased, sold, slaughtered, and born during the year commencing 1July1995. 
The number of deer or cattle present at the end of that year was also requested. Farmers 
were asked to differentiate between fattening and breeding stock. For the purpose of the 
study breeding cattle included all potential replacements, breeding cows, breeding 
heifers, cull cows, empty cows and breeding bulls. Fattening cattle were all cattle bred or 
purchased and fattened for sale or slaughter. 

Results 

Animal movements 

The mean and median number of deer and cattle purchased, born, slaughtered, or sold to 
market in the year ending 30 June 1996 are shown in Table 22 with respect to region and 
category of herd type. The herd types are derived from the National Livestock Database. 
The herd type "Beef Drystock" refers to herds that fatten cattle for slaughter or sale. The 
number of cattle or deer present at the end of the study period is also shown. For most 
herd types the stock movements were in balance. Approximately the same number of 
stock were sold or slaughtered as were born or purchased. The exception was dairy 
herds, where the practice of grazing replacement stock off farm produced an apparent 
imbalance. Overall there was a slight increase (4%) in stock during the year of the study. 
The movements of animals on and off relative to the number present at June 30 was 
similar in both regions even though the number kept over winter in Hawke's Bay was 
considerably higher. 
In herds classified under the TB control program as beefbreeding herds, the equivalent 
of 40% to 45% of the number present at June 30 left the herd during the previous 12 
months and the loss was compensated by purchases (12%) and new births (33%). 
Farmers were asked to differentiate between stock kept primarily for breeding and stock 
kept primarily for fattening. The percentage of the total herd size during the winter 
period that was kept for fattening purposes is shown in Table 22. The results suggest that 
the classification of herds into breeding and fattening categories does not reflect the true 
composition of herds, with some fattening herds having significant numbers of breeding 
animals, and some breeding herds having significant numbers of fattening animals. In 
both regions 8% of herds classified as beef drystock had breeding animals. Just over half 
of the beefbreeding herds could be considered closed herds, with 58 % purchasing less 
than 10 animals during the study year. Figure 27 shows the purchasing pattern for these 
herd types. Dairy herds were similar to deer herds with regard to their purchasing 
behaviour. Approximately 80% of deer breeding and dairy herds purchased less than 10 
animals during the year of the study. 

Relative contribution of slaughter and TB testing to total surveillance 

Table 23 shows the relative contribution of slaughter and TB testing to total TB 
surveillance. The table presents the data stratified by region and by test frequency. All 
study herds in the Wairarapa and some herds in the Hawke's Bay were in an annual 
testing zone. Table 23 shows the percentage of total surveillance (testing and routine 
slaughter) classified as slaughter surveillance. Slaughter surveillance represents 71 % of 
total TB surveillance in cattle in the triennial testing areas of the Hawke's Bay and 25% 
of surveillance in the Wairarapa. Table 23 also shows the percentage of cattle herds in 
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the study with no testing during the 12-month period. In the Hawke's Bay triennial 
testing area this was 75% and in the Wairarapa it was 13%. Forty five percent of 
Hawke's Bay deer herds in surveillance areas did not test that year. The percentage of 
herds that did not slaughter any livestock is shown in Table 23. The percentage without 
any slaughter or testing is also shown. Slaughter does represent one component of total 
surveillance on most of the farms where testing is not undertaken. Only 7% of herds in 
the annual testing zone in Hawke's Bay had no surveillance at all in the year of the study. 
In the Wairarapa, 5% of cattle herds and 14% of deer herds had no surveillance at all in 
the year of the study. 

Comparing disease detection rates at test and at slaughter 

The number of TB test positives and TB cases detected through routine meat inspection 
for the herds in the study are shown in Table 24. A TB test positive is an animal that 
reacts to a diagnostic test for Mycobacterium bovis infection such as the tuberculin skin 
test. Such an animal may undergo additional tests. Test positives that are slaughtered are 
examined for the presence of tuberculous lesions. Those that do not have any visible 
signs of TB may be in the early stages of infection, may be recovered cases or may be 
false-positive reactors. 
In the Hawke's Bay study herds, only 3 animals had TB lesions during the year of the 
study. In the Wairarapa study, there were 185 with TB lesions. The difference in disease 
levels between the regions is due to the presence of infected TB vectors in the W airarapa 
(Pfeiffer 1994). 
Table 24 shows the percentage of tested animals and the percentage of routinely 
slaughtered animals that have lesions at post mortem. It is reasonable to expect that the 
test will lead to the detection of more animals with TB lesions than the routine slaughter 
of animals for market. In areas under annual testing such as the Wairarapa the test was 
less effective at revealing lesioned TB cases than routine slaughter. The test detected 
lesioned cattle in the Wairarapa at 65% of the frequency that routine slaughter detected 
lesions in cattle. Testing found 68 to 74% of TB cattle in the Wairarapa. 
For deer herds, the detection probability through testing was 14 times lower than through 
routine slaughter. This finding prompted examination of national figures presented in the 
1995-1996 and 1996-1997 Animal Health Board annual reports. The detection 
probabilities at a national level are shown in Table 24. The national statistics show that 
in deer the rate of TB at slaughter is twice the rate at testing. The diagnostic test 
sensitivity has been estimated to be 80 to 85% (Carter et al, 1994, Griffin et al, 1993). 
The sensitivity of meat inspection has been reported to be between 53 and 84% (Carter 
CE, 1994). On properties under annual testing it is expected that the testing program 
would find and remove TB deer. For the 41 deer breeding herds included in this study 
the testing program detected only 16% oflesioned animals. If all test positives that were 
slaughtered are considered tuberculous then the test detected 23% of all TB cases. If 
every test positive was considered tuberculous, then the test detected 34% of all TB 
cases. 
Dairy herds were the only herds where the number of stock born, purchased, sold and 
slaughtered showed a major imbalance. The imbalance was consistent between regions. 
This was probably related to the practice of grazing young stock off the property. The 
dairy farms were smaller and more intensive than the beef farms. Analysis of all dairy 
farms in the W airarapa showed that unlike other herd types most TB cases occurred in 
young animals. This suggests a different pattern of disease infection for these herds. It 
may be that young stock grazed off the property are more at risk than the adult stock 
grazed on the relatively intensive home farm. Dairy farms are essentially closed herds 
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grazing on intensive improved pasture. Figure 29 shows that with respect to purchasing 
behaviour dairy herds behave more like deer breeding herds than beefbreeding herds. 

Discussion 
About 4% of all questionnaires mailed were returned by the post office as not deliverable 
suggesting some redundancy in the National Livestock Database. The percentage of 
questionnaires returned was similar for the different herd types. 
The presence of breeding stock in a herd results in a breeding or miscellaneous herd 
classification. The 8% of fattening herds that had breeding stock should be reclassified. 
Annual checking of all drystock herds is undertaken to determine if the herd type 
classification should be changed. Many breeding herds were involved to a considerable 
extent in fattening and there was some breeding activity in fattening herds. 
The turnover of animals from breeding herds has implications for the TB testing 
program. In clear areas breeding cattle herds are tested every three years and only 250 
animals are tested. One of the assumptions of this testing strategy is that breeding herds 
have little trading activity. The assumption is valid for 60% of breeding herds. Figure 29 
shows that 60% of beef breeding herds purchase very little. The herd classification 
system could be modified to take into account purchase and sale information. The 
number of deer or cattle purchased and sold each year would have to be recorded in the 
NLDB. 
The different pattern of infection shown in dairy herds, their different purchasing 
behaviour, and the smaller more intensive farm size, does suggest that the epidemiology 
of TB in dairy herds is different to that in beef herds. At present, dairy herds are subject 
to the same control procedures as beef breeding herds. If dairy herds could prevent 
young stock from becoming infected while grazing elsewhere, then progress may be 
made in the control of TB in the dairy industry. If age and sex specific data at a herd 
level was collected for all dairy animals slaughtered, a more accurate analysis of the 
patterns of TB infection in dairy herds would be possible. 
The results show that routine inspection of cattle and deer at slaughter represented a 
significant proportion of TB surveillance and that a significant proportion of TB cases 
were detected at slaughter. Some of the routine examinations at slaughter will be on 
animals that have tested negative. These animals will therefore have been doubly 
counted in the calculation of total TB surveillance in this paper. As the number of 
animals slaughtered is not recorded in the NLDB it has not been possible to compare the 
performance of these two detection methods. The study indicated that the two methods 
were detecting disease in different stock classes. As most cases found through routine 
slaughter inspection were over 2 years old and nearly half were female, it can be 
assumed that they have passed through the testing program. 
Slaughter surveillance forms a significant part of TB surveillance. Each herd in the 
NLDB is inspected in some form every year. Consideration should be given to the 
collection and recording of slaughter and purchase information on an annual basis. The 
information is potentially useful in the design of the TB testing program for a herd and 
area and in improving our understanding of the epidemiology of TB and thereby the 
development of more effective control strategies. 
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Figure 29: Bar chart of cattle purchase patterns by herd type 
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Table 22: Cross-tabulation of number of deer or cattle purchased, born, slaughtered, or sold to market in the year ending 30 June 1996 
stratified by herd type and region 

Region Herd Type* Sample details Stock Purchased Stock Born on the Stock Slaughtered Stock Sold to Stock Present on the 
that year property that year that year market that year 30/06/1996 

Frame Sample Replies Media Mean se- Median Mean se Median Mean se Media Mean se Median Mean se Percent/\ 
n n Fattening 

Hawke's Beef Miscellaneous 241 154 74 0 31 12 1 6 2 1 21 9 0 13 5 9 52 15 42 
Bay Beef Breeding 1243 336 174 3 37 5 81 115 10 48 86 8 20 53 7 233 349 29 18 

Beef Drystock 895 262 139 39 109 16 0 11 4 39 117 16 0 27 7 86 215 34 56 
Dairy Herds 54 47 19 0 54 34 270 320 75 32 55 10 4 39 14 359 451 92 3 

Deer Breeding 310 112 40 1 20 6 76 110 17 55 68 12 0 28 9 292 322 41 21 
Deer Miscellaneous 62 18 6 27 47 31 0 12 12 46 64 30 0 0 0 35 41 13 39 

Deer Velvetting 48 20 9 0 29 16 0 7 7 5 38 27 0 8 5 174 269 85 0 
All Herds 2853 949 461 3 57 6 6 71 6 32 81 6 0 35 4 148 257 17 

Wairarapa Beef Miscellaneous 851 183 106 0 4 1 1 3 1 1 8 3 0 2 1 6 12 2 84 
Beef Breeding 813 373 202 2 33 5 54 85 7 40 77 8 9 35 5 154 243 20 24 
Beef Drystock 963 336 148 4 47 16 0 2 1 6 52 21 0 11 3 14 66 20 84 

Dairy Herds 264 59 30 0 2 1 175 175 18 35 41 6 4 16 5 247 266 22 1 
Deer Breeding 141 96 41 0 5 3 20 76 19 13 61 14 0 23 11 60 175 38 21 

Deer Miscellaneous 15 12 5 45 35 15 0 13 13 0 30 19 0 31 31 45 67 39 67 
Deer Velvetting 13 12 4 0 63 63 0 14 14 2 42 41 0 0 0 30 163 140 38 

All Herds 3060 1071 536 1 28 5 3 49 4 10 53 7 0 20 2 41 142 11 
Total All Herds 5913 2020 997 2 41 4 4 59 4 20 66 5 0 27 2 77 195 10 
* Herd Type refers to the classification of the Herd in the National Disease Database. 

A Percent fattening refers to the percentage of animals in the herd at the 30th of June that the farmer considered to be farmed for fattening rather 
than breeding purposes. 
~ se is the standard error for the mean 
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Table 23: Cross-tabulation of the contribution of slaughter surveillance to the total TB surveillance in the year ending 30 June 1996, 
stratified by herd type and region based on herds included in this study. 

Region Herd Type Number of herds in Number of animals Number of Percentage of total Percentage of herds Percentage of herds Percentage of herds 
the study tested in the 1995- animals surveillance* that is that did not test for that did not slaughter with no surveillance 

1996 year slaughtered in the slaughter TB in the 1995-1996 in the 1995-1996 year at all in the 1995-
1995-1996 year surveillance year 1996 year 

Annual Triennial Annual Triennial Annual Triennial Annual Triennial Annual Triennial Annual Triennial Annual Triennial 
test test test test test test test test test Test test test test test 
zone zone zone zone zone zone zone zone zone Zone zone zone zone zone 

Hawke's Beef Miscellaneous 21 53 229 126 714 858 76 87 5 72 33 49 0 36 
Bay Beef Breeding 51 123 10150 7751 4295 10651 30 58 2 63 16 8 2 8 

Beef Drystock 45 94 646 156 6496 9784 91 98 69 95 24 21 16 19 
Dairy Herds 5 14 1519 1079 205 845 12 44 0 57 0 0 0 0 
Cattle Herds 122 284 12544 9112 11710 22138 48 71 27 75 21 20 7 17 

Deer Breeding 9 31 1734 2494 402 2026 19 45 27 45 33 28 7 13 
Wairarapa Beef Miscellaneous 107 0 1350 0 887 0 40 - 20 - 37 - 9 -

Beef Breeding 199 0 56761 0 15330 0 21 - 5 - 13 - 1 -
Beef Drystock 148 0 6440 0 7686 0 54 - 24 - 30 - 9 -
Dairy Herds 30 0 11623 0 1236 0 10 - 0 - 3 - 0 -
Cattle Herds 484 0 76174 0 25139 0 25 - 13 - 23 - 5 -

Deer Breeding 41 0 8622 0 2776 0 24 - 20 - 30 - 14 -
*Total Surveillance is simply the sum of the number of tests and the number slaughtered. 
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Table 24: Cross-tabulation of risks of TB detection based on testing and slaughter surveillance stratified by region and herd type 

Region Herd Type Number Number Test Test positives TB cases % of animals % Test TB cases found Percentage Relative Risk of 
Tested that Slaughtered positives with TB found at tested that positives with at routine meat of TB cases* lesion detection 
year that year that are lesions at post routine meat are TB lesions at inspection per found by by testing versus 

slaughtered mortem inspection slaughtered post mortem 100 killed testing routine slaughter 
Hawke's Miscellaneous 276 1572 1 0 0 0.362 0.000 0.000 

Bay Beef Breeding 18072 14948 3 1 0 0.017 0.006 0.000 
Beef Drystock 821 16280 0 0 1 0.000 0.000 0.006 

Dairy Herds 2781 1014 0 0 0 0.000 0.000 0.000 

All Cattle 21950 33814 4 1 1 0.018 0.005 0.003 50 to 80 

Deer Breeding 4655 2457 6 0 1 0.129 0.000 0.041 
Miscellaneous 112 382 0 0 0 

Velvetting 1744 341 4 0 0 0.229 0.000 0.000 

All deer 6511 3180 10 0 1 0.154 0.000 0.031 0 to 91 

Wairarapa Miscellaneous 1245 887 8 7 2 0.643 0.562 0.225 77 to 80 2.494 
Beef Breeding 56802 15619 113 82 32 0.199 0.144 0.205 72 to 78 0.705 
Beef Drystock 8839 7715 9 5 14 0.102 0.057 0.181 26 to 39 0.312 
Dairy Herds 11702 1236 10 6 2 0.085 0.051 0.162 75 to 83 0.317 

All Cattle 78588 25457 140 100 50 0.178 0.127 0.196 68 to 74 0.648 

Deer Breeding 8738 2776 9 6 29 0.103 0.069 1.045 17 to 23 0.066 
Miscellaneous 155 261 0 0 0 

Velvetting 637 166 0 0 0 

All deer 9530 3203 9 6 29 0.094 0.063 0.905 17 to 23 0.070 

NZ Cattle 4150000 2500000 4727 2220 994 0.114 0.053 0.040 69 to 83 1.35 
1995 -1996 Deer 451892 323215 1315 171 239 0.291 0.038 0.074 42 to 85 0.51 

NZ Cattle 4560000 2390000 4488 1968 889 0.098 0.043 0.037 69 to 83 1.16 
1996 -1997 Deer 527643 281550 1387 224 224 0.263 0.042 0.080 50 to 86 0.53 

The percentage of cases found by the testing program is presented as a range corresponding to two case definitions. If only lesioned animals are 
considered to be cases the lower percentage applies. If all reactors are considered cases the upper percentage applies. 
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