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Abstract

Characterisation of the physical environment embryos are exposed to throughout in
vitro culture for treatments involving in vitro fertilisation (IVF) has been limited due
to measurement difficulties (since the position of an embryo is the point of interest)
and the lack of a theoretical framework. Temperature, oxygen concentrations and pH
are all important factors in an oocyte’s and an embryo’s environment which, if away
from desired levels, may impact on embryo viability. The development of
mathematical models provides a structured approach which helps to overcome

measurement difficulties.

The IVF process was broken down into 70 discrete back-to-back steps, from oocyte
aspiration to embryo transfer, which could be modelled. Models of heat transfer were
developed for a Petri dish, 4-well dish, Pasteur pipette (un-pulled and pulled), plastic
pipette tip (two sizes), denuding pipette and transfer catheter. Models of oxygen and
carbon dioxide mass transfer were developed for the Petri dish, in which oocytes and
embryos spend the majority of their time in culture. The models were solved by the
finite element method in the software package COMSOL Multiphysics 3.3a used in
conjunction with MATLAB R2006a. Models were then validated against

experimental data.

There is considerable variation in the embryology culture process, with respect to the
number and timing of steps, both between and within laboratories. Of all the factors in
an embryo’s environment embryology practice has the greatest impact on
temperature. Embryos are cultured in dishes in incubators which maintain the required

gaseous and thermal environment. While paraffin oil, which overlays culture media in
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a dish, successfully buffers embryos from great changes in oxygen and pH when
dishes are removed from an incubator, maintenance of embryo temperature is
dependent on numerous factors including the setting of the surface temperature of
microscope stages, whether the 1id is on or off the dish, the embryo position across the
floor of the dish, the dish’s foot height, the time out of incubator and the depth of
liquid in the dish. For a period of 5 minutes out of an incubator in a standard Petri
dish set up, the pH an embryo is exposed to will not likely rise from pH 7.33, as in an
incubator, to above pH 7.38. However, the temperature an embryo is exposed to may
change by + < 0.5 °C or may change by + 1 to 3 °C, depending on embryology
practice. Importantly, an increase of 1 °C in embryo temperature may adversely affect

embryo viability while a decrease of 1 °C will likely have little impact.

Transfer of an embryo in a pipette is the step identified which subjects embryos to the
greatest rate and magnitude of temperature change. While temperature in a dish may
change by 1 to 3 °C during 5 minutes out of an incubator, the temperatures within a
pulled glass Pasteur pipette can fall by > 10 °C in 10 seconds. Use of plastic pipette
tips instead of glass pipettes is beneficial for maintaining embryo temperature as the
temperature will fall by approximately 3 °C in 10 seconds, 7 °C less than in the glass
pipette under the same conditions. This work identified many simple practical steps,
such as the use of plastic pipette tips instead of glass, which minimise temperature

changes embryos are exposed to throughout the culture process.

Applying the Model of mass transfer of O, in a Petri dish disproved the belief that
equilibration of gas in the dish occurs significantly faster without a lid. The model of

O, transport in a Petri dish demonstrated that it takes ~1 hour to reach 67 % and ~4

il



hours to reach 95 % full equilibration of oxygen between atmospheric and 5 vol % O,
at 37 [1C. Modelling mass transport of CO, provided a means to predict pH changes
within a media drop in a Petri dish. In equilibration from atmospheric to 6 vol % CO,,
the pH reached within 0.1 unit of the final value in ~1.5 hours. An important finding
of this work was that sufficient equilibration of gas may be achieved in 2 hours and
therefore the pre-equilibration time for dishes (currently overnight) may be shortened,
reducing the degradation of amino acids, which occurs at 37 °C, to ammonium

(embryo toxic).

There is considerable variation in embryology practice. This work successfully
utilised engineering knowledge and mathematical modelling to describe the physical
environment of temperature, oxygen and pH that oocytes and embryos may be
exposed to throughout an open embryo culture system, used by the majority of IVF
clinics worldwide. The findings here provide a basis for establishing best practice.
Further work is needed to quantify the effects on the embryo of fluctuation in the
embryo’s environment but this work demonstrates that mathematical modelling of the

embryo’s environment in IVF is a viable tool for improving laboratory practice.
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dishes contained a depth of 2.5 mm of media overlaid by 1.5 mm of oil in each
well. Ambient air temperature =25°C, h=12 W.mK ™. 177

Figure 6.12: Modelled temperature drop from three dishes all with lids off, a Petri dish
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Figure 6.14: A) Modelled temperature profile across the floor of a well of a 4-well dish with
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Figure 7.12: Model output vs. experimental data (mean * standard deviations, n=3) for heat
loss from a pre-warmed (36.8 °C) plastic pipette tip containing a liquid depth of
30 mm, at a point 2.5 mm from the pipette tip (position b, Figure 7.7). At t=0 the
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Figure 7.14: Model output vs. experimental data for heat loss from a pre-warmed (36.71 °C)
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experimental data (mean * standard deviations, n=12) for heat loss from a
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experimental data (mean + standard deviations, n=7) for heat loss from a plastic
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Figure 7.18: Model output (initial pipette temperature = 36.94 °C, h=25 W.m2.K") vs.
experimental data (mean, +1 standard deviation shifted by +1 s, -1 standard
deviation shifted by -1s; n=10) for heat loss from an un-pulled glass pipette
containing a liquid depth of 30 mm, at a point 10 mm from the pipette tip
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Figure 8.2: Values of the solubility of O, in water (¢) over at a range of temperatures
collected from the literature. A linear fit as an approximation of the solubility’s
temperature dependency is displayed with an error margin of *12.5%
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probe meets the dish floor. Point ‘i’ = the centre of the active probe surface (0.8
mm above the dish floor). Point ‘iii’ = top of the active surface of the probe (1.6
mm above the dish floor). The dashed line marks the line of axial symmetry of
the dish. 255

The experimentally measured fall in oxygen content in a dish, initially fully
equilibrated to 15% oxygen, after dropping the incubator oxygen content to 5%
at t=0 and the measured oxygen content within the incubator over an 8 hour
time period. Temperature = 37 °C. Qil depth =3.25 mm. 257

The experimentally measured fall in oxygen content in a Petri dish, initially fully
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equilibrated in 15 % O,, after a change in the incubator to 5% oxygen at t=0,
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Figure 8.11: The experimentally measured change in oxygen content within the incubator
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hr and to 15% at t=1.8 hr. This data is compared with the modelled change in
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Figure 8.13: The modelled fall in oxygen content at the centre floor of two Petri dish
systems, initially fully equilibrated at atmospheric oxygen (20.9 %), after
placement into a 5% oxygen environment at t=0. One Petri dish system has an
oil layer with no media drop and the other incorporates a media drop. In both
cases the oil depth =3.09 mm and the lid is on the dish. 264
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systems, one with a lid and the other without a lid, initially fully equilibrated to
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Figure 9.1: Values of the solubility of CO, in water (#) over at a range of temperatures as
collected from the literature. A linear fit approximating the solubility’s
temperature dependency is displayed with error margin of +12.5% (references
for each value are displayed in Table 9.1) 279

Figure 9.2: Diffusion coefficient of CO, in Water: The plot displays the diffusion coefficients
of water as gathered from the literature over a range of temperatures (The data
is displayed in Table 9.2 with references). The exponential curve fitted to the
data is displayed with an error margin of +12% (2xstandard deviation of the
values at 25 °C). 280

Figure 9.3: The solubility of CO, in several oil types over a range of temperatures as
collected from the literature. The oil type of each point is specified as follows; ¢
= plant oil, x = transformer oil. References for each value are displayed in Table
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diffusion coefficient in water as a function of temperature. The average ratio
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Figure 9.9:

The experimentally measured fall in pH in a Petri dish, initially at a steady state
pH of 8.5, after placement into a 6% carbon dioxide atmosphere compared with
the fall in pH (calculated from the modelled rise in CO, content) at three
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(1 mm) above the dish floor and at the oil-media interface (3.5 mm above the
dish floor). Depth of culture medium = 3.5 mm, depth of paraffin oil = 2.38 mm.
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fall in pH calculated from the rise in the mean CO,; partial pressure in the media
layer (the integrated partial pressure across the media subdomain). 296
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Nomenclature

a4

Angle of flaring of the dish walls
Area

Surface area

Thermal expansion coefficient
Biot number

Heat capacity

Concentration

Concentration of O,

Diffusion coefficient

Emissivity

Acceleration due to gravity
Convective heat transfer coefficient
Height of media drop

Latent heat of water

Height of Petri dish lid wall
Depth of oil

Height of Petri dish wall

Equilibrium constant

Mass transfer coefficient for a partial pressure

driving force
Molar mass

Number
Partial Pressure

Partial pressure of water at a surface

Jkg'K!
mol.m™

mol.m™

s.m’

kg.mol™!

mmHg

mmHg
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Paco2

Pico2

pKa

Yq
Ra
rq

Re

ri

r

To

XXVviil

Partial pressure of water above a surface
Partial pressure of O,

Partial pressure of CO,

Atmospheric O, partial pressure
Initial partial pressure of O,
Experimentally recorded partial pressure of O,
Atmospheric CO; partial pressure
Initial partial pressure of CO,

-log(K)

Heat flux

Radial distance

Thermal resistance

Radius of air gap beneath Petri dish
Rayleigh number

Radius of media drop

Reynolds number

Gas constant

Internal radius of Petri dish

Radius of Petri dish lid

Radius of the dish at H,

Cross sectional area/wetted perimeter
Solubility

Time

Temperature in Kelvin

mmHg
mmHg
mmHg
mmHg
mmHg
mmHg
mmHg

mmHg

W.m™

m>. KW'

m
m

mol.m>mmHg



Va

Voil

Xa

Xb

Xf

Xi

Xia

Xiw

Xw

Ambient air temperature in Kelvin
Surface temperature in Kelvin

Apparent heat transfer coefficient
Velocity

Volume of media drop

Volume of paraffin oil

Thickness

Width of the Petri dish foot

Thickness of the Petri dish floor + air gap
Thickness of Petri dish floor

Thickness of the Petri dish lid

Thickness of the air gap between the Petri dish and

its lid
Thickness of the Petri dish lid wall

Thickness of the Petri dish wall

Vertical distance

Temperature in degrees Celsius

Ambient air temperature in degrees Celsius
Temperature of base boundary
Experimentally recorded temperature
Initial temperature

Surface temperature in degrees Celsius
Effective thermal conductivity

Density

Thermal conductivity

°C
°C
°C
°C
°C
°C
W.m 'K
kg.m

W.m'K!
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XXX

Viscosity (kinematic)
Thermal diffusivity
Stefan-Boltzmann constant

Denotes the subdomain



Subscripts

a

8

pp

Air

Glass
Media
Paraffin oil
Polystyrene

Polypropylene
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