Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Bipyridine - Porphyrin Conjugates

A thesis presented in partial fulfilment of the requirements for the degree of Masterate of Science in Chemistry at Massey University

> Jacinda Louise Allwood 1998

Abstract

The research carried out for this thesis comprises an investigation into the synthesis of bipyridyl-bridged porphyrin compounds and their metal complexes.

Chapter One introduces the bipyridine ligand and summarises research carried out on the functionalisation of 2,2'-bipyridine (bpy). A proposal for a novel study involving the connection of porphyrin functionalities to bpy *via* vinylic linking groups is discussed, and the Wittig methodology proposed to achieve this is described.

Chapter Two outlines the synthesis of the 4,4'-diformyl-2,2'-bipyridine ligand necessary for the Wittig reaction to form the primary target compound, a bipyridyl-bridged bisporphyrinyl ligand. Synthesis of the bipyridine dialdehyde ligand had previously been reported *via* a four step procedure from 4,4'-dimethyl-2,2'-bipyridine in reasonable yield, a result which was unable to be reproduced. The methodology involved an oxidation of the dimethyl bipyridine to the corresponding dicarboxylic acid, esterification to the dimethylester, reduction to form the dialcohol, followed by an oxidation to the desired dialdehyde ligand. All attempts at this procedure, using various reagents for the final oxidation step, were either unsuccessful or resulted in very low yields of product. Thus an alternative single step SeO₂ oxidation of 4,4'-dimethyl-2,2'-bipyridine to form the target dialdehyde was explored. Optimisation of this procedure gave an efficient one step synthesis of 4,4'-diformyl-2,2'-bipyridine, **4**.

Chapter Three discusses the synthesis of the porphyrin phosphonium salt, the second precursor required for this work. Tetra-*meso*-substituted porphyrin moieties were used so that the phosphonium salt appendage would be connected through one of the pyrrolic carbon atoms. A *meso*-tetraphenylporphyrin (TPP) phosphonium salt **5**, had been synthesised in these laboratories, thus the synthetic methodology previously developed was repeated to make this Wittig precursor. The synthesis of a second, more soluble *meso*-tetraxylylporphyrin (TXP) phosphonium salt, **13**, was also developed (an eight step synthesis from mesitylene and pyrrole) and optimised so as to improve the solubility of the resulting bpy compounds.

Application of the Wittig reaction using dialdehyde 4, and the TPP phosphonium salt 13, is discussed in Chapter Four. Both the monomeric 4-(*trans*-2"-vinyl-TPPyl)-4'-formyl-2,2'- bipyridine, 14, and the dimeric 4,4'-(*trans*-2"-vinyl-TPPyl)-2,2'-bipyridine, 15, bipyridine-porphyrin conjugates were successfully synthesised. The bipyridine ligand is connected to

the porphyrin through a vinylic linking group to one of the pyrrolic positions (2-position) of the porphyrin ring. Bisporphyrinyl ligand **15**, as expected, proved to be insoluble in organic solvents. Before continuing with the more soluble TXP phosphonium salt **13**, some test metallation reactions were performed using the soluble monomeric porphyrinyl bipyridine ligand **14**. Zinc was inserted into the porphyrin ring to form 4-[(*trans*-2"-vinyl-TPPato)zinc(II)]-4'-formyl-2,2'-bipyridine, **16**. Coordination of rhenium to the bipyridyl moiety of the monomeric porphyrin ligand, formed the complex 1,1'-Re(CO)₃Cl[4-(*trans*-2"-vinyl-TPPyl)-4'-formyl-2,2'-bipyridine], **17**. A subsequent Wittig reaction was carried out to form the complex 1,1'-Re(CO)₃Cl[4,4'-(*trans*-2"-vinyl-TPPyl)-2,2'-bipyridine], **18**.

The remainder of Chapter Four reports the methodology developed for an efficient synthesis of the target bipyridyl-bridged dimeric porphyrin ligand 4,4'-(trans-2"-vinyl-TXPyl)-2,2'-bipyridine,**20**, using the tetraxylylporphyrin phosphonium salt, TXP-CH₂PPh₃Cl,**13**. Ligand**20**was first synthesised in two steps. Connection of one porphyrin ring to 4,4'-diformyl-2,2'-bipyridine**4**, formed the monomeric porphyrin ligand, <math>4-(trans-2"-vinyl-TXPyl)-4'-formyl-2,2'-bipyridine, **19**. A second Wittig reaction on this ligand resulted in the target bisporphyrinyl compound. A more efficient one step Wittig reaction was then investigated, resulting in a high yielding single step preparation of bisporphyrinyl bipyridine **20**.

Coordination of the metal ions Mo, Re, and Ru, to the bipyridyl moiety of the target bipyridyl-bridged tetraxylylporphyrin dimer **20**, are described in Chapter Five. A monoporphyrinyl molybdenum-bound bipyridine complex, $1,1'-Mo(CO)_4[4-(trans-2"-vinyl-TXPyl)-4'-formyl-2,2'-bipyridine],$ **22**, was synthesised*via*a Wittig reaction from the $bipyridyl molybdenum complex <math>1,1'-Mo(CO)_4[4,4'-diformyl-2,2'-bipyridine],$ **21**. The $rhenium-bound bisporphyrinyl complex, <math>1,1'-Re(CO)_3Cl[4,4'-(trans-2"-vinyl-TXPyl)-2,2'-bipyridine],$ **23**was synthesised in a single step metallation reaction of the bisporphyrinylbipyridine**20**with rhenium pentacarbonyl chloride. A bisporphyrinyl ruthenium(II) $bipyridine complex <math>1,1'-Ru(CO)_2Cl_2[4,4'-(trans-2"-vinyl-TXPyl)-2,2'-bipyridine],$ **25**, was $synthesised in a one step Wittig reaction from the Ru(II)bpy complex <math>1,1'-Ru(CO)_2Cl_2[4,4'-diformyl-2,2'-bipyridine],$ **24**. The synthesis and characterisation of a $tetraporphyrinyl ruthenium(II)bisbipyridine complex is also reported. <math>1,1'-RuCl_2[bis-4,4'-(trans-2"-vinyl-TXPyl)-2,2'-bipyridine],$ **27**, was synthesised*via*a single step metallationreaction between bisporphyrinyl bipyridine**20** $and a RuCl_2(DMSO)_4 complex.$

Chapter Six contains a brief summary of the results obtained throughout this study and future work to be done in this area.

Acknowledgements

I would like to thank the following people for their respective roles throughout the duration of the research for, and completion of, this thesis:

My two supervisors, Dr. Tony Burrell and Dr. David Officer, for their advice and expertise when it comes to porphyrins, bipyridines, and metallating them. As well as their continued enthusiasm throughout the past few years and the generation of funding to keep us all going.

The NMR unit and the mass spectrometry unit for their respective analyses.

My fellow chemistry postgrad's, from the old days of Bob, Wayne, and the Sherburn clan, to the more recent recruits of Kirsty, Warwick, Giovanna, Ben, and Sonya, as well as Rekha and Dr. Dave Harding down the end, for making chemistry-land not a bad place to work. I would especially like to thank Bob and Wayne, for without them I would have dropped out years ago.

Most importantly, I would like to thank Mum and Dad for their constant and unconditional support both financially and emotionally. Who somehow possessed and infinite faith in my ability to complete this thesis, even when I doubted it myself. They are without doubt the coolest parents ever.

And of course Aaron, who has been of constant support throughout the past three years, helped me through those times of panic and put up with my bad moods with little complaint. I cannot thank him enough for his unselfish support and encouragement when he too was enduring the fate of a looming thesis.

Table of Contents

	Page
Title page	i
Abstract	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	vii
List of Tables	ix
Abbreviations	x
Chapter One. Introduction	1
1.1 Polypyridines	1
1.1.1 Metallated bipyridine complexes	2
1.1.2 Metal bipyridyl complexes: models for solar cells	2
1.1.3 Incorporation into solar cells	4
1.2 Functionalised bipyridines	6
1.2.1 Modes of connection	7
1.2.2 The vinylic bridge	8
1.2.3 Bipyridine ligands functionalised via vinylic bridges	9
1.2.4 Porphyrin-functionalised bipyridines	12
1.3 Research proposal	16
1.4 References	17
Chapter Two. Synthesis of 4,4'-diformyl-2,2'-bipyridine	21
2.1 Previous reports of 4,4'-diformyl-2,2'-bipyridine syntheses	21
2.1.1 Summary	23
2.2 Four step synthesis of 4,4'-diformyl-2,2'-bipyridine	24
2.3 4,4'-Diformyl-2,2'-bipyridine via a SeO2 oxidation	26
2.3.1 Revised SeO2 oxidation procedure	28
2.4 Compound characterisation	29
2.5 Summary	31
2.6 Experimental procedures	31
2.6.1 General methods	31
2.6.2 Experimental section	32
2.7 References	35

Chapter T	hree.	Synthesis of the porphyrin phosphonium salt	37
3.1	TPP p	phosphonium salt	39
3.2	TXP 1	phosphonium salt	41
3.3	Experi	mental procedures	43
3.4	Refer	ences	49
Chapter F	our.	Synthesis of bipyridyl-functionalised porphyrins	51
4.1	Synthes	is of bipyridyl-bridged TPP compounds	51
	4.1.1	Synthesis and characterisation of a mono-TPP-bound bipyridyl	
		ligand	51
	4.1.2	Synthesis of the dimeric TPP-bound bipyridine ligand	53
	4.1.3	Metallation of the porphyrin ring	54
	4.1.4	Metallation of the bipyridine ligand	55
4.2	Synthes	is of bipyridyl-bridged TXP compounds	57
	4.2.1	Synthesis and characterisation of a mono-TXP-bound bipyridyl	
		ligand	58
	4.2.2	Synthesis of the dimeric TXP-bound bipyridine ligand	59
	4.2.3	Alternative synthesis of the dimeric TXP-bound bipyridine ligand	59
4.3	Summ	nary	61
4.4	Experi	mental procedures	62
4.5	Refere	ences	67
Chapter F	'ive.	Metal complexes of bipyridine-porphyrin conjugates	68
5.1	Molybo	lenum-bound bipyridine complex	68
5.2	Rheniu	m-bound bipyridine complexes	70
	5.2.1	Synthesis and characterisation of Re ^I [bpy(TXP) ₂](CO) ₃ Cl	70
5.3	Ruthen	ium complexes of bpy(TXP) ₂	72
	5.3.1	The 'ruthenium blue' method for Ru ^{II} [bpy(TXP) ₂] complex	
		formation	72
	5.3.2	Synthesis of TXP-bpy complexes of Ru(II) using Wittig	
		Chemistry	73
	5.3.3	Attempted synthesis of a Ru ^{II} bis[bpy(TXP) ₂] complex	75
	5.3.4	Reaction of dimer 20 with Ru ^{II} Cl ₂ (DMSO) ₄	75
5.4	Experi	imental procedures	79
5.5	Refer	ences	84
Chapter S	ix.	Conclusions and future work	86

vi

List of Figures

	P	age
Figure 1.1-1	Polypyridine ligands bpy, phen, and 2,3-dpp	1
Figure 1.1-2	Conformation of free bpy, and metal-bpy complex	2
Figure 1.1-3	Pbpy-Ru(bpy) ₂ complex used by Yamamoto et al. for fluorescence studies	3
Figure 1.1-4	Model for the electron transfer process in chlorophyll P680 showing the proposed	
	pathway of electron transfer following irradiation	3
Figure 1.1-5	Ruthenium polypyridyl photoactive complex, which absorbs onto nanocrystalline TiO	2
	through its phosphonate group	4
Figure 1.1-6	Photocurrent action spectrum obtained with a nanocrystalline TiO ₂ film supported onto	0
	a conducting glass sheet, and derivatised with a monomolecular layer of Grätzel's	
	ruthenium(II)bipyridyl complex. The IPCE is plotted as a function of wavelength	
	in the visible region of the spectrum	5
Figure 1.1-7	The electronic absorption spectra of the photosynthetic pigments in green plants, and	
	the solar spectrum	6
Figure 1.2-1	Functionalisation of a bipyridine ligand via a vinylic bridge. LDA method	8
Figure 1.2-2	The Wittig reaction	8
Figure 1.2-3	Ferrocene functionalised bipyridyl "molecular tweezer"	9
Figure 1.2-4	Ferrocene functionalised bipyridine ligands for complexation and	
	electropolymerisation	10
Figure 1.2-5	Tris- and hexa-ferrocenyl functionalised ruthenium(II)trisbipyridyl complexes	11
Figure 1.2-6	Ruthenium(II)tris(bis-functionalised)bipyridine complex possessing remarkable NLO	
	properties	11
Figure 1.2-7	Porphyrin covalently linked to Ru(bpy)3 ²⁺ , synthesised by Hamilton et al	12
Figure 1.2-8	Binuclear [Mn ^{II} (bpy)-Fe ^{III} (porphyrin)] complex, biomimetic of MnP	13
Figure 1.2-9	Tetraruthenated nickel porphyrin complex used for electrode modification	14
Figure 1.2-10	Harriman and Ziessel's photoactive wire consisting of a metalloporphyrin and a	
	Ru(bpy) ₃ ²⁺ complex.	15
Figure 1.2-11	Reaction scheme showing synthesis of orthogonal bis ruthenium(II)trisbipyridine	
	porphyrin bound complex	15
Figure 1.3-1	Synthesis of target bi-functionalised bipyridine ligand via Wittig chemistry	17
Figure 2.1-1	Synthetic methodology for the formation of 4-formyl-4'-methyl-2,2'-bipyridine via a	
	SeO ₂ oxidation.	21
Figure 2.1-2	Polymetallic transition metal macrocyclic complex synthesised by Beer et al	22
Figure 2.1-3	Reaction scheme showing synthetic route to 4,4'-diformyl-2,2'-bipyridine	22
Figure 2.1-4	New two step method for synthesising 4,4'-diformyl-2,2'-bipyridine	23
Figure 2.2-1	Four step procedure used to synthesise 4.4'-diformyl-2.2'-bipyridine	24

Figure 2.3-1	Synthesis of 4,4'-diformyl-2,2'-bipyridine using SeO ₂ as the oxidising agent	26
Figure 2.3-2	Comparison between tlc results obtained and those published by Sessler et al	27
Figure 2.4-1	¹ H NMR spectrum of 4,4'-diformyl-2,2'-bipyridine, 4	29
Figure 2.4-2	UV/Vis spectrum of 4,4'-diformyl-2,2'-bipyridine, 4	30
Figure 3.0-1	5,10,15,20-Tetraphenylporphyrin (TPP) showing β -pyrrolic and meso-carbon atoms.	
	The four meso-phenyl substituents are drawn flat for clarity but are in fact orthogonal	
	to the plane of the porphyrin ring	37
Figure 3.0-2	¹ H NMR spectrum of TPP, referenced to CHCl ₃	38
Figure 3.0-3	Typical UV/Vis spectrum of both a free base porphyrin and a metallated porphyrin	39
Figure 3.1-1	2-(meso-Tetraphenylporphyrin)yl)methyltriphenylphosphonium chloride	
	(TPP-CH ₂ PPh ₃ Cl).	39
Figure 3.1-2	A)Burrell et al.'s 2-vinyl-substituted tetraphenylporphyrin compound.	
	B) Crystal structure of A, top view - meso-phenyl substituents omitted for clarity.	
	C) Crystal structure of A, side view	40
Figure 3.2-1	Schematic diagram of the synthetic route to the new porphyrin phosphonium salt,	
	TXP-CH ₂ PPh ₃ Cl, 13.	42
Figure 4.1-1	Wittig reaction between TPP-CH2PPh3Cl, 5, and 4,4'-diformyl-2,2'-bipyridine, 4	51
Figure 4.1-2	Formation of Me-TPP during a Wittig reaction	51
Figure 4.1-3	Synthesis of the dimeric TPP-bound bipyridine ligand, 15	52
Figure 4.1-4	Metallation of porphyrinyl bipyridine 14 with a zinc metal ion via the acetate	
	method.	53
Figure 4.1-5	UV/Vis spectrum of 4-[(trans-2"-vinyl-TPPato)zinc(II)]-4'-formyl-2,2'-bipyridine, 16.	54
Figure 4.1-6	Metallation of compound 14 and the subsequent Wittig reaction to form the dimeric	
	compound, 18	55
Figure 4.2-1	Wittig reactions on 4,4'-diformyl-2,2'-bipyridine, 4, using TXP-CH ₂ PPh ₃ Cl, 13	57
Figure 4.2-2	¹ H NMR spectrum of 4,4'-(<i>trans</i> -2"-vinyl-TXPyl)-2,2'-bipyridine, 20	59
Figure 5.1-1	Wittig reaction to attach TXP to the bipyridine dialdehyde containing molybdenum	
	complex 21	68
Figure 5.2-1	Synthesis of bisporphyrinyl rhenium(I)bipyridine complex 23	70
Figure 5.3-1	Successful synthesis of the bisporphyrinyl ruthenium(II)bipyridine complex 25	72
Figure 5.3-2	Attempted synthesis of tetrameric porphyrinyl complex 27, via Wittig chemistry	74
Figure 5.3-3	Synthesis of the tetraporphyrinyl ruthenium(II)bisbipyridine complex 27	75
Figure 5.3-4	Diagram of complex 27.	76
Figure 5.3-5	¹ H NMR spectrum of complex 27.	77

List of Tables

	P	age
Table 1	Linkages commonly used for the functionalisation of bpy ligands	7
Table 2	Yields of 4,4'-diformyl-2,2'-bipyridine obtained from reactions using varying	
	quantities of the two reagents	28

Abbreviations

amu	Atomic mass units
Вру	2,2'-Bipyridine
CT	Charge transfer
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
FAB	Fast Atom Bombardment
h	Hours
¹ H NMR	Proton Nuclear Magnetic Resonance Spectroscopy
HRMS	High Resolution Mass Spectrometry
LDA	Lithium diisopropylamide
LMCT	Ligand-to-metal charge transfer
mins	Minutes
MLCT	Metal-to-ligand charge transfer
MnP	Manganese peroxidase
NLO	Non-linear optical
RT	Room temperature
tlc	Thin Layer Chromatography
TPP	5,10,15,20-Tetraphenylporphyrin (meso-tetraphenylporphyrin)
TXP	5,10,15,20-Tetra(3,5-dimethylphenyl)porphyrin
	(meso-tetraxylylporphyrin)
UV/Vis	Ultraviolet/Visible Spectroscopy
Ху	3,5-Dimethylphenyl (xylyl)