
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

DESIGN

OF A

RELATIONAL

DATA BASE MANAGEMENT SYSTEM

by

John M. Vujcich

A thesis presented in partial fulfilment

of the requirement for the degree of

Master of Science in Computer Science

at

MASSEY UNIVERSITY

'~ f t . , l
February 1980

ABSTRACT

This thesis explains the design of a relational data base management

system. In an effort to achieve a system which is shared, on-line,

easy to use, res ponsive, capable of growth, capable of change, and

having extensive security facilities, many innovations have been

introduced. All data needed for enterprise operation and DBMS

operation are stored in data base relations; administrators are

considered as users; and one language is given with facilities for

defining data, declaring mappings, defining comprehensive security/

integrity constraints, and declaring new DBMS operations. Finally,

i i .

a primitive language is given, which allows for a practical

implementation of these innovations with a result of increased overall

system performance, greater flexibility, and use of modern micro­

processor technology.

ACKNOWLEDGEMENTS

In presenting this thesis I would like to express my thanks to the

following good people:

To my supervisor, Peter J. Melhuish, without whose initial guidance

and encouragement this thesis may not have reached fruition;

To Tom Docker and Ian Gillespie for their invaluable criticism in

the final stages of its preparation;

To Professor Graham Tate for his patience and understanding;

iii.

Finally to all the members in the Department of Computer Science for

their part in sustaining a pleasant and stimulating study environment.

Massey University John Vujcich

February 1980

PREFACE

It is the contention of this thesis that the relational DBMS offers

many practical advantages in both simplifying problems and extending

iv.

the capabilities of modern DBMSs.

the following two aspects.

Particular emphasis is placed upon

1) The potential of a relational data base language in

achieving user objectives.

2) The feasibility of implementing such a language in a

fashion that l ends itself to data base processor

technology .

The task is handled by presenting an example design of a relational

DBMS in which these objectives and their res ulting innovations are

given particular emphasis.

Chapter 1 gives a brief overview of the proposed DBMS . Major

components are outlined and the various features that

result from the above aspects are described.

Chapters 2 and 3 consider the detail of the relational Calculus.

They cover the problems of implementing the proposals in

this one language . Chapter 2 concentrates on the relation

manipulating features of the language while Chapter 3

describes the de finition and controlling features of the

language.

Chapters 4 and 5 consider the detail of a primitive language and the

problems associated with parsing the Calculus into this

primitive language. Chapter 4 defines the primitive

language and ·examines the problem of parsing the Calculus

GET statement. Chapter 5 considers how the other Calculus

constructs can be expressed as a set of primitives.

Particularly it shows how mappings and constraints can

easily be implemented.

As yet, no standardisation has occurred to any great extent in the

DBMS environment. Thus, a degree of variation in the meaning of

definitions often occurs which sometimes obscures and complicates

even simple concepts. The terminology used in this thesis follows

a generally accepted norm, and all significant variations from this

norm are clearly indicated. No attempt is made to introduce the

reader to DBMS concepts, instead, the reader is referred to the

excellent books of Date (26, 27) and Martin (50, 51). However,

throughout the thesis attempts have been made to sustain a general

perspective of the subject by including definitions where it is felt

that they would be of particular importance in highlighting design

decisions.

v.

TABLE OF CONTENTS

PREFACE

LIST OF FIGURES

CHAPTER 1

The Proposed Data Base Management System

1.1 What Data Model?

1.2 System Components
The Schemas 1. 2 .1

1.2.1.l
1. 2. 2
1. 2. 3
1.2.3.1
1.2.3.2
1.2.3.3

Sub schemas
Administrators
The Proposed Language

Relational Algebra
Calculus Versus Algebra
Proposals for the Language

1.3 Operation of the DBMS
Implementing the Language

Binding
1. 3 .1
1.3.1.1
1.3 .2
1.3.2.1

The Data Base Processor
Advantages of a DBP

1. 4 Conclusion

CHAPTER 2

Data Manipulation Constructs

2.1 Log On/Off

2.2 Workspaces

2.3 ·Functions Used

Manipulation Statements
Range S ta temen t

Syntax for Range
Example

2.4
2.4.1
2.4.1.1
2. 4 .1 .2
2.4.2
2.4.2.1
2.4.2.2
2.4.3
2.4.3.1
2.4.3.2
2.4.3.3
2.4.3.4

Get Statement
Get Syntax
Examples

Modification and Deletion
The HOLD
UPDATE, DELETE and RELEASE
HOLD Syntax
UPDATE, DELETE and RELEASE Syntax

iv

X

1

2

3
4
7
8

10
10
13
13

18
18
19
20
21

22

24

24

25

27

28
28
29
29
29
32
33
35
35
39
40
40

vi.

TABLE OF CONTENTS

CHAPTER 2 (continued)

2.4.3.5
2.4.4
2.4.4.1
2.4.4.2
2.4.5
2.4.5.1
2.4.5.2

CHAPTER 3

Examples
PUT Statement

PUT Syntax
Examples

Serial Execution
Serial Syntax
Serial Examples

Definition and Control

3.1
3 .1.1
3.1.2

Domain Statement
Domain Syntax
Examples

3.2 Relation Statement
3. 2.1
3.2.2
3.2.3
3.2.4
3.2.4.1
3.2.4.2
3.2.5
3.2.5.1
3.2.5.2
3.2.5.3
3.2.5.4
3.2.5.5
3.2.6
3.2.6.1
3.2.6.2

3.3
3.3.1
3.3.2
3.3.2.1
3.3.2.2
3.3.2.3
3.3.2.4

3.4
3.4.1
3.4.2

3.5

CHAPTER 4

Relation Statement
Attributes
Key
Mappings

Mapping Syntax
Examples

Syntax

Relation Constraint
Access Constraint
Integrity Constraint
ON-VIOLATION
Relation Constraint Syntax
Examples

Relation Control
Relation Control Syntax
Examples

Schema and Subschema
Schema and Subschema Syntax
Schema and Subschema Control Statements

Security and Integrity Constraints
The WHEN
WHEN Syntax
Example

Drop Statement
Syntax
Examples

Summary

vii.

40
42
44
44
45
48
so

53

54
56
56

58
59
59
59
60
62
63
65
66
68
69
70
71
75
76
77

78
80
81
82
83
84
84

85
85
85

86

Introduction to the Primitive Language and Parsing of the GET 88

4.1
4 .1.1
4.1.2

Brief Description of Proposed DBMS
The Front-End
The Back-End

88
89
89

TABLE OF CONTENTS

CHAPTER 4 (continued)

4.1.3
4.1.4
4.1.4.1
4.1.4.2
4.1.5

Some Reasons for the Front-End and Back-End
The Primitive Language

Basic Form of the Primitives
The Conceptual Method of Execution

Basic Operation of the DBMS

4.2 Primitive Language Instructions
NAME, VALUE and STORE 4 .2 .1

4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.8.1
4.2.8.2
4.2.9
4.2.9.1
4.2.9.2
4.2.9.3
4.2.10

RESTRICT, PROJECT, DOMAIN, STRING
START, STOP, SBEGIN and SEND
JOIN <dyadic>
INTERSECT and UNION
Miscellaneous Set Equivalents
Arithmetic Expressions
Branches and Procedures

ENTER and RETURN

and NUMBER

BNOTNULL, BNULL, B, NULL and POP
Functions

Boolean Functions
Target List Functions
Join Functions

DIVIDE (Universal Quantifier)

4.3 Parsing the GET
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.3.2.2.1
4.3.2.2.2
4.3.3
4.3.3.1
4.3.3.2
4.3.4
4.3.5
4.3.5.1
4.3.5.2
4.3.5.3
4.3.5.4
4.3.5.5

CHAPTER 5

Overall Assumptions, Terms and Procedures
Simple Qualification Referencing one Relation

Example Parse 1, and Code String
Marking Tuples and Removing the Intersect

Removing the Intersect
Marking Tuples

Simple Qualifications
Example Parse 2
Improvements Necessary for an Efficient Code

Alternative Parse
Other Problems

Negation
Functions
The Ordering Expression
Unrelated Terms
Universal Quantifiers

Parsing the Calculus

5. 1
5 .1.1

5.2
5.2.1

5.3

5.4

Modifying and Deleting Data
UPDATE, DELETE and RELEASE

The PUT Statement
Example

Serial Execution (SBEGIN and SEND)

Back-Up

viii.

90
91
92
92
94

95
95
96
98
99

100
101
103
103
104
105
106
106
107
109
110

113
114
116
116
118
119
119
121
122
124
126
127
127
127
127
128
128

132

132
134

135
136

136

138

TABLE OF CONTENTS

CHAPTER 5 (continued)

Security, Mapping and Integrity
Security

5.5
5.5.1
5.5.1.1
5.5.2
5.5.2.1
5.5.2.2
5.5 . 3
5.5.3.1
5.5.3.2

5.6
5.6.1
5 . 6.2
5.6.2.1

5.7

5.8

5 . 9
5 . 9 . 1

5.10

CHAPTER 6

Conclusion

6.1

6.2

UNLESS Clause
Integrity

Data Validation
Data Base Monitoring

Mappings
Update and Addition
Constraints in Mappings

System Workspaces and Status Indicators
System Workspaces
Status Indicators

Form of Report

Structure Creation and Deletion

ON Statement

Administrator Functions
Defining Access Paths

Surrunary

Overall System Concepts

The Front-End, Back-End, and Primitive Language

REFERENCES AND BIBLIOGRAPHY

APPENDIX I

Complete Syntax for The Calculus

APPENDIX II

1he SUPPLIER/PART Data Base

APPENDIX III

Actual Operation of the Primitives

ix.

139
140
143
145
145
147
148
149
150

151
151
153
156

156

157

158
159

160

161

161

163

Figure No.

1. 2: 1

1.2: 2

1. 2: 3

2. 2: 1

2.4:1

4 .1: 1

4. 2: 1

4.2:2

5.5:1

5.6:1

LIST OF FIGURES

Components of the Proposed DBMS

Example Schema and Subschema, showing
possible data content

Operational Data

Scope of Calculus

Inconsistency Problems

Schematic Representation of Major DBMS
Components and Typical Events

Effect of Target List Function

Exampl e Divide Operation

Security Operations on SUPPLIER

Major Tasks Performed by the Back-End
when Executing a Primitive

5

9

14

26

48

93

109

112

142

155

x.

THE PROPOSED

DATA BASE MANAGEMENT SYSTEM

1

A modern DBMS must achieve many different objectives*. These may

be very general in nature such as "data availability", or limited

such as "good response". ·

Different enterprises assign a relative priority or weight to each of

these objectives, In a specialised application some may be considered

as being only minor while others may be considered as being most

essential. Thus there is in effect a grouping of objectives into

primary and secondary classes depending upon the particular

implementation. One major aspect complicating such a grouping is

the inter-relationships and dependencies that exist between various

objectives. Many of these aid the development of some other

objectives, but many also hinder the development of yet others. So

in general cases, it is necessary to obtain some optimum compromise

between the various objectives. Typically this entails the development

of a general, well designed DBMS with good data availability, good

security and integrity facilities, evolvability, one that is shared,

and has acceptable development and running costs. It also follows

that no one DBMS design can be considered as "the best" for all

possible applications. Thus the proposals given here are not intended

to present an ideal DBMS but rather one that explores the possibilities

of the following five major innovations:

* Everest (35)

(1) Inclusion of all data necessary for th e operation of

the DBMS in the one data base .

(2) Similar treatment of all users from casual users to

administrators.

(3) Use of one r e lational calculus language for all users.

(4) The ability to define through this language extensive

security and integrity facilities as well as new

DBMS operations.

(5) Use of a primitive language which allows greater

flexibility and performance.

These proposals and their ramifications result from the emphasis on

user simplicity and DBMS flex ibility . A DBMS is d e sired which is

easy to use, simple in concept, powerful in operation and yet still

flexible enough to be tailored to specific enterprise requirements.

It is recognised that other important variables not given much

attention here also have a major effect on the architecture of a

practical DBMS. Three such variables are:

(1) Size of the data base.

(2) Hardware res ources available - particularly

storage space.

(3) The degree of data base distribution.

1.1 What Data Model?

One of the first things that must be decided upon when designing a

particular DBMS is the data model, or models , it is to support.

2.

The hierarchical, the network and the relational models are the three

most connnon models in existence today . Of these three data models

the relational model comes closest to achieving the desired objectives.

3.

This is clearly evident from the advantages seen in the relational

approach as outl~ned by Date (26,27).

as follows.

The main areas of concern are

(1) Simplicity. One of the most simple representations for data

is in the form of flat files. The system becomes easier to use and

maintain as well as having greater clarity and precision. Users are

no longer confronted with a mass of pointers, nor are they mislead by

ambiguous directed links. Therefore integration and sharing is

easier to implement. Finally the full power and precision of the

mathematical nature of relations can be reaped.

(2) Flexibility. By using relations it becomes easier for the user

to retrieve, modify, add, and delete data in a generalised manner.

That is, the manipulation language need not be so procedural in nature.

It is possible to express complex security and integrity constraints

with ease. New domains and relations together with the complex

relationships between them can also be easily added, modified or

removed.

(3) Ease of Implementation. Many of the desirable objectives can

be implemented as the physical issues are independent of the logical.

Thus it is possible to have a structured approach to implementation

resulting in greater "inter-system" compatibility and a higher degree of

data independence. In this way the system is more general, capable of

being manually or automatically tuned, has greater data availability,

extensibility and evolvability. Also there is the added advantage of

it being easier to physically store flat files rather than tree or

plex structures.

1. 2 System Components

Overall, the proposed architecture does not differ significantly from

the currently accepted "standard" view. The only difference is one of

4.

simplification. Here the problem of distributed data . bases and

multiple storage schemas is not considered in any great depth,

Rather the internal schema and conceptual schema of ANSI/X3/SPARC (2)

are replaced by a single schema, See Figure 1.2:1. The proposed

extensions therefore exist in the methods of implementation and

operation of DBMS components; particularly the schema, mappings,

definitions, constraints, and the language.

1.2 .1 The Schemas

The data base is generally visualised as consisting only of the

operational data. And so the resulting schemas are considerably

biased in their contents. Unfortunately such a view tends to

disagree with the need for a considerable amount of ''other"* data

necessary to support each datum of operational data. Thus difficulty

is often experienced when attempts are made to include this data in

the data base, as typically seen in the problems associated with data

dictionary implementations. Such a distinction forces the DBMS

to handle the control data differently. So users requiring access

to it often find they have to use special language facilities or

special operations. These can be quite different and often more

complex than those normally associated with operational data

manipulation. This problem also applies to the DBMS itself as it

frequently requires access to control data. Hopefully it will only

be a matter of time before the necessity for such a distinction is

seriously questioned,

It is proposed here that all the data necessary for the operation of

* The "other" data wi U be ref erred to as "contra l data 11
, or ''system

data", so that there is no confusion with the operational data,
It will noY'111C1.lly consist of all the data needed for the operation of
the DBMS. For example, security ·constraints, user profiles, time
of day and the like.

Users
Language

Workspace

Language

Workspace

Subschema - 1
Definitions and
mappings +-+ schema

Language

Workspace

Schema
Definitions and

mappings +--+ storage

storage

Figure 1, 2: 1

Components of the

Proposed DBMS

5.

Language

Workspace

Language

Workspace

Subschema - N
Definitions and
mappings - schema

both the enterprise and the DBMS are stored in the data base, It

also follows that all this data should be stored, in the logical data

6.

base, in one form. That is, the schema consists of a set of relations

together with mappings, definitions, and security/integrity constraints

for both the operational data and the control data. Henceforth all

reference to the schema refers to a schema of this form.

Considerable advantages can be gained from such a perspective. Some

such advantages are as follows - by no means are the possibilities

exhausted; more will be seen in later chapters.

a) A relation defining all domains available to a given user may

be accessed as simply as any other relation which consists of

operational data. In short data dictionaries can easily be

established, accessed, extended and modified.

b) Administrators will have simplified access to the data they

need for DBMS control. Also DBMS tuning and management will

_ be much easier for administrators. For example, new users

can be included by simply adding a tuple to the user profile

relation.

c) Data dictionaries, user profiles, audit trails and all such

control data can easily be protected by extensive security and

integrity constraints in exactly the same manner as operational

data is protected.

d) It may even be an advantage to include parsing information in

the data base. For example, suppose a symbol table containing

the symbols of allowed language constructs is kept for each

user in the data base, then the parser will simply not recognise

any unauthorised user statement and so will treat it as if it

were just any other nonsense symbol. Also, such a relation

can then easily be assessed by an administrator whenever it is

7.

neces sary to extend the language facilities of a particular

user .

1.2 . 1.1 Subschema

The subschema i s simply a subset of the above extended schema.

not only is it possible for some use r s to view a subse t of the

operational data, but now it is also possible for user s to view a

Thus,

subset of the control data . So a user's view may include a subset

of the data dictionary , storage data, audit relations , or may even

exist entirely of dummy relations containing training data . See

figure 1.2:2.

All the usual rules and advantages gained from using a subschema also

exist here . For example , subschemas are particularly useful for

achieving logica l data independe nce and aiding system security .

user has a libra r y of subschemas from which one i s usua lly chosen

Each

during log - on. But in the majority of cases this library will consist

of only one subschema. Also this subschema will often be shared by

a number of user s who, pr eferab l y , r equir e similar data facilities.

Each subschema contains its own set of security/integrity constraints

and control ins truc tions which can either apply to specific use rs

within the subschema, or t o the subschema in general . These contr ain t s

are intended to further r es trict the possible use and values of the

data over and above those already given in the schema. This i s

because all schema constraints have the highes t priority, so it is

meaningless to include subschema constraints which allow a wider range

of poss ibilities . Finally t he subschema is supported by administrator

written de finitions and mappings which can be easily modified to suit

changing user r equirements.

8.

1.2.2 Administrators

To date, considerable effort has been spent on the problem of

simplifying casual user access. But, by comparison, little has been

expended on the task of simplifying administrator access. If users

are to b e considered as enterprise personnel who require access to the

data base in the course of completing their task, then, administrators

would be one of the most frequent users. Their task consists of

maintaining the enterprise's data base. In this thesis administrators

will be considered as simply advanced users. It therefore will be

possible to subject them to any necessary integrity of security

constraints. Also available to them, and any other user , are all

the advantages in simplification the system can offer. For example,

the power ana flexibility of the language, the capability of viewing

data through a subschema, ease of access, and so on, This is achieved

by placing all the data required for DBMS operation into the data base

in much the same way all data required for enterprise operation is

stored. In addition just as the operational data models the

enterprise's operation, so too should the s ystem data model the

DBMS's operation.

Therefore administrators can select, through subschemas, their own

limited model of DBMS operation, just as other users can select,

through subschemas, a limited subset of the operational data. So

administrators can now access relations containing performance data,

or audit data as easily as accessing the operational data. See Figure

1.2:2. But one other major consideration remains, To the enterprise

the computerised data base is just a handy storage medium, As the

enterprise functions, data concerning its operation is continually

fed into the DBMS. From there this data can be quickly and easily

accessed and analysed by users who directly support the enterprise

operation. As a result these users can then make minor alterations

Subschema Subschema

Subset of Operational data,

operational definitions and

data mappings

Subset of data

dictionaries

Subset of audit data 1

Casual user Subset of security

constraints

Administrator

Operational Data Storage

Data Definitions and information
mappings

I
Performance
data Audit Security and

information integrity
constraints

!Data
Dictionary

I Control Information · I
I

Schema

Figure 1 . 2: 2

Example Schema and Subschemas, showing possible
data content.

9.

Sub schema

Subset of

storage data

definitions

I.Performance data

System control

information

Audit trail data I

Administrator

to the functioning of the enterprise. Likewise , if the DBMS were

to collect its own data concerning its operation and store this

system data in the data base, then, from there it can be easily and

quickly analysed by administrators. Further, if the DBMS were to

monitor these relations it could then change its physical operation

to suit the modelled operation. Thus an administrator can change

a physical parameter of the DBMS, say block-size, by simply

modifying a tuple value in some system relation which specifies that

block size.

4 and 5.

These and other possibilities will be seen in Chapters

1.2.3 The Proposed Language

Clearly a DBMS language directly affects the users. It is perhaps

10.

one of the most important aspects of a DBMS. A good language enables

many of the desired objectives to be achieved, in particular , data

independence, simplicity, sharing, and data availability. The two

most common mechanisms used in the relational DBMS context are the

relational algebra and relational calculus. Both of these offer a

high degree of data independence and powerful manipulation facilities.

Unfortunately, both also have their disadvantages that must be over­

come by a practical DBMS.

1.2.3.1 Relational Algebra

A relational algebra consists of a set of operators which operate on

a relation, or a number of relations, and produce from them a

resultant relation according to some criterion. A· user must define

a sequence of such operators which operate on data base relations in

a way that will construct the desired resultant relation. Actually,

this is not as difficult as it may seem. There is a wide selection of

these generalised operators and they can be used to achieve any

desired tabular representation of the data. As an example, consider

only two such operators: projection and join.

Projection

Projection operates on one relation, selecting from this relation a

set of attributes, or columns , which are then ordered as specified

to form a resultant relation. All redundant tuples that arise in

this resultant relation are automatically removed.

for a full definition.

See Codd (21)

Consider the following examples showing how a projection can be used

11.

to answer simple queries on the PART relation of Figure 1.2:3.

that the notation used is similar to that of Codd (21).

Note

1) "What are the different colours that a part may have?"

This query can be answered by executing a projection of PART on

attribute colour as symbolically represented below.

PART [COLOUR] COLOUR

RED

GREEN

BLUE

2) "What parts have the different colours?"

PART [COLOUR, P{I]

In this example notice

that the order of the

attributes is important.

COLOUR

RED

GREEN

BLUE

RED

BLUE

RED

PI!

PI

P2

P3

P4

PS

P6

12.

Join

If 0 represents any of the mathematical relations= < , > , etc.,

then the join of a relation Ron attribute A with r e lation Son attribute

Bis simply a resultant relation consisting of concatenated tuples,

from the respective relations, whose specified a ttribut e values s a tisfy

Again s ee Codd (21) for a the particular mathematical relation.

more precise and complete definition. Such a join can be represented

as follows by using a notation similar to Codd's:

R (A 0 B) S

As an example, suppose that a user wishes to know the part numbers of

all red parts. This can be extracted from the PART relation by

joining it with the constant relation W shown below.

w COLOUR

RED

PART (COLOUR COLOUR) W

W2 Plf PNAME COLOUR WEIGHT QOH COLOUR.W

Pl NUT RED 12 26

P4 SCREW RED 14 24

P6 COG RED 19 3

Now the resultant relation W2 can be reduced to only the relevant

information by a further projection of W2 on P#.

That is, W2 [PI!] = PI!

Pl

P4

P6

RED

RED

RED

Notice that the above two expressions can be combined into the following:

13.

PART (COLOUR~ COLOUR) W[Pll]

Finally, while the algebra offers great flexibilit¼ it is sadly

lacking in the other necessities for a good language. That is,

easy to use facilities for adding, modifying and deleting data, as

well as facilities for writing security and integrity cons traints.

1.2.3.2 Calculus Versus Algebra

With the relational algebra the user must specify the individual

operations required to produce the desired data. However, with the

relational calculus the user has only to define the result needed.

This is a more natural approach, and is therefore helpful in

simplifying the user interface . Also it leaves the DBMS free to

decide which operations can best produce the result; thus it is

possible to "optimise" the request. But per~aps the greatest

advantage of the calculus i s that it permits easy definition of

security and integrity constraints, this is because the constraints can

be based on a definition of the properties of the data. In Chapters 2

and 3 it will be seen how a calculus based on Codd's ALPHA can be

extended to include mappings, definitions, and constraints. Perhaps

the biggest disadvantage with the calculus is the difficulties it

presents in implementation.

Chapters 4 and 5.

A possible solution will be given in

1.2.3.3 Proposals for the Language

If the above proposals are consistently applied, then, immediately

a problem will be seen to exist with DBMSsthat require different

languages for different functions. That is, it is inconsistent to

have one language for casual users, another for administrators,

another for defining new data structures and so on. Surely even

casual users may wish to add their own relations or define new

SUPPLIER

Sit SNAME STATUS CITY

Sl SMITH 20

S2 JONES 10

S3 BLAKE 30

S4 CLARK 20

SS ADAMS 30

PART

Pit PNAME I COLOUR

Pl NUT RED

P2 BOLT GREEN

P3 SCREW BLUE

P4 SCREW RED

PS CAN BLUE

P6 COG RED

PROJECT

JI! JNAME

Jl SORTER

J2 PUNCH

J3 READER

J4 CONSOLE

JS COLLATOR

J6 TERMINAL

J7 TAPE

LONDON

PARIS

PARIS

LONDON

ATHENS

WEIGHT QOH

12 26

17 8

17 10

14 24

12 35

19 3

MGR-NO

M4

Ml

M3

Ml

M4

M2

MS

Figure 1.2:3

Operational Data

14.

SUPPLY

Sf! Pit JI! QTY

Sl Pl Jl 2

Sl Pl J4 7

S2 P3 Jl 4

S2 P3 J2 2

S2 P3 J3 2

S2 P3 J4 5

S2 P3 JS 6

S2 P3 J6 4

S2 P3 J7 8

S2 PS J2 1

S3 P3 Jl 2

S3 P4 J2 5

S4 P6 J3 3

S4 P6 J7 3

SS P2 J2 2

SS PS JS 5

SS PS J7 1

SS P6 J2 2

SS P2 J4 1

15.

domains. Here it is proposed that a single language be used which

is capable of satisfying all user needs over the whole spectrum,

from casual users through to sophisticated administrators. This

requires a language through which new data structures can be defined,

security and integrity constraints written, mappings declared, DBMS

control instructions given,as well as its being capable of the usual

data manipulation feats. It need not be a completely new language.

Indeed, if tasks can be adequately accomplished by using already

existing language constructs then it would be wasteful if new

constructs were defined for the same purpose. Therefore, an already

existing language has been chosen as a base, and this language has

subsequently been modified and extended in an orthogonal fashion.

Thus the goal of Chapters 2 and 3 is to identify the modifications

and extensions as well as show how the language now accomplishes the

desired goals in a realistic way. A syntax is also given, as a

short yet complete way of identifying all possible constructs and

demonstrating their full power and flexibility. It is certainly not

intended to be used in a particular implementation as it stands.

In the language, particular emphasis has been placed on the writing of

constraints and DBMS control instructions.

in more detail.

Security and Integrity Constraints

Consider these two aspects

Maintaining security and integrity is a highly complex problem as

there are so many varied events that can cause security and integrity

violations. Martin (50) gives a list indicating some of the more

cormnon and well understood events. This list is by no means complete.

In fact there is a real danger that a designer may concentrate on one

aspect alone so causing integrity and security to suffer in other

areas. Ideally the data base must be protected from every possible

event that can cause illegal alteration, destruction, disclosure or

addition. Clearly this is an impossibility and therefore it is

unreasonable to expect a DBMS to be des igned which is capable of

offering complete protection in the current environment, let alone

the future environment.

16.

It would be most desirable, from a designer's point of view, if t he

details of the various possible security infringements can be ignored .

That is, a designer would not have the need to des i gn software for

DBMS protection against possible events that can cause s ecurity or

integrity violations. Instead, it is bet t er to des ign a general

mechanism that is capable of being instructed on how best to handle

each specific event. Thus the system becomes flexible, capable of

introducing new security checks on unforeseen f uture r equir ements and

capab l e of dropping unnecessary security checks . No longer need

the designer attempt to predict future security needs in futur e

e nvironments, instead the responsibility fall s on administrators as

t he needs arise. The design problem now becomes one of introducing

such a general mechanism. The r e are a number of possible alternatives

as to how this can be done, but in each case it must be possible to

write constraints for any relation, domain or attribute value in the

data base, and, for any other resource of the DBMS. Here it will be

possible to write constraints in a declarative fashion for operational

data, system data and the language constructs. These constraints

are very flexible in nature, offering a wide and almost unlimited

choice of possible security checks that can be made, and almost

unlimited choice of actions that can be taken on any detected violation.

For example, it is possible to apply security and integrity constraints

to administrators so limiting their access to data and use of language

constructs . It is possible to apply security constraints to data

dictionaries , audit data, even control instructions. It is possible

17.

to allow use r access to data items only during certain time intervals

of the day or only after some other user has g ranted permission .

In fact the other user may not be permitted to access that data item.

Finally it was found that the highe st leve l of security attainable

for a resource exists when an action us ing the resource requ ires

authority from a gr oup of administrators, or enterprise offic i a l s .

That is, no one person has ultimate authority , instead, the group

controls each other.

DBMS Control Instructions

Clearly it is impossible to predic t all the functions t hat a DBMS

might be called upon to do . So f or the same r easons given above it

is proposed he r e that the DBMS be limited to a set of fund amen tal

operations, such as searching, r e trieva l and s t orage . Further, new

DBMS functions are included as required by defining the new functions

in t er ms of the basic set . Again, this is done in a decla r ative

fashion by some advanced user. Therefore, the DBMS has the

flexibility t o mee t continually changing enterprise and user demands.

For example, through the language an administrator can instruct t he

DBMS to maintain a record of all additions, deletions and/or

modifications to a particular relation, domain or a ttribut e value ,

The DBMS may also be instructed to dump data concerning any security

breach on tape. See Chapter s 2, 3 and Appendix II.

Miscellaneous Features

Still other i mportant features of the language that need to be

remember e d whe n considering the language are as given below:

1. The language will depend heavily on a host language for its

syntax de tails and other additional processing r equirements.

2. For convenience it will be called the Calculus . There should

not be any confusion with the calculus mentioned by Codd (22).

3. The host language and Calculus constructs are thoroughly

intermixed. For example, host language statements may be

found in a Calculus ON statement and Calculus statements may

be found within host language constructs.

4. It is assumed that the Calculus is used through a terminal.

18,

This introduces the added complexity of real time processing

and the simplifying aspect of imagining each Calculus statement

to be executed immediately. It is not intended that the back-

up problem associated with batch processing in the data base

environment is to be ignored, nor is it intended that batch

processing should be precluded. Many different back-up

mechanisms are available within this design. See section 5,4.

5. The language describes and manipulates logical structures.

So there is no need to mention physical parameters or provide

constructs for a physical description of actual stored relations.

1.3 Operation of the DBMS

There are two aspects of particular concern which affect the overall

DBMS operation. These stem from the implementation problems

associated with the language. Firstly there is the problem of how

the language should be parsed and executed, Secondly, the problem

of how best to utilise the high degree of physical data independence

offered by the relational DBMS . Both of these aspects have a

considerable influence on performance of the DBMS, In fact, the more

powerful the language facilities and the greater the data independence

then greater also is the response times and running costs.

1.3.l Implementing the Language

The decision as to whether the language should be compiled or

interpreted is perhaps one of the first considerations. Both techniques

have their advantages and disadvantages. A compiler greatly improves

19.

execution performance, whereas an interpreter has the capability of

adapting to any change in the storage structure. Unfortunately the

major problem associated with compilers is that they "bind" the

compiled program to the existing storage structure. Interpreters, on

the other hand, are generally too slow, particularly if optimisation

of user statements is required. Many other advantages and disadvantages

remain, but for the sake of brevity consider briefly the problem of

binding, and how the proposals here handle this problem as well as

retaining some desirable compiler features.

1.3.1.l Binding

Binding occurs whenever one representation of the data is associated with

another. It occurs when a subschema is bound into a schema or when

a user's view of a schema is bound to the physical storage. There can

be both logical and physical binding just as there is both logical and

physical data independence. Once binding occurs a user program no

longer has data independence. Therefore any change to the data

structures before this program is executed will produce errors. So a

compiled program will have a very short life expectancy. For this

reason binding should be done only when the data is to be accessed

rather than when it is first compiled. If this is done, then, "dynamic

binding" is achieved; that is, there is dynamic data independence.

This is proposed here as the structures will change frequently through

user modifications and automatic tuning. It is therefore intended

that the Calculus is first compiled into a high level, data independent,

primitive language (instruction set). During this compilation all

the benefits of a compiler can be reaped. The primitive language can

then be interpreted, Thus the advantages of an interpreter are

achieved as well as any other advantage that might be offered by a

simple procedure-like instruction set. For example, the primitive

set may be executed by a data base processor.

20.

1.3.2 The Data Base Processor

Unfortunately, the problem of performance rema ins even if such a

primitive language exists. Therefore it is suggested that the

primitive languag e should be as simple and machine-like as possible.

Then it may be possible to execute it with a specialised data base

processor in parallel with other DBMS fun c tions. The data base

processor, DBP, is a separate process or which handles all the storage

and retrieval problems associated with mass storage of a data base.

This is becoming more and more of a profitable objective, especially

with the great advances made in cheaper and better hardware components,

in particular, the development of micro-processors. There is a

growing tendency to move away from the one single central processor

performing all tasks and toward multi-processor systems - these systems

being specially designed to operate in parellel. Thus there is

greater emphasis on parallel processing as a means for increasing

system performance. DBMS shave grown considerably in complexity and

consist of many subtasks handling user needs as well as controlling

mass storage devices. Many of these tasks are independent of each

other. So it is only a matter of time before parallel processing

techniques will be extensively used in DBMSs. For example, the

manipulation and searching of files can be considered separately and

handled by a DBP. These processors will be dedicated processors.

That is, they have a specialised purpose just as array processors are

specifically designed for fast array processing. It is therefore

feasible to use a specialised instruction set and machine architecture

to efficiently handle its assigned DBMS functions. Such an instruction

set could form a base for a primitive assembler-like language yet

leave it still capable of manipulating data at a fairly high level.

Then again, this primitive language may be actually micro-programmed

in the DBP.

21.

1.3.2.1 Advantages of a DBP

Numerous advantages can be gain0d by using a DBP. In particular

there is higher performance resulting from executing these access

and data base control processes in parallel with other DBMS processes.

Anderson (1) identifies four technological factors which support the

development of specialised DBPs.

(1) Distributed processing

(2) Data base languages

(3) Micro-processors

(4) Mass memory technology.

A full utilisation of these will be needed if the desired objectives

of modern DBMS are to be achieved.

1) The advances in network technology are forcin g shared data bases

to become distributed. A DBP can be used t o help achieve a practical

solution to data base distribution. It will be able to handle much

of the added processing needed. But more important, by allowing a

data independent communication, it eliminates any requirements for

remote users to understand different storage mechanisms. Thus a host

of different storage devices with their differing technologies can be

added to a distributed data base. Notice, that each DBP is intended

to have its own storage schema - (internal schema).

A DBP may be linked to a network system in one of two major ways.

(a) Directly linked to the network via its own

communication lines. Thus it will have to handle

communication protocols as well.

or (b) Through a host processor. Then the host processor

will handle all communication problems and leave the

DBP to handle its primitive language alone.

The last concept will be the one chosen here.

22.

2) Modern data base languages, in particu]ar the above mentioned

Calculus, give very general and powerful expression facilities.

However, the different cormnands can be reduced to a single set of

conunonly used processes. For example, retrieval on certain keys,

storage,and ordering. The Calculus lends itself to a set of primitive

algebra-like commands. These can be part of a DBP's micro-prograrnrned

instruction set.

3) Micro-processors can give cheap and powerful processing power.

It is logical to expect the high speed micro-processor technology to be

used in DBMSs as DBPs. Already different architectures are proposed

for mass storage of data where hundreds of micro-processors are used.

Each is intended to handle the data in a portion of memory. See

Ozkarahan (57) for a description of RAP (an associative processor).

4) Mass storage consists of compromises between many different

technologies. There is the slow tape storage through to the high speed

disk. A few more years may see greater use of new developments such

as the bubble and electron beam storage devices. How to structure

data, how to find and retrieve it, how best to utilise the storage medium,

and the time space considerations are all problems which must be

considered when storing data on the different devices. It is an

entirely separate problem in itself but one which can greatly affect

the performance of a DBMS. So there is a need for constant tuning.

Typically this requires selection of access methods, restructuring and

re-allocation of data, One of the main purposes of the DBP is to

handle these problems, so removing considerable load from the central

processor,

1.4 Conclusion

The emphasis in Chapter 1 is on the differences between the proposed

23.

system and the typical DBMS. There are other assumptions and concepts

though of relative minor importance. Firstly it is assumed that all

data base relations are in third normal form - this has the well

accepted advantage of greatly simplifying DBMS operations, particularly

those involving deletions and additions to the data base. It is also

assumed that the system is an on-line system. This has the effect of

high lighting the various requirements of a real time DBMS.

Finally the operation of the proposed DBMS will basically follow the

sequence given below.

(1) A user requests data through some Calculus construct.

(2) This construct is compiled into a primitive code. All

mappings and constraints relating to this user are also

included in the code for run-time evaluation.

(3) The code is executed by some dedicated processor or

program module.

(4) The resulting relation is returned to the user along with

any other system relation. Note, since all information

is stored in relations, the easiest way to inform the

user of any failures is to also return the system relation

containing this data.

24.

DATA MANIPULATION CONSTRUCTS

2

Data manipulation is the process of retrieval, updating , addition, and,

deletion of data from selected r e lations. Each of th ese processes

consists of two phases. These are,

1) identifying the set of tuples which are of interest

(Similar to FIND of DBTG),

and 2) processing of this set of tuples in some way to

produce the desired answer.

These are represented in manipulation constructs by the "qualification"

part and the "target list" part. In a query statement the qualification

part specifies what properties a tuple mus t satisfy before it is

considered as a relevant tuple. The target part then specifies the

form in which a user requires an answer. Other major components

required for data manipulation result mainly from problems associated

with the sharing of the data base.

In the following description of the Calculus language it is assumed

that the system is an online system so each user must log on and off;

each user has a number of workspaces; these workspaces can be

manipulated at will by using a suitable host language; and all

manipulation of data base relations must be done through Calculus

statements.

2.1 Log On/Off

Before a user can begin processing the DBMS must obtain some initial

information. Typically this consists of the user's identity, terminal,

25.

subschema and schema. It is the log-on process which accomplishes this.

During log-on a user must specify which schema (data base) is to be

accessed and which subschema he will operate within. If all security

checks are satisfied then this user will be allowed to begin processing

directly within the named subschema. But if the user is allowed to

execute subschema statements then it is not necessary for him to specify

a subschema during log-on. Instead, he can access any subschema by

simply executing a subschema statement - similarly for schemas, So

here the log-on process also has the important role of limiting a user

to within a single subschema or schema . See Schema and Subschema in

3 . 3. Likewise, the log-off process has the added effect of closing

the subschema and/or the schema.

2,2 Workspaces

All transfer of data between a user and the DBMS must be via some common

storage space. The area so occupied by a relation is tenned a "work-

space". Each user may possess any number of workspaces, one for each

relation, and may create or destroy them at will. As a comparison, DBTG

use the term "working area" in reference to all the common storage that

a user will use . In this case a user is allowed only one working area.

Of course, it is possible to use a similar implementation where all

workspaces needed during a session must first be defined when a user

logs-on. But here the workspaces are allowed to be created dynamically.

Unless specifically saved, all workspaces existing at the close of a

session are destroyed and their contents lost.

All Calculus operations transfer data to/from the DBMS from/to the work-

spaces. These operations can ma'nipulate either data base relations or

workspace relations even though workspace relations should be structured

to suit a particular user's host language. In fact, the DBMS considers

a user's workspace relations to be part of that user's sub-model, however,

26.

no other user can gain even partial access to another's workspace

relation. See Figure 2.2:1.

Finally the DBMS itself also has a number of workspaces which can be

defined and destroyed as required. These are used to execute any sub­

task that may be initiated in response to some user r e quest or other

condition. Also, just as users can apply host language operations to

their workspace relations, so too can the DBMS apply host language

operations to its workspace relations. Similarly these relations are

lost, unless explicitly saved. when the DBMS shuts down. For example,

the DBMS may create and maintain auditing information within one of its

workspace relations. This gives the DBMS an almost unlimited flexibility,

for now a host language may be called upon to perform any desired

operation with this information.

User A Use r B

/

/ " rea controlled 1
,,.D

D ,.- Other storage \Area controlled
'f A's host -1 used by user program fY B's host languag
3,nguage \

Workspace Relations I
I CJ \

\
I/ -- -
/I l_

-~~--=- - \ - - -
JI 1LJ

I I

I I I
I I
\ I I

\ -
_ '-

'
Area of control
for A's Calculus

--,
\

LJ

/

\ I

I
I I

I
\ I

'

i I

LJ

I I i\
\ I I ' ,_
-'\ I

"' ,,
"

\

' '-

- I- - \ -

I I I __ _

,,-,--i ,o)
"'~ L_I , ____ // I ,,

/ -- - -,

Li
, r==i
\

'
.,,

/

/
, ,,.,,

/
/

D
Data Base Relations

Figure 2.2:1

Scope of Calculus

I

I

'\

' I
I

I

I

I

.,J ./

l

I

I
-Area of control for

1 B 's Calculus

27.

2 . 3 Functions Used

The importance of functions has already been outlined. The main

concern here is to give the syntax of the different functions used,

and, to briefly outline their respective operations on relations. No

attempt is made to s upply a comple t e list of functions a s it is ve r y

difficult to predict what will be us e ful. I nstead they are int ended

to be an extensible feature of the language . They can b e us e d t o

extend relation manipulation, definition and control.

Some functions are:

COUNT (<relation name> <attribute name>)

COUNT counts th e numbe r of elements in the named attribute o f t he

named r e lation.

TOTAL (<relation name> . <attribute name>)

TOTAL s ums all the values in the specifi ed attrib ute of the named

relation.

ICOUNT (<relation name>, <attribute name
1
>, <attribute name

2
>)

Func tions of this form are called image functions. They count the

elements of the image set consisting of "attribute name
2

" va lues which

have a particular "attribute name
1
" value in connnon. For exampl e

ICOUNT (SUPPLY, P# , S#) will count the number of different suppliers f or

each part .

TOTAL (<relation name> , <attribute name
1

>, <attribute name
2

>)

Similar to !COUNT, but this time the "attribute name
2

" value s

(duplicates included) are summed for each "attribute name
1

" value.

For further explanation and examples refe r to Date (27) p.98.

PER (<relation name>,<attribute name>)

This function is the function Codd (22) uses for indirect reference .

It returns the name contained in the selected attribute. Un fortunately,

in its above form, no specific element is selected unless the r e lation

contains only one tuple. For this reason it is used as an example

only once in the access constraint of relation RDINDEX, appendix II

section 1.3.4. Perhaps one solution is to include a list of key

attributes in the functions arguments as given in the modified PER

function (IDR) below.

IDR (SUPPLIER.SNAME,S2)

28.

The key attribute value, S2, uniquely identifies the S2 tuple and so

the function would return the name of supplier S2 only.

this function always returns a single value.

2.4 Manipulation Statements

Note, that

For each manipulation statement a short description of its features and

examples showing its use will be given.

2.4.1 Range Statement

The range statement allows the user to limit permitted values of a

tuple variable or range variable. In fact, the user is forced to

specify the range of all tuple variables which are quantified. This

prevents the user from making unreasonable requests - requests which

could retrieve most of the data base at once. The range statement

also syntactically provides range-separable qualifications. So if the

qualification is a well formed formula, WFF, then, the required range-

separable WFF of the relational calculus is obtained. A less important

use is as a simple shorthand. If a relation name is long and used

often then a much shorter tuple variable name may be used, via a range

statement, thus saving on tedious repetition. The range statement is

not a static declaration. New ranges can be defined at any time and

such a range only lasts until:

1. It is superseded by another range declaration involving

the same tuple variable.

2. The block containing the range declaration is terminated -

(assuming a block structure exists),

29.

3. The user logs off.

Finally, whenever a variable is to be quantified, it must first appear

in some range declaration and so make undesirable requests difficult.

Should all these quantified variables appear at the extreme left of

a qualification then the qualification is said to be in PRENEX NORMAL

FORM. If a qualification is in prenex normal form then the quantifiers

may be moved into the range statements and, perhaps, indicated by SOME

and ALL. See Codd (22). But if these are used to quantify variables

then the order in which these ranges occur becomes important as

Vx3y (-) is not necessarily the same as 3y\t'x (-). Here, this feature

will not be used as it does not add to the objectives of this chapter.

2.4.1.1 Syntax for Range

<range statement > ::=RANGE <relation name > <tuple variable >

2.4.1.2 Example

RANGE SUPPLIERS

2.4.2 Get Statement

The get statement is the foundation upon which Codd built his ALPHA

language. It was designed to achieve the objectives associated with

data base access. The get statement is simple enough to be quickly

learnt and yet powerful enough to retrieve data on any number of varying

attribute values. Thus it can be said with confidence that the

statement is capable of satisfying even the complex access requirements

of administrators. The get statement consists of two parts, which can

also be identified in natural language queries.

These are:

a) The target part

b) The qualification expression

30.

Target List

The target list specifies what information of the derived relation is

relevant for an answer. It can be compared with the relational

calculus operation of projection. That is, it selects a set of

attribut e s to be returned. However, it is more general than the algebra

operation in tha t it allows a s e l e ction over more than one relation

as well as allowing fun c tion s to operate on specific attribute s.

Qualification Expression

The qualification expression enables a user to select a set of tuples

which have the desired properties, That is, each tuple in the

stipulated relations must first qualify by satisfying the qualification

expression. For simplicity, all qualifications g ive n here are limit e d

to those that are in prenex normal form (PNF). There is no loss of

gen e rality by app l y ing such a restriction since any qualification can

be transferred into its equivalent PNF.

Another very important function of the qualification expression is to

supply an association between tuples of different relations. This

association is given by the appropriate join terms in the qualification

expression. Such join terms must always exist whenever more than one

relation is identified within the corre sponding target list. See

example 3, Section 2.4.2.2. Note that two different types of functions

can be used in the qualification expression. Note also that ambiguity

is prevented by quantifying all tuple variables that appear in the

qualification and not in the target list.

Codd also gives various controls bn how the relation is to be

returned, these are:

1) Piped Insertion

2) User Specified Ordering

3) Quota e xpression

31.

Piped Insertion

Piped insertion returns one tuple at a time to a named workspace.

With each succeeding tuple the previous tuple is overwritten. Thus,

if a retrieved relation is large, considerable saving in space is

possible since, at most, storage for only one tuple is needed.

User Specified Ordering

A user may choose to order the tuples of a derived relation in an

ascending or descending sequence on one or more attributes.

UP attribute UP attribute

DOWN DOWN

The left-to-right order signifies the usual major to minor ordering.

But note that the attributes on which the ordering is based need not

be the attributes of the target list. However, there has to be a

connection between the ordering attributes and the target attributes,

otherwise no ordering can be done. There are many connections that

may be imposed, but perhaps the more "common sense" one is as follows:

There must exist at least one relation, R, and at least one attribute,

A, in the target list such that A is an attribute of Rand the ordering

attribute is also an attribute of R.

Quota

The quota expression is simply an unsigned integer, enclosed within

square brackets, which is used to limit the number of tuples returned

to the workspace. The limit being the value of the integer.

2.4.2.1 Get Syntax

<get statement> ::= GET <workspace name>!

<piped option>GET<workspace name><quota >

<get expression><element ordering list >

<piped option>

<quota>

::=<empty>j OPEN

: :=<emp ty >J [<unsigned integer>]

<element ordering list> : :=<empty >!

<order> <relation specifier>. <attribute name>!

32.

<order> <relation specifier> .<attribute name > <element ordering list>

<order> ··= UPjDOWN

<get expression> : := <target>!

<target>:<qualification expression>

<target> ··= <target term>!

(<target list>)

<target list > ··= <target term>!

<target terrn>, <target list >

<target term> ::= <relation specifier>J <function>I

<relation specifier> ,<attribute name>

<qualification expression> ::= <qualification> J<quantified qualification>

<quantified qualification> ::= <quantification>(<qualification>)

<quantification> ::= <quantifier><tuple variable> !

<quantifier><tuple variable><quantification>

<qualification> ::= <qualification factor > !

<qualification factor>OR<qualification>

<qualification factor> ::= <qualification secondary> J

<qualification secondary>AND<qualification factor>

<qualification secondary>

<qualification primary>

<quantifier>

::= <qualification primary>J

<not><qualification primary>

::= <join term>J<boolean function> !

(<qualification>)

· ·= 31 \i

33.

<not > · ·= NOT!-,

<join term> ::= <string exp><string dyadic><string exp> !

<numeric exp><numeric dyadic><numeric exp >

<numeric exp > ::= <number >j <numeric function>!

<relation specifier> , <attribute name>

<string exp> ::= <string> l<string function > !

<relation specifier>. <att r ibute name>

<numeric dyadic >

<string dyadic >

<attribute name>

<relation name>

<tuple variable>

<domain name>

<selector>

<workspace name>

2.4.2.2 Examples

· ·= =li l< J> l<=l >=I

EQLINEGILssJGTRjLEGIGEQ

- =jEQLj#jNEQ

::= <domain name> !

<selector > - <attribute name>

.. - <identifier>

•. = <identifier>

: := <id entifier>

. ·= <identifier >

.. - <identifier>

1. "Get the entire relation SUPPLIER"

GET W SUPPLIER ;or GET W (SUPPLIER);

The entire relation is placed into a workspace named W.

2, "Get all project numbers"

GET W PROJECT. MGR-NO;

In this case the attribute name , MGR-NO, contains the selector

MGR. Syntactically there is no limit to the number of allowed

selectors which may precede a domain name. Selectors are used

to distinguish between domains that have the same name within a

given relation.

3. A problem arises when more than one relation is used in the target

34,

list and no join tenn exists. In this case a semantic error

occurs.

GET W (PART.P#, PART.PNAME, SUPPLIER.S#);

4. "Get no more than three part numbers and part names for all parts

where the quantity on hand is less than 25,"

RANGE PART P ;

GET W [3] (P.P#,P.PNAME) :P.QOH<25;

The qualification limits the tuples to only those that satisfy

the condition and the quota limits the number of tuples returned

to three or less.

5. "Get the names of all suppliers who supply part P3"

a) RANGE SUPPLIERS

RANGE SUPPLY Z

GET W S. SNAME: 3 Z (S. Slt=Z. Sit AND Z .P it "P3") ;

b) "Get same tuples as in a) but ordered on supplier number."

GET w S.SNAME 3Z(S.Slt = Z.SII AND Z.PII = "P3") UP s.slt ;

c) "This time use piped mode".

OPEN GET W S.SNAME: 3Z(S.Slt = Z.S # AND Z,Plt = "P3")

Each succeeding tuple is obtained by the following get.

GET W;

This operation can be tenninated at any time by a close statement.

CLOSE W;

6. "Get supplier names for suppliers who supply at least one red part."

RANGE PART P

RANGE SUPPLIERS

GET W SUPPLY .S# : j P (P ,P# = SUPPLY ,P# AND P .COLOUR="RED") ;

RANGE W WX

GET W2 S.SNAME 3WX (WX.S// = S.S#) ;

Workspace may be used just as any other relation.

down a query into smaller queries.

This helps break

7. "Count the number of part s supplied by supplier Sl , "

a) RANGE SUPPLY P

GET W COUNT (P.Pll) P. SIi "Sl"

35.

b) "Count the number of parts which have the largest quantity

on hand , "

2.4.3

RANG E SUPPLY P

GET W COUNT (P.P#) TOP (1,P.QOH) ;

Boolean function TOP is used in the qualification.

c) "Count the number of parts which have two or more suppliers~"

RANGE SUPPLY P

GET W COUNT (P.P#) :ICOUNT (Z,Pl!,SI!) > =2

Modification and Deletion

An important objective of any us e r language is to provide powerful, but

easy to use, update and delete facilities . Unfortunately this

introduces interference problems between concurrent users. It usually

occurs when more than one user accesses the same tuple at the "same time".

For example, suppos e two are Ul and U2 where -

1. Ul requests and receives a copy of tuple A in his workspace.

2. U2 also requests and receives a copy of tuple A in his

workspace .

3. Ul modifies tuple A and returns it to the data base.

4. U2 also modifies tuple A and also returns it to the data base,

Then the update of tuple A by Ul has been completely destroyed, So

clearly the constructs for updates and deletes cannot be as simple as

the GET.

2.4.3.1 The HOLD

A general solution to the problem is to prevent all other access to

36.

tuples which are going to be updated or de leted until the process has

been completed. In the above example the request made by user U2 in

step 2 should have been refused. The HOLD is intended to do just that.

It "locks" all the attribute values of a specific relation and thus

prevents all other us ers from modifying or deleting any of these values

until they are r eleased. It could be argued that HOLDs imply a degree

of data dependence. But as long as there is concurrent processing

there is also no possible way the problem can be avoided. It can only

be hidden. However, it is also a problem that occurs frequently in

the real world, so all users should be very familiar with it. Thus

undue difficulty should not be caused by the explicit use of HOLDs.

There are vary ing degrees at which such locks may apply,

subset r of relation R may -

A lock on a

1. Prevent all access to R or r only,

2. Prevent all but retrieval on r.

3. Prevent update and deletion of r but still allow

insertion and retrieval on R.

Here only two locking systems will be used.

1. A HOLD, which prevents all access to 'held' tuples

that are likely to be modified or deleted,

and 2. An 'exclusive' lock mechanism, which prevents all access

to these held tuples.

section 2,4.5.

See SERIAL BEGIN SERIAL END

The HOLD on its own does not modify or delete any tuple values. Instead

it is used in conjunction with either an UPDATE or a DELETE statement,

A HOLD-UPDATE sequence forms the updating or rewriting process and the

HOLD-DELETE sequence forms the deletion process. The HOLD operates

basically as a GET, that is, the object of the HOLD is returned into a

37.

. named workspace. There it can be manipulated by host language

statements before it is used to either delete or update its occurrence

in the associated data base relation. So the HOLD warns the DBMS of

the user's intention to modify or delete this data, There exists two

important features of the HOLD. These are:

1. The target list must either include enough primary keys to allow

an UPDATE or DELETE to be performed or the DBMS must have the

*

capability of supplying a default set of keys.

HOLD of the form

For example, a

HOLD W PART. (COLOUR,WEIGHT) : PART.COLOUR= "RED" ;

would result in the following if no default attribute names are

included, It is the same result a GET would product.

w COLOUR WEIGHT

RED 12

RED 14

RED 19

But this is not adequate since it is impossible to determine,

from the workspace alone, which tuple should be updated or deleted,

There could also be two or more tuples whose COLOUR and WEIGHT

values are the same. But these HOLDs are a logical continuation

of the GET and are also syntactically correct. So, rather than

impose a semantic restriction requiring the user to supply all

primary keys, it is better to have the DBMS supply all missing keys

to the workspace. No generality is lost, nor can any security

constraints be violated*. So with the same HOLD, relation W

would now be returned as follows.

If a user has authority to perform an update or delete then the same
user must also have authority to view key attribute, as a knowledge of
the keys is necessary for an update or delete.

2.

38,

w PII COLOUR WEIGHT

Pl RED 12

P4 RED 14

P6 RED 19

Here only one primary key is required for an update or a delete,

But, if there is more than one primary key, a number of tuples

may be updated or deleted for only one workspace tuple. This is

undesirable as it places more emphasis on users to predict such

unseen events. The requirement that all primary keys be returned

to the workspace solves this problem,

The target list must only reference one relation . So at most one

relation can be held by any one HOLD, This requirement is

needed because it is not possible to up-date or delete from an

arbitrarily defined relation without losing integrity, For

example, suppose the following HOLD is allowed:

RANGE SUPPLY SP

RANGE PART P

HOLD W (SP.S# ,P.P# ,P,COLOUR) SP .Pfl P.P#

Result

w Sf/ PI! COLOUR

Sl Pl RED

S2 P3 BLUE

S2 P5 BLUE

S3 P3 BLUE

S3 P4 RED
jcoLOUR I

S4 P6 RED Dependencies

SS P2 GREEN

SS PS BLUE

SS P6 RED

39.

Suppose the second tuple was changed to <S2, P3, YELLOW>. Then how

can the DBMS update the PART relation when the result would imply that

part P3 is both yellow (tuple 2), and blue (tuple 4). The key

attributes of a tuple are always locked whenever that tuple is specified

by a HOLD. Thus, no other HOLD can operate on an already held tuple.

Ordering

Ordering is used to inform the DBMS of the order held tuples are to be

returned to a workspace.

operations of a GET.

Its operation is identical to the ordering

Piped HOLDs

The piped option allows the user to update or delete one tuple at a time.

It is similar to the piped GET, except one tuple is locked at a time

and, after each update, delete or release, the held tuple is unlocked.

Unusual Operations

A user is allowed to HOLD any one of their workspace relations. No

other user may access anothers workspace, so such a HOLD is realy redundant.

But it does allow a user to update or delete tuples while still using

Calculus statements.

2.4.3.2 UPDATE, DELETE and RELEASE

Each HOLD must be followed by an UPDATE, DELETE or RELEASE. If UPDATE

then all the relations in the specified workspace replace their counter-

parts in the held relations. If DELETE .then all the relations in the

named workspace are deleted from the held relations.

the object of the HOLD is released.

If RELEASE then

2.4.3.3 HOLD Syntax

<hold statement > ::= HOLD <workspace name>I

<piped option> HOLD <workspace name><hold expression>

<element ordering list >

<hold expression> ··= <hold target > !

40.

<hold target > : <qualification expression>

<hold target >

<attribute list>

::= <relation specifier > !

<relation specifier>.<attribute name> !

<relation specifier>,(<attribute list>)

::= <attribute name>!

<attribute name>,<attribute list>

2.4.3.4 UPDATE, DELETE and RELEASE Syntax

<update statement>

<delete statement>

<release statement>

.. - UPDATE <workspace name>

··=DELETE <workspace name>

.. - RELEASE <workspace name>

2.4.3.5 Examples

1. (a) "Hold the entire relation PART."

HOLD W PART ; or HOLD W PART. (PI! ,PNAME) ;

This is the same as holding all the key attributes, or any

other attribute because all key attributes must be included.

(b) "Hold all PART tuples which have a red value in the COLOUR

attribute."

HOLD W PART. (PI!, COLOUR) PART.COLOUR "RED"

(c) "Hold a single tuple only."

HOLD W PART. (Pli , PNAME) : PI! = '"P3"

2. Updates and deletes can range from being very simple to quite

complicated.

(a) "Change the part name of port P6 to GEAR"

HOLD W PART. (PI/, PNAME) : PART.PI!= "P6"

W.PNAME = "GEAR"

UPDATE W;

(host language)

(b) If a tuple does not need to be modified or deleted it is

simply released.

HOLD W PART. (PNAME)

RELEASE W;

PART.PI/= "P6"

(PI/ is included by default).

(c) The HOLD is as flexible as a GET.

"Delete all part tuples which have two or more suppliers,"

RANGE SUPPLY SP

RANGE PART P

HOLD W P.(P# ,PNAME, WEIGHT) :

J SP (SP. PI! = P, PI! AND I COUNT (SP, P{I , SIi) > 2)

DELETE W;

41,

3. Piped mode is very effective when modifying a set of tuples, for

two reasons. Firstly it is much easier to achieve a successful

HOLD since at most only one tuple needs to be held, secondly, there

is far less likelihood of locking out other users. So more than

one user can concurrently execute a piped hold as follows on an

entire relation,

OPEN HOLD W PART

4. Finally, by using the concepts outlined in Chapter 1 it is then

possible to reduce many administrative functions to nothing more

than a HOLD-UPDATE or HOLD-DELETE sequence,

2.4.4

"Grant access to all users who have a status of senior."

RANGE USERS U;

HOLD W ACCESS. (USERNAME, GRANTS) :

3 U(U.USERNAME = ACCESS.USERNAME AND

U. USERPOSITION = "SENIOR")
I

42.

host language An administrator would simply fill

the GRANTS attribute of all workspace

tuples with YES then execute an

UPDATE statement.

UPDATE W

Here it is assumed that a relation called USERS contains necessary

user information and that the relation ACCESS is used by some

security constraint. Compare with the use of relation GRANTS in

section 1.3.4., of appendix II.

PUT Statement

The other major component of a manipulation language is the "addition" or

"write" facilities. It is through these that all data enters the data

base. Unlike the HOLD the PUT does not require a locking of relations or

data. This is so because the tuples that PUT handles do not and must not

exist in the data base. But other problems which threaten the integrity

of the data base still can arise. See serial execution, section 2.4.5.

PUT inserts all the tuples from a workspace into the nominated relations.

This workspace must be previously structured to suit the tuples. In

particular, _it must contain at least all the primary keys of a relation

before it can be inserted into that relation. Both the important features

of HOLDsalso exist for PUTs.

1. The target list must include all the primary keys.

2. The target list must only reference one relation.

If it so happens that an identical tuple already exists in the relation

43.

then the DBMS will reject the workspace tuple and print appropriate

messages.

Target and Qualification

The PUT statement is also capable of operating on workspace tuples before

inserting them into a relation. It may selete an attribute by simply

not specifying that attribute in the target list and may also select

only a set of workspace tuples - those which pass the qualification,

Notice how the role of the workspace name and target are now reversed.

A workspace name now indicates where the data is to come from and the

target indicates how and where it is to go.

Ordering

Insertion with ordering is permitted, but this should not be a physical

ordering. Instead, the ordering function is simply remembered and

executed on retrieval, In this way the system is free to choose the

most efficient ordering. Also, more than one user can now be allowed to

define an ordering.

Piped PUTs

Piped PUTs are the same as other piped modes, With each successive PUT

operation one tuple from the workspace is inserted into the relation.

However, the workspace must contain only one tuple at a time. Should it

contain more. then the extra tuples are either ignored or the PUT

operation is terminated, If this restriction is lifted then all tuples

in a workspace would be inserted into the relation for each successive

PUT.

Unusual Operations

Again the syntax allows a user workspace to be specified instead of some

data base relation. This feature is not really needed by users, but it

can be useful for constructing audit trails and such.

WHEN statements in section 2.4, appendix II.

2.4.4.1 PUT Syntax

See ON and

::= PUT <workspace name>!

44.

<put statement >

<piped option> PUT <workspace name> <put expression>

<e lement ordering list>

<put expression>

<put target >

2 -~ .4. 2 Examples

::= <put target > !

<put target > : <qualification expression>

::= <relation specifier>!

<relation specifier> . <attribute name>I

<relation specifier>.(<attribute list>)

First consider the following two workspace relations

Wl PI! PNAME COLOUR WEIGHT QOH

P7 GEAR YELLOW 20 1

PB PIN BLACK 2 15

P9 SHAFT WHITE 18 2

(a)

W2 PI!
1

NO PNAME COLOUR WEIGHT QOH

P7 1 GEAR YELLOW 20 1

P8 9 PIN BLACK 2 15

P9 14 SHAFT WHITE 18 2

(b)

If the above two workspaces exist then the following PUTs may be

perfonned.

45.

1. (a) "Insert all th e tuples of Wl into the PART relation."

PUT Wl PART ;

(b) "Insert all tuples into PART but leave all PNAME values null."

PUT Wl PART. (P#, COLOUR, WEIGHT, QOH) ;

(c) W2 can also be used a s long as it is first made compatible

as follows:

PUT W2 PART. (P# , PNAME, COLOUR, WEIGHT, QOH) ;

(d) "Insert only those tuples which have a weight of less than 20."

PUT Wl PART: Wl. WEIGHT < 20

(e) "Insert only thos e tuples which do not have a part number the

same as some SUPPLY tuple."

RANGE SUPPLY SP ;

PUT Wl PART : V SP (SP.P# /Wl.P#)

2. "Open a piped mod e of input . "

OPEN PUT Wl PART ,
I I I

I I I

1
host

1
language

1

PUT Wl; Note that a RELEASE is not needed in the
I I
1
host

1
language usual sense. However, it should be used

PUT Wl to skip the undesired tuples.

CLOSE Wl

3. If Wl was initially empty then it could be filled from W2 as follows:

PUT W 2 Wl. (P# , PNAME, COLOUR, WEIGHT, QOH) ;

2 . 4 . 5 Serial Execution

The HOLD statement still does not prevent the possibility of losing data

base integrity. What is needed is a way to HOLD tuples from more than

one relation at a time, that is, some way to execute multiple HOLDs

concurrently. It may also be necessary for such HOLDs to give exclusive

46,

control over invalid data. See examples below. But a very serious

problem can occur if a user is allowed to execute more than one HOLD

concurrently. That i s , "deadlock" can occur as follows, Consider two

1
users Ul and U2 •

1. Ul HOLDs a set of tuples A

2. U2 HOLDs a set of tuples B

3. Ul requests a HOLD on a subset of B but must wait

until U2 releases them

4. U2 requests a HOLD on a subset of A but also must

wait until Ul releases them.

One solution is to prevent further requests for any HOLD if that user

already has held tuples. But then it is possible that inconsistencies

may develop within the data base
2

. For example, it may be decided that

for all supplier numbers, S#s, in the SUPPLY relation there should exist

a SUPPLIER tuple with the same supplier number S#. In other words, only

a supplier who exists should be allowed to supply parts. The problem

is how to modify and delete tuples within these relations without

violating such a constraint, even if it only occurs for a short time.

As an example, suppose that user Ul performs a read of the form,

1

2

READ RANGE SUPPLIERS

RANGE PART P

RANGE SUPPLY SPX

GET W (S.S#, P.P# , P.PNAME)

3SPX (P.P# = SPX.P# AND

(S.S# = SPX.S# AND SO STATUS> 20));

Although specific reference is made to tuples and relations this pr·oblem
goes a lot deeper and in fact can apply to any resource that is shared -
input/output devices, storage space and so on.

By consistency it is meant that at any particular time the data within
a data base conforms to the current set of constraints.

47.

That is, Ul retrieves the supplier number, part number and part name

for all parts supplied by suppliers who have a status > 20, Suppose

also that user U2 wishes to update the data base with the following

information:

(a) Part 6 is now redundant.

available and is defined as

Instead a new part 6 is

wx PII PNAME COLOUR WEIGHT QOH

P6 GEAR YELLOW 22 1

(b) Original suppliers of part 6 also supply the new part 6, but

now supplier S3 supplies part 6 as well.

Consider the following sequence.

shown in Figure 2.4:1.

1. Ul READs result a.

The result of each successive READ is

2. U2 adds the new tuple <S3, P6, J3, 4> to relation SUPPLY.

3. Ul READs again result b.

4. U2 HOLDs tuple P6 of supply and then modifies it as indicated

by WX above.

5. Ul READs once again result c,

It should be noted that result b is completely false. Supplier S3 has

never supplied a red cog of weight 19. This problem is more serious

than it may first appear. It exists for all other combinations

(PUT PUT PUT DELETE etc.) and also for sequences

greater than two statements. A possible solution is to prevent all

processes during U2's upqate. That is, a simple statement that will allow

a sequence of HOLDs, PUTs etc., to be performed without interruption.

This can be done by bracketing the sequence with appropriate symbols.

Thus a compound statement is formed which can then be executed as a

single statement. Not e , all simple Calculus statements ar e executed

without interruption from any other user.

w Sit

S3

S3

SS

SS

SS

2.4.5.1

Ptl PNAME

P3 SCREW

P4 SCREW

P2 BOLT

PS CAM

P6 COG

Result a

sit Pit PNAME

S3 P3 SCREW

S3 P4 SCREW

S3 P6 COG

SS P2 BOLT

SS PS CAM

SS P6 COG

Result b

Figur e 2.4:1

Inconsistency Problems

Serial Syntax

Sit Pit PNAME

S3 P3 SCRE\-.1

S3 P4 SCREW

S3 P6 GEAR

SS P2 BOLT

SS PS CAM

SS P6 GEAR

Result c

48.

<serial statement>

<serial tail>

.. -

.. -

SERIAL BEGIN <serial tail>

<manipulation statement > SERIAL ENDJ

<manipulation statement> ; <s erial tail>

<manipulation statement>

<ge t statement>

<put statement>

::= <range statement> !

<hold statement >!

<update statement> !

<delete statement> J<release statement > !

<close statement> J<serial statement>

Note the following important points.

1. No host language construct is allowed in the serial statement.

they were allowed then the whole DBMS would often be waiting

indefinitely on a single user.

If

2. Problems exist whenever a Calculus statement within a serial statement

49.

fails. Suppose PUT W3 SUPPLY fail s in example 3, section 2.4.5.2,

then to maintain integrity the DBMS must back-track and remove all

changes caused by the previous PUTs.

3. Any user currently holding a set of tuples cannot gain additional

HOLDs, whether it is by using a s erial statement or not.

4. Serial statements appearing within a serial statement are simply

equivalent to the sequence of manipulation statements they contain.

This feature is included for syntax simplicity only.

5. The DBMS has to carefully check the contents of serial statements,

and check for their existence when one is expected. The reasons

for this can best be seen by considering the following example.

Suppose the enterprise administrator or data base administrator decided

that all parts should have suppliers and all suppliers should supply

parts. Suppose also, that a user HOLDs tuples in relations SUPPLIER and

SUPPLY by performing the following serial statement,

SERIAL BEGIN

HOLD Wl S. (S# , SNAME, CITY)

HOLD W2 SP.(S# ,P# ,J# ,QTY)

Sil = "Sl"

SIi = "S 1"

SERIAL END;
I I
I host I language
I I

followed by either a)

a) SERIAL BEGIN

DELETE Wl

DELETE W2

SERIAL END

orb)

I
I

r
or other.

b) SERIAL BEGIN

UPDATE Wl

RELEASE W2

SERIAL END

The DBMS must expect this serial statement after such a HOLD, For if

a DELETE Wl; DELETE W2; follows then there exists a possibility that a

concurrent user may access the data base between the two statements and

so violate the above constraint. As well as this the DBMS must check

for legal serial statements. The constraint will also be violated if

only one DELETE is present in a serial statement.

2.4.5.2

e.g. SERIAL BEGIN

UPDATE Wl

DELETE W2

SERIAL END;

Serial Examples

50.

1. "Retrieve data from relation SUPPLIER, PART, and SUPPLY in a way

that prevents all interruptions"

RANGE SUPPLIER S

RANGE PART P

RANGE SUPPLY SP

SERIAL BEGIN

GET Wl (S.S# , S.SNAME, S.CITY) ;

GET W2 (P.P# P.PNAME, P.COLOUR)

GET W3 (SP.S#, SP.P# ,SP,QTY)

SERIAL END

2. "Hold tuples in two different relations."

SERIAL BEGIN

HOLD Wl PART. (PI! ,QOH) : PI! = "P 1"

HOLD W2 SUPPLY. (SIi ,PI! JI! , QTY) : PI! = "Pl"

SERIAL END ;

3. "Add tuples to three different relations at once."

SERIAL BEGIN

PUT Wl SUPPLIER

PUT W2 PART

PUT W3 SUPPLY

SERIAL END;

4. "Multiple HOLDs can be used with piped option."

SERIAL BEGIN

OPEN HOLD Wl SUPPLIER;

OPEN HOLD W2 PART;

OPEN HOLD W3 SUPPLY

SERIAL END ;

51.

Note, that such a statement

would be very irresponsible unless

it was in piped mode, because all

three relations would be completely

locked.

a) Tuples from each of the named relations are held and placed

into the respective workspaces.

them.

SERIAL BEGIN

UPDATE Wl

UPDATE W2

UPDATE W3

SERIAL END ;

It is now possible to update

b) All following HOLDs must also be within a serial statement, e.g.

SERIAL BEGIN

HOLD Wl

HOLD W2

HOLD W3

SERIAL END

c) If the user decides to only update relations PART and SUPPLY,

then SUPPLIER is closed, e.g.

SERIAL BEGIN

CLOSE Wl

HOLD W2

HOLD W3

SERIAL END

d) Now all the following HOLDs will be in pairs. e.g.

SERIAL BEGIN

HOLD W2

HOLD W3

SERIAL END

52.

53.

DEFINITION AND CONTROL

3

The relational model permits a langua ge designer to take a consistent

and unified approach to data manipulation, definition and control.

Her e a language will be cons i der en where even the most advanced

administrator is considered as just a user. Therefore, this language

must include facilities which can be used for administrative procedures.

That is, facilities for data definition and control. Using thes e it

should be possible to define new relations and domains as well as

give operational instructions to the DBMS.

There are three major asp ects t o data de finition.

1. Specifications giving the characteristics of the data;

e.g. relation name, domain names and data types.

2. Specifications giving the different user views of this

relation or other desired relations ; e.g. mappings.

3. Definitions of subschemas and schema. This not only

includes definitions of the form 1. and 2. above, but

also includes the necessary control information of the

form given below.

In this chapter, control aspects are grouped into three areas.

Constructs will be seen to ex ist for -

1. Security: limiting user Calculus operations as well

as protecting data from unauthorized access.

See access constraints, section 3.2.5 : 1.

2. Integrity: protecting the validity of the data in

the data base , e.g. data validation.

See integrity constraints , section 3.2.5.2,

3. Instructions: operat ions tha t need t o be performed

whenever a certain condition or stat e arises; e.g.

control of security breaches, audit trails, collection

of statistical information,

See ON and WHEN constructs of sections 3.2.6 and 3.3.2

respectively.

3.1 Domain Statement

54.

All domains to be used by the DBMS must first be declared. These

are declared either in the schema or the subschema. They are the

actual stored domains. But it is still possible to derive "virtual"

domains from this set of stored domains. The domain statement names

a set of values and describes the representation of the values in the

set. That is, each value in the named set has the same representation.

It is from these declar ed domains that r elations ar e formed.

All domains used by a particular subschemas' relations have to be

defined in the same subschema, unless the relations supply their own

mapping from a schema domain - see section 3.2. For each subschema

domain there must be one corresponding schema domain. So there exists

a one-to-one mapping from schema domains to subschema domains. As

implied above, there can be a significant difference between a schema

domain and the corresponding subschema domain. But, since the

mapping is always one-to-one, it is alwavs poss i ble to perform PUT,

UPDATE or DELETE operations on them. The dif f erences may either be

naming differences, or "type declaration" differences. A schema

domain name may be changed by changing its name in the relation mapping.

It should be noted that domain declarations in subschemas are really

mappings. That is, they describe how t h e corresponding domain,

recognised by name, in the schema is to be transformed in the subschema.

Type declarations describe, to the DBMS, what form the domain values

55,

must take. These values are dPscribed by CHARACTER, NUMERIC,

format and FLEX.

CHARACTER

Simply indicates that the domain values are to be any legal character

string. The legal character may differ slightly from machine to

machine.

NUMERIC

Indicates that the values are to be interpreted as real numbers or

integers.

Format
I

Format consists of either a single integer or two integers. Their

meaning is dependant on whether they are used in conjunction with

CHARACTER or NUMERIC. A single integer, when used with CHARACTER,

indicates the length of the maximum character string. Two integers

give bounds on flexible character strings. The first integer is the

minimum space allotted for these strings. The second integer is

the maximum possible length of the character strings. If two integers

are given and FLEX is not specified then only the first is used, the

second being redundant. When format is used in conjunction with

NUMERIC, a single integer specifies the maximum size in characters of

allowed integers, Two integers are used for reals; the first

specifies the size before the decimal point and the second specifies

the maximum size after the decimal point, The permissable number of

integers allowed also limits the maximum value of a number, But when

FLEX is used this restriction is lifted and format then indicates a

minimum.

FLEX

Inrl.icates that the flexible option is to apply.

56.

Retrieval/Storage Ca~_!_

For every subschema there exists some function or procedure which

transforms schema domains into subschema domains or vice versa. This

procedure may be simple (just an identity function)~ or may exist by

default (some trunction), or may be complex. In the latter case the

user must specify the procedure with a retrieval/storage call.

However, if the domain is to be used for reading only then a storage

call does not have to be given.

3.1,1. Domain Syntax

<domain statement>

<domain list >

::= DOMAIN <domain list>

· ·= <domain expression>J

<domain expression> , <domain list>

<domain expression>

<type declaration>

<data type>

<type>

<retrieval call>

<domain name>

<storage call>

::= <domain name >< type declaration>

<retrieval call><storage call>

::= <data type>JFLEX <data type >

··= <type>(<format>)

::= CHARICHARACTERJNUMJ

NUMERIC

::= <empty>J

FOR RETRIEVAL<procedure call>

··= <identifier>

::= <empty>J

<format>

FOR STORAGE<procedure call>

::= <unsigned integer>J

<unsigned integer>, <unsigned integer>

3,1.2 Examples

l, "Define two domains STATUS and COLOUR where STATUS consists of

integer values of the form XXX and colour consists of character

2.

3.

4.

strings 8 characters long."

DOMAIN STATUS NUMERIC (3),

COLOUR CHARACTER (8) {

DOMAIN WEIGHT NUMERIC (2,2) ;

Here real values are used in a fonn XX.XX.

DOMAIN PNAME FLEX CHARACTER (3),

WEIGHT FLEX NUMERIC (0,2)

PNAME is initially declared with space for three characters,

but if longer character strings are needed then more space

57.

will be allotted. No theoretical limit exists but in practice

some physical restriction will exist; either that imposed by

data base administrators, or maximum physical storage space

available. Likewise, WEIGHT is not limited to representations

of the form XX, but can also print out a number such as 345.45.

It may be an advantage to so limit the number of decimal places.

DOMAIN PNAME FLEX CHARACTER (0,25) ;

Initially no space is allotted for the character string. But

it will accept character strings up to and including 25

characters.

5. Suppose that a schema domain is declared as

DOMAIN COLOUR CHARACTER (8) ;

then a COLOUR domain may be declared in a subschema as follows.

DOMAIN COLOUR NUMERIC (2)

FOR RETRIEVAL CALL CODEl

FOR STORAGE CALL CODE2

procedure calls are needed to convert from one data type to

another. CODEl may be a colour code where RED=l, YELLOW=2 and

58.

so on. The storage proc edur~ i s always the inverse. So, ,

in this case l=RED, 2=YELLOW . . . etc,

3.2 Relation Statement

The relation statement is used to create sch ema and subschema rela.tions 1

A user creating such a relation must spe cify what attributes exists

and which of these, if any, constitute a key,

also give -

In addition a user may

and

1. any necessary mappings showing how this relation is

formed from others;

2. the security and integrity requirements;

3. any necessary operation that a DBMS needs to perform

whenever a condition or state associated with this

relation occurs.

Thus, by using these , it is possible to give a complete definition of

subschema and schema relations, Note, these are not the actual physically

stored relations, so no information necessary for physical storage is

given here,

* relations".

Instead this information is contained within "system

As with domains, every schema relation must be declared in the schema and

every subschema relation must be declared in the subschema, All

physically stored relations must also have a defined schema counterpart.

However, it is possible to define derived relations in the subschema

which do not exist in the schema in such form. But in this case the

mapping is not one-to-one, thus no PUT, UPDATE or DELETE operation is

allowed.

* The term "system relations" refers to relations which contain the data
necessary for DBMS operation. See Chapter 1, section 1,2.1.

59.

3.2.1 Relation Stat ement Syntax

<relation statement>

3.2.2 Attributes

<attribute list>

::= RELATION<relation name>(<attribute list>)

<key>

<mapping declaration>

<relation constraint list>

<relation control list>

: := <attribute name>I

<attribute name>, <attribute list>

All attributes that will be used in a relation have to appear in the

attribute list. The order of this list is the order in which attribute

valueswill appear in the tuples. This ordering does not prevent the

system from displaying tuples in some other order, For example, in

the following two GETs below, GET (a) returns all tuples in the declared

order while GET (b) returns all tuples in reverse order.

a) GET W PART;

b) GET W (PART.QOH,PART.WEIGHT,PART.COLOUR,PART.PNAME,PART.P#);

An important function of an attribute name in a relation statement is to

identifier some schema or subschema domain. This informs the DBMS of

the format that the attribute values are to take and from which domain

they are to be taken. The domain so associated with the given attribute

name is simply the domain named in the attribute name.

3.2,3

<key>

Key

: := KEY NULLIKEY <attribute name > I

KEY (<attribute list>)

Within each relation there may exist one or more key attributes. Key

attributes allow any tuple to be uniquely identified by a set of values -

60.

one value for each attribute, Thes e values must always exist in each

tuple of a relation, That is, there cannot be a null value in a

Key attribute, When the NULL option is used, then no special

consideration is given to certain attributes, The relation can be

considered as all Key by those ope rations requiring a key, However,

this does complicate updates as Keys are us ed for identifying tuples.

For this reason such r e lations are nearly always limited to retrieval

operations only.

3,2,4 Mapping~

A mapping statement may be used in either a schema relation or a

subschema relation statement. When used in the schema it represents a

mapping from physical storage to the schema relation, and a mapping

from the schema to physical storage. Hopefully, it is possible to

choose a general physical storage structure and thus simplify this

mapping to such an extent that it becomes possible for the DBMS to

derive it.

be needed,

If this were the case then a mapping declaration would not

Mapping declarations give the information needed to derive a complete

subschema relation ,

ships with each other,

That is, the attribute values and their relation­

A mapping declaration operates in a way similar

to a GET 1 but a major difference is that the DBMS has to construct an

inverse mapping when PUT operations are used. There are many

similarities between the syntax of a GET and the syntax of a mapping

declaration ,

Consider now some of the major mapping constructs,

a) The range list provides a facility for writing a number of range

declarations, These declarations are identical, in function and

syntax, to user written range declarations.

Of course, the ranges defined in a mapping declaration of a

relation are written specifically for the mapping process,

so their scope is limited to within the mapping declaration.

And, similarly, user written range declarations cannot have

any effect inside a mapping declaration.

b) Instead of a target list th e mapping declaration has an

attribute list. See mapping syntax, section 3.2.4.1. The

61.

target list of the GET is used only as an output format, instead

an attribute mapping list is used to indicate what relations and

attributes the values are to come from and what attributes of

the derived relation they are to be included in.

c) The qualification is identical in function to that of the GET.

It can be used to limit the values of an attribute to those that

satisfy a particular condition, or it can be used to give a

relationship between the attribute values and so construct a

relation.

All schema to subschema mappings are either one-to-one or many-to-one.

Clearly any subschema relation can be used for GET operations, but a

relation formed by a many-to-one mapping cannot be used for UPDATE,

DELETE or PUT operations. The following three rules must apply if

UPDATE, DELETE or PUT operations are to be used.

1. Individual tuples may be omitted from the original relation.

2, Non-key attribute may be omitted.

3. The subschema and the corresponding schema relations must

be identical except for the above two conditions.

Notice that rule 2 is more restrictive than just saying the mapping has

to be one-to-one. A one-to-one mapping will allow key attributes to be

omitted as well. Finally, if the relationship between attribute values

is not specified in the mapping expression then a semantic error occurs.

62.

Producing an arbitrary relationship would be misleading.

4, section 3,2.4,2,

See example

3,2,4,1 Mapping Syntax

<mapping declaration> : := <empty> J

<range list>

MAPPING<range list ><rnapping expression>

· · = <empty > J

<range statement>!

<range statement><range list>

<mapping expression> - <mapping>l<q uantified mapping>

··= (<mapping>)!

<quantification>(<mapping>)

··= <attribut e mapping list >J

<attribute mapping list>AND<qualification>

<quantified mapping>

<att ribut e mapping list> ::= <a ttribut e mapping>!

~attribute mapping>AND<attribute mapping list>

<attribute mapping>

<expression>

Note l

::= <relation specifier>,<attribute name >=

<expression>

i:= <st ring expression>!

<numeric expression>

The syntax of a mapping implies an ordering , That is, an attribute

mapping list must appear before a qualification,

need not be the case,

Note 2

But in practice this

It is tempting to simplify the above syntax by writing

<mapping>::= <qualification>

But then it is no longer clear that an attribute mapping list must be

present, A better syntax would result if the attribute mapping list

was separated from the qualification in a similar way the target list of

63.

the GET statement is separated from its qualification, Not only does

such a mapping enhance the uniformity of the Calculus, but it also

simplifies the mapping construct by reducing the number of RANGE

statements and quantified variable s ne eded.

section 3.2.4,2,

Refer to example 1 (b),

<mapping declaration > - <empty>J

MAPPING <range list>

(<simple attribute mapping list >): <qualification expression>

<simple attribute mapping list> ::= <attribute mapping >J

<attribute mapping>,<simple attribute mapping list>

3.2.4.2 Examples

1. (a) "Derive a relation from PART which is identical to PART

except for the omitted P2 tuple."

RELATION SUBPART (P#,PNAME)

MAPPING RANGE PART P

3 P (SUBPART,P#=P,P# AND P,P// :f. "P2"

AND SUBPART.PNAME = P.PNAME)

(b) The above example can be written more simply by using th e

alternative syntax of note 2 as follows.

RELATION SUBPART (P#,PNAME)

MAPPING

(SUBPART.P#=PART.P#,SUBPART.PNAME=PART.PNAME):

PART.PI! :f. "P2"

2, "Derive a relation from PART and SUPPLIER."

3.

RELATION PARTSUPPLIER (P#,PNAME,SNAME)

MAPPING RANGE PART P

RANGE SUPPLIERS

RANGE SUPPLY SP

3P3SP3S (PARTSUPPLIER.P#=P.P#

AND SP.P#=P.P# AND SP.S#=S.S#

AND PARTSUPPLIER.PNAME=P.PNAME

AND PARTSUPPLIER.SNAME=S.S#)

"Derive a relation PN consisting of attributes P# and N.

64.

Where N

consists of the number of suppliers who supply the respective parts."

RELATION PN (P#,N)

MAPPING RANGE SUPPLY SP

3SP (PN.P#=SP.P# AND PN.N=ICOUNT (SP.P# ,S#))

4. "Derive a relation from PART and SUPPLIER." (Invalid)

RELATION PARTSUPPLIER (P# ,PNA."1£,SNAME)

MAPPING RANGE PART P

RANGE SUPPLIER S

3P3S (PARTSUPPLIER.P# = P.P# AND PARTSUPPLIER.PNAME

=P.PNAME AND PARTSUPPLIER.SNAME = S.SNAME)

No information is given on how the different tuples are to be joined,

so a semantic error will occur.

5. A table is given in the last example to show what relation is

formed from PART, SUPPLY and SUPPLIER.

RELATION EXAMPLE (S# ,SNAME, P# ,PNAME, J# ,QTY)

EXAMPLE

SIi

Sl

S2

S2

S2

S2

S2

S4

S4

3.2.5

MAPPING RANGE PART P

RANGE SUPPLY SP

RANGE SUPPLIERS

3S3SP1P(S.S#=SP.S# AND SP.P# = P.P# AND S.STATUS < 30

AND (SP.QTY /. 6 AND SP.QTY /. 2) AND P.P# /. "P4"

AND EXAMPLE.S# = s.s# AND EXAMPLE.SNAME=S.SNAME

AND EXAMPLE.P# = P.P# AND EXAMPLE.PNAME=P,PNAME

AND EXAMPLE.J# = SP.J# AND EXAMPLE.QTY=SP,QTY

SNAME I PI! PNAME J I/ QTY !
i

SMITH Pl NUT J4 7

JONES P3 SCREW Jl 4

JONES P3 SCREW J4 5

JONES P3 SCREW J6 4

JONES P3 SCREW J7 8

JONES PS CAM J2 1

CLARK P6 COG J3 3

CLARK P6 COG J7 3

Relation Constraint

65,

It is the relation constraint which achieves many security and integrity

objectives. The problems are enormous,' yet the above constraint list

construct gives a powerful coverage without lengthy and complicated

notation. Perhaps it is only the simplicity of the relational concept

that provides us with these dividends,

The constraints in the relational constraint list apply only to those

66.

oper~tions, or functions, which affect that one relation. Two separate

forms of the relation constraint exist. The access constraint and

the integrity constraint. Although their syntax is similar their

operation is quite different. An access constraint monitors the form

of user operations (requests) on the data bas e and an integrity constraint

monitors the form of the data - their values, what values exist and so on.

3.2.5.1 Access Constraint

The access constraint gives the DBMS security control.

parts to an access constraint.

There are two

a) Constraint Applicability Part

The constraint applicability indicates when the construct is to

apply and what form the constraint is to take. See examples 1,

2 and 3 of sec tion 3.2.5.5, Unfortunately the situation is

complicated by a host of implied "super constraints" and "sub­

constraints" which also exist for each written constraint. So

the DBMS has to determine whether an operation does not violate

any of these implied constraints as well. This information can

be embedded into the DBMS as a set of axioms . For example,

Codd defines four simple security axioms concerning GET and HOLD.

See Date (26), p.291 or Date (27), p.381.

a. If attribute combination A is accessible to X subject to

condition C, then every subcombination of A is conditionally

accessible to X, and so far as X is concerned, no condition

for any subcombination can be stronger than C.

b. If attribute combination A is prohibited to X under condition

C, then every attribute combination containing A as a

subcombination is conditionally prohibited to X, and so far

as X is concerned, no condition for any supercombination can

be weaker than C.

c. If user U is allowed to HOLD attribute combination A subject

to condition C, then U is conditionally allowed to GET A,

and the condition concerned cannot be stronger than C.

d. If user U is unconditionally forbidden to GET attribute

combination A, the n U is unconditional forbidden to HOLD A.

There are even more subtle problems. For example, suppose a user

is not allowed to see the attribute STATUS of relation SUPPLIER.

67.

That is, he should not know that Adams has a status of 30. Suppose

also that the same user is allowed to use the function ITOTAL on

attribute STATUS. Then consider the following requests, Note again

that ITOTAL will sum all the numbers in STATUS for each supplier.

1. GET Wl (SUPPLIER.SNAME,SUPPLIER.CITY):

SUPPLIER.CITY=ATHENS ;

The result of GET (1) is Wl below since Adams is the only supplier in

Athens.

2. GET W2 (SUPPLIER.CITY,ITOTAL(SUPPLIER,CITY,STATUS));

The result of GET (2) is W2 below, But from Wl and W2 it is possible

to deduce that Adams has a status of 30,

Wl SNAME CITY W2 CITY ITOTAL
·-

ADAMS ATHENS ATHENS 30

LONDON 40

PARIS so

The ~bvious solution to this problem is to forbid all users from

applying functions to attributes which they cannot first access. This

is seen as being too serious a restriction to be included in the DBMS

design, because in many cases very little information can be gained

68,

from applying certain functions to forbidden attributes. Unfortunately,

neither is it practical to imbed any other less restrictive "rule" or

"axiom" in the DBMS, as adequate security protection depends upon the

type of function used, current state of the relation, and other Calculus

statements allowed of that user, Instead the constraint applicability

is made general enough to include all possible combinations so that

the data base administrator has complete freedom in declaring any

necessary restriction that need to be applied. It should be noted that

the Calculus UNLESS, ON and WHEN constructs allow an administrator to

be informed when the state of a relation changes in a fashion that might

jeopardise security. These constructs also allow an administrator to

declare security constraints in a dynamic fashion, In the above case,

for example, the given user may be forbidden to use the function !TOTAL

on the STATUS attribute wh enever !COUNT on the same attribute is less

than 2.

b) Qualification Expression

The qualification expression of a constraint clause indicates the

condition which will make the associated constraint applicability void,

It can constrain any item of data in the data base and release it on

any condition, Through procedures, it is possible to interrogate

the user be fore a~cess is granted.

3.2.5.2 Integrity Constraint (see examples 7, 8 and 9, section 3,2,5,5)

The integrity constraint performs data validation and consistency

operations. Here data validation is considered as the monitoring of

incoming data, whereas consistency is considered as the dependence of data

upon other data in this or some other relation, An example of this is

the condition that all parts must have suppliers. So to preserve

consistency the relations must be monitored, The most important

application of consistency control requires the monitoring of operations

on more than one relation at once. This will be considered in the

subschema. At this level, there is concern for a single relation.

But, there is still nothing preventing a relation constraint being

written which requires the monitoring of operations in some other

69.

relation, however, such requirements are ignored.

the following constraint.

For example, consider

CONSTRAINT

RANGE SUPPLIERS

RANGE SUPPLY SP

~ SP3S (S.S#=SP.S#)

Here PUT operations on SUPPLY, and DELETE operations on SUPPLIER should

be monitored. But if this constraint is written as a supplier

constraint then only DELETE operations will be monitored.

The process of data validation should also monitor the relation values,

because, quite often, data may be valid upon entry but invalid in some

future time. Basically the process of validation is quite simple,

all data considered must pass the qualification before being labelled

valid.

Note the power and flexibility that the qualification adds to the

constraint. For example, only a department manager may be permitted

to enter data between certain values, or users may be required to supply

pass words before certain values are accepted, and for all unusual

data, the user may be required to give a verification.

3.2.5.3 ON-VIOLATION

ON-VIOLATION is identical to the relational conditional. Here it is

activated whenever its associated constraint is violated in some way.

It has the advantage of preventing unnecessary repetition of the

applicability condition.

3.2.5.4 Relation Constraint Syntax

<relation constraint list> : : = <empty > I

<relation constraint>!

<relation constraint><relation constraint list>

<relation constraint> ::= <access constraint>!

<integrity constraint > !

<access constraint><constraint violation> !

<integrity constraint><constraint violation>

70.

<constraint violation>

<integrity constraint>

.. - ON-VIOLATION <subschema operation>

.. - CONSTRAINT <range list>

<qualification expression>

<access constraint> ::= CONSTRAINT FOR

<constraint applicability> !

CONSTRAINT FOR <constraint applicability> UNLESS

< constraint applicability>

<simple relation applicability>

<relation read condition>

<range list>< qualification expression>

::= <simple relation applicability>!

<relation serial condition>!

<boolean procedure call>

: := <range list>< relation read condition> I

<range list><relation write condition>

: := <piped option> GETI

<piped option> GET <quota>

<relation get expression><element ordering list>

<relation get expression> : : = < relation target> I
<relation target> :<qualification expression>

<relation target>

<relation target list>

::= <relation target term>!

(<relation target list>)

::= <relation target term>!

<relation target term> ,<relation target list>

<relation target term> : := <attribute name> I

< function>

71.

<relation write condition> :: = <piped option><operation name> I

<piped option><operation name><relation hold expression>

<element ordering list>

<relation hold expression> ::= <relation hold target>!

<relation hold target >: <qualification expression>

<relation hold target >

<operation name>

<relation serial condition>

::= <attribute name > I

(<attribute list>)

::= HOLDIPUTIUPDATEjDELETE

: := SERIAL I

SERIAL BEGIN<relation serial tail>

<relation serial tail> : := <simple relation applicability>ENDI

<simple relation applicability>; <relation serial tail>

3.2.5.5 Examples

1. "No user is allowed to update or delete from the SUPPLIER relation."

RELATION SUPPLIER (S# ,SNAME, STATUS, CITY)

CONSTRAINT FOR HOLD ;

When a HOLD is prohibited, UPDATE and DELETE are also prohibited.

If DELETE is allowed than so is HOLD,etc.

2 . "No user is allowed to see the STATUS attribute."

RELATION SUPPLIER (S#, SNAME, STATUS, CITY)

CONSTRAINT FOR GET (STATUS)

3. "No user is allowed to delete values from attribute STATUS."

RELATION SUPPLIER (S# ,SNAME, STATUS, CITY)

CONSTRAINT FOR DELETE (STATUS)

Notice the difference between this constraint applicability and

72,

the syntax of UPDATE and DELETE,

4. "STATUS is only allowed to be seen if it is less than 30."

RELATION SUPPLIER (S# ,SNAME, STATUS, CITY)

CONSTRAINT FOR GET (STATUS) SUPPLIER,STATUS >=30;

5. "A SUPPLY tuple may be deleted only if there exists another tuple

that contains this supplier number and if there exists a tuple

which contains this part number. So tuple <S2, P3, Jl, 4> may

be deleted because supplier S2 still supplies parts and part P3

still has a supplier."

RELATION SUPPLY (S# ,P# , J# , QTY)

CONSTRAINT FOR DELETE (S # , P# , J # , QTY)

RANGE SUPPLY SPX

RANGE SUPPLY SPY

3SPXJSPY (S,S#=SPX.S# AND S,P# = SPY.P# AND

(SPX.S# # SPY.S# OR SPX,P# # SPY,P# OR SPX,J# # SPY.J#));

It is important to ensure that SPX and SPY are not the same variable .

6. "Users are not permitted to view the STATUS values if they are

greater than 30. But this restriction does not apply if the user

is the manager. Also, all attempted violations are to be recorded."

RELATION SUPPLIER (S# ,SNAME, STATUS, CITY)

CONSTRAINT FOR GET (STATUS) i SUPPLIER.STATUS>30

UNLESS : USER.STATUS= "MANAGER"

ON-VIOLATION

BEGIN

END

W.RNAME = "SUPPLIER" ;

W,VIOLATIONTYPE = "T7"

W,USERNAME = CUSER.NAME

PUT W VIOLATIONS

73.

Here it is assume d that the DBMS workspace W has previously been

defined and that a relation VIOLATIONS has also been constructed.

VIOLATIONS

USERNAME VIOLATIONTYPE RNAME

PAUL T7 SUPPLIER

FAYE T6 PART

7. Suppose that the only legal colours allowed in the colour attribute

are RED, GREEN, BLUE and YELLOW. Suppose also, QOH always lies

between O and 50. Then the following information may be used

for data validation.

RELATION PART (P# ,PNAME, COLOUR, WEIGHT, QOH)

CONSTRAINT

RANGE PART P

'q P (P.QOH > = 0 AND P.QOH < = 50 AND

(P.COLOUR = "RED" OR P.COLOUR = "GREEN" OR

p.colour = "BLUE" OR P.COLOUR = "YELLOW"))

8, Suppose we know that every supplier who lives in London has a

STATUS of 20, that is, there exists a dependency.

can be informed of this by writing.

Then the DBMS

9.

74.

RELATION SUPPLIER (S# ,SNAME, STATUS, CITY)

CONSTRAINT

RANGE SUPPLIERS

'j S (NOT (S. CITY="LONDON") OR S. STATUS = 20) ;

Thus even these anomalies may be controlled.

Note that (NOT (S.CITY="LONDON")OR S.STATUS=20) is equivalent to

(S. CITY= "LONDON" ~ S. STATUS = 20)

"For all parts there exists a supplier. Also, if there is a

detected violation, the DBA must be notified and the error

corrected before any processing may continue."

RELATION PART (P# , PNAME, COLOUR, WEIGHT, QOH)

CONSTRAINT

RANGE SUPPLY SP

RANGE PART P

~ P3SP (P .Pl!=SP .PI!)

ON-VIOLATION CALL FIXIT

The procedure FIXIT handles the error condition. A more practical

solution would be to prevent all access to the relations while

waiting for corrections from the DBA. Perhaps this can be

achieved by using a lock command in the following ON-VIOLATION

construct.

ON-VIOLATION

BEGIN

SERIAL BEGIN

LOCK PART ;

LOCK SUPPLY

SERIAL END;

W.MESSAGE = "THE MESSAGE"

PUT W OPTERMINAL

END ;

10. "An example of a complete relation statement showing also how

errors may be corrected by the DBMS."

RELATION SUPPLIER (S# , SNAME, STATUS, CITY, NO)

KEY SIi

MAPPING RANGE SUPPLY SP

75.

3SP (SUPPLIER.Sll=SP.S/1 AND SUPPLIER.PNO=ICOUNT (SP,S# ,P#))

CONSTRAINT FOR HOLD (PNO)

3.2.6.

CONSTRAINT FOR GET (STATUS):SUPPLIER.STATUS > 30

UNLESS: USER.STATUS= "MANAGER"

CONSTRAINT

RANGE SUPPLIERS

~ S (S.STATUS > =0 AND S.STATUS < =50)

ON-VIOLATION

BEGIN

RANGE SUPPLIERS

HOLD W SUPPLIER. (SIi , STATUS)

SUPPLIER.STATUS < 0 OR SUPPLIER.STATUS > 50

W .STATUS = 0 ;

UPDATE W

END

Relation Control

The conditional statement allows the DBMS to perform any subschema

operation whenever the <on applicability> becomes true. This implies

an interrupt mechanism. When the <on applicability> becomes true the

76.

DBMS is interrupted and the statement executed. So the <on

applicability> is used to define a condition or state when the DBMS

is to be interrupted. These conditions or states can be identified

by any one of three different constructs.

1.

2.

3.

The qualification: This qualification behaves in the same way a

GET qualification does. If any tuple within the associated relation

satisfies this qualification then the <on applicability> becomes

true. See example 1, section 3.2.6.2, That is, it becomes true

whenever the specified data state is detected,

Constraint applicability: The constraint applicability operates

exactly as it does in the relation constraint, In this case, the

applicability becomes true whenever the specified Calculus construct

is detected.

Special Condition: A special condition is simply a boolean

variable. It is assumed a set of boolean variables exist which are

set and reset by the DBMS.

3.2.6.1 Relation Control Syntax

<relation control list> : : = <empty> I

<relation control declaration>!

<relation control declaration><relation control list>

<relation control declaration> ::= ON <on applicability>

<subschema operation>

<on applicability> ::= <range list><qualification expression>!

<constraint applicability>!

<special condition>

77.

3.2.6.2 Examples

1. "If a STATIJS value in relation SUPPLIER becomes larger than 30 then

reset this value to O,"

RELATION SUPPLIER (S # , SNAME, STATUS, CITY)

ON RANGE SUPPLIERS

3S (S.STATUS >30)

BEGIN

HOLD SUPPLIER:SUPPLIER.STATIJS>30

W.STATIJS = 0;

UPDATE W

END

The <on applicability> becomes true whenever there exists a tuple

in SUPPLIER such that its STATUS value is greater than 30,

2. "Record the names of all users attempting to read, or reading, the

STATIJS attribute values above 30.

relations VIOLATIONS."

Store this information in

RELATION SUPPLIER (S# , SNAME, STATIJS, CITY)

ON GET (STATUS) STATUS > 30

BEGIN

W,NAME=USER.NAME

PUT W VIOLATIONS

END

3. "Store all Calculus operations on the relation PART into relation

THEOPERATIONS."

78,

RELATION PART (P# ,PNAME, COLOUR, WEIGHT, QOH)

ON OPERATION

PUT CURRENTOP THEOPERATIONS

Assumes relation CURRENTOP contains current operations,

3.3 Schema and Subschema

So far, all the statements considered deal with relations, their

manipulation, creation and control, The final step is the defining of

the subschemas and the schema in which these relations occur. The

Calculus must be able to define schemas and subschemas before it is of

any value to the administrators. It is the Calculus schema and subschema

statements that allow this, ind eed, the entire Calculus language is just

a single schema statement. It i s in this way the system knows which data

base the schema operations refers to, Likewise, all subschema operations

occur within a s ingle subschema statement, so in like manner, the system

also knows which subschema is being used,

Just as a user can be prevented from using the full power of the

manipulation features, so too can he be limited from using the full

power of the schema or subschema statement, If a user is given the

ultimate
1
authority, that is allowed to define schemas, then that user

has the power to define multiple and completely separate data bases.

Such authorization would probably be done by the operating system rather

than the DBMS. However, in most cases ·this statement will not be

allowed. Instead users would be restricted to operating within a

single schema by the log-on procedure, But even at this level the

user is capable of defining complete subschemas or using any other

1 In practice, administrators should constrain each other, thus no
ultimate authority will exist,

79.

schema operation. Still a furthe r r estriction may be necessary,

All non-administrators (cas ual user s , application programmers and the

like) will be limited to a singl e subschema, Here a user is allowed

to perform any subschema operation, typically, allowed to define

subschema domains, relations, r e lation constraints, mappings and various

control instructions,

restrict users.

So even he r e it may be necessary to further

As with the schema, a restriction to within a subschema may follow from

the log-on process, The log-on process then will include a schema

statement with a subschema statement as its schema operation, Log-off

would then be the close of the subschema followed immediately by the

close of the schema statement, In this way a user is restricted to a

single submodel. All unrestricted users must explicitly close a

subschema when ever t hey wish t o execu t e a s ch ema op eration , This i s

achieved by using a block structure for schema and subschema statements,

where all operations are nested within the subschema block and all

subschema statements plus other schema operations are nested in the

schema block ,

Note, that an administrator who interfaces directly with a schema may

still be prevented from using the subs chema statement, Thus he is

limited to manipulation and control of the schema itself and cannot

operate through some other subschema.

In a practical implementation it could be an advantage to logically

partition the schema into various sections or parts, Then repetitious

writing of identical constraints for a nu~ber of relations can be

prevented by writing the constraint once as a section constraint for all

relations in that section. It will also be easier to understand the

purpose for different schema and subschema relations. For example,

80.

the operational data can be grouped into a section called CONCEPTUALDB,

or all the relations used for constructing audit trails could be

grouped into an AUDITS section, This feature can be added very simply

to the language by including a SECTION statement similar in form to a

SCHEMA or SUBSCHEMA statement,

E.g.

3.3.1

SECTION CONCEPTUALDB

BEGIN

END

Schema and Subschema Syntax

<Calculus >

<schema statement>

<schema operation>

::= <schema statement>

::= SCHEMA <schema name >

<schema operation>

::= <simple schema operation>!

<compound schema operation>

<compound schema operation>::= BEGIN <compound schema tail>

<compound schema tail> ::= <simple schema operation> END!

<simple schema operation> ; <compound schema tail>

<simple schema operation> ::= <simple calculus statement>!

<subschema statement>!

<schema control statement>

<subschema statement>

<subschema operation>

::= SUBSCHEMA <subschema name>

<subschema operation>

: ·= <simple subschema operation> !

<compound subschema operation>

81.

<compound subschema op eration>

<compound subschema tail>

::= BEGIN <compound subschema tail>

::= <simple subschema operation> END!

<simple subschema operation>;<compound subschema tail>

<simple subschema operation> ::= <simple calculus statement> !

<subsch ema control statement>

3.3.2 Schema and Subschema Control Statements

Just as it is possible to define a set of control instructions for each

relation, so too is it possible to define such a set for each subschema

or schema. Likewise, each constraint or cont r ol so defined applies

to the entire subschema or schema in which it is declared. If, for

example, a constraint exists in a subschema then all the relations or

operations in that subschema must not violate it. But, if it is

written in a schema then no operation or r e lation, whether in a

subschema or the schema, must violate it. So an integrity constraint

written in a schema applies to the whole data base,

Again, three different control constructs are provided,

Security, Integrity and Operating instructions.

These are

Syntax

<schema control statement>

<subschema control statement>

<schema constraint>

:!= WHEN <applicability condition>

<schema operation>!

<schema constraint>

::= WHEN <applicability condition>

<subschema operation>J

<subschema constraint>

::= <global access constraint> !

<integrity constraint>!

<global access constraint><schema constraint violation>!

<integrity constraint ><schema constraint violation>

<schema constraint violation>

<subschema constraint >

··= ON-VIOLATION <schema operation>

::= <global access constraint>!

<integrity constraint>!

<g lobal access constraint><subschema constraint violation> !

<integrity constraint>< subschema constraint violation>

82,

<subschema constraint violation>::= ON-VIOLATION <subschema operation>

3.3 . 2,1 Security and Integrity Constraints

It is often necessary to define security and integrity restrictions on

all the relations existing in a schema or subschema. This is achieved

by writing security and integrity constraints for schemas and subschemas

in much the same way they are written for relations, indeed, ther e are

only two differences.

1. The schema/subschema security constraints have an extended

constraint applicability - the simple applicability condition.

The condition can now select the relation which the constraint

applies to.

2, An integrity constraint now requires the monitoring of all

relations that may violate it.

Syntax

<global access constraint> :: = CONSTRAINT FOR <simple applicability
condition>!

CONSTRAINT FOR <simple applicability condition>UNLESS

<range list><qualification expression>

<simple applicability condition>::= <range list><read condition> !

<range list><write condition>

<read condition> ::= <piped option >GETI

<piped option >GET <quota><get expression>

<e lement ordering list>

<write condition> t:= <piped option><operation name> !

<piped option>< op eration name ><hold expression>

<element ordering list >

<operation name >

<serial condition>

: := HOLDIUPDATEIDELETEIPUT

: := SERIAL I

SERIAL BEGIN <compound condition tail>

<compound condition tail>::= <simple applicability condition>ENDI

<simple applicability condition> ; <compound condition tail>

<special condition>::= LOGON ISCHEMA!SUBSCHEMA

See section 3.2.5, 4 f or <integrity constraint >

Examples

1. CONSTRAINT

RANGE SUPPLIER S

RANGE SUPPLY SP

'efP3S (S.SI/ = SP.S/1)

83,

Here PUT operations on SUPPLY and DELETE operations on SUPPLIER

are monitored.

2. CONSTRAINT FOR HOLD ;

If written in a subschema, then no user is allowed to update or

delete relations in that subschema,

3,3.2.2 The WHEN

The WHEN statement is an extension of the relation's ON construct. It

enables the DBMS to perform a set of operations whenever a condition in

a subschema or the schema becomes true. Refer to 6.2.6 Relation Control

84,

for more detail.

3.3.2,3 WHEN Syntax

WHEN <applicability condition><s chema operation>

for schema WHENs and

WHEN <applicability condition><subscherna operation>

for subschema WHENs.

<applicability condition> ::= <range list><qualification expression>

<simple applicability condition>!

<serial condition> !

<special condition> !

<boolean procedure call>

See section 3,3.2.1 for more detail.

3.3.2.4 Example

"Notify users in subschema INTERESTED of all HOLDs that occur on the

schema relation SUPPLIER . . Do this by writing YES in the OCCURRED

attribute of relation EVENT,"

SCHEMA EXAMPLE

BEGIN

WHEN HOLD SUPPLIER

SUBSCHEMA INTERESTED

BEGIN

HOLD W EVENT ;

W.OCCURRED="YES"

UPDATE W

END ;

END OF SCHEMA

85,

See appendix II for other examples.

3.4 Drop Statement

The drop statement is used to destroy any identified attribute, domain,

relation, subschema, or schema, But a user cannot be allowed to

simply destroy any named structure at will, because a number of other

users may still be using this structure. For this reason the following

conditions need to be satisfied before such a drop is performed. Note

that each new condition often requires that the preceding conditions be

tested.

1. No attribute A of a relation may be dropped until all other

relation attributes which are derived from A are first dropped.

2. No domain may be dropped until all relation attributes that

use this domain are first dropped.

3. No schema domain may be dropped until all associated subschema

domains are dropped.

4. No relation may be dropped until all other relations derived

from this relation are first dropped.

5. No subschema may be dropped until all relations and domains

within that subschema have been dropped,

6. Finally, no schema may be dropped until all relations, domains,

and subschemas have been dropped.

3,4.1 Syntax

<drop statement> : := DROP<name > J

DROP <relation name> (<attribute list>)

3. 4, 2 Examples

1. "Remove the relation SUPPLIER from the schema or subschema."

DROP SUPPLIER

86.

If the DROP is executed within a subschema statement then the

subschema relation SUPPLIER is to be dropped, if not, then

the schema relation SUPPLIER is dropped,

2. "Drop only the STATUS attribute of SUPPLIER."

DROP SUPPLIER. STATUS

3.5 Sunnnary

By looking back on the language it may be seen that there are a number

of areas for improvement. There can be a separate HOLD for UPDATEs

It ,,

and DELETEs, where an UPDATE HOLD does not lock an entire tuple but

just non-key attributes - keys cannot be changed by an update. In this

way other users may update different attributes of the same tuple at

the same time. As another possibility, a syntax can be developed

which ensures that all the different relations of a target list are

joined. But the purpose of this language is to show that a single

language can be developed which allows -

1. Each user, including administrators, to perform all that

they require , Thus it caters for a complete spectrum of

users by restricting them to subsets of the language.

2. All manner of security and integrity constraints to be

written, from data val i dation to restriction on

administrators,

3. The set up and maintenance of data dictionaries,

directories and such.

4. Easy implementation of audit mechanisms, performance

monitoring or other system operation$.

5, A quick response to changing user needs, data base

growth, and data base evolution,

Unfortunately, ther e also exists a number of disadvantages. For

example, the symbols used tend to complicate the language constructs

87,

and so hinder user understanding. But pe rhaps the greatest problems

are those associated with the development of a practical implementation.

These will be considered in the following chapters.

INTRODUCTION TO THE PRIMITIVE LANGUAGE

AND

PARSING OF THE GET

4

The relational DBMS and Calculus, though powerful and flexible in

theory, depends entirely upon the feasibility of a practical

implementation. There is no doubt that the relational ideas have had

a considerable effect on data bases in general and still inspire

considerable effort in the data base environment. Yet, to date, no

wholly suitable implementation of a relational DBMS exists. It

88.

could be that no practical solution exists within the current software

techniques and technological developments and that instead a new

approach is needed. In the remaining two chapters some of the

problems associated with a practical implementation of this relational

DBMS design will be considered, as best as possible within the space

and time available. Particular emphasis will be placed on defining

* a comprehensive primitive language and the problems associated with

parsing this Calculus into a primitive language code string. Before

considering the problem in depth, however, consider briefly some of

the major aspects of the proposed system so that the overall perspective

of what is to be attempted in the final two chapters becomes clear.

4.1 Brief Description of Proposed DBMS

The reasons for the features of the proposed DBMS seen in Figure 4.1:1

arise from the attempt to achieve the DBMS objectives outlined in

Chapter 1. A number of these features have already been introduced,

* See section 4.1.2

particularly the Calculus of Chapters 2 and 3. The main features of

concern in the final two chapters are, the front-end, the back-end,

and the primitive language.

4 .1. 1 The Front- End

The front-end is nothing more than a compiler, accepting a user's

Calculus statement and compiling this into a machine-independent

primitive language. All users connnunicate with the DBMS through the

front-end, and so it must maintain the various user interfaces. As

well as this, it must execute log-on procedures, and compile-time

89.

security and integrity checks. The front-end communicates with a user

through a comprehensive set of error messages.

The biggest problem facing those wishing to implement the front-end is

* that of providing an efficient parse into an efficient code string .

This problem is considered within this chapter in a step-by-step fashion,

thus allowing the problem areas to be clearly defined. The step-by-

step fashion consists of examining a parse for different forms of the

GET statement as they undergo increasing degrees of complexity.

Restricting the problem to GET statements only is not an oversimplification

as most Calculus parse problems reduce to those found in parsing a

GET. Finally, in the above discussion and throughout the remainder

of this thesis only one front-end is assumed, but in practice any number

of front-ends can exist and be executed in parallel.

4.1. 2 The Back-End

The back-end can be considered as either software that interprets

the primitive code string, making any necessary calls on the operating

system and manipulating the data as required, or as a dedicated data

* See section 4.3

90.

base processor (DBP) with specialised hardware and ins t ruction codes

that enable each primi.tive instruction to be almost directly executed.

Unlike the front-end, only one back-end can exist, with all the

front-ends communicating with the back-end via the primitive language.

The back-end communications with a user by passing a relation containing

status information, derived from its system status relation, onto the

users working area.

This thesis is not concerned with the detailed operation of the back­

end, but for the sake of completeness an example execution of the

defined primitives is briefly outlined in appendix III. Nor does the

designer of the front-end need to know the detailed operation of the

back-end. All that is needed is a description of what the primitive

language instructions do in general. This description is called the

conceptual operation of the primitives and will be used throughout the

remaining chapters to describe the actual primitives.

4.1.3 Some Reasons for the Front-End and Back-End

The main reasons why the front-end and back-end of Figure 4.1:1 were

introduced are:

a. To increase system performance by allowing the advantages,

mentioned in section 1.3, obtained through compiling user

programs.

b. To allow the front-end and back-end to be executed independently

and even in parallel with one another. This parallel execution

may be only virtual or truly parallel if two processors are

available.

c. To increase system modularity so allowing software to be modified

and added without affecting the other as future developments in

techniques and technology occurs.

d. To allow a primitive language to be developed so incorporating

91.

its advantages as given in section 4.1.4.

4.1.4 The Primitive Language

The primitive language arises naturally out of the need for some sort

of communication between the front-end and the back-end. This primitive

language can have a considerable effect on the performance of the

DBMS, so careful thought must go into its design. Some of the more

important requirements and the reasons for them are as given below.

a) General Purpose

The primitive language should be capable of handling a wide variety

of unpredictable requests in a number of different ways so that it

does not impose restrictions on either the parse of the front-end or

limit the overall evolution of the DBMS. This requires a language

with extensible features (macros or procedures) and a structure that

permits new commands to be easily added.

b) Data Independence

An environment where data structures are frequently created, changed,

moved and destroyed requires that all references to these structures

be continually updated. All user programs should be compiled into

primitives that reference physical addresses and physical structures

in an abstract way. This greatly increases application program life

expectancy, reduces operating costs, and allows the physical data base to be

continually tuned. During execution of this language the back-end

will be responsible for providing necessary physical addresses.

c) Executable

The primitive language should be in~ form which allows execution to

be effected quickly and easily, without a complex translation into

machine code. It is therefore desirable to make the primitives as

close as possible to actual machine code. Ideally a DBP should exist

which is capable of executing the primitives almost directly through

micro-programmed hardware.

d) Manipulation and Definition Capabilities

As demonstrated by the Calculus, both data definition and manipulation

is desired, so clearly, the primitive language must be capable of

cr eating, destroying and changing structures as well as manipulating

the actual data within them. Later it will be seen that algebra-

like primitives can be used for the manipulation of data.

Although in theory the higher the degree to which these above features

are implemented the better, in practice a compromise will have to be

made as one often reduces the effectiveness of another.

4.1.4.1 Basic Form of the Primitives

The form of the language, as accepted by the back-end, is simply an

integer array containing necessary instructions and data in numeric

form. It can best be visualised as a list of assembler-like

instructions (primitives) of one or two words as shown below.

<primitive> ::= <op code>!

<op code><parameter>

92.

The <opcode> uniquely identifies one of the set of primitive instructions

given in section 4.2. The second word can be either a pointer, an

identifier, or a number, and its existence as well as its contents

depends upon the previously identified op-code.

Example

NAME W JOIN EQL

4.1.4.2 The Conceptual Method of Execution

When defining a primitive language it is important to consider the method

by which it is to be executed, as different primitives are needed for

~
Casual Users

User Workspaces

D D
Status

Workspace

\

\

'\

(1)

Calculus

< Error

MSGs

~
(9)

User profiles, mappings,
security constraints,
data description

Physical Description

~
(4)

Front

End

Primitive
(3)

Language

(10)
~

' -;::;,.

Back

:?
End

(5)

System Workspaces

DBMS Buffers

Storage space for

-·o D

(

System
status
workspace

relation, domain, hold,
restrict stuctures,
etc.

(~)

Figure 4,1:l

Schematic Representation of MQjor DBMS Components
and Typical Events

93.

Physical storage

94.

different methods. The method proposed here is not intended to

represent the physical execution of the primitives, but rather is a

conceptual method intended to model the operation of the back-end and

so simplify the writing of software for the front-end. The major

concepts are; the data base consists of a set of relations stored

in named locations in memory; two run-time stacks exist called

stack 1 and stack 2; all relations must be explicitly moved onto

stack 1 before they can be operated upon; once operated upon the

result remains on, or in, stack 1 and must be explicitly moved to some

location in memory or popped from stack 1 before it is removed;

user workspaces and system workspace are nothing more than run-time

storage locations for relations; and finally, stack 1 holds relations

and pointers to storage areas in memory while stack 2 holds the

attribute identifiers, numbers, or strings that are used by primitives

as parameters.

4.1.5 Basic Operation of the DBMS

Again consider the schematically shown DBMS operation of Figure 4.1:1.

Following is a typical sequence of events that occurs when a user

initiates a request for data.

(1) Application program request data via the Calculus GET statement.

(2) The front-end compiles the user request into a primitive code

string calling upon schema and subschema data as necessary.

Any necessary mappings, run-time security checks or integrity

checks are included in this code string.

(3) Code string is passed onto the back-end and queued for

execution. The front end is now free to compile another user

request.

(4) From a simple physical description of the data base, the back-end

can begin executing the code string using the stack technique.

(5) All necessary requests for data records during this execution

can be requested via the operating system.

(6) The operating system interacts with physical storage to locate

the data.

(7) The data is transferred to the system buffers belonging to the

back end.

95.

(8) In the course of executing the code string, the back-end operates

on this data transforming it into the desired user form.

(9) The back-end transfers the resulting relation to the required

user workspace.

(10) The back-end stores all status information of the outcome in its

system relations, and also transfers it to the user's status

relation.

The user can now operate on his data as desired.

4.2 Primitive Language Instructions

The actual primitives needed depend upon the conceptual method of

execution, and upon the individual functions they must perform. It is

very difficult to define a comprehensive set of primitive instructions

without much experimentation through actual implementations or simulated

implementations. However the following primitives serve as a base

upon which the problems and operations of the proposed DBMS can be

described. Each primitive is described in terms of its conceptual

operation* and through the use of examples where necessary.

4.2.1 NAME, VALUE and STORE

NAME <address>

NAME takes the address of the given relation storage space and pushes

it onto stack 1. Note that NAME is used so that there is no confusion

* See Appendix III for a possible implementation of the primitives.

96.

with the arithmetic NAMECALL, and likewise for other closely related

primitives.

VALUE <address>

VALUE pushes the relation contained at the given address onto stack 1.

STORE <integer>

STORE takes the relation from the top of stack 1 and stores it in the

location addressed by the second element of stack 1. This location can

be a user workspace, a DBMS system workspace, or the data base itself.

The second word of STORE indicates the maximum number of tuples to be

so inserted. If a negative number (here indicated by ALL) is used

then all the tuples are to be included, but if a positive number then

at most only that number of tuples are included.

Example

4.2.2

"Place the entire relation SUPPLIER in workspace W".

RANGE SUPPLIERS;

GET W S ;

NAME

VALUES

STORE ALL

RESTRICT, PROJECT, DOMAIN, STRING and NUMBER.

DOMAIN <attribute identifier>

This primitive simply pushes onto stack 2 its second word. This

second word uniquely identifies an attribute of a relation and the

domain from which the attribute values are taken. These attribute

identifiers are necessary for such operations as projection,and

restriction, and can be considered as parame ters used in the execution

of such operations,

97.

STRING <string address> and NUMBER <number >

Strings and numbers, often required as parameters also, are pushed

onto stack 2 by the STRING and NUMBER primitives. The second word of

the STRING primitive indicates where the string can be located while

the second word of NUMBER gives the actual value. To be strictly

correct two primitives should be used to distinguish between reals

and integers, and a mechanism introduced to handle double precision

number.

RESTRICT <dyadic >

The operation of the RESTRICT primitive depends upon the second word

dyadic and upon its t wo parameters. The dyadic simply indicates what

comparison condition is to apply. Suppose for the purposes of this

discussion that it is EQL. RESTRICT parameters must be contained in

the top two elements of stack 2 before the RESTRICT primitive can be

executed, and they can be either an attribute/domain identifier, string

value, or numeric value. If they are both attribute/domain identifiers,

then RESTRICT operates on the stack 1 relation in the same way as

Codd's (21) algebraic "restriction". If an attribute/domain

identifier exists together with a string or number then all tuples of

the relation on top of stack 1 that have an attribute value equal to

the given string or number are retained, all other tuples are dropped.

Whenever two numbers or strings are used as parameters then all tuples

are retained if the equality is true and all dropped if it is false.

In practice it may be desirable to use a different primitive to handle

such special cases. Finally, after the execution of this unary

operator RESTRICT, the resulting relation is left on top of stack 1 and

the two parameters are removed (popped) from stack 2 automatically.

PROJECT

PROJECT corresponds to the algebraic projection, and is another unary

98.

operator that requires a set of parameters for its operation. These

exist as attribute/domain identifiers pushed onto stack 2 by DOMAIN

primitives. As well as this an integer is placed on top of stack 2

indicating the number of parameters to expect,as in this case,the

number of such parameters is variable. Its operation consists of

ordering the attributes of the relation on stack 1 so that they correspond

to the order that thes e identifiers occur in stack 2, and dropping

any attributes from the relation which are not so identified. As

before,the resultant relation is left on top of stack 1 and the

parameters on stack 2 are removed.

See the following section for an example use.

4.2.3 START, STOP, SBEGIN and SEND

START and STOP

It is clear that the back-end mus t know when a user cod e string beg ins

and when it ends, this is indicated by a START and STOP.

strings bounded by a START or STOP belong to a single user.

SBEGIN and SEND

All code

Often a call for data via the operating system will take some time to

fulfill, so if the back-end is to achieve a reasonable effective

execution of the primitive code strings, it must also know when it can

interrupt one code string and start another. The SBEGIN and SEND

primitives are intended to aid the back-end in determining when it can

interrupt. There are many possible mechanisms for handling interrupts,

each requiring stringent precautions against the possibility of errors

occurring through contention problems. The problem is by no means

trivial, indeed, no ideal solution can be said to exist, but for the

sake of completeness one such mechanism is given here.

Each code string currently being executed has a separate stack 1 and

99.

stack 2 so that no confusion arises over which stack element belongs

to which code string. Each code string contains header information

listing all the relations identified in that code string by the second

word of a VALUE primitive. In other words, all the relations that will

be retrieved by the code string. Finally all primitive code segments

that must not be interrupted are bounded by the primitives SBEGIN and

SEND. In this way the back-end can interrupt a code string at any

point and begin another as long as the set consisting of all the

header information of all codestrings currently being executed is

disjoint from the header information of the newly begun code string.

When this condition is not true, the back-end can only begin the new

code string if all the code strings that are not disjoint have not

been interrupted between an SBEGIN and SEND primitive. Finally, a

code string , C, cannot be interrupted for any reason between an

SBEGIN and SEND if there exists another codestring that has been

interrupted between an SBEGIN and SEND which is not disjoint from C.

This final condition ensures that the headers of all "currently"

executed codestrings that have been interrupted between an SBEGIN and

SEND are disjoint from one another.

4.2.4 JOIN <dyadic>

JOIN is intended to correspond to the algebra join operation. It is

a binary operation, operating on the top two stack 1 relations and

leaving the resulting composite relation on top of stack 1. Just how

the tuples are going to be joined depends upon the second word of the

JOIN primitive and also upon its parameters. Like RESTRICT, the second

word contains a numeric code specifying one of the dyadics, but only

two attribute/domain parameters must be used with a JOIN. The join

is performed on these attributes as follows. Each tuple from one

relation is in turn compared with all tuples of the other relation, and

if the respective attribute values satisfy the desired inequality then
MASSEY UNIVf;R~lU

Ll!!RAR'l

100.

they are concatenated, if not they are dropped, With many such

primitive instructions it is quite possible to have an empty relation

as a result, however this is still a valid relation,

Example

"Get the name of all suppliers who supply part P3."

4.2.5

UNION

RANGE SUPPLY Z

RANGE SUPPLIERS

GET W S.SNAME: 3Z(S.Sl/=Z.SI/ AND Z.P#="P3");

START

NAME

VALUE

VALUE

DOMAIN

DOMAIN

JOIN

DOMAIN

STRING

RESTRICT

DOMAIN

NUMBER

PROJECT

s

z

S .SI/

Z.S#

EQL

Z .Pit

P3

Two relations Sand Z are joined to
form a new composite relation on top
of stack 1

EQL ------- Restriction removes all tuples that do
not have a "P3" attribute value

S.SNAME

1
Projection removes all but the SNAME

--------attribute before it is returned to
workspace W.

STORE ALL

STOP

INTERSECT and UNION

UNION is the normal set union. The two relations on top of stack 1

are merged into one with all duplication being removed or prevented.

However, the two relations have to be union compatible before such an

operation can be executed, which means, each tuple has to have the same

attributes and number of attributes (the same relation structure).

101.

INTERSECT

This binary operator (set equivalent of intersection) causes a

resulting relation to be formed from the top two stack 1 relations which

consists of all tuples common to both r e lations. No t e that only the key

attributes need to be checked for similarity, because the key attributes

uniquely identify a tuple in a relation.

4.2.6 Miscellaneous Set Equivalents

Other set operations also exist which can be included here to aid

retrieval; two important ones that are used are DIFFERENCE and PRODUCT,

each of which is a binary operator having no parameters.

SUBTRACT

SUBTRACT is the set subtraction, subtracting the top of stack 1 relation

from the next relation in stack 1. The subtraction operation consists

of removing from the second relation all those tuples which ex ist in

the relation on top of stack 1. (Clearly such subtraction can only

be performed between union-compatible relations).

PRODUCT (Cartesian product between sets).

The operation of PRODUCT is similar to a JOIN without a condition, so

it need not be limited to relations which have a "common"* attribute.

Unfortunately such an operation can result in very large composite

relations. Fortunately its use can be much reduced, since in many

cases the portion of code in which it occurs can be replaced with an

equivalent product free code.

Examples

SUBTRACT may be used to implement negated Calculus conditions as shown

below.

* By "common" attribute it is meant attributes derived from the same
domain.

Code

NOT (S.Sf/="Sl")

All the Sl tuples of a S relation
are first found

102.

VALUES

VALUES

DOMAINS.Sf/

STRING Sl

RESTRICT EQL

SUBTRACT ______ These are then subtracted from another
complete S relation

"Get the names of all suppliers and the part numbers they supply."

RANGE SUPPLIER S

RANGE SUPPLY SP

GET W (S.SNAME,SP.Pf/)

START

NAME w

VALUE s

VALUE SP

PRODUCT

S. Sf!=SP. PI!

START

NAME w

VALUE s

VALUE SP

DOMAIN s.sf/

DOMAIN s.sfl
equivalent

DOMAIN SP.SII

DOMAIN SP.SII JOIN EQL

RESTRICT EQL DOMAIN S.SNAME

DOMAIN S.SNAME DOMAIN SP.PII

DOMAIN SP.P/1 NUMBER 2

NUMBER 2 PROJECT

PROJECT STORE ALL

STORE ALL STOP

STOP

(a) (b)

string (a) achieves the above retrieval operation by first

forming a composite relation consisting of all possible concatenations

103.

of their respective tuples, and then restricting this relation to only

those tuples which have the same supplier number in their S.S# and SP.S#

attributes. Code string (b) shows an equivalent code string where

the PRODUCT, RESTRICT sequence has been replaced by a single JOIN.

4.2.7 Arithmetic Expressions

The Calculus does not allow arithme tic expressions in its join terms,

but a practical implementation could well do. However, even these

cases can be handled in the same way by simply merging arithmetic

stack operations with the above relation primitives. For example,

consider the following hypothetical join term, where X~ are arithmetic

variables.

S.STATUS = (X+Y)*X

A possible code string for such a term could be written as shown.

DOMAIN S.STATUS

VALUECALL X

VALUECALL Y

ADD

VALUECALL X

MULT

RESTRICT EQUL

The arithmetic expression is evaluated
on stack 2 leaving the result as a
parameter for the RESTRICT primitive.

Thus it is possible to include all the stack operations used by stack

machines in the primitive language as well.

4.2.8 Branches and Procedures

A very important feature of any assembler language is the branching

capabilities and procedure or macro facilities. Here these facilities

are included to extend the power and flexibility bf the primitive

language and so making it easier to design a parser for the Calculus.

This is particularly true when considering the problem of handling

security and mappings.

104.

4.2.8.1 ENTER and RETURN

ENTER <address >

ENTER causes the contents of the current instruction address register

to be pushed onto stack 2 and replaced by the address given in the

second word of the ENTER primitive. This effectively causes a

branch to the point in the code string where procedure instructions

start. All relations necessary for the procedure should be placed

onto stack 1, before ENTER is executed, by a series of NAMEs or

VALUEs. If one wishes to allow procedures to be written that are

capable of performing operations on a variable number of relations

then an integer indicating the number of relations should also be

given.

RETURN

RETURN causes the address on stack 2 to be popped offstack 2 and

inserted into the instruction address register. That is, when a

RETURN is encountered execution continues with the next instruction

following the call (ENTER) and all returning relations are simply left

on stack 1,

Example

In the following GET statement the qualification expression is

executed as a procedure.

RANGE SUPPLIERS;

GET W S : S.STATUS=30;

0

1 PROC:

2

3

4

START

DOMAINS.STATUS

NUMBER 30

RESTRICT EQL

RETURN

5

6

7

8

9

MAIN:NAME

VALUE

ENTER

STORE

STOP

w

s

PROC

ALL

4.2.8.2 BNOTNULL,BNULL,B,NULL and POP

BNOTNULL <address >

If the relation on top of stack 1 is empty then BNOTNULL causes a

branch to be made to the address given by its second word.

BNULL <address >

BNULL is the same as BNOTNULL except a branch is made only if the

relation is empty.

B <address>

B causes an unconditional branch to the given address.

NULL <identifier>

From all qualification expressions a relation must be returned since

105.

all GETs return a relation to the users. To achieve this it is some-

times necessary (see followin g example) to create a null relation.

NULL does this by pushing an empty relation onto the stack where the

empty relation is the one named by t he second word of NULL.

POP <integer >

POP removes the top relation from stack 1 if its second word contains

the integer l,and removes the top element from stack 2 if some other

integer is present. It should be noted that even the null or empty

relation on stack 1 must be removed as it is just as real as a non

empty relation.

Example

"Get the name of all suppliers if there exists a part numbered

p 1. II

RANGE SUPPLIERS;

RANGE PART

GET W S. SNAME

P·
'
3P (P.Pl/="Pl")

In this example all supplier names must be returned if there exists a

single part with a part nuniber of Pl. Quite often a join term,

qualification primary, qualification secondary, qualification factor,

or even the qualification expression itse lf is used simply as a

TRUE or FALSE conditional, and do not play any role in selecting

* individual tuples from the relation required .

*

Fortunately, most

106.

unrelated terms can be easily handled by using the branch facilities

and branching when the unrelated relation is empty or not empty. The

code string below, for the above GET, gives just such an example.

0 START 9 B 12

1 NAME w 10 POP 1

2 VALUE p 11 VALUE s

3 DOMAIN P.PII 12 DOMAIN S.SNAME

4 STRING Pl 13 NUMBER 1

5 RESTRICT EQL 14 PROJECT

6 BNOTNULL 10 15 STORE ALL

7 POP 1 16 STOP

8 NULL s

4.2.9 Functions

For the primitive language to be useful it must also be capable of

expressing the functions used in the Calculus. In the Calculus

functions can be used in three different ways, as boolean functions,

as functions in the target list, or as functions in join expressions.

The problem is handled by expressing the functions as a primitive,

but there is a significant difference between the operation of the

boolean function and the others.

4.2.9.1 Boolean Functions

Boolean functions can be compared with the qualification expression,

that is, all tuples selected must satisfy the boolean function.

Consequently they are handled in a similar fashion. For example:

GET W SP.P/1 : TOP (l,SP,QOH)

To solve this problem, the function calls are expressed in the primitive

* See section 4.3.1.

code string as a procedure call, but inst e ad of using an ENTER a

primitive identifying the function is used. The function primitive

operates on the stack 1 relation removing all tuples not satisfying

its condition and leaving the resultant relation behind. In the

107.

following code string of the above GET, (A) identifies the parameter

set-up and function call.

START

NAME

VALUE

w

SP

NUMBER 1

DOMAIN SP.QOH (A)

TOP

4.2.9.2 Target List Functions

DOMAIN

NUMBER

PROJECT

STORE

STOP

SP.PII

1

ALL

Target functions also operate on the top stack 1 relation and leave

a resulting relation in its place, but their operation consists of

adding an extra attribute. The three major steps in its operation are:

the function manipulates the stack 1 relation creating a new attribute

and using any necessary attribute identifiers, numbers, or strings

on top of stack 2; removes these attribute identifiers, numbers, or

strings from stack 2; and finally it pushes onto stack 2 an

attribute identifying the newly created attribute of the stack 1

relation. For example:

GET W (SP.P# ,ICOUNT (SP,P#,S#));

(a)

(b)

(c)

START

NAME

VALUE

DOMAIN

DOMAIN

DOMAIN

ICOUNT

NUMBER

PROJECT

STORE

STOP

w

SP

SP .PI/

SP.PII

SP. SIi

2

ALL

] Function execution,
creating additional
attribute in SP.

108.

Projection executed
- over new attribute

and PI!.

Given the sample relation SP shown in Figure 4.2:1, then the above

ICOUNT function will produce the SP~ relation shown. Note that the

above execution is the main reason for using a two stack mechanism,

for if one stack were used then attribute identifiers (other than

those belonging to the function) could exist on top of the stack when

a function is called. In practice one stack can be used, but then

its operation and structure will be complicated by a number of internal

indexes or pointers that would be necessary to trace relations.

SP SP~

SI/ PI/ QOH SIi PI! QOH ICOUNT-S

Sl Pl 2 Sl Pl 2 2

S2 Pl 8 S2 Pl 8 2

S2 P2 6 S2 P2 6 1

S3 P3 2 S3 P3 2 1

Figure 4.2:1 (continued on next page)

w PI! ICOUNT-S

Pl 2

P2 1

P3 1

Figure 4.2:1

Effect of Target List Function

4.2.9.3 Join Functions

Join functions operate in the same way as target list functions,

creating the additional attribute which can then be used in either

109.

RESTRICT or JOIN operations.

examples.

Let it be sufficient to just give two

(a) "Get part numbers with two or more suppliers."

GET W SP.P# : !COUNT (SP,P#,S#) > = 2;

START

NAt'fE

VALUE

DOMAIN

DOMAIN

!COUNT

w

SP

SP.P#

SP. Sf!

NUMBER 2

RESTRICT GEQ

DOMAIN

NUMBER

PROJECT

STORE

STOP

SP.P#

1

ALL

(b) "Get the part number and project number for all parts which have

the same number of suppliers and projects in which the part is

used."

GET W (SP.P#,SP.J#):ICOUNT (SP,P#,S#) =

!COUNT (SP,P#,J#)

110.

START DOMAIN SP.PI/ NUMBER 2

NAME w DOMAIN SP.JI/ PROJECT

VALUE SP !COUNT STORE ALL

DOMAIN SP. Pfl RESTRICT EQL STOP

DOMAIN SP.S/1 DOMAIN SP.PI/

!COUNT DOMAIN SP. J I!

4.2.10 DIVIDE (Universal Quantifier)

Existential quantifier s pose no problems as the primitives defined thus

far already handle these cases, but, special primitives must exist for

universal quantifiers. Universal quantifier, V , requires that all

tuples in a given relation satisfy the particular condition. The set

operation of division can be modi f ied to achieve the "for all" condition

required, but unfortuna tely it is one of the most difficult operations

to visualise. Consider first the division operator as defined by

Codd (21).

Division between two relations of arbitrary degree can be made on a

single common attribute, or on a set of attributes connnon to both

relations, as described below.

Given relation SP of the SUPPLIER/PART data base and relation SJ as

defined in Figure 4. 2: 2. Le t X be a set of at tributes in SP and Y be

a set of attributes in S. For convenience let the values in X and

y be referred to as elements of X and Y respectively. Let X denote

the compliment of X, thus it is a set of remaining attributes in SP,

Finally, let x be an element of X, that is x EX.

The image set of x under SP is then a set consisting of all elements

x from X such that xx is a tuple in relation SP. See (b) Figure

4.2:2.

The division of sp on X by Son Y can be defined as the set of X

elements where the image set of each x under SP is a super set of Y.

See c ' in the following figure.

X J# QTY x Sit Pit

Jl 2 Sl Pl

J4 7 S2 P3

Jl 4 S2 PS

etc etc etc etc

(a)

a) If X consists of attributes J# and QTY then for relation SUPPLY

there would exist two sets X and X as shown in (a).

Image Set JI/ QTY

Jl 4

J2 2

J3 2

J4 5

JS 6

J6 4

J7 8

(b)

111.

b) The image set of x2 = (S2,P3) EX under SP would be the set shown

as (b). Note a concatenation of this element (x
2

) with any in

the image set (b) produces a tuple of SP.

SJ

c)

112.

/ y ' ""

SIi SNAME Jf/ QTY RESULT Sf/ PI!

Sl SMITH J2 2 S2 P3

S2 BLAKE J3 2

S3 ADAMS JS 6

S4 CLARK J7 8

(c)

Suppose is the relation given, with sets Y and Y as shown. The

division of SP on X by SJ on Y will produce RESULT shown in (c).

This is so since x2 above is the only element in X that has an

image set which Y is a subset of. From the final result it is

possible to say that for a given Sf/ and PI! there exists for all

SJ tuples a SP tuple with the same J f/ and QTY.

Figure 4.2:2

Example Divide Operation

DIVIDE

For the above division to be useful here a mechanism must be introduced

which allows one to select the attributes on which division is to be

performed, and also select the complimentary attributes. In this way

there will be no need to perform a projection on the relation before

division. It is achieved by pushing onto stack 2 attribute identifiers

together with two numbers. The first number on top of stack 2 indicates

how many of the top attributes constitute the compliment and the second

indicates how many of, following attributes the division is to use.

Only these two numbers need to be used since the number of attributes on

which division occurs is the same in both relations, therefore, the

total number of attributes existing on the stack is twice the second

number plus the first number. The DIVIDE primitive used here

restricts the relation in accordance with the above division, but it

does not drop attributes, instead, all attributes of the divided

113.

relation are returned. For the above example, all supply tuples are

returned which have a S# = S2 and Pit= P3.

Example

"Get the name of all suppliers who supply all jobs."

GET W (S.S#,S.SNAME):

~ J3SP (S.S# = SP.S# AND SP.J# = J.J#)

START DOMAIN SP.J# NUMBER 1

NAME w DOMAIN J .J# DIVIDE

VALUE s JOIN EQL DOMAIN s.sff

VALUE SP VALUE J DOMAIN S.SNAME

DOMAIN S. Sf/ DOMAIN J .JI/ NUMBER 2

DOMAIN SP.Stl DOMAIN J .JI! PROJECT

JOIN EQL DOMAIN SP.Stl STORE ALL

VALUE J NUMBER 1 STOP

4.3 Parsing the GET

Although the GET statement is quite complex, there exists the relatively

simple and direct parse given in section 4.3,4. However, this parse

makes extensive use of the cartesian product, and thus is not considered

as an "efficient" primitive code string. (By efficient code string,

it is meant one that optimises on execution time and storage space,

however, this requires knowledge of how primitives are physically

executed). It is therefore quite possible that the PRODUCT primitive

is perfectly acceptable in some implementations. But for the purposes

of this discussion it will be assumed that the PRODUCT primitive

utilises too large an amount of storage space and should be replaced

with the JOIN if at all possible; that the number of JOINs should be

kept to a minimum; that INTERSECT requires extensive searching and

should be removed wherever possible; and that the parser should not

introduce redundancy, but rather remove it if at all possible. It

will be seen that most of the parsing problems arise when attempts

114.

are made to achieve this objective of producing an efficient primitive

code string. Consider now the overall concepts introduced to simplify

the description of the following parsers.

4. 3. 1 Overall Assumptions, Terms and Procedures

In the following parses it is assumed that no functions, order expression,

negation terms, and "for all" conditions exist.

discussed latter in section 4.3.5.

These problems are

For simplicity the following t erms and procedures are introduced.

Unrelated Terms

A qualification, qualification factor, qualification secondary, or

qualification primary is termed "unrelated" if all their join terms are

unrelated. A join term is termed "unrelated" if the relations it

identifies are not used in the composite relation formed from the join

of target relations with any other non-target relation.

J-Term and R-Term

A J-term is a join term which upon execution requires two relations to

be joined, and an R-term is a join term that upon execution requires a

restriction operation on one relation. It should be noted that all

join terms of the form S.S# = SP.S# are only possible candidates for

J-terms because if the relations Sand SP have already been joined then

it is an R-term instead.

Simple Qualification

By simple qualification it is meant all qualification expressions that

do not contain any unrelated join terms.

115.

EMIT (<op code >) and EMIT (<op code>,<identifier>)

A procedure EMIT is assumed to exist which when called places the given

op code and/or identifier into the array CODE-STRING containing the

primitive code string formed so far.

SCAN and RSCAN

SCAN is simply the scanning procedure, and for simplicity, is considered

as returning the next Calculus symbol, identifier, string, or number

in the variable RSCAN.

Overall Description of the Parser

In parsing the GET statement all the parsers described here emit code

in three major phases to coincide with the following order in which the

GET statement is executed.

(1) The qualification expression is evaluated first leaving

a resultant relation on top of stack 1.

(2) This relation is ordered in accordance with the ordering

expression of the GET.

(3) The target list is performed by the execution of a projection

on this relation.

Phase (2) is of no concern here as this is relatively straight forward,

however, to emit code for the target lis t requires that an array (called

TARGET-CODE) be used, as the target list in a GET statement occurs

before the qualification expression. Here the parsing and emiting of

code for the target list consists of the following simple steps.

(A) Parsing of the Target List

For each target term in the target list the following two steps are

performed.

(1) The relation identified is placed into the TARGET­

LIST if it does not already exist in the list.

(2) The attribute identified by this target term is placed

in TARGET-CODE and the number indicating how many such

attributes exist is updated.

~(=B~) __ Emiting code from TARGET-CODE.

(1) For every TARGET-CODE word <'all EMIT and emit the

DOMAIN primitive together with the attribute

identified in the TARGET-CODE word.

(2) Emit the NUMBER primitive together with the number

indicating how many such attributes have been

identified.

(3) Emit the PROJECT primitive.

116.

Finally, it should be mentioned that a parser must maintain numerous

tables, files and variables necessary during the parsing, but only

those needed for a high-level understanding of the parser will be used.

4.3.2 Simple Qualification Referencing one Relation

Consider the case where only one relation is identified in the

qualification expression of simple qualifications. That is, qualification

expressions of the form given in the following GET. The following

simple parse of such qualifications clearly demonstrates some of the

problems associated with producing an efficient code string.

GET W (S.S#,S.SNAME): S.S#=Sl AND S.STATUS=30

OR S.S# = S2 AND (S.STATUS=30 OR S.STATUS=20);

4.3.2.1 Example Parse 1,and Code String

Steps

(1) Set ALL= -1; define arrays; and initialise other

variables.

(2) EMIT (NAME W) and set ALL to equal the quota number if

it exists.

(3) Parse the target list, placing the code in TARGET-CODE and

relation identifiers in TARGET-LIST.

(4) Parse the qualification expression.

117.

(5) Emit code in TARGET-CODE and emit PROJECT if TARGET-CODE

is not empty.

(6) EMIT (STORE ALL).

(7) Stop.

(4) Parse the qualification expression

(4,1) Define boolean UNION; set UNION=FALSE

(4,2) Repeat (4,3),(4,4),(4,5) until EXIT

(4,3) Parse the qualification factor

(4,4) If UNION=TRUE then EMIT (UNION) fi

(4,5) If RSCAN=";" then EXIT=TRUE

else if RSCAN = "OR"

then set UNION to TRUE and SCAN

else if RSCAN =")"then SCAN and EXIT=TRUE fi fi fi

(4,3) Parse the qualification factor

(4,3,1) Define boolean INTERSECT; set INTERSECT=FALSE

(4,3,2) Repeat (4,3,3),(4,3,4),(4,3,5) until FINISHED

(4,3,3) Parse join term

(4,3,4) If INTERSECT=TRUE then EMIT (INTERSECT) E.

(4,3,5) If RSCAN = "OR", ";" or ")" then FINISHED=TRUE

else if RSCAN = "AND1'

then set INTERSECT to TRUE and SCAN fi fi

(4,3,3) Parse join term

(4,3,3,1) If RSCAN = "relation identifier", "string", or "number"

then emit R-term code given in A below

else if RSCAN ="("then SCAN and CALL (4) above fi fi

A) Emit R-term Code

Al If R-term = "relation/attribute; dyadic; number"

then begin

EMIT (VALUE,relation);EMIT(DOMAIN,attribute);

EMIT (NUMBER,number); EMIT(RESTRICT,dyadic)

end

else if R-term = "relation/attribute; dyadic; string"

then begin

end

EMIT (VALUE,relation);EMIT(DOMAIN,attribute);

EMIT(STRING,string);EMIT(RESTRICT,dyadic)

118.

else if R-term = "relation/attribute 1; dyadic; relatio7/attribute 2

then begin

EMIT (VALUE,relation);EMIT(DOMAIN,attribute l);

EMIT (DOMAIN,attribute 2);EMIT(RESTRICT,dyadic)

end fi fi fi

For the above GET this example parse would produce the following

code string.

NAME w VALUE s NUMBER 20

VALUE s DOMAIN S. SIi RESTRICT EQL

DOMAIN S.S/1 STRING S2 UNION

STRING Sl RESTRICT EQL INTERSECT

RESTRICT EQL VALUE s UNION

VALUE s DOMAIN S.STATUS DOMAIN s·1 SIi

DOMAIN S.STATUS NUMBER 30 DOMAIN S.SNAME

NUMBER 30 RESTRICT EQL NUMBER 2

RESTRICT EQL VALUE s PROJECT

INTERSECT DOMAIN S.STATUS STORE ALL

4.3.2.2 Marking Tuples and Removing the Inte~sect

There are two features which occur in the above code string that can be

119.

considered as undesirable. These are the rep e ated calls on the

relation Sand the use of the INTERSECT primitive.

4.3.2.2.1 Removing the Intersect

The end result of multiple restrictions on a single relation is

equivalent to a series of AND'ed restrictions. It is then possible to

eliminate all INTERSECT primitives and all bar one VALUE primitive of

a qualification factor if the underlying qualification primaries are

all R-terms. In the above code string, for example, the underlined

VALUE and INTERSECT can be simply removed from the code string without

any effect on the final result. This has the desirable effect of

increasing the speed of the RESTRICT primitive as now the relations

may be much smaller.

4.3.2.2.2 Marking Tuples

Unfortunately the large number of calls on relations required for each

qualification factor cannot be as simply reduced. Instead a mechanism

is introduced where all tuples in a relation can be marked and only the

relation consisting of these marked tuples is called onto stack 1.

To achieve this marking mechanism, two primitives must be introduced.

(1) A p rimi ti ve which can "mark" a set of tup les in one or

more relations with a specified mark.

(2) A primitive that enables a relation of so marked tuples

to be pushed onto stack 1.

MARK <number> and MARKCALL <mark identifier>

Let Rdb be the data base relation corresponding to the top of stack 1

relation R , then MARK causes all the tuples in Rdb that also exist st '

in R to be marked with the symbol existing on top of stack 2.
st

like STORE, the number of tuples to be marked can be limited by

MARK's second word. MARKCALL simply places on top of stack 1 a

Also,

relation consisting of all the tuples whos e mark is the same as that

given by the <mark identifier>.

A very important feature of the MARK is that it greatly simplifies

the implementation of security constraints, because only those tuples

of a relation which satisfy a security constraint need be marked.

Thus every subsequent MARKCALL on these marked tuples will ensure

that the security constraint applies. See section 5.5.1. Other

important uses are; it allows marking of composite relations with a

resulting saving in repeated joins;

implementation of mapping constructs.

and it allows a much easier

See section 5.5.3. In

short, the marking facility is perhaps the single most important

120.

feature of the DBMS arising purely out of the requirements of a practical

implementation.

Example

In the above code string the relation Scan be marked and all calls

on this relation replaced with a MARKCALL as shown below.

NAME w MARKCALL X NUMBER 20

VALUE s DOMAIN S. Sf/ RESTRICT EQL

STRING X STRING S2 UNION

MARK ALL RESTRICT EQL INTERSECT

DOMAIN S.Sf/ MARK.CALL X UNION

STRING Sl DOMAIN S.STATUS DOMAIN S.SI!

RESTRICT EQL NUMBER 30 DOMAIN S.SNAME

DOMAIN S.STATUS RESTRICT EQL NUMBER 2

NUMBER 30 (MARKCALL X) PROJECT

RESTRICT EQL DOMAIN S.STATUS STORE ALL

121.

Note that the MARK may be used to remove the final INTERSECT primitive

by carrying the result of all the preceding join terms through the

bracketed qualification primary. This can be imagined as marking the

top of stack 1 relation before entering the oualification primary.

For example, in the above code it is achieved bv, removing the underlined

INTERSECT; replacing the underlined MARKCALL with STRING X2, MARK ALL;

and replacing the bracketed MARKCALL with MARKCALL X2. Notice also

that the relation called by MARKCALL is substantially smaller as it

consists on only the S2 tuple.

4.3.3 Simple Qualifications

The MARK is particularly effective when a number of JOINS have to be

made. Simple qualifications of the given form in section 4.3.2 can

fairly easily be passed, but when composite relations are allowed the

parsing can become very complex without this marking facility . The

following GET statement is an example of a GET statement possessing a

simple qualification.

RANGE SUPPLIERS

RANGE SUPPLY SP;

RANGE PART P

RANGE PROJECT J

GET W (S.S#,P.PNAME,J.JNAME,SP.QTY):

S.S#=Sl AND P.P#=Pl AND J.J#=SP.J# AND P.P# = SP.P#

AND S.S# = SP.S#;

The problem that occurs when parsing simple qualifications is seen if one

attempts a simple left-to-right parse on the above example GET in the

same manner as given in section 4.3.2 The first two R-terms (on

execution) would produce two relations, Sand P, on top of stack 1,

but these are not union compatible and so an INTERSECT cannot be

performed. Nor can they be joined as (in this case) no J-term directly

joining the two relations exists.

4.3.3.1 Example Parse 2

To simplify the following description of the parse, consider only the

parse of the qualification expression. The other components of a

GET statement can be parsed as described above.

The parsing of the qualification consists of two major steps:

Step 1:

Step 2:

Step 1

Expand the qualification and so remove all brackets.

(This ensures that every qualification primary is just

a join term). Rearrange the resulting qualification

so that all J-term appear first and in the "correct

order" in every qualification factor.

Parse this modified qualification in a left to right

fashion emitting necessary code.

By "correct order" it is meant that any J-term can appear first but

that every subsequent J-term (if any) must identify a relation, and

only one relation, that has already been identified in any one of the

122.

preceding J-terms. If a J-term identifies more than one relation then

it is considered as a R-term of the composite relation formed so far.

As an example, the above qualification expression would be modified as

follows.

Step 2

J.J# = SP.J# AND SP.P# = P.P# AND SP.S# = S.S# AND

S.S#=Sl AND P.P#=Pl

For the purposes of this discussion, let it be assumed that the following

structures needed by the parser exist. A table MARK-TABLE giving a

list of relations marked together with their mark, and an array JOIN­

LIST giving the relations that have been joined together with the mark ,

of this composite relation. Let the first relation and attribute

identified in a J-term be called relation 1 and attribute 1, and let the

second be called relation 2 and attribute 2.

The parse of step 2 is achieved if every qualification factor in the

one qualification is parsed and a UNION emitted after each, except

the first, is parsed.

Parsing the qualification factor

(1) Define a procedure called "search and mark" as follows:

Search and mark (relation N)

if relation N is in MARK-TABLE

then EMIT (MARKCALL, found mark)

else begin

EMIT (VALUE, relation 1);

EMIT (STRING, new ma.rk) ;

EMIT (MARK);

Put relation 1 and its mark

end fi

(2) Parse the first J-term. ·

Search and mark (relation 1)\

Search and mark (relation 2);

EMIT (DOMAIN, attribute 1)

EMIT (DOMAIN, attribute 2)

EMIT (JOIN, dyadic)

in MARK-TABLE

Put relation 1 and relation 2 in JOIN-LIST

get next J-term;

(3) Repeat for each J-term, if there exists any.

Search and mark (relation 2)

EMIT (DOMAIN, attribut~ 1)

EMIT (DOMAIN, attribute 2)

EMIT (JOIN, dyadic)

get next J-term

123.

(4) Repeat for each R-term, if there exists any.

emit code which identifies the attributes;

attribute/string, or attribute/number;

EMIT (RESTRICT, dyadic);

4.3.3.2 Improvements Necessary for an Efficient Code

Two major inefficiencies existing in the code produced by the above

parser are:

(1) The JOIN is performed on large relations and the RESTRICT

therefore often operates on large composite relations.

(2) Much redundancy exists in the code as a result of the

expansion of the qualification.

The following proposals are not intended as the best solution to the

above problems but rather intended to give the reader insight into

what is expected of an effective parser.

Problem 1

For the purposes of this discussion, let RT
1

, ... , RTn be the sets of

R-terms that apply to the relations r 1 , ... , r respectively, of a
n

124.

qualification factor. Let each R-term of the set RT. be indicated by
1

rt., that is, the R-term rt. would contain a relation specifier or
1 1

specifiers that indicate it is to apply to relation r .•
1

For each RTi E {RT 1, •.. , RTn} a subcode string is emitted that performs

the required restriction of each rt. E RT ..
1 1

Each one of these subcode

strings will begin with either a VALUE call on a relation or a MARKCALL,

depending on whether the relation to be called has been marked previously

or not. As before, if the relation has been marked then code is

included in the subcode string that will mark this relation also. At

the end of each of these subcode strings a STRING, MARK and POP is

emitted. This ensures the relation that would be on top of stack I,

after all the R-terrns of RTi have been executed,has been marked and

removed.

125.

Clearly, by emitting code in this form, for each relation specified in

a qualification factor, ensures that the relations are always of

minimum size before the JOINS are attempted, because, for each J-term a

MARKCALL would be used calling for the already restricted relations.

Problem 2

Problem 2 arises predominantly from the expansion of the qualification

(in step 1 above), and so it is much reduced if such a simplifying

action were not performed. This reintroduces the problems mentioned in

Example Parse 2, but they can be solved by an extension of the method

proposed in Problem 1. In this case qualification factors containing

bracketed qualifications must be parsed.

Suppose that every qualification factor in every qualification is

rearranged into the form <qs> AND <qp-list> where <qs> is a qualification

factor consisting of only join terms, and <qp-list > is a sequence of

bracketed qualifications of the form (<qualification>) AND .•. AND

(<qualification>). Assume also that a compiler stack called MARK-STACK

is used, where each element of MARK-STACK points to a MARK-TABLE

containing restricted relations and composite relations marked together

with their marks. Assume also, for simplicity, that code has been

emitted that will mark every relation used in the GET statement.

The qualification can then be parsed by parsing each qualification factor

and emitting a UNION after each,except the first,qualification factor.

Parsing the qualification factor

(1) Parse <qs> using a similar method outlined in problem 1 above.

126.

In this case the method is extended to J-terms by marking the

composite relations that are formed also. All the restricted

relations and composite relations marked during the parsing of

<qs> are added to the MARK-TABLE currently pointed to by the pointer

on top of MARK-STACK. Note that for the given <qs> more than

one composite relation may be formed, but in Problem 1 above

only one composite relation is formed.

(2) Parse the <qp-list > by parsing each bracketed qualification and

emitting an INTERSECT after each except the first.

Parse the bracketed qualification

(1) For each left bracket encountered define a new MARK-TABLE and push

its identifier onto MARK-STACK.

(2) Parse the qualification as before.

(3) For each right bracket pop the top element of MARK-STACK and

destroy the MARK-TABLE it points to.

Note that to determine what mark is to be used in a MARKCALL of a join

term, a search for the relation specified is made of each MARK-TABLE in

the order they are pointed to by the elements of MARK-STACK. The

composite relations of the MARK-TABLE are searched first,followed by the

restricted relations. As soon as an identical relation specifier is

found then the search stops and the mark of that composite relation or

restricted relation is used in the MARKCALL.

4.3.4 Alternative Parse

The preceding parses were all based on the assumption that the cartesian

product is an undesirable operation. On some implementations, however,

this assumption may not be valid. If cartesian products were allowed,

then a parser can first emit code forming the cartesian product of all

relations used by the GET. If code marking this composite relation were

also emitted, then the problem of parsing the qualification is reduced to

127.

that of parsing a qualification consisting only of underlying R-terms.

That is, the problem is reduced to that of Example Parse I. If on the

other hand, the cartesian product was performed only as th e relations are

encountered then a large saving is made on the initial storage space

required, but problems similar to those outlined in Example parse 2 are

now encountered.

4.3.5 Other Problems

The other problems that need to be handled by a complete parser of a

GET are; negation terms, functions, the order expression, unrelated

terms, and existence of universal quantifiers.

4.3.5.1 Negation

Negation can be simply removed by replacing a negated qualification

primary with an equivalent negation-free qualification primary . This

can be achieved in the scanner by replacing an AND for an OR, an OR

for an AND, and negating join terms for all ANDs, ORs and join terms

in the negated primary. A negated join term is a join term whose

dyadic has been replaced with its opposite.

becomesS.S##SP.S#.

4.3.5.2 Functions

For example, S.S#=SP.S#

Whenever a function is encountered the parser simply emits code that

would set up the function parameters and then emits the function

primitive itself. See section 4.2.9.

4.3.5.3 The Ordering Expression

The ordering can be imagined as a function and treated in the same way.

Code would be emitted identifying the attributes on which the order is

to be performed and indicating how they are to be ordered; then an

ORDER primitive would be emitted. This code is produced when the

parse of the qualification has ended and just before the code for

performing the projection is emitted.

4.3.5.4 Unrelated Terms

Unrelated terms are handled in two ways, depending upon whether the

128.

term is an unrelated qualification secondary or an unrelated qualification

factor. Clearly, if after executing an unrelated qualification secondary,

the stack 1 relation is found to be null then the entire qualification

factor is false and so it is not necessary to execute the remaining

secondaries. For this reason, code string (a) is emitted after each

parse of an unrelated quanlfication secondary.

If after executing an unrelated qualification factor the stack 1 relation

is found to contain tuples, then the entire qualification is true, and

so it is not necessary to execute the remaining qualification factors.

For this reason, code string (b) is emitted after each parse of an

unrelated qualification secondary.

BNOTNULL

POP

B

NEXT:POP

(a)

NEXT

1

<end of factor >

1

BNULL

POP

B

NEXT:POP

(b)

NEXT

1

<end of qualification>

1

It should be noted that in both cases it was assumed that no relation

is to be left on top of stack 1 after unrelated terms are executed.

This may not always be correct in practice, and so the NULL primitive or

MARKCALL may be used when stack 1 is empty.

4.3.5.5 Universal Quantifiers

For simplicity sake, let the following discussion be limited to GETs

containing one universal quantifier specifying relation Rd, and one

129.

target relation Rt. Assume also that the quantification has been

saved in an array QUANT-LIST, and that the qualification has been

parsed in a manner which leaves (when the code is executed) a resulting

composite relation containing joined relations Rd, Rt and all other

relations used by the GET.

to achieve this).

(Note, cartesian products may be necessary

The quantification is parsed by emitting code that would on execution

call Rd onto stack 1 (i.e. MARKCALL); specify the necessary attributes

needed by the division primitive; and finally perform the division

using the two stack 1 relations and the attributes given on stack 2.

(See division section 4.2.10.) The attribute set Y is a set consisting

of all key attributes of Rd' and the attribute set X is the set

consisting of all key attributes of Rd in the composite relation existing

in stack 1 when the code is executed. X and Y define identical

attributes, the only difference being that they specify the attribute

in different relations. The attributes comprising X are determined

by concatenating all the key attributes of all the relations, specified

by existential quantifiers that appear before the 'v quantifier in

QUANT-LIST, with ATT. ATT equals the key attributes of R if Rd/R
t t

Example

(a) GET W S.SII

(b) GET w s.s/1

"i J 3 SP (S. S/l=SP. SIi AND J .J//=SP .J/1) ;

3SP 't/J (S.Sll=SP.SII AND J.J/1= SP.J/1);

(Y=)

(X=)

CX=)

130.

NAME w NAME w

VALUE s VALUE s

VALUE SP VALUE SP

DOMAIN S.S/1 DOMAIN S.S/1

DOMAIN SP.S/1 Qualification DOMAIN SP.S/1

JOIN EQL JOIN EQL

VALUE J VALUE J

DOMAIN SP.J/1 DOMAIN SP .JI!

DOMAIN J.J/1 DOMAIN J .JI/

JOIN EQL JOIN EQL

VALUE J VALUE J

DOMAIN J .JI/ (Y=) DOMAIN J .JI/

DOMAIN J.J/1 (X=) DOMAIN J .JI/

DOMAIN S. SIi DOMAIN S.S/1

NUMBER 1 ex=) DOMAIN SP. SIi

NUMBER 1 DOMAIN SP .PI!

DIVIDE DOMAIN SP.J/1

DOMAIN S. SI/ NUMBER 1

NUMBER 1 NUMBER 4

PROJECT DIVIDE

STORE ALL DOMAIN S.S/1

NUMBER 1

PROJECT

STORE ALL

(a) (b)

The following relation is a portion of the composite relation that would

exist on top of stack 1 after the last JOIN of the qualification.

131.

SUPPLIER .SUPPLY .. / PROJECT

/
/ " '

tuples / tuples tuples

"/
' /

/
SIi SNAME STATUS CITY S(I PI! JI/ QTY JI/ JNAME MGR-NO

Sl SMITH 20 LONDON Sl Pl Jl 2 Jl SORTER M4

.
S5 ADAMS 30 ATHENS S5 P2 J4 1 J4 CONSOLE Ml

-

The composite relation contains all SUPPLIER, SUPPLY and PROJECT

tuples that satisfy the qualification, so for example (a), all that need

be determined in whether the image set of each SUPPLIER tuple contains

all PROJECT tuples. If it does it remains in the composite relation,

but if it does not then it is deleted.

PARSING THE CALCULUS

5

In the previous Chapter only those primitives needed for the parsing

of the GET were defined. In this Chapter the other Calculus

statements and constructs will be considered, showing just how these

constructs may be expressed in a primitive language code string.

132.

This will be done by considering each Calculus statement, or construct,

and describing first how the primitive code can achieve the required

results, and, if necessary, how the parser of the front-end may

generate the required code string. No detailed description of the

parser is given, since in most cases only its overall description is

of importance (as the details will usually reduce to that of parsing a

GET qualification expression).

In this Chapter a description of some of the other DBMS operations

needed to support the execution of the primitive language are also

given. To describe these operations often requires a more detailed

analysis than that offered by the conceptual operation, as the operation

of the back-end in achieving these objectives must be considered.

For this reason terms and concepts not previously introduced may be

used, however, in appendix III definitions and detailed descriptions

of the concepts used can be found should this be necessary.

5.1 Modifying and Deleting Data

With HOLDs some mechanism is needed to prevent all the relation tuples

from being modified or deleted. To do this held tuples have to be

recognised from other unheld relation tuples. A possible mechanism

is to mark all held tuples with a special type of mark, then all other

133.

processes can be prevented from similarly marking already marked tuples.

This effectively prevents any other user from gaining a HOLD on the

same set of tuples. Thus, the Calculus HOLD statement is identical in

operation to a GET, except all the tuples returned from a data base

relation are also marked in that relation.

HOLD W S.STATUS : S.STATUS = 30

START HOLD ALL

NAME w DOMAIN S.SII

VALUE s DOMAIN S.SNAME

DOMAIN S.STATUS NUMBER 2

NUMBER 30 PROJECT

RESTRICT EQL STORE ALL

STRING HI STOP

Let Rdb be the data base relation corresponding to the top of stack 1

relation Rst' then HOLD causes all the tuples in Rdb that also exist

in R to be marked with the hold mark existing on top of stack 2.
st

To parse a HOLD statement therefore, the qualification expression is

simply parsed as for a GET* and then (immediately before the PROJECT

and STORE) the primitives STRING and HOLD are emitted. However, a

composite relation may exist on top of stack 1 at the time a HOLD is

executed, and a HOLD is only allowed to mark tuples of the one

relation specified in the target. This problem can be solved by

either requiring that the HOLD primitive consider only the tuples of

the target relation existing in the composite relation, or better, by

defining a new primitive (REMOVE <relation specifier>) which removes

all unwanted relation tuples of the composite relation by simply

detaching that relation from the composite relation. Such a primitive

can be actually implemented as just the removing of a restriction

structure from a join structure. See Appendix III for the actual

* There are differences caused by the problems associated with managing
concurrent users. See section 5.3.

implementation of these DBMS primitives.

Note that the hold mark is not removed by STOP (or STORE) primitives

as are those created by MARK. Also the HOLD must check that the

tuples selected for marking are not already marked, and, all tuples

found to be marked must be removed from the relation on top of stack

1 with appropriate status information being returned to the user.

5.1.1 UPDATE, DELETE and RELEASE ------

For the Calculus statements of UPDATE, DELETE and RELEASE, three new

primitives are defined with the same names.

UPDATE <hold mark> and DELETE <hold mark>

134.

UPDATE takes the tuples from the stack top relation; finds their

associated tuples by locating all the tuples marked with the given hold

mark in the relation addressed by stack l's second element; then

updates these tuples by replacing each non-key attribute value with the

new value; finally it unmarks the updated tuples. DELETE does much

the same thing, except the located tuples are removed from the data

base relation.

RELEASE <hold mark>

RELEASE simply unmarks all those tuples held by the specified hold

mark.

Example

To parse a Calculus UPDATE W; DELETE W, or RELEASE W requires that the

parser keep a table associating each workspace, whose corresponding

relation tuples have been held in the data base, with the particular

hold mark used to achieve the hold.

string is simply a matter of:

Producing the primitive code

(a) Emitting primitives NAMES and VALUE W where Sis the

relation whose tuples are to be updated, deleted or

released, and W is the workspace containing the new

tuples or the tuples that are to be deleted, or released,

in S.

(b) Emitting primitive UPDATE Hl, or DELETE Hl, where Hl is

the hold mark with which the S tuples were marked.

(c) Emitting a RELEASE Hl.

Consider the following code strings (a), (b) and (c) for the Calculus

135.

statements UPDATE W, DELETE W, and RELEASE W respectively. Note that

the primitive RELEASE is emitted after an UPDATE, or DELETE, primitive

because UPDATE and DELETE only unmark those tuples actually modified

or removed.

(a) UPDATE w (b)

START

NAME s

VALUE w

UPDATE Hl

RELEASE Hl

STOP

(a)

5.2 The PUT Statement

DELETE w

START

NAME

VALUE

DELETE

RELEASE

STOP

(b)

(c)

s

w

Hl

Hl

RELEASE w

START

NAME S

VALUE W

RELEASE Hl

STOP

(c)

The Calculus PUT statement provides a user with a facility for inserting

into a data base relation a possibly modified set of tuples from a given

workspace. Conceptually the overall operation of a PUT statement is

achieved by placing the particular workspace relation onto stack 1;

operating on it with any of the available primitives; modifying the

resultant stack 1 relation to suit the data base relation; and finally

inserting the tuples into the identified relation. A special primitive

PUT is necessary to achieve the final insertion because this insertion

is quite different from that of a STORE. The PUT primitive simply

takes each tuple from the relation on stack 1 and merges it with the

relation addressed by stack l's second element. All duplication is

prevented and all other tuples of the data base relation concerned

remain unchanged.

5. 2. 1 Example

"Place only those workspace tuples into SUPPLY which name an existing

supplier."

RANGE SUPPLIERS;

PUT W SUPPLY.(S#,P#,J#,QTY)

: 3S (W.S ff =S.S II);

START

NAME SUPPLY

VALUE w

VALUE s

D0¥.AIN w. sit

DOMAIN S .S it

JOIN EQL

DOMAIN w. sf!

DOMAIN W.Pf!

DOMAIN W.J#

DOMAIN W.QTY

NUMBER 4

PROJECT

PUT ALL

STOP

136.

Note that the final projection must ensure that the relation on top of

stack 1 is a subset (containing key attributes) of the data base relation

into which its tuples are to be inserted.

5.3 Serial Execution (SBEGIN and SEND)

In Chapter 4 very little attention had been given to the problem of

concurrent users. There are a number of trivial solutions to this

problem, but a practical solution is generally by no means as trivial.

For example, each code string may be bounded by an SBEGIN and SEND,

but this has the undesirable effect of preventing other code strings

from being executed on the same set of relations until the other has

been completed. However, relatively few primitives actually operate

on data base relations directly. Instead, most operate on stack 1

relations which cannot be affected by concurrent users at all. If

only these critical primitives were bounded by SBEGIN and SEND then

the problems will be greatly reduced. Consider the problem in the

three cases of retrieval, modify operations, and serial execution.

Retrieval

137.

The problem occurs in a GET code string only when multiple VALUE

operations on the same relation occur because, in the interval between

any two operations, the data base relation may be changed. This

problem can be solved if, for each VALUE primitive in the code string,

the relation it produces was temporarily stored at some location.

This relation cannot now be affected by concurrent users and so each

subsequent call on this relation or portion of the relation will not

produce inconsistency problems.

Modifying Operations

The simple method for retrieval cannot be used with code strings

produced from HOLD statements because the HOLD must mark tuples in the

original data base relation. It is therefore necessary to use SBEGIN

and SEND to ensure that the hold code string is not interrupted by

another modifying code string until after the relation tuples have been

held. For UPDATEs and DELETEs no problem exists, and for PUTs only

those associated with the GET exist if (and only if) its qualification

expression references data base relations.

Serial Execution

The Calculus serial execution statement extends the problem to code

strings, including multiple HOLD, UPDATE, RELEASE or PUT primitives,

where no interrupt is allowed between any of these primitives. For

example, consider the problem of adding tuples to two different

relations of the data base. The Calculus statement which achieves

this and the resulting primitive code string are as follows.

SERIAL BEGIN

PUT Wl SUPPLIER

PUT W2 PART

SERIAL END

START

NAME

VALUE

DOMAIN

SUPPLIER

Wl

Wl.S{/

STRING Sl

RESTRICT EQL

NAME

VALUE

PART

W2

Wl.S{/ == "Sl"

W2.PII = "P2"

DOMAIN

STRING

RESTRICT

SBEGIN

PUT

PUT

SEND

STOP

W2.PI!

P2

EQL

ALL

ALL

It is only the last two PUT primitives that need to be bounded as

only these p~imitives actually affect the data base. Unfortunately

138.

this does introduce a back-up problem should one of these PUT primitives

fail.

5.4 Back-Up

All operations which are capable of changing the data within a data

base require a back-up mechanism. A mechanism which will restore the

data base to its original condition whenever a primitive operation

fails* is needed as these may fail frequently and for quite respectable

reasons. For example, a PUT may detect an already existing tuple

in the relation. To overcome this it is necessary to keep a copy of

before and after states of a relation. Therefore, each UPDATE,

DELETE, or PUT operation must use a temporary structure which contains

* There is no concern here for the more global issues of recovery from
user misuse, or hardware failure. These require the establishment
of audit trails and data base dumps, both of which are provided for
in the Calculus constructs.

every tuple modified, deleted or inserted into a relation, then, if

for any reason it fails, the system can still recover.

139.

Consider a possible mechanism, Suppose each operation that is likely

to change the data base created a temporary relation and temporary

domains, then the old tuples can be preserved by having the UPDATEs,

DELETEs, and PUTs place them into these temporary structures. If any

of these primitives should fail within a code string then it is quite

possible to restore the changed relations to their previous condition.

Though it may seem to be a complicated and time consuming process,

in practice this need not be so; indeed, the processes are very simple.

UPDATE for example, would for each tuple in the temporary relation,

locate its counter-part in the relation structure by searching key

attributes of the held tuples and then just swap the two. Should

this operation fail, then the r ecover y process consists of swapping all

tuples back up until the point of failure, that is, it is just a

repeated update. Likewise for DELETEs and PUTs.

becomes a PUT and PUT recovery becomes a DELETE.

DELETE recovery

Finally note the

old tuples can be removed from the temporary relations after an UPDATE,

DELETE or PUT and used to form audit trails.

5.5 Security, Mapping and Integrity

It should be possible for the front-end to include necessary security,

mapping, and integrity constraints into each user code string without

the possibility of their violation occurring, as each user must interface

with the front-end . This would have the very desirable effect of

allowing the back-end to concentrate only on the task of executing each

primitive, without concern for ,such side issues as security, It would

therefore be the responsibility of the front-end t o include in each

user code string primitives that would achieve these objectives.

method can be considered as a form of "query modification".

This

The following section will consider the possibility of achieving

this, within the primitive language defined, and thP difficulty

involved in achieving an effective parse. Both of these questions

are of vital importance since if many new and compl ex primitives are

needed, then the primitive language has become too complex and

cannot therefore be considered of any practical use. Also, if the

parsing problem becomes too complex, then again no real solution has

140.

been offered. However, there is a real possibility t hat the problems

may be simplier then at first appears, for if one observes the syntax

for security/integrity and mapping constructs, then a number of

similarities with already considered Calculus constructs should be

seen. These are:

1. The security constraint applicability is very similar

to a GET, HOLD, or certain other Calculus statements,

and the UNLESS clause looks just like a qualification

expression.

2. The integrity constraint is similar to a qualification

expression.

3. The mapping differs from a qualification expression

only bv its attribute mapping list.

5.5.1 Security

If one first considers security constraints without the UNLESS clause,

then it is noted that the applicability condition, the statement name,

and the attribute names are used by the compiler to determine when the

condition is to apply; that at this stage there is no need to access

any data; and that the qualification further restricts the applicability

to only those tuples which satisfy the qualification, and to only those

attributes which are identified. For example:

CONSTRAINT FOR GET (STATUS) : SUPPLIER.STATUS> 30;

GET W (S.S#,S.STATUS);

For the example GET the above constraint requires that all tuples

which have a STATUS> 30 must also have an empty value in the

141.

attribute field when they are presented to a workspace. By using the

primitives already defined it is possible to isolate these tuples,

and to operate on them as required b y the constraint. Two operations

could be chosen which will ensure the above constraint is not violated:

the entire tuple could be eliminated (restriction), or just the single

attribute values greater than or equal to 30. The last operation,

however, requires a special primitive that must behave similarly to

a projection and restriction. This new primitive (PROJREST)

nullifies selected attribute values from a set of selected tuples, as

shown in the following example.

Suppose the relation SUPPLIER exists on top of stack 1, then a primitive

code string that would eliminate all STATUS values from tuples in

SUPPLIER with a STATUS > 30 could be written as follows:

SECURITY VALUE s

DOMAIN S.STATUS

NUMBER 30

(A) RESTRICT GEQ

DOMAIN S.STATUS

NUMBER 1

(B) PROJREST

RETURN

For every tuple in the relation on top of stack 1, PROJREST firstly

nullifies all attributes in the set of attributes defined by stack 2

elements, and then merges this relation with the relation in the

second stack 1 element. In the merging process, all tuples in the

second relation of stack 1 that also exist in the first are overwritten

by the first. Figure 5.5:1 shows the top of stack 1 relation at

142.

points (A) and (B) in the above code string.

'
I SIi SNAME STATUS ' CITY

I

S3 CLARK 30 PARIS

SS ADAMS 30 ATHENS

Point (A)

I

SIi I SNA}1E STATUS CITY

Sl SMITH 20 LONDON

S2 JONES 10 PARIS

S3 BLAKE - PARIS

I

S4 CLARK 20 LONDON

SS ADAMS - ATHENS

Point (B)

Figure 5.5:1

Security Operations on SUPPLIER

Any further operation on this relation will not violate the above

constraint. For example, there is no violation even if a JOIN were

attempted on the STATUS attribute because null attribute values cannot

be joined and so these tuples are dropped.

Parsing presents no problem, for if the above security constraint was

parsed initially as a procedure and saved, then this procedure can be

called after each VALUE in a user's cod e string that "calls" the

relation SUPPLIER onto stack 1. Shown below is an example of such a

"modified" user code string for a typical GET statement on relation

SUPPLIER.

"Get all supplier numbers and their status values."

GET W (s. SIi, S.STATUS);

START MAIN: NAME w

SEC: VALUE s VALUE s

DOMAIN S.STATUS ENTER SEC

NUMBER 30 DOMAIN S. SI/

RESTRICT GEQ DOMAIN S.STATUS

DOMAIN S.STATIJS NUMBER 2

NUMBER 1 PROJECT

PROJREST STORE ALL

RETURN STOP

Other forms of the security applicability can be handled by using

already defined primitives.

Example

(a) CONSTRAINT FOR GET : SUPPLIER.STATUS > 30;

(b) CONSTRAINT FOR GET (STATIJS) ;

(c) CONSTRAINT FOR HOLD (STATUS) : SUPPLIER.STATUS > 30;

143.

For (a) the entire tuple must be deleted if its STATIJS value is greater

than 30 (a RESTRICT); for (b) the entire STATUS attribute must be

removed (a PROJECT); for (c) all HOLDs must hold entire tuples

(section 2.4.3), so this is merely a RESTRICT.

5.5.1.1 UNLESS Clause

The operation of the UNLESS clause is such that if its qualification

is true then the constraint is lifted. To achieve this, the

qualification expression of the UNLESS clause is first executed in the

same fashion as the qualification of the GET statement. Finally, if

the resulting relation is empty then the constraint is to apply, but

if it is not empty then the constraint is to be lifted - there is no

144.

concern for the actual tuples in such a resulting relation. Therefore,

this case can be handled, as with unrelated terms, by using branches

and conditional branches as shown below.

CONSTRAINT FOR GET

SUPPLY/CONST:

CONTINUE:

SUPPLIER.STATUS> 30 UNLESS

3 U (U. STATUS="MANAGER");

U = User Relation.

START

VALUE u

DOMAIN U .STATUS

STRING MANAGER

RESTRICT EQL

BNOTNULL CONTINUE

POP 1

DOMAIN S.STATUS

NUMBER 30

RESTRICT LEQ

RETURN

POP 1

RETURN

A

B

A) A test is first made on the UNLESS clause, and if the resulting

relation is null, then the constraint applicability is to apply,

so remove the empty relation and apply the constraint.

B) The security constraint is applied to the top of stack 1 relation

as required; thus, even in this case, the main code of a GET

would still be the same as before. The operation is the negation

of the applicability qualification, so that all the tuples

specified by the applicability qualifications are removed from

the stack 1 relation.

145.

5.5.2 Integrity

Integrity constraints consist of two different operations:

(1) Data Validation

(2) Data Base Monitoring

1) Data validation requires the checking of incoming relations

to ensure t hat they conform to a set of conditions.

2) Data base monitoring requires the checking, at s elected time

intervals, of the data base relations to ensure that they also

conform to a set of conditions.

Both of these checks can be implemented by the above defined primitives,

as the integrity constraint is basically just a qualification expression.

5.5.2.1 Data Validation

New data enters the data base through UPDATEs or PUTs, and in both

cases the workspace is first pushed onto stack 1. If at this stage

the data validation qualification expression is executed on the relation,

then all illegal tuples can be removed, thus effectively achieving

data validation. Again, for each relation, the integrity constraints

should be pre-compiled as a routine that can be called in the body of

a user's code string whenever data is about to be added or modified.

CONSTRAINT RANGE SUPPLIERS

~S (S.STATUS < 40 AND S.STATUS > O);

The constraint can be written as a sequence of operations which will

eliminate any tuple not satisfying this condition from the relation on

top of stack 1 as follows .

146.

INTEG: DOMAIN S .STATUS

NUMBER 40

RESTRICT LES

DOMAIN S.STATUS

NUMBER 0

RESTRICT GEQ

RETURN

In a sense the above constraint can be considered as just an extension

to the PUT qualification expression, and simply called after the

qualification expression has been executed but immediately before the

stack 1 relation is stored in the data base.

Example

PUT W SUPPLIER

MAIN NAME s

VALUE w

ENTER INTEG

STORE ALL

STOP

Note that the integrity constraint code, achieves the desired "for all"

condition, only if such a constraint is interpreted as allowing correct

tuples to be entered into a data base relation, and incorrect tuples

prevented. To be strictly correct, however, this constraint

qualification should be parsed in exactly the same manner as a GET

qualification expression. That is, a DIVIDE primitive should be used

which, on execution, returns an empty relation if so much as one tuple

exists which violates the constraint. Thus, only PUTs that have all

correct tuples are allowed to be executed, Notice also the two

different interpretations when an existential quantifier is used.

The reason for the two interpretations occurring is because one

147.

interpretation implies an operation on the relation concerned, whereas

the other interpretation is concerned only with detecting the error.

5.5.2.2 Data Base Monitoring

Data base monitoring need not be a continuous thing, but need only be

done after an operation that could change the data base occurs. For

example, the above integrity constraint could be called after each PUT

or UPDATE, or whenever the back-end has a free moment. The data base

monitoring facility is not intended to prevent data base errors, but,

rather, is intended to detect errors already existing in the data

base. The constraint does not imply any operation on the data base

once the error has been detected, instead the ON-VIOLATION clause is

used. Therefore all integrity constraints of this form should be made

useful by having either an ON-VIOLATION clause or a default operation.

Parsing such integrity constraints, presents no real problems if it is

parsed a 9 a routine where the applicability condition is treated as

an unrelated term.

Example

CONSTRAINT ~S (S.STATUS < 40 AND S.STATUS > = O)

ON-VIOLATION CALL PROBLEMS;

INTEG: VALUE s

DOMAIN S.STATUS

NUMBER 40

RESTRICT GEQ

VALUE s

DOMAIN S.STATUS

NUMBER 0

RESTRICT LES

UNION

BNULL RET

Note that the negation

of the applicability condition

is parsed in this case, so

that the slow DIVIDE primitive

is eliminated. Therefore, if

the resulting relation is not

null then violations exist.

5.5.3

ENTER

POP

RETURN

POP: POP

RETURN

Mappings

PROBLEMS

1

1

Mappings describe how, from data base relations, it is possible to

derive a particular user imagined relation. Mappings can be simple

148.

(just a restriction or projection), or they can be complex (consisting

of multiple joins). All relations defined by some mapping must first

be derived from the data base relations before a user's code string

can operate on them. But since mappings are really nothing more than

a GET, there is no reason why they cannot be handled in the same way

GET s are handled. That is, the mapping expression is executed

using calls on relations, projections, restrictions and joins, with

the final result being left on top of stack 1. It is this result

that a user's code string continues with. Therefore, mappings can

be parsed into a procedure code string and called in a user's code

string whenever an imaginary user relation is required.

Example

RELATION PART/SUPPLIER (P#,PNAME,SNAME)

MAPPING RANGE PART P

RANGE SUPPLIERS

RANGE SUPPLY SP

3P 3sP 3s (PART/SUPPLIER.P#=P.P# AND SP.P#=P.P#

AND SP.S#=S.S# AND PARTSUPPLIER.PNAME=P.PNA.}1£

AND PARTSUPPLIER.SNAME=S.S#)

PART/SUPPLIER VALUE

VALUE

DOMAIN

DOMAIN

JOIN

VALUE

DOMAIN

DOMAIN

JOIN

DOMAIN

DOMAIN

DOMAIN

NUMBER

PROJECT

RETUR~

SP

p

SP.PII

P.PII

EQL

s

SP. SI/

S. SI/

EQL

P .PI!

P .PNA..ME

S.SNAME

s

I
I
I

I
First the composite

relation consisting of the

JOIN of P, SP and Sis

form ed.

149.

The attributes required for the

final projection are identified

by the attribute mapping list.

This projection transforms

the relation into the des ired

form.

The front-end can simply include such a mapping, when parsing GETs

containing mapped relations, by emitting a call on the mapping procedure

instead of a VALUE primitive, as shown below.

GET W PART/SUPPLIER : PART/SUPPLIER.PI/ = "Pl";

MAIN NAME w

ENTER PART/SUPPLIER

ENTER SECURITY

DOMAIN P .PI!

STRING Pl

RESTRICT EQL

STORE ALL

STOP

5.5.3.1 Update and Addition

Replaces usual value call.

Calls subschema security

constraints for PART/SUPPLIER

(if any).

No update, delete or addition is allowed on mapped relations consisting

150.

of a number of joins for the reasons given for HOLDs in section 2.4.3.1;

but they are allowed when the mapping is from one data base relation

only. This does introduce a minor problem, which is that non-key

attributes may be dropped. However, this does not affect DELETEs or

UPDATEs, only PUTs, and in this case the unspecified attributes are

simply left blank.

5._5_._3_._2 __ C_o_n_straints in Mappings

Subschema relations are subjected to their security and integrity

constraints as well as schema constraints, therefore, a mapping must

also execute calls on security constraints. Following is a general

code string for the above example, showing all security and mapping

calls. Note that such a me thod for implementing subschemas can also

support any number of subschema levels.

PART/SUPPLIER: VALUE

ENTER

VALUE

ENTER

SP

SP/SECURITY

p

P /SECURITY

(mapping body)

RETURN

MAIN: NAME w

ENTER PART/SUPPLIER

ENTER PART/SUPPLIER/SEC

(body of user's code string)

STOP

SP/SECURITY and P/SECURITY

SP/SECURITY and P/SECURITY are primitive code strings, which ensure

the schema security constraints for relations SP and P, respectively,

are not violated when used in the mapping.

151.

PART/SUPPLIER

PART/SUPPLIER derives from schema relations PART and SUPPLIER the

necessary subschema relation PART/SUPPLIER. This procedure is called

in a user's code string whenever this relation is required from the

data base.

PART/SUPPLIER/SEC

All subschema relations can also b e subject t o a number of security

constraints, and therefore these procedures must be called before a

user's code string operates on the subschema relation. ENTER

PART/SUPPLIER/SEC is a typical call on a security procedure.

5.6 System Workspaces and Status Indicators

Two very important features of the DBMS is the s ys tem workspace and

status indicator facilities . The system workspaces allow administrators

to define their operations on the DBMS, whereas status indicators

allow all users to determine what the outcome of each operation is, so

that appropriate action can be taken.

5.6.1 System Workspaces

It is seen in the examples thus far that many of the Calculus statements

often make use of temporary storage space during operation. For

example, the results of a PUT are temporarily stored before being added

to the data base proper. These temporary structures can be considered

as DBMS workspaces, but even though they are considered as workspaces,

there is a big difference between them and user workspaces, or

administrator-created workspaces mentioned below. These temporary

structures are created and destroyed during DBMS operation, and at most,

only last until the DBMS is shut down. They may also range from

multi-element, relation-like structures to just single variables giving

some current status, such as VIOLATION or TIME. All these structures,

or workspaces, are created, updated, controlled and deleted by the DBMS,

152.

so all user operations on them are limited to "read -only". It should

be noted that it does not mean that data within these relations cannot

be placed on the stack, modified and inserted into some suitable data

base relation, thus recording it permanently. Unfortunately these

structures only support the operation of the primitives, so it may

often be necessary for administrators to create special system work-

spaces for some newly defined DBMS operation. Note 5 in section 2.4 of

appendix II gives an example of an administrator-defined system

workspace, Wl, and a "permanent" system workspace RESULT.

two ways an administrator may define a system workspace.

There are

1) By using the Calculus in a similar way the data base

relations are created and destroyed.

2) By using some host language facility.

If (1) is used then many more problems are introduced in the Calculus;

also, one is moving out of the realm proposed for the Calculus. On

the other hand (2) is already used by users when defining their own

workspace, so for this reason it is suggested that the second

alternative should be chosen.

There is a complicating factor which distinguishes these user defined

workspaces from the automatically created and controlled workspaces

mentioned above. As with user workspaces, they may use any one of a

number of suitable structuring methods, and also, explicit instructions

must be given in the Calculus specifying what (and when) data base

tuples are to be added or removed. See note 5 in section 2.4 of

appendix II. The task of manipulating such system workspaces is

handled in the same way user workspaces are manipulated. Conceptually

the workspace tuples are pushed onto the stack and there operated upon.

153.

5.6.2 Status Indicators

Above it was shown that for each primitive there must be some back­

up mechanism, but for each primitive the back-end must also give a

full report on its operation. This is so because in DBMSs numerous

possibilities exist, many of which do not constitute a failure, but

still require special action to be taken by the DBMS or by the users.

Clearly a comprehensive reporting me thod is required which does not

limit the report to just errors encountered during execution, but also

includes other data of interest, such as performance monitoring data.

Unfortunately much time can be consumed in giving a comprehensive

report, therefore, it would be advantageous to control the amount of

detail given by passing a single parameter onto the back-end. This

parameter would be stored as a r e lation and therefore can be accessed

and changed at will by an administrator or front-end generated code

string.

Suppose a PUT primitive was being executed, then some typical information

that should be generated by the back-end can be grouped into four·

categories.

1) Error Parameters:

2) Cause of Errors:

3) Change Made:

These parameters would indicate either

a correct operation, operation with

problems, or failure.

It is necessary to indicate the cause of

the problem (if any exists). Some typical

examples are: another similar tuple found;

empty key attribute; different relation

indicated;

found.

and indicated relation not

An indication of the events that occurred

during the execution of the primitive. For

example: relation structure resized;

4) Performance Data:

5.6.2.1 Form of Report

structures moved from pack to disk;

and garbage collection performe d.

All data that can be used to tune and

evaluate DBMS performance is also necessary.

Examples are: time taken;

used; core storage needed;

tape copies existing.

access paths

number of

154.

It is the back-ends responsibility to ensure that all of the above

information is released in a form that can be conveniently accessed

by both users and the DBMS as a whole. One solution would be to store

the data in a set of system relations whose sole purpose is to hold

the report data for each primitive executed in a code string. If

this is done then all the primitive operations can be used on this set

of relations just a s if they were any other data base relation.

At this level few users would actually have direct access to these

relations, therefore it is not necessary to have the data in a user-

recognisable form. Instead the data can exist as numbers within

tuples in one or more such relations*. Each primitive within a code

string would cause a report to be entered by the inclusion of a

tuple into one or more of these report relations (or status relations).

So at the end of a code string there will exist a set of relation

structures which contain a complete description of the events that

occurred during the execution of that code string. It is this

information that is here collectively called "status indicators",

since any portion of it can now be utilised by the DBMS, or users, to

determine the outcome of the primitive code string. Finally, the

back-end will automatically re-initialise the status relations before

proceeding with the next code string, so ensuring that no confusion

* Appendix II section 2.5, number 1 shows an example of how numbers can
be changed into a user-recognisable form.

arises. It is therefore necessary to instruct the back-end to

save this data if it is required for future use.

Perform
basic
task

Execute
primitive

Ill~
\ failure/

~
L_J

Figure 5.6:1

Major Tasks Performed by the Back-End
when Executing a Primitive

Report on
results

155.

156.

5.7 Structure Creation and Deletion

One of the major points stressed in this thesis is that administrators

should be considered as users, and that one language is all that is

needed to satisfy the variety of users. Therefore facilities for

* creating and destroying relations must exist • This is not some new

complicated primitive which radically differs from the concepts

defined above; in fact, almost all the primitives seen thus far create

or destroy structures, albeit temporary structures, all that is

needed now is a primitive that will create and destroy "permanent"

data base structures. However, there is another major difference as

this primitive must also be capable of creating a variety of different

relational structures, structures moulded by such restraints as

access paths, storage media, and their expected use. Clearly a

problem exists in deciding how to supply this primitive with the

necessary information.

Chapter I suggests that all information necessary for DBMS operation

should be stored in relations. Therefore to be consistent, the

information given in the Calculus relation statement should be stored

in some already existing data base relation (say RELDATA for the

purposes of this discussion). As this relation can be accessed by

primitives, a consistent method for obtaining the information would

be to push RELDATA onto the stack and any structure-creating primitive

can then operate with this top of stack relation, using it as a

parameter, to produce the permanent structure that this relation

defines. If this primitive is called RELATION, then the following

code sequence can be used to set up a permanent data base relation.

* This also applies to domains, subschemas and schemas, but here
only relations will be considered, as the principal is the same
in all cases.

START

VALUE

RELATION

STOP

RELDATA

It may be desirable to use two other primitives equivalent to NAME

and STORE so that conceptually the relation created by RELATION can

be moved from th e stack top to the indicated address. In actual

operation the equivalent of the NAME would indicate the internal name

of the new relation and the equivalent of the STORE would simply

157.

remove the pointer indicating the newly created relation structure from

the t op o f s ta ck 1. Finally note that it was conveniently assumed

that all necessary information had been placed into the one relation,

but this need not b e so. More than one relation can be pushed onto

s t ack 1 and all can then be used by PELATTO~ .

Destroy ing relations is a far easier operation, first the address of

the relation is placed on top of stack 1, then the DROP primitive (on

execution) removed from the data base the relation so specified.

START

NAME

DROP

STOP

5.8 ON Statement

s
All the conditions necessary
before a drop can be executed
must be satisfied. This can
be done by using primitives to
check tuples in the data
dictionary r e lations, and
branching accordingly.

Only the ON statement will be considered here as the WHEN statement

is implemented in the same way. There are two parts to the ON: the

ON applicability and the subschema operation. When the ON applicability

becomes true, the subschema operation is to be executed, therefore,

the DBMS must monitor the data base conditions to ensure that the

true state of the ON applicability is dete cted. Various methods

may be employed to achieve such a monitorjnR. For example, the

constraint-like conditions can be handled a s shown for the constraint

applicability in section 5.5 above; whereas, conditions on a certain

time may be nothing more than a task queue d for execution within a

given time interval.

158.

Some confusion may exist with host language statements in the subschema

statement of the ON. However, such statements refer to system work-

spaces and are instructions for the DBMS; therefore, these are

executed by the back-end and not by some user program. But as all

instructions to be executed by a DBMS are transfonned into a primitive

code string, it follows that these DBMS host l anguage statements must

also be parsed into primitive code instructions. This requires that

the primitive lan guage be further ex tended to include the stack

operations of conventional stack machines.

5.9 Administrator Functions

In Chapter 1 it was also suggested that a language could be developed

which would handle all administrator functions. The defined Calculus

above gives many powerful features which would often be used by

administrators. However, one important requirement that has not been

mentioned is the defining and control of physical relations and

physical data base operations. These include such things as defining

new files, structures, specifying access routines, and defining access

paths. Defining physical aspects of the data base is just an

extension of 5.7, but in this case relations are used which contain

necessary physical parameters such as blocksize; whether sequential

storage; index sequential, or other storage structure is chos en; what

tapes are used, and so on. The relations containing this data

are then used, as in section 5.7, by some appropriate primitive to

159.

create the physical structures desired. Note that at any time an

administrator can use these relations to determine the current physical

organisation of the data base.

5.9.1 Defining Access Paths

Defining a P-string, R-string, and J-string on some data base relation,

has the effect of defining an access path for these relations.

path can be used to considerably increase the operations of the

This

primitives. Suppose, for example, that a R-string is defined on

SUPPLIER which links all identical STATUS values together, then an

equality RESTRICT primitive on this STATUS attribute can be achieved

by simply copying the appropriate R-string occurrence into the

restruction structure. Notice that a projection and restriction

structure is simply a P- s tring and J-string respectively. It is

therefore reasonable to expect primitives that will define these strings

to operate in a manner similar to PROJECT, RESTRICT or JOIN, except

that all occurrences are calculated and stored. This is exactly what

is proposed here and outlined in the following code strings.

NAME

VALUE

DOMAIN

DOMAIN

NUMBER

PSGl

s

S. Sit

S .STATUS

2

PROJSTRING

SAVE

(A)

NAME RSGl

VALUE S

DOMAIN s.s/1

RESTRING EQL

SAVE

(B)

NAME JSGl

VALUE s

VALUE SP

DOMAIN S. Sit

DOMAIN SP.S/1

JOINS TRI NG EQL

SAVE

(C)

Conceptually these operations operate on the relation, or relations,

on top of the stack and leave a resulting relation behind, where this

resulting relation contains all the information of a P-string, R-

string, or J-string. In (A) above a P-string is left on top of stack

1, which is then (finally) saved in a system workspace named PSGl.

SAVE is used instead of STORE simply because all tuples must be saved

160.

every time. Finally, note that these primitives need not just operate

on the operational data relations, but could also operate on the P­

* string, R-string and J-string relations they produce . In this

way it is possible to achieve many complex access paths on data base

relations.

5.10 Summary

The two preceding chapters are by no means complete. Numerous features

have been deliberately left out for the sake of simplicity and brevity.

For example, details of administrator functions, automatic tuning, and

various Calculus extensions. However, it is felt that the material

given is enough to demonstrate the practicalities of implementing major

DBMS objectives. Finally note the following major requirements

considered when designing the primitive language.

1) A primitive language in which all user requirements can

be expressed.

2) A language that can easily be interpreted by a specialised

DBP or general purpose processor running in parallel with

the front end.

3) A language that can easily be modified to meet changing

technology and user demands.

4) A language which still provides a degree of data independence,

thus increasing the life span of application programs.

* See Schneider (bO) for a full description of P-strings, R-strings and
J-strings.

161.

CONCLUSION

6

The objective of this thesis is to present a de sign of a shared

relational data base management system which is easy to use; capable

of growth and change; has good data availability ; extensive

security and integrity facilities; and good performance. In

conclusion consider briefly some of the major design features introduced

in an attempt to achieve these objectives.

6.1 Overall System Concepts (Chapte rs 1, 2 and 3)

In Chapters 1, 2 and 3 nume rous ove rall system concepts were introduced

each having an effect on the system design chosen and on the Calculus

language in general. Some of the more important concepts and their

advantages are as follows.

"All data needed for enterprise operation, and DBMS operation, are

stored in the one data base in the form of relations."

1) This allows users to access (and possibly modify) data

dictionaries, performance monitoring data, or any other

data of interest in the same manner.

2) Allows the DBMS to access any data it needs for its

operation by using the same primitive commands that are

used when executing a user request.

3) Allows very extensive security and integrity constraints

to be written on conditions other than those occurring

in the operational data. For example, a user may be

prevented from accessing a relation depending on his

status given in the user profile relation. It also

allows Calculus integrity and security constraints to be

written that will protect all data needed in a DBMS

installation.

4) Allows administrators to easily control DBMS operation by

updating, deleting or adding data to relations used by

the DBMS in its running. Thus the DBMS's operation can

be modelled just as the enterprise opera tion is modelled

with the result of simplifying administrator functions.

162.

"All users from casual users to administrators are treated similarly."

1) Administrators can take advantage of the powerful Calculus

constructs available to normal users; and normal users

can also use some administrator functions without having to

reach the full status of administrator.

2) Administrators can be subjected to extensive security and

integrity constraints,indeed, the statements they are allowed

to perform may be controlled by a casual user who has a

higher enterprise authority.

"Use of one relational Calculus language for all users."

1) The relational Calculus is a very flexible and powerful

language allowing a user to express any desired request.

2) It allows an easier mapping from a simple natural language

that may be used to give support to casual users.

3) By using one language a user may advance in a step-by-step

manner without the need for learning a completely new

language.

A number of problems still exist with the Calculus defined in Chapters

2 and 3. Some of the symbols used are unconventional; a number of

Calculus constructs (for example, mapping) are unnecessarily complex;

and some administrator statements necessary for defining the physical

data base are not included. However, it was not intended that the

Calculus should be used in a practical implementation as defined,

instead it was intended that the language be as close as possible to

that defined by Codd (22) so that the feasibility of implementing the

above objectives with this language can be examined.

163.

6.2 The Front-End, Back-End, and Primitive Language (Chapters 4 and 5)

The concepts mentioned in section 6.1 are of no value if they cannot

be implemented in a practical way. In the design given the major

features for achieving a practical implementation are the front-end, the

back-end and the primitive language. Some of the more important

advantages gained from such design features are:

1) Given the necessary resources, then the front-end can be

executed independently and in parallel with the back-end so

increasing system performance in the multi-user environment.

2) The data independence in the primitive language allows the

back-end to use whatever physical storage scheme that best

suits the current software/hardware available. It allows

the back-end to be tuned by administrators at will and,

perhaps, even automatically tuned. User application program

life expectancy is increased, and the back-end can evolve

without extensive software revision in the front-end.

3) The back-end/operating system could be replaced by a dedicated

data base processor possibly processing a specialised

architecture which allows the primitive language to be

executed quickly.

4) New primitives can easily be added to help meet changing

needs as the back-end evolves. The flexibility of the

primitive language allows man y different ways for

achieving the same r e sult, thus the language is suitable

for expressing the best me thod of execution in a variety

of different back-end implementations.

5) The stack technique for impl ementing the primitive

language is proposed because it simplifies the addressing

problem, and procedure calls . This simplification is in

turn reflected in the primitives themselves. Note,it is

not intended to imply that the stack technique is the best

as "registers" and "accumulators" can be used instead of

the stacks with equal success .

164.

'Iwo major problems still exist with the primitive language. These are

the difficulty in parsing the Calculus into an efficient code string and

the execution of the code string itse lf. Many of the primitives perform

complex search operations on large data base files. By choosing

appropriate physical organisations it is possible to greatly increase the

speed of these operations in executing expected requests, but there will

always exist requests which will require extensive searching. Here it has

been assumed that the technology exists, or will soon exist, which

allows the primitive operations to be executed quickly and efficiently,

perhaps by some dedicated data base processor as stated by Berg (7)

(quoted below):

"Since data base processors are for dedicated purposes, we would

expect in the long run to see research aimed at increasing use

of special instruction sets and machine architecture specially

geared to the data base management functions such as searching,

sorting, and set intersection."

REFERENCES AND BIBLIOGRAPHY

1. ANDERSON, D.R.

Data Base Processor Technology

In APIPS Conference Proceedings, Vol. 45, 1976, NCC.

2. ANSI/X3/SPARC

Study Group on Data Base Management Systems.

Interim Report ANSI

In FDT ACM-SIGNMOD, Vol. 7, Number 2, 1975.

3. ARTHUR, J.C.

Implications of Data Independence on the Architecture of

Data Base Management Systems.

In Proc. ACM-SIGFIDET workshop on Data Description, Access and

control. September 1972, pp. 307-332.

4. ASTRAHAN, M.M., AITMAN, E.B., FEHDER, P.L. and SENKO, M.E.

Concepts of a Data Independent Accessing Model.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access

and Control. September 1972, pp. 349-362.

5. ASTRAHAN, M.M., CHAMBERLIN, D.D . , KING, W.F. and TRAIGER, I.L.

(1975). System R: A Relational Data Base Management System.

In Data Base Systems Proceedings, 5th. Informatik Symposium.

Lecture Notes in Computer Science (No. 39) Pub. Springer-Verlas.

6. BAYER, R.

Integrity, Concurrency and Recovery in Data Bases.

In ECI Conference 1976 (No. 44) pp. 79-107. Proceedings of

the 1st Conference of the European Cooperation in Informatics.

7. BERG, J.L.

Data Base Directions - The Next Steps.

In DATA BASE ACM-SIGMOD RECORD Vol. 8 Number 4, Nov. 1976.

8. BERNSTEIN, P.A.

Normalization and Functional Dependencies in the Relational

Data Base Model. Technical Report CSRG-60, October 1975.

Computer System Research Group.

9. BILLER, H., GLATTHAAR, W. and NEVHOLD , E.J.

On the Semantics of Data Bases: The Semantics of Data

Manipulation Languages. pp. 239-269. In Mqdelling in Data

Base Management Systems, Edited by G.M. Nijssen, Pub. North-Holland.

10. BLASER, A. and SCHMUTZ, H.

Data Base Research: A Survey

In Data Base Systems Proceedings 5th Informatik Symposlum,

September 1975. Lecture Notes in Computer Science (No. 39)

Pub. Springer-Verlag, pp. 44-114.

11. BOOTH, G.M.

Distributed Information Systems,

In AFIPS Conference Proceedings, Vol. 44, 1976, NCC.

12. BRIAN, J. and JAMES, L.P.

An Approach for a Working Relational Data System.

In Proc ACM-SIGFIDET Workshop on Data Description, Access

and Control. September 1972, pp. 125-145.

13. British Computer Society.

ii.

The British Computer Society Data Dictionary Systems Working

Part Report.

In Data Base Vol. 9, Number 2, Fall 1977, and SIGMOD Record,

Vol. 9, Number 4, December 1977.

14. CASEY, R.G. and OSMAN, I.M.

Replacement Algorithms for Storage Management in Relational

Data Bases.

In The Computer Journal, Vol. 19, Number 4, 1974, pp. 306-314.

15. CHAMBERLIN, D.D.

Relational Data-Base Management Systems

In ACM Computing Surveys, Vol. 8, Number 1, March 1976, pp. 43-66.

16. CHEM, P.P.

The Entity Relationship Model - A Basis for the Enterprise View

of Data.

In AFIPS Conference Proceedings, Vol. 46, 1977, NCC.

17. CLARK, I.A.

Relational Data Dictionary Implementation

In Data Base Systems Proceeding 5th Informatik Symposium,

September 1975. Lecture Notes in Computer Science (No. 39)

Pub. Springer-Verlag.

18. CODASYL

CODASYL Data Base Task Group Report, April 1971,

19. CODASYL

A Progress Report on the Activities of the CODASYL End user

Facility Task Group.

In FDT ACM-SIGMOD, Vol. 8, Number 1, 1976.

20. CODD, E.F.

A Relational Model of Data for Large Shared Data Banks.

In communication of the ACM, Vol. 13, Number 6, June 1970,

pp. 377-387.

21. CODD, E.F.

Relational Completeness of Data Base Sublanguages.

In Data Base Systems Courant Computer Science Symposia 6,

May 1971, pp. 65-98, Pub. Prentice-Hall.

22. CODD, E.F.

A Data Base Sublanguage Founded on The Relational Calculus.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access

and Control. November 1971, pp. 35-68.

23. CODD, E.F.

Normalized Data Base Structure: A Brief Tutorial.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access

and Control. November 1971, pp. 1-17.

24. CODD, E.F.

Further Normalization of the Data Base Relational Model.

In Courant Computer Science Symposia 6, May 1971, pp. 33-64,

Pub. Prentice-Hall.

25. CODD, E.F.

Understanding Relations

A series of articles appearing in the quarterly bulletin of

ACM-SIGMOD, beginning with Vol. 5, Number 1, June 1973.

26. DATE, C.J.

An Introduction to Data Base Systems.

1975, Pub. Addison-Wesley.

27. DATE, C.J.

An Introduction to Data Base Systems.

Second Edition, 1977, Pub. Addison-Wesley.

28. DATE, C.J.

Storage Structure and Physical Data Independence.

iii.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access and

Control. November 1971, pp. 139-166.

29. DATE, C.J.

Relational Data Base Systems: A Tutorial.

In Computer and Information Science Symposium, 4th, Miami Beach,

1972, pp. 37-54.

30. DEAN, A.L.

Data Privacy and Integrity Requirements for Online Data

Management Systems.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access and

Control. November 1971, pp. 279-298.

iv.

31. DEBLASIS, J.P. and JOHNSON, T.H.

Data Base Administration - Classical pattern, Some Experiences

and Trends.

In AFIPS Conference Proceedings, Vol. 46, 1977, NCC,

32. DHALIWAL, D.S. and KONSYNSKI, B.R.

Data Integrity Considerations in Computer Based Accounting

Systems. In Proc. 1977 Annual Conference ACM October 16-19, 1977.

33. ELRENSBERGER, M.

Data Dictionary - More on the Impossible Dream.

In AFIPS Conference Proceedings, Vol. 46, 1977, NCC.

34. ENGLES, R.W.

A Tutorial on Data-Base Organization.

In Annual Review in Automatic Programming. Vol. 7, Part 1,

July 1972, Pub. Pergamon Press.

35. EVEREST, G.C.

The Objectives of Data Base Management

In Computer and Information Science, Symposium, 4th, Miami

Beach, 1972, pp. 1-35.

36. FRY, J.P. and SIBLEY, E.H.

Evolution of Data-Base Management Systems.

In ACM Computing Surveys. Vol. 8, Number 1, March 1976, pp. 7-42.

37. GARDARIN, G. and SPACCAPIETRA, S.

Integrity of Data Bases: A General Lockout Algorithm with

Deadlock Avoidance. In Modelling in Data Base Management

Systems, pp. 395-413, IFIP, Pub. North-Holland.

38. GHOSH, S.P.

Data Base Organization for Data Management

(Computer Science and Applied Mathematics Series), Pub, Academic

Press, 1977.

39. GRAY, J.N., LORIE, R.A., PUTZOLU, G.R. and TRAIGER, I.L.

Granularity of Locks and Degrees of Consistency in a Shared

Data Base. In Modelling in Data Base Management Systems,

pp. 365-395, IFIP, Pub. North-Holland.

40. HALL, P., OWLETT, J. and TODD, S.

Relations and Entities.

In Modelling in Data Base Management Systems, pp. 201-221.

IFIP Pub. North-Holland.

41. HAMMER, M.

Error Detection in Data Base Systems.

In AFIPS Conference Proceedings, Vol. 45, 1976, NCC.

v.

42. HAWRYSZKIEWYCZ, I.T. and DENNIS, J.B.

An Approach to Proving the Correctness of Data Base Operations.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access and

Control. September 1972, pp. 323-348.

43. HEATil, I.J.

Unacceptable File Operations in a Relational Data Base.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access and

Control. November 1971, pp . 19-32.

44. HELD, G.D., STONEBRAKER, M.R. and WONG, E.

INGRESS - A Relational Data Base System

In AFIPS Conference Proceedings, Vol. 44, 1975, NCC, pp. 409-416.

45. HILL, H.L.

Data Base System Evaluation

In Data Base Systems Proceedings, 5th, Informatik Symposium.

September 1975, pp. 291-315.

Lecture Notes in Computer Science (No. 39), Pub. Springer-Verlag.

46. LANG, T., FERNANDEZ, E.B. and SUMMERS, R.C.

A System Architecture for Compile-Time Actions in Data Bases.

In Proc. 1977 Annua l Conference ACM. October 16-19, 1977, Seattle.

47. LEDGARD, H.F. and TAYLOR, R.W.

Two Views of Data Abstraction

Selected papers from the conference on Data Abstraction,

Definition and Structure.

In corrrrnunications of the ACM, June 1977, Vol. 20, Number 6.

48. LIEN, Y.E.

Design and Implementation of a Relational Data Base on a Mini

Computer.

In Proceedings 1977 Annual Conference ACM. October 16-19, 1977,

Seattle.

49. MACHGEELS, C.

A Procedural Language for Expressing Integrity Constraints in

the Coexistence Model.

In Modelling in Data Base Management Systems, pp. 293-303.

IFIP, Pub. North-Holland.

50. MARTIN, J.

Principals of Data Base Management, Pub. Prentice-Hall, Inc,

51. MARTIN, J.

Computer Data-Base Organization. Second Edition 1977, Pub.

Prentice-Hall, Inc.

vi.

52. MARVIN, V.Z.

Perspectives on Software Engineering

In ACM Computing Surveys. Vol. 10, Number 2, June 1978.

53. McLEOD, D. and MELDMAN, M.

RISS - A Generalized Minicomputer Relational Data Base Management

System.

In AFIPS Conference Proceedings, Vol. 44, 1975.

54. MEADOW, C.T.

55.

Applied Data Management. Pub. Wiley-Interscience, 1976.

MINSKY, N.

Intentional Resolution of Privacy Protection in Data Base Systems.

In Corrnnunications of the ACM. Vol. 19, Number 3, March 1976.

56. NIJSSEN, G.M.

A Gross Architecture for the next Generation Database Management

Systems.

In Modelling in Data Base Management Sy stems. IFIP, Pub. North­

Holland.

57. OZKARAHAN, E.A., SCHUSTER, S.A. and SMITH, K.C.

RAP: An Associative Processor for Data Base Management.

In AFIPS Conference Proceedings. Vol. 44, May 1975, pp. 379-387.

58. PALERMO, F.P.

A Data Base Search Problem

In Fourth International Symposium on Computer and Information

Science. December 1972, Plenum Press, pp. 67-101.

59. RANDELL, B. and KUEHNER, C.J.

Dynamic Storage Allocation Systems.

In corrnnunication of the ACM. Vol. 11, Number 5, May 1968,

pp. 297-305.

60. SCHNEIDER, L.S.

A Relational View of the Data Independent Accessing Model.

In Proc. ACM-SIGMOD International Conference on the Management of

Data. 1976.

61. SCHUSTER, S.A,, NGUYEN, H.B., OZKARAHAN, E.A. and SMITH, K.C.

RAP 2 - An Associative Processor for Data Bases.

In SIGARCH Newsletter. Vol. 6, Number 7, April 1978.

Computer Architecture News, ACM-SIGARCH, pp. 52-59.

62. SHEMER, J.E. and COLLMEYER, A.J.

Data base sharing: A Study of Interference, Roadblock and Deadlock.

In Proc. ACM-SIGFIDET Workshop on Data Description, Access and

Control. September 1972, pp. 147-163.

vii.

63. SIBLEY, E.H.

The Development of Data-Base Technology

In ACM Computing Surveys. Vol. 8, Number 1, March 1976, pp. 1-5.

64. SMITH, J.M. and SMITH, D.C.P.

Database Abstractions: Aggregation

Selected papers from the conference on Data Abstraction, Definition

and Structure.

In Communications of the ACM. Vol. 20, Number 6, June 1977.

65. STERNBERG, S.

Position paper on the Implementation and use of Data Base

Management Systems.

In Proceedings 1977 Annual Conference ACM.

Seattle.

66. TEOREY, T.T. and PETLEUS, J.W.

October 16-19, 1977,

Analysis of Storage Structure Performance for Multiple Data

Processing Activities.

In Proceedings 1976 Annual Conference of the ACM.

21, 22, Houston, Texas.

67. TESTA, C. and LAUBE, S.J.

October 20,

"Other Factors" in DBMS Selection and Implementation.

In Data Base.

Number 4, 1975.

68. TODD, S.J.P.

A Quarterly Newsletter of SIGBDP. Vol. 6,

Peterlee Relational Test Vehicle PRTV, a Technical Overview.

IBM Scientific Centre Report UKSC 0075, Peterlee, England, July 1975.

69. TSICHRITZIS, D.C. and LOCHOUSKY, F.H.

Hierarchical Data-Base Management: A Survey.

In ACM Computing Surveys. Vol. 8, Number 1, March 1976, pp. 105-123.

70. TSICHRITZIS, D.C.

Research Directions in Data Base Management Systems.

Computer Systems Research Group, University of Toronto.

In SIGMOD RECORD.

71, TURN, R.

Vol. 9, Number 3 (late issue), 1977.

Cost Implications of Privacy Protection in Data Bank Systems.

In Data Base - A Quarterly Newsletter of SIGBDP. Vol. 6,

Number 4, 1975.

72. TUZER, E.E.

Data Base Systems Analysis and Design

ICI Conference 1976 (No. 44). Proceedings of the 1st Conference

of the European Cooperation in Informatics.

viii.

73. VINCENT, D.

The Use of Entity Diagrams in Data Base Systems Implementations.

In Proceedings 1977 Annual Conference ACM. October 16-19,

1977, Seattle.

74. WEBER, H.

A Semantic Model of Integrity Constraints on a Relational Data Base.

In Modelling in Data Base Management Systems. Ed. J.M. Nijssen,

pp. 269-293. IFIP Pub. North-Holland.

75. WHITNEY, V.K.

RDMS: A Relational Data Management System.

In Proceedings 4th International Sympositnn on Computer and

Information Sciences. December 1972, Plenum Press, pp. 55-66.

76. WONG, E. and CHIANG, T.C.

Canonical structures in Attribute Based File Organization.

In Communications of the ACM. Vol. 14, Number 9, September 1971.

APPENDIX I

Complete Syntax

for

The Calculus

1.0

2.0

3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.8.1
3.8.2
3.8.3.
3.8.4
3.9

4.0

s.o

6.0

7.0

8.0

9.0

10.0

11,0

APPENDIX I

CONTENTS

Schema and Subschema

Control Statements

Simple Calculus Statements
Range Statement
Get Statement
Hold Statement
Put Statement
Update, Delete, Release and Close Statement
Serial Statement
Domain Statement
Relation Statement

Key and Unique
Mapping Declaration
Relation Constraints
Relation Control

Drop Statement

Qualification Expression

Piped Option and Element Ordering

Relation Specifier

Attribute List and Name

Names

Function

Numbers, strings and characters

Identifiers

1

2

3
4
4
4
5
5
5
5
6
6
6
7
8
8

9

10

10

10

10

11

11

11

APPENDIX I

1.0 Schema and Subschema

<Calculus>

<schema statement>

<schema operation>

<compound schema
operation>

::= <schema statement>

: := SCHEMA <schema name>
<schema operation>

: := <simple schema operation>!
<compound schema operation>

::= BEGIN <compound schema tail>

<compound schema tail> ::= <simple schema operation> ENDI
<si mple schema operation>;<compound schema tail>

<simpl e schema operation> ::= <simpl e calculus s tatement>!
<subschema statement>!

<subschema stat ement>

<schema control statement>

··= SUBSCHEMA <subschema name>
<subschema operation>

<subschema operation> ::= <simple subschema operation>!
<compound subschema operation>

1.

<compound subschema
operation>

··= BEGIN <compound subschema tail>

<compound subschema tail> ::= <simpl e subschema operation>END I
<simple subschema operation>; <compound subschema tail>

<simp le subschema
operation>

::= <simple calculus statement>!

<subschema control statement>

APPENDIX I

2.0 Control Statements

<schema control statement > ::= WHEN<applicability condition>
<schema operation> !

<schema constraint>

<schema constraint> ::= <global access constraint > !
<integrity constraint> !

<global access constraint><schema con s traint violation> !
<integrity constraint>< schema constraint violation>

2.

<schema constraint violation> ::= ON-VIOLATION <schema operation>

<subschema control statement> ::= WHEN <applicability condition>
<subschema operation>!

<subschema constraint>

<subschema constraint> ··= <global access constraint> !
<integrity constraint> !

<global access constraint>< subschema constraint violation> !
<integrity constraint>< subschema constraint violation>

<subschema constraint violation>
: := ON-VIOLATION<subschema operation>

<global access constraint> ··= CONSTRAINT FOR
CONSTRAINT FOR <simple applicability condition> !
CONSTRAINT FOR <simple applicability condition>UNLESS

<range list><qualification expression>

<applicability condition> ::= <range list><qualification expression>
<simple applicability condition> !
<serial condition> !
<special condition> !
<boolean procedure call>

<simple applicability condition>

<read condition>

::= <range list><read condition>!
<range list><write condition>

::= <piped option>GETI
<piped option>GET<quota>
<get expression><element ordering list>

APPENDIX I

<write condition>
<piped option><operation

<operation name>

::= <piped option><operation
name><hold expreasion>

<element ordering list>

. ·= HOLD !UPDATE I
DELETEIPUT

<serial condition> ::= SERIAL!
SERIAL BEGIN <compound condition tail>

3.

name>!

<compound condition tail>
<simple applicability

::= <simple applicability condition>ENDI
condition>;

<special condition>

3.0 Simple Calculus Statements

<compound condition tail>

LOGONjSCHEMAI
SUBSCHEMA

<simple calculus statement>

<procedure call> I <host

::=<manipulation statement>!
<definition statement>!

language statement>

<manipulation statement> ::=<range statement>!
<get statement>l<hold statement>!
<put statement>l<update statement>!
<delete statement>l<release statement>!
<close statement> I <serial statement>

<definition statement> ::=<domain statement>!
<relation statement>!
<drop statement>

3.1 Range Statement

<range list>

APPENDlX I

1:= <empty>l<range statement>!
<range statement><range list>

4.

<range statement> ::= RANGE<relation name><tuple variable>

3.2 Get Statement

<get statement> ::= GET<workspace name>!

<get expression>

<target>

<target list>

<piped option> GET<workspace name><quota>
<get expression><element ordering list>

<quota> ··= <empty>! [<unsigned integer>]

: := <target> I
<targe t > : <qualification expression>

::= <target term>!
(<target list>)

::= <target term>!
<target terrn>,<target list>

<target term> .. - <relation specifier>!
<relation specifier>.<attribute name>!

<function>

3.3 Hold Statement

<hold statement> ::= HOLD<workspace name>!
<piped option> HOLD<workspace name>

<hold expression>

<hold target>

<hold expression><element ordering list>

::= <hold target>!
<hold target>:<qualification expression>

::=<relation specifier>!
<relation specifier>.<attribute name>!
<relation specifier>.(<attribute list>)

3.4 Put Statement

<put statement>
<piped

<put expression>

APPENDIX I

::= PUT<workspace name>!
option>PUT<workspace name><put expression>

<element ordering list>

: := <hold expression>

3.5 Update, Delete, Release and Close Statements

<update statement> .. - UPDATE<workspace name>

<delete statement> .. - DELETE<worksp ace name>

<release statement> : := RELEASE<workspace name>

<close statement> : := CLOSE<workspace name>

3.6 Serial Statement

<serial statement> ::= SERIAL BEGIN <serial tail>

5.

<serial tail> ··= <manipulation statement>SERIAL ENDJ
<manipulation statement>;<serial tail>

3.7 Domain Statement

<domain sta tement> .. - DOMAIN <domain list>

<domain list> ::= <domain expression>J
<domain expression>,<domain list>

<domain expression> ::= <domain name><type declaration>
<retrieval call><storage call>

<type declaration>

<data type>

<type>

<retrieval call>

··= <data type>JFLEX<data type>

··= <type>(<format>)

::= CHAR!CHARACTER!NUMI
NUMERIC

· ·= <empty> J
FOR RETRIEVAL <procedure call>

<storage call>

< forrna t>

3.8 Relation Statement

<relation statement>

3.8.1 Key and Unique

<key>

<unique>

3.8.2 Mapping Declaration

APPENDIX I

: := <empty> I
FOR STORAGE <procedure call>

::= <unsigned integer> !
<unsigned integer>,<unsigned integer>

::= RELATION <relation name>
(<attribute list>)

<key><unique>
<mapping declaration>
<relation constraint list>
<relation control list>

··=KEY <attribute name> !

.. -
KEY(<attribute list>)

<empty>!
UNIQUE <attribute name>!
UNIQUE(<attribute name>)

<mapping declaration> ::= <empty>!

6,

MAPPING <range list><mapping expression>

<mapping expression>

<quantified mapping>

::= <mapping> I <quantified mapping>

··= (<mapping>) I
<quantification>(<mapping>)

<mapping> ··= <attribute mapping list>!
<attribute mapping list>AND<qualification>

<attribute mapping list>::= <attribute mapping> I
<attribute mapping>AND<attribute mapping . list>

<attribute mapping>

<expression>

::= <relation specifier>.<attribute name>=
<expression>

::= <string expression>!
<numeric expression>

3.8.3

APPENDIX I

Relation Constraints

<relation constraint list> ::= <empty>J
<relation constraint>J

<relation constraint><relation constraint list>

<relation constraint> ::= <access constraint>J
<integrity constraint>J

<access constraint><constraint violation>J
<integrity constraint><constraint violation>

7.

<constraint violation>

<integrity constraint>

::= ON-VIOLATION <subschema operation>

::= CONSTRAINT <range list>
<qualification expression>

<access constraint> ::= CONSTRAINT POR
<constraint applicability>J

CONSTRAINT FOR <constraint applicability>UNLESS
<range list><qualification expression >

<constraint applicability> ::= <simple relation applicability>J
<relation serial condition>J
<boolean procedure call>

<simple relation applicability>
::= <range list><relation read condition>J

<range list><relation write condition>

<relation read condition> ::= <piped option>GETJ
<piped option>GET<quota>

<relation get expression><element ordering
list>

<relation get expression> ::= <relation target>J
<relation target>:<qualification expression>

<relation target> ::= <relation target term>J
(<relation target list>)

<relation target list> ::= <relation target term>J
<relation target term>,<relation target list>

3.8.4

3.9

APPENDIX I

<relation target term> ··= <attribute name>!
<function>

8.

<relation write condition> ::= <piped option><operation name>!
<piped option><operation name ><relation hold expression>

<e lement ordering list>

<relation hold expression > ··= <relation hold target > !

<relation hold target>

<relation hold target>:<qualification
expression>

::= <attribute name>!
(<attribute list>)

<relation serial condition> ::= SERIAL!
SERIAL BEGIN <relation serial tail>

<relation serial tail> ::= <s imple relation applicability>ENDI
<simple relation applicability> ;<relation serial tail>

Relation Control

<relation control list> ::= <empty> !
<relation control declaration> !

<relation control declaration><relation control list>

<relation control declaration>

<on applicability>

Drop Statement

<drop statement>

::= ON <on applicability>
<subschema operation>

··= <range list><qualification expression>
<constraint applicability> !
<special condition> !
<boolean procedure call>

··= DRO~ <name>!
DROP <relation name>.(<attribute list>)

4.0

APPENDIX I

Qualification Expression

<qualification expression> ::= <qualification>!
<quantified qualification>

9,

<quantified qualification> ::= <quantification>(<qualification>)

<quantification> ··= <quantifier><tuple variable > !
<quantifier>< tuple variable ><quantification>

<qualification> : := <qualification factor >I
<qualification factor >OR<qualification>

<qualification factor> ::= <qualification secondary> !
<qualification secondary>AND<qualification factor>

<qualification secondary>

<qualification primary>

<not>

<quantifier>

::= <qualification primary> !
<not><qualification primary >

.. -

: :=

<join term>l<boolean function > !
(<qualification>)

NOTJ -i

3 IV
<j oin term> - <string exp ><string dyadic>

<string exp > I
<numeric exp ><numeric dyadic><numberic exp>

<numeric exp> ::= <number>J<numeric function>!
<relation specifier >.<attribute name>

<string exp > ::= <string>l<string function >J
<relation specifier> .<attribute name>

<numeric dyadic>

<s tring dyadic>

::= =l#l<l>l<=J>=I
EQLINEQILSSjGTRjLEQjGEQ

: := =I EQLI #]NEQ

5.0

6.0

10.

APPENDIX I

Piped Option and Element Ordering

<piped option> : := <empty>!OPEN

<element ordering list> ::= <empty > !
<order><relation specifier> . <attribute name > !

<order><relation specifier>. <attribute name ><eleme nt ordering list>

<order> - UPI DOWN

Relation Specifier

<relation specifier> ::= <relation name>!
<tuple variable>l<workspace name>

7.0 Attribute list and Name

8.0

<attribute list> ::= <attribute name > !
<attribute name>,<attribute list>

<attribute name>

Names

<name>

<schema name>
<sub schema name>
<relation name>
<domain name>
<workspace name >
<attribute name >
<tuple variable>

::= <domain name > !
<selector >- <attribute name >

: := <domain name> I
<relation name > !
<subschema name > !
<schema name>

. ·= <identifier>
: := <ide ntifier>
.. - <identifier>
: := <identifier>

- <identifier>
: := <identifier>
: := <identifier>

9.0 Function

<function>

APPENDI X I

··= <numeric function>!
<string function>

10.0 Numbers, Strings and Characters

<number> - <sign><unsigned number>

<sign> - <empty>! +I-

<unsigned number > .. - <unsigned integer>
<unsigned integer><decimal fraction > !

<decimal fraction>

<decimal fraction >

<unsi gned intege r >

<string>

<simple string>

<character>

11.0 Identifiers

<identifier>

<digit>

<letter>

<special characters >

- . <unsigned integer>

: : = <digit> I
<digit><unsigned integer>

::= " <simple string>"I
" <s imple string> " <string>

: := <characte r > !
<character><simple string>

<letter> l<digit> I
<special character>

: := <letter> l<identifier><letter> I
<identifier><digit>

. ·=

.. -

: :=

0111213J4l5l6l7 J8l9

AIBICIDJEIFIGIH)IIJIKI
LIMINIOIPIQIRIS!TIUIVI
WIXIYIZ

-I ,IC IJI cl)l+l-111 >I <I
=j %.l&l*l=l;j$1'

11.

P.PPE~m IX I I

The

SUPPLIER/PART

Data Base

CONTENTS

0.0

1.0

1. 1

1. 2

1.3

2.0

APPENDIX JI

Introduction

The Subschemas

Subschema PAUL

1.1.1

1.1. 2

1.1.3

1.1.4

1. 1.5

Sub schema

1. 2 .1

1. 2. 2

1. 2. 3

1.2. 4

1. 2. 5

Sub schema

1. 3 .1

1. 3. 2

1. 3. 3

1. 3.4

1. 3. 5

The Users

The Data Relations

System Relations and Control
Instructions

Subschema PAUL Definitions

Example Operations

FAYE

The Users

The Data Relations

System Relations and Control
Instructions

Subschema FAYE Definitions

Example Operations

BIG/SUBSCHEM.A

The Users

The Data Relations

System Relations and Control
Instructions

Subschema BIG/SUBSCHEMA Definitions

Examples and Notes

The Schema

2. 1

2.2

The Users

The Data Relations and Notes

Page

1

2

2

3

3

3

5

6

6

6

6

7

9

11

12

12

13

14

17

21

22

22

23

2.3

2.4

2.5

System Relations and Their
Control Instructions

SCHEMA SUPPLIER/PART Definitions

Example Operations

Page

24

31

37

1.

0.0 Introduction

This appendix is an example showinr, how the Calculus may be used to

create a data base. The example consists of two parts, first the

subschemas are described then finally the schema is described.

One of the first things that must be done when creating a data base

is the planning and designing. That is, identify ing the necessary

operational data, the ir interrelationships, the relations needed, the

domains needed, and so on. It is assumed that this has already been

done and that the result is given in Figure II.l below.

SUPPLIER

Sf! SNAME STATUS

Sl SMITH 20

S2 JONES 10

S3 BLAKE 30

S4 CLARK 20

SS ADAMS 30

PART

pff PNAME COLOUR

Pl NUT RED

P2 BOLT GREEN

P3 SCREW BLUE

P4 SCREW RED

PS CAM BLUE

P6 COG RED

Figure II. l

Operational Data

(continued on next page)

SUPPLY

CITY Sf! Pf!

LONDON Sl P l

PARIS Sl Pl

PARIS S2 P3

LONDON S2 P3

ATHENS S2 P3

S2 P3

S2 P3

S2 P3
WEIGHT QOH

S2 P3

12 26 S2 PS

17 8 S3 P3

17 10 S3 P4

14 24 S4 P6

12 35 S4 P6

19 3 SS P2

SS P2

SS PS

SS PS

SS L_ P6

JI! QTY

Jl 2

J4 7

Jl 4

J2 2

J3 2

J4 5

JS 6

J6 4

J7 8

J2 1

Jl 2

J2 5

J3 3

J7 3

J2 2

J4 1

JS 5

J7 1

J2 2

PROJECT

JI/ JNAME MGR-NO

Jl SORTER M4

J2 PUNCH Ml

J3 READER M3 Figure 11.l (continued)

J4 CONSOLE Ml
Operational Data

JS COLLATOR M4

J6 TERMINAL M2

J7 TAPE MS

1.0 The Subschemas

There is no restriction on the complexity of subschemas, but clearly,

subschemas should be written so that there is maximum simplicity of

the data bas e . For example, just grouping users of similar needs

together within a single subschema and writing a global subschema

constraint saves on the writing of repeated individual integrity and

security constraints. Other typical considerations needed when

writing subschemas are:

a) The data needs and necessary security and integrity

constraints required of individual users.

b) The necessary operational data relations and their

mapping, security, and integrity requirements.

c) The necessary system relations of the subschema and

their mapping, security, and integrity requirements.

d) Finally the overall subschema's constraints, proposed

use, and control instructions.

1.1 Subschema PAUL

2.

In this subschema all users will be restricted to "read only" operations

so as to greatly simplify control .

1. 1.1 The Users

Initially there are only two users, Paul and Yvonne.

PAUL

PAUL is allowed to read from any relation in this subschema.

Yvonne

Yvonne i s only allowed to r ead from relation PART.

1. 1. 2 The Data Relations

Only the two relations PARTS and PARTSUPPLIER exist.

PARTS

PARTS is identical to PART except the QOH attribute is absent .

3.

Note

that a fairly complicated mapping is required just to change the relation

name . A possible improvement on the syntax could be to allow the

relation to be defined as follows.

RELATION PARTS=PART (P#,PNAME,COLOUR,WEIGHT)

KEY Pt!

PARTSUPPLIER

PARTSUPPLIER is a relation derived from SUPPLIER and PART which gives

the name of suppliers who supply a particular part. See figur e I I.2.

1.1.3 System Relations and Control Instructions

Here only the one relation, CUSER, exists. CUSER allows the system

to identify the current user of this subschema, so making it possible

to apply constraints to selected individuals.

4.

PARTS PARTSUPPLIER

PI! PNAME COLOUR WEIGHT I PI! PNAME SNAME

Pl NUT RED 12 Pl NUT SMITH

P2 BOLT GREEN 17 P2 BOLT ADAMS

P3 SCREW BLUE 17 P3 SCREW JONES

P4 SCREW RED 14 P3 SCREW BLAKE

PS CAM BLUE 12 P4 SCREW BLAKE

P6 COG RED
I

19 PS CAM JONES

PS CAM ADAMS

P6 COG CLARK

P6 COG ADAMS

CUSER

USERNO UNAME

14 PAUL

Figure II.2

Subschema PAUL Relations

1.1. 4 Subschema PAUL Definitions

SUBSCHEMA PAUL

BEGIN

DOMAIN PI! CHAR (2),

PNAME CHAR (15)'

COLOUR CHAR (6) '

WEIGHT NUM (3,2),

SIi CHAR (2) '

SNAME NUM (15),

USERNO NUM (4)'

UNAME CHAR (20);

RELATION PARTS (P/1,PNAME,COLOUR,WEIGHT)

KEY PI!

MAPPING RANGE PART P

5.

3 P (PARTS.P/l=P.P/1 AND PARTS.PNAME=P.PNAME AND PARTS.COLOUR=P.

COLOUR AND PARTS.WEIGHT=P.WEIGHT)

RELATION CUSER (USERNO, UNAME)

KEY USERNO

CONSTRAINT FOR GET

RELATION PARTSUPPLIER (P/1,PNAME,SNAME)

MAPPING RANGE PART P

RANGE SUPPLIERS

RANGE SUPPLY SP

3P3SP~S (PARTSUPPLIER.P/1 = P.P/1 AND SP.P/1 = P.PII AND SF.SIi s.s/1 AN:

PARTSUPPLIER.PNAME=

P.PNAME AND PARTSUPPLIER .SNAME=S.S/1)

CONSTRAINT FOR GET: CUSER. UNAME=''YVONNE"

END OF DSM PAUL;

1.1.5 Example Operations

1. GET W (PARTS.PI/ ,PARTS.COLOUR):PARTS.P// == "Pl"OR PARTS.PI/= "P2";

All legal GET operations on PARTS by either Paul or Yvonne are

allowed,

2. GET W PARTSUPPLIER.PNA~:PARTSUPPLIER.P// "P l" OR

PARTSUPPLIER.PII = "P3"

3. RANGE PARTSUPPLIER PS;

GET W (PARTS.PI/ ,PARTS.COLOUR):3PS(PARTS.P// =PS.PI/AND

(PARTS.PI/= "Pl" OR PARTS.PI!= "P2"));

Although this result is identical to that of 1, it is still an

illegal operation for Yvonne. If this were allowed it would be

6.

possible to obtain prohibited information from restricted relations

indirectly,

1.2 Subschema FAYE

Whenever a domain or relation is declared, the DBMS automatically stores

the resulting information into a set of system relations. An

administrator can now use these system relations to construct an index

of available relations in a given subschema as shown by example in this

sub schema.

1. 2.1 The Users

Faye

Faye is allowed to update all except the QOH attribute in relation PART,

and is allowed to see RINDEX, DINDEX, THESUPPLIER and PART, but, she is

prevent from seeing the STATUS attribute in relation THESUPPLIER.

:rony

Tony is allowed to see RINDEX,DINDEX and all data relations.

1.2 .2 The Data Relations (see Figure 11.3)

7.

THESUPPLIER

This relation is mapped from the schema relation SUPPLIER in such a

way that all tuples which have a STATUS value of 30 or more are removed.

PART and PROJECT

PART and PROJECT are identical to the respective schema relations PART

and PROJECT.

1. 2. 3 System Relations and Control Instructions

There exists the relation CUSER, as before, and the new relations

DINDEX and RINDEX. DINDEX lists all current domains that exist in this

subschema while RINDEX lists all current relations that exist. See

Figure II. 3.

THESUPPLIER

SI/ SNAME

Sl SMITH

S2 JONES

S4 CLARK

PART

pfl PNAME

Pl NUT

P2 BOLT

P3 SCREW

P4 SCREW

PS CAM

P6 COG

STATUS

POB

TOA

AOB

COLOUR

RED

GREEN

BLUE

RED

BLUE

RED

CITY

LONDON

PARIS

LONDON

WEIGHT

12

17

17

14

12

19

QOH

26

8

10

14

35

3

Figure II. 3

(continued on next page)

8.

PROJECT DINDEX

Pit JNAME MGR-NO DI! DNAME DATATYPE i

Jl SORTER M4 Dl Sit CHAR (2)

J2 PUNCH Ml D2 SNAME CHAR (15)

J3 READER M3 D3 STATUS CHAR (3)
I

J4 CONSOLE Ml D4 CITY CHAR (15)
I

JS COLLATOR M4 D5 P# (2)
I

CHAR I
I
' J6 TERMINAL M2

J7 TAPE MS

D6 PNAME CHAR (15)

I
D7 COLOUR CHAR (6)

DB WEIGHT NUM (3, 2)
I

RINDEX D9 QOH NUM (3) I

I
i

Rlf RNAME KEYS DOMAINS DlO J# CHAR (2)
I

Dll JNAME CHAR (25)
Rl RINDEX Rlf Rlf ,RNAME,KEYS,DOMAINS

I
Dl2 MGR-NO CHAR (3) I

R2 THESUPPLIER Sit S# ,SNAME,STATUS,CITY
Dl3 RII CHAR (15)

R3 PART Pit P# , PNAME,COLOUR,
WEIGHT,QOH Dl4 RNAME CHAR (15)

R4 PROJECT Jlt J# , JNAME, MGR- NO
Dl5 KEYS FLEX CHAR (4)

R5 DINDEX Dlt DI! ,DNAME,DATATYPE
Dl6 DOMAINS FLEX CHAR (15)

R6 CUSER USERNO USERNO, UNAME
Dl7 Dlt CHAR (3)

Dl8 DNAME CHAR (15)

Dl9 DATATYPE FLEX CHAR (10)

D20 USERNO NUM (4)

D21 UNAME CHAR (20)
Figure II. 3

Subscherna FAYE Relations
CUSER

USERNO UNAME

19 TONY

1. 2. 4 Subscherna FAYE Definitions

SUBSCHEMA FAYE

BEGIN

DOMAIN PI! CHAR (2) ' PNAME CHAR (15)'

COLOUR CHAR (6) ' WEIGHT NUM (3,2)'

QOH NUM (3) ' SIi CHAR (2) '

SNAME CHAR (15)' STATUS CHAR (3)

FOR RETRIEVAL CALL CODE

FOR STORAGE CALL DECODE

CITY CHAR (15) , JI/ CHAR

JNAME CHAR (25), NO CHAR

RII CHAR (3)' RNAME CHAR

DOMAINS FLEX CHAR (15)' USERNO NUM

KEYS FLEX CHAR (4),

DI! CHAR (3), DNAME CHAR

DATATYPE FLEX CHAR (10) , UNAME CHAR

RELATION PART (PI! ,PNAME,COLOUR,WEIGHT, QOH)

KEY PI!

CONSTRAINT FOR UPDATE (QOH)

(2) '

(3),

(15),

(4)'

(15)'

(20)

CONSTRAINT FOR UPDATE : CUSER.UNAME # "FAYE"

CONSTRAINT RANGE PART

'\IP (P. WEIGHT > = 0 AND P. WEIGHT < = 50)

RELATION THESUPPLIER (S Ii ,SNAME, STATUS,CITY)

KEY SI!

MAPPING RANGE SUPPLIERS

RANGE THESUPPLIER TS

3S (TS.S/l=S.S/1 AND TS.SNAME=S.SNAME AND

9.

1 % NOTE 1

1,

% NOTE 2

% NOTE 3

TS.STATUS=S.STATUS AND TS.CITY = S.CITY AND S.STATUS < 30)

CONSTRAINT FOR GET (STATUS) UNLESS CUSER.UNAME="TONY"

CONSTRAINT FOR UPDATE

RELATION PROJECT (JI/ ,JNAME,MGR-NO)

KEY JI!

CONSTRAINT FOR GET UNLESS CUSER.UNAME="TONY"

RELATION RINDEX (R# ,RNAME, KEYS, DOMAINS)

KEY RII

CONSTRAINT FOR GET: (CUSER .UNAME="FAYE" AND (RINDEX.R// =

10.

"R6" OR RINDEX. RI! = "R4") OR CUSER.UNAME="TONY" AND

RINDEX .R//="R6")

CONSTRAINT FOR UPDATE

RELATION DINDEX (DI! ,DNAME,DATATYPE)

KEY DI!

CONSTRAINT FOR UPDATE

RELATION CUSER (USERNO, UNAME)

KEY USERNO

CONSTRAINT FOR GET

END OF SUBSCHEMA FAYE;

Notes and Comments

1. All domain values from the schema domain STATUS are codified oy

procedure CODEl before being considered a value of subs~fiema

domain STATUS. Likewise, all subschema values are decoded by

DECODE l before being considered a schema domain value, In the

mapping of THESUPPLIER, however, TS.CITY = S.CITY AND .S.STATUS ~ 30

is written, but, TS.CITY and S.CITY are not compatible. That is,

they have different data types. The DBMS must first make them

compatible by executing CODEl on the S.CITY value, or better

still, perform the comparison first.

2. This example demonstrates the bad programming that can occur

when a constraint is not positive. It is better to specify

when a constraint is to apply instead of when it is not to

apply so that the likelihood of a user gaining access to

unauthorised data is reduced.

11.

3. It is possible to select which users are allowed to enter a given

set of data by writing a data validation constraint in a subschema.

For example, users in subschema A, say, may be permitted to enter

data between O and 50 while users in subschema B may enter data

between 50 and 100. Clearly, if a schema constraint also exists

then this constraint cannot be violated in any subschema.

4. If a user is prevented from seeing a particular relation then it

seems logical to also prevent this same user from seeing the

RINDEX tuple in which this relation is mentioned. Such an added

1. 2.5

1.

restriction is achieved by writing a constraint for the RINDEX

relation, but as shown in relation PINDEX, this need not be the

case.

Example Operations

HOLD W PART (P# , PNAME, WEIGHT) : P#=P4;

PART .WEIGHT= 15;

UPDATE W;

(host language)

HOLD is only allowed to be executed by FAYE and only in this

relation. Note also that DELETE W is not permitted whereas

RELEASE W is allowed.

2. GET W RINDEX;

The resulting relation depends upon which user has requested the

operation. Note that the "level" of the constraint is important,

that is, the above operation is valid even though certain tuples

12.

are restricted from entering W.

1.3 Subschema BIG/SUBSCHEMA

The final subschema is intended to emphasise the possible security

facilities that are available. It is noted that the more the users are

restricted the more cumbersome the CONSTRAINT construct becomes.

Clearly, this results because a CONSTRAINT specifies only what is

prohibited. It may be tempting to use a construct which is the

negation of an access constraint. For example, PERMISSION FOR ...•

This does not solve the problem, instead, the less the users are

restricted the more cumbersome this new construct becomes. It is the

responsibility of the administrator to select users for subschemas in a

way that will simplify the security constraints. Clearly, those users

who have the greatest number of constraints in common should be ~rouped

within a particular subschema.

1.3.1 The Users

There are four users, none of which can be considered as having

greatest authority. It is possible to select a user who has full

responsibility for a particular subschema, thus reducing the load on

the administrators, In this subschema Michael is a manager and is also

responsible for a certain amount of security control.

Felicity

Felicity is allowed to see all except the STATUS attribute of SUPPLIER,

but only when the manager gives permission; allowed to modify tuples

in PART; allowed to see all of SUPPLY, but is prevented from seeing the

QTY attribute if the associated supplier has a status of 30 or more;

allowed to see PTIME, her range tuples in DPRANGES and appropriate

tuples of the index relations RINDEX, DINDEX, and RDINDEX.

David

David is allowed to see DBRANGES, PTIME, GRANTS, index relations, and

all data relations; and allowed to modify PART tuples and SUPPLIER

relations whenever the status of the supplier is less than 30.

Michael

Michael is allowed to see DBRANGES, PTIME, GRANTS, index relations and

all data relations; is prevented from seeing the STATIJS attribute of

SUPPLIER; allowed to modify all data relations, except the STATUS

attribute; allowed to modify GRANTS; and finally is allowed to add

tuples to PROJECT if the time lies between 9 a.m. and 12 noon.

Maria

Maria is allowed to delete and add tuples to relations SUPPLIER,

SUPPLY and PART, but only if it is between 9 a.m. and 5 p.m.; and is

allowed to see DBRANGES, PTIME, and index relations.

not allowed to update any relations or see PROJECTS.

1. 3. 2 The Data Relations

Note Maria is

This subschema contains all the schema's operational data relations

as well as one relation, PARTSUPPLIER, derived from relations PART

and SUPPLIER.

PARTSUPPLIER

' I

SIi SNAME PI! PNAME WEIGHT QOH I

Sl SMITH Pl NUT 12 26

S2 JONES P3 SCREW 17 10

S2 JONES PS CAM 12 35

S3 BLAKE P3 SCREW 17 10

S3 BLAKE P4 SCREW 14 24

S4 CLARK P6 COG 19 3

13.

SS ADAMS P2

SS ADAMS PS

SS ADAMS P6

BOLT 17

CAM 12

COG 19

8

35

3

Figure II.4

Operational Data for
BIG/SUBSCHEMA

Relations SUPPLIER, PART, PROJECT and SUPPLY are as in the schema of

section 2.0.

14.

1. 3. 3 System Relations and Control Instructions

DERANGES

DERANGES is available to users wishing to see what RANGE statements

they have written.

CSTATEMENT

CSTATEMENT contains the current 'active' instruction.

DBMS as a source for user statements.

PTIME

It i s used by the

PTIME contains the present time. It is used by users and the DBMS

to determine the present time and used in the writing of time constraints.

GRANTS

GRANTS provides a mechanism which enables a DBA to control security

constraints in a dynamic fashion.

CUSER

CUSER contains only one tuple which identifies the current 'active' user.

It is also used extensively in writing security constraints.

RINDEX, DINDEX and RDINDEX

These index relations give a user a list of the relations and domains

available to him (or her).

Most control instructions used in this subschema are fairly simple

constraints and mappings, but one interesting control instruction used

is the WHEN construct. Its purpose here is to nullify all permission

for access, granted by the relation GRANTS, at the end of the working

day. Note,care must be taken when attempting to implement such a

construct, for if it were implemented to interrupt normal execution

whenever the applicability became true, then there would be a continual

stream of interrupts between 12 a.m. and 9 a.m.

I

DINDEX

DI! DNAME DATATYPE FELICITY DAVID

Dl RANGE NUM (5) YES YES

D2 USERNO NUM (4) YES YES

D3 CHARS FLEX CHAR (15) YES YES

D4 OPP CHAR (7) NO NO

D5 CTIME NUM (5) I
NO NO

D6 DATE CHAR (8) YES

I

YES

. I I .
D36 NO CHAR (3) NO I YES I

I
I

RINDEX

RII RNAME

Rl DERANGES

R2 CSTATEMENT

R3 PTIME

R4 CUSER

R5 GRANTS

R6 RINDEX

R7 RDINDEX

R8 DINDEX

R9 SUPPLIER

RIO PART

Rll SUPPLY

Rl2 PROJECT

Rl3 PARSUPPLIER

KEYS FELICITY DAVID

RANGEi! YES YES

USERNO NO NO

NULL YES YES

NULL NO NO

USERNO NO YES

Rf! YES YES

Rf!' DI! YES YES

DI! YES YES

SIi YES YES

Pit YES YES

SIi, PI! YES YES

JI/ NO YES

NULL YES YES

Figure II. 5

Subschema System Relations

MICHAEL 'MARIA

YES YES

YES YES

YES YES

NO NO

NO NO

YES YES

.
YES NO

' MICHAEL MARIA

YES YES

NO NO

YES YES

NO NO

YES NO

YES YES

YES YES

YES YES

YES YES

YES YES

YES I YES
I

YES I NO

YES I YES
;

'

(Continued on next page)

15.

-

(Figure 11.5 continued) 16.

DERANGES

RANGE/I USERNO CHARS RDINDEX

Rl Yl RANGE PARTSUPPLIER PS RII DI!

R2 F2 RANGE DERANGES DBR Rl Dl

R3 Dl RANGE PART Pl Rl D2

R4 Ml RANGE PROJECT J Rl D3

R5 Dl RANGE PART P2 . .
.
.

CSTATEMENT

USERNO OPP CTIME CHARS

Ml GET 36150 GET W PART

PTIME CUSER

DATE MIN HR DAY YEAR USERNO UNAME USTATUS

20/ 10/78 2 10 5 78 M2 MARIA WORKER

GRANTS

USERNO UNAME GRANT

F2 FELICITY NO

Figure II. 5

Subschema System Relations

1. 3. 4 Subschema BIG/SUBSCHEMA Definition,

SUBSCHEMA BIG/SUBSCHEMA

BEGIN

DOMAIN RANGEi/ NUM (5), USERNO

CHARS FLEX CHAR (15), OPP

CTIME NUM (5) , DATE

MIN NUM (2), HR

DAY NUM (1)' YEAR

UNAME CHAR (20), USTATUS

GRANT CHAR (5) ' Rf!

RNAME CHAR (15)' KEYS FLEX

DI! CHAR (15)' DATATYPE FLEX

DNAME CHAR (15), FELICITY

DAVID CHAR (3), MICHAEL

MARIA CHAR (3)

RELATION DBRANGES (RANGEi/ , USERNO, CHARS)

KEY RANGE

CONSTRAINT RANGE CUSER U

FOR GET UNLESS 3 U (U. USERNO=DBRANGES. US ERNO)

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

DOMAIN SIi CHARACTER (2), SNAME

STATUS NUM (2) , CITY

PI! CHAR (2), PNAME

17.

NUM (4),

CHAR (7)'

CHAR (8),

NUM (2),

NUM (2) ,

CHAR (15),

CHAR (3),

CHAR (4) '

CHAR (10)'

CHAR (3)'

CHAR (3),

% NOTE 1

CHAR (15),

CHAR (15),

CHAR (15),

COLOUR CHAR (6), WEIGHT NUM (3,2),

QOH NUM (3), QTY NUMERIC (2)

FOR RETRIEVAL CALL SPEEDY,

JI/ CHARACTER (2), JNAME CHAR (25)

FOR RETRIEVAL CALL UNCODE

FOR STORAGE CALL CODE,

NO CHARACTER (3)

RELATION CSTATEMENT (USERNO, OPP, CTIME, CHARS)

KEY USERNO

CONSTRAINT FOR GET

RELATION PTIME (DATE MIN, HR, DAY, YEA~)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION CUSER (USERNO, UNAME, USTATUS)

KEY NULL

CONSTRAINT FOR GET

RELATION GRANTS (USERNO, UNAME, GRANT)

KEY USERNO

CONSTRAINT FOR GET UNLESS CU SER. UNA.M:E="DAVID" OR

CUSER.UNAME="MICHAEL"

CONSTRAINT FOR HOLD UNLESS CUSER.USTATUS="MANAGER"

RELATION RDINDEX (RII , DI!)

KEY (Rf! , DI!)

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

CONSTRAINT FOR GET UNLESS RANGE RINDEX R RANGE DINDEX D

18.

3R jD (R.Rll=RDINDEX.Rlf AND D.Dll=RDINDEX.D{f AND R.PER(CUSER.UNAME)="YES"

AND D.PER (CUSER.UNAME)="YES"

RELATION RINDEX (Rf! ,RNAME, KEYS,FELICITY,DAVID,MICHAEL, MARIA)

19.

KEY Rlf

CONSTRAINT FOR GET (FELICITY,DAVID,MICHAEL,MARIA)

CONSTRAINT FOR GET UNLESS RINDEX.PER (CUSER.UNAME)="YES"

CONSTRAINT FOR HOLD

% NOTE 2

CONSTRAINT FOR PUT

RELATION DINDEX (DI/ ,DNAME,DATATYPE,FELICITY,DAVID,MICHAEL,MARIA)

KEY DI!

CONSTRAINT FOR GET UNLESS DINDEX.PER (CUSER.UNAME)="YES"

CONSTRAINT FOR GET (FELICITY,DAVID,MICHAEL,MARIA)

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION SUPPLIER (SI/ ,SNAME,STATUS,CITY)

KEY SI!

CONSTRAINT FOR GET:CUSER.UNAME="FELICITY"

UNLESS RANGE GRANTS G

3 G (G. UNAME="FELICITY" AND

(G.GRANT="GRANT" OR G.GRANT="YES"))

CONSTRAINT FOR GET (STATUS)

CONSTRAINT FOR UPDATE

CUSER.UNAME="FELICITY"

UNLESS (CUSER.UNAME="DAVID" AND SUPPLIER.STATUS< 30) OR

CU SER. UNAME=''MICHAEL"

CONSTRAINT FOR UPDATE (STATUS) : CUSER.UNAME="MICHAEL"

CONSTRAINT FOR DELETE UNLESS CUSER. UNAME=''MARIA"

CONSTRAINT FOR PUT UNLESS CUSER.UNAME="MARIA"

RELATION PART (PI/ ,PNAME,COLOUR,WEIGHT,QOH)

KEY P

CONSTRAINT FOR DELETE UNLESS CUSER. UNAME=''MARIA"

CONSTRAINT FOR PUT UNLESS CUSER.UNAME="MARIA"

RELATION SUPPLY (S#,P#,J#,QTY)

KEY (S/1, PI!, J #)

CONSTRAINT FOR GET (QTY):CUSER.UNAME="FELICITY"

UNLESS RANGE SUPPLIERS

3s (SUPPLY.S/l=S.S AND S.STATUS < 30)

CONSTRAINT FOR HOLD UNLESS CUSER. UNAME=''MICHAEL"

RELATION PROJECT (J#,JNAME,MGR-NO)

KEY J/1

CONSTRAINT FOR GET CUSER.UNAME="FELICITY" OR

CU SER. UNAME=''MARIA''

CONSTRAINT FOR HOLD UNLESS CUSER.UNAME="MICHAEL"

CONSTRAINT FOR PUT UNLESS

(CUSER.UNAME="MICHAEL" AND PTIME.HR > =9 AND PTIME.HR < =12)

RELATION PARTSUPPLIER (S/l,SNAME,P/1,PNAME,WEIGHT,QOH)

KEY NULL

MAPPING RANGE PART P

RANGE SUPPLIERS

RANGE SUPPLY SP

'3 P j SP 3 S (PARTSUPPLIER. Pll=P. PI! AND SP. Pll=P. PI!

AND SP.S/l=S.S/1 AND PARTSUPPLIER.PNAME=P.PNAME

AND PARTSUPPLIER.WEIGHT=P.WEIGHT

AND PARTSUPPLIER.QOH=P.QOH AND PA~TSUPPLIER.S=S.S/1

AND PARTSUPPLIER.SNAME=S.SNAME)

CONSTRAINT FOR GET (S/1,SNAME):CUSER.UNAME="FELICITY"

AND (GRANTS.GRANT# "YES" OR GRANTS.GRANT# "GRANT")

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

20.

WHEN PTIME.HR > =l AND PTIME.HR <9

BEGIN

HOLD W GRANTS;

W.GRANT=" II (host language)

UPDATE W

END;

END OF BIG/SUBSCHEMA;

1.3.5 Examples and Notes

1. To be strictly correct, all relation not appearing in the target

list should be quantified as shown, but this has not been done

21.

elsewhere for reasons of clarity.

of all relation attributes.

The target list here consists

If Felicity executed the statement

GET W DBRANGE

then she would receive the folloving relation.

w

RANGE USERNO CHARS

R2 F2 RANGE DBRANGES DBR

2. This example of Codd's indirect function demonstrates the power

and need for such a function. PER returns the users name, MARIA,

from relation CUSER as a selector name, thus the users are

restricted to accessing only the index tuples which have a YES in

their domain. The PER function is not mentioned in the syntax

since in the above form complications will arise whenever a relation

has more than one tuple.

Suppose a user wishes to retrieve all the domains of relations PART

and SUPPLIER.

RANGE RDINDEX RD;

GET W (RINDEX.RNAME,DINDEX.DNAME)

3RD (RINDEX.R#=RD.R# AND DINDEX.D#=RD.D# AND

(RINDEX.RNAME="PART" OR RINDEX.RNAME="SUPPLIER"));

The above statement will produce the following relation for

Felicity.

w

RNAME DNAME

SUPPLIER Sifi

SUPPLIER SNAME

SUPPLIER CITY

PART P#

PART PNAME

PART COLOUR

PART WEIGHT

PART QOH

2.0 The Schema

The same considerations that are given to subschema design must also

be given to schema design. The schema contains all the stored

22.

operational data of an enterprise as well as the necessary system data

(DBMS op erational data). The system relations given here do not

contain all the information needed to operate a DBMS, but rather are

intended as an example to show how auditing, monitoring and other DBMS

functions can be controlled. It will also be seen how even an

administrator can be subjected to security constraints.

2.1 The Users

There is only one user, BLAKE, who is allowed to directly access schema

relations. Blake's main role is to act as an administrator for the

SUPPLIER/PART data base. He is responsible for user requirements,

collecting statistical data, data base integrity, and the like. To

do this he must be capable of defining new sub schemas, new schema

relations and constraints. However he is still limited by a set of

23.

security and integrity constraints in a similar way the subschema users

are constrained. See the relation definition for STATS-ALLOWED.

2.2 The Data Relations and Notes

All the operational data relations existing in the schema are given

in Figure II.l.

SUPPLIER

It is desired that statistical information should be collected for

GET operation that are performed on SUPPLIER. This is done, as in %

NOTE3 by retrieving the necessary information, whenever a GET operation

is detected, and storing it in the relation called MONITOR. In this

way it is possible to de tect any excessive requests of a particular

attribute. Th e physical storage structure could then be inverted with

respect to this attribute and so allow faster retrieval times.

The STATUS attribute of the relation is limited to positive values by

an integrity constraint and the SNAME attribute is limited to unique

values. See notes 1 and 2 in 2,4 below.

PART

A data validation constraint limiting the range of values allowed in the

WEIGHT attribute is given.

PROJECT

In this case an example is given preventing the DBA from updating,

deleting or adding tuples to the relation PROJECT. In this way it is

possible to restrict a DBA and allow a user with lower administrative

status but greater management status to be given greater authority over

the enterprise's operational data. For example, Michael is allowed to

update, delete and add tuples to PROJECT.

24.

Finally, an overall integrity constraint for the operational data has

been written to ensure that for each part there is a supplier. See

note 8 in section 2.4.

2.3 System Relations and their Control Instructions

The system relations are those mentioned in BIG/SUBSCHEMA plus the

following .

ITEMSREQ

For each user statement the DBMS automatically places in ITEMSREQ the

user number and all the relations and attributes referenced by the

statement. As an example, the GET given in CSTATEMENT references

relations SUPPLIER, SUPPLY and PART.

the definitions (note 3).

USERPROFILE

See Figure 11. 6 and its use in

USERPROFILE contains the neces s ary information about users of the data

base. In this example the DBA is allowed to access all but the

CODEWORD attribute (unless this is his own code word), and is allowed to

add new information but prevented from modifying any tuple. The

example shows that any new user can easily be added to the system. It

should also be noted that in practice more information would be given

in a user profile than shown here.

STATSALLOWED

STATSALLOWED contains information specifying what Calculus statements

a particular user is allowed to perform. The DBA is responsible for

modifying, deleting and adding new tuples as required for any user other

than himself. This gives him enormous power and responsibility and

poses a major security problem. For example, in collaboration with

some other user (or an imaginary user created for this purpose) he could

add tuples giving this user unlimited access and so bypass his own

constraints. In most DBMSs an administrator can do what he likes, but

here it is possible to prevent his access to any critical relation unless

25.

approval if first gained from a group of other users. In this example

a degree of control is given by recording every modification and

insertion made on this relation. It is done by recording before and

after images in the same way an audit trail would be developed. The

before image is recorded by saving the results of a HOLD and the after

image i s recorded by saving the result of an update or delete. These

images are put into a relation called RECORDIT after they have been

suitably modified in a system workspace called Wl. Note that it is

assumed there exists a DBMS workspace relation called RESULT which

contains the result of every current statement. See note 5 in section

2.4.

ERRORSTATUS

All operations within a DBMS may fail or achieve only limited success,

therefore it is essential that the outcome of each statement is

recorded for possible reference. The relation ERRORSTATUS contains

the result of the most recently executed statement.

ERRORMESGS

If it is desirable to make the error messages more meaningful,then

this can be done by associating a natural language message with each

error-code number, The MESSAGE attribute of ERRORMESGS can be

updated at will to make changes as the DBMS evolves.

MONITOR

MONITOR contains the data being collected during GET operations on

SUPPLIER. At the end of the working day (1 a.m.) its contents is

dumped and the relation emptied. See note 9 section 2.4.

AUDIT

A complete audit trail can be built for each relation of the database,

but in this example only the Calculus statement, the time it occurred,

and the user responsible are recorded for each operation on the data

base, The boolean, OPERATION, is true whenever a user executes a

statement of any sort. Again, at the end of the working day the stored

data is dumped and the relation emptied. See note 6 section 2.4.

Finally, the Calculus WHEN statement of note 7, section 2.4 keeps the

relation DERANGES up-to-date by collecting necessary information

and adding it to DERANGES whenever a range statement is executed by a

user.

DINDEX

26.

DI! DNAME DATATYPE FELICITY DAVID MICHAEL MARIA

Dl RANGEi! NUM (5) YES YES YES YES

D2 USERNO CHAR (4) YES YES YES YES

.

D36 NO CHAR (3) NO YES YES NO

D37 CODEWORD FLEX CHAR (10) - - - -

D38 ERRORCODE CHAR (4) - - - -

D40 TIMES NUM (5) - - - -

D39 MESSAGE FLEX CHAR (20) - - - -

D41 OPPUSER CHAR (4) - - - -

27.

RINDEX

Rf/ RNAME KEYS FELICITY DAVID MICHAEL MARIA

R2 CSTATEMENT USERNO NO NO NO NO

Rl DBRANGES RANGEi/ YES YES YES YES

R3 PTIME NULL YES YES YES YES

R4 CUSER NULL NO NO NO NO

RS GRANTS USERNO NO YES YES NO

R6 RINDEX Rf/ YES YES YES YES

RB DINDEX Dfl YES YES YES YES

R9 SUPPLIER Sf/ YES YES YES YES

RIO PART Pit YES YES YES YES

Rll SUPPLY sf/ , pf/ YES YES YES YES

Rl2 PROJECT Jfl NO YES YES NO

R7 RDINDEX Rf/' Dfl YES YES YES YES

Rl4 ITEMSREQ NULL - - - -

RlS USERPROFILE USERNO - - - -

Rl6 STASALLOWED STATECODE,USER NO - - - -

Rl7 ERROR STATUS NULL - - - -
I

R18 MONITOR NULL - - - - !
I

Rl9 AUDIT NULL - - - -

R20 ERRORMESGS ERRORCODE - - - -

R21 RECORDIT NULL - - - -

RDINDEX PTIME

Rf/ Dff DATE MIN HR DAY YEAR

Rl Dl 20/ 10/78 2 10 5 78

Rl D2
CUSER

Rl D3
USERNO UNAME USTATUS

R20 D38 M2 MARIA WORKER

R20 D39

28.

CSTATEMENT

USERNO OPP CTIME CHARS

M2 GET 36150 GET W (PART .PI! , PART.PNAME,S.SNAME) :

3SP (SP.S#=S.S# AND SP.P#=P.P# AND S.S# = "Sl"

DERANGES

RANGE# USERNO RNAME CHARS

Rl Yl PARTSUPPLIER RANGE PARTSUPPLIER PS

R2 F2 DERANGES RANGE DERANGES DBR

R3 Dl PART RANGE PART Pl

R4 Ml PROJECT RANGE PROJECT J

RS Dl PART RANGE PART P2

R6 M2 SUPPLIER RANGE SUPPLIERS

R7 M2 SUPPLY RANGE SUPPLY SP

ITEMSREQ GRANTS

USERNO RNAME DNAME USERNO UNAME GRA~"T

M2 SUPPLIER Sit F2 FELICITY NO

M2 SUPPLIER SNAME

M2 PART Pit

M2 PART PNAME

M2 SUPPLY Sit I
M2 SUPPLY PI! I

I

29.

USERPROFILE

USERNO UNAME USTATUS CODEWORD SUBSCHEMA

Pl PAUL WORKER R2D2 PAUL

Yl YVONNE WORKER X7X7 PAUL

Fl FAYE WORKER YAF FAYE

Tl TONY WORKER EFG FAYE

F2 FELICITY WORKER KJF BIG/SUBSCHEMA

Dl DAVID WORKER DAV BIG/SUBSCHEMA

Ml MICHAEL WORKER JS/721/X4 BIG/SUBSCHEMA

M2 MARIA WORKER ARA BIG/SUBSCHEMA

Bl BLAKE DBA DBA/761/E6 SCHEMA

ERRORSTATUS

USERNO STATENO ERRORCODE I
M2 27 EO I

ERRORMESGS

ERRORCODE MESSAGE

EO Normal execution

El Null r elation returned

E2 Tuples locked

E3 Unrecognised statement

E4 Nonexisting domain

.

STATSALLOWED

USERNO STATECODE

Pl Gl

Yl Gl

Fl Hl

Fl Ul

Fl Gl

Tl Gl

F2 Hl

F2 Ul

F2 Gl

Ml Gl

Ml Hl

Ml Ul

Ml Pl

M2 Gl

M2 H1

M2 Pl

M2 Dl

Bl Gl

.

Bl Wl

Bl SUB

AUDIT

USERNO OPP

Tl GET

M2 RANGE

M2 RANGE

M2 GET

30.

MONITOR
-

OPP UNAME TIMES OPP RNAME DNAME

GET TONY 34150 GET SUPPLIER Sf.!

GET TONY 341 50 GET SUPPLIER SNAME

HOLD MARIA 36150 GET SUPPLIER Sf!

UPDATE MARIA 36150 GET SUPPLIER SNA}1E

GET MARIA 36150 GET PART p J: 1:

GET MARIA 36150 GET PART PNAME

HOLD MARIA 36150 GET SUPPLY S!I
I

UPDATE MARIA 36150 GET I SUPPLY PIJ

GET

GET

HOLD

UPDATE

PUT

GET

HOLD

PUT

DELETE

GET

. . .
WHEN

SUBSCHEMA

TIMES CHAR

34150 GET W . (SUPPLIER. SIi ,SUPPLIER.SNAME):

SUPPLIER. SI/ = "S"

35110 RANGE SUPPLY SP

35120 RANGE SUPPLIER s
36150 GET W (PART.PI/ ,PART.PNAME, S.SNAME):

3SP(SP.Sll=S.SI/ AND SP.PII = PART.PI! AND S. Sll="S 1"

Figure II.6
Schema Data Relat~ons

2.4 SCHEMA SUPPLIER/PART Definitions

SCHEMA SUPPLIER/PART

BEGIN

31.

DOMAIN RANGEi/ NUM (5), USERNO CHAR (4),

DOMAIN SIi CHAR (2) ' SNAME CHAR

STATUS NUM (2), CITY CHAR

PI! CHAR (2) ' PNAME CHAR

COLOUR CHAR (6) ' WEIGHT NUM

QOH NUM (3)' QTY NUM

JI/ CHAR (2), JNAME CHAR

NO CHAR (3)

DOMAIN CODEWORD FLEX CHAR (10), ERRORCODE CHAR (4),

TIMES NUM (5), MESSAGE FLEX CHAR (20)

RELATION SUPPLIER (S I/ , SNAME, STATUS, CITY)

KEY SIi

(15)'

(15)'

(15)'

(3,2),

(2) '

(25),

UNIQUE SNAME

CONSTRAINT

% -------------------------- NOTE 1

RANGE SUPPLIERS

~S (S.STATUS > = 0) % -------------------------- NOTE 2

ON GET

BEGIN

RANGE CSTATEMENT ST % ------------- NOTE 3

GET WMTRE (CUSER.UNAME,ST.CTIME, ST.OPP,

ITEMSREQ.RNAME,ITEMSREQ.DNAME) :

(CUSER.USERNO=ST.USERNO AND ITEMSERQ.USERNO=

CU SER. US ERNO) ;

PUT WMTRE MONITOR

END

RELATION PART

KEY PI!

CONSTRAINT RANGE PART P

°'vP (P.WEIGHT > = 0 AND P. WEIGHT<= 100) % --- NOTE 4

RELATION SUPPLY

KEY (Sf/ ,PI! ,Jf/)

(Sf/ ,PI! ,JI/ ,QTY)

RELATION PROJECT (J#,JNAME,MGR-NO)

KEY Jf/

CONSTRAINT FOR HOLD CUSER.UNAME = "BLAKE"

CONSTRAINT FOR PUT CUSER.UNAME "BLAKE"

RELATION DERANGES (RANGE#,USERNO,RNAME,CHARS)

KEY RANGEi!

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION CSTATEMENT (USERNO, OPP, CTIME,CHARS)

KEY USERNO

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION PTIME (DATE, MIN, HR, DAY, YEAR)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION CUSER (USERNO, UNAME, USTATUS)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION GRANTS (USERNO, UNAME, GRANT)

KEY USERNO

32.

33.

RELATION RINDEX (R# ,RNAME, KEYS, FELICITY, DAVID, MECHAEL, MARIA)

KEY RII

CONSTRAINT FOR DELETE

RELATION RDINDEX (R#,D#)

KEY (RII, DI!)

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION DINDEX (D#, DNAME, DATATYPE, FELICITY, DAVID, MICHAEL, MARIA)

KEY DI!

CONSTRAINT FOR DELETE

RELATION ITEMSREQ (USERNO, RNAME, DNAME)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

RELATION USERPROFILE (USERNO, UNAME, USTATUS, CODEWORD)

KEY USERNO

CONSTRAINT FOR GET (CODEWORD) UNLESS CUSER.USERNO

USERPROFILE.USERNO

CONSTRAINT FOR HOLD

RELATION STATSALLOWED (USERNO, STATECODE, OPP)

KEY (USERNO, STATECODE)

CONSTRAINT FOR HOLD CUSER.USERNO = STATSALLOWED.USERNO

CONSTRAINT FOR PUT

ON HOLD

BEGIN

PUT RESULT Wl

CUSER.USERNO STATSALLOWED.USERNO

% ----------------------------------- NOTE 5

WI.OPPOSER= CUSER.USERNO;

WI.TIMES = TIME (1)

PUT Sl RECORDIT

END

ON UPDATE

BEGIN

PUT RESULT Wl

Wl . OPPUSER CUSER.USERNO

WI.TIMES = TIME (1)

PUT Wl RECORDIT

END

ON PUT

BEGIN

PUT RESULT Wl

Wl.US ERNO = CUSER.USERNO

Wl . TIMES TIME (1)

PUT Wl RECORDIT

END

RELATION ERRORSTATUS (USERNO, STATENO, ERRORCODE)

KEY NULL

CONSTRAINT ON HOLD

CONSTRAINT ON PUT

RELATION ERRORMESSAGES (ERRORCODE, MESSAGE)

KEY ERRORCODE

CONSTRAINT FOR HOLD (ERRORCODE)

RELATION MONITOR (UNAME, TIMES, OPP, RNAME, DNAME)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

34.

RELATION AUDIT (USERNO, OPP, TIMES, CHAR)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

DOMAIN OPPUSER CHAR (4) ;

RELATION RECORDIT (OPPUSER, TIMES, USERNO, STATECODE, OPP)

KEY NULL

CONSTRAINT FOR HOLD

CONSTRAINT FOR PUT

SUBSCHEMA PAUL

BEGIN

as before

END ;

SUBSCHEMA FAYE

BEGIN

as before

END;

SUBSCHEMA BIG/SUBSCHEMA

BEGIN

as before

END

WHEN PTIME .HR = 1

BEGIN

END

HOLD W AUDIT

DUMP (W)

DELETE W

35.

WHEN OPERATION

BEGIN

GET W CSTATEMENT

PUT W AUDIT

END ;

WHEN RANGE

BEGIN

RANGE CSTATEMENT ST:

36.

% ------------------------- NOTE 6

GET W (ST.USERNO,ITEMSREQ.RNAME,ST.CHARS):

(ST.USERNO=ITEMSREQ.USERNO)

Wl.RANGE# = NEXT RANGENO

Wl.RNAME = W.RNAME ;

% ------------------- NOTE 7

Wl. USERNO = W .US ERNO;

Wl.CHARS = W.CHARS;

PUT Wl DERANGES

END;

CONSTRAINT

RANGE SUPPLIERS

RANGE SUPPLY SP

'v SP3S (S.S# = SP.S#)

WHEN PTIME.HR = 1

BEGIN

HOLD W MONITOR

DUMP (W)

DELETE W

END

END OF ?CHEMA SUPPLIER/PART

% ---------------------- --- NOTE 8

% ------------------------- NOTE 9

2.5 Example Operations

1. The subschema BIG/SUBSCHEMA incorrectly prevents its users from

accessing error Messages.

as follows.

This fault can be corrected by a DBA

SUBSCHEMA BIG/SUBSCHEMA

BEGIN

DOMAIN ERRORCODE CHAR (4), MESSAGE FLEX CHAR (20)

RELATION ERRMESG (USERNO, STATENO, MESSAGE)

KEY NULL

MAPPING RANGE ERRORSTATUS ES

RANGE ERRORMESGS EM

3 ES 3 EM (ERRMESG. US ERNO = ES. USERNO AND

ERRMESG.STATENO=ES.STATENO AND

ERRMESG.MESSAGE=EM.MESSAGE AND

ES.ERRORCODE = EM.ERRORCODE)

CONSTRAINT FOR GET UNLESS CUSER.USERNO=ERRMSG.USERNO

END OF BIG/SUBSCHEMA

No constraint for HOLDs or PUTs need be given as these already

exist in the schema.

2. A new user can be added by addition of the following tuples into

relations USERPROFILE and STATSALLOWED.

Wl

USERNO UNAME USTATUS CODEWORD SUBSCHEMA

Sl SMITH WORKER - NEWONE

W2

USERNO STATECODE OPP

Sl Gl GET

Sl Ul UPDATE

Sl Hl HOLD

37.

This is done as follows:

PUT Wl USERPROFILE

PUT W2 STATSALLOWED

The new subschema can also be defined in the usual way.

SUBSCHEMA NEWONE

BEGIN

END

3. New schema constraints can easily be defined.

CONSTRAINT

RANGE SUPPLY SP

RANGE PART P

'v SP 3 P (SP. Ptf=P. PI!) ;

38.

So now, for all suppliers there must exist a part that they supply.

APPENDIX III

Actual Operation

Of The

Primitives

CONTENTS

List of Figures

Introduction

1

2

3

Example Storage Structures

1.1

1. 2

1. 3

Domain Structure and Relation List Structure

1. 1. 1 Fields Used

Relation Structures

Stored SUPPLIER/PART Data Base

1. 3.1

1. 3. 2

1. 3.3

Domain Structures

Relation Structures

Relation List Structures

P-String, R-String , and J-String

2.1

2.2

2.3

P-string (Projection String)

R-string (Restriction String)

J-string (Join String)

Execution of th e Primitives

3.1 Algebra Related Primitives

3.1.1 RESTRICT

3 .1. 2 JOIN

3.1. 3 PROJECT

3. 1. 4 Miscellaneous Algebra Related Primitives

3. 1.5 Example

3.2 DOMAIN, STRING, and NUMBER

,3. 3 NAME, VALUE and STORE

3.4 NULL, POP, START and STOP

3.5 Functions

3.6 MARK and MARKCALL

1

2

2

2

5

6

8

9

11

13

14

15

15

16

17

18

20

20

21

21

21

27

27

27

27

28

3.7

3.8

3.9

CONTENTS

HOLD

UPDATE, DELETE and RELEASE

PUT

31

31

31

Figure No.

1

2(a)

2(b)

3

4

5(a)

S(b)

S(c)

6

7(a)

7 (b)

8

9

LIST OF FIGURES

Another Representation for Relation
SUPPLIER

Domain Structure

Relation List Structure

Storage of Relations

P-strings. R-strings and J - strings

Restriction Structure

Join Structure

Projection Structure

Back-End Buffer Structures

Marking Tuples

Ma r king Tuples

Hold Structures

Temporary Structures

4

4

5

7

17

19

19

20

26

29

30

33

34

1.

Introduction

The following appendix is intended as an example implementation of

the primitives defined in Chapter 4, and also as an introduction to

2.

many of the concepts outlined in Chapter S. The problem is handled

in two parts, first the physical storage structures needed for the

implementation are defined, then the operation of each primitive on

this storage structure is described. It is important to appreciate

the environment in which these structures exist and , in which, the primitives

operate. Consider Figure 4.1:1. The storage structures given her e

are the actual storage structures as they would exist in the buffers

of t he back-end, and are not intended as a physical storage scheme for

disk, pack, or tape. Clearly the necessar y mapping from disk is

simplified (and therefore an advantage) if the phvsical storage

structures chosen in secondary storage are as close as possible to the

storage structure operated upon bv the back-end in its buffers. In

this environment the described operations of the primitives on the

defined structures are the operations that the back-end would perform

on the structures as it interprets each primitive instruction in the

code string .

1 Example Storage Structures

It is by no means obvious what structures are required by the back-end

for the implementation of the primitive at this stage, all that is known

is that some structure is required for the storage of relations. The

following storage organism is therefore limited to the problem of

storing relations. Other structures needed for the implementation of

the primitives are introduced later as required.

1.1 Domain Structure and Relation List Structure

Relations are often r epresented as tables, but in fact no storage

structure is implied by the r elational model. They could equally be

represented as shown in Figure 1. The frequent redundancy in the

tabular representation need not be present in a physical storage

structure, however, this redundancy would still exist if tuples were

3.

simply stored as records within some fil e . Instead, suppose all the

attribute values of a given domain are stored together within the

same structure, say, the domain structure. This domain structure

could be a single (or number) of files using indexed sequential,

inverted, and/or other addressing techniques. Here consider a

single structure consisting of a header together with a set of similar

records as shown in Figure 2 (a). The header contains all information

relating to the body of the domain structure. It should specify

the domain name, character type, block size, and, may even contain

programmed instructions concerning access, garbage collection,

storage, etc. See Minsky (55). The header need not be stored at

the same location as the body, in fact it should permanently reside

in core while the DBMS is operating, thus making any name searching

or semantic checking very quick.

On occasion, it may be necessary to locate all relations that use a

particular domain. For this reason a urelation-list-structure''

is used as a one-to-many backward pointer. See Figure 2 (b).

4 •

.,-----s1
S1·.I'.i'11 ~
~ Si ~

20 ---- -0 , ' L" J ~ . .c....,

~

/

C.L.itlU, ~ '.,O ~ L JJ\..1,\ lJ\.),,

4~ " . . /

\ S) ~ · ~)J) 0
SS lL.1-.i • ...:.. ~ .t'ArtIS

~ -.h.·. DA·· S A r.,n- ~'' S 1

• ---------- 30 ~ .l !J.J.\

Figure 1

Another Representation for Relation

SUPPLIER

ADl DOMAIN INTERNAL DOMAIN CHARACTER RELATION LIST
Header

NA,l.fE NAME TYPE INTERNAL NAME

NULL PTR l DATA PTR SIZE RESIZE STEP

DOMAIN NUMBER NEXT

VALUE OCCURRENCES PTR
} Body Record Type

Figure 2 (a)

Domain Structure

ALl

1.1.1

RELATION LIST

INTERNAL NAME

NULL PTR DATA PTR

RELATION INTERNAL

NAME

DOMAIN INTERNAL

NAME

SIZE

NEXT

PTR }
RESIZE STEP

Body Type

Figure 2 (b)

Relation List Structure

Fields Used

Header

The fields described here, and elsewhere, are intended as a brief

description of the aspects associated with these structures, and are

5.

not necessarily complete. However, it is all that is required for a

description of the primitive operations.

INTERNAL NAME and DOMAIN NAME

The internal name is just some unique identifier used to identify a

particular structure.

name for that domain.

CHARACTER TYPE

The domain name is the user recognised (schema)

It is desirable to specify the character type of the domains for reasons

of access and integrity. For example, if flexible character option is

being used then the domain values will probably be pointers to some

other storage area, and the possibility of writing characters and

reading them as integers will be prevented.

RELATION LIST INTERNAL NAME

RELATION LIST INTERNAL NAME identifies the associated relation list

structure.

SIZE and RESIZE STEP

SIZE specifies the current amount of storage space being occupied and

RESIZE specifies the amount by which extra storage is taken.

NULL PTR and DATA PTR

These pointers give the address of the first empty record and the

first domain value respectively.

DOMAIN VALUE

DOMAIN VALUE contains the actual stored domain value.

NUMBER OCCURRENCES

This field indicates how many tuples use the stored domain value as

an attr ibute value. This feature can be used to indicate when such

domain values can be deleted.

NEXT PTR

NEXT PTR gives the address of the next domain value.

1.2 Relation Structures

6.

Clearly, the relation values must now be reconstructed from the domains.

This can be done by representing a tuple as a list of addresses (or

indexes) where an address is simply an address of a particular domain

value. The position of the address in such a list can be used to

identify the domain. See Figure 3 below. By doing this it is

possible to reconstruct any relation that can possibly be derived from

the domain values . Also there is the advantage that all repetition

is in the form of repeated addresses, which can be stored and searched

more easily than characters. Finally, note that such address lists

achieve the same effect as P- strings of section 2.

7.

ARl REL INTERNAL REL NUMBER KEY

NAME NAME KEYS ADDRESSES

NULL DATA SIZE RESIZE

PTR PTR STEP
Header

NUMBER DOMAIN

ATTRIBUTES ADDRESSES

DOMAIN VAL / DOMAIN VAL

PTR PTR

I DOMAIN VAL

PTR

NEXT

PTR Body Type

RELNAME

I

l

Figure 3

Storage of Re lations

RELNAME gives the user recognised name (schema name).

NUMBER KEYS and KEY ADDRESSES

These fields indicate the number of key attributes in the relation and

the addresses of the domains they use.

NUMBER ATTRIBUTES and DOMAIN ADDRESSES

The number of attributes in the relation and the addresses of the

domains they use are given by these two fields. The order in which

they occur is the same as the order in which the associated domain

value addresses occur in the body records.

DOMAIN VAL PTR

DOMAIN VAL PTR contains the address of the actual domain value within

a domain structure. Thus the body of a relation structure is just

an array of pointers. Note, that these pointers are unique, thus

often comparisons can be made on pointers only.

8.

1.3 Stored SUPPLIER/ PART Data Base

In this section the SUPPLIER/PART data base is stored in the structures

defined above. All exampl es in this appendix that describe primitive

operations will use a subset of the stuc tures given here.

1.3.1 Domain Structures

ADl

AD3

Dl

2

1

2

3

4

s
6

7

8

D3

9

1

2

3

4

s
6

7

8

9

10

1

2

3

4

s
6

7

8

CHAR

8

Sl 3 3

7

S2 9 4

S3 3 6

SS 6 1

S4 3 s
8
00

QTY NUM

1 10

1 3 2

2 6 3

3 2 4
- - --- -
4 2 s
s 3 6

6 1 1- -: 7 1
8 1

I

I 1

I- 98 ___ o I 10

, 99 0 00
I

ADAMS 1 2

BLAKE 1 3

CLARK 1 4

JONES 1 s
SMITH 1 1

7

8

00

L1

10

9 .

AD21~~D_7_2=:lp=:====C~'-HA: R~8~::: :~-~~ -=-i.

AD4

1

2

3

4

s
6

7

8

D4

1

2

3

4

s
6

7

8

9

10

8

1

2

3

4

5

6

7

8

Pl 3 2

P2 3 3

P3 9 4
P4 2 5

PS 4 6

P6 4 1

8
00

Jtl I CHAR 14

1 I 10 10

Jl 4 2

J2 6 3

.:3 3 4
-·- - -
J4 4 s
----· - -
J S 3 6

- ,- --~----
J 6 2 7

- ---- -----
J 7 I 4

10 1

20 2

30 2

1

9

10

00

NUM

8

2

3

1

5

6

7

8

00

..•

I
I

I

mYILn_: -'-- c-~-TI--'--- ; -H_AA~/_ L_~]

AD9

1

2

3

4

s
6

7

8

D9

4

1

2

3

4

s
6

ATHENS

PARIS

LONDON

-

COLOUR I
1 I

BLUE
GREEN

RED

--

-

1

2

2

- - -
-

CHAR

8

2

1

3

-- -

2

3

1

s
6

--
7
-
8
00

I L9
!

10 I --

2
--

3
- ·-

1

s
-

6
. -

' 7
-

7 i s I
-- ---- -- ·--+---

8 i__ _ _____ __:_ I

m11~!~11--QO_l_H_ -+-- 7- - l-t-L-:-~-

1

2

3

4

s
6

7

8

3 1 2

8 1 3
10 1 4

24 1 s
C. --

26 1 6
. - - - - - '--

35 1 ~ ,-.-- I

L
8 ' I

00

I - ---·-- ---· -

10.

AD81~0-: -+-P_N_~_ E-r_.__c_HAR_8_-1-11-1~-1

ADlO

1

2

3

4

s
6

7

8

BOLT

CAM

COG

NUT

SCREW

1

1

1

1

2

-- -

2

3
I

4 !
I s
I

1

7 --
8 I

i 00

D10 WEIGHT NUM I Ll-;­

.1 10 S _! _ ___I __ B

1

2

3

4

5

6

7
8

19 1
~ - j

- --------- - - ·- -.. ,
7 ------------+- - ..
8 --- - - --+-- --1
00

m12 tfl JNAME
s 1 _ I

CHAR J~~~
_s __ ~ o J

1

2

3

4

s
6

7

8

COLLATOR l

CONSOLE 1

IPUNCH 1

READER 1

SORTER 1

lrAPE 1

TERMINAL 1

·--- '
2 I

I
3 I
4 I

I

s
6 --
7 -
1

00 -j

1

2

3

4

5

6

7

8

Ml

M2

M3

M4

MS

2

1

1

2

1

2

3

4

5

1

7

8
00

1.3 .2 Relation Structures

SP
ARl

20

SUPPLY \ 3 I Dl D2 I D4 I
1 20 20 _ I

4
L.-

Dl D2 D4 D3 I _ . _____,__ ___ .,__ __ __,_ _ ___ I

1 1 1 1 2 2 I ·-
2 1 1 4 7 3

3 3 3 1 4 4
-

4 3 3 2 2 5

5 3 3 3 2 6

6 3 3 4 5 7
- --- - - -- --~---

7 3 3 5 6 8
·-- -

8 3 3 6 4 9
-

9 3 3 7 8 10
-

10 3 5 2 1 11 - ~--- - ---
11 4 3 1 2 12

... -- -
12 4 4 2 5 13 -
13 6 6 3 3 14

- --
14

-
6 6 I 7 3 15 I

15 5 2 I
I

2 2 16

16

17

5 5 I 5 5 _j__!7
I I 18 5 5 I 7 1 I

-
18 5 6 2 2 ' 19

J ·- ---- I

19

20

I 5 2 _ _ __ _I! ___ 1 1
' - . -
I 00

'
___ _ ____ !

11.

AR2

AR3

AR4

- --·
s
00

4

p

7

s

J

1

2

3

4

s

1

2

3

4

s
6

7

8

8

3

1

2

3

4

5

6

7

8

SUPPLIER

1

Dl D5

1 s
3 4

4 2

6 3

s 1

PART I
1 I

D2 I D8

1 4 3
,-

2 1 2
-

3 s 1
- -

14 s 3
l , s 2 1

1-6 3 3

I

i

PROJECT

I

1

2

3

4

5

1

D4

6

7

s
3

4

2

1

7

l 6

12.

1 I DI

5 10

I D6 j D7

2 3 2

1 2 3

3 2 4

2 3 s

3 1 1
-

1 I D2

8
I

10

I !
D9 I D10 i Dll

1 s 2
-

3 2 3
--

3 3 4

2 4 s
1 6 6

4 1 1

' l 8
I

00

1 D4

8 ~ --l
D12 j D13

1

4 2

1 3

3 4

1 5

4 6

1 2 7

5 1
-

00

1.3.3 Relation List Structures

r -

ALl !___ L: _ j Dl
0

: 3 1 1 I 3 i 5
- --·---

1

r st - _J 2

3 I 00 I I

'

13 D3
AL3

2 1 3 I

1 SP 1

2 3

3 00

i I s
r-----+---

2 3
I

3
+--------+--00-1

AL71
L7

I 2 1

1 s

2

3 1-

AL9 r - 2 L9

f I 1

1

2

3

p

I

D7

3 I

1

3

00

D9

3 I

1

3

00

--

5

- 1

-~

I
5 __J

AL4

AL6

ALB

r-· ~ .

1 p

2 SP

3
I

f
L4

3 I 1

1

2

3

J

SP

2

1

00

- -

D4
I

3 I 5

2

1

I 00
' I

- 1- -
D6

I 3

I

s I _ j_ _____ _

--------- -

: ~-- s- --+-----~-

LB DB

i I 2 1 ! 3 5

1 I p 1

2 I 3 I

3 00 I
- _J

13.

ALll

2

I
Lll

2 1

1 p
- --·-

2

3

Dl 1 LI 2 Dl2

3 5
-] ----p

AL12 --·21 1- 3 I 5

1
---- -·

3

00

ALl3 ~--L""'Tl_3 ____ n_,l,-3_--1

2 1 3 1 s

1

2

3
.i

J 1

3

00

!

1

2

3

J 1

3

00

P-string, R-string and J-string

1 4 •

It should be possible for the primitive language to derive any relation

from the data base relations. Some method must be used which is

capable of representing these derived relations, that is, one that can

express all the logical relationships between the data of a relation.

Schneider (60) defines three different associations that can be used

for just such a purpose. These are the P-string, R-string, and J-string -

so named because of the close correspondence with the projection,

restriction and join of the relational algebra. By using these

strings it is possible to represent any relation derived by some algebra

operation.

However, there are many other alternative means with which different

relations may be represented. Basically there are three reasons

why P-strings, R-strings and J-strings were chosen.

(1) It is unprofitable to define some new representation method

for some task when another already exists which is quite

capable of fulfilling that task.

2.1

(2) It is felt the P, Rand S-strings give a simple yet practical

method of representing associations in a relation. Thus

the examples in which these are used will be simplier, so

ensuring an easier explanation and understanding of the

primitive operations as well as their overall significance.

(3) Most important is the close correspondence of the strings

with the algebra operations of projection, restriction and

join. This has many simplifying spin offs. It will be

seen that most primitive operations are nothing more than

the creation or destruction of these strings.

P-string (Projection String)

* An occurrence of a P-string links some or all attribute values of a

tuple in some order. * That is, a P-string t ype for a particular

relation selects some ordered subset of the relation's columns

(i.e. attributes). So the logical relationship between attribute

15.

values that exist in the same tuple can be represented by an occurrence

of a P-string that links these attribute values together. (Note,

another way to represent this is to store the values in contiguous

blocks of storage space.) Therefore a P-string type can be used to

represent complete relations or just projections of it. See Figure

4 (a).

2.2 R-string (Restriction String)

An occurrence of a R-string links some or all of the tuples in a

*

relation that have some similar attribute value. Thus a R-string

acts on P-string occurrences grouping all such occurrences together in

some order if they have the same attribute value. See Figure 4 (a).

Type and Occurrence are used with the usual sense of meaning given
when speaking of record types and record occurrence.

16.

2.3 J-String (Join String)

The J-string links a tuple of one relation to all those tuples of

another which have the same value for a common attribute. That is,

a J-string occurrence links a P-string occurrence of one relation to a

R-string occurrence of another.

operation. See Figure 4 (a).

00 flJ
Cl) Cl)
(.) (.)

bO C OD C
C ClJ C ClJ

•r-1 i,... •r-1 i,...
H H H H
.µ ::, .µ ::,
Cl) (.) Cl) (.)

I (.) I (.)
., 0 ~ 0

~

\~~
~

R3

Thus effectively representing a join

00
Cl)
(.)

bO C
i:: Cl)

"M i,...
H H
.µ ::,
Cl) (.)

I (.)
p... 0

(a)

s

St! SNAME STATUS CITY

S2 JONES 10 PARIS

,. /T S3 BLAKE 30 PARIS
_l ---- --·---

SP

SIi PI/ I Q~

SI P~2

s'iT"P1 j 7
~-~

S2 P3 2

P3 2

17.

SP

SIi pfl QTY

Rl 1------(,~ Pl 2

@ Pl 7

3 Pl 4

R2 1------d P4 5

(b)

Figure 4

P-strings, R-strings and J-strings

Note:

1. If such strings existed as in (a) then any join of the

form GET W (...): S.Sf/=SP.S# can be very quickly

executed.

2. (b) shows that the attributes and order given by a

P-string is arbitrary.

If these strings were implemented then an administrator could tune the

data base, to a certain degree, by just defining such strings for

frequently used projections, restrictions, and joins. But the

important question is, can the primitive operations on the stack top

relation be reduced to nothing more than the creating of some similar

strings? If so, then similar techniques, ~rogram modules etc., can

be used for data base tuning and data base operations.

considerable saving in both time and expense.

3 Execution of the Primitives

Thus there is

As with the conceptual operation, the back-end makes use of two run

time stacks for each user's code string when executing the primitives.

Unlike the conceptual operation however, stack 1 elements a r e not

intended to actually contain relations, instead they contain pointers

* to relation structures stored in the system buffers. Before

18.

executing a code string the back-end should, by checking header

information, ensure that all the relation structures needed by the code

string are present in its system buffers. If a relation structure

is required that does not exist in the system buffers, then the back­

end must make the necessary calls on the operating system and create

the required relation structure. Of course, the back-end is free to

move any relation structure, domain structure, or relation list

structure, from its system buffers to the stored data base, via the

operating system, at any time. Clearly, for eff i ciency reasons , this

should only be done if no immediate code string in the queue requires

this relation structure , or if s torage space in the system buffers is

required. It is quite possible to implement this relation s tructure

creating/destroying etc . , feature of the back-end as an independent

"buffer controller" module. In describing the primitive operations

it will be assume d that the problem has already been done and that the

necessary relation structures, domain structures and relation list

structures already exist in the system buffers. Finally, in all

examples, the stored SUPPLIER/PART data base given in section 1.3

above is used.

3. 1 Algebra Related Primitives

·The algebra related primitives (in particular PROJECT, RESTRICT, and

JOIN) either select only certain attributes, a set of tuples, or

concatenate selected tuples from two r e lations . · PROJECT, RESTRICT

* More frequently, stack 1 e l ements will contain pointers to struc tures
implementing P-strings, R-strings, and J-strings .

and JOIN correspond very closely to the P-string, R-string, and

J-string, in fact, these are just a P-string t ype , R-string occurrence

and J-string occurrence respectively. Thus no actual relation is

created by the operations, ins tead a RESTRICT, for example, may just

create and manipulate a R-string occurrence. See Figure 5 (a), (b)

and (c).

ARSl INTERNAL RELATION STRUCTURE RESTRICTION

NAME ADDRESS STRUCTURE PTR

19.

Header

ARSl

SIZE

TUPLE ADDRESS Body

INTERNAL

NAME

SIZE

Figure 5 (a)

Restriction Structure

RELATION STRUCTURE

ADDRESS

RESTRICTION

STRUCTURE PTR

TUPLE ADDRESS !

ARSl INTERNAL

NAME

SIZE

RELATION STRUCTURE

ADDRESS

I TUPLE ADDRESS

Figure 5 (b)

Join Structure

RESTRICTION

STRUCTURE PTR

20.

A join structure is just a list of linked restriction structures where

the tuples are associated by the order in which the addresses occur,

therefore, the number of tuple addresses in each of the linked

restriction structures is the same.

INTERNAL SIZE

NAME
/

(NUMBER DOMAIN DOMAIN
...

ATTRIBUTES ADDRESS ,)) ADDRESS

DOMAIN VAL PTR I J Cl DOMAIN VAL PTR

Figure 5 (c)

Projection Structure

In the projection structure, the number of DOMAIN ADDRESSes is the same

as the number of DOMAIN VAL PTRs. These three structur es are all that

i s needed to allow all primitive operations on data base relations

as they can repr esent all possible modifications to r elation that the

algebra like operators can effect.

3. 1. 1 RESTRICT

The execution of RESTRICT constructs a r estriction s tructure and places

on top of s tack 1 a pointer to this newly created structure. The

tuple addresses in the body of this restriction structure are the

addresses of all those r e lation structure records (tuples) whose attribute

values satisfy this particular restrict condition. The header of the

restriction structure indicates which relation structure these

addresses apply to. See Figure 6.

3.1.2 JOIN

The JOIN is no more complicated, it takes two restriction structures and

s imply links the two in accordance with the given criteria. Every

tuple addressed in one r estriction structure is t ested against each

tuple addressed in the other restriction structure . If the specified

attributes (given in s t ack 2) satisfy the condition of the JOIN then

the two tuple addresses are stored in a combined structure . Finally,

21.

the two pointers on stack 1 are destroyed and a new pointer is inserted

which points to the new structure, that is, the join structure .

3.1.3 PROJECT

With PROJECT it becomes necessary to select only those attributes

existing on stack 2 of a relation structure. PROJECT achieves this

by duplicating a portion (subset) of a relation structure . This can

be done because a relation structure is equivalent to a P-string, so

PROJECT need only take the attribute value addresses from each tuple

and form a structure consisting of a array of pointers. If desired ,

it is possible to further operate on this so represented r elation by

defining join or restrict structures on it as well. See Figure 6.

3 . 1.4 Miscellaneous Algebra Related Primitives -----

All other set related primitives e ither create or manipulate the

restriction, join, or projection st ruc tures. For example, UNION is

the merging of the tuple addresses contained in two restriction or

join structures; INTERSECT is the elimination of all tuple addresses

not common t o both such structures; DUPLICATE is s imply a duplication

of the s tructure pointed to by the top of stack 1 element ; and

PRODUCT is nothing more than a unconditional JOIN of the two structures

pointed to by the top two stack 1 elements .

3.1. 5 Exampl e

The following example is given to demonstrate the use of the struc tures

defined thus far, and also to clarify the actual operation of the above

primitives . In this example (and all others) internal names and even

actual schema names are included in the stacks for clarity . In

(A)

(B)

practice absolute addresses, or point ers indicatinr, where the absolute

addr esses can be found , would be used .

22.

"Get t he name and par t number of all suppliers and the parts they supply

which have a QTY equal to 1. 11

RANGE SUPPLIER

RANGE SUPPLY

s .
'

SP;

GET W (S . SNAME , SP . P#):(SP.QTY=l AND S. S#=SP .S#);

START DOMAIN

NAME w (C) JOIN

VALUE SP DOMAIN

DOMAIN SP.QTY DOMAIN

NUMBER 1 NUMBER

RESTRICT EQL (D) PROJECT

VALUE s STORE

DOMAIN S . S# STOP

SP . SIi

EQL

S . SNAME

SP. Pt!

2

ALL

The state of the s tacks and the structures created a t the above

labelled points in the code string are shown in Figure 6. For

simplicity , many of the addresse d domain structures, and domain structure

values, are not shown.

/

/

f

To workspace W
SP

w

stack 1

SP SUPPLY
ARl 20 1

4 DI

;::~t : J ~-:J
18

~19

/20

-....
-~-

5 6

5 2
I
I

3 Dl __ D2 __ j_ D4

20

D2 D4

1 2 2 I

;
4 7 3 I

2 2 19 I
4 1 1

co

Relation Structure for SUPPLY

,-L-,-------r------:----,

Dl SI! CHAR Ll
AD3

2 1 8 10

Sl 3

I ! I
SS 6 1 -

6 S4 3 5

7 8
- - -·- - --

8 00

Domain Structure for SIi

Point A

1

ID93

8

9

10

-

L.

QTY

1

1

2

8

98

99

23.

J: ILJ j
I 10 -

3

I
2

I 6 3

1 1

0 10

0 co

Domain Structure for QT

To Workspace W

ARSl

w
stack 1

ARS1
--,-----

Rl SP I OO

I-----~---\

3

10

17

19 SP

Point B

~I

17

18
19

20

1

1

5

5

5

24.

stack 2

(Restriction Structure
constructed by the RESTRICT
EQL operator of B above)

D4

5 7 1 18

6 2 2 19
2 I 4 1 1

--
(X)

Relation Structure for
SUPPLY

To Workspace W

Rl/R2
w

stack 1

Rl SP ARS2
Rl/R2 f-----+--'----------4

3
ARS2

~---------------------~

ARl
SP

20

4

1

2

10

~17

18

19
20

SUPPLY 3 Dl D2

~ 1 20

D2
~ -

I
2

I
<.....::.

1 1 I 1

I
2 IH 1 1 4 7

3 5 2 1
I

11
1

5 5 7 1 18

5 6 2 2 19
---->---·

5 2 4 1 1
- -· - - ~

CX)

Relation Structure SUPPLY

Point C

R2

3

2

5

5

25.

stack 2

CX) s Join Structure

3

4

5

SUPPLIER

1

1 5

3 4

4 2

2

1

3 ~ - --- --
6 3 2

i-- - ·- - - - -
I

5 1 3 I
I

3 2 i
2 3 I -
2 4

' -- --
3 5

I
' - -- '
!

1 I 1 i

Relation Structure SUPPLIER

To Workspace W APSlv .11-w

APSl

1 DS ADS --6

~ \ 1

~:
4

s
6

7

8

1

Pl 3

2 DS D2

SNAME

1

ADAMS 1

BLAKE 1

CLARK 1

JONES 1

SMITH 1

Proj ection
Structure

AD2

2 I

3

4
--

I
s
1

I 7

I 8

00

~

3

4

s
6

7

8

Domain structure
SNAME

Point D

Figure 6

Back-End Buffer Structures

26.

stack 2

Pl

P2

P3

P4
~ -

PS ...

P6

CHAR

8

3

3

9

2

4

4

L2
.L -

10

2

3

4 '

s ! --
6 --~

' 1

I 8
I

00
.__ _______ _,;___

Domain structure
CHAR

From the above projection s tructure the given workspace relation W can

easil y be cons t ructed by following the pointers.

w SNAME.

JONES

ADAMS

ADAMS

Pfl

P5

P5

P2

3.2 DOMAIN, STRING, and NUMBER

DOMAIN pushes onto stack 2 a number which uniquely addresses a domain

27.

address in the DOMAIN ADDRESSES field of a relation structure. STRING

pushes onto stack 2 a pointer to a string, and NUMBER simply pushes onto

stack 2 a number.

3 . 3 NAME, VALUE and STORE

NAME has no effect on the actual structures as its operation involves

pushing onto stack 1, either an address of the workspace, or a workspace

descriptor. VALUE pushes onto stack 1 the address of a relation

structure. STORE causes the relation structure pointed to by the top

of stack 1 element to be reconstructed in the workspace pointed to by

the stack's second element.

3.4 NULL, POP, START and STOP

NULL simply creates an empty restriction structure for the relation

structure indicated by its second word. It also pushes onto stack 1

a pointer to this restriction structure . POP simply removes the top

element of the stack indicated by its second word. The primitive

START is used to indicate the beginning of a code string and causes

necessary preparation to take place. STOP indicates the end of a

code string and causes all restriction, join, projection and other

temporary structures created by that code string to be destroyed .

3 . 5 Functions

BoolP.an functions create a restriction structure and leave a pointer

28.

to this structure on top of stack I. However, join functions and

target list functions must create a temporary domain structure to hold

the results of the function. A projection structure is also created

so allowing the resultant relation to be constructed, and a pointer to

this created projection structure is left on top of stack 1.

3. 6 MARK and MARKCALL

Basically, all that is needed to mark tuples of a relation is to record

the relation name and the addresses of the tuples to be marked in that

relation. That is, a restriction structure should be adequate.

see this conside r the following example code.

START

NAME

VALUE

DOMAIN

STRING

w

s

S . CITY

LONDON

(A) RESTRICT EQL

(B)

STRING

MARK

MARKCALL

STOP

X

ALL

X

To

Suppose the above code is being executed, then at point A the structure

of Figure 7 (a) will exist . Notice that the r estriction has the effect

of selecting all tuples that currently exis t on top of stack I. Thus

the marking facility can be achieved by simply duplicating the restriction

structure. The new structure so formed (called mark structure) is then

stored at a location which is identified by the actual mark used. Thus

the actual marking identifier acts as an internal name. See Figure 7 (b).

Marking composite relations is simply the duplication of join structures.

Note that if a number is given in the second word of the MARK instruction

then only that number of tuples are duplicated and placed in the mark

s tructure.

MARKCALL simply pushes the address of the mark structure, giv en by its

second word, onto the top of s tack 1.

stack 1

ARSl Rl s
2

1

4

To Workspace W

00

stack 2

Restriction structure created
by the RESTRICT operator at
point A.

SUPPLIER J _ 1 Dl

1 _ l __ _ s_--'----~1 o_--1
Dl~_ DS-+-1-_ __.,..,___.....,

29.

1

2

3

4

5

1 2
To Domains

5 2 3

3 4 1 2

4 2 3 2

6 3 2 3

5 1 3 1

Relation Structure
SUPPLIER

Figure 7 (a)

Marking Tuples

3

4

5

1

ARSl

To Workspace W

ARS1

w

stack 1

Restriction Structure

Rl

2

1

4

s

AR2

Figure 7 (b)

Marking Tuples

\
"

30 .

stack 2

AX

s
ex,

4

1

2

3

4

5

Mark structure created by
duplicating the restriction
structure

X s ex,

2

/
~ /

1 5 2 I 3 2 I

3 4 1 2 3

4 2 3 2 4 .
I

--L- -4

6 I 3 2 3 I s !
I

I 5 I 1 3 1 i 1
- -·

Relation Structure

3. 7 HOLD

The HOLD is implemented in the same way as MARK. It duplicates the

restriction structure (or portion of it) and provides the appropriate

header information indicating that this is a hold structure. When so

holding tuples, a search must be made through all the current hold

structures to ensure that no tuple is already held, that is, these

structures must be disjoint. See Figure 8.

3.8 UPDATE, DELETE and RELEASE

31.

In implementing UPDATE the pointer on stack 1 is ued to locate the work­

space tuples and the given hold structure address is used to locate

the associated data base tuples which have been held. These data base

tuples are then replaced by the respective workspace tuples. In the

case of a DELETE, they are simply removed from the relation structure.

The hold structure indicated is destroyed after both the UPDATE and

DELETE. RELEASE simply destroys the identified hold structure.

An alternative method that may be easier to implement is to duplicate

the workspace relation into a temporary buffer relation structure, and

then operate on this structure as required. See PUT section 3.9.

3.9 PUT

The implementation of PUT poses a problem because there are two ways

of handling workspace tuples.

1. Manipulating them in the workspace itself.

2. Using a temporary structure created specially to store

the workspace tuples while they are operated upon.

If the first possibility were chosen then all primitive operations will

have to be modified to handle the vastly different workspace structures.

For this reason (and also because it does not allow a convenient back-

up mechanism) the second alternative is chosen. Here temporary domains

32.

and relation structures are created which are then handled in exactly

the same manner as before. The PUT causes these temporary structures

to be merged with the "permanent" relation and domain structures .

Note that the VALUE primitive must handle the creation of these temporary

relation structures and the inclusion of workspace data within them.

Consider the following example.

' 'Place only those workspace tuples in SUPPLY which name an existing

supplier."

RANGE SUPPLIERS ;

PUT W SUPPLY.(S#,P# ,QTY)

: 3S (SUPPLY.S#=S.S//);

START DOMAIN W.P#

NAME SP DOMAIN w .JI/

VALUE w DOMAIN W.QTY

VALUE s NUMBER 4

DOMAIN W. St! PROJECT

DOMAIN S. SIi PUT ALL

(A) JOIN EQL STOP

DOMAIN W .SIi

Suppose that workspace W contains the following r e lation, then Figure

9 shows the temporary structures that would exist after the JOIN at

point A if the above code string is being executed.

w S# PI! JI! QTY

Sl P3 Jl 3

S2 P4 J2 3

S6 P3 Jl 7

S6 P4 J2 3

S7 PS Jl 2

33.

To Workspace W

ARSl
w

stack 1 stack 2

ARSl Rl s Restriction

2
Structure

1

4

HOLD structure HX

HX s 00

2 HOLD

1

1 5

Dl D2 D3

1 5 2

3 4 1

4 2 3 -
6 3 2 - ,_ -

5 5 1 3 : --

Dl

10

D4

3 2

2 3

2 4

3 5
~

1 I 1 I

HOLD structure

Hl

2

' '

s
HOLD

To Domain
Structures

Hl

00

In this example it is assumed that some other user has already held tuples

2, and 5 as given in the HOLD structure HX .

0
5

n[I]
4

= 0.
i.e., 0 G

Figure 8

Hold Structures

Note that HX and Hl are disjoint,

34.

LJ Rl/R2

SP

stack stack 2

Rl/R2 Rl TW ARS2 ARS2 R2 s 00

2
_ 2 --'------1----_J

1

2

TW W , 3 TD 1 TD 2 TD 3 S SUPPLIER 1 Dl

~ -1..=T- D~: _ _._T_D_2_,,,,_~

5

_ _

20 00 1 5 10

4 Dl D7

-
/ 1 1 1 1 -~-i-~- ~

1 5 2 3 2 To permanent

¼2 2 2 2

\\ 3 1 1 I 3 !-4- 3

4

3 2 2 2 5 4
I I

~ 3 1 1 l -- -· I
5

Temporary Re lation Structur e
(Workspace tuples)

ATD 2 D2 PI! CHAR -

Sl I 1 2

S2
I

1 3 i

S6 2 4
S7 1 1

Temporary Domain
Structure SI/

I

I

I

-·

ATD3

1 3

l P3 2 2

2 P4 2 3

3 PS 1 1 _I
Temporary Domain
Structure Pt!

1

2

3

2

3

7

1

3

1

2

3

1

Figure 9
Temporary Structures

-- -
3 4 1 2 3 domains

4 2 3 2 4

6 3 2 3 5

5 1 3 1 1

Relation Structure
SUPPLIER

"
ATD4 tT~4 1J: IC~ I

1 I~: 3 2

2 2 1

Tempor ar y Domain
Structure J I/

Temporary Domain
Structure QTY

I

Notes

1. Because of the temporary nature of these stru c tures many fields

are not needed. In the above Figure they ar e replaced by a

dash for reasons of simplicity and clarity, otherwise, new

structure fields would have to be defined.

2. Manipulatin g tuples in temporary storage space allows back-up

operations to occur if neces sary . See Chapter 5.

35.

