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ABSTRACT

Many industrial processes require both refrigeration to less than 0°C and water heating
to greater than 60°C. Traditional independent refrigeration and boiler systems have
relatively poor energy efficiency, whilst conventional heat pumps can provide both
cooling and heating but are limited in terms of the temperature lift that can be achieved.
A novel heat pump using CO, as the refrigerant in a transcritical cycle has been
proposed as a new technology that can overcome these disadvantages. The use of CO,
as a refrigerant has many advantages. It is environmentally benign, safe, and has good
thermodynamic properties, especially compared with fluorocarbons. The transcritical
cycle involves evaporation of CO, at constant temperature and pressure below the
critical point to provide refrigeration, while cooling of the CO; occurs at temperatures
and pressures above the critical point to provide heating of water. The objective of this
project was to design and construct a prototype transcritical CO, heat pump to
simultaneously provide refrigeration and water heating, and to test its performance over
a wide range of operating conditions.

The prototype CO; heat pump had a nominal cooling capacity of 90 kW at —6°C and
nominal water heating capacity of 127 kW from 10°C to 90°C. The prototype was
designed to operate with a suction pressure of 30 bar and discharge pressure of 130 bar.
The major components were a gas cooler, recuperator, flooded evaporator, low pressure
separator/receiver, compressor, expansion valve, connecting piping and a control
system. All components were standard high pressure equipment used by the natural gas
processing industry. The gas cooler had a reasonably unique design to ensure close to
pure counter-current heat exchange between the cooling CO, gas and the water being
heated, both of which had relatively low flowrates. The compressor used was an open
crankcase, reciprocating type with special gas seals on the piston rod to prevent CO;
leakage. Refrigeration capacity (suction pressure) was controlled by varying the
compressor speed. Water heating capacity was controlled by both using the expansion
valve to control the CO; discharge pressure and varying the water flowrate through the
gas cooler.

The main problem encountered during commissioning of the prototype was CO; leakage
through the compressor piston rod seals. Alternative sealing systems were tried, but the
leakage remained an on-going problem that prevented prolonged operation of the
prototype, such as would be necessary in industrial applications.

Performance of the prototype was determined by energy balances based on
measurements of CO, and water flowrate and temperature when it operated at steady-
state. The energy balances generally agreed to within 6%. Trials were performed with
suction pressures from 29.6 to 35.5 bar, discharge pressures from 80 to 130 bar, with hot
water outlet temperatures from 65°C to 90°C, and evaporator water inlet temperatures
from 11°C to 21°C.

When heating water to 90°C and providing refrigeration at 1°C (35.5 bar suction
pressure), the maximum overall Coefficient of Performance (COP) achieved was 5.4 at
a discharge pressure of 114 bar. Below this optimum discharge pressure, the COP
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declined due to gas cooler heat transfer limitations (lower compressor discharge
temperature led to lower temperature difference in the gas cooler and high CO, outlet
temperature). Above the optimum, the decline in thermodynamic and compressor
efficiency as pressure ratio increased caused the COP to decrease. The maximum
heating and cooling capacities were about 13% less than the design values. This was
attributed to the lower than expected volumetric efficiency of the compressor. The
performance of the heat exchangers were generally close to the design values when
allowances for lower than design water flowrates were taken into account.

As expected, when suction pressure was reduced to 29.6 bar (-6°C), there was up to a
10% decrease in optimum COP as well as reduced heating and cooling capacity. When
heating water to 65°C rather than 90°C, the optimum COP was about 20% higher.
When suction pressure or hot water outlet temperature was decreased, the optimum
discharge pressure became slightly lower due to the gas cooler heat transfer being less of
a limitation on overall system performance.

Addition of oil to the CO, did not reduce the CO, leakage sufficiently to allow long-
term operation without recharging, and had minimum impact on the performance of the
gas cooler, recuperator and compressor. However, oil fouling caused a significant drop
in heat transfer performance of the evaporator.

The measured prototype performance agreed well with process simulations of the
equipment and with results for similar laboratory scale equipment reported in the
literature. Therefore, simulations could be used to optimise component and system
design with a reasonable level of confidence. It was shown that the biggest increase in
COP could be achieved by improving compressor isentropic efficiency rather than
increased heat exchanger size.

Overall, the concept of the transcritical CO, heat pump for simultaneous refrigeration
and water heating was proven and the required energy efficiency was sufficiently high
that the heat pump is likely to be economically competitive with traditional heating and
cooling systems. Further work should concentrate on improving compressor design to
eliminate CO; leakage and to improve both isentropic and volumetric efficiency.
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1 INTRODUCTION

The provision of heating and cooling is a very important function in many industrial
processes. In New Zealand an estimated 4700 TJ of energy is used for heating to less
than 100°C, and 4500 TJ of energy is used for refrigeration by the food processing
industry each year (Kallu and Cleland, 1996). A large proportion of the heating is used
to generate hot water for cleaning, sterilisation and other general process heating duties.
Often the water needs to be at greater than 80°C due to food safety regulations and other
process constraints. Most of the refrigeration is required at temperatures less than 10°C
for preservation of food and other perishable products.

Traditionally, heating and refrigeration have been provided separately. This has several
advantages. In particular, the amount of heating or refrigeration is easily controlled, and
neither is dependent on the other. If only heating or cooling is required at any one time,
separate systems are generally more cost efficient.

Cooling is usually provided by vapour compression refrigeration cycles, in which heat is
usefully extracted at low temperatures and is rejected to the environment at higher
temperatures. Refrigeration cycles at about 0°C typically provide about four times as
much cooling as the energy required to drive the compressor.

Heating has been traditionally supplied by boilers. This can be quite cost effective when
the price of the fuel for the boiler is low and temperatures greater than 80°C are
required. The energy efficiency of boiler systems is typically between 50 and 80%.

An alternative to the use of boilers is passive heat recovery. This is only feasible when
an existing process stream is available at sufficiently high temperature. For example,
desuperheating of refrigerants after compression in refrigeration systems can provide
high temperature heat, but the total heat available at high temperature is usually less
than 15% of the total heat rejected from the refrigeration system (White et al, 1997). At
most sites, there is a large number of options for heat recovery to achieve low
temperatures (eg. less than 60°C), but relatively few for higher temperatures.

Another alternative are heat pumps which use the same cycle as refrigeration systems
except that waste heat is extracted from the environment and it is the heat of rejection at
higher temperatures that is useful. Traditional heat pumps can be energy efficient,
typically giving two to six times as much heat as energy consumed (Hewitt ez al, 1997).
However they generally have a high capital cost, and are restricted in the temperatures
they can deliver due to loss of efficiency at large temperature lifts and the pressure
limitations of commonly available equipment. Conventional heat pumps often use
fluorocarbons as the refrigerant, which are currently being phased out due to their ozone
depleting and global warming effects.

The use of heat pumps enables the possibility of providing simultaneous heating and
cooling. If the heat extracted by the heat pump system is also utilised for refrigeration,
much greater overall energy efficiency is obtained. In addition, a single, integrated
system requires less space and maintenance than the two separate systems.



Unfortunately, with most conventional heat pump and refrigeration systems, the large
temperature split required to provide simultaneous heating and cooling at useful
temperatures cannot be achieved without a large loss in efficiency.

Lorentzen (1994) proposed the transcritical carbon dioxide heat pump as a system which
is able to efficiently provide high temperature process heat as well as simultaneous
cooling. This technology has the potential to be more efficient and cost effective than
present systems and also has the advantage of using CO, which is naturally occurring
and environmentally friendly compared with fluorocarbon refrigerants.

The general objective for this project is to investigate the feasibility of utilising the
transcritical CO; heat pump cycle for industrial heating and cooling. The project has
been organised as part a joint venture between Flotech Ltd, Electricity Corporation of
New Zealand Ltd (ECNZ), and Massey University.





