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Abstract

Increasing land values without comparable increases in yield orreduced input costs have reduced
the attractiveness to growers of processing sweet corn (Zea mays L.) as a cropping enterprise at
Gisbormne, New Zealand. As a consequence, the problem of consistently sourcing adequate
volumes of raw material has been one factor leading the region’s major sweet corn processor to
consider withdrawing from the region. Hence, the development of agronomic practices which
reduce crop production costs, improve marketable yields, or both, will be important for
maintaining the viability of the sweet corn processing industry in Gisborne for both growers and

processors alike.

Two of the most important factors influencing yield of sweet corn are plant density and nitrogen
(N) nutrition. The density range which maximised marketable yield of cobs and kernels for
Jubilee and SS42, the two prominent cultivars grown at Gisborne, was 69-77,000 plants per
hectare. Although yield response to fertiliser N was alsoinvestigated in the same study, the yield
response was either negligible (SS42) or did not follow a trend consistent with incremental
increases in N rate (Jubilee). The limited response was attributed to high background levels of
soil available N (269 kg/ha). A second experiment was designed to investigate the yield response |
to fertiliser N on a soil with a low available N level. Although only 92 kg N/ha was available
from the soil, yield response in this experiment was also negligible with N rates greater than
73 kg/ha. Combining the two years’ results indicated that yield response to N fertiliser will be

limited when soil available N levels are > 213 kg/ha.

The rate of yield improvement could be enhanced by greaterunderstanding of the physiological
processes limiting yield in maize and sweet corn. The study of source-sink relationships can
provide useful insights into yield determinants. A field experiment was established with Jubilee
and SS42 to study how variables influencing weight of primary and secondary ears (e.g., silk
delay, tiller number per plant) adjust to plant density and N nutrition. Path analysis and canonical
discriminant analysis indicated that tillers were important for supplying the secondary ears of
both cultivars with photoassimilate at low densities (e.g., 40,000 plants per hectare) and were
important for Jubilee, but not SS42, at highdensities (e.g., 100,000 plants per hectare). A short

silk delay for both the primary and secondary ear was important for both cultivars at low
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densities to establish a large ear sink. Thus, at low densities, the presence of a secondary ear at

low densities appeared to enhance kernel development on the primary ear.

To further understand the partitioning of DM and N to kemnels, further experiments quantified
sink strength (or source strength) of an organ (i.e., leaves, stems, roots, kernels, rachis, husk, or
shank) between defined ontogenetic stages. Sweet corn grown at 70,000 plants per hectare with
rates of applied N ranging from O to 230 kg/ha were harvested throughout ontogeny until R4.
Although N rate generally did not influence partitioning of N or dry matter (DM) to any organ,
significant cultivar differences were detected. Kemel sink strength of Jubilee was two-fold
greater for DM than SS42 and three-fold greater for N between R1 and R3. As a consequence,
kernels of Jubilee contained 34 % more DM than those of SS42 at R4 and were significantly more
efficient than SS42 kernels at translating endogenous N into kernel DM. The observation that
DM was partitioned to vegetative organs during reproductive growth while N was being
remobilised from these organs indicated that both Jubilee and SS42 were source limited for N,

yet sink limited for current photoassimilate.

No published studies have been sighted which have identified a link between the source
limitation for N and the sink limitation for DM in Z. mays. Investigating source-sink,
relationships indicated that the two events are linked and initiated by low kemnel sink strength
during early grain filling. SS42 partitioned large proportions of DM to both husks and stems
between R1 and R3, in contrast to Jubilee which partitioned most DM directly to kernels. As
partitioning DM to vegetative tissue and husks reflects photoassimilate not consumed in
reproductive growth, excess photoassimilate resulting from limited sink strength may have
decreased photosynthetic rates through ‘feedback’ inhibition. Consequently, the ability of Jubilee
to partition DM to roots for N assimilation between R3 and R4 may reflect less inhibited

photosynthesis than for SS42.

A subsequent experiment provided further evidence that kernel sink strength influences N and
DM partitioning. This experiment also indicated that low kernel sink strength during early grain
filling may actually initiate an inhibitory cycle. When maximum leaf area in maize and sweet
corn is reached around R1, the ear is a relatively weak sink and unable to accumulate all the

photoassimilate being produced. Although the excess is partitioned to stems and husks, these
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organs can only accumulate a limited quantity before they become saturated. When the stem and
husks become saturated, photoassimilate may accumulate in leaves causing feedback inhibition
of photosynthetic enzymes to reduce the supply of photoassimilate. However, as N assimilation
rate is dependent on the rate of photoassimilate supply to roots, the inhibited photosynthesis
reduces N uptake and as a consequence, remobilisation of N is stimulated. Excessive
remobilisation of N from leaves may further impair photosynthetic activity to further restrict the
photoassimilate supply for root and shoot functions including grain filling. Hence, an inhibitory
cycle may evolve from the limited capacity of kernels and rachis to accumulate photoassimilate.
Since SS42 (sh2 mutant) had a significantly lower kernel sink strength than Jubilee (s«] mutant)
during early grain filling, SS42 was apparently more influenced by the inhibitory cycle than

Jubilee.

To add support to the theory that limited kernel sink strength during early grain filling may lead
to an inhibitory cycle, a final experiment investigated the association of the endosperm storage
protein, zein, with kernel sink strength. A high correlation (r=0.91) was observed between kernel
DM and the level of zein. Further, the wild type (Furio) contained 25 and 49% more zein at R4,
and accumulated 18 and 49% more DM, respectively than the sul (Jubilee) and sh2 (SS42)
mutants. Similarly, kernels of Jubilee, which contained 31% more zein than those of SS42..
accumulated 38% more DM. Together these results indicate that the level of zein is associated

with kernel sink strength and thus lends support to the inhibitory cycle theory.

Key words: canonical diseriminant analysis, endosperm mutants, nitrogen nutrition, non-linear regression, path

analysis, photoassimilate partitioning, plant density, process sweet corn, sh2, sul, zein.
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