Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

STUDIES ON THE SYNTHESIS AND REACTIVITY OF

COPPER THIOLATE AND THIOAMIDE COMPLEXES

A thesis presented in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Massey University

by

Alistair Gavin Cameron Bingham

February 1984

00.30 11

ACKNOWLEDGEMENTS

I would like to thank sincerely my supervisors Dr E.W. Ainscough and Dr A.M. Brodie for their direction, assistance and encouragement in all aspects of the research programme.

The contribution of the following is also gratefully acknowledged: Drs K.L. Brown and G.A. Gainsford, Chemistry Division, D.S.I.R., Petone for the crystal structure analyses of the compounds [Cu(3-Mepy)₃Cl] and [Cu(tztdz)Br] respectively.

Drs E.N. Baker and B.F. Anderson, Massey University, for crystal structure data of [Cu(4-Mepy)₄Cl₂].H₂O,

Professor R. Hodges, Massey University, and Dr G.J. Shaw, Applied Biochemistry Division, D.S.I.R., Palmerston North, for mass spectra and helpful discussions. Professor T.M. Loehr and Dr J.E. Plowman, Oregon Graduate Centre, Beaverton, Oregon for recording resonance Raman spectra. Dr G.E. Norris for the provision of azurin.

Professor A.D. Campbell, Otago University, for microanalyses.

Mrs Glenda Shaw for typing this thesis.

ABSTRACT

In response to a clear need for a more systematic approach to the study of the interaction of copper with ligands containing the sulphhydryl group, or in thioamide tautomeric equilibrium with such, cuprous, cupric and mixed valence complexes of ligands containing a thiolate or thioamide moiety have been synthesised and characterised by spectroscopic, magnetic and crystallographic techniques. In certain cases their reactivity in aliphatic and aromatic nitrogen base solvents and nitromethane have been investigated.

Full names for the ligand abbreviations appear at the end of the abstract and ligand structures may be found in Figures at the beginning of the appropriate chapter.

The visible, esr and resonance Raman spectra of the type I, copper protein, azurin from <u>Alcaligenes denitrificans</u>, have been recorded and compared with other type I proteins. Through comparison with the spectral features of a series of cluster complexes $[Cu_{2}^{II}Cu_{10}^{I}(mmim)_{12}(Y)_{4}](X)_{2}$ (where Y = CH₃CN or H₂O, and X = BPh₄, ClO₄, PF₆, CH₃COO or OH), and $[Cu_{6}^{II}Cu_{8}^{I}(mea)_{12}^{C1}]Cl_{5}$.7H₂O, the so-called "unusual" spectroscopic features of the type I proteins have been re-interpreted as being normal phenomena of a Cu(II)-thiolate interaction coupled with specific geometrical requirements.

Investigation of the mbtH ligand system has led to the reformulation of a number of incorrectly formulated copper complexes as [Cu(mbtH)₂Cl] or [Cu(mbt)] following successful removal of a disulphide contaminant. In support of such, similar cuprous compounds of general formula $[Cu(LH)_2X]$ (LH = etmbtH, X = C1, Br, I; LH = mbtH, X = Br, I; LH = mmimH, X = C1), $[Cu(LH)X].xH_2O$ (LH = mbimH, mpyH, phmtzH, Ph₂PS₂H, X = C1, Br; LH = mmimH; X = Br) and [Cu(L)] (L = bimet, dimtdz, dipmim etmbt, mpy, phmtz) have been prepared from similar ligand systems. The interaction of a number of these complexes with pyridine led to oxidation of organo-sulphur to sulphate with the production of $[Cu(py)_4SO_4].2H_2O$. This reaction is postulated to occur via two oxidising species $[Cu(py)_2OH)_2]$ or $[Cu(py)_xO]$ depending on whether halides are present or absent in the reaction solutions. Similar sulphato species are seen when quinoline and 3-ethylpyridine are used as solvents. However, compounds of general formula $[Cu(LH)_2X]$ and [Cu(LH)X] yield the complexes $[Cu(3-Mepy)_3C1]$ and $[Cu(4-Mepy)_4Cl_2].H_2O$, from the solvents 3-methylpyridine and 4-methylpyridine respectively, which have been structurally characterised by X-ray crystallography.

The cupric and mixed valence complexes $[Cu(ttzH)_{3}X_{2}] (X = Cl, Br),$ $[Cu(ttzH)_{2}Br_{2}], [Cu^{II}Cu^{I}_{3}(ttz)_{5}], [Cu^{II}Cu^{I}(mmim)(mmimH)_{2}Cl_{2}],$ $[Cu^{II}Cu^{I}(mmimH)_{2}Cl_{3}], [Cu(mbim)_{2}(H_{2}O)(NH_{3})], [Cu(mbim)_{2}(H_{2}O)],$ [Cu(dipmim)Cl] and [Cu(etu)OH] have been prepared and characterised byvisible, infrared, and esr spectroscopy.

When [Cu(ttzH)₃Br₂] is refluxed in nitromethane, a new cuprous complex [Cu(tztdz)Br] is produced in which modification of the ttzH ligand to produce the new organic moiety tztdz has occurred, confirmed by X-ray crystallography. Similarly the compounds [Cu(tztdz)Cl], [Cu(tztdz)Cl₂] and [Cu(mimmimz)Cl₂] are postulated from the interaction of [Cu(ttzH)₃Cl₂] and [Cu^{II}Cu^I(mmimH)₂Cl₃] with nitromethane.

With reference to well-defined literature examples the technique of

esr spectroscopy is shown to discriminate between equatorial donor atom sets of S_4 , S_2O_2 , S_2N_2 , SO_3 and O_4 on the basis of lineshapes and position of fundamental parameters. The new compounds synthesised: $[Cu^{II}Cu^{I}_{2}(dimetH_{2})(dimetH)_{3}Cl]$, $[Cu^{II}Cu^{I}_{3}(dimetH_{2})_{3}(dimetH)(ClO_{4})_{4}]$, $[Cu^{II}Cu^{I}_{3}(dimtolH)_{5}]$, $[Cu^{II}Cu^{I}_{3}(dimprolH)_{5}]$, $[Cu(mpoH_{2})(mpoH)(ClO_{4})]$, [Cu(phenylglyoxaldtsc)], [Cu(benzildtsc)]. H_2O and [Cu(3-n-heptoxy-2-oxobutyraldehydedtsc)] have been assigned donor sets on the basis of their respective esr signals. Similarly this has been done for a number of unisolatible species produced <u>in situ</u> from interaction of various cupric salts with a number of sulphhydryl and thioamide containing ligands.

Ligand abbreviations

bimetH	-	2-benzimidazoleethanethiol
dimtdzH	-	2,5-dimercapto-1,3,4-thiadiazole
dipmimH	-	4,5-diphenyl-2-mercaptoimidazole
dimetH	-	1,2-dimercaptoethane
dimproÍH	-	2,3-dimercaptopropanol
dimtolH ₂ ²	-	3,4-dimercaptotoluene
dtsc 2	-	dithiosemicarbazide
etmbtH	-	6-ethoxy-2-mercaptobenzothiazole
etuH	-	2-mercaptothiazoline
mbimH	-	2-mercaptobenzimidazole
mbtH	-	2-mercaptobenzothiazole
meaH	-	cysteamine
mimmimz	-	3-(2,1-methylimidazolyl)-2,1-methylimidazoline thione
mmimH	-	2-mercapto-1-methylimidazole
mpoH ₂	-	2-mercapto-3-pyridinol
mpyH	-	2-mercaptopyridine
phmtzH	-	2-mercapto-4-phenylthiazole
Ph_PS_H	-	diphenylphosphinodithioic acid
pyźź	-	pyridine
ttzH	-	2-mercaptothiazoline
tztdz	-	3-(4,5-dihydro-2-thiazolyl)-2-thiazolidinethione

Contents

		pag
GENERAL IN	TRODUCTION	1
	Fundamental esr theory	4
Chapter 1	SPECTROSCOPIC STUDIES OF AZURIN FROM	7
	ALCALIGENES DENITRIFICANS AND SMALL	
	MOLECULE ANALOGUES OF ITS COPPER SITE	
Part 1	Azurin	7
	Introduction	7
1.1	Experimental	11
1.1.1	Source of azurin	11
1.1.2	Instrumentation	11
1.2	Results and discussion	11
1.2.1	Electronic absorption spectroscopy	11
1.2.2	Resonance Raman spectroscopy	15
1.2.3	Electron spin resonance spectroscopy	21
	Summary	24
Part 2	Small molecule models for the type I copper	25
	proteins	
	Introduction	25
1.3	Synthesis of the compounds	29
1.4	Results and discussion	31
1.4.1	Infrared spectra	31
1.4.2	Electronic spectra	31
1.4.3	Esr spectra	34
1.4.4	Resonance raman spectra	38
1.5	Structure of the model complexes	38

page

1.6	An interpretation of the structural requirements	42
	necessary for the production of the distinct	
	spectral features of the type I blue copper proteins	
	Summary	47
1.7	Experimental	49
1.7.1	Instrumentation	49
1.7.2	Preparation of the complexes	50
	References	51
Chapter 2	THIOLATE AND THIOAMIDE COMPLEXES OF COPPER(I)	56
	Introduction	56
2.1	Synthesis of the compounds	59
2.2	Infrared spectral analysis	66
2.3	Structural aspects of the prepared compounds	73
2.3.1	Cuprous thioamide compounds	73
2.3.2	Cuprous thiolate compounds	76
2.4	Trends in the formation of complexes	77
2.5	Experimental	81
2.5.1	Instrumentation	81
2.5.2	Preparation of the complexes	81
	References	85
Chapter 3	REACTIVITY STUDIES OF CUPROUS THIOAMIDE AND THIOLATE	88
	COMPLEXES IN ORGANIC BASES	
	Introduction	88
3.1	Results and discussion	89
3.1.1	Reactions in neat pyridine	89
3.1.2	Reactions in neat quinoline and 3-ethylpyridine	97
3.1.3	Reactions in neat 3-methylpyridine	97
3.1.4	Reactions in neat 2-chloro and 3-chloropyridine	102
3.1.5	Reactions in neat 4-methylpyridine	103

-

52

3.1.6	Reactions in neat 1,2-diaminoethane	106
3.1.7	Reactions of other transition metal ions	107
	Conclusion	109
	Summary	110
3.2	Experimental	112
3.2.1	Instrumentation	112
3.2.2	Preparation of the complexes	112
	References	116
Chapter 4	FURTHER ASPECTS OF THE OXIDATION OF THIOLATES IN	118
	THE PRESENCE OF COPPER	
	Introduction	118
4.1	Results and discussion	122
4.1.1	Substrates capable of being oxidised	122
4.1.2	Identification of the proposed reactive species	125
4.1.3	Characterisation of the reactive species	126
4.1.4	Oxidation of compounds of the type CuL_3^X - a	133
	synthetic route for production of [Cu(py) _x O]	
4.2	Oxidation of the sulphhydryl group in solvents	138
	other than pyridine	
4.3	Bacterial oxidation of sulphur	140
	Summary	141
4.4	Experimental	142
4.4.1	Instrumentation	142
4.4.2	Synthesis of the complexes	142
	References	147
Chapter 5	CUPRIC COMPLEXES FROM THIOAMIDE LIGANDS	149
	Introduction	149
5.1	Synthesis of the compounds	152
5.2	Results and discussion	152

5.2.1	Complexes of 2-mercaptothiazoline	153
5.2.2	Complexes of 2-mercapto-1-methylimidazole	166
5.2.3	Complexes of 2-mercaptobenzimidazole, 4,5-diphenyl-	172
	2-mercaptoimidazole and 2-mercaptoimidazoline	
5.3	Reactivity studies in nitromethane	176
5.4	Experimental	185
5.4.1	Instrumentation	185
5.4.2	Preparation of the complexes	185
	References	189
Chapter 6	A SPECTROSCOPIC INVESTIGATION OF SOME CUPRIC AND	191
	MIXED VALENCE THIOLATE COMPLEXES	
	Introduction	191
6.1	Synthesis of the compounds	193
6.2	Characterisation of the complexes	198
6.2.1	Cupric complexes with proposed S $_4$ donor sites	198
6.2.2	Cupric complexes with proposed S_2^0 donor sites	205
6.2.3	Cupric complexes with proposed $S_2 N_2$ donor sites	207
6.2.4	Cupric complexes with proposed SO $_3$ donor sites	210
6.2.5	Cupric complexes with proposed 0_4 donor sites	211
6.2.6	Graphic plots of g_{11} versus $ A_{11} $	213
6.2.7	Electronic spectra	213
6.3	Use of the esr technique in probing dimeric	216
	cupric interactions	
6.4	Experimental	223
6.4.1	Instrumentation	223
6.4.2	Preparation of the complexes	223
	References	228
	A summary of the possible factors leading to stabil-	232
	isation of cupric thiolate or thioamide complexes	

List of Tables

		Page
1.1	Spectroscopic and redox properties of various azurins	8
1.2	Electronic band maxima for <u>Alc. denitrificans</u> and	14
	Ps. aeruginosa azurins and Populus nigra	
	plastocyanin	
1.3	Resonance Raman frequencies, relative intensities and	17
	possible assignments of the proteins between 260 and	
	500 cm ⁻¹	
1.4	Resonance Raman combination and overtone frequencies of	19
	azurin from Alc. denitrificans	
1.5	Esr parameters for azurin types	23
1.6	The best models to date for type I blue proteins	27
1.7	Electronic spectra for small molecule analogues	32
1.8	Esr parameters for the complexes	35
2.1	Proposed formulations of the Cu-2-mercaptobenzothiazole	58
	system	
2.2	Analytical data for the complexes	61
2.3	Elemental analysis figures for various Cu(II)-2-mercapto	65
	benzothiazole preparations	
2.4	Infrared spectral changes with respect to the free ligand	69
	on coordination of sulphur and nitrogen	
2.5	Thioamide band positions	71
2.6	The geometry of various cuprous thioamide complexes	75
2.7	Nature of the product formed from the interaction of a	79
	thioamide ligand and the respective cupric salt	

3.1 Analytical figures for the compounds produced from 91 reactivity studies

- 3.2 Infrared and Raman active bands for various 94 symmetries of SO₄²⁻ radicle
- 3.3 Sulphate complexes and principal infrared bands 96
- 3.4 Bond lengths and angles for [Cu(3-Mepy)₃Cl] 99
- 4.1 Esr parameters for reaction solutions where Cl and 127 Br were absent
- 4.2 Esr parameters for reaction solutions containing Cl 128 and Br
- 155 5.1 Elemental analyses and magnetic data for the complexes 156 5.2 Selected principal infrared vibrations for the complexes 157 5.3 Electronic spectra for the complexes 158 5.4 Electron spin resonance parameters for the complexes 179 5.5 Bond lengths and angles for [Cu(tztdz)Br] 197 6.1 Elemental analysis and magnetic data for the complexes
- 6.2 Electronic and esr spectral data for the complexes 200

List of Figures

		Page
1.1	Dimensions of the copper site in azurin and plastocyanin	10
1.2	Electronic absorption spectrum of <u>Alc. denitrificans</u>	13
	azurin	
1.3	Resonance Raman spectrum of Alc. denitrificans azurin	16
1.4	Esr spectrum of Alc. denitrificans azurin	22
1.5	Structures of the best type I models	28
1.6	Structures and abbreviations of ligands appearing in this	30
	section	
1.7	Esr spectrum of $\begin{bmatrix} Cu \\ 2 \end{bmatrix} \begin{bmatrix} Cu \\ 10 \end{bmatrix} \begin{pmatrix} mmim \\ 12 \end{bmatrix} \begin{pmatrix} CH \\ 3 \end{bmatrix} \begin{pmatrix} BPh \\ 4 \end{bmatrix} \begin{pmatrix} BPh \\ 4 \end{bmatrix} = 2$	37
1.8	Resonance Raman spectrum of $\begin{bmatrix} Cu \\ 2 \end{bmatrix} \begin{bmatrix} Cu \\ 10 \end{bmatrix} \begin{bmatrix} (mmim) \\ 12 \end{bmatrix} \begin{bmatrix} H_2 \\ 2 \end{bmatrix}^2 $	39
1.9	Ligand geometry for the Cu(II) site in	40
	$\left[Cu^{II}_{2}Cu^{I}_{10}(\text{mmim})_{12}(CH_{3}CN)_{4}\right]^{2+}$	
1.10	Relation of copper geometry and the size of the	48
	A lsr parameter	
2.1	Thiol-thioketo tautomerism for imidazole and thiazole	56
	skeletons	
2.2	Structures of the ligand and their abbreviations	60
2.3	Some coordinating modes of the mbt ligand	78
3.1	Structures and nomenclature for Chapter 3 ligands	90
3.2	Infrared spectra of $[Cu(py)_4SO_4].2H_2O$ and	92
	[Cu(py) ₃ SO ₄].2 ¹ / ₂ H ₂ O	
3.3	Structure of [Cu(3-Mepy) ₃ Cl]	98
3.4	Diagram showing infinite linear Cu-ClCu chains in	101
	[Cu(3-Mepy) ₃ C1]	
3.5	A stereoscopic view of [Cu(3-Mepy) ₃ Cl] chains showing	101
	ClH distances less that 3A	

3.6	Structure of [Cu(4-Mepy)4C1].H20	105
3.7	Ligand environment of [Cu(bipyridyl)2 ^{C1]2^S5^O6.6H2^O}	106
3.8	Esr spectrum of [Cu(en) ₂ (mbt) ₂].H ₀ in N,N'-dimethyl	108
	formamide .	
4.1	Products of thiol oxidation '	119
4.2	Ligands discussed in this chapter and their abbreviations	121
4.3	Reaction of CuCl dissolved in pyridine with a variety of	123
	compounds	
4.4	Reaction of cupric species with some sulphur sources	124
4.5	Esr spectra of cupric species in pyridine	129
4.6	Esr spectra of $[Cu_4Br_6O(3-Mepy)_4]$ and $[Cu(py)_2Br_2]$	135
4.7	Proposed structure of $[Cu_4Cl_4O_2(py)_3]$ and	136
	[Cu ₄ Cl ₄ O ₂ (py) ₄]	
5.1	Ligands encountered in this chapter and their abbreviations	151
5.2	Flow diagram for the products derived from 2-mercapto-	154
	thiazoline	
5.3	Infrared spectra of $[Cu^{II}Cu^{I}_{3}(ttz)_{5}]$ and	161
	[Cu(ttzH) ₃ Cl ₂]	
5.4	Electronic spectra of [Cu(ttzH) ₃ Cl ₂] and	163
	[Cu(ttzH) ₃ Br ₂]	
5.5	Esr spectra of [Cu(ttzH) ₃ Br ₂] and [Cu ^{II} Cu ^I ₃ (ttz) ₅	165
5.6	Flow diagram for complexes of 2-mercapto-1-methylimidazole	168
5.7	Esr spectra of Cu(II)-4(mmimH) and Cu(II)-4(mpyH)	170
5.8	Esr spectra of [Cu(etu)OH] and [Cu(tztdz)Cl_2]	174
5.9	A possible structure for [Cu(etu)OH]	176
5.10	Ligand geometry about copper in [Cu(tztdz)Br]	178

5.11	Flattened boat character and non-planar rings in	180
	[Cu(tztdz)Br]	
5.12	A mechanism for the formation of [Cu(tztdz)Br] from	182
	[Cu(ttzH) ₃ Br ₂]	
5.13	A flow diagram for reactivity studies in nitromethane	184
		104
6.1	Ligands discussed in this chapter and their abbreviations	194
6.2	Representative esr spectral lineshapes for various	199
	equatorial donor atom sets	
6.3	Esr spectra of $[Cu^{II}Cu^{3}(dimprolH)_{5}]$ and $Cu(II)-2(1,2-$	204
	dimercaptoethanedisodium salt)	
6.4	Esr spectra of [Cu(mpoH)(mpoH ₂)ClO ₄],	206
	Cu(II)-2(2-mercapto-3-pyridinol) and	
	Cu(II)-2(thiomalic acid)	
6.5	Esr spectra of [Cu(phenylglyoxaldtsc)] and Cu(II)-2	209
	(penicillamine)	
6.6	Esr spectra of Cu(II)-(dimercaptopropanesulphonate) and	212
	Cu(II)-4(thioglycolate)	
6.7	A plot of g_{11} versus $ A_{11} $ for various donor	214
	atom sets	
6.8	Low and high field esr spectrum of [Cu(KTS)]	220

,