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2.6 A nonlinear Möbius transformation. . . . . . . . . . . . . . . . . . . . . 66
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Abstract

D’Arcy Thompson was a biologist and mathematician who, in his 1917 book ‘On

Growth and Form’, posited a ‘Theory of Transformations’, which is based on the ob-

servation that a smooth, global transformation of space may be applied to the shape

of an organism so that its transformed shape corresponds closely to that of a related

organism. Image registration is the computational task of finding such transformations

between pairs of images.

In modern applications in areas such as medical imaging, the transformations are often

chosen from the infinite-dimensional diffeomorphism group. However, this differs from

Thompson’s approach where the groups are chosen to be as simple as possible, and

are generally finite-dimensional. The main exception to this is the similarity group

of translation, rotation, and scaling, which is used to pre-align images. In this thesis

the set of planar Lie groups are investigated and applied to image registration of the

types of images that Thompson considered. As these groups are smaller, successful

registration in these groups provides more specific information about the relationship

between the images than diffeomorphic registration does, as well as providing faster

implementations. We build a lattice of the Lie groups showing which are subgroups of

each other, and the groups are used to perform image registration by minimizing the

L2-norm of the difference between the group-transformed source image and the target

image. A robust, practical, and efficient algorithm for registration in Lie groups is

developed and tested on a variety of image types.

Each successful registration returns a point in a Lie group. Given several related images

(such as the hooves of several animals) it is possible to find smooth curves that pass

through the Lie group elements used to relate the various images. These curves can

then be employed to interpolate points between the set of images or to extrapolate to

new images that have not been seen before. We discuss the mathematics behind this

and demonstrate it on the images that Thompson used, as well as other datasets of

interest.

xix



Finally, we consider using a sequence of the planar Lie groups to perform registration,

with the output from one group being used as the input to the next. We call this multi-

registration, and have identified two types: where the smallest group is a subgroup

of the next smallest, and so on up a chain, and where the groups are not directly

related, i.e., separated on the lattice. We demonstrate experimentally that multi-

registration can provide more information about the relationship between images than

simple registration. In addition, we show that transformations that cannot be obtained

by a single registration in any of the groups considered can be successfully reached.
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Chapter 1

Introduction

Figure 1.1: On Growth and Form

Natural scientists classify organisms by their ap-

pearance and structure, known as form. The form

of an organism is a characteristic of the organism

that remains unchanged during translation and ro-

tation [37]. Biologists study the form of an organ-

ism to understand the reasons that underlie the

variations of the organism over various timescales,

such as growth, disease or evolution. These varia-

tions are measured and quantified, which may help

us to discover processes of biological phenomena

that may not be identifiable from casual observa-

tion [11].

The quantitative study of form is known as mor-

phometrics [11]. The first attempt to quan-

titatively study form was published by D’Arcy

Thompson in his landmark book ‘On Growth and

Form’ [67]. D’Arcy Thompson was a biologist and mathematician; he combined math-

ematics and biology into a significant work, his ‘Theory of Transformations’, given in

the last chapter of his book. The Theory of Transformations is based on the obser-

vation that a smooth, global transformation of space may be applied to the shape of

an organism such that its transformation corresponds closely to that of other related

organisms. For example, he showed that there is a transformation that transfers the

Diodon porcupine fish shown in Figure 1.2a to Orthagoriscus mola shown in Figure 1.2b.

1
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(a) Diodon porcupine (b) Orthagoriscus mola

Figure 1.2: Diodon porcupine fish is transferred to Orthagoriscus mola by deforming
the grid isogonally. Taken from [67].

Thompson compared organisms belong to the same zoological taxa, which he called

related forms. In the comparison of related forms, he said that most of the parts

exhibit differences, which he called independent variants. For example, in the evolution

of fish, the fish has several parts: head, body, tail, fin, etc., where each part exhibits

some differences between the fish. Rather than focusing on individual variants, for

which Thompson points out that the required transformation will be very localised and

complex, he compares the entire body of the related forms, dealing with the independent

variants only implicitly.

In fact, the idea of Thompson is to look at the global variation between forms. He said

that comparing the entire body of forms without regard to the independent variants

will guide us to see a simple transformation between related organisms. And finding

the simple transformation will furnish us to some guidance as to the ‘law of growth’ or

play of forces.

One modern method to compare related forms is image registration, which aligns two or

more images so that their appearance matches as closely as possible. The idea of D’Arcy

Thompson motivates us to study the shape of related forms using the modern tools of
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image registration. This research aims to find the simple transformations between

the related forms given in Thompson’s book mathematically. All the examples that

Thompson gave in his book [67] are two dimensional representation of the organisms.

Therefore, in this research we consider the 2D images. In the following section we give

a review of image registration.

1.1 Review of Image Registration

The primary task in image registration is to find a geometric transformation between

a pair of images, the source and target, so that they match as closely as possible [48].

Image registration has been applied in four major research areas: Computer Vi-

sion—including object recognition, shape reconstruction, motion tracking, and char-

acter recognition [6, 22, 31, 58]; Remote Sensing—where images are taken from a

terrain by a sensor mounted on aircraft or satellite for different tasks, such as geology,

oceanography, oil and mineral exploration [18, 33, 66]; Medical Image Analysis—

used in diagnostic medical imaging, such as disease localization and tumour detection,

and in biomedical research, such as in imaging blood cells [21, 40, 41, 46, 65, 70];

and Morphometrics—studying the form of an organism to understand the impact of

growth, disease or evolution on the shape of the organism; for example, analysing the

fossil records of organisms [11, 37].

In the mathematical setting, an image is considered as a mapping from a domain into

the real numbers. The domain of the image is denoted by Ω ⊂ R
d, where d is the

dimension of the image. In this research, we only deal with two-dimensional grey-scale

images. A 2D grey-scale image I is defined as follows:

I : Ω → [0, 1]

where Ω ⊆ R
2 is the domain of the image and to each point (x, y) ∈ Ω an intensity

I(x, y) ∈ [0, 1] is assigned. Figure 1.3 shows a functional view of an image.

Of relevance to this thesis are two forms of registration:

Registration based on landmarks: Landmark-based registration is the general rep-

resentative of feature-based schemes. In the landmark-based method, salient fea-

tures of the images are extracted. Notable features could be: significant regions
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(a)

(b)

Figure 1.3: (a) An image of a plant, (b) a functional view of the image, the z-axis is
the range of the image (intensities), the domain of the image is in the xy-plane.

(a) (b) (c)

Figure 1.4: (a) An office image, (b) lines in the edge of image are detected, (c) corners
are detected. Figures are taken from [27].

(forest, building, lakes), lines (roads, rivers, boundaries of an area) or points

(corners of the region, line intersections, points of curves with high curvature)

[76]. Figure 1.4 shows an office picture where the points and lines are detected.

Distinctive features can be detected manually or automatically; there are various

attempts to detect them automatically, see [55]. The challenge in this form of

registration is to establish points that match in the two images. This is known

as the correspondence problem.

In this method, the features of images are expressed by points. For example, a

region is represented by its centre of gravity, a line by points at the ends or middle

of the line. Therefore, corresponding representative points must be selected in

both the source and target images. The idea is to transform the selected points in

the source such that they become as close as possible to the corresponding points

in the target. For instance, in 2D images, let xi = (x1i , x
2
i ), i = 1, 2, . . . , n be the

selected points in the source image, and yi = (y1i , y
2
i ) be the corresponding points
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in the target image. Then landmark registration is:

min
ψ∈G

‖ψ(xi)− yi‖,

where ‖ · ‖ can be the L2 distance between the sets of points, and G is a set of

transformations. Then the transformation obtained from the landmark registra-

tion is applied to the source image. In the following it will be explained how an

image is transformed.

Registration based on intensity: In contrast, intensity-based methods deal with

the intensities of the pixels in the entire image, and no salient features are de-

tected. The best transformation is found by minimising an intensity-based dis-

tance function between the target image and the transformed source image.

Therefore, in registration based on intensity, one image (the source) needs to be

transformed to match the other image (the target). Let ϕ : Ω → R
2 be a planar

transformation. We consider how this transformation transforms an image I0 to

a new image I1 when the pixel values of I0 are unchanged but merely carried into

new locations by ϕ. In order for this process to uniquely define a transformed

image I1 for all images I0, it is necessary that ϕ be 1–1, i.e., it must be invertible

on its range. Let (x′, y′) = ϕ(x, y). Then the value of I1 at (x′, y′) is equal to

pullback of the value of I0 at (x, y):

I1(x
′, y′) = I0(x, y) = I0 ◦ ϕ−1(x′, y′).

See Figure 1.5 for an example of the scaling transformation ϕ(x, y) = 1
2(x, y).

Therefore, I1 = I0 ◦ ϕ−1.

Let I be the source and J the target. Then, in the mathematical setting, intensity-

based registration can be written as:

min
ϕ∈G

E(ϕ) = min
ϕ∈G

‖I ◦ ϕ−1 − J‖, (1.1)

where G is a transformation set, and ‖ · ‖ is a distance function.

There are three key components in image registration [63]: a distance function between

the images that is to be minimised, a set of transformations that can be applied to the

images, and an optimisation function that finds the transformation parameters that

minimise the distance function. Each of these separate components are now described.
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(a) I0 (b) I1

Figure 1.5: (a) I0 is scaled by ϕ(x, y) = 1
2(x, y) to (b) I1, and I1(x

′, y′) = I0◦ϕ−1(x′, y′),
where (x′, y′) = ϕ(x, y).

1.1.1 Intensity-Based Distance Functions

There are a variety of types of intensity-based distance functions that can be applied

depending on the type of image [49]. A prime example is L2 distance:

‖I ◦ ϕ−1 − J‖2 =
(∫

Ω
|I ◦ ϕ−1(x, y)− J(x, y)|2dxdy

) 1
2

,

where Ω is the domain of the source. This function compares the intensity of the images.

A disadvantage of this distance function is that matching objects in the images need

to have similar intensities [49]. For example, images with different illuminations do not

have similar intensities.

Cross-correlation (or more commonly, normalized cross-correlation) is a distance func-

tion that can be employed when images have similar intensities, but different illumina-

tions, normally a monotonic change in the intensities [49]. If I and J are two images

with similar intensities but different illumination then for some λ > 0, I ◦ ϕ−1(x, y) =

λJ(x, y). The cross-correlation of two images I and J is

−
∫
Ω

〈
I ◦ ϕ−1(x, y)− I ◦ ϕ−1

‖I ◦ ϕ−1(x, y)− I ◦ ϕ−1‖ ,
J(x, y)− J̄

‖J(x, y)− J̄‖

〉
dxdy.

Here I ◦ ϕ−1 and J̄ are the mean of the images, and 〈, 〉 is the L2 inner product. So,
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(a) (b)

Figure 1.6: Two images with different intensities. (a) Inside the ellipse intensities are
zero and outside are 0.5, (b) inside of the ellipse intensities are 0.5 and outside are zero.

cross-correlation is minimum when I ◦ ϕ−1(x, y) = λJ(x, y) . However, the cross-

correlation does not work well if objects in the images have different intensity relations

to the rest of the image. For example, in the two images given in Figure 1.6 one

image has zero intensity inside the ellipse and 0.5 intensity outside the ellipse, and

the other one has 0.5 intensity inside and zero outside. Neither the L2 distance or

cross-correlation can tell us when the ellipses match up, because L2 distance and cross-

correlation try to match the similar intensities.

To register the images in Figure 1.6, mutual information (MI) can be employed as the

distance function. This function was introduced in [72], and it is derived from the

theory of information [59]. This function measures the statistical dependency between

two images I and J as follows:

MI(I, J) = H(I) +H(J)−H(I, J),

where H(I) is the entropy of the image intensities (a):

H(I) = −
∑
a

pI(a) ln(pI(a)),

and pI(a) is the probability distribution of a discrete image, computed as follows:

pI(a) =
N(a)

S
,

where N(a) is the number of the pixels which have equal intensity a, and S is the total
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number of pixels. The entropy is maximised when each pixel has a different intensity:

H(I) = −
S∑

i=1

(
1

S

)
ln

(
1

S

)
= ln(S).

The minimum entropy is zero when all pixels have equal intensity. H(I, J) is called the

joint entropy of I and J ; it is:

H(I, J) = −
∑
a,b

pI,J(a, b) ln(pI,J(a, b)),

where pI,J is the joint probability distribution function of I and J ,

pI,J(a, b) =
N(a, b)

S
,

and

N(a, b) = |{(I(i, j), J(i, j)) | I(i, j) = a, J(i, j) = b}| .

If I = J , then H(I, J) = H(I). In fact, the joint entropy is always greater than or

equal to the entropy of I and J . So, to register images, it is necessary to minimise

their joint entropy, which leads to maximisation of MI. In the example in Figure 1.6,

registration with respect to translations and mutual information would lead to perfect

alignment of the ellipses.

Normalised Gradient Fields (NGF) is another distance measure that is not sensitive to

the change of illumination of intensities. It is as follows:∫
Ω
1−
〈 ∇I
‖∇I‖ ,

∇J
‖∇J‖

〉2

dxdy,

where 〈, 〉 is the inner product. Two discrete images (see Section 3.1.1) are given in

Figure 1.7, where J = 2I. The gradient fields of them have equal magnitude and the

same direction at each point. Therefore, their inner product is 1 at every point and so

NGF is zero. There are other distance functions, see [76] for more information, but

these are the most commonly used. As we will only use images where the greyscale

intensity values are similar, only the L2 distance will be used in this thesis.
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(a) I (b) J

Figure 1.7: The gradient field of two images I and J , where J = 2I. The gradient at
each point v(i, j) is calculated by central difference, i.e. v(:, j) = 0.5(I(:, j + 1) − I(:
, j − 1)), j = 1, 2, 3, and at the edge it is calculated by single-sided difference, i.e.
v(:, N) = I(:, N + 1)− I(:, N), N = 3, [44].

1.1.2 Optimisation

A search strategy to find the optimal transformation, that is the point at which the

distance function is a minimum, is needed for image registration. Optimisation starts

from an initial guess and progresses until it finds at least a local minimum. There are

a variety of methods of optimisation. In this section we only give a brief introduction

to some of the optimisation methods; for more sophisticated literature see [24, 34, 51].

Let f be a function of x. A numerical optimisation process to minimise f(x) starts from

an initial guess x0, and generates a sequence of iterations {xk}n0 such that f(xk+1) <

f(xk), which terminates when there is no more progress or the solution is accurate

enough. In deciding how to move from a point xk to the next iteration xk+1, there are

two fundamental methods, line search and trust region.

In line search, xk+1 is computed as follows,

xk+1 = xk + αkpk,

where pk is the direction to move and αk is the step length that decides how far to

move. The success of this method depends on the choice of both direction and step

length.
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There are a variety of models for the line search method to choose a direction from xk

to move. One of the methods is steepest descent. In this method the direction is:

p = − ∇f
‖∇f‖ .

This is the direction in which f is most rapidly decreasing. For every direction p and

step length parameter α, the Taylor expansion of f is,

f(xk + αp) ≈ f(xk) + αpT∇fk + 1

2
α2pTHkp, (1.2)

where pT∇fk is the rate of change of f along the direction p, and is most negative

when p = − ∇f
‖∇f‖ . Here Hk is the Hessian of f at xk. The advantage of this method

is that it only needs to compute ∇f , but it converges slower than the Newton method

on difficult problems, see [56]. In the Newton method the direction is computed as:

pk = −H−1
k ∇fk,

where it is assumed that the Hessian matrix is positive definite1. This direction is

derived from the second order Taylor series of f . Taking the derivative of the second

order Taylor series of f , given in Equation (1.2), where α = 1 with respect to p:

∇f(xk) +Hkp,

setting the derivative equal to zero, we obtain:

p = −H−1
k ∇fk.

There are other methods such as conjugate gradient which are very effective, see [51],

however we do not use them, and so do not describe them further.

The basic idea of the trust region method is that the function f is modelled around

the current point xk as a simple function mk whose behaviour is similar to the function

near to the point xk. Because the model mk may not be a good approximation of f at

x when x is far from xk, the model mk is restricted to some region N around xk. Then

a trial step p is computed by minimisation of the model mk on the region N ,

min
p
mk(xk + p), (1.3)

where xk + p lies inside the trust region N . The current point xk is updated to xk + p

1Positive definite: A positive definite matrix is a symmetric matrix with all positive eigenvalues.
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if f(xk + p) < f(xk), otherwise it is concluded that the trust region is too large, so the

region N is shrunk and mk is minimized again. The model mk usually consists of the

second order approximation of f . Therefore, the trust region subproblem is typically

stated as follows:

min
p

(mk(xk + p)) = fk + pT∇fk + 1

2
pTBkp, (1.4)

where fk is the value of objective function f at xk, ∇fk is the gradient of f at xk and

Bk is the Hessian matrix or its approximation.

Trust-region-reflective is an optimisation approach based on the trust region. The

minimisation of Equation (1.4) is restricted to a two dimensional subspace of S ⊂ N .

Therefore, the solution of Equation (1.4) is trivial, and the dominant work is shifted to

the determination of the two dimensional subspace S. Therefore, trust-region-reflective

is a faster approach than trust-region, see [13, 17] for details.

Another gradient descent optimisation method is Levenberg–Marquardt, which is used

specifically for non-linear least squares (L2 distance) problems. Write the distance

function as

f(x) =
∑

r2i (x),

where ri(x) are the residuals which depend on x non-linearly. In this method, it is

assumed that the residuals are small and have zero mean. The gradient and the Hessian

matrix of f are:

∇f = 2
∑

ri(x)∇ri(x)
∇∇T f = 2

∑
ri(x)∇T∇ri(x) +∇T ri(x)∇ri(x).

If Hk in the Newton method is set as Hk = 2
∑∇T ri(x)∇ri(x) then we obtain the

method called Gauss–Newton. If Hk = 2
∑∇T ri(x)∇ri(x)+λI, where I is the identity

matrix, we obtain the Levenberg–Marquardt method. If λ is small then the Levenberg–

Marquardt method approximates the Gauss–Newton method, and if λ is large it ap-

proximates the steepest descent method.

These optimisation methods find a local minimum depends on the initial value. In

registration the aim is to find the global minimum of the distance function. However,

it is not guaranteed that the optimizer finds the global minimum. So, this is a significant

issue in image registration. We will investigate this issue in Chapter 3.
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There is a function in Matlab (2010) software [43] called lsqnonlin which performs least

squares optimisation. As we are using the L2 distance function, we use this code for

the minimisation of the distance function. The algorithms that this code employs for

the optimisation are trust-region-reflective and Levenberg–Marquardt. We choose to

use trust-region-reflective as our optimisation method. Our registration algorithm is

explained fully in Chapter 3.

1.1.3 Transformation Sets

Another key component in image registration is the class of transformations from which

the optimal transformation is to be selected. The transformations sets may be classified

into two categories.

The first category is the finite dimensional sets of transformations, in which a trans-

formation is represented by a finite number of parameters. For example, translation in

the plane has two parameters: translation along the x and the y directions.

The second category is the infinite dimensional sets of transformations, in which the

possible transformations are represented by arbitrary functions, e.g. diffeomorphisms.

In practice, for computational implementations there are a finite set of parameters, see

Section 1.2.

Some finite dimensional transformation sets on the plane that have been used in reg-

istration are the similarity, rigid, affine, projective, and polynomial transformations

[15, 49, 76]. We introduce these important sets of transformations now.

Similarity: One of the most common and simplest set of transformations that is used

in image registration is the similarity transformations, which contain rotations,

isometric scalings, x-translations and y-translations. The similarity transforma-

tion of a point (x, y) ∈ R
2 is:(

x

y

)
�→ r

(
cos θ sin θ

− sin θ cos θ

)(
x

y

)
+

(
t1

t2

)
,

where r is the scaling parameter, θ is the angle of rotation and ti, i = 1, 2 are

translations. This set of transformations is 4 dimensional. Similarities arise, for

example, if a pin-hole similarity camera is set up perpendicular to the image plane

so that it only rotates about its optical axis, but can be translated in the plane
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Figure 1.8: A sample image [73].

and the distance to the image plane can change [49]. Such camera motions result

in similarity transformations of the acquired image.

A rigid transformation is a particular similarity transformation that allows only

rotations and translations:(
x

y

)
�→
(

cos θ sin θ

− sin θ cos θ

)(
x

y

)
+

(
t1

t2

)
.

The set of rigid transformations is three dimensional. In image registration appli-

cations, a similarity and rigid transformation is used when the camera movement

retains the shape of the object.

Affine: Affine transformations are more general than similarity transformations. In ad-

dition to rotation, translation and scaling, affine transformations allow for shear-

ing. The affine transformation of a point (x, y) is:(
x

y

)
�→
(
a b

c d

)(
x

y

)
+

(
t1

t2

)
, ad− bc = 0.

Therefore, the set of affine transformations is 6 dimensional. The most common

use of affine transformation in image registration is when images are taken from

the same viewing angle, but from different positions. For example, Figure 1.9

shows two photos that are taken from the image given in Figure 1.8, where the

camera is a pin-hole affine camera. As can be seen, the viewing angle of cameras

is the same, but their positions are different.

Affine transformation is applied in medical applications when the position of a

patient in the equipment is not identical each time, but the camera viewing angle

is fixed [48].
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(a) (b)

Figure 1.9: The image in Figure 1.8 taken from the same viewing angle (red line) but
two different positions of camera [73].

Figure 1.10: A projective photo of a railway. The camera optical axis is not perpen-
dicular to the plane in which the railway is located.

Projective: Figure 1.10 shows a perspective image of a railway. It can be seen that

the farther from the camera a point is the more oblique the transformation; the

closer it is the more compressed. Projective transformations are applied to rectify

the perspective image, such as in aerial photos [15]. Projective transformations

are employed in image registration when the optical axis of the camera is not

perpendicular to the image. Projective transformation is based on homogeneous

coordinates, see Section 2.1.9. The projective transformation of (x, y) ∈ R
2 is:

f(x, y) =

(
a1x+ b1y + c1
a3x+ b3y + c3

,
a2x+ b2y + c2
a3x+ b3y + c3

)
.

Although in this form there are nine free parameters, this set of transformations

is eight dimensional. To see this, let A =

⎛⎜⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎟⎠ be a matrix, where its

entries are the parameters of f and det(A) = d. We can scale the transformation
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by 3
√
d and the transformation does not change:

f(x, y) =

(
a1x+ b1y + c1
a3x+ b3y + c3

,
a2x+ b2y + c2
a3x+ b3y + c3

)
= (1.5)( a1

3√
d
x+ b1

3√
d
y + c1

3√
d

a3
3√
d
x+ b3

3√
d
y + c3

3√
d

,

a2
3√
d
x+ b2

3√
d
y + c2

3√
d

a3
3√
d
x+ b3

3√
d
y + c3

3√
d

)
, (1.6)

and det

⎛⎜⎜⎝
a1
3√
d

b1
3√
d

c1
3√
d

a2
3√
d

b2
3√
d

c2
3√
d

a3
3√
d

b3
3√
d

c3
3√
d

⎞⎟⎟⎠ = 1. So, we can suppose that the matrix of parameters

of a projective transformation has determinant 1. Now, let A =

⎛⎜⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎟⎠,

such that det(A) = 1; one of the entries of A can be given as a function of other

entries, for example c3 = 1−(a3(b1c2−c1b2)−b3(a1c2−c1a2))
a1b2−b1a2

. Therefore, each transfor-

mation in the set of projective transformations depends on eight parameters.

Polynomial: If images have some non-linear distortion, then a polynomial of second

or third order can be used for the registration.

In image registration we often desire that the transformation set be a group2under

function composition. Being a group in many cases brings the following benefits [5]:

• Having an identity: having an identity is necessary to match source and target

when they are identical.

• Having an inverse: If the source is mapped to the target by a transformation, then

the target can be mapped to the source by the inverse of the transformation.

• Composing transformations: This allows us to combine transformations. This

property can be used to connect images. A simple example is translations. Three

photos of a pencil are taken, see Figure 1.11. Suppose we know the translation

between figures 1.11a and 1.11b, and between figures 1.11b and 1.11c. Then

we can obtain the translation between Figure 1.11c and 1.11a by composing

(adding) two translations: from 1.11a to 1.11b, and from 1.11b to 1.11c.

2A group (G, ◦) is a set G, closed under a binary operation ◦, such that the following axioms are
satisfied [23]:
Associativity of ◦: For all a, b, c ∈ G we have: (a ◦ b) ◦ c = a ◦ (b ◦ c).
Identity element e for ◦: There is an element in G, such that for all x ∈ G:x ◦ e = e ◦ x = x.

Inverse: Corresponding to each a ∈ G, there exists a′ ∈ G, such that: a ◦ a′ = a′ ◦ a = e.
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(a) (b) (c)

Figure 1.11: Three photos of a pencil. The pencil is translated on the plane.

Moreover, let (G, ◦) be a group of bijective transformations on Ω ⊂ R
2, and Γ = {I, I :

Ω → [0, 1]} be an image space. Then the transformation of the image I by ϕ, which as

discussed earlier is given by

ϕ · I = I ◦ ϕ−1, (1.7)

defines a group action on the image space Γ [75]. A (left) group action of (G, ◦) on a

set X is a function [20, 23]:

φ : G×X → X

(g, x) �→ φ(g, x),

which satisfies the following axioms:

• φ(e, x) = x, (e is the identity element of the group G)

• φ(g1 ◦ g2, x) = φ(g1, φ(g2, x)), g1, g2 ∈ G.

Example 1. Let G =

{(
r 0

0 r

)
, r ∈ R

}
; (G,×) forms a group. G acts on R

2 by

matrix multiplication as follows:((
r 0

0 r

)
,

(
x

y

))
�→
(
r 0

0 r

)(
x

y

)
=

(
rx

ry

)
.

This action scales every point by r. The axioms hold:

1. The identity element of the group is

(
1 0

0 1

)
, which maps any point

(
x

y

)
to

itself: (
1 0

0 1

)(
x

y

)
=

(
x

y

)
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2. Let g1 =

(
r1 0

0 r1

)
, g2 =

(
r2 0

0 r2

)
, x̄ =

(
x

y

)
, then:

g1g2 =

(
r1 0

0 r1

)(
r2 0

0 r2

)
=

(
r1r2 0

0 r1r2

)

and:

(g1g2)x̄ =

(
r1r2x

r1r2y

)
=

(
r1 0

0 r1

)(
r2x

r2y

)
= g1(g2x̄).

It can be easily seen that Equation (1.7) obeys the axioms:

• id · I = I ◦ id = I, (id is identity transformation)

• (ϕ1 ◦ ϕ2) · I = I ◦ (ϕ1 ◦ ϕ2)
−1 = I ◦ ϕ−1

2 ◦ ϕ−1
1 = ϕ1 · (I ◦ ϕ−1

2 ) = ϕ1 · (ϕ2 ◦ I)

Image registration methodology is influenced by the transformation set. In the study

of biological variability, it is common that the transformation is a diffeomorphism (a

smooth invertible function). Diffeomorphisms are a natural choice to explore anatomy,

since connected and disjoint sets are kept connected and disjoint respectively, and

the smoothness of curves and surfaces of the anatomy are preserved [9]. The set of

diffeomorphisms forms a group under composition. In the following we give a brief

overview of diffeomorphic registration.

1.2 Diffeomorphic Registration

This section concerns the infinite dimensional diffeomorphism group. It is not strictly

relevant to this thesis, but the diffeomorphism group is commonly used for image reg-

istration. The purpose of this section is to give an overview of diffeomorphic image

registration for completeness.

The first attempt at computing a high-dimensional non-rigid registration was given

by Broit, Bajcsy and co-workers in [7, 8, 14]. In this setting, the transformation ϕ is

generated by its linear approximation in a neighbourhood of the source, ϕ(x) = x+u(x)

or ϕ−1(x) = x− u(x), where u : Ω �→ R
2 is the displacement vector field. The distance

function E2 measures the square of the L2 difference between the images.
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The optimal transformation is the one which minimizes E2 among all possible solutions

and has the highest smoothness, where the smoothness of u is measured by E1 as follows,

E1(u) = ‖Lu‖22,

where L is an operator on the space of vector fields. Commonly, L is chosen as L =

(−α� + γ)In×n, where � is the Laplacian operator and I is the identity matrix. In

the variational setting the optimal vector field is given by the minimisation of

argmin
u
E1 +

1

σ2
E2,

where σ is a parameter. This approach is known as small deformation matching [2],

because for sufficiently small u, ϕ is a diffeomorphism. One limitation of this approach

is that the transformation does not necessarily lie in the diffeomorphism group for

larger u. To overcome this limitation, the large deformation model was developed

[19]. In this model, the transformation ϕ is the endpoint of a path φt in the space

of transformations, where φt is the flow of time-dependent vector field vt : Ω → R
n,

t ∈ [0, 1] and is specified by the ODE, φ̇t = vt(φt), with φ0 = id (id is the identity map)

and the endpoint ϕ = φ1 = φ0 +
∫ 1
0 vt(φt)dt. The large deformation algorithm is given

as follows (see [75] for more details):

• Start with ϕ0 = id.

• Solve the evolution equation :

∂tϕ(t, y) = −2

∫
Ω
(I ◦ ϕ−1(t, x)− J)∇I ◦ ϕ−1(t, x)K(ϕ(t, y), x)dx.

Here K is a reproducing kernel of Hilbert space and is commonly chosen to be a Gaus-

sian, i.e. K(x, y) = exp(−α‖x − y‖2). This algorithm is also known as greedy image

matching.

One of the principal aspects of diffeomorphic image registration is to measure the

distance between images in the diffeomorphism group. The diffeomorphism group is also

an infinite dimensional manifold and can be equipped with a Riemannian metric. The

large diffeomorphic method introduced by [19] connects the source to the target, but

the orbit is not the shortest path. A method called Large Deformation Diffeomorphic

Metric Mapping (LDDMM) is introduced in [9] such that its solution is similar to the

flow of the large deformation model, but in contrast to the large deformation method,

the path connecting the source and target is the shortest path. The transformation
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is determined via the basic variational problem that in the space of smooth velocity

vector fields V on domain Ω takes the form:

v̂ = arg min
v:ϕ̇t=vt(ϕt)

(∫ 1

0
‖vt‖2V dt+ ‖I0 ◦ ϕ−1

1 − I1‖22
)
, (1.8)

where I0 ◦ϕ−1
1 = I1, ϕ̇t = vt(ϕt) and ‖vt‖V = ‖Lv‖2, where L is a differential operator

to enforce the vector field to be smooth. The second term in Equation (1.8) enforces

matching of the images with ‖.‖22, which is the squared-error norm. The length of the

shortest path is inf
∫ 1
0 ‖vt‖V dt, which defines a metric on the image orbit.

Another method for diffeomorphic image registration is the Stationary velocity field

(SVF) method. In this setting, the diffeomorphism is parameterized by the one-

parameter subgroups generated by stationary velocity fields through the Lie group

exponential. In contrast to LDDMM in which the diffeomorphism lies on a geodesic, in

the SVF method the diffeomorphism may not lie on a geodesic, because one-parameter

subgroups may not be geodesic. (On geodesics, the acceleration is zero.) To measure

the acceleration on geodesics an affine connection (∇) between the tangent spaces is

defined. If the velocity X = γ̇(0) is transported along a curve γ by an affine connection

parallel, so that ∇γ̇X = 0, then γ is a geodesic. An affine connection is called the

Levi-Civita connection if the parallel transport is geodesic using the Riemannian met-

ric. In [39] they investigated when one-parameter subgroups coincide with Riemannian

geodesics. They found that with the Cartan connection one-parameter subgroups are

Riemannian geodesics, and based on this, they proposed a diffeomorphic registration

method.

Image registration with the infinite dimensional diffeomorphism group has been well

studied during the last decade. However, relatively little attention has been devoted to

image registration in finite dimensional groups other than the similarity group. This

is the focus of this thesis. We present the following motivations for the study of image

registration by finite dimensional groups.

Thompson’s idea of simplest transformations: The remarkable idea of Thomp-

son that simple groups are to be preferred is a strong justification to study finite

dimensional groups for image registration.

Few groups: As far as we are aware, only a few finite dimensional groups (rigid,

similarity, affine, projective) have been employed in image registration [15, 49, 76].

Are there other groups, either subgroups of the full diffeomorphism group or not,
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that can be usefully employed in registration?

More information: In the standard approach to diffeomorphic image registration,

affine registration is performed before full diffeomorphism, in order to match gross

features of the images and get the coordinate frames to line up. However, there

may well be information in the affine part (e.g., growth). Are there other groups,

either subgroups of the full diffeomorphism group, or not, that can provide useful

information?

Occam’s razor: Occam’s razor states that among competing hypotheses, the one with

the fewest assumptions should be selected. By Occam’s razor, simpler theories are

preferable to more complex ones because they are better testable and falsifiable.

Finite dimensional groups are less complicated than infinite dimensional groups,

so by Occam’s razor, they are preferable.

Faster implementation: Diffeomorphic registration may not be quick enough for

some uses, while finite dimensional registration is faster due to having fewer

unknowns. Also for this reason, among the finite dimensional groups, groups

with lower dimension are preferred for the registration.

1.3 Aims of The Research and Overview of The Thesis

As explained, one of the motivations of this research is the work of D’Arcy Thomp-

son. Thompson found simple transformations between organisms that he presented

in his book by 2D drawings. Therefore, this thesis is devoted on registration of 2D

images with finite dimensional groups, where many of the images that we registrar are

Thompson’s drawings of organisms. Our principal research aims are as follows:

1. Compile a list of finite dimensional groups of transformations that may be useful

in image registration. There are three main groups: PSL(2,C), PSL(3,R) and

PSL(2,R) × PSL(2,R) and their subgroups, which total 19 groups. They will

be derived in Chapter 2.

2. Investigate the issues of image registration algorithm. There are different possible

methodologies for image registration in finite dimensional groups (e.g. rigid,

similarity, affine, projective, etc.). The methodology that is used in this research

is image registration based on intensity, where the distance function is L2 distance

of images. However, we found that the näıve image registration algorithm based
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on this function failed to find a good match a lot of the time. In Chapter 3, we

investigate the issues mathematically and develop an effective image registration

algorithm that uses finite dimensional groups.

3. Employ the finite dimensional planar groups given in Chapter 2 in registration.

Using finite dimensional groups in image registration gives us some benefits, such

as gaining more information about the geometric relationship between images

that can be useful for different purposes, and seeing the global variations between

images. These benefits are illuminated with many examples, some of which in-

clude Thompson’s simple transformations between organisms and registrations of

a dataset of side views of human skulls. In fact, no one apparently has repro-

duced Thompson’s work. Therefore, the first approximations between the related

organisms will be shown as well. Also, we use model selection to show that finite

dimensional groups are preferred to infinite dimensional ones, moreover some-

times lower dimensional groups are enough to describe the relationship between

the images. Chapter 4 covers these aims.

4. Fit curves in the Lie groups. Given some transformations from the registration of

related images, it is possible to find curves that pass through them. In Chapter 5,

we demonstrate how to fit such curves in the Lie groups through the transforma-

tions that are obtained from the registration. Such curves will give us a better

insight about how a natural phenomenon (e.g. growth, evolution, disease) acts

through time. This method also can be employed to interpolate or extrapolate

between the set of images to get more information (new image) or find lost in-

formation (inbetween forms) that may be useful. We employ the method on a

dataset of human skulls to find the growth curve, and on a dataset of hoofed

mammal feet to find other related feet. Chapter 5 covers these aims.

5. Introduce a novel type of image registration that we call Multi-registration, where

images are registered with a sequence of groups of transformations. We intro-

duce two cases for the multi-registration: 1) Multi-registration on a chain of

groups (groups and subgroups), 2) Multi-registration on a tree of groups (sepa-

rated groups). Moreover, we show the benefits of multi-registration which are:

• Multi-registration provides useful information, for example the significance

or insignificance of a group of transformations, or the relationship between

the images.

• Multi-registration provides a bigger space of transformations (through com-

position of groups), which is still finite dimensional and for which the trans-

formations are invertible.
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• Multi-registration enables us to find a complex transformation that cannot

be obtained by single registration.

• Multi-registration enables us to describe a complex deformation as a com-

position of simple deformations.

• Multi-registration provides an easier registration process. For example, reg-

istration by G1 followed by registration by G2 with G1 ⊂ G2 can be easier

to compute than registration with G2 alone, as G1 has fewer parameters and

yields a lower-dimensional optimisation problem.

Chapter 6 covers these aims.



Chapter 2

Finite Dimensional Planar Lie

Groups

In this chapter, the finite dimension planar Lie groups are described. They will be used

for registration in Chapters 4 and 6. We will focus on Lie groups, which bring some

benefits for this research. First, a global group can be replaced by its local linearization,

which is easier to work with. Second, a metric can be defined on a Lie group, which

enables us to measure the distance between images.

This chapter has four main sections. Section 2.1 gives an introduction to Lie groups and

their properties. In Section 2.2 the planar Lie groups are derived from their infinitesimal

generators, and in Section 2.3 the lattice of planar Lie groups is given, where the lattice

shows the group and subgroup relationship. As mentioned, one of the goals of this

research is to explore the benefits of using finite dimensional groups for registration.

Therefore we need to have knowledge about the geometric properties of the action of

these groups on the plane to extract useful information; thus Section 2.4 explains the

geometric properties of the action of groups on the plane.

2.1 Introduction to Lie Groups

A Lie group is a smooth manifold that is also a group and has differentiable group

operations. A manifold is a topological space that resembles Euclidean space around

each point. More precisely, a manifold is defined as follows [36]:

23
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Definition 2.1.1. A topological space (M, τ) with topology τ is a manifold of dimen-

sion n if it satisfies the following axioms:

• It is a Hausdorff.1

• It is a second-countable2 space.

• It is locally Euclidean.

The locally Euclidean axiom means that for any open set U ∈ τ there exists an open

set Ũ ⊆ R
n such that there is a homeomorphism ϕ : U −→ Ũ i.e., a continuous

bijective map with continuous inverse. (U,ϕ) is called a chart on the manifold M . Let

A = {(Uα, ϕα)} be a set of charts on M . We define A as an atlas if
⋃

α Uα covers M .

An atlas A is smooth if for any two charts (Uα, ϕα) , (Uβ , ϕβ), then ϕ
−1
α ◦ϕβ(Uα

⋂
Uβ)

is smooth. A smooth structure on M is a smooth atlas. Thus, a smooth manifold is a

pair (M,A), where M is a manifold and A is a smooth structure on M [36].

Definition 2.1.2. [26] A Lie group G is a smooth manifold which is also a group, such

that the group multiplication (g, h) �→ g.h and inversion g �→ g−1 define smooth maps.

As mentioned, one of the striking features of a Lie group is its local linearization, which

is described next.

2.1.1 Linearization of a Lie Group

A key tool in the study of a smooth manifold is the idea of a tangent space, which can

be used to approximate the manifold linearly. For example, a one variable function can

be approximated by its derivative, which is the tangent line. An example of a manifold

is Euclidian space R
n. The tangent space at point a ∈ R

n is all the vectors with initial

point at a, denoted by TaR
n:

TaR
n = {(a,X), X ∈ R

n},

where X is a vector in R
n. The notation Xa will be used for an element of TaR

n [36].

1A topological space (X, τ) is Hausdorff if for every a, b ∈ X, there exists open sets Ua, Ub ∈ τ such
that a ∈ Ua, b ∈ Ub and Ua

⋂
Ub = ∅ [38].

2A topological space (X, τ) is called second-countable if τ has a countable base [38].
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Let f be a function f : U → V , such that a ∈ U ⊆ R
n, V ⊆ R

n and U, V are open

sets in R
n. Then each Xa induces a directional derivative of f at point a along Xa.

Now let M be a manifold, and f : U ⊆ M → V ⊆ M be a C∞ function3; U, V are

open sets. Similar to Euclidean space we can define directional derivatives of f at some

point p ∈ U . Let X : C∞(M) → R be a linear map4. Then X is a derivation at p ∈M

if, for any f, g ∈ C∞(M):

X(fg)(p) = f(p)X(g) + g(p)X(f).

The set of all derivations of C∞(M) at p is the tangent space to M at p and is denoted

by Tp(M). It can be shown directly that TpM forms a vector space over the field R:

Xp(f) + Yp(f) = (X + Y )p(f),

c(Xp(f)) = (cX)p(f), c ∈ R.

As a Lie group is also a manifold, a tangent space can be associated with a Lie group.

2.1.2 Lie Subgroups

In this section we will introduce the concept of a Lie subgroup. Lie subgroups are

subgroups of a group where they are submanifolds. There are two types of submanifold,

which will be explained in the following.

Let F : N → M be a differentiable map of smooth manifolds. Suppose (U,ϕ) and

(V, ψ) are coordinate charts in p ∈ N and F (p) ∈M respectively, such that F (U) ⊂ V .

Definition 2.1.3. The rank of F at p is defined as the rank of F̂ at ϕ(p), where F̂ is:

F̂ = ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ), (2.1)

such that

F̂ (x1, x2, . . . , xn) = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)).

Thus, the rank of F at p is the rank of the Jacobian matrix:

3A C∞ function is a function that is differentiable for all degrees of differentiation.
4C∞(M) is the space of C∞ functions from M to M .
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⎛⎜⎜⎝
∂f1

∂1
x

. . . ∂f1

∂n
x

...
...

∂fm

∂1
x

. . . ∂fm

∂n
x

⎞⎟⎟⎠ (2.2)

Note that the rank of F is independent of the choice of coordinates [12].

2.1.2.1 Submanifolds

Let F : N →M be a continuous map, dim(M) = m, dim(n) = n.

Definition 2.1.4. F : N →M is an immersion if rank(F ) = dim(N) everywhere.

If F is an injective immersion then F (N) is called the immersed submanifold of M . A

question arises here: what is the topology of F (N)? Since F is a continuous map, so a

set u is open in F (N) if and only if F−1(u) is open in N . Therefore, all sets that are

open on the relative topology in F (N) are open, but there are some more open sets

that are not open on the relative topology. In fact, the topology of F (N) is finer than

the relative topology in F (N); it has more open sets, see Example 2.

Example 2. Let

F : R → R
2,

F (t) =
(
2 cos

(
g(t)− π

2

)
, sin 2

(
g(t)− π

2

))
.

Let g(t) be a monotone C∞ function on−∞ < t <∞ such that g(0) = π, limt→−∞ g(t) =

0 and limt→∞ g(t) = 2π. The image of F is shown in Figure 2.1; a is an open set in the

image of F , but it is not an open set with respect to the relative topology in R
2.

If F is a homeomorphism5 and an immersion then F (N) is called an embedded sub-

manifold. The topology of F (N) is matched to the relative topology of F (N) in M ,

because F and F−1 are continuous.

An immersed submanifold is a locally embedded submanifold. If F (N) is an immersed

submanifold then function F from N to F (N) is bijective. Since rank(DF ) = n, so

it is an isomorphism, and by the inverse mapping theorem, F is locally invertible and

consequently F (N) is a locally embedded submanifold.

5A homeomorphism is a bijective continuous map with continuous inverse.
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Figure 2.1: The image of the function F which is an immersed submanifold of R
2.

Figure in taken from [12].

Definition 2.1.5. Subgroup H is a Lie subgroup of G if the inclusion map H ↪→ G is

an injective immersion and group homomorphism6.

Therefore, a Lie subgroup is an immersed submanifold of G. The following proposition

shows that embedded subgroups are automatically Lie subgroups:

Proposition 2.1.6. [36] Let G be a Lie group, and suppose H ⊂ G is a subgroup that

is also an embedded submanifold. Then H is a closed Lie subgroup of G.

Proof. See [36] page 124.

2.1.3 Infinitesimal Transformations of Lie Group Actions on Mani-

folds

The action of a Lie group on a manifold, similarly to the action of a group on a set,

needs to obey the following axioms [36]:

Definition 2.1.7. Let (G, ∗) be a Lie group and M a manifold. A left action of G on

M is a smooth map Φ : G×M →M denoted by Φ(g, x) = g · x which satisfies:

• e · x = x
6A map ϕ : (H, ·) → (G, ∗) is a group homomorphism if ϕ(h1 · h2) = ϕ(h1) ∗ ϕ(h2), G and H are

groups.
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Figure 2.2: The group G acting on the manifoldM . The flow Φ(a(t), x) is generated by
the action of a(t) on M . Av is the infinitesimal generator of Φ(a(t), x), where a(0) = e
and a′(0) = v.

• g · (h · x) = (g ∗ h) · x

for all x ∈M, g, h ∈ G.

Let a(t) be a curve in G such that a(0) = e and a′(0) = v, see Figure 2.2. Then,

Φ(a(t), x) generates a flow on the manifold M . The infinitesimal transformation of the

flow generated by a(t) on M is:

x+Av(x)ε+ o(ε2) = Φ(e+ εv, x),

where Av(x) is:

Av(x) =
∂

∂t
Φ(a(t), x))

∣∣∣∣
t=0

= lim
ε→0

Φ(e+ εv, x)− Φ(e, x)

ε
(2.3)

If a(t) = exp(tv), v ∈ TeG, and Φ(a(t), x) = exp(tv) · x, then Av(x) is known as an

infinitesimal generator of this action. The curve exp(tv) is known as a one-parameter

subgroup of the group. The following section covers these concepts.
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2.1.4 Lie Algebras and One-Parameter Subgroups of a Lie Group

Lie algebras were introduced to study the infinitesimal transformations of Lie group

actions on manifolds. The Lie algebra of a Lie group is the set of left (or right) invariant

vector fields on the Lie group, together with an induced multiplication from the group.

The set of all left/right invariant vector fields is isomorphic to the tangent space at the

identity of the group, TeG. In the following these concepts are explained in detail.

A vector field on a manifold M is a function from M to the tangent bundle
⋃

p∈M TpM

such that it assigns to each point p ∈ M a vector Xp ∈ TpM . A Cr-vector field is

defined as follows.

Definition 2.1.8. [12] A vector field of class Cr on M is a function that assigns to

each point p a vector Xp ∈ TpM , such that its components are Cr with respect to any

coordinate frame.

Roughly speaking, a coordinate frame is a basis of TpM that is induced from the

coordinate chart at p in the manifold. The following theorem describes coordinate

frames precisely.

Theorem 2.1.9. [12] To each coordinate neighbourhood U in M , there corresponds a

basis E1p, E2p, . . . , Enp of TpM for every p ∈ U .

Proof. Let (U,ϕ) be a coordinate chart at p such that ϕ : U → Ũ . We have ϕ̂ =

ϕ ◦ ϕ−1 ◦ i−1 : i(Ũ) → ϕ(U) where (Ũ , i) is a coordinate chart at ϕ(p), and i is the

identity map. So ϕ̂ will be a homeomorphism such that its rank is dim(Ũ) = dim(U).

Hence Dϕ is an isomorphism. Let
{

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

}
be a basis for Tϕ(p)R

n, then

ϕ̂( ∂
∂xi

) = Eip is a basis for TpM .

The basis {Eip}i=1,...,n is called a coordinate frame. So any Xp in TpM can be expressed

as:

Xp =
∑
i

xiEip,

where xi are the components of Xp with respect to this coordinate frame.

Now, let V be the space of all C∞ vector fields on M . The space (V,+) forms a vector
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space over the field R. A multiplication is defined on V such that for any X,Y ∈ V,

[X,Y ] = XY − Y X.

This multiplication is called the commutator of X and Y . If Z = [X,Y ], and f is a

C∞ function from U to R and p ∈ U , then the directional derivative of f is as follows:

Zp(f) = (XY − Y X)p(f) = Xp(Y f)− Yp(Xf).

This multiplication obeys the following properties:

• if X1, X2 ∈ V then [X1, X2] ∈ V (Closure)

• [X1 + X2, X3] = [X1, X3] + [X2, X3] and [X1, X2 + X3] = [X1, X2] + [X1, X3]

(Bilinearity)

• [X1, X2] = −[X2, X1] (anti-symmetry)

• [X1, [X2, X3]] = [[X1, X2], X3] + [X2, [X1, X3]] (derivative property)

See [12] page 153, for the proof. A vector space (V,+, [, ]) that obeys the above condi-

tions is called a Lie algebra7.

A G-invariant vector field is defined as follows [52]:

Definition 2.1.10. A vector field v on M is called G-invariant if by the action of any

group element it is unchanged, meaning that dg(v |x) = v |g·x for all g ∈ G and x ∈M

such that g · x is defined.

7 A linear algebra,(A,+, ·,�) is a vector space (A,+, ·) over a field F , such that:

• v1, v2 ∈ A then v1�v2 ∈ A, (Closure)

• (v1 + v2)�v3 = v1�v3 + v2�v3 and v1�(v2 + v3) = v1�v2 + v1�v3, (Bilinearity)

Different types of algebra may obtain depending on the additional properties:

• (v1�v2)�v3 = v1�(v2�v3), (associativity)

• v1�1 = v1, (existence of identity, in general this identity is not equal to the identity under +
and ·)

• v1�v2 = ±v2�v1, (+ symmetric, − anti-symmetric)

• v1�(v2�v3) = (v1�v2)�v3 + v2�(v1�v3), (derivative property)

A linear algebra that is anti-symmetric and obeys the derivative property is called a Lie algebra [25] .
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One of most important G-invariant vector fields is when G acts on itself by right

multiplication:

Ra : G→ G

Ra(g) = g ∗ a, a, g ∈ (G, ∗).

A vector field v is called a right invariant vector field if:

DRaXg = Xga, for all a, g ∈ G,where Xg ∈ v,

and DRaXg is the derivative of Ra at Xg. If Xe is the value of a vector field at

the identity, then DRaXe = Xea = Xa, so every right invariant vector field can be

determined uniquely by its value at the identity. The set of right invariant vector fields

is denoted by gR. As all right invariant vector fields can be identified by their value at

the identity, so gR ∼= TeG. gR is a subalgebra of the Lie algebra of all smooth vector

fields on G, where a subalgebra is defined as follows:

Definition 2.1.11. Let K be a vector subspace of a Lie algebra L. K is a subalgebra

of L if:

x, y ∈ K ⇒ [x, y] ∈ K,

or equivalently K is a subalgebra if it is closed under the multiplication of the Lie

algebra. Right invariant vector field gR is a subalgebra of the Lie algebra of all smooth

vector fields on G, because if X,Y ∈ gR then their commutator [X,Y ] ∈ gR:

DRa(XY − Y X)g(f) = DRa(Xg(Y f)− Yg(Xf))

= DRaXg(Y f)−DRaYg(Xf) = Xga(Y f)− Yga(Xf)

= (XY − Y X)gaf.

A left invariant vector field is defined similarly to a right invariant vector field. A left

invariant vector field is invariant under the derivative of the left action of the group on

itself. Both left and right invariant vector fields can be determined by their value at

the identity, so both are isomorphic to TeG. The right or left invariant vector fields is

defined as the Lie algebra of a Lie group, and denoted by g.

Now we define one-parameter subgroups of a Lie group. Let v ∈ g be a left invariant

vector field on the Lie group G. Let exp(tv) be the flow of the vector field v. Suppose

G acts on itself by left or right multiplication. Then the flow generated by exp(tv) at
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e is a one-parameter subgroup of G:

Φ(exp(tv), e) = exp(tv)e = exp(tv)

and the vector field v is known as the infinitesimal generator of the subgroup.

2.1.5 Infinitesimal Generators of the Group Action on Manifolds

Suppose G is acting on a manifold M . The action induces a vector field on the man-

ifold. Just as a one-parameter subgroup is the flow of a vector field, so the Lie group

transformation can be generated by the set of vector fields onM known as infinitesimal

generators. The flow of each infinitesimal generator coincides with the flow created by

the action of a one-parameter subgroup on M . More precisely, suppose v generates the

one-parameter subgroup exp(tv) ⊂ G, t ∈ R. If a one-parameter subgroup transforma-

tion is acting on M as x �→ exp(tv) · x, x ∈ M , then the infinitesimal generator of the

one-parameter transformation is identified as v̂, such that:

v̂

∣∣∣∣
x

=
d

dt
exp(tv)x

∣∣∣∣
t=0

, x ∈M, v ∈ g.

Consequently, v̂

∣∣∣∣
x

= dΦx(v

∣∣∣∣
e

), where Φx : G→M is given by Φx(g) = g.x.

2.1.6 Lie Group and Lie Algebra Correspondence

There is a correspondence between a Lie group and its Lie algebra that allows us to

replace or approximate the Lie group with its Lie algebra when helpful. The following

theorem states this correspondence.

Theorem 2.1.12. There exists an open neighbourhood N0 of 0 ∈ g and an open

neighbourhood Ne of e ∈ G such that exp : g → G is an analytic and diffeomorphic

mapping of N0 onto Ne.

Proof. See [30] page 104.
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2.1.7 Distances in Lie groups

The distance function of two images is a way to measure the difference between images;

examples of such functions were given in Chapter 1. Another way to know how far from

or close to each other images are is to measure the distance between the transformations

in the group that registers them. Lie groups are manifolds, and manifolds are often

equipped with a Riemannian metric [12], which is a family of bilinear forms Φp :

TpM × TpM → R, p ∈M that are:

• symmetric: Φp(v, w) = Φp(w, v).

• positive definite: Φp(v, w) ≥ 0 and equality holds if and only if v = w.

A manifold with a Riemannian metric is called a Riemannian manifold. We often write

Φp(v, w) as an inner product, Φp(v, w) = 〈v, w〉. The length of a curve is the integration

of the metric, i.e, the length of ϕ : [0, 1] →M , 0 ≤ t ≤ 1 is:

∫ 1

0

〈
dϕ

dt
,
dϕ

dt

〉 1
2

dt.

So, the distance between two points, d(p, q), can be calculated by the integration of

the metric along the curve connecting them. The shortest path connecting the points

is called a geodesic. If d(p, q) is defined to be the geodesic distance, then a Riemannian

manifold is a metric space.

2.1.8 Matrix Lie Groups

The General Linear Group GL(2,C) is the set of invertible 2× 2 complex matrices. It

forms a group under matrix multiplication. It is described by the multiplication

G×G→ G

(g, h) �→ g × h.

Both multiplication and the inverse map

G→ G

g �→ g−1,
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are smooth functions. Therefore GL(2,C) is a Lie group. The set of such matrices with

determinant 1 is a subgroup of GL(2,C), and is known as the Special Linear group,

denoted by SL(2,C).

The Lie algebra of GL(2,C) is denoted by gl(2,C). It is the space of all 2× 2 complex

matrices. In GL(2,C), the logarithm map log, and exponential map exp give the

correspondence between a neighbourhood of I ∈ G and neighbourhood of 0 ∈ g, where

I is the identity matrix and 0 is the zero matrix, see [64] for the proof. For matrix Lie

groups the exponential map is given as follows:

exp(X) = I +X +
1

2
X2 +

1

6
X3 + . . . ,

where X ∈ g. Also, the function log is given as follows:

log(I +A) = A− 1

2
A2 +

1

3
A3 − 1

4
A4 + . . . ,

where A ∈ G.

In gl(2,C) we have:

det(exp(X)) = exp(tr(X)),

where X ∈ gl(2,C) and tr is the trace of a matrix, see [25] for the proof. So, if

A ∈ SL(2,C) we have:

1 = det(exp(log(A))) = exp(tr(log(A)))

⇔ exp(tr(log(A))) = 1

⇔ tr(log(A)) = 0.

Now log(A) belongs to the Lie algebra of SL(2,C) which, as has just been shown, is

traceless. Therefore, the Lie algebra of SL(2,C) is the set of matrices of zero trace.

The standard basis of sl(2,C) over the field R is:

v1 =

(
0 1

0 0

)
, v2 =

(
0 i

0 0

)
, v3 =

(
1 0

0 −1

)
, v4 =

(
i 0

0 −i

)
, v5 =

(
0 0

1 0

)
, v6 =

(
0 0

i 0

)
.
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The one-parameter subgroups corresponding to each basis element are:

exp(tv1) =

(
1 t

0 1

)

exp(tv2) =

(
1 it

0 1

)

exp(tv3) =

(
exp(t) 0

0 exp(−t)

)

exp(tv4) =

(
exp(it) 0

0 exp(−it)

)

exp(tv5) =

(
1 0

t 1

)

exp(tv6) =

(
1 0

it 1

)

Another Lie subgroup of GL(2,C) is the Special Unitary group, SU(2,C). This sub-

group is the group of unitary matrices8 with determinant one:{
A : A =

(
a b

−b̄ ā

)
, aā+ bb̄ = 1

}
,

where the over line stands for the complex conjugate. It is also a subgroup of SL(2,C).

Let A ∈ SU(2,C) then:

log(AA∗) = log(I)

log(A) + log(A∗) =0

log(A) =− log(A)∗,

where 0 is the zero matrix in gl(2,C). Now log(A) is an element of the Lie algebra of

SU(2,C). Therefore, su(2,C) is the space of skew-hermitian9 matrices of zero trace. A

basis of su(2,C) is:

w1 =

(
i 0

0 −i

)
, w2 =

(
0 −1

1 0

)
, w3 =

(
0 i

i 0

)
.

8Matrix A is unitary if and only if AA∗ = I, where A∗ is conjugate transpose.
9A matrix A is skew-hermitian if A∗ = −A.



36 CHAPTER 2. FINITE DIMENSIONAL PLANAR LIE GROUPS

The one-parameter subgroups corresponding to each basis element are:

exp(tw1) =

(
exp(it) 0

0 exp(−it)

)

exp(tw2) =

(
cos(t) sin(t)

− sin(t) cos(t)

)

exp(tw3) =

(
cos(t) i sin(t)

i sin(t) cos(t)

)

The Real Special Linear group, SL(2,R), the real 2 × 2 matrices of determinant 1, is

also a Lie subgroup of SL(2,C). It acts on the real line as follows:

Φ : SL(2,R)× R → R

Φ

((
a b

c d

)
, x

)
=
ax+ b

cx+ d
,

The Lie algebra of SL(2,R) is the space of real traceless matrices. Let

u1 =

(
0 1

0 0

)
, u2 =

(
1 0

0 −1

)
, u3 =

(
0 0

1 0

)

be a basis for sl(2,R). The one-parameter subgroups generated by ui, i = 1, 2, 3 are:

exp(tu1) =

(
1 t

0 1

)

exp(tu2) =

(
exp(t) 0

0 exp(−t)

)

exp(tu3) =

(
1 0

t 1

)

The infinitesimal generators are:

d

dt
exp(tu1)x

∣∣∣∣
t=0

=
d

dt
(x+ t)

∣∣∣∣
t=0

= 1

d

dt
exp(tu2)x

∣∣∣∣
t=0

=
d

dt
(exp(2t)x)

∣∣∣∣
t=0

= 2x

d

dt
exp(tu3)x

∣∣∣∣
t=0

=
d

dt

(
x

tx+ 1

) ∣∣∣∣
t=0

= −x2
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Ignoring coefficients, the infinitesimal generators are: 1∂x, x∂x and x2∂x, where ∂x is

the basis of the vector field on R, and infinitesimal transformations at the identity of

the group I =

(
1 0

0 1

)
are:

Φ(x, e+ εv) = Φ(x, e) +DΦ(x, e)

∣∣∣∣
e

εv.

Let εv = (ε1, ε2, ε3), then:

Φ(x, e+ εv) = x+ ε1 + xε2 + x2ε3.

The following section is about the Projective Linear group and its relation with the

General Linear group.

2.1.9 Projective Linear Group

Definition 2.1.13. Let V be a vector space over some field K such as R or C. An

equivalence relation on V − {0} is defined as follows:

x ∼ y ⇔ y = λx, for some λ ∈ K.

Let P (V ) be the set of nonzero equivalence classes,

P (V ) = {[x], [x] = {y; y = λx}, x, y ∈ V, λ = 0} .

The set P (V ) is called projective space. When K = R it is called real projective space

and when K = C it is called complex projective space. If the dimension of V is n then

the dimension of P (V ) is n− 1.

The set of linear transformations from P (V ) to P (V ) under composition of maps forms

a group and is called the projective group, which is denoted by PSL(V ).

Example 3. Let V = R
2, then points in projective space P (R2) are lines passing

through the origin:

P (R2) = {[x]; [x] = {y; y = λx}, x, y ∈ R
2}.
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The equivalence class can be considered as the slope λ of the lines. Then every line can

be mapped to its slope, (x, y) �→ (1, yx) = (1, λ).

Let GL(V ) be the group of linear transformations from V to V . The following lemma

states the relationship between PSL(V ) and GL(V ).

Lemma 2.1.14. PSL(V ) ∼= GL(V )/K∗I, where K∗ = K − {0} and I is the identity

map in GL(V ).

Proof. See [10].

In the following we show two specific relationships that will be used later in Sections 2.3

and 2.4.

1. PSL(2,C) ∼= SL(2,C)/± I.

2. PSL(3,R) ∼= SL(3,R)/± I.

So:

1. PSL(2,C) ∼= SL(2,C)/± I:

As mentioned, the special linear group, SL(2,C), is the group of matrices with

determinant one:

SL(2,C) =

{
A : A =

(
a b

c d

)
, det(A) = 1, a, b, c, d ∈ C

}
.

This group acts on C
2 by matrix multiplication. Let A =

(
a b

c d

)
∈ SL(2,C).

Then (
z1

z2

)
�→
(
az1 + bz2

cz1 + dz2

)
.

Matrix A maps

(
z1

z2

)
to

(
az1 + bz2

cz1 + dz2

)
. The following diagram shows that every

transformation in A ∈ SL(2,C) induces a transformation in PSL(2,C).
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(z1,z2)
SL(2,C) ��

P (C2)

��

(az1+bz2,cz1+dz2)

P (C2)
��

[ z1z2 , 1] PSL(2,C)
�� [
a
z1
z2

+b

c
z1
z2

+d
, 1]

The space P (C2) is isomorphic to the Riemann sphere. Let z = z1
z2
; therefore, if

P ∈ PSL(2,C) then by the above diagram we have:

P (z) =
az + b

cz + d
.

2. PSL(3,R) ∼= SL(3,R)/± I:

The group SL(3,R) is:⎧⎪⎨⎪⎩A : A =

⎛⎜⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎟⎠ ; det(A) = 1

⎫⎪⎬⎪⎭ .

The group SL(3,R) acts on R
3 by matrix multiplication. If A ∈ SL(3,R) then it

maps (x, y, z) to (a1x+ b1y+ c1z, a2x+ b2y+ c2z, a3x+ b3y+ c3z). The following

diagram shows that every transformation in SL(3,R) induces a transformation

belonging to PSL(3,R).

(x,y,z)
SL(3,R) ��

P (R3)

��

(a1x+b1y+c1z,a2x+b2y+c2z,a3x+b3y+c3z)

P (R3)
��[

x
z ,

y
z , 1
]

PSL(3,R)
��
[
a1

x
z
+b1

y
z
+c1

a3
x
z
+b3

y
z
+c3

,
a2

x
z
+b2

y
z
+c2

a3
x
z
+b3

y
z
+c3

, 1
]

2.2 Planar Lie Groups

As mentioned in Chapter 1, only a few finite dimensional groups (similarity, affine,

projective) have been used in image registration. In this section, we will give a list of

finite dimensional Lie groups that, as far as we know, have never been used in image

registration. These planar Lie groups will be employed to achieve the third aim of this

thesis: to show the benefits of using finite dimensional groups in image registration,

and the fifth aim: to introduce a novel type of image registration that we call multi-

registration. In [26], Olver classified finite dimensional real Lie algebras of vector fields
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Generators

1 {∂x, ∂y, x∂x + y∂y, y∂x − x∂y, (x
2 − y2)∂x + 2xy∂y, 2xy∂x + (y2 − x2)∂y}

2 {∂x, x∂x + y∂y, (x
2 − y2)∂x + 2xy∂y}

3 {y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y, 2xy∂x + (1 + y2 − x2)∂y}
4 {∂x, ∂y, x∂x + y∂y, y∂x − x∂y}
5 {∂x, ∂y, α(x∂x + y∂y) + y∂x − x∂y}, α ≥ 0}
6 {∂x, ∂y, x∂x, y∂x, x∂y, y∂y, x2∂x + xy∂y, xy∂x + y2∂y}
7 {∂x, ∂y, x∂x, y∂x, x∂y, y∂y}
8 {∂x, ∂y, x∂x − y∂y, y∂x, x∂y}
9 {∂x, 2x∂x + y∂y, x

2∂x + xy∂y}
10 {∂x, x∂x, y∂y, x2∂x + xy∂y}
11 {∂x, ∂y, x∂x, y∂y, x2∂x, y2∂y}
12 {∂x + ∂y, x∂x + y∂y, x

2∂x + y2∂y}
13 {∂x, ∂y, x∂x, y∂y, x2∂x}
14 {∂x, ∂y, x∂x, x2∂x}
15 {∂x, ∂y, x∂x, y∂y}
16 {∂x, ∂y, x∂x + αy∂y}, 0 < α ≤ 1

Table 2.1: Infinitesimal generators of planar Lie groups [26].

on R
2 (up to changes of local coordinates) completely. In total, 28 sets of generators for

the Lie algebras are given. We used 16 of them: 9 include functions of the generators

and were excluded as unnecessary, while 3 are one dimension, and therefore removed.

The set of 16 are sufficient to demonstrate the proof of concept that we aim for in this

thesis. The generators that we use are given in Table 2.1.

In the following sections we derive the transformation relating to each set of generators,

and then we put the groups in a lattice to show the subgroup and group relationships.

The lattice will be employed for multi-registration in Chapter 6.

2.2.1 Transformations Relating to Each Generator

As explained in Section 2.1.5, the generators of a group action on a manifold are

calculated by taking the derivative of a flow of the vector field. Therefore, to obtain

the group action from the generators, it is enough to integrate the generators. In

this section we derive the transformations relating to each set of generators given in

Table 2.1. Some generators are common between several groups, so to avoid repeating

the integration in each set of generators, first we derive the transformation relating

to each generator individually, then in the next section we derive the transformations

relating to each set of generators.
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Let z(0) = z0 = x0 + iy0 at t = 0.

1. Generator is ∂x. ∂x, which is a vector field that assigns to each point (x, y) on

the plane a constant vector (1, 0). Hence, the differential equation is:{
dx
dt = 1 ⇒ dx = dt⇒ x(t) = t+ x0

dy
dt = 0 ⇒ y(t) = y0

.

Therefore, ∂x is the generator of

x(t) = t+ x0, y(t) = y0, (2.4)

which is x-translation. Similar to ∂x, ∂y is the generator of y(t) = t+y0, x(t) = x0

which is y-translation.

2. Generator is x∂x, which assigns to each point (x, y) on the plane a vector (x, 0).

Hence, the differential equation is:{
dx
dt = x⇒ x(t) = exp(t+ c)

dy
dt = 0 ⇒ y(t) = y0

,

where x0 = exp(c). Therefore x∂x is the generator of

x(t) = exp(t)x0, y(t) = y0, (2.5)

which is scaling along the x-axis.

Similarly y∂y is the generator of y(t) = exp(t)y0, x(t) = x0 which is scaling along

the y-axis.

3. Generator is x∂y, so: {
dy
dt = x⇒ y(t) = tx+ c
dx
dt = 0 ⇒ x(t) = x0

,

where y0 = c. Therefore, x∂y is the generator of the shear

y(t) = tx(t) + y0, x(t) = x0. (2.6)

Similarly, y∂x is the generator of x(t) = ty(t) + x0, y(t) = y0.

From here on we write ẋ = dx
dt , ẏ = dy

dt .
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4. Generator is x∂x + y∂y, so,⎧⎪⎨⎪⎩
ẋ = x

=⇒ ẋ+ iẏ = x+ iy ⇒ ż = z

ẏ = y

and,

ż = z ⇒ z(t) = exp(t) exp(c). (2.7)

Therefore, x∂x + y∂y is the generator of

z(t) = exp(t)z0, (2.8)

where z0 = exp(c), which is a scaling.

5. Generator is x∂y − y∂x, so,⎧⎪⎨⎪⎩
ẏ = x

=⇒ ẋ+ iẏ = −y + ix⇒ ż = iz

ẋ = −y

and,

ż = iz ⇒ z(t) = exp(it+ c).

Therefore, x∂y − y∂x is the generator of

z(t) = exp(it)z0, (2.9)

where z0 = exp(c), so it is rotation about the origin.

6. Generator is α(x∂x + y∂y) + y∂x − x∂y, α ≥ 0, so,⎧⎪⎨⎪⎩
ẋ = αx+ y

=⇒ ẋ+ iẏ = α(x+ iy)− i(x+ iy) ⇒ ż = (α− i)z

ẏ = αy − x

and,

ż = (α− i)z ⇒ z(t) = exp((α− i)t+ c).

Therefore, α(x∂x + y∂y) + y∂x − x∂y is the generator of

z(t) = exp((α− i)t)z0, (2.10)
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where z0 = exp(c). This describes a spiral.

7. Generator is (1 + x2 − y2)∂x + 2xy∂y.⎧⎪⎨⎪⎩
ẋ = 1 + x2 − y2

=⇒ ẋ+ iẏ = 1 + x2 − y2 + i2xy ⇒ ż = 1 + z2

ẏ = 2xy

and,

ż = 1 + z2 ⇒ dz

1 + z2
= dt⇒∫
dz

1 + z2
=

∫
dt⇒ tan−1(z) = t+ c⇒

z(t) = tan(t+ tan−1(z0)) =
tan(t) + z0
1− z0 tan(t)

=
cos(t)z0 + sin(t)

− sin(t)z0 + cos(t)
,

where tan−1(z0) = c.

8. Generator is (1 + y2 − x2)∂y + 2xy∂x, so,⎧⎪⎨⎪⎩
ẋ = 2xy

=⇒ ẋ+ iẏ = 2xy + i(1 + y2 − x2) ⇒ ż = i(1− z2)

ẏ = 1 + y2 − x2

and,

ż = i(1− z2) ⇒∫
dz

1− z2
=

∫
idt⇒ 1

2

∫
1

z + 1
+

1

1− z
=

∫
idt⇒

1

2
ln

1− z

1 + z
= it+ c⇒ 1− z

1 + z
= exp(2it+ 2c),

and exp(2c) = 1−z0
1+z0

. Therefore (1 + y2 − x2)∂y + 2xy∂x is the generator of

z(t) =
(1 + exp(2it))z0 + (1− exp(2it))

(1− exp(2it))z0 + (1 + exp(2it))

=
2 exp(it) cos(t)z0 − 2i exp(it) sin(t)

−2i exp(it) sin(t)z0 + 2 exp(it) cos(t)

=
cos(−t)z0 + i sin(−t)
i sin(−t)z0 + cos(−t) .
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9. Generator is (x2 − y2)∂x + 2xy∂y, so,⎧⎪⎨⎪⎩
ẋ = x2 − y2

=⇒ ẋ+ iẏ = x2 − y2 + i2xy ⇒ ż = z2

ẏ = 2xy

and,

ż = z2 ⇒ (2.11)∫
dz

z2
=

∫
dt⇒ − 1

z(t)
= t+ c, (2.12)

and c = − 1
z(0) . Therefore, (x

2 − y2)∂x + 2xy∂y is the generator of

z(t) =
z0

1− tz0
. (2.13)

10. Generator is 2xy∂x + (y2 − x2)∂y, so,

⎧⎪⎨⎪⎩
ẋ = 2xy

=⇒ ẋ+ iẏ = 2xy + i(y2 − x2) ⇒ ż = −iz2
ẏ = y2 − x2

and,

ż = −iz2 ⇒ dz

z2
= −idt⇒ (2.14)∫

dz

z2
=

∫
−idt⇒ − 1

z(t)
= −it+ c, (2.15)

and, c = − 1
z(0) . Therefore 2xy∂x + (y2 − x2)∂y is the generator of

z(t) =
z0

1 + itz0
. (2.16)

11. Generator is x2∂x + xy∂y, so, {
ẋ = x2

ẏ = xy
.

Solving the first equation,

ẋ = x2 ⇒ dx

x2
= dt⇒ x(t) =

x0
1− tx0

.
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Solving the second equation,

ẏ =
x0

1− tx0
y ⇒ dy

y
=

x0
1− tx0

dt⇒∫
dy

y
=

∫
x0

1− tx0
dt⇒ ln(y) = − ln(1− tx0) + c,

and c = ln(y0), so,

y(t) =
y0

1− tx0
.

Therefore x2∂x + xy∂y is the generator of

z(t) = x(t) + iy(t) =
x0

1− tx0
+ i

y0
1− tx0

=
z0

1− tx0
.

12. Generator is y2∂y + xy∂x, so, {
ẏ = y2

ẋ = xy
.

Solving the first equation,

ẏ = y2 ⇒ dy

y2
= dt⇒ y(t) =

y0
1− ty0

.

Solving the second equation,

ẋ =
y0

1− ty0
x⇒ dx

x
=

y0
1− ty0

dt⇒∫
dx

x
=

∫
y0

1− ty0
dt⇒ ln(x) = − ln(1− ty0) + c

and c = ln(x0), so,

x(t) =
x0

1− ty0
.

Therefore, y2∂y + xy∂x is the generator of

z(t) = x(t) + iy(t) =
y0

1− ty0
+ i

x0
1− ty0

=
z0

1− ty0
.

13. Generator is x∂x − y∂y, so, {
ẋ = x

ẏ = −y .
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Solving the equations, we have

ẋ = x⇒ x(t) = exp(t)x0

ẏ = −y ⇒ y(t) = exp(−t)y0.

Therefore, x∂x − y∂y is the generator of

(x(t), y(t)) = (exp(t)x0, exp(−t)y0). (2.17)

14. Generator is x∂x + αy∂y, 0 < α ≤ 1, so,{
ẋ = x

ẏ = αy
.

Solving equations, we have,

ẋ = x⇒ x(t) = exp(t)x0

ẏ = −y ⇒ y(t) = exp(αt)y0.

Therefore, x∂x + αy∂y is the generator of

(x(t), y(t)) = (exp(t)x0, exp(αt)y0). (2.18)

15. Generator is ∂x + ∂y, so,⎧⎪⎨⎪⎩
ẋ = 1

=⇒ ẋ+ iẏ = 1 + i⇒ ż = 1 + i

ẏ = 1

and,

ż = 1 + i⇒ dz = (1 + i)dt⇒ z = z0 + (1 + i)i

Therefore, ∂x + ∂y is the generator of

(x(t), y(t)) = (x0 + t, y0 + t) (2.19)

16. Generator is x∂x + y∂y, so,⎧⎪⎨⎪⎩
ẋ = x

=⇒ ẋ+ iẏ = x+ iy ⇒ ż = z

ẏ = y
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and,

ż = z ⇒ dz

z
= dt⇒ z = exp(t)z0

Therefore, x∂x + y∂y is the generator of

(x(t), y(t)) = (exp(t)x0, exp(t)y0) (2.20)

17. Generator is x2∂x + y2∂y, so, {
ẋ = x2

ẏ = y2
.

Solving the equations, we have,

ẋ = x2 ⇒ x(t) =
x0

1− tx0
,

ẏ = y2 ⇒ y(t) =
y0

1− ty0
.

Therefore, x2∂x + αy2∂y is the generator of

(x(t), y(t)) =

(
x0

1− tx0
,

y0
1− ty0

)
. (2.21)

18. Generator is x2∂x, so, {
ẋ = x2 ⇒ x(t) = x0

1−tx0

ẏ = 0 ⇒ y(t) = y0
.

Therefore, x2∂x is the generator of

x(t) =
x0

1− tx0
, y(t) = y0. (2.22)

Similarly, y2∂y is the generator of y(t) = y0
1−ty0

, x(t) = x0.

As mentioned, in the following section we use the above transformations of each gen-

erator to derive the group of transformations from the generator set.

2.2.2 Planar Lie Groups

The set of generators are:

1) {∂x, ∂y, x∂x+y∂y, y∂x−x∂y, (x
2−y2)∂x+2xy∂y,2xy∂x+(x2−y2)∂y}:
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The transformations relating to each generator are:

∂x : x+ iy �→ x+ t1,

∂y : x+ iy �→ y + t2,

x∂x + y∂y : z �→ exp(t3)z,

y∂x − x∂y : z �→ exp(it4)z,

(x2 − y2)∂x + 2xy∂y : z �→ z

1− t5z
,

2xy∂x + (x2 − y2)∂y : z �→ z

1 + it6z
,

where z = x + iy. These transformations correspond to transformations in

SL(2,C) as follows:

f1 =

(
1 t1

0 1

)
, f2 =

(
1 it2

0 1

)
,

f3 =

(
exp( t32 ) 0

0 exp(−t3
2 )

)
, f4 =

(
exp( it42 ) 0

0 exp(−it4
2 )

)
,

f5 =

(
1 0

−t5 1

)
, f6 =

(
1 0

it6 1

)
.

They are one-parameter subgroups relating to the following vectors in the Lie

algebra of sl(2,C), see Section 2.1.8.

v1 =

(
0 1

0 0

)
, v2 =

(
0 i

0 0

)
, v3 =

(
1 0

0 −1

)
,

v4 =

(
i 0

0 −i

)
, v5 =

(
0 0

1 0

)
, v6 =

(
0 0

i 0

)
.

As can be seen vi, i = 1, 2, . . . , 6 are the basis of sl(2,C). Therefore combinations

of fi, i = 1, 2, . . . , 6 give SL(2,C) and the above generators are the generators

of PSL(2,C). This group is also known as the Möbius group, the group of

transformations of the form

z �→ az + b

cz + d
, a, b, c, d, z ∈ C, ad− bc = 0.

2) {∂x, x∂x + y∂y, (x
2 − y2)∂x + 2xy∂y}:
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The transformations relating to each generator are:

∂x : x+ iy �→ x+ t1,

x∂x + y∂y : z �→ exp(t2)z,

(x2 − y2)∂x + 2xy∂y : z �→ z

1− t3z
.

As mentioned these transformations correspond to transformation f1, f3, f5 re-

spectively in SL(2,C), and they are one-parameter subgroups of:

v1 =

(
0 1

0 0

)
, v3 =

(
1 0

0 −1

)
, v5 =

(
0 0

1 0

)
.

These vi are the basis of sl(2,R), a subalgebra of sl(2,C). So, these generators

are the generators of a group PSL(2,R):

f(z) =
az + b

cz + d
, ad− bc = 1, a, b, c, d ∈ R. (2.23)

We also call this group of transformations the real Möbius group.

3) {y∂x − x∂y, (1 + x2 − y2)∂x + 2xy∂y,2xy∂x + (1+ y2 − x2)∂y}:
The transformations relating to each generator are:

y∂x − x∂y : z �→ exp(it1)z,

(1 + x2 − y2)∂x + 2xy∂y : z �→ cos(t2)z + sin(t2)

− sin(t2)z + cos(t2)
,

2xy∂x + (1+ y2 − x2)∂y : z �→ cos(−t)z + i sin(−t)
i sin(−t)z + cos(−t) .

These transformations correspond to transformation in SU(2,C) as follows:

g1 =

(
exp( it12 ) 0

0 exp(−it1
2 )

)
, g2 =

(
cos(t2) sin(t2)

− sin(t2) cos(t2)

)
,

g3 =

(
cos(−t3) i sin(−t3)
i sin(−t3) cos(−t3)

)
.

They are one-parameter subgroups relating to the following vectors in the Lie

algebra of su(2,C), see Section 2.1.8.

w1 =

(
i 0

0 −i

)
, w2 =

(
0 −1

1 0

)
, w3 =

(
0 i

i 0

)
.



50 CHAPTER 2. FINITE DIMENSIONAL PLANAR LIE GROUPS

As can be seen, wi, i = 1, 2, 3, are the basis of su(2,C). Therefore combinations

of gi, i = 1, 2, 3, give SU(2,C) and the above generators are the generators of

PSU(2,C). This group is also known as the Projective Special Unitary group:

f(z) =
az + b

−b̄z + ā
, a, b ∈ C, āa+ b̄b = 1. (2.24)

4) {∂x, ∂y, x∂x + y∂y, y∂x − x∂y}:
These generators produce the transformations:

∂x : x+ iy �→ x+ t1,

∂y : x+ iy �→ y + t2,

x∂x + y∂y : z �→ exp(t3)z,

y∂x − x∂y : z �→ exp(it4)z.

As mentioned, these transformations correspond to transformations f1, f2, f3, f4

respectively in SL(2,C), where they are one-parameter subgroups of:

v1 =

(
0 1

0 0

)
, v2 =

(
0 i

0 0

)
, v3 =

(
1 0

0 −1

)
, v4 =

(
i 0

0 −i

)
.

These vi, are the basis of a subalgebra of sl(2,C), and a subgroup in general form

of:

f(z) = az + b, a, b ∈ C. (2.25)

This group of transformations is known as the Similarity group.

5) {∂x, ∂y, α(x∂x + y∂y) + y∂x − x∂y}, α ≥ 0: These generators generate the

transformations:

∂x : x+ iy �→ x+ t1,

∂y : x+ iy �→ y + t2,

α(x∂x + y∂y) + y∂x − x∂y : z �→ exp((α− i)t3)z.

Combining these transformations leads to the general form of:

f(z) = exp(r(α− i))z + b, r ∈ R, b ∈ C. (2.26)

We call this group Spiral because the orbit of a point in the plane has a spiral

shape. If α = 0 then the transformation is known as Rigid. Also, the set of rigid

transformations forms a group.



2.2. PLANAR LIE GROUPS 51

6) {∂x, ∂y, x∂x, y∂y, x∂y, y∂x, x
2∂x + xy∂y, xy∂x + y2∂y}:

These generators generate the transformations:

∂x : (x, y) �→ (x+ t1, y),

∂y : (x, y) �→ (x, y + t2),

x∂x : (x, y) �→ (exp(t3)x, y),

y∂y : (x, y) �→ (x, exp(t4)y),

x∂y : (x, y) �→ (x, t5x+ y),

y∂x : (x, y) �→ (x+ t6y, y),

x2∂x + xy∂y : (x, y) �→ (
x

1− t7x
,

y

1− t7x
),

xy∂x + y2∂y : (x, y) �→ (
x

1− t8y
,

y

1− t8y
).

These transformations correspond to transformation in SL(3,R) as follows:

h1 =

⎛⎜⎝1 0 t1

0 1 0

0 0 1

⎞⎟⎠ , h2 =

⎛⎜⎝1 0 0

0 1 t2

0 0 1

⎞⎟⎠ ,

h3 =

⎛⎜⎝exp(2t33 ) 0 0

0 exp(−t3
3 ) 0

0 0 exp(−t3
3 )

⎞⎟⎠ , h4 =

⎛⎜⎝exp(−t4
3 ) 0 0

0 exp(2t43 ) 0

0 0 exp(−t4
3 )

⎞⎟⎠ ,

h5 =

⎛⎜⎝1 0 0

t5 1 0

0 0 1

⎞⎟⎠ , h6 =

⎛⎜⎝1 t6 0

0 1 0

0 0 1

⎞⎟⎠ ,

h7 =

⎛⎜⎝ 1 0 0

0 1 0

−t7 0 1

⎞⎟⎠ , h8 =

⎛⎜⎝1 0 0

0 1 0

0 −t8 1

⎞⎟⎠ .

They are one-parameter subgroups relating to the following vector in the Lie
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algebra of sl(3,R):

v1 =

⎛⎜⎝0 0 1

0 0 0

0 0 0

⎞⎟⎠ , v2 =

⎛⎜⎝0 0 0

0 0 1

0 0 0

⎞⎟⎠ ,

v3 =

⎛⎜⎝
2
3 0 0

0 −1
3 0

0 0 −1
3

⎞⎟⎠ , v4 =

⎛⎜⎝
−1
3 0 0

0 2
3 0

0 0 −1
3

⎞⎟⎠ ,

v5 =

⎛⎜⎝0 0 0

1 0 0

0 0 0

⎞⎟⎠ , v6 =

⎛⎜⎝0 1 0

0 0 0

0 0 0

⎞⎟⎠ ,

v7 =

⎛⎜⎝0 0 0

0 0 0

1 0 0

⎞⎟⎠ , v8 =

⎛⎜⎝0 0 0

0 0 0

0 1 0

⎞⎟⎠ .

The vi, i = 1, 2, . . . , 8 are the basis of sl(3,R). Therefore combinations of hi, i =

1, 2, . . . , 8 give SL(3,R) and the above generators are the generators of PSL(3,R)

in general form:

f(x, y) =

(
a1x+ b1y + c1
a3x+ b3y + c3

,
a2x+ b2y + c2
a3x+ b3y + c3

)
, det

⎛⎜⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎟⎠ = 1. (2.27)

In image registration, this group of transformations is called the projective group,

see Chapter 1.

7) {∂x, ∂y, x∂x, y∂y, x∂y, y∂x}:
These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x : (x, y) �→ exp(t3)x,

y∂y : (x, y) �→ exp(t4)y,

x∂y : (x, y) �→ t5x+ y,

y∂x : (x, y) �→ t6y + x.

As mentioned, these transformations correspond to transformations h1, h2, h3, h4, h5

and h6 in SL(3,R), where they are one-parameter subgroups of vi, i = 1, 2, . . . , 6.

The vi, i = 1, 2, . . . , 6 are the basis of a subalgebra of sl(3,R), and the subgroup
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has a general form of:

A =

⎛⎜⎝a1 b1 c1

a2 b2 c2

0 0 c3

⎞⎟⎠ , det(A) = 1.

The corresponding transformation in PSL(3,R) has a general form of:

f

(
x

y

)
=

(
a b

c d

)(
x

y

)
+

(
T1

T2

)
, a, b, c, d, T1, T2 ∈ R, ad− bc = 0.

This group of transformations has six parameters and is known as the Affine

group.

8) {∂x, ∂y, x∂x − y∂y, y∂x, x∂y}:
These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x − y∂y : (x, y) �→ (exp(t3)x, exp(−t3)y),
y∂x : (x, y) �→ t4y + x,

x∂y : (x, y) �→ t5x+ y.

The transformation (x, y) �→ (exp(t3)x, exp(−t3)y) corresponds to a transforma-

tion in SL(3,R) that is the one-parameter subgroup associated with

v9 =

⎛⎜⎝1 0 0

0 −1 0

0 0 0

⎞⎟⎠ .

Therefore, the transformations correspond to transformations in SL(3,R) that

are the one-parameter subgroups associated with v1, v2, v9, v5, v6. These vectors

are a basis of a subalgebra in sl(3,R), where it is the Lie algebra of a subgroup

of SL(3,R) as follows:

A =

⎛⎜⎝a1 b1 c1

a2 b2 c2

0 0 1

⎞⎟⎠ , a1b2 − a2b1 = 1.
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The group of transformations corresponding to this subgroup of PSL(3,R) is:

f

(
x

y

)
=

(
a b

c d

)(
x

y

)
+

(
T1

T2

)
, a, b, c, d, T1, T2 ∈ R, ad− bc = 1.

This group of transformations is known as the Special Affine group.

9) {∂x,2x∂x + y∂y, x
2∂x + xy∂y}:

These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

2x∂x + y∂y : (x, y) �→ (exp(2t2)x, exp(t2)y),

x2∂x + xy∂y : (x, y) �→ (
x

1− t3x
,

y

1− t3x
).

The transformation (x, y) �→ (exp(2t2)x, exp(t2)y) corresponds to a transforma-

tion in SL(3,R):

h10 =

⎛⎜⎝exp(t2) 0 0

0 1 0

0 0 exp(−t2)

⎞⎟⎠ ,

where it is the one-parameter subgroup associated with:

v10 =

⎛⎜⎝1 0 0

0 0 0

0 0 −1

⎞⎟⎠ .

Therefore, the transformations correspond to transformations in SL(3,R) that

are the one-parameter subgroups associated with v1, v10, v7. These vectors are

a basis of a subalgebra in sl(3,R), where it is the Lie algebra of a subgroup of

SL(3,R) as follows:

A =

⎛⎜⎝a
2
1 0 c1

0 a1 0

a3 0 c3

⎞⎟⎠ , det(A) = 1.

The group of transformations corresponding to this subgroup of PSL(3,R) is:

f(x, y) = (
a21x+ c1
a3x+ c3

,
a1y

a3x+ c3
), a1, c1, a3, c3 ∈ R, det(A) = 1.

We denote this group with SPSL(3,R).
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10) {∂x, x∂x, y∂y, x
2∂x + xy∂y}:

These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

x∂x : (x, y) �→ (exp(t2)x, y),

y∂y : (x, y) �→ (x, exp(t3)y),

x2∂x + xy∂y : (x, y) �→ (
x

1− t4x
,

y

1− t4x
).

These transformations correspond to transformations h1, h3, h4, h7 in SL(3,R),

where they are one-parameter subgroups of vi, i = 1, 3, 4, 7. The vi, i = 1, 3, 4, 7

are the basis of a subalgebra of sl(3,R), and the subgroup has a general form of:

A =

⎛⎜⎝a1 0 c1

0 b2 0

a3 0 c3

⎞⎟⎠ , det(A) = 1.

The group of transformations corresponding to this subgroup of PSL(3,R) is:

f(x, y) = (
a1x+ c1
a3x+ c3

,
b2y

a3x+ c3
), a1, c1, b2, a3, c3 ∈ R, det(A) = 1. (2.28)

We denote this group with GPSL(3,R).

The transformations relating to the following generators are obtained in a similar

way, so we just give the transformations.

11) {∂x, ∂y, x∂x, y∂y, x
2∂x, y

2∂y}: These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x : (x, y) �→ exp(t3)x,

y∂y : (x, y) �→ exp(t4)y,

x2∂x : (x, y) �→ x

1− t5x
,

y2∂y : (x, y) �→ y

1− t6y
.

So, they are the generators of:

f(x, y) =

(
a1x+ b1
c1x+ d1

,
a2y + b2
c2y + d2

)
, aidi − bici = 1, i = 1, 2. (2.29)
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We denote this group with PSL(2,R)× PSL(2,R)10.

12) {∂x+∂y, x∂x+y∂y, x
2∂x+y2∂y}: These generators generate the transforma-

tions:

∂x + ∂y : (x, y) �→ (x+ t1, y + t1),

x∂x + y∂y : (x, y) �→ (exp(t2)x, exp(t2)y),

x2∂x + y2∂y : (x, y) �→
(

x

1− t3x
,

y

1− t3y

)
.

Combining these transformations and dividing the coefficients by the determinant

to eliminate the scale factor leads to a general form of:

f(x, y) =

(
ax+ b

cx+ d
,
ay + b

cy + d

)
, ad− bc = 1. (2.30)

We denote this group by:

EPSL(2,R).

13) {∂x, ∂y, x∂x, y∂y, x
2∂x}: These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x : (x, y) �→ exp(t3)x,

x2∂x : (x, y) �→
(
exp(t4)y,

x

1− t5x

)
.

Combining these transformations and dividing the coefficients by the determinant

to eliminate the scale factor leads to a general form of:

f(x, y) =

(
a1x+ b1
c1x+ d1

, a2y + b2

)
, a1d1 − b1c1 = 1, a1, a2, b1, b2, c1, d1 ∈ R.

(2.31)

We denote this group with PSL(2,R)× Sim (Sim stands for similarity).

10Let (G, ◦) and (H, ∗) be groups. The product of G and H is G×H, which is a group, where:

• {(g, h), g ∈ G, h ∈ H} is the element of G×H.

• � is a group operation such that (g1, h1)�(g2, h2) = (g1 ◦ g2, h1 ∗ h2).
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14) {∂x, ∂y, x∂x, x
2∂x}: These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x : (x, y) �→ exp(t3)x,

x2∂x : (x, y) �→ x

1− t4x
.

Combining these transformations and dividing the coefficients by the determinant

to eliminate the scale factor leads to a general form of:

f(x, y) =

(
a1x+ b1
c1x+ d1

, y + b2

)
, a1d1 − b1c1 = 1, a1, b1, b2, c1, d1 ∈ R. (2.32)

We denote this group with PSL(2,R)× Trans (Trans stands for translation).

15) {∂x, ∂y, x∂x, y∂y}: These generators generate the transformations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x : (x, y) �→ exp(t3)x,

y∂y : (x, y) �→ exp(t4)y.

Combining these transformations leads to a general form of:

f(x, y) = (a1x+ b1, a2y + b2). (2.33)

We denote this group with Sim× Sim.

16) {∂x, ∂y, x∂x +αy∂y, 0 < |α| ≤ 1}: These generators generate the transfor-

mations:

∂x : (x, y) �→ x+ t1,

∂y : (x, y) �→ y + t2,

x∂x +αy∂y : (x, y) �→ (exp(t3)x, exp(αt3)y).

Combining these transformations leads to a general form of:

f(x, y) = (exp(t)x+ b1, exp(αt)y + b2), t, b1, b2 ∈ R. (2.34)

We denote this group with exp×Trans.
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2.3 Groups and Subgroups

In the previous section a list of planar Lie groups were given. Notice that there are three

main groups: PSL(2,C), PSL(3,R) and PSL(2,R)×PSL(2,R) and their subgroups.

2.3.1 Subgroups of PSL(2,C)

In the previous section, we observed that some of the given groups are the subgroups

of SL(2,C) and so subgroups of PSL(2,C); they are listed as follows:

• PSU(2,C) = { az+b
−b̄z+ā

, a, b,∈ C, āa+ b̄b = 1}.

• PSL(2,R) = {az+b
cz+d , a, b, c ∈ R, ad− bc = 1}.

• Similarity={az + b, a, b ∈ C}. The following groups are also subgroups of simi-

larity:

– Rigid: {exp(iθ)z + b, θ ∈ [0, 2π], b ∈ C}.
– Rotation: {exp(iθ)z, θ ∈ [0, 2π]}.
– Translation: {z + b, b ∈ C}.
– Scale: {rz, r ∈ R}.

• Spiral={exp(α− iθ)z + b, θ ∈ [0, 2π], b ∈ C}, α ∈ R is a constant.

• Another group which is not listed as a group in [26], and that we are interested

in, is the group with generators: {(x2−y2)∂x+2xy∂y,2xy∂x+(y2−x2)∂y}.
The general form of this transformation is:

f(z) =
z

az + 1
, a ∈ C. (2.35)

We call this group the Non-linear part of Möbius and denote it by NPSL(2,

C). It is obviously a subgroup of PSL(2,C). Also, any transformation k(z) =
z

cz+1 corresponds to A: {
A;A =

(
1 0

c 1

)}
,

and the set of such A is a subgroup of SL(2,C).

The interesting thing that this group brings to us is that it does not include

any similarities. In other words, similarity and NPSL(2,C) are two disjoint
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subgroups of PSL(2,C), and each Möbius transformation can be given as a com-

position of them.

2.3.2 Subgroups of PSL(3,R)

Subgroups of PSL(3,R) are listed as follows:

• Affine= {f : f(x, y) = (ax+ by + t1, cx+ dy + t2), ad− bc = 0}.
• Special affine= {f : f(x, y) = (ax+ by + t1, cx+ dy + t2), ad− bc = 1}.
• SPSL(3,R)= {f : f(x, y) = (a

2x+b
cx+d ,

ay
cx+d)}.

• GPSL(3,R)= {f : f(x, y) = (a1x+b
cx+d ,

a2y
cx+d)}.

2.3.3 Subgroups of PSL(2,R)× PSL(2,R)

The group PSL(2,R) × PSL(2,R) acts on each axis independently. This group is

isomorphic to SL(2,R)/± I × SL(2,R)/± I. So its subgroups are:

• PSL(2,R)× Sim is a subgroup of PSL(2,R)× PSL(2,R). Because each trans-

formation

(x, y) �→
(
a1x+ b1
c1x+ d1

, a2y + b2

)
,

corresponds to a matrix in SL(2,R)/± I × SL(2,R)/± I,((
a1 b1

c1 d1

)
,

(√
a2

b2√
a2

0 1√
a2

))
, a1d1 − b1c1 = 1,

and the set of all such matrices is also a subgroup of SL(2,R)/±I×SL(2,R)/±I.
• EPSL(2,R) is a subgroup of PSL(2,R)×PSL(2,R), because each transformation

(x, y) �→
(
ax+ b

cx+ d
,
ay + b

cy + d

)
,

corresponds to a matrix in SL(2,R)/± I × SL(2,R)/± I,((
a b

c d

)
,

(
a b

c d

)
, ad− bc = 1

)
,
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and the set of such matrices is also a subgroup of SL(2,R)/± I × SL(2,R)/± I.

• PSL(2,R)×Trans is a subgroup of PSL(2,R)×PSL(2,R), because each trans-

formation

(x, y) �→
(
ax+ b

cx+ d
, y + e

)
corresponds to a matrix in SL(2,R)/± I × SL(2,R)/± I,((

a b

c d

)
,

(
1 e

0 1

))
, ad− bc = 1,

and the set of all such matrices is also a subgroup of SL(2,R)/±I×SL(2,R)/±I.

• Sim×Sim is a subgroup of PSL(2,R)×PSL(2,R), because each transformation

(x, y) �→ (a1x+ b1, a2y + b2)

corresponds to a matrix in SL(2,R)/± I × SL(2,R)/± I,((√
a1

b1√
a1

0 1√
a1

)
,

(√
a2

b2√
a2

0 1√
a2

))
,

and the set of all such matrices is also a subgroup of SL(2,R)/±I×SL(2,R)/±I.

• exp×Trans is a subgroup of PSL(2,R)×PSL(2,R), because each transformation

(x, y) �→ (exp(t)x+ b1, exp(αt)y + b2).

corresponds to a matrix in SL(2,R)/± I × SL(2,R)/± I,⎛⎝⎛⎝√exp(t) b1√
exp(t)

0 1√
exp(t)

⎞⎠ ,

⎛⎝√exp(αt) b2√
exp(αt)

0 1√
exp(αt)

⎞⎠⎞⎠ ,

and the set of all such matrices is also a subgroup of SL(2,R)/±I×SL(2,R)/±I.
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PSL(2,R)× PSL(2,R)

EPSL(2,R)PSL(2,R)× Sim

Sim× Sim PSL(2,R)× Trans

exp×Trans

Figure 2.3: The lattice of PSL(2,R)× PSL(2,R) and its subgroups. Here G1 −→ G2

means G2 is subgroup of G1.

We now give the lattice of group and subgroups. A lattice is a partially ordered set11,

where every two elements in the lattice have a unique supremum12 and a unique infi-

mum13. In the lattice of subgroups and groups, elements are subgroups and the relation

is set inclusion. The supremum of two subgroups is the group generated by their union

and the infimum is their intersection. Two lattices are shown in Figures 2.3 and 2.4,

where the edge G1 −→ G2 means that G2 is a subgroup of G1.

2.4 Properties of Planar Lie Group Actions

The action of each group on the plane has some special properties that are explained

in the following sections.

11A partial order [60] is a binary relation ‘≤’ over a set P which is reflexive, antisymmetric, and
transitive, i.e., which satisfies for all a, b, and c in P :

• a ≤ a (reflexivity);

• if a ≤ b and b ≤ a, then a = b (antisymmetry);

• if a ≤ b and b ≤ c, then a ≤ c (transitivity).

12Least upper bound.
13Greatest lower bound.
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PSL(2,C)

Similarity PSL(2,R) NPSL(2,C) PSU(2,C)

RigidSpiral

Scale

Translation Rotation

PSL(3,R)

AffineSpecial Affine

GPSL(3,R)

SPSL(3,R)

Figure 2.4: The lattice of groups PSL(2,C) and PSL(3,R) and their subgroups.
G1 −→ G2 means G2 is subgroup of G1.

2.4.1 PSL(2,C) Action on the Plane

The action of PSL(2,R) on the plane has the following properties:

1. Under the PSL(2,C) action on the plane, infinitesimal angles are preserved,

because z �→ az+b
cz+d is conformal. For example, in Figure 2.5 the rectangular grid

(left) is mapped by f(z) = (1+2i)z+0.2+0.1i
(0.2−0.1i)z+0.21−0.42i to another grid (right). It can be

seen that the transformation maps pairs of lines intersection at right angles to

pairs of curves still intersecting at 90 degrees.

2. The cross-ratio is constant under PSL(2,C) transformations. Let z1, z2, z3, z4 ∈
C. The cross-ratio of them is defined as:

(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (2.36)

Suppose zi, i = 1, 2, 3, 4 are transformed by f(z) = az+b
cz+d . Then

f(z1)− f(z2) =
az1 + b

cz1 + d
− az2 + b

cz2 + d
=

z1 − z2
(cz1 + d)(cz2 + d)

and their cross-ratio after transformation is:

z1−z2
(cz1+d)(cz2+d)

z3−z4
(cz3+d)(cz4+d)

z1−z3
(cz1+d)(cz3+d)

z2−z4
(cz2+d)(cz4+d)

=
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
.
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Therefore, the cross-ratio of points is constant under the action of PSL(2,C).

3. PSL(2,C) transformations map lines and circles to lines and circles. Let ϕ(z) =
az+b
cz+d be a PSL(2,C) transformation. ϕ(z) can be written as:

ϕ(z) =
az + b

cz + d
=
c(az + 1+ad

c )

c(cz + d)
=
a

c
+

1

c(cz + d)
.

So, ϕ is the composition of three transformations: similarity, inversion (1z ), and

translation. Similarity and translation map circles to circles and lines to lines. It

is enough to study the action of inversion on the plane.

Inversion is a function on the extended complex plane f : C
⋃{∞} → C

⋃{∞},
where f(0) = ∞ and f(∞) = 0. f maps lines and circles to lines and circles.

• A line passing through the origin consists of all points z = x + iy where

y = mx for some m. By inversion it is mapped to:

1

x+ imx
=

x− imx

x2 + (mx)2
=

x

x2 + (mx)2
− i

mx

x2 + (mx)2
.

It follows that:

(x, y) �→
(

1

x+m2x
,− m

x+m2x

)
.

Let X = 1
x+m2x

and Y = − m
x+m2x

, then Y = mX, which defines a straight

line. Note that zero is mapped to ∞ and ∞ is mapped to zero.

• A line that does not pass through the origin consists of all the points z =

x+ iy, where ax+ by = c, a, b, c ∈ R, c = 0. A point z = x+ iy is mapped

by inversion to ( x
x2+y2

,− y
x2+y2

) as follows:

1

z
=

1

x+ iy
=

x− iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

Therefore, a line ax+ by = c is mapped to:

a
x

x2 + y2
− b

y

x2 + y2
= c,

which can be written as:

x2 + y2 − a

c
x+

b

c
y = 0,

which is the equation of a circle that goes through the origin.

• A circle that goes through the origin is mapped to a line that does not pass



64 CHAPTER 2. FINITE DIMENSIONAL PLANAR LIE GROUPS

Figure 2.5: A rectangular grid (left) is mapped by f(z) = (1+2i)z+0.2+0.1i
(0.2−0.1i)z+0.21−0.42i ∈ PSL(2,

C) to another grid (right). Infinitesimal angles are preserved.

through the origin by inversion, because the inverse of an inversion is an

inversion.

• A circle that does not pass through the origin is mapped to a circle that does

not pass through the origin. A circle that does not pass through the origin

consists of all points z = x + iy, where x2 + y2 + ax + by = c, a, b, c ∈ R,

c = 0. By inversion it is mapped to:

x2

x2 + y2
+

y2

x2 + y2
+ a

(
x

x2 + y2
− b

y

x2 + y2

)
= c,

which can be written as:

x2 + y2 − a

c
x+

b

c
y =

1

c
,

which is the equation of a circle that does not pass through the origin.

Therefore, under PSL(2,C) transformations, lines and circles map to lines and

circles.



2.4. PROPERTIES OF PLANAR LIE GROUP ACTIONS 65

2.4.1.1 Similarity

The similarity group acts on the plane by:

z �→ az + b, a, b ∈ C.

In polar coordinates, a = a1 + ia2 can be written as r exp(iθ), where r =
√
a21 + a22

and θ = tan−1(a2a1 ). So a = r exp(iθ); r is the scale parameter and θ is the rotation

parameter. Therefore, the similarity group action on the plane includes: rotation, scale

and two translations. Under the similarity action the ratio of distances is invariant:

|az1 + b− az2 − b|
|az3 + b− az4 − b| =

a|z1 − z2|
a|z3 − z4| =

|z1 − z2|
|z3 − z4| .

2.4.1.2 PSU(2,C)

There is an onto homomorphism map between the groups SO(3,R) and SU(2,C), where

the kernel is ±I (I is the identity matrix) [68]. The group SO(3,R) is the group of

orthogonal matrices with determinant one. The action of this group on R
3 is rotation,

so the length is preserved. In fact SU(2,C) is the universal double cover14 of SO(3), see

[68] for the proof. Each matrix in SO(3) can be parameterized by three Euler angles:

R(ψ, φ, ψ′). So, if:

SU(2,C) =

{(
a b

−b̄ ā

)
: a, b ∈ C, āa+ b̄b = 1

}
, (2.37)

then

a = ± cos

(
φ

2

)
exp

(
i
ψ + ψ′

2

)
, b = ±i sin

(
φ

2

)
exp

(
i
ψ − ψ′

2

)
;

see [69] for more detail.

14A covering space of X is the space C with a continuous surjective map P : C �→ X, such that, for
every x ∈ X there exists a neighbourhood U of x such that P−1(U) is the union of disjoint open sets
in C [61].
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Figure 2.6: The action of G1, Equation (2.38), on a rectangular grid (top-left), where
r = 0.2 (top-right), r = 0.4 (bottom-left), r = 0.6 (bottom-right).

2.4.1.3 NPSL(2,C)

The action of NPSL(2,C) on the plane is:

z �→ z

az + 1
, a ∈ C.

It has two subgroups:

G1 =

{
z

rz + 1
, r ∈ R

}
(2.38)

G2 =

{
z

irz + 1
, r ∈ R

}
(2.39)

The action of G1 and G2 are shown in Figures 2.6 and 2.7 respectively. As can be seen

in Figure 2.6, transformation of the unit square by G1 is symmetric with respect to the

real axis, and by G2 it is symmetric with respect to the imaginary axis.
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Figure 2.7: The action of G2, Equation (2.39), on a rectangular (top-left), where r = 0.2
(top-right), r = 0.4 (bottom-left), r = 0.6 (bottom-right).
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Figure 2.8: A rectangular grid (left) is mapped by a function f(x, y) =(
x−0.2y+0.3

x−0.2y+1.7706 ,
0.4x+0.6y+0.1
x−0.2y+1.7706

)
∈ PSL(3,R) to another grid (right).

2.4.2 PSL(3,R) Action on the Plane

The action of PSL(3,R) on the plane is as follows:

(x, y) �→
(
a1x+ b1y + c1
a3x+ b3y + c3

,
a2x+ b2y + c2
a3x+ b3y + c3

)
.

Figure 2.8 shows the action of PSL(3,R) on a rectangular grid. The corresponding

matrix in SL(3,R) to PSL(3,R) is:⎛⎜⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞⎟⎠ .

As was mentioned previously, PSL(3,R) is isomorphic to SL(3,R)/ ± I. So the sub-

transformations of PSL(3,R) can be figured out from sub-transformations of SL(3,R),

which include translations, scales, shears and rotations. The translation matrices are:⎛⎜⎝1 0 t1

0 1 0

0 0 1

⎞⎟⎠ ,

⎛⎜⎝1 0 0

0 1 t2

0 0 1

⎞⎟⎠ .
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The scale matrices are: ⎛⎜⎝t1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,

⎛⎜⎝1 0 0

0 t2 0

0 0 1

⎞⎟⎠ .

The shear matrices are: ⎛⎜⎝1 t1 0

0 1 0

0 0 1

⎞⎟⎠ ,

⎛⎜⎝1 0 0

t2 1 0

0 0 1

⎞⎟⎠ .

The rotations about the x and y axes in R
3 are:⎛⎜⎝ cos(t1) 0 sin(t1)

0 1 0

− sin(t1) 0 cos(t1)

⎞⎟⎠ ,

⎛⎜⎝1 0 0

0 cos(t2) sin(t2)

0 − sin(t2) cos(t2)

⎞⎟⎠ ,

respectively. Rotation about the z axis can be written as a multiplication of shear and

scale matrices,⎛⎜⎝ cos(t) sin(t) 0

− sin(t) cos(t) 0

0 0 1

⎞⎟⎠ =

⎛⎜⎝cos(t) 0 0

0 cos(t) 0

0 0 1

⎞⎟⎠
⎛⎜⎝ 1 tan(t) 0

− tan(t) 1 0

0 0 1

⎞⎟⎠ .

In the following, the action of PSL(3,R) subgroups are explained. They include some

of the PSL(3,R) sub-transformations.

2.4.2.1 Affine

The affine group action on the plane is as follows:

(x, y) �→ (a1x+ b1y + c1, a2x+ b2y + c2), a1b2 − b1a2 = 0.

In matrix form the affine group is:

⎛⎜⎝a1 b1 c1

a2 b2 c2

0 0 1

⎞⎟⎠. It can be figured out easily that

affine action on the plane includes two scalings (in x and y directions), two shears and

two translations.
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(a) D before transformation. (b) D after transformation.

Figure 2.9: D (left) is a square, which is transformed by a special affine transformation
with matrix A, where det(A) = 1, to the right figure. The area of D before and after
transformation is equal.

2.4.2.2 Special Affine

The special affine group action is the same as the affine group action, but the determi-

nant of the matrix is one. The transformation is area preserving. Let e1 and e2 be two

unit basis vectors on R
2, and A is a 2 by 2 matrix. The area of D in Figure 2.9 before

transformation is |e1 × e2| and after the transformation is |Ae1 × Ae2| = det(A).e3,

where e3 is a third unit vector in R
3. If the determinant of A is one, then the area of D

before and after the transformation is equal. Therefore, special affine transformations

preserve area. The group action includes two shears, two translations, rotation about

the z axis, and scale in x and y axes, such that area is preserved.

2.4.3 PSL(2,R)× PSL(2,R) Action on the Plane

Since the action of PSL(2,R) × PSL(2,R) on each one dimensional space is similar

to the action of PSL(2,C), all the mentioned properties of the action of PSL(2,C)

and its subgroups hold for the action of PSL(2,R)× PSL(2,R) and its subgroups on

each one dimensional space. The action of a PSL(2,R)×PSL(2,R) transformation on

[−1, 1]× [−1, 1] is shown in Figure 2.10.

So far, some finite dimensional planar Lie groups have been introduced. As men-

tioned, only four finite groups (rigid, similarity, affine, projective) have been applied

to image registration in the past. In this chapter we have introduced more groups:
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Figure 2.10: A rectangular grid (left) is transformed by a PSL(2,R) × PSL(2,R)
transformation (right).

PSL(2,R) × PSL(2,R) and its subgroups, which are in total six groups, PSL(2,C)

and its subgroups: PSU(2,C), NPSL(2,C), and PSL(2,R), which are in total four

groups, and special affine, which is a subgroup of PSL(3,R). As explained in Chap-

ter 1, finite dimensional groups have primarily been used only as pre-registration for

diffeomorphic registration. But in Chapters 4 and 6, we will employ these groups and

show they provide benefits that justify their use as more than pre-registration.
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Chapter 3

Image Registration Methodology

In the previous chapter we introduced finite dimensional Lie groups. In order to use the

groups as the transformation sets for image registration we need a robust registration

algorithm. The objective of this chapter is to develop such an algorithm, considering

the practical and mathematical issues that arise in registration. We then present the

algorithm that will be used in the rest of the thesis, and demonstrate it on several

different examples.

3.1 Registration Methodology of This Research

The literature on image registration has used several different transformation sets (both

rigid and non-rigid) and a variety of distance functions, as was discussed in Chapter 1.

We aim to develop an algorithm that works robustly on a wide variety of images that

can be used with any finite-dimensional group as the transformation set. Our algorithm

is based on matching images of similar intensity, and in particular, we only consider

images that are on a plain background, and that tend towards that constant intensity

towards the edges of their domain. We also assume that the images to be registered

have similar intensities for the matching objects. This means that the distance function

we use is the L2 distance function.

The implementation of our algorithm is code written by the author using Matlab (2010)

software [43]. The L2 optimisation is performed using the Matlab function lsqnonlin.

For a vector-valued function f(x) = (f1(x), f2(x), ..., fn(x)), lsqnonlin takes f(x) as

73
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Figure 3.1: The discrete domain of an image.

input and finds the minimum of ‖f(x)‖22:

lsqnonlin(f, x0) = min
x

‖f(x)‖22 = min
x

(f1(x)
2 + f2(x)

2 + ...+ fn(x)
2), (3.1)

where x0 is an initial value of the optimisation chosen by user. The algorithm that

lsqnonlin employs for minimisation of the least square problem is based on trust-region-

reflective and Levenberg-Marquardt optimisation. If there is no constraint or only

bound constraints, then trust-region-reflective is a good choice, and if the number of

equations are less than the dimension of the space then Levenberg-Marquardt can be

used [45]. Therefore, in this research the trust-region-reflective method is employed

for the minimisation of the distance function. Our methods could be applied to other

distance functions if necessary, with a change of optimisation function.

Computationally, images are represented as a discrete functions. So, before showing an

example of registration, we first explain how calculation is done on discrete images.

3.1.1 Image Discretization

A discretized function has a discrete domain that is a subset of the continuous domain.

Let I : Ω → [0, 1] be a continuous image such that:

Ω = [a, b]× [c, d] = {(x, y) ∈ R
2, a ≤ x ≤ b, c ≤ y ≤ d}.
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Figure 3.2: Ω′ is the discrete domain. After transformation by ϕ−1, Ω′ is not matched
to itself.

Choose positive real numbers �x and �y. The discretized domain is :

Ω′ = {(xj , yk) ∈ Ω, xj = j�x, yk = k�y, j, k ∈ Z, s.t. a ≤ j�x ≤ b, c ≤ k�y ≤ d}.

An example of a discretized domain is shown in Figure 3.1. Each square in the discrete

domain is called a pixel. It can be represented by points on its corners or at the centre.

The position of each pixel (xj , yk) can be represented by an integer pair (j, k). Thus

the discrete domain is isomorphic to a subset of Z2.

The grey-scale image intensity range is typically encoded in 256 values: 0, 1
255 ,

2
255 , ...,

255
255

ranging from black (0) to white (1). Hence a discretized image on Ω′ can be rep-

resented by an m × n matrix, where its entries are ajk = I(xj , yk) such that ajk ∈
{0, 1

255 ,
2

255 , ...,
255
255} [71]. In this research, the discretized image space is denoted by Γ′

such that Γ′ = {I, I : Ω′ → [0, 1]}, and [0, 1] is considered as the discretized range.

3.1.2 Transformation of a Discretized Image

Suppose, I ∈ Γ′ is transformed to I ′ = I ◦ ϕ−1 ∈ Γ′ where id = ϕ ∈ G. If, for

(x′, y′) ∈ Ω′, (x, y) = ϕ−1(x′, y′), then the value of I ′(x′, y′) = I ◦ ϕ−1(x′, y′) = I(x, y).

But (x, y) may not belong to Ω′, since a discrete domain after transformation is not

matched to itself, see Figure 3.2.

In order to estimate the value of I(x, y), we use interpolation from the neighbourhood
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pixels that are defined. The most popular interpolation methods, which trade off

computational efficiency and approximation quality, are nearest neighbour, linear and

cubic interpolation [74]. In this research, bilinear interpolation (a two-dimensional

version of linear interpolation) is used. This method is explained in the following

section. For more information about other interpolation methods, see [49].

3.1.2.1 Bilinear Interpolation

Linear interpolation is a method that interpolates a piece-wise linear function p(x)

through the data set {(xi, f(xi)), i = 1, . . . , n} such that:

⎧⎪⎨⎪⎩ p

∣∣∣∣
[xi,xi+1]

is linear

p(xi) = f(xi), i = 1, 2, . . . , n

.

Example 4. A data set of {(xi, f(xi)), i = 1, 2, 3} is given in Figure 3.3. The value at

point x between xi and xi+1 can be approximated by linear interpolation by:

p(x) =
f(xi+1)− f(xi)

xi+1 − xi
(x− xi+1) + f(xi+1). (3.2)

Equation (3.2) is a line passing through the points xi+1 and xi such that xi < x < xi+1.

Linear interpolation through two-dimensional data is performed by bilinear interpola-

tion. Bilinear interpolation through the set of points {(xi, yi, f(xi, yi)), i = 1, 2, . . . , n},
where (xi, yi) form a rectangular mesh, is a piece-wise bilinear function p(x, y) such

that for i = 1, 2, . . . , n:⎧⎪⎨⎪⎩ p

∣∣∣∣
([xi,xi+1],y)

and p

∣∣∣∣
(x,[yi,yi+1])

are linear when y and x respectively are fixed variables

p(xi, yi) = f(xi, yi)

.

Example 5. A data set of {(xi, yi, f(xi, yi)), i = 1, 2} is given in Figure 3.4. The value

of (x′, y′) can be approximated by bilinear interpolation.

We have four points (x1, y1), (x1, y2), (x2, y1), (x2, y2) on the vertices of a quadrilateral,

see Figure 3.4. Each pairs of points are on a one-dimensional space; for example
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Figure 3.3: Linear interpolation through the data: x1, x2, x3; p(x) is an approximation
at point x within the data set.

{(x1, y1), (x2, y1)} are on the line y = y1. So, the idea is to employ linear interpolation

in the one-dimensional space that each pair of points lie in. We consider the pairs as

{(x1, y1), (x2, y1)}, and {(x1, y2), (x2, y2)}. Then we evaluate p(x′, y1) and p(x′, y2) by
linear interpolation:

p(x′, y1) =
f(x1, y1)− f(x2, y1)

x1 − x2
(x′ − x1) + f(x1, y1),

p(x′, y2) =
f(x1, y2)− f(x2, y2)

x1 − x2
(x′ − x1) + f(x1, y2).

Now we have two points {(x′, y1), (x′, y2)} which lie on a one-dimensional space x = x′.
Therefore, we again use linear interpolation for this pair and p(x′, y′) is computed as:

p(x′, y′) =
p(x′, y1)− p(x′, y2)

y1 − y2
(y′ − y1) + p(x′, y1).

Bilinear interpolation is a reasonable method for image registration because of the

low computational costs; also, it is piece-wise continuous and differentiable almost

everywhere. It is not differentiable at the grid points, so when no derivative is required,

it is a good choice of interpolation [49].

The value of I(x, y) between four pixels {(x1, y1), (x1, y2), (x2, y1), (x2, y2} can be ap-

proximated by bilinear interpolation by treating I as a function. First the value of

I(x1, y) and I(x2, y) are calculated. Then the value of I(x, y) is calculated such that
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Figure 3.4: Four points {(x1, y1), (x1, y2), (x2, y1), (x2, y2)} and their values are given.
The value at point (x′, y′) can approximated by bilinear interpolation.

(x, y) is between (x1, y) and (x2, y). Figure 3.5 shows the bilinear interpolation proce-

dure for an image I.

3.1.3 Example of Registration and Issues

In this section we show a first example of registration. We took a photo of a cup

using an ordinary digital camera, as is shown in Figure 3.6a. Then we zoomed out and

rotated the camera and took another photo of the cup, see Figure 3.6b.

As mentioned before, we only deal with images that have constant background. As can

be seen in Figure 3.6, these images do not have constant background. So, we cut the

images of the cups and put them in a solid black background using a graphics editor.

The result is shown in Figure 3.7.

A registration is performed between the source and the target, where the distance

function is L2 distance. The group of transformations is similarity, because the second

photo of the cup is taken by a rotation and zooming the camera lens. The similarity

group depends on four real parameters: z �→ az + b, a = t1 + it2, b = t3 + it4. So, we
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Figure 3.5: Bilinear interpolation in an image to approximate the value of I(x, y).

(a) (b)

Figure 3.6: Two photos of a cup, with a camera rotation and zoom between them.

(a) Source (b) Target

Figure 3.7: The same as in Figure 3.6 after the cup is cut out and placed on a solid
black background for the registration. These images can be registered with a similarity
transformation.
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Figure 3.8: Ω is transformed by ϕ(Ω, t) = tz to Ωt, where t = 1
2 ; Λt = Ω− Ωt.

denote a transformation in the similarity group by ϕ(Ω, t), where t = (t1, t2, t3, t4) is

the vector of parameters.

In registration, the distance function is calculated on Ω. However, some transformations

are not surjective on Ω. Therefore, for some set of transformation parameters t, the

domain of ϕ−1 (which is Ωt = ϕ(Ω)
⋂

Ω) is a proper subset of Ω and is not defined

on Λt = Ω − Ωt, see Figure 3.8 for an example. Therefore, the transformed source is

defined only on Ωt. This causes an issue in the calculation of the distance function,

because one image (the source) is defined only on a proper subset of Ω and the other

image (the target) is defined on Ω. There are two ways to overcome this and calculate

the distance function [32]:

1. The distance function can be calculated on Ω, by defining the missing values of

the transformed image by I ◦ ϕ−1(Λt, t) = 0.

2. The distance function can be calculated strictly on Ωt = ϕ(Ω)
⋂

Ω = Ω− Λt.

As a comparison, we employ both methods to calculate the distance function in a

registration of the cups. The initial value for optimisation is set as the identity trans-

formation t = (1, 0, 0, 0). Note that from here on, when we say the value of distance

function, we mean the square of the L2 norm, ‖I ◦ϕ−1−J‖22 . The value of the distance
function before registration is 3527.93.

First method: Transformed source is zero on Λt. The optimizer stops at t = (1.3248,

−0.4965,−0.0337,−0.0273), and the images are not well registered. Figure 3.9b
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(a) (b) (c)

Figure 3.9: (a) Discrepancy between the source and the target before registration, (b)
discrepancy between the transformed source and the target after registration using the
first method (transformed source is zero at points where the transformation is not de-
fined), (c) discrepancy between the transformed source and the target after registration
using second method (both the transformed source and the target are zero at the points
where the transformation is not defined).

shows the discrepancy1 between the transformed source and the target. The value

of the distance function after registration is 1233.4.

Second method: Calculating the distance function strictly on Ωt is equivalent to

considering the source and the target to be zero on Λt. The images are not

well registered, and the optimizer stops at exactly the same point: t = (1.3248,

−0.4965, −0.0337, −0.0273). Figure 3.9c shows the discrepancies. The value of

the distance function after registration is 1233.4.

So far we used two existing methods in the registration of the cups. These methods

have some limitations and problems.

The limitation of the first method is that the images need to be zero toward their edges

or on their background. For example, in Figure 3.10 I is taken as source (left) and

target J is generated by scaling the source by ϕ(z) = 1
2z (right). The distance function

is calculated for scaling from 0.2 to 1, see Figure 3.11. We expect the distance function

to be minimum when the scaling is 1
2 , but it is not. The reason is that the background

of the images should also match. Not only is the distance function not minimum at 1
2 ,

but it is not smooth either.

1When two images are subtracted, some intensities are out of the range: [0, 1]. For example, if
image I at some point is zero and J is one then I − J = −1 at that point, and in the computer all
intensities that are less than zero are shown as black and larger than one as white. Therefore, for a
better representation of the discrepancy image, either the absolute value of the difference |I − J |, or
0.5(I − J +1) can be used. In this research, we used the latter to show the discrepancy image. Hence,
a perfect match appears as mid-grey.
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Figure 3.10: A different pair of images. Here, the target (right) is generated by applying
a known transformation to the source (left). This is an easier problem.

Figure 3.11: Value of the distance function between the source and target given in Fig-
ure 3.10, versus scale, where the points without pre-image have assigned zero intensity
(i.e., the second method is employed to treat pixels in Λt).
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Figure 3.12: Distance function of source and target in Figure 3.10 versus scale, where
the distance function is calculated on the overlap region of target and source, i.e., on
Ω− Λt.

The limitation of the second method is that for some t, ϕ(Ω, t) does not have any

overlap with Ω, i.e. ϕ(Ω)
⋂

Ω = ∅, so Λt = Ω. In the second method the distance

function is calculated on ϕ(Ω)
⋂

Ω. So, in this case the distance function is zero, which

is an incorrect solution. Figure 3.12 shows the distance function of the images I and

J given in Figure 3.10. It can be seen that when the scaling is very large the distance

function is almost zero, and the optimizer may find these incorrect solutions. This

limitation will be addressed in Section 3.4.

In the previous example the background was black, but the registration was not good.

In fact, both methods produced exactly the same result for this example. Although the

registration seems to be easy, the cups did not register well. In the following sections,

we investigate what caused the registration to fail, and how to address the problems.

3.2 Difficulties with Image Registration

One of the most common and severe problems for image registration is the presence of

local minima in the distance function, which causes the optimizer to get stuck at a local

minimum and hence fail to find the desired global minimum. A method that is em-

ployed to solve this problem is the ‘Multi-resolution’ technique [49]. In this technique,
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registration starts with low-resolution images (containing only gross features) and con-

tinues progressively through higher resolutions using the previous solution as the initial

guess. Low-resolution images contain fewer pixels than higher-resolution ones, so the

distance function requires less computation when images have low-resolution. Also,

because only gross features of the images remain in the low-resolution image, there

should be fewer local minima in the distance function. Starting with low resolution

images provides a good starting initial value for the registration of images at higher

resolution. One of the key points of this technique is to get a smooth representation

of images at low resolution, which yields a smooth objective function and help prevent

the optimizer from getting stuck at a local optima.

In [32] they investigated image registration using the second method, and they claimed

that the multi-resolution technique also sometimes fails to find the global minimum, and

that the low-resolution images that are employed in this method are not sufficient to

prevent the optimizer from getting stuck at a local minimum because the distance func-

tion still has some local minima and is discontinuous at some points. They explained

that the presence of the discontinuity in the distance function is because images are dis-

crete sets of pixels and the distance function is calculated on the overlap region and the

number of pixels in the overlap changes during registration. They also mentioned that

the discontinuity is not due to the interpolation methods, as all interpolation methods

(except nearest neighbour, which is used rarely) are continuous. An apodization func-

tion is used to overcome this lack of continuity; this is a function which brings the edge

of a function smoothly to zero. The apodization function de-weights the contribution of

locations that are near to the edge of the overlapping area. The weighting was chosen

so that the input of such locations drops continuously until it reaches zero at the edge

of the overlapping region.

Based on the literature, the causes of the registration failing are the presence of local

minima and discontinuity points in the distance function. Therefore, we study the

distance function carefully and give a precise mathematical understanding of issues of

the distance function in registration in the following sections.

3.3 Critical Points in the Distance Function

There are three types of points in the distance function that are an obstacle for the

optimizer to find the global minimum. They are discussed in the following sections.
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3.3.1 Discontinuity Points

The first type of point is one where the distance function is not continuous. We show

that the discontinuity in the distance function is the result of discontinuity in the

transformed source.

Theorem 3.3.1. If two functions f and g are continuous, then their product fg, sum

f + g and composition f ◦ g are continuous.

Proof. See [57].

Theorem 3.3.2. Let u(x) be a positive function. Then we have the following state-

ments:

• If u(x) is continuous at x0 then
√
u is continuous at x0. Because:

lim
x→x0

√
u(x) =

√
lim
x→x0

u(x) =
√
u(x0).

• If u(x) is differentiable at x0 then
√
u(x) is differentiable at x0. The derivative

of
√
u(x) is u′(x)

2
√

u(x)
. We show that it is continuous at x0:

lim
x→x0

u′(x)
2
√
u(x)

=
limx→x0 u

′(x)
limx→x0 2

√
u(x)

=
u′(x0)

2
√
u(x0)

.

Therefore,
√
u(x) is differentiable at x0.

Theorem 3.3.3. Suppose ϕ : R2 → R
2 is a smooth function on R

2. If distance function

E(t) =
√∑

(I ◦ ϕ−1(t)− J)2 is discontinuous at t0 then there exists (x0, y0) ∈ R
2 such

that I is discontinuous at (x0, y0) ∈ R
2.

Proof. Proof by contradiction: Suppose I is continuous for every (x, y) ∈ R
2. Since I

is a continuous function we have:

lim
t→t0

E(t)2 =
∑

lim
t→t0

(I ◦ ϕ−1(t)− J)2

=
∑

(I ◦ ( lim
t→t0

ϕ−1(t))− J)2

=
∑

(I ◦ ϕ−1(t0)− J)2 = E(t0)
2.
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Figure 3.13: Two continuous image functions. Left: source. Right: target image.

Therefore, E2 is continuous at t0, and by Theorem 3.3.2 E is continuous at t0, which

is a contradiction to the assumption.

Example 6. Two smooth images are given as source I and target J . The target is a

rotation of function I by π
4 .

I(x, y) =
x

30
exp
(
−(

x

30
)2 − (

y

30
)2)
)

J(x, y) =
cos(π4 )x+ sin(π4 )y

30
exp

(
−
(
cos(π4 )x+ sin(π4 )y

30

)2

−
(− sin(π4 )x+ cos(π4 )y

30

)2
)

The functions are shown in Figure 3.13. They are smooth functions, but have different

background values, tending to 0.7 in the source and to zero in the target. The distance

function is calculated on Ω and plotted in Figures 3.14 and 3.15 versus rotation, where:

• I(R2 − Ω) = 0 so I ◦ ϕ−1(Λt) = 0 (the first method given in Section 3.1.3).

It can be seen in Figure 3.14 that the distance function E is discontinuous for some

t0, which is the result of some discontinuity of the source on R
2 by Theorem 3.3.3.

• I(R2 − Ω) = 0.7, so I ◦ ϕ−1(Λt) = 0.7. This makes the source into a contin-

uous image on R
2. Therefore, by Theorem 3.3.3 the distance function will be

continuous, see Figure 3.15.

So, in this example, we observed that the value of Λt is equal to the value of the source
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Figure 3.14: The distance function of the source and the target given in Figure 3.13
versus angle of rotation (the applied transformation is rotation about the origin), where
the source is zero on its extended domain: I(R2 − Ω) = 0.

Figure 3.15: The distance function of the source and target given in Figure 3.13 versus
angle of rotation (the applied transformation is rotation about the origin), where the
source is 0.7 on its extended domain: I(R2 − Ω) = 0.7, and so it is continuous.
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on its extended domain, because the Λt are the points that are mapped from R
2 − Ω

into Ω. We extend the domain of the source so that the source is continuous, because if

we have a continuous source then the distance function is continuous by Theorem 3.3.3.

However, note that just because I is discontinuous for some (x0, y0) it cannot be con-

cluded that E is discontinuous, i.e., discontinuous images might have a continuous

distance function, because the sum of discontinuous functions can be continuous. The-

orem 3.3.3 only says that to have a continuous distance function, it is sufficient to have

a continuous source.

In this example, the image was continuous everywhere except on the edge of Ω (when

I(R2 − Ω) = 0), and we easily removed the discontinuity in the source by putting

I(R2 − Ω) = 0.7. But some images may be discontinuous on their domain also. In

Section 3.3.3 it will be explained how to make continuous approximations to them.

3.3.2 Non-Differentiable Critical Points

The second type of potentially problematic points that occur in the distance function

are those at which the distance function is not differentiable. Here we show that non-

differentiable points in the distance function are the result of non-differentiability of

the source.

Theorem 3.3.4. If function f = 0 is discontinuous and g = 0 is continuous then their

product fg is also discontinuous.

Proof. Suppose fg is continuous, then because g is continuous, by Theorem 3.3.1 f = fg
g

is continuous, which is a contradiction to the assumption.

Theorem 3.3.5. Suppose ϕ : R
2 → R

2 is a smooth function on R
2. If E(t) =√∑

(I ◦ ϕ−1(t)− J)2 is not differentiable at t0, then there exists (x0, y0) ∈ R
2 such

that I is not differentiable at (x0, y0) .

Proof. The derivative of E2 with respect to t is:

∂E2

∂t
= 2
∑
R2

(I ◦ ϕ−1(t)− J)〈∂tϕ−1(t) · ∇I(ϕ−1(t))〉. (3.3)
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Proof by contradiction: Suppose I is differentiable for every (x, y) ∈ R
2. Then I and

∇I are continuous functions, so:

lim
t→t0

∂E2

∂t
=

=
∑

lim
t→t0

(I ◦ ϕ−1(t)− J)〈∂tϕ−1(t) · ∇I(ϕ−1(t))〉

=
∑

(I ◦ lim
t→t0

ϕ−1(t)− J)〈 lim
t→t0

∂tϕ
−1(t) · ∇I( lim

t→t0
ϕ−1(t))〉

=
∑

(I ◦ ϕ−1(t0)− J)〈∂tϕ−1(t0) · ∇I(ϕ−1(t0))〉.

Therefore, E2 is differentiable at t0, and so by Theorem 3.3.2, E is differentiable at t0,

which is a contradiction to the assumption.

Therefore, to have a differentiable function it is enough to have a differentiable source.

In the following section we explain a method of making a differentiable image.

3.3.3 Construction of a Differentiable Image

First, it is illustrated by an example how to make a differentiable function from a

non-differentiable function, where the domain of the function is one dimensional.

Example 7. Let the function f be given as:

f(x) =

{
0 x < 0

1 x ≥ 0
.

Here f is discontinuous at zero, as shown in Figure 3.16. To create a continuous and

differentiable function, f is convolved with a Gaussian function. The one dimensional

Gaussian function is:

gσ(x) =
1√
2πσ2

exp

(
−(x− h)2

σ2

)
(3.4)

where h is the mean and σ is the standard deviation. The convolution function is:

(f ∗ gσ)(x) =
∫
R

f(h)× 1√
2πσ2

exp

(
−(x− h)2

σ2

)
dx. (3.5)

f ∗ gσ is shown in Figure 3.17 for σ = 1. As can be seen in Figure 3.17, f ∗ gσ and f



90 CHAPTER 3. IMAGE REGISTRATION METHODOLOGY

Figure 3.16: The function f is discontinuous at zero.

Figure 3.17: Convolution. Here data 1 is f and data 2 is the convolution of f with the
Gaussian given in Equation (3.5) with σ = 1 and h = 0.
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Figure 3.18: Left: source. Right: target. There is a translation between source and
target.

are equal everywhere except in a neighbourhood of zero. The convolved function f ∗ gσ
is differentiable at zero.

The same method can be applied to the image functions, but a two dimensional spher-

ical Gaussian function is used for the convolution:

(I ∗ gσ)(h1, h2) =
∫
R2

I(h1, h2)× 1√
2πσ2

exp−(x− h1)
2 + (y − h2)

2

σ2
dxdy. (3.6)

Example 8. Two images as source and target are given in Figure 3.18. The size of the

images is 150×150 pixels, and the domain of the images is Ω = [−0.5, 0.5]×[−0.5,−0.5].

The target is an x-translation of I by 0.1. The value of the target on Λ0.1 = 0. The

distance function is calculated where the group of transformation is x-translation and

I ◦ ϕ−1(Λt, t) = 0. The distance function versus translation is shown in Figure 3.19a.

It can be seen in Figure 3.19a that the distance function is not differentiable at many

points.

To have a differentiable distance function it is enough to have a differentiable source for

every (x, y) ∈ R
2 (by Theorem 3.3.3). To see the effect of different widths, we convolved

the source with two different Gaussians with σ = 1 and 2 pixels. The convolved source

and the distance function after source convolution are shown in Figure 3.19 (c-f).

The value of σ is chosen such that the source after convolution is differentiable at every

point. As can be seen in Figure 3.19, when σ = 2 the distance function and convolved

source are smooth.
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(a) Distance function of the original images

(b) Original source

(c) Distance function after convolution; σ = 1

(d) Source after convolution; σ = 1.

(e) Distance function after convolution; σ = 2

(f) Source after convolution; σ = 2.

Figure 3.19: Left column: Distance function of the source and the target given in
Figure 3.18, where the group of transformations is x-translation and the source is
convolved with Gaussians with σ = 1, 2. The right column shows the functional view
of the images.
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Figure 3.20: Left: source, Right: target. The target is generated from source by a
known rotation.

3.3.4 Differentiable Critical Points

Sections 3.3.1 and 3.3.2 explained why discontinuity and non-differential critical points

occur in the distance function, and how we remove them is explained in Section 3.3.3.

Although after convolution the distance function is differentiable, there are still some

local minima in the distance function that the optimizer may get stuck at.

Example 9. Two images, the source and the target of size 150× 150 pixels, are given

in Figure 3.20. The target is a rotation of the source by π
4 . On Λπ

4
in the target we put

zero. The images are convolved with a Gaussian with σ = 4. The distance function

versus angle (in radians) is shown in Figure 3.21, where I(R2−Ω) = 0. As can be seen,

there are still some local minima in the distance function. The discrepancy between the

transformed source and the target: 1
2

(
I ◦ ϕ−1(Ω, ti)− J + 1

)
corresponding to each ti,

i = 1, 2, 3, . . . , 6, is shown in Figure 3.22. It can be seen in Figure 3.22 that at:

• t1 the overlap is a maximum and the intensities match perfectly.

• t4 the overlap is a minimum.

• t6 the overlap is a maximum, but the intensities do not match.

It is reasonable that these three points are maxima or minima, but points t2, t3 and t5

are also local optima. The reason for the presence of t2, t3 and t5 is because there is

too much detail in the images.

As was mentioned in Section 3.2, a method that has been used in image registration to

keep only gross features is to construct a low resolution version of the images. We make
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Figure 3.21: The distance function of source and target given in Figure 3.20, where the
images are convolved with a Gaussian with σ = 4, and also the value of the source on
the extended domain is zero: I(R2 − Ω) = 0.

a low resolution of the source and the target from Figure 3.20, where each pixel in the

low resolution image is the mean average of intensities on 10 × 10 blocks of pixels. In

this way, only gross features remain and so the unreasonable local minima or maxima,

like t2, t3 and t5, should be eliminated. Figure 3.23 shows the low-resolution versions of

the source and target. The size of the source and target in the low-resolution version

is 15× 15. Their distance function is shown in Figure 3.24.

It can be seen in Figure 3.24 that local minima t2, t3 and t5 are eliminated, but many

non-differentiable and discontinuous points occur in the distance function, which is the

result of the discontinuous and non-differentiable source. Therefore, the source needs

to be smoothed. We find that when the original images are convolved with Gaussian

kernels with σ = 10, all discontinuities, non-differentiable critical and unreasonable

differentiable critical points are removed, see Figures 3.25 and 3.26. Only one spurious

local minimum remains.

3.4 Treating the Pixels Without Pre-image

In the previous sections we identified the reasons for critical points in the distance

function. Using that knowledge we now try to improve the methods of treating pixels

without pre-image, i.e. pixels in Λt.
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(a)

(b)

Figure 3.22: (a) The distance function for the source and the target in Figure 3.20
versus angle (in radians). The group of transformations is rotations. Six local optima
ti, i = 1, 2, . . . , 6 in the distance function are highlighted, and (b) shows the discrepancy
between the transformed source and target for ti, i = 1, 2, . . . , 6.
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Figure 3.23: Low resolution versions of the source and the target in Figure 3.20. Each
pixel is the mean average of intensities on 10 × 10 blocks of pixels, so the size of the
images is 15× 15 pixels.

Figure 3.24: The distance function of the low-resolution versions of the source and the
target given in Figure 3.23 versus angle (in radians), where the group of transformations
is rotations.
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Figure 3.25: The source and the target in Figure 3.20 are convolved with a Gaussian
with σ = 10.

Figure 3.26: The distance function of the source and the target in Figure 3.25 versus
rotation. The group of transformations is rotations.
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• First method: This method can be applied only when images have constant

backgrounds. Suppose that an image I is continuous and is equal to value a on

its background. So, to have a continuous distance function we have to assign a

value equal to a to the points in Λt: I ◦ϕ−1(Λt) = a. If we extend the domain of

I to R
2, then

I(x, y) =

{
I(x, y) (x, y) ∈ Ω

b b ∈ R, (x, y) ∈ R
2 − Ω

,

where b is a constant. Then by Theorem 3.3.3, b should be equal to a, and so

I ◦ ϕ−1(Λt) = a.

Therefore, the first method should only be used when images have constant back-

grounds, and I ◦ ϕ−1(Λt) = a, where a is the value of I on its background.

• Second method: Theorem 3.3.3 tells us why the first method causes problems

in registration, but it does not explain why the second method also fails. When

using the second method, on the extended domain the target is also changing

with t, Jt(Λt) = 0:

Jt(x, y) =

{
J(x, y) (x, y) ∈ Ω− Λt

0 (x, y) ∈ Λt

,

while in Theorem 3.3.3, the target is supposed to be constant. Similarly, Theo-

rem 3.3.5 does not explain the failure of registration, as images are discontinuous

and so non-differentiable on their extended domain. So the second method needs

further study to identify the mathematical reasons for its failure. As we will only

use the first method in the rest of this thesis, this is left as future work.

Another issue that was mentioned about the second method was ϕ(Ω)
⋂

Ω = ∅.

In this case, the distance function is zero and so a minimum. To overcome this

problem, we multiply the cost function by an coefficient:(
S

S −N

)
ΣΩ−Λt(I ◦ ϕ−1(Ω, t)− J)2, (3.7)

where S is the total number of pixels of Ω and N is the number of pixels of Λt. So,

the coefficient controls the overlaps. For example, when there is not any overlap,

it is ∞.

The distance function of the images given in Figure 3.10 is calculated again using

Equation (3.7), see Figure 3.27.
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Figure 3.27: Distance function versus scale. Distance function is computed by Equation
(3.7).

As mentioned before, because images in this research have constant background, we

use the first modified method to treat points in Λt. Our registration algorithm is given

in the following section.

3.5 Modified Registration Methodology of This Research

The image registration code used in this thesis consists of a main program, algorithm 1,

and an objective function, algorithm 2. The smoothing parameter σ is chosen experi-

mentally, but typically varies between 1 and 10 in our experiments.

Algorithm 1 Image registration

1: Input images I the source and J the target.

2: Pick an initial value t0 for the optimizer.

3: t1 = lsqnonlin(t0, E(I ∗ gσ, J ∗ gσ, t)) � E is defined in algorithm 2; gσ is a

Gaussian function with standard deviation σ as smoothing kernel.

4: t2 = lsqnonlin(t1, E(I, J, t)) � E is defined in algorithm 2; initial value is t1, which

is the output of the registration of smooth images from the previous step.
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Algorithm 2 Function E(I1, J1, t)

1: Transform the discrete domain Ω′ by ϕ−1.

2: Construct the discrete image I1 ◦ ϕ−1(Ω′, t) by bilinear interpolation.

3: Set I1 ◦ ϕ−1(Λt, t) = a, where a is chosen such that source is continuous on R
2.

4: Compute the error E(I1, J1, t) = ‖I1 ◦ ϕ−1(Ω′, t) − J1‖2 (which is squared by the

optimizer).

3.6 Testing the Algorithm

In this section we test the algorithm given in the previous section to register images.

We give six examples of two classes of images: synthetic images, i.e., the target is

generated by a known transformation of the source, and real images. The synthetic

image examples are pictures of a plant and a brain. The real image examples are the

cups given in Section 3.1.3, a side view of human skulls that is actually a line drawing,

two galaxies and two bananas. They will be registered with different groups.

Example 10. An image of a plant of size 150 × 150 pixels is taken as source I, see

Figure 3.28a. The target J = I ◦ φ−1
1 is given in Figure 3.28b that is generated from

the source by a PSL(3,R) transformation as follows:

φ1(x, y) =

(
x+ 0.1y + 0.3

1.2x+ 1.5y + 1.2008
,

0.3x+ 1.3y + 0.3

1.2x+ 1.5y + 1.2008

)
.

Since the source has a white background, and we want the source and the target to have

similar intensities, we put J(ΛT ) = 1, where T = [1, 0.1, 0.3, 1.2008, 0.3, 1.3, 1.2, 1.5] is

the vector of parameters of φ1. The domain of the images is [−0.5, 0.5] × [−0.5, 0.5].

A transformation φ(x, y) = ( t1x+t2y+t3
t7x+t8y+t9

, t4x+t5y+t6
t7x+t8y+t9

) in PSL(3,R) has eight parameters:

t = [t1, t2, t3, t4, t5, t6, t7, t8]. We perform a registration, where σ = 3, and the optimizer

is initialized with the identity transformation t0 = [1, 0, 0, 0, 1, 0, 0, 0]. The images are

registered perfectly; Figure 3.29 shows the images before and after registration.

Tables 3.1 and 3.2 give the outputs of the registration. As can be seen in the tables,

the majority of registration has been fulfilled by the first step of the registration, i.e.,

with the smooth images.
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(a) Source (b) Target

Figure 3.28: (a) An image of a plant that is taken as the source. (b) Transformation
of source with a PSL(3,R) transformation (details in the text); this image is taken as
the target.

(a) Before registration (b) After registration

Figure 3.29: Registration of plants given in Figure 3.28 in PSL(3,R), where the images
are convolved with a Gaussian with σ = 3 in the algorithm given in Section 3.5

.

Distance function
before registration

Distance function
after registration

Smooth images 1252.68 143.35

Original images 35.1179 0

Table 3.1: The output of the registration of the plants given in Figure 3.28 in PSL(3,
R), where the images are convolved with Gaussian with σ = 3 in the algorithm given
in Section 3.5.

Output transformations

Smooth images (0.992, 0.0895, 0.099, 0.2908, 1.2883, 0.3019, 1.1917, 1.4902)

Original images (1, 0.1, 0.1, 0.3, 1.3, 0.3, 1.2, 1.5)

Table 3.2: The output transformation from the registration of the plants given in
Figure 3.28 in PSL(3,R), where images are convolved with Gaussian with σ = 3 in the
algorithm given in Section 3.5.
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(a) Source (b) Target

Figure 3.30: (a) An image of a brain which is taken as the source. (b) Transformation
of source with a PSL(2,C) transformation (details in the text), this image is taken as
target.

In this example the dimension of the group was eight. Registration in higher dimen-

sional groups is usually more difficult.

Example 11. An image of a brain is taken as source, see Figure 3.30a. The size of the

source is 192×192 pixels and its domain is [−0.5, 0.5]× [−0.5, 0.5]. A transformation in

PSL(2,C) has the form φ(z) = az+b
cz+d , ad− bc = 1, so it has three complex parameters:

a = t1 + it2, b = t3 + it4, c = t5 + it6, and it depends on six real parameters. The

target is given in Figure 3.30b and was generated from the source by a PSL(2,C)

transformation as follows:

φ2(z) =
(1.1 + 0.1i)z + 0.01− 0.03i

(0.4 + 0.3i)z + 0.9126− 0.0911i
.

The source is zero almost everywhere on its background, as mentioned we want the

source and the target to have similar intensities. Therefore, we assign zero to the pixels

in ΛT in the target, where T = (1.1, 0.1, 0.01,−0.03, 0.4, 0.3) are the parameters of φ2.

Now we register the source and the target with the algorithm, where σ = 2 and

I ◦ φ−1(Λt) = 0, φ ∈ PSL(2,C). We initialize the optimisation with the identity

transformation t0 = (1, 0, 0, 0, 0, 0). The source and the target are registered perfectly.

The outputs of the registration are given in Tables 3.3 and 3.4. As can be seen in the

tables, again the majority of the registration has been done by the first step of the

registration.
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Output transformation

Smooth images (1.0995, 0.0963, 0.01,−0.028, 0.3994, 0.2996)

Original images (1.1, 0.1, 0.01,−0.03, 0.4, 0.3)

Table 3.3: The output of transformations from the registration of the brains given in
Figure 3.30 in PSL(2,C). The images are convolved with a Gaussian with σ = 2.

Distance function
before registration

Distance function
after registration

Smooth images 697.9 9

Original images 23.6 0

Table 3.4: Output of the registration of the brains given in Figure 3.30 in PSL(2,C).
The images are convolved with a Gaussian with σ = 2.

The next four examples are registration of real images.

Example 12. We register the cups given in Section 3.1.3 in the similarity group. The

size of the source and the target is 200× 200 and they are convolved with a Gaussian

with σ = 2. A similarity transformation z �→ az + b depends on four real parameters,

[t1, t2, t3, t4], where a = t1+ it2 and b = t3+ it4. We initialize the optimisation with the

identity transformation t0 = (1, 0, 0, 0), and I ◦ ϕ−1(Λt) = 0, ϕ belongs to the group.

The output of the registration is given in Table 3.5. Figure 3.31 shows the discrepancy

between the transformed source and the target after the registration.

In the registration in Section 3.1.3, the cups were not registered well, but using our

algorithm they are registered very well. The reason that they did not register well the

first time was because of some local minima in the distance function, which have been

removed by smoothing the images.

Example 13. Two human skulls representing people of different ages are taken as

source and target; the images are taken from [37]. Those are shown in Figure 3.32.

The size of the images is 164 × 123. We register them in the PSL(2,C) group. The

Output transformation Distance function
before registration

Distance function
after registration

Smooth images (1.1591,−0.8324, 2857.96 382.7
−0.0408,−0.0639)

Original images (1.1498,−0.8253, 761.5 739.9215
−0.0455,−0.0652)

Table 3.5: Output of registration of the cups given in Figure 3.7 in the similarity group.
The images are convolved with a Gaussian with σ = 2.
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Figure 3.31: Discrepancy image of two cups given in Figure 3.7 after registration.

(a) Source (b) Target

Figure 3.32: Two side views of human skulls at different ages, taken from [37].
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(a) Before registration (b) After registration

Figure 3.33: Registration of the human skulls given in Figure 3.32 in PSL(2,C), where
the images are convolved with a Gaussian with σ = 4 in the algorithm given in Sec-
tion 3.5.

Distance function
before registration

Distance function
after registration

Smooth images 2.7 0.85

Original images 35.4 18.3

Table 3.6: The output of the registration of the human skulls given in Figure 3.32
in PSL(2,C), where the images are convolved with a Gaussian with σ = 4 in the
algorithm given in Section 3.5.

optimizer was initialized with (1, 0, 0, 0, 0, 0), and σ = 4. Since the background of

images is white, I ◦ ϕ−1(Λt) = 1. The source and target before and after registration

are shown in Figure 3.33. The outputs of the registration also is given in Tables 3.6

and 3.7. As can be seen, the images are line drawings, but the algorithm still registered

them well. This is a harder problem as there is less overlap between the original images.

Example 14. We register two photos of different galaxies. The source and the target

are shown in Figure 3.34. The size of the images is 310×310 pixels and their domain is

Output transformations

Smooth images (0.939,−0.016, 0.0093, 0.0186, 0.074,−0.1677)

Original images (0.9393,−0.0207, 0.0078, 0.0205, 0.0905,−0.1722)

Table 3.7: The output transformation from the registration of the human skulls given
in Figure 3.32 in PSL(2,C), where the images are convolved with a Gaussian with
σ = 4 in the algorithm given in Section 3.5.
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(a) Source (b) Target

Figure 3.34: Two photos of galaxies.

Output transformation Distance function
before registration

Distance function
after registration

Smooth images (−0.1307,−1.0516, 1802.6 290.7
0.0162, 0.0784)

Original images (−0.132,−1.0514, 998.2 995.47
0.0159, 0.0784)

Table 3.8: Output of the registration of the galaxies given in Figure 3.34 in the similarity
group. The images are convolved with a Gaussian with σ = 6.

[−0.5, 0.5] × [−0.5, 0.5]. We register the source and the target in the similarity group.

We put σ = 6 and I ◦ϕ−1(Λt) = 0. We initialize the optimisation with t0 = (1, 0, 0, 0).

The output of the registration is given in Table 3.8. Figure 3.35 shows the source after

transformation and the target. Figure 3.36 shows the discrepancy between the source

and target before and after registration.

Example 15. We register images of two different bananas in PSL(2,C). The source

and the target are shown in Figure 3.37. The size of the images is 216× 216 pixels and

their domain is [−0.5, 0.5] × [−0.5, 0.5]. In the algorithm σ = 2 and I ◦ ϕ−1(Λt) = 1.

We initialize optimisation with t0 = (1, 0, 0, 0, 0, 0). The source and the target are well

registered. The outputs of the registration are given in Tables 3.9 and 3.10. Figure 3.38

shows the source after transformation and Figure 3.39 shows the discrepancy between

the source and the target before and after registration.
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(a) Transformed source (b) Target

Figure 3.35: (a) Transformed source (the source is given in Figure 3.34) after registra-
tion with target in the similarity group. (b) The target.

(a) Before registration (b) After registration

Figure 3.36: Discrepancy images of two the galaxies given in Figure 3.34 (a): before,
(b): after registration, where the images are convolved with a Gaussian with σ = 6.

(a) Source (b) Target

Figure 3.37: Two bananas.
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Figure 3.38: Transformed source (source and target are given in Figure 3.37) after
registration with the target in PSL(2,C).

Distance function

before registration

Distance function

after registration

Smooth images 1865.5 29.2

Original images 53.6 44.1

Table 3.9: Output of the registration of the bananas given in Figure 3.37 in PSL(2,C).
The images are convolved with a Gaussian with σ = 2.

Output transformations

Smooth images (1.3859,−0.0496, 0.0025, 0.0719, 0.0012,−0.3324)

Original images (1.39,−0.0519, 0.0018, 0.067, 0.0236,−0.3317)

Table 3.10: Output of the registration of the bananas given in Figure 3.37 in PSL(2,C).
The images are convolved with a Gaussian with σ = 2.

3.7 Conclusion and Future Work

In this chapter, we investigated various image registration issues mathematically, and

addressed some of them. In summary, to have a differentiable distance function it is

enough to have a differentiable image on R
2. The images are made smoother using

Gaussian convolution. Moreover, there are some spurious local minima in the smooth

distance function, which are caused by too much detail in the images. They can also
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(a) Before registration (b) After registration

Figure 3.39: Discrepancy image of the two bananas given in Figure 3.37 (a): before,
(b): after registration in PSL(2,C), where the images are convolved with a Gaussian
with σ = 2.

Figure 3.40: An image that does not tend to a constant intensity toward its edges.

be eliminated from the distance function by a Gaussian convolution of the images with

σ large enough. Therefore, we developed an image registration method based on this

knowledge. So, the important factors which influence the registration are:

• Background of images: If images tend to a constant value toward their edges,

then their domain easily can be extended to R
2 continuously. But images that

do not tend to a constant toward their edges, for example Figure 3.40, may need

to be convolved with a function to bring their edges continuously to a constant

value on R
2; we leave this as future work.

• Smoothness of the images.

• Dimension of the group of transformations: presence of spurious local minima
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is higher when the dimension of the group is higher. We suggest convolving the

image with σ large enough to remove most of them.

• How good the match is.

• Real images versus synthetic images: Registration of real images is more difficult

than synthetic images, because in the synthetic image there is a point where the

images match perfectly, while is unlikely in real images.

In this research we choose the size of convolution kernel (σ) experimentally. Finding a

general way to determine the σ, if it is possible at all, we leave as future work.



Chapter 4

Image Registration Using Finite

Dimensional Lie Groups

In this chapter, the finite dimensional Lie groups that were discussed in Chapter 2, and

the registration algorithm that was described in Chapter 3, will be employed to register

images. The objectives of this chapter are:

• To review Thompson’s Theory of Transformation in light of modern understand-

ing of image registration.

• To reproduce Thompson’s work using registration in finite dimensional Lie groups.

• To study the benefits of using finite dimensional groups, and to study the benefits

of using subgroups of a higher dimensional group.

4.1 On the Theory of Transformations

As was explained in Chapter 1, Thompson introduced the idea of the Theory of Trans-

formations which is about using simple transformations to transfer the appearance of

one organism into another, such that their prominent features are matched. In this

thesis we reproduce and study Thompson’s work mathematically for the following rea-

sons:

111
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1. No one has apparently reproduced Thompson’s work in the 100 years since it

was first published. Two important steps in this direction, that we discuss below

and in Sections 4.2, 4.5, and 4.6, are those of Milnor [47] and Petukhov [53].

Petukhov shows the importance of non-Euclidean transformation by applying

them to describe organisms. He says:

“Symmetry in the form of biological bodies has always attracted the

attention of natural scientists as one of the most remarkable and myste-

rious natural phenomena. School curricula in biology include numerous

instances of rotational, translational and mirror symmetries, and also

symmetries of similarities of scale in biological bodies. . . . Let us note

once more that the group of similarity transformations is the core of

the Euclidean geometry and so such symmetries may be referred to

as Euclidean as opposed to non-Euclidean symmetries which represent

transformations from non-Euclidean groups. We should not overlook

the fact that from the geometrical (i.e. group invariant) viewpoint

the entire classical biomorphology is essentially an extension of the

group of similarity transformations. This is the case for morphological

studies and theories of mirror symmetry and asymmetry of biological

bodies. . . .”

The idea of Thompson can easily extend to cover ontogeny1 rather than only

comparing the adult stages of organisms; Petukhov [53] applied this idea to human

growth (see Section 4.6).

2. The biologist Arthur Wallace wrote a review of Thompson’s work [4] in light of

modern biology. He says: D’Arcy Thompson explained natural phenomena in

terms of physical and mathematical laws. His theory of transformations suggest

coordinated as opposed to piecemeal changes to shape during evolution, an im-

portant matter that is ignored in ‘modern synthesis’ of evolutionary theory. In

regard to embryology and inheritance Thompson put emphasis on the forces that

shape the organisms, in contrast to the common view of biologists which concern

the material that makes up an organism, such as a piece of embryonic tissue. But

now we can knit the two different point of views, as Arthur says:

“A gene is indeed a material thing. But its pattern of expression dur-

ing development is dynamic. And the forces that cause this dynamism

include such things as transcription factors and morphogens, which are

themselves material things.. . . All the tools are now in place to examine

1Ontogeny pertains to the developmental history of an organism within its own lifetime.
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Figure number in Thompson [67] Transformation group

515 x �→ ax, y �→ y

513.2 x �→ ax, y �→ by

509,510,518 x �→ ax, y �→ cx+ dy (shears)

521-522,513.5 x �→ ax+ by, y �→ cx+ dy (affine)

506,508 x �→ ax, y �→ g(y)

511 x �→ f(x), y �→ g(y)

517-520, 523, 513.1, 513.3, 513.4, 513.6, 514, 525 Conformal

524 ‘Peculiar’

Table 4.1: Transformation groups between the related forms used in [67]. Table is given
in [42].

the mechanistic basis of transformations. Not only do we have phyloge-

netic systematics and evo-devo2, but, so obvious that it is easy to forget,

we have computers, and especially, in this context, advanced computer

graphics. It seems almost incredible that D’Arcy Thompson achieved

what he did without this modern aid to morphology, working in an era

in which the forms of animals were all individually hand-drawn.”

3. In the modern era, the evolutionary development of organisms is studied to dis-

cover the relationship between them, or to find how an organism itself evolved. In

this study, one seeks the genetic variations for distinct and independent parts of

a body. But in Thompson’s theory of transformation, one organism evolves into

another not by successive small changes in individual body parts, but by large-

scale transformation of the whole body. Possibly, that transformation carries

significant information itself, in contrast to the modern view of evo-devo.

4. Thompson appears to be using simple classes of transformation [42]. In [42] the

authors say:

“We draw attention to two key aspects of Thompson’s examples: (i) the

transformations are as simple as possible to achieve what he considers

a good enough match (see Table 4.1); and (ii) the classes of transfor-

mations that he considers all forms groups (or pseudogroups), either

finite or infinite dimensional.”

So here we classify Thompson’s examples based on the Lie groups given in Chap-

ter 2, see Table 4.2. We also show some of the related forms given in Fig-

ures 4.1, 4.2, and 4.3. References to the Figure numbers in [67] are given in

Table 4.2.

2evolutionary development.
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Figure number in Thompson [67] Transformation group

515,513.2 Sim× Sim

509,510,517-518 shears

513.5 affine

521-522 PSL(3,R)

508,511-512 PSL(2,R)× PSL(2,R)

506 Sim× PSL(2,R)

513.1,513.3,513.4,513.6, 523, 525-526, 550-551 PSL(2,C)

Table 4.2: Transformation groups between the related forms used in [67], 2.

Figure 4.1: Thompson took the outline of a form (source) and drew it against a Carte-
sian grid, then transformed the grid into another, and overlaid the image of another
to form the target. The deformed grids resemble the action of PSL(2,C). Figures are
taken from [67]. The groups are our suggestions as possible candidates that will be
explained later in this chapter. Numbers at the bottom of the images refer to their
number in [67].
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Figure 4.2: Thompson took the outline of a form (source) and drew it against a Carte-
sian grid, then transformed the grid into another, and overlaid the image of another
form, the target. The first row can be related by PSL(2,R) × PSL(2,R), the second
row by a subgroup of the group Sim × Sim, and the last row by a subgroup of the
group Sim× PSL(2,R). Figures are taken from [67]. The groups are our suggestions
as possible candidates that will be explained later in this chapter. Numbers at the
bottom of the images refer to [67].
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Figure 4.3: Thompson took the outline of a form (source) and drew it against a Carte-
sian grid, then transformed the grid into another, and overlaid the image of another
form, the target. The deformed grids in the first and last row resemble the action of
PSL(3,R) on identity grids on source and the middle row simply is a shearing which is
a subgroup of PSL(3,R). Figures are taken from [67]. The groups are our suggestions
as possible candidates that will be explained later in this chapter. Numbers at the
bottom of the images refer to [67].
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Figure 4.4: Left to right: Cannon-bones of ox, sheep and giraffe.

5. His book is descriptive rather than experimental science. And in some of his

examples, he said things which are not at all obvious. For example, in the com-

parison of fishes in Figure 1.2, he said: ‘. . . it is symmetrical to the eye, and

obviously approaches to an isogonal system under certain conditions of friction

or constraint’, (page 1064 in [67]), which merits futher mathematical description.

Or in his comparison of the skull of the chimpanzee and baboon (see Figure 4.1,

human skull in source column, chimpanzee and baboon skulls in target column.),

he said: ‘. . . in case of a baboon, it is obvious that the transformation is of precisely

the same order, and differs only in an increased intensity or degree of deformation

(page 1083 in [67]). Again, this needs further mathematical investigation.

6. In some examples, Thompson did not produce the transformed source. By taking

the corresponding points in source and target, he sketched a new grid on the

target, which shows how the source can be transformed to the target. But, we

need to see the transformed source for a better comparison; we also need to see

the difference between the transformed source and the target to see how closely

they resemble each other.

4.2 The Relationship Between Hoofed Mammals’s Feet

Thompson compared the cannon-bones3 of the ox, sheep and giraffe, see Figure 4.4.

He explained that the fundamental difference between the bones is their relative length

and breadth. He scaled the feet to a common length of 100, and calculated the breadth

3The cannon-bone is a bone in hoofed mammals that extends from the knee or hock to the fetlock.
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Figure 4.5: Foot of the ox, sheep and giraffe. Feet are scaled to a unit length, then
corresponding points are chosen between them to compare the parts. Figure is taken
from [67].

o oa ob oc oy

ox length 0 18 27 42 100

sheep length 0 10 19 36 100

giraffe length 0 5 10 24 100

Table 4.3: The measurements of oa, ob, oc and oy parts in the ox, sheep and giraffe feet
in Figure 4.5.

of the sheep as two-thirds of the breadth of the ox and the breadth of the giraffe as

one-third of the breadth of the ox. Next he took the entire foot of the ox, sheep and

giraffe; see Figure 4.5.

He said comparing the entire foot is more difficult, since there are several parts and

each part elongates differently. He chose corresponding points o, a, b, c in each foot, see

Figure 4.5, and then measured oa, ob, oc and oy, which are given in Table 4.3.

Thompson sketched three curves as a function of the ox length passing through: {(0,
0), (18, 18), (27, 27), (42, 42), (100, 100)} which is the ox length curve (line), {(0, 0),
(18, 10), (27, 19), (42, 36), (100, 100)} the sheep length curve, and {(0, 0), (18, 5),
(27, 10), (42, 24), (100, 100)} the giraffe length curve; see Figure 4.6. In fact, these

curves are an example of landmark registration in Diff([0, 1])× Sim(1), where Sim(1)
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Figure 4.6: The curves of feet (the ox, sheep and giraffe) length as functions of the ox
length, taken from [67].

stands for the one dimensional similarity transformation. He said that the graphs show

us that there is a comparatively simple equation between the length of the ox, sheep

and giraffe, which will enable us to draw a sheep or giraffe foot from an ox foot.

Milnor tried to find these transformations in [47]. He took two sets of four marked

points: o, a, b, c and a, b, c, y and calculated the cross-ratio4; in the vertical direction

for the ox, sheep and giraffe as follows. Let [o, a, b, c] be the cross-ratio of points. He

obtained:

Cross-ratio [o, a, b, c] [a, b, c, y]

Ox [0, 18, 27, 42] = 2.40 [18, 27, 42, 100] = 3.36

Sheep [0, 10, 19, 36] = 2.91 [10, 19, 36, 100] = 3.66

Giraffe [0, 5, 10, 24] = 2.71 [5, 10, 24, 100] = 4.50

This indicates that the cross-ratio is almost constant in the vertical direction. He also

calculated the two-dimensional cross-ratios. The cross-ratio of vertices of a rectangle

with �x length and �y width is (
y

x)

2. Milnor calculated the cross-ratios of four points

on the vertices of the rectangles drawn by Thompson, which are given in the following

table.

4The one-dimensional cross-ratio is the restriction of the two-dimensional cross ratio to real numbers.
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Figure 4.7: A PSL(2,C) transformation that carries the three marked points on the
ox foot to the corresponding points on the sheep and giraffe feet, taken from [47].

Figure 4.8: A PSL(3,R) transformation that carries the four marked points on the ox
to the corresponding points on the sheep and giraffe feet, taken from [47].

Ox Sheep Giraffe

2D cross-ratio 23 34 135

This shows that the feet are not related by PSL(2,C) transformations. Neverthe-

less, Milnor marked three landmarks in the ox, the sheep and the giraffe and found

a PSL(2,C) transformation that exactly registered the three points; see Figure 4.7.

He also marked four landmarks and found a PSL(3,R) transformation that exactly

registered the four points; see Figure 4.8. It can be seen in Figures 4.7 and 4.8 that

the transformations blow up the top part of the ox foot, while the breadth of the sheep

and giraffe feet are consistent along the length of the feet. Therefore, the feet are not

well registered by PSL(2,C) or by PSL(3,R). Yet, there is another relevant group

(actually, product-group) of transformations, PSL(2,R)× PSL(2,R), that Milnor did

not test. We consider this group.



4.2. THE RELATIONSHIP BETWEEN HOOFED MAMMALS’S FEET 121

Figure 4.9: (a) A rectangular grid in the plane. The grid is transformed by (b): PSL(2,
C), (c): PSL(3,R), (d): PSL(2,R)× PSL(2,R) transformations.

Looking at the ox, sheep and giraffe feet, it can be observed that the transformations

need to elongate the length of parts of the feet unevenly. Also, Milnor showed that the

cross-ratio is almost constant vertically. Therefore, the feet can be related by a PSL(2,

R) transformation vertically, and by scaling horizontally.

Figure 4.9 shows the action of three main groups. Also, comparing the action of the

groups in Figure 4.9 shows that the action of PSL(2,R)×PSL(2,R) on the grid is close

to what is described about the relationship between the feet. Therefore, we register

the feet with PSL(2,R)× PSL(2,R).

We copied the feet from Thompson [67], pasted them into a graphics editor, and filled

their inside with black and outside with white; see Figure 4.10. The size of the images

is 114×454 pixels and their domain is Ω = [0, 0.25]× [0, 1]. Note that it is not necessary

to fill the inside of the feet, as our algorithm can also register images which are line

drawings, see Section 3.6, although the shading makes the registration easier. For the

registration of the feet, we need to ensure that each corresponding part matches well,

and there are small gaps between the parts. So registration of the feet considered as

line drawings may have larger errors than registration of the feet with filled interiors,

although we did not test this.
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Figure 4.10: Three feet given in Figure 4.5 with their inside filled with black and outside
with white, (a) the ox, (b) the sheep, (c) the giraffe.

Figure 4.11: Diagram of the transformations between the ox, sheep and giraffe feet. ψi,
i = 0, 2, . . . , 8 belongs to PSL(2,R)× PSL(2,R).

Let the ox, sheep and giraffe feet be J0, J1, J2, respectively. Each pair of images is

registered with smoothing parameter σ = 5 pixels. The values of the distance function

(square of L2-distance) of the images before registration are:

‖J0 − J1‖22 = 6771

‖J0 − J2‖22 = 16165

‖J1 − J2‖22 = 10697.

Nine transformations Ψi(x, y), i = 0, 1, 2, . . . , 8 are obtained from the registrations. Let

Ψ−1
i = ψi. Figure 4.11 shows the diagram of transformations that map feet together,

and Table 4.4 gives the transformations and the residuals after registration.
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These feet are related by PSL(2,R) × PSL(2,R) if and only if the diagram of the

transformations given in Figure 4.11 commutes, i.e., if a transformation ψi maps Jk to

Jh, then the inverse of ψi maps Jh to Jk, and if ψi maps Jk to Jh, and ψj maps Jh to

Jl, then ψj ◦ ψi should map Jk to Jl. We can check this for the diagram by comparing

the inverses and a composition:

• ψ−1
1 , ψ−1

2 , ψ−1
5 are approximately equal to ψ3, ψ6 and ψ7 respectively. This is

confirmed as follows:

ψ−1
1 (x, y) =

(
0.8390x+ 0.0256

−0.5428x+ 1.1753
,
1.2110y + 0.0001

0.3949y + 0.8258

)
∼=

ψ3(x, y) =

(
0.7951x+ 0.0301

−0.8905x+ 1.2239
,
1.1979y + 0.0016

0.364y + 0.8353

)
,

ψ−1
2 (x, y) =

(
0.7601x+ 0.0976

0.9076x+ 1.4322
,
1.6075y − 0.0183

1.0103y + 0.6106

)
∼=

ψ6(x, y) =

(
0.7563x+ 0.0976

0.8817x+ 1.4359
,
1.6211y − 0.0143

1.0522y + 0.6075

)
,

ψ−1
5 (x, y) =

(
0.9989x+ 0.0567

2.2869x+ 1.1310
,
1.3494y − 0.0223

0.6278y + 0.7307

)
∼=

ψ7(x, y) =

(
0.962x+ 0.0597

1.9607x+ 1.1611
,
1.3577y − 0.0208

0.6356y + 0.7268

)
,

• ψ1 and ψ5 transform the ox to the sheep and the sheep to the giraffe respectively;

so ψ5 ◦ ψ1(x, y) should transform the ox to the giraffe, and be equal to ψ2:

ψ5 ◦ ψ1(x, y) =

(
1.2985x− 0.0765

−2.1456x+ 0.8966
,
0.5946y + 0.0249

−1.0513y + 1.5127

)
∼=

ψ2(x, y) =

(
1.4322x− 0.0976

−0.9076x+ 0.7601
,
0.6106y + 0.0183

−1.0103y + 1.6075

)
.

It can be seen that the non-linear part of ψ5 ◦ ψ1(x, .) (which is −2.1456) differs

markedly from the non-linear part of ψ2(x, .), which is −0.9076. The reason for

this is because these transformations do not make a perfect match between the

feet. However, the action of ψ5 ◦ψ1(x, .) and ψ2(x, .) on [0, 0.25] are almost equal

in the interval in which the feet are located, see Figure 4.12. It is only over a

larger interval that the difference is appreciable.

This suggests that the feet are related by PSL(2,R)× PSL(2,R).
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Figure 4.12: Data 1: composition of ψ5 ◦ ψ1(x, .) where ψ5 maps the ox to the sheep,
and ψ1 maps the sheep to giraffe. Data 2: ψ2(x, .), which maps the ox to the giraffe.

Comparing the residuals before and after registration shows that the registration works

well in PSL(2,R)× PSL(2,R). In Figure 4.13, examples of discrepancies between the

ox and sheep, and the ox and giraffe before and after registration are shown.

So far, we have seen that the feet are transformed to each other by PSL(2,R) ×
PSL(2, R) quite well. However, there may be a smaller group that could also be used.

As mentioned, the width of the feet seems to be scaled. Therefore, the PSL(2,R)

transformation in the x-axis can be replaced by a similarity transformation. There is

a subgroup of PSL(2,R) × PSL(2,R), which is Sim × PSL(2,R). Its action on the

y-axis is linear-fraction as in the previous group, and on the x-axis it is similarity (scale

and translation). Therefore, we register the feet in Sim × PSL(2,R). Let Φ−1
i = ϕi.

Figure 4.14 shows the diagram of the transformations which map the feet to each other.

Table 4.5 gives these transformations and the residuals of the registration.



126CHAPTER 4. IMAGE REGISTRATION USING FINITE DIMENSIONAL LIE GROUPS

(a) Before (b) After

(c) Before (d) After

Figure 4.13: Discrepancy between the ox and sheep before (a) and after (b) registration
in PSL(2,R))×PSL(2,R). Discrepancy between the ox and giraffe before (c) and after
(d) registration in PSL(2,R)× PSL(2,R).

Figure 4.14: The diagram of the transformations in Sim×PSL(2,R), which maps the
feet to each other.
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Similarly to the diagram of the transformations in PSL(2,R)×PSL(2,R), the diagram
of transformations in Sim× PSL(2,R) approximately commutes:

• ϕ−1
1 = ϕ3, ϕ

−1
2 = ϕ6 and ϕ−1

5 = ϕ7:

ϕ−1
1 (x, y) =

(
0.8082x+ 0.0192,

1.2124y − 0.0007

0.3967y + 0.8246

)
∼=

ϕ3(x, y) =

(
0.8000x+ 0.0192

1.2013y + 0.0015

0.3759y + 0.8329

)
.

ϕ−1
2 (x, y) =

(
0.4223x+ 0.0706,

1.6169y − 0.0185

1.0295y + 0.6067

)
∼=

ϕ6(x, y) =

(
0.4224x+ 0.0701,

1.6054y − 0.0171

1.0108y + 0.6121

)
.

ϕ−1
5 (x, y) =

(
0.5156x+ 0.0602,

1.3624y − 0.0237

0.6433y + 0.7228

)
∼=

ϕ7(x, y) =

(
0.5151x+ 0.0612,

1.3580y − 0.0238

0.6319y + 0.7253

)
.

• ϕ5 ◦ ϕ1(x, y) = ϕ2:

ϕ5 ◦ ϕ1(x, y) =

(
2.3997x− 0.1630,

0.5956y + 0.0205

−1.0667y + 1.6424

)
∼=

ϕ2(x, y) =

(
2.3678x− 0.1671,

0.6067y + 0.0185

−1.0295y + 1.6169

)
.

Comparing the residuals of the registration in the subgroup and group shows that the

subgroup registers the images as well as the group. In the following section we compare

the group and subgroup output in detail.

4.2.1 Comparing The Group and Subgroup Results

We have shown that the diagrams of transformations, Figures 4.11 and 4.14, approx-

imately commute, so the choice of source and target does not matter. Let J0 (the ox

foot) be the source and Ji, i = 1, 2, the sheep and giraffe feet be the targets. Figure 4.15

shows the outline of the ox after transformation by the group and subgroup.
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Figure 4.15: (a) The ox foot with a rectangular grid. (b) Transformation of the ox and
the rectangular grid to the sheep by group (PSL(2,R)× PSL(2,R)), (c) by subgroup
Sim×PSL(2,R). (d) Transformation of the ox and the rectangular grid to the giraffe
by group (PSL(2,R)× PSL(2,R)), (f) by subgroup Sim× PSL(2,R).

The group and subgroup have the same action in the y direction, whereas in the x

direction they have different actions. However, the grid is deformed in the x direction

by the group and subgroup similarly, as we can see in Figure 4.15. The group does not

contract or expand the x-axis unevenly. In fact, the action of the group on [0, 0.25] on

the x-axis is very close to the subgroup action. Figure 4.16a shows the action of ψ1(x, .)

and ϕ1(x, .) on [0, 0.25] and Figure 4.16b shows the action of ψ2(x, .) and ϕ2(x, .) on

[0, 0.25].

Figure 4.17 shows the discrepancy between the transformed ox and the sheep and giraffe

in the group and subgroup, which are very similar.

In Figure 4.17, there are some mismatches on the bottom parts of the feet, where they

are not matched perfectly. To check whether or not the registration was stuck in a local

minimum we performed a one-dimensional landmark registration of the ox and sheep

feet along the y-axis. Five corresponding points along the length of them were chosen

as shown in Figure 4.18. A transformation along the y-axis is obtained by landmark

registration as follows:
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(a) (b)

Figure 4.16: The action of two transformations on [0, 0.25] by the group (solid line)
and the subgroup (dashed line). Here the transformations match: (a) the ox foot to
the sheep foot, (b): the ox foot to the giraffe foot horizontally. The group is PSL(2,
R)× PSL(2,R) and the subgroup is Sim× PSL(2,R).

Figure 4.17: Discrepancy between the transformed ox and the sheep, where the ox is
transformed by: (a) group (PSL(2,R)×PSL(2,R)), (b) subgroup (Sim×PSL(2,R)).
Discrepancy between the transformed ox and the giraffe, where the ox is transformed
by: (c) group (PSL(2,R)× PSL(2,R)), (d) subgroup (Sim× PSL(2,R)).
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Figure 4.18: Five corresponding points along the length of (a) the ox, and (b) sheep
are selected for landmark registration.

φ(., y) =
0.8105y − 0.0014

−0.4236y + 1.2346
,

which is close to ψ1(., y) and ϕ1(., y). The value of the distance function at (ϕ1(x, .), φ(., y))

is 2219, which is greater than its value 2121, at ϕ1(x, y) = (ϕ1(x, .), ϕ1(., y)).

The distance function is not scale invariant. For example, the residual of the trans-

formed ox (to giraffe) and giraffe is smaller that the residual of the transformed giraffe

(to ox) and ox, see the residuals in Tables 4.5 and 4.4. Also, the value of the L2

distance function changes from image to image and group to group. Therefore, for a

better comparison of the residuals we normalize the distance function and calculate the

geometric mean for each pair of the images.

Let I be the source, J the target and ϕIJ a transformation that approximately registers

I to J , and ϕJI a transformation that approximately registers J to I. The geometric

mean of the normalized similarity measure is calculated as:

D = 1−
√

‖I ◦ ϕ−1
IJ − J‖22

‖I − J‖22
‖J ◦ ϕ−1

JI − I‖22
‖I − J‖22

. (4.1)

If I and J match perfectly with ϕ then D = 1, and if ‖I ◦ ϕ−1
IJ − J‖22 = ‖I − J‖22 and
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Pair of images (Ox, Sheep) (Ox, Gi-
raffe)

(Sheep, Giraffe)

Group 0.6433 0.9025 0.8873

Subgroup 0.6244 0.9005 0.8701

Table 4.6: The normalized similarity measure D for each pair of images (ox, sheep,
giraffe) in the group (PSL(2,R)× PSL(2,R)) and the subgroup (Sim× PSL(2,R)).

Figure 4.19: Discrepancy between (a) transformed ox (to sheep) and sheep, (b) trans-
formed ox (to giraffe) and giraffe, (c) transformed sheep (to giraffe) and giraffe.

‖J ◦ ϕ−1
JI − I‖22 = ‖I − J‖22 then D = 0. In black and white images, the value of D can

tell us the amount of the overlap and matching between images.

The values of D in the registrations of feet in the group and the subgroup are given in

Table 4.6. Because the images are black and white, the value ofD can tell us the amount

of the matching; for example 90% of the ox is matched to the giraffe by registration,

and only 10% does not match. Comparing the values of D given in Table 4.6 between

each pair of images for the group and the subgroup tells us that the registration in the

subgroup is essentially as good as the registration in the group. Also, the discrepancy

between the transformed ox and giraffe, and between the transformed sheep and giraffe

is less than the transformed ox and sheep, see Figure 4.19.
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This first finite dimensional registration supports Thompson’s idea of simple trans-

formation between related forms. We have also compared the group and subgroup

registration outputs. It has been shown that registration in a subgroup is as good as

registration in a group in this example.

This last point is an example of model selection. This is the task of choosing the best

model among a sets of models [16]. Some criteria used in model selection are:

• The goodness of fit.

• The simplicity of the model.

• The capability of the model to describe the phenomena that underlie the data.

In the present example, the models are nested. That is, the residuals from registration

in the group must necessarily be smaller than the residuals from registration in the

subgroup, since there are more degrees of freedom to allow a better match. This is

confirmed in Table 4.6. So the question becomes, how much reduction in residual is

needed to justify a more complex model? This is the key question in the statistical the-

ory of model selection [16]. Two of the most popular criteria are the Akaike information

criterion (AIC),

AIC = −2 lnL+ 2p,

and the Bayesian information criterion (BIC),

BIC = −2 lnL+ p lnn.

Here L is the likelihood of the estimated model, p is the number of parameters in the

model, and n is the sample size. In the case that the model errors are independent

and normally distributed, L = n| ln(‖x− x̂‖2/n)|. A lower value of AIC (resp. BIC) is

preferred. A rule of thumb is that a difference of AIC or BIC between two models of

2− 6 is positive, 6− 10 is strong, and more than 10 is very strong.

A review of model selection in ecology [1] found that 84% of studies used AIC, 14% used

BIC, and 2% used some other criterion. They argue that AIC is preferred when the

‘true’ model is extremely complex and essentially unknowable, and prediction errors are

to be minimized, while BIC is preferred when the ‘true’ model is simple and can be in

principle determined given enough data. This, to some extent, explains why ecologists

prefer AIC to BIC.
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Figure 4.20: Vertical dimension of the ox, sheep and giraffe feet as functions of the ox
vertical dimension. Dots are the Thompson data in Table 4.3.

Our context, however, is a little different in that it may actually be true that organisms

are (very closely) related by simple models. In the present example, these complications

are not really relevant as the more complex model scarcely reduces the residuals and

the simpler model is clearly preferred even though ΔAIC ≈ 2. However, in a more

detailed study (ideally with a much larger data set) it would be interesting to carry

our statistical model selection. In that case a fundamental difficulty to address would

be our present complete lack of knowledge as to the distribution from which the data

are drawn, and how to weight the different model functions.

Hence, we choose subgroup registration for further investigation of the relationships

between the feet. Thompson sketched approximate functions of the lengths of the

ox, sheep and giraffe feet, see Figure 4.6. Now we use our transformations ϕi(., y),

i = 0, 1, 2 to reproduce those curves. They are drawn along with the Thompson data

given in Table 4.3, see Figure 4.20. It can be seen they are very close to Thompson’s

curves. However, the bottom parts are not matched as well as the top parts. However,

it was shown by landmark registration that these transformations are the best for the

group considered. Of course, it would be possible to obtain a better registration using a

larger group. But the only available groups are infinite dimensional, namely Diff×Diff

or Diff(R2). Given that a 5-dimension group has already explained 90% of the difference

between the feet, it seems unlikely from the point of view of model selection that such

drastically more complex models would be preferred.
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4.3 The Relationship Between Crabs

Thompson compared the outline of the carapaces of various crabs.

Figure 4.21: The carapace of a crab Geryon.

Thompson said that, apart from the details, such as number and situation of marginal

spines, which are independent variants, the comparison of carapaces is easy. He put

the Geryon in a uniform rectangle grid and showed how coordinate changes gave other

crabs; see Figure 4.22.

He explained that it is more difficult to compare the entire body of forms than to simply

compare corresponding parts. However, in an organism there is one particular mode

and direction of variation, which is often more prominent throughout the entire body.

So, taking the whole body may give us a better picture of the actual phenomenon.

In the following sections, Thompson’s crab forms are registered with different groups.

For the registrations, the carapaces of the crabs in Figure 4.22 are copied and pasted

into a graphics editor, their grids are deleted and their inside is filled with black.

4.3.1 PSL(2,C) Transformations Between Related Crabs

Thompson’s drawings show that there are different transformations that relate crab (a)

to the others. In the following, we try to find which crabs can be related by PSL(2,C)

and which by PSL(2,R)× PSL(2,R).

First, which crabs can be related by PSL(2,C) transformations? We know that the

cross-ratio of four points on the plane is invariant under PSL(2,C) transformations,

therefore we calculate the cross-ratios of the four marked corresponding points on the
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Figure 4.22: Carapace of various crabs, (a) Geryon; (b) Corystes ; (c) Scyramathis; (d)
Paralomis; (e) Lupa; (f) Chorinus, taken from [67]
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(a) Geryon (b) Corystes (c) Scyramathis

(d) Paralomis (e) Lupa (f) Chorinus

Figure 4.23: Four corresponding points in crabs are marked to calculate the cross-ratios.

Crabs (a) (b) (c)

Cross-ratio 0.52 + 0.3i 0.51− 0.2i 0.49− 0.03i

Crabs (d) (e) (f)

Cross-ratio 0.5 + 0.04i 0.55 + 0.5i 0.5 + 0.03i

Table 4.7: Cross-ratios of four marked points in the crabs given in Figure 4.23.

crabs. The marked points are shown in Figure 4.23.

Let Ca be the cross-ratio of marked points in Geryon, Cb in Corystes, Cc in Scyramathis,

Cd in Paralomis, Ce in Lupa, and Cf in Chorinus. They are given in Table 4.7. As

can be seen in the table, Cc, Cf and Cd are almost equal. Therefore, it is possible that

there are PSL(2,C) transformations between Scyramathis, Chorinus, Paralomis. So,

in the following we take these three crabs and register them in PSL(2,C).

Let Chorinus be I1, Paralomis I2, and Scyramathis I3. If we suppose that these

crabs can be related by PSL(2,C), then by using the method given in Section 4.2, all

transformations between each pairs of the images can be obtained by transformations

between the two other pairs of images, and the choice of source does not matter. So,

let I1 be the source and I2, I3 the targets. Two transformations are obtained from the
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Figure 4.24: (a)Chorinus as source (I1) with a rectangular grid, (b) Chorinus after reg-
istration with Paralomis(I2) in PSL(2,C) along with the deformed rectangular grid, (c)
Chorinus after registration with Scyramathis(I3) in PSL(2,C) along with the deformed
rectangular grid.

Target i = 2 i = 3

‖I1 − Ii‖22 3272 6607

‖I1 ◦ ϕ−1
i − Ii‖22 1096 330

Table 4.8: The residuals of Chorinus as source (I1) and Paralomis as target (I2), and
the residuals of Chorinus and Lupa as target (I3), before and after registration in
PSL(2,C).

registrations, as follows:

ϕ2(z) =
(1.0891 + 0.0335i)z − 0.0112 + 0.1486i

(0.0781− 0.6153i)z + 1.0009− 0.0138i
,

ϕ3(z) =
(1.3509− 0.0181i)z + 0.0063− 0.0932i

(−0.0027 + 0.3964i)z + 0.7675 + 0.0086i
.

ϕ2 maps I1 to I2, and ϕ3 maps I1 to I3. Figure 4.24 shows the transformed I1 along with

the deformed grid, and Figure 4.25 shows the discrepancy between transformed I1 with

I2 and I3. Note that for a better representation we applied the obtained transformations

from the registration on the outline of the crabs in Figures 4.24 and 4.25. Table 4.8

gives the residuals before and after registration. It can be seen that Chorinus is well

registered with Scyramathis and Paralomis.
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(a) (b)

Figure 4.25: Chorinus as source (I1) is transformed by PSL(2,C) transformations. (a)
Discrepancy between transformed Chorinus and Paralomis as target (I2), (c) discrep-
ancy between transformed Chorinus and Lupa as target (I3).

Crab (a) (b) (c)

Cross-ratio 0.2639 0.287 0.1227

Crab (d) (e) (f)

Cross-ratio 0.4797 0.5163 0.1763

Table 4.9: The one-dimensional cross-ratios of the y-coordinates of the marked points
given in Figure 4.26.

4.3.2 PSL(2,R)× PSL(2,R) Transformations Between Related Crabs

In this section, we try to find which crabs can be related by PSL(2,R) × PSL(2,

R). This group preserves the cross-ratio on each axis. We mark four corresponding

points on the marginal spine of the crabs. Figure 4.26 shows the marked points whose y-

coordinates are taken to calculate the cross-ratios. Figure 4.27 shows the marked points

whose x-coordinates are taken to calculate the cross-ratios. Note that the marked points

may not correspond exactly, because some crabs do not have distinguished marginal

spines, e.g. Lupa. The cross-ratios are given in Tables 4.9 and 4.10 respectively.

Comparing the cross-ratios in Table 4.9 and 4.10, indicates that only (a) and (b) may

possibly be related by PSL(2,R)× PSL(2,R). Nevertheless, we register all the crabs

in PSL(2,R) × PSL(2,R), where Geryon is I0 (source), Corystes is I1, Scyramathis

is I2, Paralomis is I3, Lupa is I4, and Chorinus is I5 (which are the targets). Six
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(a) Geryon (b) Corystes (c) Scyramathis

(d) Paralomis (e) Lupa (f) Chorinus

Figure 4.26: Four corresponding points in the crab are marked. The y-coordinates of
marked points are taken to calculate the one-dimensional cross-ratios.

(a) Geryon (b) Corystes (c) Scyramathis

(d) Paralomis (e) Lupa (f) Chorinus

Figure 4.27: Four corresponding points in the crabs are marked to calculate the
cross-ratios. The x-coordinates of the marked points are taken to calculate the one-
dimensional cross-ratios.

Crab (a) (b) (c)

Cross-ratio 0.3137 0.2285 0.0997

Crab (d) (e) (f)

Cross-ratio 0.0417 0.2118 0.2444

Table 4.10: The one-dimensional cross-ratios of the x-coordinates of the marked points
given in Figure 4.27.



4.3. THE RELATIONSHIP BETWEEN CRABS 141

(a) (b)
(c)

(d)
(e) (f)

Figure 4.28: (a) Geryon as source (I0). Transformed source after registration in PSL(2,
R) × PSL(2,R) with: (b) Corystes (I1), (c) Scyramathis (I2), (d) Paralomis (I3), (e)
Lupa (I4), (f) Chorinus (I5).

transformations are obtained from the registration as follows:

ψ1(x, y) =

(
1.4165x− 0.0167

−0.081x+ 0.7069
,
0.8964y + 0.0117

−0.5048y + 1.1091

)
,

ψ2(x, y) =

(
1.604x+ 0.0148

0.0692x+ 0.6241
,

1.1704y − 0.196

−3.3203y + 1.4106

)
,

ψ3(x, y) =

(
1.03888x− 0.003

−0.0064x+ 0.9627
,
0.8834y − 0.0976

−1.7763y + 1.328

)
,

ψ4(x, y) =

(
0.9706x− 0.0157

0.015x+ 1.03
,
1.1103y − 0.0488

−0.9424y + 0.942

)
,

ψ5(x, y) =

(
1.099x+ 0.0196

−0.0213x+ 0.9093
,
0.8464y − 0.1571

−1.7474y + 1.5058

)
.

Here ψi transforms I0 to Ii, i = 1, 2, 3, 4, 5. Figure 4.28 shows the transformed source

along with the deformed rectangular grid, and Figure 4.29 shows the discrepancy be-

tween the transformed source and the targets after registration. Again, we applied

the transformations on the outline of the crabs to show a better representation of the

discrepancy images and the transformed source.
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(a) (b) (c)

(d) (e)

Figure 4.29: Geryon as source (I0) is registered with Corystes (I1), Scyramathis (I2),
Paralomis (I3), Lupa (I4), Chorinus (I5) in PSL(2,R) × PSL(2,R). Discrepancy
between transformed I0 and (a) I1, (b) I2, (c) I3, (d) I4, (f) I5.

The cross-ratios indicated that only (a) and (b) can be related by a PSL(2,R)×PSL(2,
R) transformation, but the overall body of other crabs are also well registered with the

transformed crab (a). Therefore, ignoring the small variations on the marginal spine

of the crabs, there are simple transformations between them. This again confirms the

idea of Thompson’s of simple transformations between organisms. In addition, this

example illustrates that the approach of detecting group relationships using invariants

(such as the cross-ratio) of landmarks, used by Milnor and by us, is not very reliable.

It is too susceptible to errors caused by the mis-placement of the landmarks. Image

registration, which attempts to match the entire body of the image, does not have this

weakness, and appears to be more in the spirit of Thompson’s theory.

Looking at ψi(x, .) it can be seen that the non-linear parameters of ψi(x, .) are very

small. Therefore, the images can be related by a smaller group, a group whose action

on x-axis is only similarity. As we discussed in Section 4.2, the action of Sim×PSL(2,
R) on the x-axis is similarity. Therefore, we register I0 to Ii, i = 1, 2, 3, 4, 5 in this
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(a) (b)
(c)

(d)
(e) (f)

Figure 4.30: (a) Geryon as source (I0). Transformed source after registration in Sim×
PSL(2,R) with: (b) Corystes (I1), (c) Scyramathis (I2), (d) Paralomis (I3), (e) Lupa
(I4), (f) Chorinus (I5).

group, and five transformations are obtained from the registration as follows:

ϕ1(x, y) =

(
2x− 0.0178,

0.8962y + 0.0116

−0.5065y + 1.1092

)
,

ϕ2(x, y) =

(
2.58x+ 0.0229,

1.1527y − 0.1884

−3.149y + 1.3835

)
,

ϕ3(x, y) =

(
1.079x− 0.003,

0.8834y − 0.097

1.079y − 0.003

)
,

ϕ4(x, y) =

(
0.9425x− 0.016,

1.1102y − 0.0488

−0.9418y + 0.9421

)
,

ϕ5(x, y) =

(
1.2126x+ 0.0222,

0.8405y − 0.1544

−1.6732y + 1.4972

)
.

Here ϕi maps I0 to Ii, i = 1, 2, 3, 4, 5. Figure 4.30 shows the transformed source

along with the deformed grids, and Figure 4.31 shows the discrepancy between the

transformed source and the targets, where the transformations are applied to the outline

of the crabs. The residuals after registration in the group and the subgroup are given

in Table 4.11.
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(a) (b) (c)

(d) (e)

Figure 4.31: Geryon as source (I0) is registered with Corystes(I1), Scyramathis(I2),
Paralomis(I3), Lupa(I4), Chorinus(I5) in PSL(2,R)×PSL(2,R). Discrepancy between
transformed I0 and: (a) I1, (b) I2, (c) I3, (d) I4, (f) I5.

Target i = 1 i = 2 i = 3 i = 4 i = 5

‖I0 − Ii‖22 190460 269480 42854 30305 121150

‖I0 ◦ ψ−1
i − Ii‖22 206 528 750 545. 933

‖I0 ◦ ϕ−1
i − Ii‖22 216 601 778 546 934

Table 4.11: The residual of source (I0) and the targets, Ii, i = 1, 2, 3, 4, 5 before and
after registration in the group and in the subgroup. First row: Residuals before reg-
istration. Second row: Residuals after registration in the group. Last row: Residual
after registration in the subgroup, where the group is PSL(2,R)×PSL(2,R), and the
subgroup is Sim× PSL(2,R).
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In this section we gave a second example of registration of related forms in finite di-

mensional groups that supports the idea of Thompson of using simple transformations.

Although the marginal spines of the crabs are not matched perfectly with the groups,

the overall shape of their body is well matched. We could get a perfect match with

diffeomorphic registration, but should not expect a large reduction in the residuals,

as the discrepancy images show. So, it is unlikely that a complicated group (the dif-

feomorphism group) is preferred by model selection. However, as mentioned before

in Section 4.2, for more sophisticated analysis of the model selection we need to have

knowledge of the distribution of the data.

Moreover, we registered the crabs with the group PSL(2,R)× PSL(2,R) and its sub-

group Sim × PSL(2,R). They are nested models. Therefore, the residuals from the

group must be smaller than residuals in subgroups, but they are almost equal (see

Table 4.11). Also, the non-linear part of ψi(x, .) is very small. Therefore, by model

selection criteria the subgroup may be preferable to describe the relationship between

the crabs.

4.3.3 Registration of Each Pairs of Crabs in PSL(2,C)

In light of what we have learned about the unreliability of using invariants of landmarks

(caused by positioning of the landmarks) to identify possible groups, we decided to

register all pairs of crabs against each other using the PSL(2,C) group. Figure 4.32

shows the discrepancy images and Figure 4.33 shows the transformed sources along

with the deformed grids. As can be seen in the figures the overall body of (a) well

registered with (d), (e) and (f), and (b) registered well with (c), (d), and (f). This is

different to the cross-ratios, which suggested that only (d), (e) and (f) were related by

PSL(2,C).

4.4 The Relationship Between Fishes

Thompson suggested a great variety of deformations between fishes. Some of them are

simple, while other are more complicated. For example, he illustrated that between

Argyropelecus olfersi and Sternoptyx diaphana in Figure 4.34, there is a simple shear.
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(a) a to b (b) a to c (c) a to d

(d) a to e (e) a to f (f) b to c

(g) b to d (h) b to e (i) b to f

(j) c to d (k) c to e (l) c to f

(m) d to e (n) d to f (o) e to f

Figure 4.32: Discrepancy image of each pair of crabs (given in Figure 4.22) after regis-
tration in PSL(2,C), where for example, ‘a’ to ‘b’, means ‘a’ is source, ‘b’ is target.
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(a) a to b (b) a to c
(c) a to d

(d) a to e
(e) a to f (f) b to c

(g) b to d (h) b to e (i) b to f

(j) c to d (k) c to e (l) c to f

(m) d to e (n) d to f (o) e to f

Figure 4.33: Transformed source along with the deformed grid, which is the output
of registration of each pairs of crabs (given in Figure 4.22) in PSL(2,C), where for
example, ‘a’ to ‘b’, means ‘a’ is source, ‘b’ is target.
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Figure 4.34: Left: Argyropelecus olfersi. Right: Sternoptyx diaphana. Images are taken
from [67].

(a) Argyropelecus olfersi (b) Sternoptyx diaphana

Figure 4.35: Images of the same two fishes taken from [50].

In Figure 4.34 Thompson did not show the Sternoptyx diaphana, he just transformed

Argyropelecus olfersi. Instead, we take the real Argyropelecus olfersi as source and real

Sternoptyx diaphana as targets, using the images shown in Figure 6.3.

Shears are a subgroup of PSL(3,R), therefore we register the fishes in the group PSL(3,

R). We also register the images with affine and special affine, to study the possible

benefit of using lower dimensional groups. Let Argyropelecus olfersi be the source I0,

and Sternoptyx diaphana the target I1. The domain of the images is [−0.5, 0.5] ×
[−0.5, 0.5]. The registration outputs are given in Table 4.12. The residuals before and

after registration in the group and subgroups are given in the Table 4.13.
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Group PSL(3,R) Affine Special Affine

‖I0 − I1‖22 606.21 606.21 606.21

‖I0 ◦ ψ−1
i − I1‖22 373 407 414

Table 4.13: Argyropelecus olfersi is the source (I0); Sternoptyx diaphana is the target
(I1). First row are the residuals before registration and second row after registration
in the group PSL(3,R) and its two subgroups: affine and special affine.

Between these three groups, the affine group may be preferred to describe the rela-

tionship between fishes. First we compare the result from the registration in the affine

and the special affine group. Comparing the residuals of registration in affine (407)

and special affine (414), they are very close. The residuals in registration in the group

(affine) is not reduced significantly in comparison to the subgroup (special affine). As

mentioned in Chapter 3 one of the important factor in registration is to determine how

good the match is. Comparing the residuals tells us that special affine makes as good a

match as the affine group. But the goodness of the match cannot only be determined

by the residuals. We need also to compare the discrepancy images. In fact, comparing

the discrepancy images, it can be seen that affine makes a better match. We believe

the weakness of the residuals as a criterion in this example is due to the grey-scale

nature of the images and the overall lower quality of the match. In biological examples

like this, the human operator is able to make judgements about which body parts are

inessential to the match (e.g the fins) and which are essential (the body).

Now between the affine and the projective group, affine is preferred, because, first

neither the residual of the group (373) is significantly smaller, nor does it make a

significantly better match in comparison to the affine, which has fewer parameters

than the group.

In this section we have given a third example of simple transformations between re-

lated forms (fishes), in which the registration results support Thompson’s idea. In the

following section we reproduce another of Thompson’s examples, which is about the

relationship between human skulls and simian skulls. The information from this section

will be used in Chapter 6. In Section 4.6 we approximate human skull growth by two

main groups and compare the results. The results from this section will be used in

Chapter 5.
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(a) human (b) chimpanzee
(c) baboon

Figure 4.36: Human, chimpanzee and baboon skulls, taken from [67].

Figure 4.37: A PSL(2,C) transformation of human skull to chimpanzee skull by Milnor
[47].

4.5 The Relationship Between Human and Simian Skulls

Thompson compared a human skull with simian skulls. He explained that the main

differences between the human head and simian types are the enlargements of the brain

and the braincase in human, the relative diminution of his jaws, and that the facial

angle increases from an oblique angle to nearly a right angle in man. He put the human

skull in a grid and marked out some corresponding points on the skulls and showed

what the grid of chimpanzee and baboon look like in comparison. These are shown in

Figure 4.36.

In this section, we will show that these images are related by the PSL(2,C) (Möbius)

group. Milnor also attempted to transform the human skull to chimpanzee skull with

PSL(2,C) as given in Figure 4.37.

First we show why we choose this group. We mark out four corresponding points on

the skulls, see Figure 4.38 and calculate the cross-ratios, see Table 4.14. As can be seen

in Table 4.14, the cross-ratios are almost equal.
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(a) (b) (c)

Figure 4.38: Four corresponding points are marked in skulls to calculate the cross-ratios.
Cross-ratios are given in Table 4.14.

Human Chimpanzee Baboon

Cross-ratio −0.1097− 0.4382i −0.27− 0.4108i −0.2822− 0.6555i

Table 4.14: Cross-ratios of four corresponding marked point in the human, chimpanzee
and baboon skulls in Figure 4.38.

Let the human skull be I0, chimpanzee I1 and baboon I2, see Figure 4.39. The inside

of the images are filled with black for the registration. The domain of the images is

[−0.5, 0.5]× [−0.5, 0.5]. The output of the registration is φ−1
i , let φ−1

i = ϕi. From the

registration of the human skull and the chimpanzee skull we obtained transformation

ϕ1 as follows:

ϕ1(z) =
(1.2049 + 0.0608i)z + 0.2363 + 0.0793i

(0.6641− 0.7029i)z + 0.9992− 0.1446i
.

As explained in Chapter 3, registration with our algorithm may get stuck at some

non-removable local minimum depending on the initial value. Starting the registration

of the human skull and baboon from the identity, the algorithm got stuck at a local

minimum.

(a) human (b) chimpanzee (c) baboon

Figure 4.39: Human, chimpanzee and baboon skulls, taken from [67].
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i = 1 i = 2

‖I0 − Ii‖22 6330 7724

‖I0 ◦ ϕ−1
i − Ii‖22 1818 1546

Table 4.15: I0 is human, I1 chimpanzee and I2 baboon skulls. First row: The residuals
of human skull and chimpanzee, human and baboon before registration. Second row:
The residual of human skull and chimpanzee, human and baboon after registration in
PSL(2,C).

If we suppose that there are PSL(2,C) transformations between the images, then using

the method in Section 4.2, two transformations enable us to obtain other transforma-

tions. Therefore, we register the chimpanzee skull with the baboon skull, and compose

the transformations to get a good initial guess for the registration of human and ba-

boon. Let the chimpanzee be the source and the baboon the target. The output of the

registration is the following transformation:

ϕ3(z) =
(1.0778 + 0.2414i)z + 0.1310− 0.0002i

(0.5947− 0.0367i)z + 0.9513− 0.2176i
.

Then we take ϕ1 ◦ϕ3 as an initial guess for the registration of human skull and baboon

skull:

ϕ1 ◦ ϕ3(z) =
(1.4252 + 0.4028i)z + 0.3978 + 0.0344i

(1.4453− 0.7212i)z + 0.9959− 0.4479i

Starting from there, the output of registration of the human and baboon skulls is:

ϕ2(z) =
(1.4409 + 0.4166i)z + 0.4044 + 0.0346i

(1.4371− 0.8288i)z + 0.9782− 0.4809i
.

The residuals before and after deformation are given in Table 4.15. Thompson com-

pared the two transformations between the human and the chimpanzee, and the human

and the baboon; he concluded that the transformations were of the same order and they

only differ in their degree of deformation. We can see this here by comparing ϕ1 and

ϕ3. The non-linear part of ϕ3 is bigger than the non-linear part of ϕ1, which can be

considered as the degree of deformation, which Thompson talked about. Figures 4.40

and 4.41 show skulls before registration and after registration respectively. Also, their

discrepancy after registration is shown in Figure 4.42.

As can be seen in Figure 4.42, PSL(2,C) gives a good approximation of the transfor-

mation of human skull to chimpanzee and baboon skulls. The transformations enlarge

the jaw and shrink the braincase, also changing the facial angle as Thompson described.

Figure 4.43 shows how the grid on the human skull is deformed by the transformations.
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(a) Human (b) Chimpanzee (c) Baboon

Figure 4.40: Before registration.

(d) Human (e) Chimpanzee (f) Baboon

Figure 4.41: After registration. (e) and (f) are the transformation of human skull to
chimpanzee and baboon skulls respectively.

Figure 4.42: (a) Discrepancy between the transformed human and chimpanzee after
registration in PSL(2,C). (b) Discrepancy between the transformed human and ba-
boon after registration in PSL(2,C).



4.5. THE RELATIONSHIP BETWEEN HUMAN AND SIMIAN SKULLS 155

(a) (b)

(c)

Figure 4.43: (a) Human skull along with a rectangular grid. Human skull and rectan-
gular grid after registration and transformation to (b) chimpanzee, (c) baboon.
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(a) (b) (c)

Figure 4.44: PSL(2,C) transformation of the human skull growth, (a) adult, (b) 5
years old, (c) newborn. Taken from [53].

It can be seen in Figure 4.43 that the human grid after deformation to chimpanzee

and baboon are very similar to those that Thompson sketched (shown in Figures 4.36b

and 4.36c).

4.6 Human Skull Growth

The study of the growth of a living body is an important subject in biology development

and morphology. Petukhov [53] studied the growth of the human body mathematically.

He explained that when a living body is growing the scale of the body is changing. This

scale can be equal or different in each direction for each local zone in the body. In [53],

he asked a question: ‘Does nature employ simpler type of growth changes, for example,

equal scale in each direction for each local zone in the body?’

Suppose that growth for every local region of the body is equal in each direction. How-

ever, if we look at the whole body scaling then it may not scale equally. In other

words, similarity of a small area does not mean similarity of the whole. The actions

of conformal transformations on the plane have this property, for this reason in [53]

the author approximated the growth of the human skull with PSL(2,C) transforma-

tions, see Figure 4.44. These are conformal, but are not the full set of conformation

transformations, which is infinite dimensional.

The author did not give the transformations, nor did he explain what method was used

to find them. So, in the following, we give more than three human skulls and perform

an image registration between them in two groups: PSL(2,C) and PSL(3,R).
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Figure 4.45: Traditional growth series based on longitudinal cephalometric radiographs
taken from [37].

A picture of some human skulls over developmental time is shown in Figure 4.45. The

outline of the skulls are taken for the registration, see Figure 4.46. The size of the

images is 164 × 123, and the domain is [−0.5, 0.5] × [−0.5, 0.5]. The skull I3 is taken

as source and registered with Ii, i = 1, 2, 3, 4, 5 in the PSL(2,C) group and PSL(3,

R), with σ = 4 pixels. Figure 4.47 shows the output of the registration in PSL(2,C)

and PSL(3,R), and Figure 4.48 shows the discrepancy between transformed I3 and

the targets. The algorithm performs a good registration even though the images were

line drawings. As the algorithm works on images rather than curves, it can cope with

missing data, and with images with poor overlaps originally.

It can be seen in Figure 4.48 that PSL(2,C) has done a better matching of the jaw

of the human skull than PSL(3,R), and PSL(3,R) has done a better job of matching

the head.

If two curves do not have any overlap, then their L2 distance cannot tell how close they

are. For this reason, we give the registration error on the smoothed images as well in

Table 4.16. Images are convolved with a Gaussian with σ = 4 pixels.

Comparing the registration error shows that PSL(3,R) results are as good as PSL(2,

C), so human skull growth can be described by PSL(3,R) also. Table 4.17 gives the

transformations, which are the output of the registration in PSL(2,C) and PSL(3,R).

So far, the human skulls are registered with both groups. Here we compare the corre-

sponding transformations ϕi and ψi to see if there is any relationship between them.
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(a) I1 (b) I2 (c) I3

(d) I4 (e) I5

Figure 4.46: Five human skulls.

Before Registration After Registration
PSL(2,C) PSL(3,R)

Target Smooth Non-
smooth

Smooth Non-
smooth

Smooth Non-
smooth

I1 5.8 56 1.1 20.6 1.08 20.1

I2 1.9 50.3 0.7 17.3 0.66 14.2

I3 0 0 0 0 0 0

I4 2.6 54 0.57 19.8 0.58 17.4

I5 2.7 35.4 0.85 18.3 0.87 17.2

Table 4.16: Registration error in PSL(2,C) and PSL(3,R) for smooth and non-smooth
images. Source is I3 and the targets are Ii, i = 1, 2, 3, 4, 5 given in Figure 4.46.
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Figure 4.47: Skull I3 is registered with Ii, i = 1, 2, 3, 4, 5 (given in Figure 4.46) in
groups: PSL(2,C) and PSL(3,R). Transformed I3 after registration with (a): I1, (b):
I2, (c): I3, (d): I4, (e): I5.
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Figure 4.48: Skull I3 is registered with Ii, i = 1, 2, 3, 4, 5 (given in Figure 4.46) in
the groups: PSL(2,C) and PSL(3,R). Discrepancy between transformed I3 after
registration with (a): I1, (b): I2, (c): I3, (d): I4, (e): I5.
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Target PSL(2,C) PSL(3,R)

I1 ϕ1(z) = ψ1(x, y)1 =
1.1033x+0.0621y−0.0149
−0.0413x−0.3120y+0.8461

(1.1402−0.0199i)z−0.0089i
(0.0719+0.1999i)z+0.8783+0.0148i ψ1(x, y)2 =

−0.0305x+1.0793y−0.0244
−0.0413x−0.3120y+0.8461

I2 ϕ2(z) = ψ2(x, y)1 =
1.0080x−0.039y−0.0052
0.1030x−0.3020y+0.9525

(1.0349−0.0006i)z−0.0197−0.0097i
(−0.01+0.1166i)z+0.9676−0.0016i ψ2(x, y)2 =

0.006x+1.0484y−0.0245
0.103x−0.302y+0.9525

I3 ϕ3(z) = z ψ3(x, y) = (x, y)

I4 ϕ4(z) = ψ4(x, y)1 =
0.9883x+0.0755y−0.0048
0.0297x+0.1787y+1.0533

(0.9688−0.0183i)z+0.0026+0.0117i
(0.104−0.0561i)z+1.0328+0.0206i ψ4(x, y)2 =

−0.0399x+0.9609y+0.021
0.0297x+0.1787y+1.0533

I5 ϕ5(z) = ψ5(x, y)1 =
0.9704x+0.0049y+0.0174
0.1425x+0.2351y+1.0969

(0.9398−0.0195i)z+0.0084+0.0187i
(0.0797−0.1891i)z+1.0681+0.0220i ψ5(x, y)2 =

−0.0255x+0.9478y+0.0291
0.1425x+0.2351y+1.0969

Table 4.17: Output transformations of the registration of the human skulls in PSL(2,
C) and PSL(3,R). The source is I3 and the targets are Ii, i = 1, 2, 3, 4, 5 given in
Figure 4.46.
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For example, the numerators of ψ1(x, y) are:(
1.1033x+ 0.0621y − 0.0149

−0.0305x+ 1.0793y − 0.0244

)
∼= 1.1

(
1 0.056

−0.03 1

)(
x

y

)
+

(
−0.0149

−0.0244

)
(4.2)

And the numerator of ϕ1(z) is:

(1.1402− 0.0199i)z − 0.0089i ∼= 1.14

(
1 0.02

−0.02 1

)(
x

y

)
+

(
0

−0.0089

)
(4.3)

Comparing Equations (4.2) and (4.3) shows that ϕ1 and ψ1 have almost equal scale.

The dominator of ϕ1 is:

(0.07 + 0.2i)z + 0.89 = 0.07x+ 0.07iy + 0.2ix− 0.2y + 0.89,

and the dominator of ψ1 is:

−0.04x− 0.3y + 0.85.

They have almost equal parts: −0.2y + 0.89 and −0.3y + 0.85, and different parts:

0.07x + 0.07iy + 0.2ix, and −0.04x. Although ϕ1 and ψ1 are not globally equal, they

are almost equal on [−0.5, 0.5] × [−0.5, 0.5]. Other transformations can be compared

similarly. Comparing their numerators shows that they have almost equal scaling on the

plane. So here we can discuss model selection between the two groups. The goodness

of fit, which can be compared by the residual in both groups, is almost the same. If

simplicity is compared by the number of parameters, PSL(2,C) is the simpler one.

And the last criteria is, which group describes the human growth? We cannot answer

this, because we have only five skulls, and our information is not sufficient. This can

be considered as future work. However, our study has extended and partly refuted

Petukhov by showing that an apparently good match by one group, namely PSL(2,

C), is not by itself definitive; a completely different group, PSL(3,R), may also be

relevant and can give equally good registration.

4.7 Conclusion

In this chapter we reproduced Thompson’s work using image registration with finite

dimensional groups. We could get a perfect match between images using the diffeomor-

phism group. However, registering in finite dimensional groups has provided a good

match, and so model selection is unlikely to choose the more complex group.



Chapter 5

Curve Fitting in a Lie Group

In this chapter we introduce a method to find curves in Lie groups fitting the trans-

formations that are obtained by registration. Such curves will give us a better insight

about how a natural phenomenon (e.g. growth, evolution, disease) carries on through

time.

In Section 4.6, we observed that four skulls can be generated by transformations of one

skull. Now we would like to know: Can we generate all the human skulls during growth

only by having these five skulls? For example, in registration of skulls in PSL(2,C),

we have found five transformations ϕi, i = 1, 2, 3, 4, 5. Now, suppose other skulls are

generated by some transformations ϕi, i = 6, 7, 8, . . . . This set of deformations are all

elements of a particular group, and can parameterize a curve in the group. Finding the

curve may help us to discover a law of growth or the law of nature that relates different

organisms. In the following, we introduce a method that can be applied to find the

curve passing through the given data in the group.

Let G be a Lie group and g be its Lie algebra. A Lie group is diffeomorphic to its

Lie algebra in a neighbourhood of its identity, and this diffeomorphism is given by the

exponential map, see Section 2.1.6. We use this property of the matrix Lie group to

find the curve passing through the given data. The idea is to fit a curve in the Lie

algebra and then map the curve into the group using the exponential map. The method

is as follows:

Let {ϕi, i = 1, 2, 3, . . . } be the given data in the group.

163
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• Map the ϕi to the Lie algebra: log(ϕi) = vi.

• Find a parameterized curve E : R �→ g passing near the vi:

min
E∈E,ti

Σi‖E(ti)− vi‖2, (5.1)

where E is some set of curves, ‖ · ‖ is some metric on the Lie algebra, and t the

parameters of E.

• Map the curve E(t) into the group using the exponential map: exp(E(t)).

There are a variety of choices for the norm ‖ · ‖ on the Lie algebra. One option for a

matrix group is as follows [28]:

‖v‖M = tr(Mvv∗)
1
2 ,

where M is a positive definite matrix, v∗ is the conjugate transpose, and tr is the trace

of a matrix.

5.1 Curve of the Human Skull Growth

In Section 4.6, five transformations ϕi, ψi, i = 1, 2, 3, 4, 5 were obtained by registration

in PSL(2,C) and PSL(3,R) respectively. The groups PSL(2,C) and SL(2,C), and

PSL(3,R) and SL(3,R), are homeomorphic. So, if φ(z) = az+b
cz+d is a transformation in

PSL(2,C), then the matrix corresponding to it in SL(2,C) is

(
a b

c d

)
. Therefore, the
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matrices in SL(2,C) corresponding to ϕi are as follows:

ϕ1 =

(
1.1402− 0.0199i −0.0089i

0.0719 + 0.1999i 0.8783 + 0.0148i

)
,

ϕ2 =

(
1.0349− 0.0006i −0.0197− 0.0097i

−0.01 + 0.1166i 0.9676− 0.0016i

)
,

ϕ3 =

(
1 0

0 1

)
,

ϕ4 =

(
0.9688− 0.0183i 0.0026 + 0.0117i

0.104− 0.0561i 1.0328 + 0.0206i

)
,

ϕ5 =

(
0.9398− 0.0195i 0.0084 + 0.0187i

0.0797− 0.1891i 1.0681 + 0.0220i

)
.

The matrices corresponding to ψi in SL(3,R) are:

ψ1 =

⎛⎜⎝ 1.1033 0.0621 −0.0149

−0.0305 1.0793 −0.0244

−0.0413 −0.312 0.8461

⎞⎟⎠ ,

ψ2 =

⎛⎜⎝1.008 −0.039 −0.0052

0.006 1.0484 −0.0245

0.103 −0.302 0.9525

⎞⎟⎠ ,

ψ3 =

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠ ,

ψ4 =

⎛⎜⎝ 0.9883 0.0755 −0.0048

−0.0399 0.9609 0.021

0.0297 0.1787 1.0533

⎞⎟⎠ ,

ψ5 =

⎛⎜⎝ 0.9704 0.0049 0.0174

−0.0255 0.9478 0.0291

0.1425 0.2351 1.0969

⎞⎟⎠ .
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The Lie algebra elements corresponding to ϕi are as follows:

ζ1 =

(
0.1305− 0.0172i −0.0089i

0.0715 + 0.1993i −0.1306 + 0.0172i

)
,

ζ2 =

(
0.0337 + 0.0005i −0.0197− 0.0097i

−0.0100 + 0.1165i −0.0336− 0.0005i

)
,

ζ3 =

(
0 0

0 0

)
,

ζ4 =

(
−0.0320− 0.0194i 0.0026 + 0.0117i

0.1040− 0.0561i 0.0320 + 0.0194i

)
,

ζ5 =

(
−0.0641− 0.0207i 0.0084 + 0.0187i

0.0795− 0.1889i 0.0641 + 0.0207i

)
.

And to ψi are:

ξ1 =

⎛⎜⎝ 0.0988 0.0547 −0.0147

−0.0285 0.0732 −0.0258

−0.0475 −0.3252 −0.1720

⎞⎟⎠ ,

ξ2 =

⎛⎜⎝0.0084 −0.0388 −0.0058

0.0071 0.0438 −0.0245

0.1062 −0.3008 −0.0522

⎞⎟⎠ ,

ξ3 =

⎛⎜⎝0 0 0

0 0 0

0 0 0

⎞⎟⎠ ,

ξ4 =

⎛⎜⎝−0.0101 0.0779 −0.0055

−0.0413 −0.0402 0.0208

0.0327 0.1765 0.0502

⎞⎟⎠ ,

ξ5 =

⎛⎜⎝−0.0312 0.0031 0.0168

−0.0287 −0.0570 0.0288

0.1414 0.2307 0.0882

⎞⎟⎠ .

We consider a standard basis for the Lie algebras, sl(2,C) and sl(3,R) as follows. The

sl(2,C) basis is:

v1 =

(
1 0

0 −1

)
, v2 =

(
i 0

0 −i

)
, v3 =

(
0 1

0 0

)
, v4 =

(
0 i

0 0

)
, v5 =

(
0 0

1 0

)
, v6 =

(
0 0

i 0

)
.
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ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

Scale 0.1847 0.0480 0 0.0447 0.0906

Rotation 0.0243 0 0 0.0274 0.0293

Translation 0.0089 0.022 0 0.012 0.0205

Non-linear 0.2119 0.117 0 0.1183 0.2049

Table 5.1: The norm of scale, rotation, translation and non-linear component in ϕi,
i = 1, 2, 3, 4, 5; ϕi are the transformations between the human skulls, which belong to
the PSL(2,C) group.

The sl(3,R) basis is:

w1 =

⎛⎜⎝1 0 0

0 −1 0

0 0 0

⎞⎟⎠ , w2 =

⎛⎜⎝1 0 0

0 0 0

0 0 −1

⎞⎟⎠ , w3 =

⎛⎜⎝0 1 0

0 0 0

0 0 0

⎞⎟⎠ , w4 =

⎛⎜⎝0 0 1

0 0 0

0 0 0

⎞⎟⎠ ,

w5 =

⎛⎜⎝0 0 0

0 0 1

0 0 0

⎞⎟⎠ , w6 =

⎛⎜⎝0 0 0

1 0 0

0 0 0

⎞⎟⎠ , w7 =

⎛⎜⎝0 0 0

0 0 0

1 0 0

⎞⎟⎠ , w8 =

⎛⎜⎝0 0 0

0 0 0

0 1 0

⎞⎟⎠ .

We calculate the norm of sub-transformations: scale, rotation, translation and non-

linear transformation ( z
cz+1) in ϕi by calculating the norm of their corresponding vectors

in the Lie algebra. For example, let ζi = a1v1+a2v2+a3v3+a4v4+a5v5+a6v6. Then the

norm of scale is tr((a1v1)(a1v1)
∗)

1
2 . Table 5.1 gives these values. As can be seen from

Table 5.1, the norms of rotation and translation are very close to zero. The ‘shape’ of

an object (in the sense of shape space [35]) is invariant under rotation and translation.

Therefore, we ignore the rotation and translation parts of ζi. This yields:

ζ1 =

(
0.1305 0

0.0715 + 0.1993i −0.1306

)
, ζ2 =

(
0.0337 0

−0.0100 + 0.1165i −0.0336

)
,

ζ3 =

(
0 0

0 0

)
,

ζ4 =

(
−0.0320 0

0.1040− 0.0561i 0.0320

)
, ζ5 =

(
−0.0641 0

0.0795− 0.1889i 0.0641

)
.

Similarly, we calculate the norm of the sub-transformation of translation in sl(3,R) and

we find that translations also have very small norm, and also under the translation the
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shape of an object is invariant. Therefore, we ignore the translations in ψi, and ξi are

considered as follows:

ξ1 =

⎛⎜⎝ 0.0988 0.0547 0

−0.0285 0.0732 0

−0.0475 −0.3252 −0.1720

⎞⎟⎠ , ξ2 =

⎛⎜⎝0.0084 −0.0388 0

0.0071 0.0438 0

0.1062 −0.3008 −0.0522

⎞⎟⎠ ,

ξ3 =

⎛⎜⎝0 0 0

0 0 0

0 0 0

⎞⎟⎠ ,

ξ4 =

⎛⎜⎝−0.0101 0.0779 0

−0.0413 −0.0402 0

0.0327 0.1765 0.0502

⎞⎟⎠ , ξ5 =

⎛⎜⎝−0.0312 0.0031 0

−0.0287 −0.0570 0

0.1414 0.2307 0.0882

⎞⎟⎠ .

This projection is equivalent to using a metric on the Lie algebra which is zero in the

similarity components.

Now, we need to choose a model to fit through the data in the Lie algebra. Figure 5.1

shows a two dimensional representation of the data ζk ∈ sl(2,C) in R
2. Let ζk =(

sk 0

ak + ibk −sk

)
. Figure 5.1a shows the data (sk, ak), Figure 5.1b shows (sk, bk), and

Figure 5.1c shows (ak, bk), k = 1, 2, 3, 4, 5.

As can be seen in Figure 5.1 there is an approximately linear representation between

the data (sk, bk). A polynomial of degree four can be fitted perfectly through the data.

But, by model selection criteria, we should choose a simple model. Therefore, in the

following we fit the simplest model, which is a straight line. We will also fit a line that

passes through the origin, because the lines which pass through the origin correspond

under the exponential map to one-parameter subgroups of the group. One-parameter

subgroups are the simplest model (group) that can describe the relationship between

the human skulls of different ages.

Therefore, we fit two lines fitted through the data {ζi}, ζi ∈ sl(2,C).

Line passing through the origin: A parameterized line Γ1(t) = tA is obtained by
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(a) (b)

(c)

Figure 5.1: Two-dimensional projection of ζk, where ζk = log(ϕk) =(
sk 0

ak + ibk −sk

)
∈ sl(2,C), and ϕk are the outputs of the registration of the hu-

man skulls. I3 is the source and Ik, k = 1, 2, 3, 4, 5 the targets given in Figure 4.46 in
PSL(2,C).
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minimisation of ∑
i

‖ζi − tiA‖2 =
∑
i

tr((ζi − tiA)(ζi − tiA)
∗)),

where A is found to be (
−0.4406 0

0.0603− 0.8869i 0.4406

)
.

The residual is 0.0254, and ti corresponding to each ζi is: t1 = −0.2440, t2 =

−0.1134, t3 = 0, t4 = 0.0715, t5 = 0.1941.

Line not passing through origin: A parameterized line Γ2(t) = tA+B is obtained

by minimisation of∑
i

‖ζi − (tiA+B)‖2 =
∑
i

tr((ζi − (tiA+B))(ζi − (tiA+B))∗)),

where A and B are found to be

A =

(
−0.4342 0

0.0772− 0.8898i 0.4342

)
, B =

(
0.0023 0

0.0471− 0.0086i −0.0023

)
.

The residual is 0.0123, and ti corresponding to each ζi is: t1 = −0.2507, t2 =

−0.1217, t3 = −0.0079, t4 = 0.0651, t5 = 0.1877.

The exponentials exp(Γ1) and exp(Γ2) are the curves fitting through the points repre-

senting the skulls. Let ζk =

(
sk 0

ak + ibk −sk

)
, ϕk =

(
Sk 0

Ak + iBk
1
Sk

)
be the general

form of ζk and ϕk, k = 1, 2, 3, 4, 5 respectively. Figure 5.2a show the data (sk, ak, bk)

and the fitted lines Γ1 and Γ2, and Figure 5.2b show the data (Sk, Ak, Bk) and the

curves exp(Γ1), exp(Γ2) respectively.

Figure 5.3 shows plots of each of the three parameters of the lines Γ1(t)(k, h) and

Γ2(t)(k, h) against t, along with (ti, ζi(k, h)) where (k, h) is the kh array of Γj , j = 1, 2,

and kh array in ζi, i = 1, 2, 3, 4, 5 respectively.

Similarly, two lines are fitted through the data ξi, i = 1, 2, 3, 4, 5.
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(a) Fitted Lines in the Lie algebra (b) Exponential of lines in the group

Figure 5.2: ϕk =

(
Sk 0

Ak + iBk
1
Sk

)
, where ϕk are the outputs of the registration of

human skull, I3 is the source and Ik, k = 1, 2, 3, 4, 5 the targets, given in Figure 4.46

in PSL(2,C). ζk = log(ϕk) =

(
sk 0

ak + ibk −sk

)
∈ sl(2,C). (a): Γ1 is a line passing

through the origin fitted through ζk and Γ2 a line that does not pass through the origin.
They map by the exponential to the group (b).
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(a) Γ1 (b) Γ2

(c) Γ1 (d) Γ2

(e) Γ1 (f) Γ2

Figure 5.3: Plots of each of the three parameters of lines Γi(t) against t, i = 1, 2. Γ1 is a
line in sl(2,C) that passes through the origin and Γ2 is a line that does not pass through
the origin. They are fitted by least squares. The data are the elements ζk = log(ϕk),
where ϕk are the transformations between the human skulls in PSL(2,C).
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Line passing through the origin: A parameterized line Σ1 is obtained by minimi-

sation of ∑
i

‖ξi − tiA‖2 =
∑
i

tr((ξi − tiA)(ξi − tiA)
∗)),

where A is found to be ⎛⎜⎝0.0162 −0.0019 0

0.0021 0.0204 0

−0.01 −0.0983 −0.0366

⎞⎟⎠ .

The residual is 0.0552, and ti corresponding to each ξi is: t1 = 3.5346, t2 = 2.6745,

t3 = 0, t4 = −1.7583, t5 = −2.4647.

Line not passing through the origin: A parameterized line Σ2, is obtained by min-

imisation of∑
i

‖ξi − (tiA+B)‖2 = tr((ξi − (tiA+B))(ξi − (tiA+B))∗)),

where A and B are found to be

A =

⎛⎜⎝ 0.0089 −0.0019 0

0.002 0.0117 0

−0.0078 −0.0555 −0.0206

⎞⎟⎠ , B =

⎛⎜⎝ 0.0043 0.0213 0

−0.0203 −0.0077 0

0.0544 0.0117 0.0034

⎞⎟⎠ .

The residual is 0.0376, and ti corresponding to each ξi is: t1 = 6.5489, t2 = 4.9852,

t3 = 0.3369, t4 = −2.7967, t5 = −4.0790.

Figures 5.4 and 5.5 show plots of each of the six parameters of the lines Σ1(t) and

Σ2(t) against t, i.e. Σi(k, h), i = 1, 2, along with (ti, ξi(k, h)) where (k, h) is the kh

array of Σi, i = 1, 2, and kh array in ξi, i = 1, 2, 3, 4, 5, respectively.

It is not always easy to see visually how well the linear model fits the data, particularly

as the scales of the axes of the graphs given in Figures 5.4 and 5.5 are not equal. We

therefore calculated the coefficient of determination (R2) and the adjusted coefficient

of determination (R̄2) [54], which are measures that determine how well a fitted model

represents the data. The coefficient of determination is calculated as follows:

R2 = 1−
∑

i e
2
i∑

i(Yi − Ȳ )2
,

where
∑

i e
2
i are the sum of the square of the errors after fitting a model on the data Yi,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Plots of each of the six parameters of line Σ1(t) against t. Σ1 is a line
in sl(3,R) that passes through the origin fitted by least squares. The data are the
elements ξk = log(ψk), where ψk are the transformations between the human skulls in
PSL(3,R).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Plots of each of the six parameters of line Σ2(t) against t. Σ2 is a line in
sl(3,R) that does not pass through the origin fitted by least squares. The data are the
elements ξk = log(ψk), where ψk are the transformations between the human skulls in
PSL(3,R).
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sl(2,C) R2 R̄2 sl(3,R) R2 R̄2

Γ1 0.79 0.73 Σ1 0.85 0.80

Γ2 0.90 0.80 Σ2 0.90 0.80

Table 5.2: The coefficient of determination R2, and adjusted coefficient of determination
R̄2 of the lines Γi and Σi, i = 1, 2, where the lines are fitted through the data in sl(2,C)
and sl(3,R) respectively. The data in sl(2,C) are the elements ζk = log(ϕk), where ϕk

are the transformations between the human skulls in PSL(2,C), and the data in sl(3,R)
are the elements ξk = log(ψk), where ψk are the transformations between the human
skulls in PSL(3,R). Γ1 and Σ1 are the lines that pass through the origin, and Γ2 and
Σ2 are the lines that do not pass through the origin.

and Ȳ is the mean of the data. R2 is a number between zero and one, with higher values

showing better fits. Models improve as we increase the degree of the model (since they

include more independent variables), and so the residual will be smaller, and therefore

R2 is increasing. To deal with this we use the adjusted coefficient of determination

(R̄2), which is calculated as follows:

R̄2 = 1− (1−R2)(n− 1)

n− k − 1
,

where n is the number of datapoints, k is the degree of the model, and R2 is the

coefficient of determination of the model. This penalises models with more degrees of

freedom that do not make large effects on the residuals.

So, in the following we calculate the R2 and R̄2 for the fitted lines in sl(2,C) and

sl(3,R). For the line that does not pass through the origin k = 2 (two independent

variables, the slope of the line and the constant) and for the line that passes through

the origin k = 1 (one independent variable, which is the slope of the line). Note that

the origin is included as a datapoint in both cases. Table 5.2 gives the values of R2 and

R̄2 of the fitted lines in sl(2,C) and sl(3,R). As can be seen in Table 5.2, the value of

R̄2 for the three models is 0.8, which suggests that the fitted lines represent the data

well, although there are very few datapoints.

So far, we have showed that the linear models represent the data well. Therefore,

we generate some possible human skulls by interpolation using both exp(Γ2(t)) and

exp(Σ2(t)), where a new transformation is generated by changing the t, then the trans-

formation is applied to the source (I3) and a new skull is generated, see Figures 5.6b

and 5.6c respectively.
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(a) (b) (c)

Figure 5.6: (a) The original skulls, inside to outside: I1, I2, I3, I4, I5. (b) Generating
skulls using the curve exp(Γ2) in PSL(2,C). (c) Generating skulls using the curve
exp(Σ2) in PSL(3,R).

5.2 Prediction of the Models in Human Skull Growth

In the previous section we obtained curves fitted through the transformations in the

groups PSL(2,C) and PSL(3,R). We chose the line as a model to fit because it is the

simplest and also fits well (the residuals are small). It is obvious that if we increase the

degree of the model, i.e. fit a polynomial of a higher degree then the residual is smaller

and so the fit is better. But the prediction of model may get worse as the dimension

of the model is higher. In this section we compare four models in sl(2,C),

We fitted two models in the previous section. Now we fit another two more models

through the data ζi ∈ sl(2,C) :

Quadratic: The curve Γ3 is:(
0.3518 0

−0.3496 + 1.0548i −0.3518

)
+ t

(
0.4427 0

−0.4279 + 1.2600i −0.4427

)
+

t2

(
−0.5148 0

0.6382− 1.6183i 0.5148

)
,

where ti corresponding to ζi are: t1 = 1.2140, t2 = −0.4661, t3 = −0.5032,

t4 = −0.5323, t5 = −0.5674, and the residual is 0.0037.
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Cubic: The curve Γ4 is:(
−0.0132 0

0.0134 + 0.0032i 0.0132

)
+ t

(
0.2040 0

−0.5302 + 0.5689i −0.2040

)
+

t2

(
0.7084 0

1.9198 + 0.2628i −0.7084

)
+ t3

(
0.3782 0

1.4040− 0.0123i −0.3782

)
,

where ti corresponding to ζi are: t1 = 0.3078, t2 = 0.1672, t3 = 0.0158, t4 =

−0.1194, t5 = −1.5867, and the residual is zero.

The following table gives the residuals of the four models. As can be seen, as the degree

of the model increases their residual decreases.

Cubic Quadratic Line(non-zero intercept) Line (zero intercept)

Residuals 0 0.0037 0.0123 0.0254

We generate the skulls corresponding to ζi by exp(Γj(ti)), i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4,

see Figure 5.7.

Now we generate more skulls in between the generated skulls given in Figure 5.7, see

Figure 5.8.

As can be seen some strange skulls are generated by the cubic and quadratic models.

Therefore, it seems that cubic and quadratic are not good models to describe human

skull growth. We also use a statistical method called Leave-One-Out [3] to check the

reliability of the models in prediction of new data. The steps of the leave-one-out

method are as follows: Let φi, i = 1, 2, . . . n be data.

1. Leave the data φi out, and fit a model to the remaining data: φk, k = i, (for

example fit a line Lk to φk, k = i).

2. Calculate the error ei, (For example the distance of φi to Lk).

3. Repeat the first and second steps for i = 1, 2, . . . , n.

4. Calculate the mean of the square of the errors: MSE.

Smaller values of MSE means the model is more accurate in its predictions. We compute

MSE for the models, where ei = minti(tr(ζi − (Γj(tk)))(ζi − (Γj(tk)))
∗)

1
2 , k = i; ζi is
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(a) Real skulls (b) Line (zero intercept) (c) Line (non-zero intercept)

(d) Quadratic (e) Cubic

Figure 5.7: (a) The real skulls, inside to outside: I1, I2, I3, I4, I5. Generating skulls
using the curve (b) exp(Γ1), where Γ1 is a line with zero intercept, (c) exp(Γ2) , where
Γ2 is a line with non-zero intercept, (d) exp(Γ3), where Γ3 is a quadratic curve, (e)
exp(Γ4), where Γ4 is a cubic curve.
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(a) Line (zero intercept) (b) Line (non-zero intercept)

(c) Quadratic (d) Cubic

Figure 5.8: Skull generating by the curve in PSL(2,C): (a) exp(Γ1), where Γ1 is a line
with zero intercept, (b) exp(Γ2), where Γ2 is a line with non-zero intercept, (c) exp(Γ3),
where Γ3 is a quadratic curve, (d) exp(Γ4), where Γ4 is a cubic curve.
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e1 e2 e3 e4 e5 MSE=
∑5

i=1 e
2
i

5

Cubic 0.1137 0.0483 0.0666 0.0738 0.1198 0.0079

Quadratic 0.1758 0.1537 0.1702 0.0743 0.1335 0.0214

Line non-zero intercept 0.1503 0.0843 0.0645 0.0661 0.0663 0.0085

Line zero intercept 0.1859 0.0313 0 0.105 0.1174 0.0119

Table 5.3: Leave-one-out method is employed for the data ζk, k = 1, 2, 3, 4, 5, (ζk are
the Lie algebra element corresponding to the transformation between the human skull
I3 and Ik, k = 1, 2, 3, 4, 5 in PSL(2,C)) where a line passing through the origin is fitted
through the data except ζi; ei are the distance of data ζi from the fitted line. MSE is
the mean of the square of ei, i = 1, 2, 3, 4, 5.

omitted from the data {ζk}, k = 1, 2, 3, 4, 5. Mean of the square of the errors (ei) or

MSE is given in the Table 5.3.

As can be seen from the Table 5.3, MSE of the quadratic model is the largest, which

means it is the worse model to predict the growth. The two models line with non-

zero intercept and cubic have almost equal MSE, but we observed in Figure 5.8 that

the cubic model generates some strange skulls. Therefore, the cubic model also is not

reliable. Between the two lines, MSE of the line with zero intercept is close to the MSE

of line with non-zero intercept, so both models are reliable for prediction. We may

prefer the line with zero intercept or one-parameter subgroup, but we need more data

to confirm this; we leave this for future work.

5.3 Curves Describing The Hoofed Mammals Feet

In Section 4.2, we observed that the sheep and giraffe feet can be generated by a

transformation of the ox foot. Now we would like to know whether or not we can

generate other hoofed mammals’ feet using these three feet. So, similarly to the curves

that were fitted through the human skulls’ transformations, we fit a curve through the

transformations between the feet. That curve may generate other hoofed mammals’

feet.
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Three transformations are obtained from the registration of feet as follows:

ϕ−1
0 (x, y) = (x, y),

ϕ−1
1

(
x

y

)
=

(
1.2373x− 0.0238

0.8246y+0.0007
−0.3967y+1.2124

)
,

ϕ−1
2

(
x

y

)
=

(
2.3678x− 0.1671

0.6067y+0.0185
−1.0295y+1.6169

)
.

Here ϕ0 maps the ox to the ox, ϕ1 maps the ox to the sheep and ϕ2 maps the ox to

the giraffe. These transformations in the y-direction should preserve two points: zero

and one (‘o’ and ‘y’ in Figure 4.5). Let ϕi(., y) = aiy+bi
ciy+di

be the general form of the

transformations on the y-axis. Then:

ai(0) + bi
ci(0) + di

= 0 ⇒ bi = 0,

ai(1) + 0

ci(1) +
1
ai

= 1 ⇒ ci = ai − 1

ai
.

It can be seen that bi is almost zero and ci = ai− 1
ai
. Therefore, ϕi(., y) can be written

as a function of only one variable as follows:

aiy + bi
ciy + di

=
aiy

(ai − 1
ai
)y + 1

ai

. (5.2)

The translation part of ϕi(x, .) can be ignored, because it only relates to the position of

the image in the plane. Therefore, ϕi is considered as a function of only two variables:

ϕi(x, y) =

(
six,

aiy

(ai − 1
ai
)y + 1

ai

)
.

As explained in Section 2.1.9, there is a homeomorphism between PSL(2,R)×PSL(2,
R) and the matrix group SL(2,R)×SL(2,R). Therefore, each transformation φ(x, y) =

(ex+ f, ay+b
cy+d) is in correspondence with a matrix in SL(2,R)× SL(2,R) as follows:

ex+ f ↔
(

s√
s

f√
s

0 1√
s

)
,

ay + b

cy + d
↔
(
a b

c d

)
.
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Therefore, the matrix corresponding to ϕi is

ϕi(x, y) ↔
((

si 0

0 1
si

)
,

(
ai 0

ai − 1
ai

1
ai

))
.

We use the same notation ϕi for the corresponding matrix. The general form of a Lie

algebra element corresponding to ϕi is:

vi = log(ϕ) =

((
βi 0

0 −βi

)
,

(
αi 0

2αi −αi

))
.

So:

v0(x, y) = log(ϕ−1
0 ) =

((
0 0

0 0

)
,

(
0 0

0 0

))
,

v1(x, y) = log(ϕ−1
1 ) =

((
0.1065 0

0 −0.1065

)
,

(
−0.1927 0

−0.3943 0.1927

))
,

v2(x, y) = log(ϕ−1
3 ) =

((
0.4310 0

0 −0.4310

)
,

(
−0.4871 0

−0.9928 0.4871

))
.

Since we have only three points in the Lie algebra, we fit a line. We only fit a line

passing through the origin. The line L is obtained by minimisation of:∑
i

‖vi − tiA‖2 =
∑
i

tr((vi − tiA)(vi − tiA)
∗)),

where A is :

A =

((
−0.646 0

0 0.646

)
,

(
0.7633 0

2(0.7633) −0.7633

))
, (5.3)

and the residual is 0.0057, and ti corresponding to each vi is: t1 = 0, t2 = −0.2356,

t3 = −0.6437. Figure 5.9 shows the data {(βi, αi), i = 0, 1, 2} in R
2 along the fitted line

t �→ (−0.6460t, 0.7633t).

To find the curve in the group, we need to map the line L into the group using the

exponential function. Figure 5.10 shows the data {(si, ai), i = 0, 1, 2} and the curve

t �→ (exp(−0.6460t), exp(0.7633t)).

We also calculate the MSE by the leave-one-out method for this line. Table 5.4 gives the

errors and MSE. The value of MSE is 0.018 which is small, so this model may be reliably

used to predict the new data. So, we produce more new feet by the transformation of
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Figure 5.9: A two-dimensional representation of the line L fitted through vi = log(ϕi) =((
βi 0
0 βi

)
,

(
αi 0
2αi αi

))
, where ϕ0 maps ox to ox, ϕ1 maps ox to sheep and ϕ2 maps

ox to giraffe.

Figure 5.10: A two-dimensional representation of the exponential curve exp(L) (L

is shown in Figure 5.9) fitted through vi =

((
βi 0
0 βi

)
,

(
αi 0
2αi αi

))
= log(ϕi) =

log

((
si 0
0 1

si

)
,

(
ai 0

ai − 1
ai

1
ai

))
, where ϕ0 maps ox to ox, ϕ1 maps ox to sheep and ϕ2

maps ox to giraffe, (see Figure 5.9).
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Figure 5.11: Transformation of ox foot by exp(L(t)), where t is from left to right:
0,−0.2,−0.4,−0.6,−0.8,−1,−1.2; E(t) is the line fitted through log(ϕi), i = 0, 1, 2,
where ϕ0 maps ox to ox, ϕ2 maps ox to sheep and ϕ2 maps ox to giraffe.

i = 1 i = 2 i = 3 MSE=
∑3

i=1 e
2
i

3

ei 0 0.0806 0.2182 0.0180

Table 5.4: Leave-one-out method is employed for the data vk, k = 1, 2, 3. Here vk
are the Lie algebra elements corresponding to the transformation of the ox foot to the
ox, sheep and giraffe feet in PSL(2,R)× PSL(2,R), where a line passing through the
origin is fitted through the data except vi; ei are the distance of data vi from the fitted
line. MSE is the mean of the square of ei, i = 1, 2, 3.

the ox by exp(L(t)), where t = 0,−0.2,−0.4,−0.6,−0.8,−1,−1.2, see Figure 5.11.

5.4 Conclusion and Future Work

In this chapter we introduced a method to find a parameterized curve in the Lie group

passing through the data. We employed the method for two examples, human skulls

and hoofed mammal feet. For the human skull, we fitted lines in the Lie algebras of the

groups PSL(2,C) and PSL(3,R). Then we calculated the coefficient of determination

of the fitted lines to see if the data are linear or not. The coefficient of determination

of the lines showed that the data may well be linear, although there are very few

datapoints. Moreover, for the human skulls we calculated the MSE by leave-one-out

method for four models, we found that lines can be reliably used to describe the human
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skull growth. In order to compare between the lines, simplicity, a good match (measured

as a small residual), and the fact that it is a group may convince us to choose the one-

parameter subgroup as a model to describe the human skull growth. Also, MSE of

the one-parameter subgroups curve of feet was small, so the other hoofed mammal feet

may be generated from the fitted one-parameter subgroup.

The fitted curve depends on the choice of the metric, so as future work we can consider

other choices of metric. Also the number of our data was small, if we have more data

we can test the accuracy of the model better. So as future work we can collect more

data to find a more accurate model.



Chapter 6

Multi-Registration of Images

Thompson says:

“Growth and Form are throughout of this composite nature; therefore the

laws of mathematics are bound to underlie them, and her methods to be

peculiarly fitted to interpret them.” (page 1028 in [67]).

Thompson’s point of view that every phenomenon is a composite of simple actions

inspires us to introduce a new idea to the field of image registration. We call it

multi-registration. Here images are registered with a sequence of simple groups of

transformations to derive simple actions. One case of multi-registration is about us-

ing progressively larger groups. An idea that is slightly related is to use progressively

smaller deformation, for example by starting with a low resolution smoothed image, and

iteratively refining the registration as the image resolution is increased [62]. Another

model is the GRID (Growth by Random Iterated Diffeomorphisms), which is focused

on deriving local elementary deformations (small diffeomorphisms) successively. Each

transformation that is a diffeomorphism is specified in polar coordinate systems at the

centre of growth using two functions: angular and radial deformation functions [29].

In the mathematical setting, multi-registration can be written as:

Definition 6.0.1. Let G1, G2, ..., Gn be groups acting on the space of images, ‖ · ‖ the

187
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distance function, I the source and J the target. A multi-registration is the solution to

ϕi = arg min
ϕi∈Gi

‖(Ii−1 ◦ ϕ−1
i − J)‖,

such that I0 = I and Ii = Ii−1 ◦ ϕ−1
i , i = 1, 2, ..., n.

(6.1)

In Chapter 2 the lattice of finite dimensional planar Lie groups was given. Groups on

the lattice either have a group–subgroup relationship, or they do not. Therefore, two

different cases can be considered in multi-registration, as follows:

Case one: Multi-registration on a chain of groups, where Gi ⊂ Gi+1. Registration is

preformed first in Gi then in Gi+1.

G1 G2 G3 . . .

Figure 6.1: The edge Gi → Gi+1 means that Gi is a subgroup of Gi+1, and multi-
registration is performed first in Gi and then in Gi+1.

Case two: Multi-registration on a tree of groups. Registration is performed in a dif-

ferent order that in the lattice diagram.

G1

G2G3

G4

Figure 6.2: The edge Gi → Gj means that Gi is a subgroup of Gj . On a tree, multi-
registration can be performed in several different orders.

Multi-registration of images gives us the following information:

• A set of partially transformed images Ii.

• The transformations ϕi that partially register in Gi

• The discrepancies ‖Ii−1 ◦ ϕ−1
i − J‖.

• The norms of the partial transformations di = tr(log(ϕi) log(ϕi)
∗)

1
2 .
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• Another measure of the size of ϕi is a length L. Let φ(t) be a curve in the

diffeomorphism group, with φ(0) = id, φ(1) = ϕi. Let

L =
1

Vol(Ω)

∫ 1

0

∫
(x,y)∈Ω

‖ d
dt
φt(x, y)‖2dxdydt (6.2)

where ‖ · ‖2 is the L2-norm of the gradient field, and Vol(Ω) is the volume of Ω.

The value of L provides us the with information about the amount of deformation

of the domain of the image, in a way that is independent of the choice of norm

in d.

This information can be useful to understand the relationship between images better.

6.1 Multi-registration in a Chain of Groups

This section is about multi-registrations in a chain of groups. We give two different

examples. The first example is multi-registration with G3 = PSL(3,R) and its two

subgroups G2 = affine and G1 = special affine, and the second example is multi-

registration with G1 = PSL(2,C) and G2 = diffeomorphism group.

Example 16. In Section 4.4, Argyropelecus olfersi as source (I) is registered with

Sternoptyx diaphana as target (J) in G3 = PSL(3,R) and its two subgroups, G2 =

affine and G1 = special affine.

(a) Argyropelecus olfersi (b) Sternoptyx diaphana

Figure 6.3: Two fish species images taken from [50].
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Three images Ii and three transformations φ−1
i , i = 1, 2, 3 are obtained by multi-

registration of I and J . Let φ−1
i = ϕi, then

Ii = Ii−1 ◦ ϕi, ϕi ∈ Gi,

and we find

ϕ1(x, y) = (1.0537x+ 0.2062y − 0.0411, 0.1138x+ 0.9713y + 0.0025),

ϕ2(x, y) = (0.9648x+ 0.0876y − 0.0076, 0.017x+ 0.8221y − 0.0048),

and

ϕ3(x, y) =

(
1.0485x+ 0.0505y − 0.0172

−0.3293x− 0.4784y + 0.9811
,
0.0578x+ 0.9864y − 0.0138

−0.3293x− 0.4784y + 0.9811

)
.

Let Ω′ be a rectangular grid on the image domain Ω, Ω′
0 = Ω′, and Ω′

i = ϕ−1
i ◦ ϕ−1

i−1 ◦
· · · ◦ ϕ−1

1 (Ω′). Figure 6.4 shows images Ii, i = 1, 2, 3 along with the deformed grid Ω′
i,

and Figure 6.5 the sequences of output images during the multi-registration.

We map transformations into their Lie algebras to calculate the distances di.

v1 = log(ϕ1) =

⎛⎜⎝0.0410 0.2053 −0.0406

0.1133 −0.0410 0.0049

0 0 0

⎞⎟⎠ ,

v2 = log(ϕ2) =

⎛⎜⎝−0.0367 0.0983 −0.0075

0.0191 −0.1969 −0.0052

0 0 0

⎞⎟⎠ ,

v3 = log(ϕ3)

⎛⎜⎝ 0.0435 0.0458 −0.0167

0.0548 −0.0183 −0.0136

−0.3124 −0.4804 −0.0251

⎞⎟⎠ .

And:

d1 = tr(v1v
∗
1)

1
2 = 0.2449,

d2 = tr(v2v
∗
2)

1
2 = 0.2241,

d3 = tr(v3v
∗
3)

1
2 = 0.5803.

In Section 4.4, images are registered with the PSL(3,R) group, and the following
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Figure 6.4: (a) Source I0 and rectangular grid Ω′, (b) source after registration in the
special affine group, where it is transformed to I1 = I0 ◦ϕ1, along with the transformed
grid Ω1

′ = ϕ−1
1 (Ω′), (c) second step of multi-registration in the affine group, where

the source is I1 and it is transformed to I2 = I1 ◦ ϕ2, along with the transformed grid
Ω2

′ = ϕ−1
2 (Ω1

′), (d) third step of multi-registration in PSL(3,R), where the source is I2
and it is transformed to I3 = I2 ◦ ϕ3, along with the transformed grid Ω3

′ = ϕ−1
3 (Ω2

′).
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(a) I0: Source

(b) I1 = I0 ◦ ϕ1 (c) I2 = I1 ◦ ϕ2 (d) I3 = I2 ◦ ϕ3

(e) J : Target

Figure 6.5: Image I0 is multi-registered with J . (a) I0 (source) (b) I1 = I0 ◦ ϕ1, (c)
I2 = I1 ◦ ϕ2, (d) I3 = I2 ◦ ϕ3, where ϕ1 belongs to special affine, ϕ2 belongs to affine
and ϕ3 belongs to PSL(3,R).
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transformation is obtained,

f(x, y) =

(
1.1624x+ 0.3472y − 0.0671

−0.3891x− 0.4897y + 1.0740
,
0.1872x+ 0.8781y − 0.0221

−0.3891x− 0.4897y + 1.0740

)
,

which is almost equal to

ϕ3 ◦ ϕ2 ◦ ϕ1(x, y) =

(
1.1696x+ 0.3657y − 0.0720

−0.4231x− 0.5158y + 1.0790
,
0.1830x+ 0.8729y − 0.0215

−0.4231x− 0.5158y + 1.0790

)
.

where ϕ3 ◦ ϕ2 ◦ ϕ1 is scaled by its determinant, which is 0.7917. They are not exactly

equal, because the source at each step of multi-registration is the output of the reg-

istration in the previous step, which is affected by interpolation. Also, as mentioned

in Chapter 3, registration of real images is more difficult than registration of synthetic

images, because in synthetic images there is exactly one point where the images match

perfectly, which is unlikely to exist at all in real images. In fact, this interpolation

problem could be avoided by concatenating the actions of the groups rather than using

the deformed image from the previous step, although this was not done here.

So, with multi-registration the transformation is decomposed into several transforma-

tions (three in this example), each of which gives us some information that cannot

be obtained from the final transformation alone. In the following, this information is

examined further.

Since ϕi
∼= id+ vi, then exp(vit) is a shortest path connecting ϕ1 and id because:∫ 1

0
‖ d
dt

exp(tv)‖dt ∼=
∫ 1

0
‖ d
dt
(id+ tv)‖dt =

∫ 1

0
‖v‖dt = ‖v‖.

Therefore, Li is calculated as follows,

Li =
1

Vol(Ω)

∫ 1

0

∫
(x,y)∈Ω

‖ d
dt

exp(vit)(x, y)‖2dxdydt. (6.3)

Because the domain of the images is discretized, Vol(Ω) is taken as the total number

of pixels. The following Table 6.1 gives all the information that we have measured

about the multi-registration. Each ϕi gives us a better intuition about the geometrical

relationship between the fish. This is summarized in Table 6.2.

Note here that when registering in a group we may not get all (or indeed any part)

of the sub-transformation of the group. For example, shearing can be obtained by the

action of special affine on the plane, but comparing the ϕi shows that there is still

some shearing in the affine and PSL(3,R) transformations. However, the significant
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i = 0 i = 1 i = 2 i = 3

‖Ii − J‖22 606.2144 414.2554 384.4359 332.5374

Di = 1− ‖Ii−J‖22
‖Ii−1−J‖22

0 0.3167 0.072 0.135

di - 0.2449 0.2241 0.5803

Li - 0.0726 0.0635 0.0569

Table 6.1: Information of multi-registration of source and target in Figure 6.3 by three
groups: G1 = special affine (i = 1) , G2 = affine (i = 2), and G3 = PSL(3,R) (i = 3).

Transformation Interpretation of the information

Special
Affine

x �→ 1.0537x+ 0.2062y − 0.0411

y �→ 0.1138x+ 0.9713y + 0.0025

• Shears are: 0.2062 and 0.1138.

• Determinant is one ⇒ volume
of I1 = volume of I.

Affine

x �→ 0.9648x+ 0.0876y − 0.0048

y �→ 0.017x+ 0.8221y − 0.0076

• Shears are small (since they
are already taken out by spe-
cial affine).

• Volume of Source
Volume of Target = 0.7917

Projective

x �→ 1.0485x+ 0.0505y − 0.0172

−0.3293x− 0.4784y + 0.9811

y �→ 0.0578x+ 0.9864y − 0.0138

−0.3293x− 0.4784y + 0.9811

• Scale and shear parts of the
transformation are close to the
identity.

• There are some projective
parts, which squeeze and ex-
pand the image to make a bet-
ter alignment.

Table 6.2: Information of multi-registration of two fishes given in Figure 6.3 in three
groups: special affine, affine, and PSL(3,R).
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part of the shear is in special affine. The main part of the scaling is seen in the affine

group. The ratio of their size is Volume of Source
Volume of Target = 0.7917, see Table 6.2. Registration in

the biggest group PSL(3,R) makes a better alignment. The d1, d2 and d3 tells us how

big the transformations are. In order of impact, the projective parameters, shear and

scale are the most important. And Li tells us about the amount of deformation that

each group performs on the domain of the image; it can be seen that they make almost

equal deformations.

Therefore, this example shows us that with multi-registration a complex transformation

can be given as a composition of simple sub-transformations: shear, scale and projec-

tive. Note also that the multi-registration G1 → G2 → G3 with G1 ⊂ G2 ⊂ G3 can be

easier to compute than registration with G3 alone, as the individual transformations

are smaller and the dimensions (for G1 and G2) are lower.

The next example is to multi-register the human and chimpanzee skulls by two groups

G1 = PSL(2,C) and G2 = diffeomorphism group. For the registration the same images

as in Chapter 4 are used (the curves, with their inside filled with black).

Example 17. In Section 4.5 the human skull is deformed to the chimpanzee by φ−1 =

ϕ1 ∈ PSL(2,C).

ϕ1(z) =
(1.2049 + 0.0608i)z + 0.2363 + 0.0793i

(0.6641− 0.7029i)z + 0.9992− 0.1446i
.

However, the transformed human skull did not match the chimpanzee skull particularly

well. Let the human skull be source I0, chimpanzee J as target, and transform the

human skull by PSL(2,C) to make I1, see Figure 6.6b.

Registration is carried out in the full diffeomorphism group G2, with source I1 and

target J . The greedy image matching algorithm is employed for the diffeomorphic

registration (see Chapter 2) for 5 steps, with �t = 0.003. The output of registration

which transforms I1 to I2 = I1 ◦ ϕ−1
2 is the diffeomorphism ϕ2. Figure 6.6c shows I2.

Registration in G2 makes an almost perfect match, Figure 6.7 shows the discrepancy

between J with I1 and I2. Figure 6.8 shows the rectangular grid Ω′ on the human skull

which is deformed during multi-registration in G1 and G2.

We can calculate d1 but not d2:

d1 = tr(log(ϕ1) log(ϕ1)
∗)

1
2 = 0.9861,
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(a) Source: I0 (b) I1

(c) I2 (d) Target: J

Figure 6.6: Multi-registration of the human skull as source and the chimpanzee skull
as target in two groups: G1 = PSL(2,C), G2 = diffeomorphism. (a) Human skull as
source. (b) I1 which is transformed source and output of registration in PSL(2,C).
(c) I2 which is transformed I1 and the output of the registration in the diffeomorphism
group, (d) chimpanzee skull (the target).

(a) (b)

Figure 6.7: Discrepancy between the chimpanzee skull (J) the target and the trans-
formed human skulls (I0) in multi-registration, where G1 = PSL(2,C) and G2 = dif-
feomorphism group. (a) Discrepancy between chimpanzee skull and human skull after
registration in PSL(2,C), where the human skull is transformed to I1. (b) Discrepancy
between the chimpanzee skull and I1 after registration in the diffeomorphism group.
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(a) I0
(b) I1

(c) I2

Figure 6.8: The output of multi-registration of the human skull as source and the
chimpanzee skull as target in PSL(2,C) and the diffeomorphism group. (a) The hu-
man skull as source along with the rectangular grid Ω1

′. (b) Transformation of the
human skull and Ω1

′ by PSL(2,C) to I1 and Ω2
′. (c) Transformation of I1 and Ω1

′ by
diffeomorphism group to I2 and Ω2

′.
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where

log(ϕ1) =

(
0.0982 + 0.1006i 0.2275 + 0.0797i

0.6513− 0.6712i −0.0981− 0.1007i

)
.

Since

ϕ1 =

(
1.2049 + 0.0608i 0.2363 + 0.0793i

0.6641− 0.7029i 0.9992− 0.1446i

)
∼= id+ log(ϕ1) =(

1 0

0 1

)
+

(
0.0982 + 0.1006i 0.2275 + 0.0797i

0.6513− 0.6712i −0.0981− 0.1007i

)
=(

1.0982 + 0.1006i 0.2275 + 0.0797i

0.6513− 0.6712i 0.9019− 0.1007i

)
,

L1 can be calculated by Equation (6.3) and it is 0.2479. In diffeomorphic registration

by the greedy image matching algorithm a path φt is generated, where φ0 = id is the

start point and ϕ2 is the end point. Using Equation (6.3) L2 = 0.03. Although φt is

not a geodesic, since the deformation is small, the length of geodesic and the length of

φt should not be significantly different. Otherwise the LDDMM algorithm needs to be

employed, see Section 1.2. The residuals, di and Li are given in Table 6.3.

i = 0 i = 1 i = 2

Transformation - ϕ1(z) =
(1.2049+0.0608i)z+0.2363+0.0793i
(0.6641−0.7029i)z+0.9992−0.1446i -

‖Ii − J‖22 6330.2 1818.8 512.4584

Di = 1− ‖Ii−J‖22
‖Ii−1−J‖22

0 0.7128 0.7182

di - 0.9861 -

Li - 0.2479 0.03

Table 6.3: Information from multi-registration of human skull and chimpanzee skull.

As can be seen in Table 6.3, D1 and D2 are almost equal, which means that they

make similar amounts of alignment between the images. But an important point is

that PSL(2,C) is a six dimensional group, while the diffeomorphism group is infinite

dimensional. This suggests that PSL(2,C) has a more significant role than the dif-

feomorphism group on the deformation of human skull to chimpanzee skull. Also, L1

is much bigger than L2, which indicates that PSL(2,C) makes a bigger deformation

in comparison to diffeomorphism. Therefore, we draw the conclusion that the human

skull is well registered by a Möbius transformation to the chimpanzee skull. Note that

one important difference between the groups is that the finite dimensional groups are
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Figure 6.9: (a) Source, I0, (b) target, J . The target is generated by a PSL(2,C)
transformation of the source.

in some sense global, since the same matrix is applied to all points, while the diffeo-

morphisms are local, and can deform different parts of the image differently.

6.2 Multi-registration on a Tree of Groups

In this section, two examples of multi-registration on trees of groups are given. In

the first example, the groups are G3 = PSL(2,C) and its two disjoint subgroups,

G2 = NPSL(2,C) and G1 = similarity, and in the second example the groups are

PSL(2,C) and PSL(2,R)× PSL(2,R).

Example 18. In this example, we take an image of a plant as source I0, shown in

Figure 6.9. The domain of the source is taken as [−0.5, 0.5]× [−0.5, 0.5]. We generate a

target J from the source by a PSL(2,C) transformation of I0, where the transformation

is:

φ−1(z) =
(1.2− 0.01i)z − 0.01− 0.02i

(0.6 + 0.7i)z + 0.8401− 0.0088i
.

In contrast to chain multi-registration where there is one natural order of groups, in

tree multi-registration there are different possible orders. In this example two different

orders of groups can be considered.

First case: Source and target are registered in G1 = NPSL(2,C), G2 = similar-

ity, and G3 = PSL(2,C) respectively. Three transformations φ−1
i and three

images are obtained from multi-registration as follows, let φ−1
i = ϕi (where
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ϕ1 ∈ NPSL(2,C), ϕ2 ∈ similarity, and ϕ3 ∈ PSL(2,C)):

ϕ1(z) =
z

(0.611 + 0.5365i)z + 1
,

ϕ2(z) = (1.4593− 0.0679i)z − 0.0155− 0.0244i,

ϕ3(z) =
(0.9875 + 0.0127i)z + 0.0022 + 0.0008i

(−0.158 + 0.0997i)z + 1.0121− 0.0129i
.

I1 = I0 ◦ ϕ1,

I2 = I1 ◦ ϕ2,

I3 = I2 ◦ ϕ3.

Images I0, I1, I2, and I3 are shown in Figure 6.10. The discrepancies between I0,

I1, I2 and I3 with J are shown in Figure 6.11.

The residuals, di, and Li, i = 1, 2, 3 are given in Table 6.4, where Li is calculated

using Equation (6.3).

i = 0 i = 1 i = 2 i = 3

Ei = ‖Ii − J‖22 2139.6 1915.2 419.9 278.58

Di = 1− ‖Ii−J‖22
‖Ii−1−J‖22

0 0.1049 0.78 0.34

di - 0.8131 0.2711 0.1884

Li - 0.1443 0.1239 0.0340

Table 6.4: Output of multi-registration of the source and target given in Figure 6.9 in
three groups G1 = NPSL(2,C), G2 = similarity and G3 = PSL(2,C).

As can be seen in Table 6.4, D2 is the biggest value, so the majority of alignment

is made by the similarity group, this can also be seen in Figure 6.11. Although

NPSL(2,C) matches only 10% of the images, this does not mean this group per-

forms less deformation: L1 shows that this group makes the biggest deformation

on the images. Moreover, the non-linear parameter of ϕ1 is 0.611+0.5365i, which

is almost close to the non-linear parameter of φ−1, 0.6 + 0.7i. This shows that

registration in NPSL(2,C) produces almost all of the non-linearity. After two

steps of registration the images are almost matched. In other words, most of the

deformation is fulfilled by the two subgroups, so registration in PSL(2,C) does

not produce a big deformation; L3 is very small. Comparing di tells us about the

size of transformations: in order of decreasing size the transformations are ϕ1,

ϕ2, ϕ3.

Second case: The source and the target are registered in G1 = similarity, G2 =
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(a) Source: I0 (b) I1

(c) I2 (d) I3

Figure 6.10: Multi-registration of the source (I0) and the target (J) given in Figure 6.10
in three groups: G1 = NPSL(2,C), G2 = similarity, and G3 = PSL(2,C). (a) Source
along with rectangular grid Ω′. (b) Output of multi-registration in G1: Transformation
of I0 and Ω′ to I1 and Ω′

1. (c) Output of multi-registration in G2: Transformation of
I1 and Ω′

1 to I2 and Ω′
2. (d) Output of multi-registration in G3: Transformation of I2

and Ω′
2 to I3 and Ω′

3.
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(a) I0 − J (b) I1 − J

(c) I2 − J (d) I3 − J

Figure 6.11: Multi-registration of the source (I0) and target (J) given in Figure 6.9 in
three groups: G1 = NPSL(2,C), G2 = similarity, and G3 = PSL(2,C). Discrepancy
between target (J) and: (a) source, (b) I1 that is output of multi-registration in G1, (c)
I2 that is output of multi-registration in G2, (d) I3 that is output of multi-registration
in G3.
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NPSL(2,C), and G3 = PSL(2,C) respectively. Three transformations φ−1
i are

obtained from multi-registration as follows (let φ−1
i = ϕi):

ϕ1(z) = (1.2654− 0.1061i)z − 0.0403 + 0.1529,

ϕ2(z) =
z

(−0.0468− 0.0231i)z + 1
,

ϕ3(z) =
(1.1831− 0.0160i)z + 0.0252− 0.1311

(0.7651 + 0.7863i)z + 0.9495− 0.0551i
.

In this list, ϕ1 ∈ similarity, ϕ2 ∈ NPSL(2,C), and ϕ3 ∈ PSL(2,C). The three

output images are I1, I2, and I3; they are shown in Figure 6.12. The discrepancy

between I0, I1, I2, I3 and J are shown in Figure 6.13. The residuals, di, Li,

i = 1, 2, 3 are given in Table 6.5, where Li is calculated using Equation (6.3).

i = 0 i = 1 i = 2 i = 3

Ei = ‖Ii ◦ ϕi − J‖ 2139.6 940.24 918.37 14.73

Di = 1− ‖Ii◦ϕi−J‖
‖Ii−1−J‖ 0 0.5606 0.0237 0.9840

di - 0.2272 0.0520 1.0341

Li - 0.1420 0.0087 0.1893

Table 6.5: Output of multi-registration of the source and target given in Figure 6.9 in
three groups G1 = similarity, G2 = NPSL(2,C), and G3 = PSL(2,C).

As mentioned before, when registering in a group we may not get all or any

part of the sub-transformation of the group. In this example, we observe that

NPSL(2,C) does not give the non-linearity part, also D2, d2 and L2 are very

small and ϕ2 is very close to identity.

Example 19. Thompson compared the Diodon porcupine fish and the Orthagoriscus

mola fish, also known as a Sunfish. He described the sunfish as a non-linear transfor-

mation of Diodon. He deformed the vertical lines on Diodon fish to circular lines and

the horizontal lines to approximately hyperbolic lines. Then the outline of the Diodon

fish was transferred to the new grid, and the resulting figure resembled the Sunfish, as

is shown in Figure 6.14.
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(a) I0 (b) I1

(c) I2 (d) I3

Figure 6.12: Multi-registration of the source (I0) and target (J) given in Figure 6.9 in
three groups: G1 = similarity, G2 = NPSL(2,C), and G3 = PSL(2,C). (a) Source
along with rectangular grid Ω′. (b) Output of multi-registration in G1: Transformation
of I0 and Ω′ to I1 and Ω′

1. (c) Output of multi-registration in G2: Transformation of
I1 and Ω′

1 to I2 and Ω′
2. (d) Output of multi-registration in G3: Transformation of I2

and Ω′
2 to I3 and Ω′

3.
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(a) I0 − J (b) I1 − J

(c) I2 − J (d) I3 − J

Figure 6.13: Multi-registration of the source (I0) and target (J) given in Figure 6.9 in
three groups: G1 = similarity, G2 = NPSL(2,C), and G3 = PSL(2,C). Discrepancy
between the target (J) and: (a) source, (b) I1, the output of multi-registration in G1,
(c) I2, the output of multi-registration in G2, (d) I3, the output of multi-registration
in G3.



206 CHAPTER 6. MULTI-REGISTRATION OF IMAGES

Figure 6.14: left: Diodon porcupine, right: Sunfish, figures are taken from [67].

He explained that:

“In a mathematical sense, it is not a perfectly satisfactory or perfectly

regular deformation for the system is no longer isogonal1; but nevertheless,

it is symmetrical to the eye, and obviously approaches to an isogonal system

under certain conditions of friction or constraint.” (Page 1064 in [67])

It can be seen in Figure 6.14 that he did not sketch the transformed Diodon, but simply

showed the grid. This grid resembles the action of PSL(2,C) because vertical lines are

mapped to circles; this group is a subgroup of the conformal group.

Therefore, we register Diodon with Sunfish in PSL(2,C) group, where Diodon is taken

as the source I0, and Sunfish is taken as the target J . The grid lines are deleted, and

the inside of the fishes are filled with black for the registration. However, we found

that the registration algorithm did not produce any reasonable result.

In our previous experiments the registration algorithm always succeeded, even when

the images were line drawings, see Section 4.6. One reason why registration fails can be

1Conformal
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(a) Diodon (b) Sunfish

Figure 6.15: Four corresponding points are selected to calculate the cross-ratios.

Sunfish Diodon

Cross-ratio 0.5043− 0.2179i 0.4945 + 0.2714i

Table 6.6: Cross-ratios of four marked points on fishes, see Figure 6.15.

because there is no transformation in PSL(2,C) that describes a good match between

the fishes. To check this, we calculated the cross-ratios. Four corresponding points

are marked, see Figure 6.15, and their cross-ratios are calculated. These are given in

Table 6.6.

As can be seen in Table 6.6, the cross-ratios of four marked points are not equal.

Moreover, we employed a landmark registration between fishes, to provide independent

evidence that there is no element of G1 = PSL(2,C) that gives a good transformation

between these fish. Twelve corresponding points are marked in I0 and J , see Figure 6.16.

Let z1 and w be the marked points in I and J respectively; they are given in Table 6.7.

Transformation ϕ1 is obtained from the landmark registration as follows:

ϕ1(z) =
(1.2298− 0.01i)z − 0.1177 + 0.0067i

(−1.3579− 0.0937i)z + 0.9435 + 0.0092i
.

The residual of points before registration is 0.48 and after registration is 0.3357. Fig-

ure 6.17a shows marked points z1, w, and z2 = ϕ1(z1). Also, image I0 is transformed

by ϕ1. Figure 6.18b shows I0 and I1 = I0 ◦ ϕ−1
1 . Figure 6.19a shows the discrepancy

between I1 and J .

As can be seen in Figure 6.17a the transformed points do not match, nor are they even

close. Also in Figure 6.19a, I1 is not similar to J at all. Moreover the residuals before
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(a) Source (b) Target

Figure 6.16: Twelve corresponding points are marked in source (I0) and target(J) for
landmark registration.

z1 w

(−0.3457,−0.0053) (−0.4002, 0.0239)

(−0.2037,−0.0987) −0.2368,−0.1629)

(−0.0831,−0.1201) (−0.0967,−0.2096)

(0.0842,−0.0734) (−0.0247,−0.2212)

(0.1659,−0.1181) (0.0161,−0.48)

(0.1893,−0.0267) (0.1017,−0.2057)

(0.2768,−0.0053) (0.2438,−0.0014)

(0.1873, 0.0045) (0.0978, 0.1873)

(0.1776, 0.1192) (0.022, 0.4675)

(0.0803, 0.0511) (−0.0092, 0.2262)

(−0.0811, 0.1154) (−0.1045, 0.236)

(−0.2057, 0.1115) (−0.2348, 0.1815)

(−0.3457,−0.0053) (−0.4002, 0.0239)

Table 6.7: The coordinates of twelve marked points on the source and the target in
Figure 6.16 for landmark registration.
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(a) (b)

Figure 6.17: (a) Landmark registration of data1 and data2 in PSL(2,C), where
data1 (z1) are the set of marked points on the source (I0); data2 (w) are the set
of marked points on the target (J) (see Figure 6.16) and data3 are the transforma-
tion of data1 after registration. (b) Landmark registration of data3 and data2 in
PSL(2,R) × PSL(2,R), where data3 (z2) are the transformation of data1 in the left
figure; data2 (w) are the set of marked points on the target (J), and data1 are the
transformation of data3 after registration.

and after registration do not change too much. Therefore, there does not seem to be

any PSL(2,C) transformation between these fish. However, looking at Figure 6.18b,

it can be seen that the deformed grid looks similar to what Thompson sketched. The

only difference is that Thompson drew the circles from the mouth to the tail of fish

evenly, whereas in our grid the distances between the circles increases from the mouth

to the tail. It seems that some contraction horizontally might make the grid similar to

Thompson’s grid and transfer Diodon to Sunfish. The action of PSL(2,R)×PSL(2,R)
on the plane has this property. Hence, we continue the landmark registration in this

group between the transformed points: z2 = ϕ1(z1) and w. We obtained the following

transformation ϕ2:

ϕ2(x, y) =

(
0.7853x+ 0.0308

1.4788x+ 1.3313
,
1.4897y + 0.0013

0.172y + 0.6714

)
.

The residual before registration is 0.3357 and after registration is 0.054. This indicates

that points are matched well; this can be seen in Figure 6.17b also. Also, image I1

is transformed by ϕ2; see Figure 6.18c. Figure 6.19b shows the discrepancy between

transformed I1 and J .

So far, we have multi-registered the diodon and sunfish using landmark registration.
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(a) I0: Source (b) I1: Transformed I0

(c) I2: Transformed I1 (d) J : Target

Figure 6.18: Diodon as source (I0) is landmark multi-registered with target (J) in
G1 = PSL(2,C) and G2 = PSL(2,R) × PSL(2,R). (a) Source(I0) together with a
rectangular grid Ω′. (b) Transformation of source and Ω′ to I1 and Ω′

1 after landmark
registration in G1. (c) Transformation of I1 and Ω′

1 to I2 and Ω′
2 after landmark

registration in G2. (d) Target: Sunfish along with the deformed grid that Thompson
sketched.
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(a) (b)

Figure 6.19: (a) Discrepancy between transformed source I1 and target J after land-
mark registration in G1 = PSL(2,C). (b) Discrepancy between I2 (the transformed
I1) and target J after landmark registration in G2 = PSL(2,R)× PSL(2,R).

Comparing Figures 6.18c and 6.18d, our deformed grid is very similar to the Sunfish

that Thompson sketched.

Similarly to the previous examples, we calculate the di and Li, i = 1, 2; they are given

in Table 6.8.

i = 1 i = 2 i = 3

Ei = ‖zi − w‖22 0.49 0.3357 0.054

di - 1.3427 2.2755

Li - 0.3474 0.3398

Table 6.8: The output of multi-registration of marked points on the fishes given in
Figure 6.16 in two groups: G1 = PSL(2,C), G2 = diffeomorphism.

If Ψ(x, y) = (a1x+b1
c1x+d1

, a2y+b2
c2y+d2

) is a transformation in PSL(2,R) × PSL(2,R) then d2 is

calculated as follows. Let log(Ψ(x, y)) = (log(Ψ(x, .)),Ψ(., y)) = (v1, v2). Then

d2 =
√
tr(v1v∗1) + tr(v2v∗2).

It can be seen in Table 6.8 that d2 is large, which means that the transformation ϕ2 is far

from the identity. Also, the Li show that both groups make equal-sized deformations,

therefore both groups play a significant role in the deformation of the fish.
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6.3 Conclusion and Future Work

In this chapter we showed various examples of multi-registrations of images. Two

different cases of multi-registrations are considered: multi-registration on a chain of

groups and multi-registration on a tree of groups.

Multi-registration provides us with lots of useful information. For example, multi-

registration of the human skull and chimpanzee skull in G1 = PSL(2,C) and G2 =

diffeomorphism, showed the significance of PSL(2,C) and insignificance of the diffeo-

morphism. Moreover, multi-registration on trees of groups provides a new space of

transformations which are invertible. That space is composition of groups, for ex-

ample, multi-registration of Diodon and Sunfish in two groups: G1 = PSL(2,C) and

G2 = PSL(2,R)×PSL(2,R). The fish are related by a transformation that belongs to a

bigger space G2◦G1, which contains the inverses of each product transformation. With-

out multi-registration, we had to employ a diffeomorphic registration between fishes,

which is very complex and an infinite dimensional group. Therefore, multi-registration

enables us to find simple and finite dimensional transformations which have inverses.

We summarize the benefits of multi-registration:

• Multi-registration provides more information than standard registration, for ex-

ample the significance or insignificance of a group of transformations.

• Multi-registration provides a bigger space of transformations which is finite di-

mensional and for which the transformations are invertible.

• Multi-registration enables us to find a transformation between images that can

not be obtained by single registration.

• Multi-registration enables us to describe a complex deformation as a composition

of simple transformations.

• Multi-registration provide an easier registration process. For example, registra-

tion G1 → G2 with G1 ⊂ G2 can be easier to compute than registration with G2

alone, as G1 is smaller and the dimension is less.

In multi-registration the choice of the groups for the registration is important. We

choose the group based on the knowledge about the properties of the groups such as

invariance. However, we do not have any systematic way to determine them. Therefore,

the choice of the groups for multi-registration is an open problem.
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Conclusion

This thesis has revisited Thompson’s original idea that global transformations of space

can transfer the appearance of one animal to that of another. This has been done in

the mathematical context of planar Lie groups, and most notably, the combination of

those groups, which we termed multi-registration.

While there has been a huge amount of interest in image registration over the past 20

years or so, much of it has been local (non-rigid, often based on diffeomorphisms), and

only a small number of finite-dimensional groups have been used, principally similarity,

affine, or projective. Instead, we have considered the planar Lie groups, which were

classified up to changes of coordinate in [26]. From this we identified three main groups:

PSL(2,C), PSL(3,R), and PSL(2,R) × PSL(2,R). Together with their subgroups,

this gave us a total of 19 groups.

In order to use any of these groups as the transformation set for image registration,

we studied the issues of image registration based on the L2 distance function mathe-

matically, and this enabled us to propose a robust algorithm that avoids some of the

common issues of registration algorithms, primarily the presence of many spurious crit-

ical points and the lack of continuity in the image. By applying smoothing through

Gaussian convolution we were able to remove these issues. However, there are still

some open issues for further study in finite-dimensional image registration, including:

• We have assumed that the images tend to a constant value at their edges, i.e.,

that they are on a plain background. This enables their domain to be extended
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to R
2 continuously. However, images where this is not the case are common, and

we have not studied them at all. Some form of convolution function could be

used, and we leave this as future work.

• We have assumed that the images are reasonably smooth, so that simple Gaussian

convolution smoothes them well. However, the width of the Gaussian was chosen

experimentally, and we have not considered methods by which this could be

chosen automatically.

• As the dimensionality of the group increases, so does the chance of spurious local

optima appearing. While wider Gaussians can help with this, we have not been

able to remove all local optima, and this leads to points where the optimizer can

get stuck.

Despite these points, we have demonstrated that our algorithm can be used successfully

on a wide variety of images and groups. In particular, we have reproduced many of the

examples given by Thompson, and using computational methods we have been able to

see where his hypothesized relationships are correct, and where they are not.

These registrations in finite-dimensional groups generally provide less perfect matches

than a diffeomorphic image registration with an affine pre-registration (in theory, the

only reasons why they would not be is if the diffeomorphic registration got stuck in

a local minimum, although this is not quite true in practice, since the diffeomorphic

registration is local rather than global). However, they do provide rather more informa-

tion about the nature of the transformation between the images, as well as simplicity

and fast implementation. In the context of model selection, these lower dimensional

groups are to be preferred if they provide accurate registrations. Continuing the theme

of model selection, we also considered subgroups of any of our groups, in order to find

the smallest groups that gave good registrations, reasoning that the fewer the number

of parameters, the better.

One benefit of working in Lie groups is the fact that they are also manifolds, and we

were able to use this to consider curves between sets of images that were registered

together. We demonstrated how to fit such curves in the Lie groups through the

transformations that are obtained from the registration. As demonstrations of this

idea, we considered two small datasets: a growth curve between five human skulls at

different ages, and Thompson’s data of three hooved mammal feet. We considered the

possibility that such curves could be used to infer other possible points in between the

datapoints, or extrapolated to new forms. By using a leave-one-out method we were
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able to show that the human skull dataset that we had seems to be well fitted by a

one-parameter subgroup of PSL(2,C). Unfortunately, the limited size of our datasets

made this inconclusive, but we have described the method by which others could study

larger datasets relatively easily.

We then moved on to introduce the idea of multi-registration, where the lattice of planar

Lie groups suggests possible sequences of groups of transformations. The benefits of

multi-registration are that it:

• provides useful information, such as suggesting the significance or insignificance

of a group of transformations;

• provides a bigger space of transformations (but still finite dimensional) whose

transformations are invertible;

• enables us to find a transformation between images that can not be obtained by

single registration;

• enables us to describe a complex deformation as a composition of simple trans-

formations; and

• provides an easier registration process. For example, registration G1 → G2 with

G1 ⊂ G2 can be easier to compute than registration with G2 alone, as G1 is

lower-dimensional, and so has fewer spurious local minima.

It is clear that the choice of groups for multi-registration is important, and we do not

have any systematic way to choose this. It might be the case that invariants of the

various groups could be used to highlight possible groups to try; we have used this to

check whether groups were correct choices when the registration failed.

In summary, we have provided the methods that will enable the study of related forms

using finite-dimensional image registration and demonstrated that, just as Thompson

hypothesized, many of the biological forms he looked at do indeed have some relatively

simple relationships.

In this thesis we have considered 2D images of 3D objects. The extension to true

3D surfaces would be biologically interesting. While this would have computational

challenges, the mathematics should not be radically different.
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