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Abstract 

This thesis addresses existence and uniqueness of solutions to certain classes of 

initial-value problems with functional differential equations. The technique of scales 

of Banach spaces is used. A scale of Banach spaces is a collection of Banach spaces 

varying on a real parameter. A scale consisting of function spaces can be used to 

suppress one variable in an initial-value problem in a partial differential equation 

of two independent variables, therefore enabling local existence and uniqueness of 

a solution to the problem to be shown with the classical method of successive ap­

proximations from the Picard-Lindelof Theorem of ordinary differential equations. 

Tuschke's presentation ( c.f. [7]) of this technique and a related theorem has been 

adapted in Chapters 1 and 2. Chapters 3 and 4 present original theorems, stating 

existence and uniqueness of solutions to more general initial-value problems, having 

a retarded character. 
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Chapter 1 

Scales of Banach Spaces 

1.1 Introduction 

The existence and uniqueness of solutions for certain classes of differential equations 

are investigated in this thesis, using the technique of scales of Banach spaces. This 

technique has been extended to a certain class of functional partial differential 

equations. Related equations arise in geodesic problems, including some in optics. 

vVork in this area has been clone by Friedmann and McLeod [2], Rogers [4], and van­

Brunt and Ocken don [8]. The differential equations investigated in these references 

have real-valued solutions depending on only one variable, and were treated without 

the use of scales of Banach spaces. The differential equation dealt with in Chapter 3, 

however, requires a complex valued solution depending on one real and one complex 

variable. The presence of derivatives on the right-hand side of the differential 

equation results, after a functional reformulation, in an unbounded operator on 

the right-hand side. A scale of Banach spaces is instrumental in dealing with such 

an unbounded operator. 

Dependence on the complex variable is suppressed, and the solution is rep­

resented by a function valued in the scale of holomorphic function spaces, and 

depending on only the real variable. Then the method of successive approxima­

tions, from the standard proof of the Picard-Lindelof theorem, can be applied. The 

method of successive approximations is illustrated in its simplest case in the im­

mediately following section, since it will be used repeatedly throughout the rest of 

the thesis. 

Existence and uniqueness results for functional differential equations in scales of 
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Banach spaces have been established by Sekine and Yamanaka [5], ·walter [9], and 

Yamanaka and Tamaki [10]. The simplest existence and uniqueness result of this 

nature, generalising the Cauchy-Kowalevski theorem, appears in Tutschke (7], and 

has been included in Chapter 2 to illustrate the method of proof, much of which 

carries over into the existence and uniqueness proofs in Chapter 3. The differential 

equation investigated in Chapter 3 is notable in that retarded values of the timelike 

derivative are involved on the right-hand side. Chapter 4 extends the results in 

Chapter 3, by generalising the operator affecting the retardations appearing on the 

right-hand side of the differential equation. 

1.2 The Picard-Lindelof Theorem in a Banach 

Space 

Techniques appearing in this thesis are developments on the method of succes­

sive approximations used in the standard proof of Picard's Theorem for ordinary 

differential equations (cf. [l]). Picard's Theorem concerns the initial value problem 

dw (t) 
dt 
w(O) 

f(t, w(t)), 

Wo, 

(1.1) 

(1.2) 

where w0 is some prescribed real number. A solution w is a function mapping from 

some interval containing 0 E R to R which satisfies both of these equations. If f is 

Lipschitz continuous on an open set around (0, wo), then the theorem states that 

there is a unique solution to initial value problem (1.1), (1.2) on some open interval 

containing 0. As the generalisation to the case in which the solution w is valued 

in a Banach space is straightforward, the method of successive approximations will 

be illustrated in this context. 

Theorem 1 Let B be a Banach space with norm II · 11- Let w0 E B I and suppose 

that f is a Lipschitz continuous mapping from a neighbourhood of (0, wo) into B. 

Then the initial-value problem (1.1} 1 (1.2} has a unique solutior:i, on the interval 

[0, T*] for some positive number T*. 

The initial-value problem (1.1), (1.2) is equivalent to the integral equation 

w(t) = w0 + lat J( T, w(T ))dT. (1.3) 
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Successive approximations are defined recursively by substitution into the right­

hand side of this equation, that is, the approximations w1 , w2 , ••• map the interval 

[O, T] into B according to 

Wo + lot f( T, wo)dT 

Wo + lot J(T,wk(T))dT. 

(1.4) 

(1.5) 

These approximations are then shown to converge uniformly on some subinterval 

[O, T*], and the limit function w thus defined is shown to solve integral equa­

tion (1.3), and hence also initial-value problem (1.1), (1.2). 

1.2.1 Proof of Existence 

Initially the conditions in the statement of the theorem must be quantified. Suppose 

that the domain of f is the cylinder 

[O,T] x {w EB: JJw - wall :SR}, (1.6) 

where T and R are positive numbers. Clearly T* will be some positive number not 

exceeding T. Also, since f is Lipschitz continuous, there is a positive constant L 

such that whenever t E [O,T] and w, v E {w EB: Jlw-woll :SR}, 

llf(t, w) - J(t, v)II :S LIJw - vii- (1.7) 

Further, since f is continuous and the set {(t,w0 ): t E [O,T]} is compact, there is 

some positive number I{ such that 

llf(t, wo)II :SJ( (1.8) 

whenever t E [O, T]. 

The initial-value problem (1.1), (1.2) is equivalent to the integral equation (1.3). 

Define the successive approximations wk : [O, T] -+- B, k = 1, 2, ... by equa­

tions (1.4) and (1.5). Inequality (1.8) yields 

(1.9) 

for O :S t :S T, and therefore for O :S t :S T*. 

If Wk+i is to be defined by equation (1.5), then the integrand on the right-hand 

side of that equation must be defined, so that it is necessary for T to be no greater 
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than T, as mentioned before, and similarly for llwk(r) - wall :S R. This will be 

satisfied if it can be shown that, for k 2: 1, 

(1.10) 

where { ck} is some sequence of positive numbers satisfying 

(1.11) 

since then 

k 

llwk(r) - wall :S llwk(r) - Wk-1(r)II + · · · + llw1(r) - wall :SL EkR :SR. (1.12) 
j=l 

Inequality (1.10) in the case k = 1 is implied by inequality (1.9) if Kt is re­

stricted to be no greater than c1 R, i.e., if t is restricted to be no greater than 7P; 
to this end choose T* :S 7P. In the general case k = j > 1, the definition (1.5) 

and the inequalities (1.7) and (1.10) give 

llwj(t)-wj-1(t)II < IJwo+ latJ(r,Wj-1(r))dr-wo- latJ(r,wj-2(r))dTII 

< lat IIJ(r, Wj-1(r)) - J(r, Wj-2(r))lldr 

< L lat llwj-1(r) - Wj-2(r)lldr 

(1.13) 

Thus, inequality (1.10) with k = j - 1 implies the inequality (1.10) with k = j if 

(1.14) 

Since LT* is independent of j, a geometric sequence is obtained by defining 

Cj = LT* Cj-1, (1.15) 

and the series (1. 11) will converge if LT* < 1. Merely choosing c1 :S 1 - LT* will 

yield inequality (1.11). 

It has been proven that T* can be chosen sufficiently small that the successive 

approximations { wk} are all defined on the interval [O, T*], and satisfy inequal­

ity (1.11). Inequality (1.10) implies that the sequence {wk(t)} is Cauchy for each 

t E [O, T*]. Since B is a Banach space, there must exist a limit 

w(t) = lim wk(t). 
k-+oo 

(1.16) 
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Now it remains to show that the limit function w thus formed is a solution to 

initial-value problem (1.1), (1.2), i.e., that integral equation (1.3) is satisfied. The 

left-hand side w(t) of (1.3) is the limit of the points wk(t), and if its left-hand side, 

w0 + Ji f(r, w(r))dr, can also be shown to be the limit of the points wk(t), then w 

is a solution to initial-value problem (1.1), (1.2), and the existence result is thus 

established. By the definition (1.5), 

llwo+ lot J(r,w(r))dr -wk(t)II 

Jlwo + lot f(r, w(r))clT - (wo + lot J(r, Wk-1(r))dr) II 

< lot llf(r, w(r)) - J(r, Wk-1(r))llclT. (1.17) 

By the Lipschitz condition, 

lot IIJ(r,w(r)) - f(r,wk-1(r))lldr < lot Lllw(r) - Wk-1(r)lldr 
00 

(1.18) 

As k - oo, z~k EjR - O; thus w is a solution. 

■ 

1.2.2 Proof of Uniqueness 

Suppose that w 1 and w 2 are two solutions to the initial-value problem (1.1), (1.2), 

both defined on the interval [O, U]. Here it will be demonstrated that, on the 

interval [O, U], the two solutions w1 and w2 are equal. Since the solutions are both 

differentiable, they are a fortiori continuous, and therefore so is their difference; 

thus, for any t* E (0, U], the supremum 

sup llw1(t) - w2(t)II 
tE[O,t.) 

(1.19) 

is finite. As observed above, the initial-value problem (1.1), (1.2) is equivalent to 

the integral equation (1.3), so that the difference w1 (t)-:-- w2 (t) satisfies 

w1(t) - w2(t) = lot (f(r, w1(r)) - J(r, w2(r))) dr. (1.20) 

Applying the Lipschitz condition, if t ::; t,., then 

llw1(t) - w2(t)II < lot Lllw1(r) - w2(r)IJdr 

< Lt sup JJw1(r)-w2(r)JJ, 
rE[O,t.] 

(1.21) 
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·• 

so that if Lt*< l, then sup,.,.E(O,t.] llw1(r) - w2(r)II must vanish, i.e., w1(t) = w2(t) 

on [O, t*]. Dividing the interval [O, U] into subintervals of length smaller than t, it 

can now inductively be shown that w1(t) = w2(t) on the whole interval [O, U]. 

■ 

1.3 Complex Differentiation as an Unbounded 

Operator 

Consider the initial-value problem 

ow 
fJt 

w(O, z) 

ow 
oz' 
wo(z ). 

(1.22) 

(1.23) 

The solution w will be a complex-valued function, differentiable with respect to 

the real independent variable t, and holomorphic with respect to the complex in­

dependent variable z. The initial condition w0 is a holomorphic function defined 

on the disc 

n = { z E C : I z I ::; So}' 

where s0 is some positive number. Let B be the Banach space of all holomorphic 

functions defined on the disc n, with the norm 

llfll = sup lf(z)I. 
zE\1 

Let D denote the complex differentiation operator fz on B, that is, whenever 

f EB, let 
df 

( D f) ( z) = d) z) 

for each z E n. Then the initial value problem (1.22), (1.23) can be reformulated 

as the following initial-value problem in the space B: 

w'(t) 

w(O) 

D(w(t)) 

Wo. 

(1.24) 

(1.25) 

Since, for any given t, the dependence of w upon z is described by the one point 

w(t) in the function space B, the variable z in equations (1.22), (1.23) can be 

suppressed in this formulation. 
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The reformulation of initial-value problem (1.22), (1.23) as (1.24), (1.25) does 

not rely on the properties of R, C, or holomorphic functions. If U, V and W are 

arbitrary sets, and J : U x V -t W, and II is the set of functions mapping V into 

W, then we can naturally define a function F : U -t II representing J, by letting 

F(u) be the function which maps v into f(u,v), whenever u EU and v EV, i.e., 

(F(u))(v) = J(u,v). (1.26) 

This is the approach taken here to initial-value problem (1.22), (1.23); the solution 

is naturally a function of two variables, but can be expressed as a function of one 

variable and the method of successive approximations can thus be applied. 

The initial-value problem (1.24), (1.25) is in the form of problem (1.1), (1.2), 

so that, were the operator D Lipschitz continuous, the Picard-Lindelof theorem in 

a Banach space would apply, ensuring, locally, the existence of a unique solution 

to the initial-value problem. However, D is not Lipschitz continuous. To see 

this, suppose L is a Lipschitz constant for D, satisfying, for any two holomorphic 

functions J and g, 

IIDJ - Dgll :s; LIIJ - gll, (1.27) 

that is, 

{ 
df dg } 

sup dz(z)- d)z): lzl :s; so :s; Lsup{f(z) -g(z): lzl :s; s0 }. (1.28) 

The functions f and g are arbitrary, and the operation of differentiation is linear, 

so that inequality (1.28) must be satisfied for the function h = J - g holomorphic 

on n. Now any hypothetical Lipschitz constant L would have to satisfy 

IIDhll :s; Lllhll, (1.29) 

that is, 

sup { ~: (z): lzl :s; so} :s; Lsup{h(z): lzl :s; so}. (1.30) 

(In the language of functional analysis, the existence of such a finite positive con­

stant L would imply that the operator D is bounded.) Let A be any integer greater 

than Ls0 , and suppose 

for z in the disc (1.3). Then 

dh A ( Z )A-l Dh(z) = -(z) = - -
dz so so 
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Im 

.. ········ ... . 
\ Zo) 

•· .•.••• Y,' 

C 
s0 Re 

Figure 1.1: A nonuniform bound on the derivative of a holomorphic function 

Clearly Lsup{h(z): lzl :::; so}= L, but sup{~~(z): lzl:::; so}= ! > L, so 

that inequality (1.30) cannot be satisfied. Thus, the right-hand side of differential 

equation (1.24) is not Lipschitz continuous with respect to the argument w(t), 

and consequently Picard's Theorem cannot be applied directly to this initial-value 

problem. 

It is useful to consider in detail the unbounded nature of the operator D. A 

nonuniform bound describing the behaviour of D can be derived from the Cauchy 

integral formula. Let f be some holomorphic function on the disc (1.3), and let z0 

be some point on the interior of the disc ( see Figure ( 1. 1)). The distance from z0 

to the boundary of the disc is so - lzol, so if O < p < s0 - lzol, then the circle C 

of radius p with centre z0 lies entirely within the disc (1.3). The Cauchy integral 

formula states that 
df (

7
o) = _1 1 f(z)dz 

dz ~ 21ri Jc (z - z0 ) 2 ' 
(1.31) 

and leads immediately to 

(1.32) 
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Letting p -, so - lzol gives 

I 
df (zo)I :S llfll . 
dz so - lzol (1.33) 

This inequality is known as Nagumo's Lemma ( c.f. Tutschke [7]). 

1.4 Scales of Banach Spaces 

In the last section, it was shown that the complex differentiation operator D, 

mapping B, the space of functions holomorphic on the disc {z E C: lzl :S s0 }, into 

itself, is unbounded, so that the Picard-Lindelof theorem in a Banach space cannot 

be applied directly to initial-value problem (1.24), (1.25); however, a nonuniform 

bound on D was found, viz. inequality (1.33). The use of this bound requires the 

definition of a scale of Banach spaces. Instead of just the one Banach space B, for 

each r E (0, r0 ) define Br to be the space of bounded functions holomorphic on the 

disc {z EC: lzl < r}, with the norm 

llfllr = sup{ lf(z )I : lzl < r }. 

Now let O < s < r < s0 . An argument similar to that in the last section shows 

that if f E Br and zo E C satisfies lzol < s, then 

(1.34) 

that is, 

IID Ills :S ll. r-s 

In the language of functional analysis, D is a bounded operator from Br to Es with 

norm no greater than - 1
-. r-s 

The collection of these spaces { Br : 0 < r < s0 } forms what is called a scale 

of Banach spaces. For O < s < r < s0 , any function holomorphic on the disc 

{z EC: lzl < r} is certainly holomorphic on the disc {z EC: lzl < s}, and the 

domain restriction operator 

can be defined by 

Ir,sf(z) = J(z) Vlzl < s 
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Im 
Tl 

Sl 

10 

s r Re 

Figure 1.2: Complex differentiation as a bounded operator between two function 
spaces 

whenever f E Br. Thus the action of Ir,s is merely to shrink the domain of f 
from {z EC: lzl < r} to {z EC: lzl < s}. This is clearly a linear operator with 

lllr,sll :S 1, where 

lllr,sll = sup{lllr,sflls: llfllr = l}. 

Note also that the domain restriction operator Ir,s is an injection, that is, if f and 

g are holomorphic functions belonging to Br, such that Ir,sf = Ir,s9, then f = g, 

since holomorphic functions identically equal on an open set are equal throughout 

the intersection of their domains. 

Generalising the scale {Br}, we define a scale of Banach spaces to be a set of 

Banach spaces {Hr : 0 < r < so}, each space Hr having norm II· llr, together with 

a set of scale operators { Jr,s : 0 < s < r < s0}, each linear, injective, and satisfying 

11 Jr,s II :S 1. Then the set 

{ Br : 0 < r < So} 

of function spaces defined above is a scale of Banach spaces, and the set of domain 

restiction operators Ir,s are the scale operators. 
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Chapter 2 

Initial Value Problems in Scales 

of Banach Spaces 

2.1 Mappings into Scales of Banach Spaces 

In the last chapter the reformulation of initial-value problem (1.22), (1.23), using 

the function space B to suppress the complex variable z, was considered. The 

inital-value problem (1.24), (1.25) resulting cannot immediately be shown to have 

a solution using the method of successive approximations, because the operator 

D, representing complex differentiation, is unbounded. However, with the scale of 

function spaces Br, a more sophisticated approach can be considered, viz. to seek a 

solution to initial-value problem (1.24), (1.25) valued in a scale of Banach spaces. 

A solution whose domain varies in width, or extent in the z-plane, as t changes, 

can thus be considered. Specifically, it is reasonable to expect the extent in the 

z-plane over which existence can be proven to contract as t increases, yielding a 

conical domain. That is, the desired solution w(t) will be defined for t E [O, T*] 

for some positive T"', but for each given t, the point w(t) will belong only to some 

of the function spaces Br. Figure (2.1) illustrates this geometry. If w(t) E B,. 

whenever O :S t < a(s0 - r), then w(t, z) is specified for each (t, z) lying in the 

cone, where T* = as0 , whereas, if only the one function space Bso is defined, and 

w(t) is required to belong to Bso whenever O :S t < T*, then w(t, z) is specified 

in the cylinder. Intuitively, existence and uniqueness of a solution within the cone 

are more plausible than within the cylinder, which contains the cone. 

An alternative and fflghtly less gesticulative description of what is meant by a 
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t 

z (Re) 

Figure 2.1: A scale of Banach spaces allows a conical domain to be considered 

mapping into a Banach space is given for precision. Let {Hr : 0 < r < s0 } be a scale 

of Banach spaces with scale operators {J,.,s: 0 < s < r < s0 }. For each r E (0, s0 ), 

let Wr be a mapping from some interval Yr, possibly empty, into Hr, Suppose 

0 < s < r < so. If Yr ~ Y s and, for each t E Yr, 

then Wr and W5 are said to be compatible. If Wr and W5 are compatible whenever 

0 < s < r < s0 , then the collection of mappings { Wr : 0 < r < s0 } is said to consti­

tute a mapping into the scale of Banach spaces {Hr}. The condition of compatibilty 

arises naturally in the case at hand, where the Banach spaces in the scale are the 

function spaces Br. If Wr and w5 represent the same function w(t, z), and wr(t) is 

defined and lzl < r, then 

w(t,z) = (wr(t))(z). 

If also lzl < s, then 

w(t,z) = (ws(i))(z), 

so that 

(w 5 (t))(z) = (wr(t))(z). 

In terms of the scale operator Ir,s, this can be written 
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2.2 Generalised Cauchy-Riemann Operators 

Let 

{Hr : 0 < r < so} 

be an arbitrary scale of Banach spaces with scale operators { Jr,s : 0 < s < r < s0 }, 

and consider the initial-value problem 

UO,s• 

(2.1) 

(2.2) 

Here u is to be valued in the scale {Hr}, in the sense described in the last paragraph, 

and specifically, 'I.ls is valued in the space Hs. ·whenever O < s < r < so, the 

operator Fr,s takes one real argument and one argument from the space Hr, and 

has a value in the space H5 • If this equation is to be soluble, it can immediately 

be seen that a compatibility condition must be met by the operators Fr,s· Let 

0 < s < r < p < s0 • so that 

and 

Thus it is required that 

(2.:3) 

As regards the initial condition (2.2), it is clearly required that 

Uo s = Jr sUO r· , , , 

For brevity, then, the functionals Fr,s will not be distinguished, and neither will the 

initial condition functions uo,s be, so that the initial-value problem will be written 

u'(t) 

u(O) 

F(t, u(t)) 

Uo. 

(2.4) 

(2.5) 

If {Hr} is the scale {Br} of holomorphic function spaces, then the conditions 

imposed here on the right-hand side operator F will allow for retardation-type 

displacements in the complex variable. Choose any z0 E C with lzol < so. For 
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every s E (lzol, s0 ), differential equation (2.4) specifies t~(t, zo) in terms oft and 

'l.tr(t), where r E (s, s0 ) is chosen arbitrarily. Since ur(t) encapsulates all of the 

values u ( t, z) such that I z I < , , to calculate ~~ ( t, zo), one must know the value 

oft and also of u(t, z) for each lzl < ,. However, one is free to choose r as any 

number exceeding lzol, so that any dependence of ~~(t, z0 ) on u(t, z), if lzol < lzl, 
is spurious, only appearing formally. If any of the values u(t, z) for lzl < lzol are 

unknown, however, then ~~ ( t, z0 ) cannot be calculated, unless such values are first 

obtained using analytic continuation. Even if this approach is taken, it is necessary 

for some values u( t, z) to be known. Such values are described as retarded due to 

the inequality lzl < lzol-
The property of example differential equation (1.24) which will allow proof of 

local existence and uniqueness of a solution to an initial-value problem is that the 

right-hand side Dw(t) obeys Nagumo's Lemma, that is, that 

IID( )II < llw1 - w2II,. 
W1 - W2 s _ 

T' - s 
(2.6) 

whenever O < s < r < s0 and w 1 , w 2 E Br. Take the initial-value problem (2.4), 

(2.5), with the conditions that the operator Fon the right-hand side is continuous 

with respect to t, and, generalising inequality (2.6), satisfies 

(2.7) 

whenever O < s < r < so and u 1 , u 2 E Hr, for some positive number C independent 

of t, u1 , and u2 • Because inequality (2.7) arises from the properties of complex 

differentiation, an operator satisfying this inequality is called a generalised Cauchy­

Riemann operator. Proofs of local existence and uniqueness of a solution to initial­

value problem (2.4), (2.5) now follow, adapted from similar material appearing in 

Tutschke (op. cit.). 

Theorem 2 Let { Hr : 0 < , < s0 } be a scale of Banach spaces. Suppose there 

exist positive constants T and R such that, whenever O < s < r < s0 , the right-hand 

side F(t, u) of differential equation (2.4) is a continuous function from 

[O, T] X Gr (2.8) 

to Hs, where 

Gr= {u E Hr: llu - 'l.tollr:::; R}. 
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Suppose further that F( t, u) is a generalised Cauchy-Riemann operator with respect 

to u I that is1 that there is some positive constant C such that inequality (2.1) holds 

whenever O < s < r < so and u1! u2 E 0r. Moreover, assume that, for each 

t E [O, TL the function F(t, uo) satisfies the asymptotic bound 

I{ 
IIF(t, uo)llr :S --, 

s0 - r 
(2.9) 

for each r E ( 0, s0 ) 1 where K is some positive constant. Then there exists a unique 

solution u to initial-value problem (2.4) 1 (2.5) on some conical domain of positive 

height! that is, there is a positive constant a and, for each r E (0, s0 ) 1 a unique 

function Ur mapping the interval [ 0, a ( s0 - r)] into the space Hr such that Ur is a 

solution to initial-value problem (2.4), (2.5) 1 and the functions {Ur} are compatible. 

2.3 Proof of Existence 

This proof uses the method of successive approximations illustrated in Section 1.2. 

The initial-value problem (2.4) 1 (2.5) is equivalent to the integral equation 

(2.10) 

In view of this, we define the successive approximations u1 , tl2 , ... recursively: 

uo + lot F( r, uo)dr, 

uo + lot F(r, Uk-1 (r) )dr, 

(2.11) 

(2.12) 

for each k = 2, 3, .... This is analogous to equation (1.3) and definitions (1.4) 

and (1.5) in the case of the Picard-Lindelof theorem for ordinary differential equa­

tions. The approximations Uk may not all be defined everywhere, and where they 

are, they may not belong to each of the spaces Hr. Certainly for uk(t) to be defined, 

it is required that O < t < T, since the integrand defining uk(t) in equation (2.12) is 

undefined for T (j_ [O, T]. The integrand will also be undefined if Uk-l (r) lies outside 

the ball 0r. Note that this condition depends on r, so that if O < s < r < s0 , it 

may happen that uk(t) E Hs but uk(t) (j_ Hr, that is, if {uk,r: 0 < r < so} are the 

compatible functions constituting the function uk, it may be that uk,s( t) is defined 

but Uk,r(t) is not. 

These approximations will be shown to converge absolutely and uniformly on 

the conical domain described above, that is, it will be shown that there exists a 
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convergent series 

(2.13) 

of positive terms such that, for each k E N, if O < r < s0 and O :St< a(s0 - r), 

the inequality 

(2.14) 

holds (read uo for uk-l ( t) in the case k = I). From this follows the existence of a 

limit function u. To see this, let O < r < s0 and O :S t < a( s0 - r ). The sequence 

{uk,r(t)} is Cauchy in Hr, since, assuming without loss of generality that m < n, 

n 

llun,r(i) - Um,r(t)llr < I: Jluk,r(t) - Uk-1,r(i)Jlr 
k=m+l 

and since 
(X) 

is convergent, 

as m -+ oo. Thus, as Hr is complete, the sequence { Uk,r( t)} converges to a limit 

Ur(t) E Hr, that is, 

!luk,r(t) - 1lr(t)llr --t 0. 

For fixed r, as t varies, we obtain a function Ur mapping the interval [O, a( s0 - r)) 

into the space Hr. For this to define a function u mapping into the scale {Hr} as 

r varies, the two functions u 8 and u,. must be compatible, where O < s < r < s0 . 

Clearly [O,a(s0 - r)) C [O,a(s0 - s)). Lett E [O,a(s0 - r)). For each k EN, 

llus(t) - J,-,sUr(t)lls :S llus(t) - Uk,s(i)lls + !luk,s(i) - J,-,sUk,r(t)lls 

+IIIr,sUk,r(i) - l,-,sUr(t)lls 

< ll1ls(t) - Uk,s(i)lls + 0 + lluk,r(t) - u,.(t)llr 

--t 0 

as k -+ oo. Thus 1ls and u,. are in fact compatible, and the limit functions 

{1lr: 0 < r < s0 } define a limit function u mapping into the scale {Hr}-
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The limit function u solves integral equation (2.10) and therefore initial-value 

problem (2.4), (2.5). If O < r < s0 and O :St< a(so - r), then a number q can be 

chosen such that O < r < q < s0 and O :St< a(s0 - q), for instance, 

Then 

q = i ( so - ~ + r) . 

llu(t)-(uo+ ltF(r,u(r))dr)L 

< llu(t) - Uk+1(t)llr + lluk+1(t) - ( Uo + lat F(r, uk(r))dr) llr 
+ jj(uo+ ltF(r,uk(r))dr)-(uo+ ltF(r,u(r))clr)L 

llu(t) - Uk+1(t)llr + lilt (F(r, uk(r)) - F(r, u(r))) drL 

< llu(t) - Uk+1(t)llq + rt llu(r) - uk(r)llq dr 
Jo q- r 

< 
00 t 00 

~ w·+-- ~ w·--+O 
L..i J q-r L..i J 

j=k+2 j=k+l 

as k--+ oo. Thus u(t) and 

uo + lat F(r,u(r))dr 

are equal in Hr, and hence represent the same holomorphic function, so that in­

tegral equation (2.10) is solved. It has now been shown that if inequalities (2.13) 

and (2.14) can be satisfied, then the successive approximations Uk converge abso­

lutely and uniformly to a function u solving initial-value problem (2.4), (2.5). 

From the definition of the first approximation u1 an idea of the shapes of the 

domains of the successive approximations can be obtained. Of course since the u 

argument of the operator F in the integrand in equation (2.11) is always simply 

u 0 , the function u 1 may be defined and belongs to Hr whenever O < r < so and 

t E [O, T]. From equation (2.11) and property (2.9), 

it Kt 
llu1(t) - uollr :S IIF(r,uo)ljdr :S --. 

o so - r 
(2.15) 

Thus if a1 is some positive number, and r and t are such that 

(2.16) 

then 

(2.17) 
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If, further, 
T 

a1 :S -, 
So 

18 

(2.18) 

then the restriction (2.16) implies O :St< a1(s0 - r). If, further still, Ka1 < R, 

then whenever O < r < s0 , 0 :St< a1(s0 - r), and O :ST :St, 

(2.19) 

and u1(T) in the integrand lies within the ball 0r, so that u2(t) E Hs for any 

positive s < r. 

Extrapolating, require a sequence { ak} such that not only is uk(t) defined and 

an element of Hr whenever O < r < so and O :St< ak(s0 - r), but also 

(2.20) 

Now, if the sequence { ak} is strictly decreasing, then 

0 :St< ak+1(so - s) =} :lr E (s,so): 0 :St< ak(so - r), (2.21) 

so that if O < s < s0 and O :St< ak+1(s 0 - s) then certainly uk+i(t) is de­

fined and belongs to Hs, and considerations may be restricted to ensuring that 

Jluk+i(t) - uolls < R. Inequality (2.20) will be satisfied if 

(2.22) 

and thus we will require the existence of a sequence of positive reals { ck} such that 

for each k EN, whenever O < r < s0 and O :St< ak(s0 - r), 

(2.23) 

and 

(2.24) 

Note that inequality (2.17) implies inequality (2.23) in the case k = 1, provided 

that 
c1R 

a1 :S J( . 

Since the terms En are all positive, inequality (2.24) implies 

(2.25) 

(2.26) 
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for each positive integer n. Since the sequence { ak} is decreasing, inequality (2.23) 

holds whenever k ~ n and O < r < s0 and O ~ t < an(so - r). Thus 

k 

lluk(t) - uollr < I: llui(t) - Ui-1(t)llr 
i=l 

i=l 

< R, 

so that inequality (2.20) is satisfied for each k. 

Inequality (2.2:3) has another important consequence. Because { ak} is a de­

creasing sequence of positive numbers, it has a nonnegative limit a. Assume for 

the moment that a is positive. Since, for each k, a < ak, inequality (2.2:3) will 

hold whenever O < r < s0 and O ~ t < a( s0 - r ). If Wk = ckR, inequali­

ties (2.13) and (2.14) are satisfied; thus the approximations u1 , u 2 , ••. converge 

to a limit function u which, as shown earlier, must be a solution to initial-value 

problem (2.4), (2.5). Therefore, the existence result will be established if it can be 

shown that the inequality 

a= lim ak > 0, 
k-co 

(2.27) 

as well as, whenever O < r < s0 and O ~ t < ak(s0 - r), inequality (2.2:3), and 

inequality (2.24) are all satisfied. 

For the present, it will be assumed merely that { ck} and { ak} are sequences of 

positive numbers, and that the sequence { ak} is strictly decreasing and bounded 

above by inequality (2.18). Inequality (2.23) will be established, dependent on 

certain relationships between the sequences { ck} and { ak}, and it will subsequently 

be shown that such relationships can be satisfied for appropriate choices of the 

sequences { ck} and { ak} which also satisfy inequalities (2.24) and (2.27). 

Inequality (2.23) will be established by induction, but not directly. A direct 

approach might begin by assuming that inequality (2.23) holds for k = l, so that 

llfo\F(r,uz(r)) - F(r,uz_1(r))drL 

< lot IIF(r,u1(r))-F(r,1l1-1(r)llrdT 

< r ~lluz(t) - Uz-1(t)llqdT (by (2.7)) lo q- r 

< 
CtczR 
q-r 

(2.28) 

where q is chosen such that O < r < q < s0 and O ~ t < az(so - q). Any such q is 
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less than s0 - j_, and t may be as large as aI+1 ( s0 - r), so that the last expressio"n 
a1 

in calculation (2.28) becomes at least as large as 

So - a1+1 (so-r) - r - az - a1+1 . 
a1 

If this is to imply inequality (2.23) for k = l + 1, then c/+l must be defined in such 

a way that 

that is, 
<=1+1 > C a1+1 a1 

c/ - a1 - a1+1 

But, if the sequence { ak} converges to a positive number, then this fraction must 

tend to infinity, and therefore, if the numbers Ek are positive, then Ek ---, oo, so that 

inequality (2.24) breaks down. 

Earlier it was seen that the first approximation u1 satisfies inequality (2.1,5); 

thus 
Kt Kt 

IJu1(t) - tlollr :'S -- :'S t 
So - r so - r - ai 

(2.29) 

whenever O < r < s0 and O :'St< a1(s 0 - r). The inequality 

(2.30) 

is generalised from this for the case of 1.lk, where {hh} is some sequence of positive 

numbers yet to be specified. ·when k = 1, tlo should be read for 1lk-i(t), and 

(2.31) 

Inequality (2.30) provides what can be thought of as a catalyst: although in­

equalities (2.23) and (2.30) cannot readily be proven by induction independently, 

considered together they can be established. 

Inequality (2.23) is satisfied fork= 1 (read tlo for 1.lk-i(t)) provided that a 1 

satisfies inequalities (2.18) and (2.25). Inequality (2.29) and equation (2.31) show 

that inequality (2.30) holds in the case k = 1. Therefore suppose that inequali­

ties (2.23) and (2.30) each hold in the cases k = 1, 2, ... , j, whenever O < r < so 

and O :'S t < ak(so - r). Inequality (2.30) will be established first, in the case 

k = l + 1, whenever O < r < s0 and O :'S t < a1+1(s0 - r), and inequality (2.2:3) 
in the case k = l + 1 will be shown shortly afterward. It is important to remind 



CHAPTER 2. IVPS IN SCALES OF BANACH SPACES 21 

the reader that these inequalities are to be established on the condition that the 

sequences {ck}, { ak} and { Nlk} satisfy certain relationships: the sequences {ck}, 

{ ak} and { l\llk} will then be defined so as to satisfy these relationships. 

Let O < s < s0 and O :St< a1+1(so - s). Then 

ll1t1+1(t) - 7.lz(t)lls llfot(F(r,u1(r))- F(r,u1-1(r)))dr/ls 

< lot IJF(r, 1t1( T)) - F(r, 7.l/-1 (r)) IJs 

< rt _Q_Jlu1(r) - 1l1-1(r)llrdr, 
lo r - s 

(2.32) 

where r is chosen so that O < s < r < so and O :S t < a1( s0 - s ), by inequality (2.7). 

Note that the application of this inequality requires that 1t1, u1_1 E 0r, but that 

this follows from inequality (2.23) in the cases k = 1, 2, ... , k, as was shown on 

page 19. There is no reason why r cannot depend on r, so here we define 

r = ~ (so + s - !_) . 
~ a1 

Substituting, and applying inequality (2.30) to the integrand of inequality (2.32) 

gives 

it 2C 
< 7 JJu1(r) - u1-1(r)Jl1(so+s-..!..)dr 

O So - S - - 2 az 
a1 

< rt 2C T 2]vf1T dr 
lo so-s-~a1(s0 -s)-r 

it rdr 
4C1111a1 ( ( ) ~)2 o a1 so - s - , 

it dr 
< 4C l\ll1a1t ( ( ) )2 o a1 so - s - r 

4C1Vl1t2 

(a1(so - s) - t)(so - s) · 

Since it is assumed that O :S t < a1+1 ( s0 - s), it follows that 

Since a1+1 < a1, it follows that 

(2.33) 

(2.34) 
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so that inequality (2.30) is satisfied in the case k = l + 1 provided that 

(2.35) 

Recalling equation (2.31), define 

(2.36) 

for each k E N. Then J\;f1+1 = 4Ca11Vl1, and since az+i < a1 , inequality (2.35) is 

satisfied. Inequality (2.34) becomes 

llu1+1(t) - ui(t)lls::; (4C)1aia1+1K ( t ) . 
a1 s0 - s - t 

(2.37) 

Noting once more that O::; t < a1+ 1 (s 0 - s), this yields 

so that inequality (2.2:3) is satisfied if 

(2.38) 

It has now been proven by induction, if { ck} and { ak} are sequences of positive 

numbers and { ak} is strictly decreasing, and inequalities (2.18), (2.24), (2.25), (2.27) 

and (2.38) hold, that, for each k EN, whenever O < 7' < s0 and O::; t < ak(s0 - s), 

inequalities (2.23) and (2.30) hold, and therefore that the approximations Uk con­

verge absolutely to a solution to initial-value problem (2.4), (2.5) on a conical 

domain of positive height. For each k E N, let 

k-1 (1 ) Ck= fl - fl ' 

for any fl E (0, 1), so that inequality (2.24) holds with equality. If 

(4Clat+2 K 
ak+l = ak - -----, 

Ck+IR 

then, since the sequence { ak} is decreasing, 

(2.39) 

(2.40) 
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so that inequality (2.38) holds. Repeated application of equation (2.40) gives 

. = ( 4C)kat+2 J( 
a = hm ak = a1 - L R , 

k-t= k=l Ek+l 

whence equation (2.39) yields 

a= ai _ 4Ca1Kµ f 4Ca1 3 ( )k 
R(l - µ) k=O µ 

If 

(2.41) 

then 
4CafKµ 

a=a1- R(l-µ)(1-4c;;1); 

if this expression is positive then inequality (2.27) is satisfied. Thus, the inequalities 

remaining to be shown are (2.18), (2.25), (2.41), and 

4CafKfl 
0 ai-----.:'----> . 

R( 1 - fl) ( 1 - 4
~al ) 

(2.42) 

The first three of these inequalities put together require that 

. { T c1R µ } 
0 < a1 < mm so, I( , 4C , (2.43) 

and it is easily seen that this is compatible with the condition (2.42); one way is to 

note that at a1 = 0, the expression in (2.42) has value O and a positive derivative, 

so that a positive value for a1 can necessarily be chosen satisfying inequality (2.42) 

and small enough to satisfy inequality (2.43). Thus the existence result is shown. 

■ 

2.4 Proof of Uniqueness 

It will be shown that two solutions to initial-value problem (2.4), (2.5) mapping 

into the same space H9 must be equal on the intersection of their domains. From 

this it will follow that two mappings 7.l and v into the scale of Banach spaces 

{H9 : 0 < q < s0 } which each solve initial-value problem (2.4), (2.5) must be equal 

on the intersection of their domains. 

Let O < q < so, and suppose that 'U: [O, .6.] -, H9 and v : [O, .6.] -, H9 are two 

solutions to initial-value problem (2.4), (2.5), where .6. is some positive number 
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not exceeding T. Because the initial-value problem is equivalent to the integral 

equation (2.10), 

u(t) -v(t) = i\F(T,u(T))- F(T,v(T)))dT. (2.44) 

Thus, if 0 < s < q, then 

llu(t)- v(t)lls < it IIF(T,u(T))- F(T,v(T))llsdT 

< rt ~llu(T) - v(T)llrdT, Jo r - s (2.45) 

where r is chosen to satisfy 0 < s < r < q. Let a be an unspecified positive con­

stant; it will first be shown that u and v are equal on the closed conical domain with 

base {z EC: lzl :s; q} and height aq. Or, if aq > 6., then u and v will be shown to 

be equal on the same cone truncated at height 6.. In terms of the function spaces, 

this will amount to showing that whenever 0 < s :s; q and 0 :s; t :s; min{ a( q-s ), 6. }, 

llu(t) - v(t)lls = 0, (2.46) 

where, for notational convenience, we define 

llullo = lu(O)I. 

Let 

_ { (a(q-s) ) . } .::.=sup llu(t)-v(t)lls t -I :0<s:s;qand0:s;t:s;mm{a(q-s),6.}. 

Assuming that 3 is finite, it will be shown that a can be chosen sufficiently small 

that 3 must vanish. Then the proof that 3 must be finite will follow. 

Let O < s < q and 0 :s; t < min{a(q - s),6.}. The radius r in inequality (2.45) 

may be chosen to depend on T; specifically it may be chosen as 

r=½(q-f+s). 

Then inequality (2.45) becomes 

llu(t) - v(t)II, < l ½ (q _c~ _ 
8

) llu(r) - v(r)ll,dr 

< 2Ca3 1
0

' ( d) Jo ½(c,(q-s)+r) l ( ( ) -) 
7 

- aq-s-, 

4Ca3 ------lt TdT 
o (a(q-s)-T)2 

C - t < 4 a.::.----, 
a(q - s) - t 
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so that 

llu(t) - v(t)lls ( a(q t- s) - 1) :S 4Ca3, 

that is, 

3 :S 4Ca3. 

Therefore, if a< 1/4C, then 3 = 0, assuming that 3 is finite. 

It will now be shown why 3 must be finite. The difference u - vis a continuous 

function mapping the closed interval (0, 6.] to Hq, so that it must be bounded; 

therefore, let A be the finite number 

Now 

A= sup{llu(t) - v(t)llq: t E [O, 6.]}. 

sup{IIH(t)-v(t)lls(a(\-s) _1): 

0 < s :S q and O :S t :S min{ a( q - s ), 6.}} 

< sup { ( _f'._llu(T) - v(T)llqdT (a(q - s) - 1) : 
lo q - s t 

0 < s :Sq andO :St :S min{a(q- s),6.}} (by (2.45)) 

< sup { tCA (a(q - s) _ 1) : 
q - s t 

0 < s :S q and O :S t :S min { a( q - s), 6.}} 

CA sup {a - _t_: 0 < s :Sq and O :St :S min{o:(q - s), 6.}} 
q-s 

CAo:. 

Therefore the conclusion of the last paragraph is valid, so that in fact 

llu(t) - v(t)lls = 0 

whenever O < s < q and O :St< min{ a( q - s ), 6. }, that is, whenever 

and 

t E [O,o:q) n [0,6.] 

t 
0 < s < q- -. 

0: 
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For each 

t E [0, aq) n [0, .6.], 

choose 

s(t)E (o,q-±)· 
It has just been seen that 

llu(t) - v(t)lls = 0. 

By the injective property of the scale operators, since 

u(t) - v(t) E Hq, 

it follows that 

llu(t) - v(t)llq = 0. 

Thus it has been shown that the solutions u and v are equal on the interval 

[O, aq) n [O, .6.]. Depending on the value of o:, this interval may not be the full 

interval [O, .6.], but in that case an inductive approach can be taken. 

Suppose that 1l and v are equal on the interval 

[O, E) c [O, .6.]. 

Assume for notational simplicity that 

aq 
E>-. - 2 

To show that u and v are equal on the interval 

[o, E + ~q) n [o, .6.], 

first note that u and v are equal on the closed interval 

[o, E - ~q]. 
Now define 

S = sup { llu(t) - v(t)I[, C-'%--s~) -1) : 
aq { q }} 0 < s S q and E -
2 

S t S min E + o:( 2 - s), .6. . 

(2.47) 
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Figure 2.2: Regions within which uniqueness can successively be shown 

The same method used above can be applied to show that :::: must be finite, and 

thus that :::: = 0, i.e., 

llu(t) - v(t)llq = 0 

whenever 

E - ~q :S t :S min { E + ~q, T} ; 

consequently u and v are equal on the interval (2.47). Now clearly this procedure 

can be repeated to show that u and v are equal on [O, 6]. 

Figure (2.2) illustrates the geometry of this induction: in the case where {Hr} 

is the scale {Br} of holomorphic function spaces. It is first established that u( t, z) 

and v(t, z) are equal within the bottom cone depicted in the figure, i.e., where 

0 :S lzl < q and O :St< a(q - lzl). Analytic continuation, corresponding to the 

injective property of the scale operators, immediately shows that u(t,z) = v(t,z) 

within the cylinder, open at the top, circumscribing the cone, i.e., where O :S lzl :S q 

and O :St< aq. Now it can be shown that u(t, z) = v(t, z) on the second cone, 
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whose base is the cross-section midway up the last cylinder, using the same proof 

as for the first cone. Repeating this, it is inductively shown that u(t, z) = v(t, z) 

within the cones depicted, and thus within the cylinders circumscribing them. The 

top cone extends beyond the top of the cylinder of height .6., so that u( t, z) = v(t, z) 

for each t E [O, .6.], and whenever lzl :Sq. 

If u and v are two mappings into the scale {Hr} of Banach spaces which solve 

initial-value problem (2.4), (2.5), then they must be equal on the intersection of 

their domains, in the sense that if u(t) and v(t) both belong to a space Hr, then 

llu(t) - v(t)llr = o. 

From the definition of a mapping into a scale of Banach spaces, it can be seen 

that if u(t) E H,., then u(r) E H,. for every T E [O, t]; this is because the domain 

of tl as a function into H,. must be an interval, and u(O) = u0 E H,.. Similarly 

v maps the interval [O, t] into H,.. Since they are both solutions to initial-value 

problem (2.4), (2.5), u and v must be equal on this interval, so that u(t) = v(t). 

■ 
In this chapter it was seen how a scale of Banach spaces could be used to 

·reformulate initial-value problems of the type (2.4), (2.5) as a differential equation 

in one independent variable, and existence of a solution to such an initial-value 

problem was then established using the method of successive. Note that while the 

injective property of the scale operators was instrumental in showing uniqueness 

of a solution, the existence result made no appeal to it. 

Results similar to this have been shown by others, using the same procedure 

of reformulating a partial differential equation as a differential equation of one 

independent variable, by suppressing the other variable or variables through the use 

of a scale of Banach spaces, defining successive approximations by integration, and 

showing that they converge uniformly to a solution to the reformulated differential 

equation. One such result appeared in a paper by Sekine and Yamanaka [5], and 

deals with retardations in the real variable remaining after reformulation. That is, 

they deal with a differential equation 

u'(t) = F (2.48) 

where the independent variable t is real-valued, the solution u maps into a pre­

scribed scale of Banach spaces, and the right-hand side F depends not only on t 

and u(t), but on the behaviour of tl over the whole interval [t-d, t], where dis some 
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positive constant. If t is thought of as time, this differential equation stipulates 

the rate of change of some system in terms of the current time together with the 

history of the system over the period of length d leading up to the present. An ini­

tial condition for this differential equation must therefore specify u over an interval 

of length d. Sekine and Yamanaka consider the initial-value problem combining 

equation (2.48) with the condition that 

u(,) = 0 (2.49) 

whenever, E [-d, O]. 

The precise formulation of the problem (2.48) requires some additional notation. 

Let 

{Hr : 0 < r < so}, 

with the collection of scale operators 

{ lr,s : 0 < s < r < so}, 

be the scale of Banach spaces into which 1t will map. Fix some positive constant 

d. For each r E (0, s0 ), let Dr be the space of all differentiable mappings from the 

interval [-d, O] into Hr. If 7] E Dr, then define the norm ll·llr by 

ll7711r = sup{ll77(x)llr: XE [-d,O]}. 

Under this norm, Dr is a Banach space. The collection of these spaces forms 

another scale of Banach spaces 

{Dr : 0 < r < so}-

A natural definition for the scale operator Qr,s associated with this scale states 

that 

(Q,.,s77)(x) = lr,s(77(x)) 

whenever x E [-d,O]. 

If u : [-d, T] --t Hr, where Tis some positive constant, then, for each t E [O, T], 

define 'ti ( t) to be that point in D,. such that 

('tt(t)) (x) = u(t + x) 

for each x E [-d, OJ. There is no new information contained in this function; it is 

emphasised that the definitions of {D,. : 0 < r < s0 } and 'ti serve merely notational 
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ends. For any t E (0, Tl, ~ ( t) describes the behaviour of 'l.l over the whole interv~l 

[t - d, t]. Thus a function F can be defined, taking one argument from Rand one 

argument from Dr, and mapping into Hr, so that the left-hand side of differential 

equation (2.48) can be described as 

F (t, ~(t)). 

The resulting differential equation 

u'(t) = F (t, ~(t)) (2.50) 

does indeed give u'(t) in terms t and not only u(t), but the behaviour of 'l.l over the 

whole interval [t - d, t]. 

Sekine and Yamanaka proved that if the right-hand side operator F is a con­

tinuous generalised Cauchy-Riemann operator, and the inequality 

J{ 
IIF(i, O)llr ~ -

s0 - r 

holds for some positive constant J{, then the initial-value problem (2.,50), (2.49) 

has a unique solution defined on the cone of base 

{ z E C : I z I < so} 

and some positive height. The proof is similar to that of Theorem 2. 
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The integro-differential equation addressed in this chapter is similar to equation (2.50) 

in that it gives the solution's derivative in terms of retarded values of the solution 

itself, but not as general, because the retardation is affected by an integral, posing 

more stringent conditions on the right-hand side of the differential equation than 

in equation (2.50). In another sense, however, it is more general. The derivative 

of the solution is given in terms not only of the real independent variable t and 

retarded values of the solution, but also of retarded values of the derivative of the 

solution. In the next chapter an equation which combines the generality of both 

of these equations will be considered; the initial-value problem investigated in this 

chapter serves to illustrates the result of next chapter in the context of a specific 

scale of Banach spaces and a somewhat concrete retardation operator. 

Let 

{Br: 0 < r < so} 

be the scale of holomorphic function spaces introduced in Section (1.4), with the 

domain restriction scale operators 

{Ir,s : 0 < S < r < so}. 

Let <I>t,r, Xt,r, and Wt,r be bounded operators which depend on a real parameter t 

and map the space Br into itself, for each r E (0, s0 ). For each r, the operator <I>t,r 

maps Es into itself; it is required, however, that 

(3.1) 
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so that in this sense <I>t,s and <I>t,r can be regarded as the same operator, and we 

can refer to either as <I>t without risk of ambiguity. This compatibility condition 

will be more clearly motivated after the initial-value problem is presented. Similar 

compatibility conditions hold for the operators Xt and Wt. It is also assumed that 

g>t, Xt, and Wt depend continuously on the parameter t, in the sense that for every 

r E (0, so), t 2'. 0, and bounded Y C Br, the operators <I>r, Xr and Wr converge 

uniformly on Y to <I>t, Xt and Wt, respectively, as T -* t, for T > 0. 

The initial-value problem addressed in this chapter is the integro-differential 

equation 

(3.2) 

where the prime (') denotes differentiation with respect to t, and the symbol D 

denotes the complex differentiation operator with respect to z, together ·with the 

initial condition 

1.v(O) = wo, (3.3) 

where wo E Br for each r E (0, s0 ), and satisfies an asymptotic bound akin to (2.9) 

from Theorem 2. A solution to this initial-value problem is a function mapping 

one real independent variable t into the complex function spaces Br, so that the z 

dependence of the solution is suppressed in the notation. 

It can now be seen how the compatibility condition (3.1) arises naturally. The 

mapping w into { Br : 0 < r < s0 } satisfies the compatibility conditions on a map­

ping into a scale of Banach spaces, so that, letting Wr and 'Ws be the mappings of 

w into the spaces Br and Es, 

Differential equation (3.2) in detail is 
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where Dr is the complex differentiation operator mapping Br to Br. Of course 

differentiation with respect to t commutes with the scale operator, that is, 

I I
. Wr(t) - Wr(r) 

rs Im-----
' T-+t t - T 

lim lr,sWr(t) - lr,sWr( T) 
T-+t t - T 

1
. W8 (t)-ws(r) 
1m-----

T-+t t - T 

w:( t), 

since Ir,s is linear. Thus 

w:(t) = lr,sW~(t) = lat [Ir,s<I>t,r(wr(r)) + lr,sXt,r(Dr(w,.(r))) + lr,sWt,r(w~(r))] d,, 

(3.5) 

again appealing to the linearity of Ir,s, this time in bringing it inside the integral. 

On the other hand, substituting s in for r in equation (3.4) gives 

w:(t) lat [<I>t,s(ws(,)) + Xt,s(Ds(ws(,))) + Wt,s(w:(,))] d, 

lat [<I>t,slr,s(wr(,)) + Xt,slr,s(Dr(w,.(r))) + Wt,slr,s(w~(r))] dr. (3.6) 

Comparison of equations (3.5) and (3.6) motivates the compatiblity condition (3.1). 

An example of equation (:3.2) is the following differential equation: 

w'(t) = lat Rt(w(r) + Dw(r) + w'(,))dr. (3.7) 

Here the rotation operator 

for arbitrary s, is defined by 

whenever lzl < s, for each J E Es. Equation (3.7) in detail is 

ow (t ) ft ( ( it ) ow ( it ) ow ( it )) d Ot , Z = Jo W T, e Z + Oi T, e Z + Oz T, e Z T. (3.8) 

In terms of this formulation, an initial condition would take the form 

w(O, z) = wo(z), (:3.9) 
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where w0 is some prescribed function holomorphic on Es for every s E (0, s0 ). The 

differential equation (3. 7) states that if, for a given t, the holomorphic functions 

given by 

and 

lat w(x)dx, 

lat Dw(x)dx 

w(t) - wo 

are added together, and the resulting function is rotated about O by and angle of 

t, the function w'(t) is obtained. 

Before the existence and uniqueness of a solution to initial value problem (3.2), (:3.3) 

is addressed, the possibility that it is reducible to a simpler problem is considered. 

Consider the ostensibly similar integro-differential equation 

(3.10) 

Prima facie, this appears to define the w'(t) in terms of the history of the solution 

and both of its first partial derivatives on the cylinder n. It can, however, be 

differented with respect to t, to give 

w"(t) = <.Pt(w(t)) + Xt(D(w(t))) + 'Yt(w'(t)), (3.11) 

so that integro-differential equation (3.10) is not actually retarded with respect to 

t. On the other hand, if the same reduction is attempted with equation (3.2) ( even 

assuming that the derivatives <.P~, X~ and W~ of <.Pt, Xt and Wt with respect tot can 

be defined) the resulting expression is 

w"(t) = <Pt('w(t)) + Xt(D(w(t))) + 'Yt(w'(t)) 

+ lat [<P~(w(r)) + X~(D(w(r))) + w~(w'(r))] dr, (3.12) 

which still manifests a retarded nature with respect to t. To clarify this point, 

consider the example from last paragraph. Differentiating with respect to t yields 

fJ2w ( it ow it ow it 
ot 2 t' z) = w ( t' e z) + 8t ( t' e z) + 0 z ( t' e z) 

ft ( it ow ( it ) it 0
2
w ( it ) it EJ2w ( it )) cl + lo e z oz r, e z + e z otoz r, e z + e z oz2 r, e z r, (3.13) 
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which still shows the retarded form of the original equation (3.7). On the other 

hand, the corresponding differential equation (3.10) is 

ow ( ) t ( ( iT ) ow ( iT ) ow ( iT )) d Ot t, Z = Jo W T, e Z + at T, e Z + OZ T, e z T, (3.14) 

which can be differentiated to give 

o
2
w ( ) ( it ) ow ( it ) ow ( it ) ot 2 t, Z = W t, e Z + ot t, e Z + Oz t, e Z . (3.15) 

Although this equation is functional with respect to the z argument, it is no longer 

retarded int, so that, essentially, equation (3.14) is not retarded int. 

Existence and uniqueness results now follow. 

Theorem 3 Suppose the operators <Pt) Xt 1 and 'Yt depend continuously on the real 

parameter t and are bounded unif ornily with respect to t and r on a certain cylidrical 

domain; that is, suppose the existence of positive constants T) R 1 , R 2 , I<, L and 

JV! such that Vt E [O, T], r E (0, so), if u1, Uz, v1 and Vz belong to B,. with 

llu1 - wollr :S R1, llu2 - wollr :S R1, 

llv1 llr :S Rz, llvzllr :S Rz, 

then 

Jl<PtU1 - <P11t2llr < Kll1t1 - Uzllr, 

IIX1Du1 - X1D1t2llr < LIIDu1 - Duzllr, 

JIW1V1 - 'Y1v2llr < 1Wllv1 - Vzllr• (3.16) 

Suppose further that the initial value w0 satisfies the compatibility condition 

'Wo,s = Ir,s'Wo,r, (3.17) 

where wo,s and wo,r correspond to the initial value w0 in the spaces Es and B,., 

respectively, and that there exist positive constants X 0 , Yo and Z0 such that the 

points <I> t ( u0 )) X1 ( Dct0 ) and W 1 ( 0) obey the asymptotic bounds 

II <l> t (Ho) 11 r < Xo 
(so - ,)2' 

IIX1(D1to)llr < Yo 
(so-,)2' 

IIW1(0)IJr < Zo 
(so - ,)2' 

uniformly int. Then the initial value problem (.63.2)) (3.3) has a unique continuously 

differentiable solution w mapping into the scale { B,.}. A positive constant a can 
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be chosen such that the compatible functions Wr constituting the mapping w are 

defined on the intervals [O, a( s0 - r )2
]. 

3.1 Proof of Existence 

The existence of a solution to initial value problem (3.2), (3.3) can be established 

using a variation of the method of successive approximations similar to that used 

in the proof of Theorem 2. Note that any solution w : [O, Ts] -t Es to the integral 

equation 

w(t) = Wo + lat lar [<I>r(w(x)) + Xr(D(w(x))) + Wr(w'(x))] dxdr (3.18) 

also solves initial value problem (3.2), (:3.3). Therefore, the successive approxima­

tions are defined by 

and, for k ~ 1, 

w1(t) = Wo + lat lar [<I>r(wo) + Xr(Dwo) + Wr(O)] dxclT 

= Wo + lat T [<I>r(wo) + Xr(Dwo) + Wr(O)] dr (3.19) 

It will be shown that the sequence { wk} converges to a continuously differentiable 

function w. It is first shown, however, that such a limit function satisfies integral 

equation (3.18). 

Recall from the proof of Theorem 2 that inequalities (2.23) and (2.24) serve the 

dual purpose of ensuring that each approximation is definable from the previous 

one, in view of the limited extent of the domain of the right-hand side operator F, 

and at the same time causing the sequence of approximations to converge absolutely 

and uniformly. A similar technique will be employed here. Since the right-hand 

side operator F now takes an argument of retarded values of the derivative of the 

solution, and its domain is bounded in this argument as well, it must be ensured 

that the derivative remains bounded, and not merely the solution. Let 

S = min { ~1, R2} , (3.21) 

and suppose the existence of a sequence { ck} of positive numbers and a strictly 

decreasing sequence { ak} of positive numbers such that, whenever O < r < s0 and 
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0 :S t < ak( so - r )2, 

(3.22) 

and 

(3.23) 
k=l 

It is convenient for the condition O :S t < a~( s0 - r )2 to imply t E [O, T], and it does 

if 
~ 

ak '.S -. 
So 

Since the sequence { ak} is decreasing, it suffices to choose a1 such that 

(3.24) 

Now 

so that, after a telescoping argument similar to that used in the proof of Theorem 2, 

and therefore the bound in (3.16) on the operator Wt can be applied. Further, 

definition (3.20) gives immediately 

so that 

lilt w~(T)dTL 

< lat Jlw~( T) llrdT, 

whence the same telescoping argument gives 

so that the bounds in (3.16) on the operators <I>t and Xt are also applicable. 

As has been noted, in this proof the differences of the derivatives, as well as of 

the approximations themselves, are being bounded. Beyond this, the only difference 

between this and inequalities (2.23) and (2.24) is that the regions over which the 

bounds take effect are defined by a quadratic relationship between t and r, rather 
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than a linear one. This is because the condition that the difference of the derivatives 

be bounded is stronger than the condition that the difference of the approximations 

themselves be bounded, and cannot be shown on as large a region. 
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Provided that inequalities (3.22) and (3.23) hold, for each r E (0, s0 ) and 

t E (0, a2 (s0 - r)2), the sequence {wk,r(t)} is Cauchy in the space Br and thus 

converges to a point w~(t) E Br. Letting t vary gives a function w~ mapping the 

interval [O, a2
( s0 - r )2

) into Br. The functions w~ produced in this way for differing 

values of r are compatible. To show this, it is first shown by induction that the 

facets wk,s and wk,r of the kth approximation are compatible, where O < s < r < s0 

and k E N. Firstly, the constant functions mapping [O, a2
( s0 - s )2) to wo,s and 

[O, a2 (s0 - r)2) to wo,r, which can loosely be called the 0th approximations in Bs 

and Br, are compatible, by equation (3.17). Clearly their derivatives with respect 

tot are also compatible, since they are simply the zero mappings into Bs and Br. 

Now fix k E {O} UN, and suppose that Wk,s and Wk,r are compatible, and also that 

their derivatives wk,s and wk,r are compatible. Then 

and 

lot (<I>t,s(Wk,s(T)) + Xt,s(DsWk,s(T)) + Wt,s(Wk,s(T))) dT 

lot (<1>1,sfr,sWk,r(T) +Xt,sDJr,sWk,r(T) + Wt,sfr,sWk,r(T)) dT 

lot (Ir,/Pt,rWk,r(T) + fr,sXt,rDrWk,r(T) + fr,s'Yt,rWk,r(T)) dT 

Ir,s lot (<I>t,r(Wk,r(T)) + Xt,r(DrWk,r(T)) + Wt,r(wk,r(T))) dT 

Ir,sWk+l,r(i), 

Wo,s + lot Wk+i)T )dT 

J,.,sWo,r + lot Ir,sWk+l,r( T )dT 

Ir,s ( Wo,r + lot Wk+1,r(T )dT) 

J,., 5Wk+1,r(i); 

therefore, by induction, wk,s and wk,r are compatible, as are Wk,s and Wk,r, for each 

k E N. It follows that 

11 
lim wk s - Ir,s lim Wk r II 

k-+oo ' k-+co ' s 

lim IJwk s(t) - Ir,sWk r(t)lls 
k-+oo ' ' 

lim O = 0, 
k-HXJ 

so that w: and w:. are compatible, and thus constitute a mapping w' into the scale 

{B,.}. 
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Now w can be defined by 

w(t) = w0 + lot w'(r)dr. (3.25) 

This is composed of compatible functions, too, since 

Ws(t) = Wo,s + lot w:(r)dr 

= Ir,sWo,r + lot Ir,s'W~(r)dr 

= Ir,s ( Wo,r + lot 'W~ ( T )dr) 

- fr,sWr(t). 

If k EN, 0 < r < s0 and 0::::; t < a2(s0 - r)2, where 

a= lim ak > 0, 
k-.oo 

then 

llw(t) - Wo - lot for [<I>r(w(x)) + X7 (D(w(x))) + \Jl 7 (w'(x))] dx drL 

< llw(t) - 'Wk+i(t)llr 

(3.26) 

+ llwk+1(t) - Wo - lot for [<I>r(w(x)) + Xr(D(w(x))) + W7 (w'(x))] dxdrllr 

< llw(t) - 'Wk+i(t)llr + lot for [ll<I>r(w(x)) - <I>r(wk(x))llr 

+ IIXr(D(w(x))) - Xr(D(wk(x)))llr + IIWr(w'(x)) - Wr(w~(x))llr] dxdr 

< llw(t) - 'Wk+1(t)llr + lot for [Kllw(x) - wk(x)llr 

+ LIID(w(x)) - D(wk(x))llr + 1vlllw'(x) - w~(x)llr] dxdr, (3.27) 

where the numbers K, L, and NI are the bounds on <I>t, Xt and Wt from inequal­

ities (3.16). If some q is chosen satisfying 0 < r < q < s0 and 0 :St< a2(s 0 - q) 2
, 

for instance 

q = ! (so - vi + r) , 
2 a 

then Nagumo's lemma can be applied to the middle term of the above integrand 

to give 

llw(t) -wo - lat for [<I>r(w(x)) + Xr(D(w(x))) + W7 (w'(x))] dxdrL 

< llw(t) - Wk+1(t)llr + r r [Kllw(x) - 'Wk(x)llr + ~llw(x) - 'Wk(x)llq lo lo q - r 

+ Nlllw'(x) - w~(x)llr] dxdr. (3.28) 

Equation (3.20) gives wk(0) = w0 , and similarly equation (3.25) gives w(0) = wo; 
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thus, letting 

llw(x) - Wk(x)llr < llw(x) - wk(x)llq 

< fox llw'(y) - w~(y)llqdy 

< fox sup{llw'(y) - w~(:i!)llq: y E J}dy 

< Tsup{llw'(y) - w~(y)llq: y EI}. 

Similarly, 

llw(x) - Wk+1(x)llr :S Tsup{llw'(y) - w~+1(y)llq: y E J}, 

and 

llw'(x) - w~(x)llr < llw'(x) - w~(;1_:)llq 

< sup{llw'(y) - w~(y)llq : YE J}. 

Inequality (3.28) thus implies 

Jlw(t) - Wo - lat foT [<PT(w(x)) + XT(D(w(x))) + WT(w'(x))] dx dT"r 

< Tsup{llw'(y) - w~+1(y)llq: YE J} 

+ r r (KT+ LT + 111) sup{llw'(y) - w~(y)llq : y E J}dxdT Jo Jo q - r 
< Tsup{llw'(y) - w~+1(y)llq: YE J} 

+ t; (KT+ qL!r + J\IJ) sup{llw'('y) - w~(y)llq : YE I}. 

41 

Now since w~(y) _, w'(y) in Bq as k -, co, the suprema in the above expression 

tend to zero, so that in fact 

Jlw(t) - Wo - lot f□T [<PAw(x)) + XT(D(w(x))) + WT(w'(x))] dxdT"r = 0, 

that is, w(t) and 

wo - lat foT [<PT(w(x)) +XT(D(w(x))) + WT(w'(x))] dxdT 

are equal in the space B,., so that initial-value problem (3.2), (3.3) is solved. 

The successive approximations Wk, as well as the solution w, are continuously 

differentiable mappings from the interval (0, a2(s0 -r)2] into Br, for each r E (0, s0 ). 

Consider the first approximation, w1 • Definition (3.19) implies 

w~ ( i) = t [<PT ( wo) + XT ( Dwo) + WT ( 0)] , 
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which is continuous with respect to t. Now suppose that Wk is continuously dif­

ferentiable with respect tot. If [t, t + h] C [0, a2(s0 - r)2], where his some small 

number, then 

W~+l(t + h) - 'W~+l(t) 
ft+h 

Jo [<I>t+h(wk(T)) + Xt+h(Dwk(T)) + Wt+h(w~(T))] dT 

lat [<I>t(wk(T)) + Xt(Dwk(T)) + Wt(w~(T))] dT 

lat [(<I>t+h - <l>t)(wk(T)) + (Xt+h -Xt)(Dwk(T)) + (wt+h - Wt)(w~(r))] dT 

1t+h [ ] + t <I>t+h(wk(T)) + Xt+h(Dwk(T)) + Wt+h(w~(r)) dr 

I + J, (3.29) 

say. The functions Wk, Dwk and wk are, by hypothesis, continuous on the compact 

interval [0,a2(s0 - r)2], and therefore bounded by some positive constant 2. Since 

the operators <Pt+h - <Pt, Xt+h - Xt and W t+h - Wt converge uniformly to the 

zero operator on bounded sets as h -+ 0, the integral I tends to 0 as h -+ 0. 

The integrand of J is bounded, because the operators <Pt+h, Xt+h and Wt+h are 

bounded uniformly with respect to t + h, and their arguments are bounded by 2. 

As h -+ 0, the range of integration defining J approaches zero, so that J -+ 0. 

Therefore llwk+l (t + h) - wk+l (t) llr -+ 0 as h -+ 0, and Wk+1 is thus continuously 

differentiable with respect to t; by induction, Wk is continuously differentiable for 

each k ~ 1. Now w' is the uniform limit of the sequence of continuous functions 

{ wD, and is thus continuous itself, so that w is continuously differentiable. 

It has been shown that if sequences of positive numbers { c:k} and { ak} can be 

found such that ak decreases to a positive limit a, inequality (3.23) holds, and 

whenever 0 < r < s0 and 0 :::; t < a%(s0 - r)2, inequality (3.22) holds, then the 

approximations Wk, for k = l, 2, ... , converge to a continuously differentiable 

mapping w solving initial-value problem (3.2), (3.3). The solution w comprises the 

functions Wr, for 0 < r < s0 , and each Wr maps the interval [0, a2 ( s0 - r )2] into the 

space Br. 

It will be shown by induction that, for j ~ 1, the inequalities 

(3.30) 
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and 

llw.i(t) - w.i_
1
(t)lls :S lvlj (aAso - s) - ~) 

(ai(so - s) --./t) 
(3.31) 

hold whenever O < s < s0 and O :S t :S a;( s0 - s )2
, for some sequence of positive 

constants { Nlj}, and assuming certain relationships between the sequences { ck} 

and { ak}. Inequality (3.31) is a catalyst inequality facilitating the establishment 

of inequality (3.30). These two inequalities together are the analogue of inequali­

ties (2.23) and (2.30) in the proof of Theorem 2. As in that proof, after it has been 

determined what relationships the sequences { c:k}, { ak} and { Md must satisfy in 

order that this induction can work, the sequences will be specified so as to satisfy 

those relationships. 

In the case j = 1, Wj_ 1(t) is to be interpreted as the initial value w0 , and 

consequently w1_1 (t) is equal to 0. Recalling equation (3.19), we see that if t and 

r satisfy the relations O < r < s0 and O :S t < af ( s0 - r )2 :S 1, then 

JJw~(t)llr lllat [<I>t(tvo) + Xt(Dwo) + Wt(O)] drt 

t ll<I>t(tvo) + Xt(Dwo) + Wt(O)llr 
Xo + 1'0 + Zo < t-----

(so - r) 2 

< ai(Xo +Yo+ Zo)-

Therefore, if .1vl1 = aiso(Xo +Yo+ Z0 ), then 

1vl1 lvf1 (a1(so - s) -1) 
llw~(t)lls :S - :S 2 

aiso (a1(so-s)-v't) 

whenever O < s < so and O :St :S af(so - s)2, and if 

then 

(3.32) 

(3.3:3) 

(3.34) 

(3.35) 

Suppose inequalities (:3.31) and (3.30) are valid for j 

equation (3.20) gives 

k; if k > l, then 

JJw~+l(t) - w~(t)lls = II lot [<I>t(wk(r)) - <I>t(Wk-1(r)) + Xt(Dwk(r)) 

- Xt(Dwk_1(r)) + Wt(w~(r)) - Wt(W~_1(r))] drlls. (3.36) 
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Nagumo's lemma and Inequality (3.16) imply 

for , E ( s, s0 -1!,). Letting N = ( KT + M)so + LT gives the simpler bound 

For definiteness, let 

Inequality (3.31) implies 

r = (so - ,It + s) /2. 
ak 

ak(so - r) - ,It 
1Yht 

E:k (so+ ,Ii - s) - ,It' 
2 ak 

and substituting this into inequality (:3.38) gives 

N lvht 

(so - yj_ - s) /2 ~ (so + yj_ - s) - ,It 
ak - ak 

4aklvhNt 

(3.39) 

(:3.40) 

(3.41) 

For each fixed s, the last expression is maximised when t is greatest, that is, when 

t = a~+l ( s0 - s )2
• Thus 

(:3.42) 

so that inequality (:3.30) will be satisfied for j = k + I provided 

(3.43) 

It remains to establish inequality (3.31) for j = k + 1. If 

4aklvld\/t lvh+1 ( ak+1(so - s) -1) 
-------2< 2 
(ak(so - s) - -It) - (ak+1(so - s) - -It) 

(3.44) 
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holds for O < s < so, 0::; t < al+1 (s 0 - s)2, inequality (3.41) implies that inequ~l­

ity (3.31) is satisfied. Inequality (3.44) is satisfied if 

(3.45) 

For simplicity let 

(3.46) 

for general j, so that, since ak+l < ak < a 1 , inequality (3.45) holds. Substituting 

this into inequality (3.43) gives 

(3.47) 

It remains to prove the existence of sequences { ck} and { ak} such that inequal­

ities (:3.23) and (3.47) hold. To this end let ck= rk- 1(1- r), for some r E (0, 1), so 

that the relation (3.23) holds with equality. Now a1 must be chosen small enough 

to satisfy inequality (3.34). Inequality (3.47) becomes 

(3.48) 

Since ak+l < ak < a 1 , this inequality is satisfied if 

N 
( 

2 r) k-1 4Jvl1 a1 8a 1 solY 
Sr(l-r) r 

(3.49) 

Let r = ~~~1~:~~ and 6 = Jsa'f ;oN. In terms of these constants, inequality (3.49) 

IS 

ak 

Clk+l ::; 1 + f 6k-1. (3.50) 

This relation is satisfied with equality if, for all k 2:: 2, 

ak = (l + f 6k-2 )(1 + f 6k-3 ) · • · (1 + r)' 
(3.51) 

where a1 will be defined. Now the existence result requires only that a* = limi-+oo Cli 

remain positive, and this is true if 

(3.52) 

and the series 
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converges, i.e., if O < ~ < 1. By the definition of~, this means that 

ai < Jss:N. (3.53) 

Fixing r arbitarily in (0, 1), we now have only the restrictions (3.24), (3.34), (3.52), 

and (3.53) on a1 , and it is clear that these may be satisfied simultaneously. 

■ 

3.2 Proof of Uniqueness 

In this section it is shown that any two continuously differentiable solutions Ur and 

Vs to initial value problem (3.2), (3.3), mapping from the common interval [0, T] 

into spaces Br and Bs, respectively, where O < s < r < s0 , must coincide where 

their domains overlap, that is, they must be compatible, satisfying 

Ir,s(u,.(t)) = Vs(t). (3 . .54) 

Suppose Ur : [O, T] -+ B,. is a continuously differentiable solution to initial value 

problem (3.2), (:3.3), i.e., 

u~(t) = lat [<Dt(u,.(T)) + Xt((Du,.)(T)) + Wt(u~(T))] dT (3.55) 

and 

u,.(0) = wo (3.56) 

in B,.. The operator Ir,s is linear and commutes with', D, <Pt, Xt and Wt; thus, for 

(:3.57) 

and 

'l.ls(0) = Wo (3.58) 

in Bs, If Vs E Bs is also a continuously differentiable solution, then 

(3.59) 

and 

Vs(0) = Wo (3.60) 
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in Es. Subtracting equation (3.59) from (3.57) gives 

u:(t) - v:(t) = lat [<T>t(us(r))- <I>t(vs(r)) + Xt((Dus)(r)) 

-Xt((Dvs)(r)) + Wt(u:(r)) - Wt(v:(r))] dr. (3.61) 

Using the bounds (3.16), and letting h(t) = Us(i) - Vs(i) E Es for all t E [O, T], 

gives 

provided O < q < p s; s. 

It will firstly be shown that there exists a positive number a such that if 

h(r) = 0 for all T E [O, Tl, where T is any nonnegative number, and O < q < s, 

then llh'(t)llq = 0 fort E [T,T + a(s - q)]. This relation and the injective prop­

erty of Is,q can then be used to show that llh'(t)lls = 0: because the holomor­

phic function represented by the point h' ( t) is identically zero on the open set 

{z EC: lzl < q}, it must be identically zero on the full domain {z EC: lzl < s}, 

whenever t E [1', T +as), and certainly whenever t E [T, f + as/2]. Since h'(0) = 
0, this means that h'(t) = 0 for all t E [O, T); moreover, since also llh(O)II = 0, it 

also implies that h(t) = 0 Vt E [O, T]. Thus, the two arbitrary solutions Us and Vs 

whose difference is given by h are equal. 

Let a E (O,min{l/s,T/s}). Fix TE [0,T), and assume that h(t) = h'(t) = 0 

whenever O :::; t s; T. Since u:(t) and v~(t) are continuous on [O, Tl, h' is also 

continuous on this interval and consequently there is a finite number 3 such that 

3 = sup{llh'(t)JJq: 0 < q <sand f':::; ts; min{T + a(s - q), T} }. (3.63) 

It will be shown that 3:::; p3, for some p E [O, 1), and, thus, that 3 must be zero. 

Let q and t satisfy O < q < s and f' :::; t s; min{T + a(s - q), T}. From the 

bound (3.62), replacing llh'(t)II and llh(t)II on the right side both by 3 for T > T 

and by O for T s; T, we obtain 

llh'(t)llq s; 3 r_t [J{ + _!:_ + 111] dr = 3 [(t - T)(K +kl)+ t -TL]. (3.64) h s-q s-q 

Since t - Ts; a(s - q) < as, and :-=-~ :::; a, this becomes 

llh'(t)llq:::; 3a[s(J{ + lvf) + L]. (3.65) 

Clearly we can now choose some positive number a so small that the factor 

a[s(K + lvf) + L] 
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is less than unity; consequently, 3 = 0. Note that a is independent of T, and thus, 

the desired uniqueness result is shown. 

■ 
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Chapter 4 

A More General Retardation 

Operator 

The differential equation (3.2) considered in the last chapter is more general than 

equation (2.50) considered by Sekine and Yamanaka ( op. cit.), in that it expresses 

the current derivative in terms not only of t and retarded values of the solution, 

but of retarded values of the derivative as well. However, in equation (2 . .SO), the 

retardation is more general than in equation (3.2). Leaving aside for the moment 

the dependence on retarded values of the derivative, the right-hand side of equa­

tion (3.2) becomes 

ht [<I>t(u(r)) + Xt(D(u(r)))] dr, 

which is a special case of the right-hand side 

F (t, ~(t)) 

of equation (2.50). Therefore, in this chapter, an equation is considered which 

combines the dependence on retarded values of the time-like derivative appearing 

in the last chapter with the more general form of retardation considered by Sekine 

and Yamanaka. The required notation will be explained first. 

The solution u will map into the scale of Banach spaces 

{Hr : 0 < r < so} 

with scale operators 

{ lr,s : 0 < s < r < So}, 
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not necessarily the scale 

{Br: 0 < r < so} 

of holomorphic function spaces. In the initial-value problem (2.50), u'(t) is given 

in terms of t and values of u( x) for x E [t - d, t], an interval of fixed size. A point 

in the Banach space Dr is used to describe the behaviour of u over this interval. 

Here, instead, u'(t) will be given in terms oft and values of u(x) and u'(x) for 

x E [0, t], an interval of varying length. If t is thought of as time, this differential 

equation gives the rate of change of a system in terms of the current time together 

with the history of the system over the whole duration from 0 to t. Consequently, 

a continuum of Banach spaces D; will be required in place of the single space Dr. 

For each r E (0, s0 ) and t 2: 0, let D; be the space of all differentiable mappings 

from the interval [0, t] into Hr. If 77 E Dr, then define 

117711~ = sup{ll77(x)llr: x E [0,t]}. 

Under the norm II· II!., D; is a Banach space, and, for each t 2: 0, the collection 

{ D; : 0 < r < so} 

is a scale of Banach spaces. If 0 < s < r < s0 , the scale operator Q;,s is defined by 

whenever t 2: 0, 77 E D;, and x E [0, t]. 

If u : [0, T] _. Hr, where T is some positive constant, then, for each t E [0, Tl, 

define 'u ( t) to be the point in D; satisfying 

('u(t)) (x) = u(x) 

for each x E [0, t]. Now 'u(t) describes the behaviour of u over the whole interval 

[O, t]. 
The initial-value problem considered in this chapter is 

u'(t) 

u(O) '!.lo. 

( 4.1) 

(4.2) 

The initial value 7.lo must belong to every Hr with 0 < r < s 0 . The function F 

must satisfy certain conditions: 
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( i) There exists a unique w0 E Hr such that 

F(O, uo, wo) = Wo. (4.3) 

( ii) There are positive constants R1 , R2 and T such that F maps continuously into 

Hs at the point (t, v, e) wherever O < s < r < So, 0 st s T, llv - uoll! s R1 

and lie - Woll! S R2. 

( iii) F is a generalised Cauchy-Riemann operator with respect to its second ar­

gument, that is, there is a positive constant C such that if O < s < r < s0 , 

0 St ST, llv - uoll~- S R1, 11¢ - uoll! S R1 and II~ - wall:. S R2, then 

IIF(t, ¢, e) - F(t, v, ()lls S C II¢ - vii:.• 
r-s 

( iv) F is a bounded operator, with norm D < 1 uniform in the scale parame­

ter r, with respect to its third argument, that is, if O < r < s0 , 0 S t S T, 

llv - uoll!. S R1, lie - wall!. S R2 and llv - Woll!. S R2, then 

IIF(t, v, v) - F(t, v, 011,· SD llv - (II!. 

( v) As a -t 0, the norm 

IIF(a2(so - r)2,uo,wo) -wollr -t 0 

uniformly over r E (0, s0 ), that is, 

sup{IIF(a2(so - r)2,uo,wo) - wall,.: 0 < r < so} -t 0. 

-Of course, u' ( t) can be obtained from 'u ( t) by differentiation, since if O S x S t, 
then 

u'(x), 

d 
-(u(x)) 
dx 

!}__ (('u(t)) (x)). 
dx 

-An explicit formal dependence of Fon u' (t) is maintained, however, so that con-

ditions ( iii) and ( iv) above are more easily expressible and applicable. 
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·• 

Condition ( i) is an algebraic compatibility condition, arising directly from the 

initial-value problem. The substitution t = 0 into equation (4.1) gives 

u'(0) = F (o, ~(0), ~(o)). 
f-

The space D~, to which ~(0) and u' (0) belong, is isomorphic to Hr, The point 

~(0) is the function defined on only the singleton {0}, mapping 0 to u(0), and 
f-

thus no distinction is made between ~(0) and u(0). Similarly u' (0) and u'(O) are 

equivalent, so that 

u'(0) = F(0, u(0), u'(0)). 

Letting w0 = u'(0) yields equation ( 4.3); if this cannot be satisfied, then initial­

value problem (4.1), (4.2) cannot have a solution. 

Condition (ii) describes the domain of the right-hand side operator F. Its first 

argument must belong to the interval (0, T], and its second and third must belong 

to the balls in D; of radius R1 and R2 centred on 1lo and w0 , respectively. In the 

proof, the constants R1 and R2 will be replaced by 

S = min { ~~ - !lwollso, R2}, ( 4.4) 

where T' is some positive constant not exceeding T, such that 

R1 
T' - llwollso > 0. (4.5) 

(This is a generalisation of equation (3.21) in the proof of Theorem 3.) Suppose, for 

example, that u is a mapping from the interval [0, T'] into the scale {Hr}, satisfying 

llu'(t) - wollr :S S. 

Then 

llu'(t) - wollr :S R2, 

so that (ii) can be used to bound ·u'(t). Further, if u(0) = u0 , then 

JJu(t) - uollr < lat llu'(T)llrdT 

< fo\iiu'(T) - wollr + llwollr)dT 

< tS + llwollr 
< T'S+ llwo llso 
< R1, 

so that the bound ( iii) will hold for u(t). Recall that although the initial value u0 



CHAPTER 4. A !vIORE GENERAL RETARDATION OPERATOR 53 

need not belong to Hso, but only to every Hr with O < r < so, the initial derivati~e 

w0 must belong to H50 ; this paragraph indicates the reason. 

Condition ( iii) states that F is a Cauchy-Riemann operator with respect to its 

second argument, representing retarded values of the solution. It has been seen 

that this can be used to model a first order complex differentiation operator, when 

the scale of Banach spaces under consideration is the scale { Br : 0 < r < s0 } of 

holomorphic function spaces. 

Condition ( iv) requires F to be bounded, uniformly in the scale parameter r, in 

its third argument, representing retarded values of the derivative of the solution. 

Again referring to the case of the scale { Br : 0 < r < s0 } of holomorphic function 

spaces, the right-hand side of differential equation ( 4.1) may involve retarded values 

of quantities such as 1l and ~~, through the second argument, and of derivatives 

such as i~, through the third, but not of !ta:. 
Condition ( v) allows the first approximation to the solution to be formed in the 

proof of existence, and is analogous to the bound (2.9) in Theorem (2). 

Now it will be proven, using methods similar to those in previous chapters, that 

the initial-value problem under consideration has a unique local solution. 

Theorem 4 Under conditions (i) to (v) above, the initial-value problem (4.1), (4-2) 

has a unique solution 1-l mapping into the scale 

{Hr : 0 < r < so}. 

The dornains [O, Tr) of the functions 

constituting the mapping u can be chosen to satisfy 

for some positive a. 

T 2 2 ,. = a s0 

4.1 Proof of Existence 

The method of successive approximations will again be used to establish existence. 

The integral equation 

( 4.6) 
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is equivalent to initial-value problem ( 4.1), ( 4.2). The first approximation u 1 ·is 

defined by 

( 4.7) 

For each T 2 0, the second and third arguments in the ordered triple 

(r, to, ivo) 

are to be interpreted as those elements in D; which map every point in the interval 

[O, r] to the points u0 and w0 respectively, that is, to represents the 'history' 

from O to T of the constant function u0 , and similarly for fuo. The subsequent 

approximations are defined recursively by 

( 4.8) 

for each k 2 1. 

Differentiating equation ( 4.7) with respect to t and evaluating at t = 0 gives 

u~(O) F(o,to,ivo) 
F(O, uo, wo) 

Wo-

Suppose u1JO) = w0 for some k E N. Then 

Thus, by induction, for each k E N, 

F (o,~(o),~(o)) 
F(O, uk(O), u~(O)) 

F(O, uo, wo) 

Wo. 

u~(O) = wo. ( 4.9) 

As in the proof of Theorem 3, it will first be shown that if the derivatives { uU 
of the approximations converge absolutely and uniformly whenever O < r < s0 and 

0 :S t < a2
( s0 - r )2

, for some positive a, then their limit u' defines a solution 1t to 

initial-value problem (4.1), (4.2) by 

u(t) = uo + lot u'(r)dr. 
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The convergence of { uk} will then be established. Fix a > 0, and suppose thete 

exists a sequence { Ek} of positive numbers satisfying inequality (2.24) such that 

(4.10) 

and, for each k E N, 

(4.11) 

whenever O < r < s0 and O ~ t < a2(s0 - r)2. Fix such r and t. The sequence 

{ uk(t)} is Cauchy in Hr, and therefore converges to some limit u'(t) E Hr. Further, 

for each T E [O, t], T also satisfies the inequality O ~ T < a2
( s0 - r)2, so that the 

sequence { uk(T)} is Cauchy in Hr, and converges to a limit u'(T ). This convergence - -is uniform in T, so that in fact the sequence {uk(t)} converges to a limit u' (t) in 

D~. Choose q > r also satisfying O < q < s0 and O ~ t < a2
( s0 - q )2

, for instance, 

q = ~ (so - 0 + r) . 2 a 

- -Then the above holds for q also, that is, 1t~(t) converges to u' (t) in the space D~. 

Having defined the derivative 1/, integrate it to define the mapping u, 

u(t) = 1t0 + lat u'(T)dT. 

Now u(O) = 1t0 , and since each of the approximations 'llk also has initial value u0 , 

Jlu(t) - 1lk(t)llr lat llu'(T) -1l~(T)IJrdT 

< lat I: lluj+l ( T) - u5(T) llrdT 
J=k 

< it f Ej+1dT 
0 j=k 

< a2 s~S (f Ej - t Ej) 
J=l J=l 

- 0 

uniformly int E [O, a2 (so - q) 2
), so that 

1100 - ~11: - o. 
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Thus 

llu(t) - J.' F (,, 'u(r), :1(r)) d{ 
< l!u( t) - Uk+l ( t)il, + IIUk+J (t) - J,' F ( T, t;;( 7),;;;: ( 7)) d,11, 

+ IJ.' F (,, ti;(,), ;;r(T)) dr - J.' F (,, 'u(r), 7 (T)) dr ' 

< llu(t) - Uk+1(t)llr 

+ l ( q ~ r jjt;;(,) - 'u(r)II; + D 11;;;:(,) - 7(r)n dT. 

56 

Each of the three above norms tends to zero, so that the first expression, hav­

ing no dependence on k, is equal to zero. This implies that u satisfies integral 

equation ( 4.6). Since also 

u'(O) = lim u~(O) = lim w0 = wo, 

u satisfies initial-value problem (4.1), (4.2). 

As in the previous proofs, a strictly decreasing sequence { ak} of positive num­

bers will be employed, whose limit a will ultimately be made positive. As in 

the proof of Theorem 3, it will be shown that, for each j E N, if O < r < s0 and 

0 :s:; t < a;(s0 - r) 2
, then 

( 4.12) 

If t E [O, a;( s0 - r )2), then [O, t] C [O, a;( s0 - r )2), and inequality ( 4.12) implies 

- f--uj (t) - uj-l (t) :s; EjS'. ( 4.13) 
r 

The 'catalyst' inequality used in this proof analogous to (3.31) is 

a·( so - r) - 0. 
lluj(t) - U5-1(t)llr s; Nlj ( J( ✓i) • 

aj s0 - r) - t 2 
( 4.14) 

Here u5_1 (t) should be interpreted as w0 in the case j = 1, and { lvlj} is some 

sequence of positive numbers to be specified. Note that the right-hand side of 

inequality (4.14) is increasing with increasing t, so that if inequality (4.14) holds 

for O < r < s0 , 0 s; t < a;(s0 - r) 2
, then also 

( 4.15) 
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An induction will determine what relationships the sequences { ck}, { ak} arid 

{Mk} need to satisfy to ensure that inequalities (4.12) and (4.14) hold. Fix T' 

positive but sufficiently small that inequality ( 4.5) holds. Each ak must be chosen 

small enough that, whenever O < r < s0 and O ~ t < a%( s0 - r )2
, 

t ~ T'. 

This is implied by 

or, since the sequence { ak} is decreasing, 

( 4.16) 

Differentiating equation ( 4. 7), 

u~(t) = F (t, ilo, tu-;;). 

Condition ( v) implies that there is some number a depending on c1 such that, if 

( 4.17) 

then whenever O < r < s0 and O ~ t < ai(s0 - r)2, 

( 4.18) 

so that inequality (4.12) holds in the case j = 1. 

The expression 
a1(so - r) - 0. 

kf1 2 

(a1(so - r) - 0)2 

is bounded below, for fixed 1vf1 and a1 , on the region O < r < s0 , 0 ~ t < ai ( s0 - r )2, 
by the expression 

so that if 

5
, JVI1 

c1, ~ --, 
a1So 

then, by inequality ( 4.18), inequality ( 4.14) holds in the case j = 1. Therefore let 

( 4.19) 
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Now let k E N and suppose that inequalities ( 4.12) and ( 4.14) hold whei1-

ever 0<r<s0 and O::=:;t<a}(s0 -r)2, for jE{l,2, ... ,k}. Since the region 

0 < r < s0 , 0 ::=:; t < al( s0 - r )2 is contained in each of the regions O < r < s0 , 

0 ::=:; t < a}(s0 - r) 2 for j E {1, 2, ... , k }, inequality ( 4.12) holds for each such j 

whenever O < r < s0 and O ::=:; t < ak(s0 - r)2. Thus 

k 

llu~(t) - wollr ::=:; L lluj(t) - uj-1(t)Jlr 
j=l 

k 

< LEjS ::=:; s, 
j=l 

where Uj-I ( t) is to be interpreted as w0 in the case j = 1. Thus, as explained on 

page 52, the ordered triple 

(t, t"i_:(t), ~(t)) 

now belongs to the domain of the right-hand side operator Fr ( that is, the facet 

of F which maps from Rx D; x D; to Hs for each s E (0, r)) at each point in the 

region, and conditions ( iii) and ( iv) are applicable. 

Now choose r, s and t satisying 

0 < s < r < so 

and 

0 ::=:; t < ak+i(so - r) 2 < a%(so - r) 2 < a%(so - s)2. 

In view of definition (4.8), 

M+i ( t) - u\(t) II, = F (t, t;;( t), ;J (t)) -F (t, iiw (t), ;;r: (t)) II,• 
Now conditions ( iii) and ( iv) give 

( 4.20) 

( 4.21) 

( 4.22) 

M+1 (t) - u((t)II, S: r ~ 
5 

jjt;;(t) -liw(t)jl'. + D ll;J(t) - ::::(t)I[. (4.23) 

If s and t are chosen to satisfy O < s < s0 and O ::=:; t < al( s0 - s )2 , and r is given 

by 

r = ! (so - -,Ji + s) , 
2 Clk 

then inequalities( 4.20) and ( 4.21) above are satisfied, and inequality ( 4.23) becomes 

M+/t)-u\(t)II, S: 
50 

_
2
~ _ s jjt;;(t) -liw(t)j[ +D ll;J(t) -::::(t)I[. (4.24) 
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·• 

Because the right-hand side of inequality ( 4.14) is increasing with t, for each 

p E (0, so), 

( 4.25) 

That is, 

Further, since uk(0) = 1.lk-l (0) = tt0 , the bound ( 4.14) can be integrated to give 

and the right-hand side of this inequality is increasing with t, so that 

ll f--- +-- llt 111kt 'l.lk(t) - 'Uk-1(t) ::; -.ji,° 
P ak(so-p)- t 

( 4.26) 

Putting p = r in inequality ( 4.26) and p = s in inequality ( 4.25), inequality ( 4.24) 

becomes 

( 4.27) 

whence judicious use of the inequalities 0 < s < s0 , 0 ::; t < ak( s0 - s )2 will reveal 

that 

where 

lvh+1 = (l6Caiso + D)lvh, 

so that the bound (4.14) holds in the case j = k + l. Hence, in view of equa­

tion (4.19), the sequence {lvh} is defined by 

( 4.28) 
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In a similar fashion to the derivation of the inequality ( 4.25), the inequality 

( 4.29) 

is implied by the bound ( 4.12). Inequality ( 4.27) above was obtained by replacing 

the norms on the right-hand side of inequality ( 4.24) with their bounds derived 

from inequality (4.14) with j = k. Estimating the first of these norms in the same 

way, but instead using inequality ( 4.29) with j = k for the second, yields 

vVith equation ( 4.28), this becomes 

If tis restricted to the interval (0, al+1 (so - s)2), it can be seen that 

Here, one occurance of ak has been replaced by a1 , since ak < a1 , to simplify the 

manipulations. Thus, if 

( 4.30) 

then the bound (4.12) holds in the case j = k + l, and the induction step is com­

plete. 

This means that if sequences { c:k} and { ak} of positive reals can be found, the 

latter strictly decreasing, which satisfy the conditions (2.24), ( 4.16), and ( 4.30), 

then the inequalities ( 4.12) and ( 4.14) hold for each j E JV whenever O < r < s0 and 

0 :=::; t < ak( s0 - r )2. ·while the catalyst inequality ( 4.14) is of no further interest 

here, inequality ( 4.12) implies, as seen earlier, that the successive approximations 

Uk converge to a solution u on the region O < r < s0 , 0 :=::; t < a2
( s0 - r )2

, which 

will be of positive height if 

a= lim ak > 0. 
k-+co 

Condition (2.24) is satisfied by the assignment 

(1 ) k-1 
Ek= - r r 
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for each k, where r is any ratio strictly between O and 1. Put 

Require 

so that 

E = l6Caiso + D. 

✓l-D 
a1 < 4~, 

O<E<l. 

Inequality ( 4.30) is now 

or 

4Caiso(l - r) (~ - 1) Ek-l + D(l - r)rk-l ~ (1 - r)rk, 
ak+l 

4C~f so (~ - 1) Ek-1 ~ r - D. 
rk-1 Clk+l 

Clearly this is possible only if r > D, but since D < 1, this is allowable. 

If condition ( 4.33) holds with equality, then 

ak+l = k-1 · 
1 + r-D ( r) 

4Caf so E 

61 

( 4.31) 

( 4.32) 

( 4.33) 

If this is used together with some assignment for a1 to define recursively the se­

quence {ak}, then inequality (4.30) holds. Now 

k-1 1 
ak = Cl1 II ·-1' 

. 1 r-D (r)J 
J=l + 4Ca;so E 

so that 
00 1 

a = lim ak = a1 II · 1 · 
k-+oo j=l 1 + ~ (I..)J-

4Caiso E 

If the series 
oo r - D ( r) k-1 

,?; 4Cafs0 E 
( 4.34) 

converges, then the infinite product 

00 

( r - D ( r )j-l) g 1 + 4Cafso E 

converges to a finite number ( c.f. Titchmarsh [6]), and thus a is positive. The 

series (4.34) clearly converges if 

r < E. 
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Therefore fix E > D by some choice of a 1 satisfying inequalities ( 4.16) and ( 4.31), 

and then fix r arbitrarily, such that 

D < r < E. 

The conditions (2.24), ( 4.16), and ( 4.30) now all hold, and additionally a > 0, so 

that the existence result is established. 

■ 

4.2 Proof of Uniqueness 

It will be shown that two solutions u and v to initial-value problem (4.1), (4.2) 

mapping the interval [O, .6.] into the space Hg, where .6. E (0, T] and O < q < s0 , 

must be equal. From this it will follow that two mappings into the scale {Hr} 

which solve initial-value problem ( 4.1 ), ( 4.2) must be equal on the intersection of 

their domains. 

Suppose that 

u : [O, .6.] ---+ Hq 

and 

V : [O, .6.] - Hg 

are two solutions to initial-value problem (4.1), (4.2). Their difference is a con­

tinuous function, and is therefore bounded on the compact interval [O, .6.]. Fix 

b E (o, "';], so that whenever O < r < q and O :St< b2 (q-r)2, u(t) and v(t) both 

belong to Hr. The expression 

(b(so - r) - 0)2 

b(s0 - r) - {}-

is bounded above by bs0 when O < r < q and O :St < b2
( q - r)2, so that the supre­

mum 

lvl = sup {llu'(t) - v'(t)llr (b(q - r) - ~)
2 

: 0 < r < so and O :St< b2 (q- r) 2
} 

b(q - r) -
2 

( 4.35) 

is some finite nonnegative number. It will be shown that if b is sufficiently small 

then lvl must be zero, implying that 

llu'(t) - v'(t)llr = 0 
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on the region O < r < s0 , 0 S t S b2
( s0 - r )2. By the injective property of the scci:le 

operator, this implies that 

llu'(t) - v'(t)llq = 0 

whenever O St S b2 q2, that is, that u' and v' are equal on the interval [O, b2q2
]. 

Since 

u(O) = v(O) = uo, 

this means also that u and v are equal on the same interval. 

Let O < s < r < q and O S t < b2
( q - r )2

• It can be seen from differential equa­

tion (4.1) that 

llu'(t) - v'(l)II, IIF (1, 'u(t), 'J(t)) - F (1, 'v(t), d(t)) II, 

C II+-- +-- 11 1 I '--i '--i Ill < T _ S U (t) - V (t) r + D U (t) - V (t) s, 

using the condtions ( iii) and ( iv). Integrating the bound 

b(q - s) - vt 
ll u'(t) - v'(t)II < NI 2 

s - ( b( q - s) - 0)2 ' 

noting that u(O) = v(O) = u0 , yields 

Jvlt 
llu(t) - v(t)lls s v1,· 

b(q - s) - t 

( 4.36) 

( 4.37) 

( 4.38) 

Because the right-hand sides of inequalities ( 4.37) and ( 4.38) are increasing with 

t, as in the existence proof, these bounds apply also to the retarded expressions, 

that is, 

II
+-- +-- 11

1 
b(q _ s) _ vt u' ( t) - v' ( t) < 111 2 

s - (b(q - s) - 0)2 

and 

11 \;:(t) - ~(t)llt s ivlt v1,· 
s b(q - s) - t 

Substituting these bounds into inequality ( 4.36) gives 

C NI t b( q - s) - :Ii 
llu'(t) - v'(t)II < -----+Div! 2 

s - r - s b( q - r) - \Ii ( b( q - s) - 0)2 ' 

and on letting 

r = ~ (q - \Ii + s) 
2 b ' 
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this becomes 

II '() '( )II 2C 2Mt DM b(q-s)-:/}-
u t - V t s ::; q - t - s b( q - s) - 0 + j ( b( q - s) - 0)2. 

Substituting this into definition ( 4.35) gives 

J1:[ < sup{( 27 21\llt +D1vl b(q-s)-{j-) 
q - b - s b( q - s) - 0 ( b( q - s) - 0) 2 

(b(q - r) - 0)2 
} 

· 
0 

:O<r<qandOs;t<b2(q-r) 2 

b(q- r) - 2 

< sup { ( 4CbJ11t + DJ'vl b(q - s) - {j- ) (b(q - r) - 0)2 
(b(q-s)-0) 2 (b(q-s)-0) 2 b(q-r)-{j 

: 0 <,. < q and O::; t < b2(q - r) 2
}. 

·whenever O < s < q and O::; t < b2 (q - s) 2
, 

so that 

t ::; 2b( q - s) ( b( q - s) - f) . 
Thus inequality ( 4.39) implies 

111 < { (
8Cb2 (q - s)J11 (b(q - s) - :f}-) b(q - s) - :Ii ) 

sup -----------~ + D111 2 

(b(q - s) - 0) 2 (b(q- s) - 0) 2 

(b(q - r) - 0)2 } 
· 0 : 0 < r < q and O ::; t < b2

( q - r )2 

b(q - r) - 2 

111sup{8Cb2(q- s) + D: 0 < r < q and O::; t < b2 (q- r)2} 

lvl(8Cb2q + D). 

( 4.39) 

Since D < 1, b can be chosen sufficiently small that the factor SC b2 q + D < 1, 

whence, since Jvl is nonnegative and finite, is implied NI = 0. 

As remarked above, the vanishing of 111 implies that u and v are equal on the 

interval [O, b2 q2
]. If b2 q2 < Cl then an induction can be used to show that u and v 

are equal on the interval [O, Cl]; this is not essentially different from the inductive 

approach described in the uniqueness proof of Theorem 2, and is omitted. 
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Let tl and v be two mappings into the scale {Hr} which solve the initial-value 

problem ( 4.1), ( 4.2). Then, for each q E (0, s0 ), u and v map intervals (0, Tu) and 

[0, Tv), respectively, into Hq. If t is a nonnegative number belonging to both of 

these intervals, then tl and v each map the interval [0, t] into Hq, so that, as above, 

u and v are equal on the interval [0, t], and hence u(t) = v(t). Therefore u and v 

are equal on the intersection of their domains, that is, the solution found in the 

existence proof is unique. 

■ 
The requirement that the solution w0 of equation ( 4.3) be unique can be relaxed. 

It does not appear at all in the existence proof, and only arises in the uniqueness 

proof when it is assumed that u and v have the same initial derivative. Thus, if 

equation (4.3) has more than one solution, then initial-value problem (4.1), (4.2) 

has a unique solution u for each solution w0 of the algebraic compatibility condi­

tion ( 4.3), satisfying u'(0) = w0 . 

Theorem 3 is a corollary of Theorem 4. Let { H,.} be the scale { B,.} of holo­

morphic function spaces. Let the operators <Pt, Xt and Wt satisfy the conditions on 

Theorem :3, and let 

Now conditions ( i) to ( v) on Theorem 4 hold. The constants R1 , R2 and T are 

equal in both theorems, and condition ( i) holds. The initial derivative w0 is equal 

to zero since 

u'(0) = fo
0 

(<I?0(u(T)) + X0 (Du(T)) + W0(u'(T))) dT = 0, 

and thus condition ( ii) holds. Conditions ( iii) and ( iv) are easily verified by varying 

the arguments first of <Pt and Xt, and then of Wt. Condition (v) is satisfied, since 

llf'(,o-,)' (i!>,,(,0 -,)'(uo) + X,,(,o-,)'(Duo) + W,,(,o-,·)'(O)) dTII, 

a2 (so - r) 2 (<I?a2(so-r)2(uo) + Xa2(so-r)2(Duo) + Wa2(so-r)2(0)) 

2( )2 Xo+Yo+Zo < a so - r ( )2 s0 - r 

c?(Xo +Yo+ Zo) -t 0 

uniformly in r as a -t 0. Now Theorem 4 concludes existence and uniqueness of a 

solution to initial-value problem (3.2), (3.3). 
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Chapter 5 

Conclusion 

5.1 Summary 

This thesis has shown how Scales of Banach spaces arise in the treatment of certain 

partial differential equations. It tis real-valued and z is complex-valued, a scale of 

complex function spaces can be used to reformulate a partial differential equation 

such as au au 
at ( t, z) = F ( t, z, u ( t, z), a/ t, z)), 

where u is to be complex valued, as an ordinary differential equation 

dU 
dt(t) = F(t, U(t)), 

where U is to be valued in the scale of function spaces, and represents the originally 

sought solution u. Now that only one independent variable is formally present, the 

technique of successive integral approximations from the standard proof of the 

Picard-Lindelof theorem is applicable to an initial-value problem based on this 

differential equation. This method was illustrated with the inclusion of Theorem 2 

and its proof, taken from Tutschke( op. cit.). 

Initial-value problems in scales of Banach spaces involving retardations in the 

real independent variable t have been considered by Sekine and Yamanaka ( op. 

cit.). The two original theorems presented in this thesis in Chapters 3 and 4 

incorporate such retardations, and dependence on retarded values of the timelike 

derivative was introduced. Without retardation, right-hand side dependence on the 

timelike derivative in a first order differential equation is meaningless, for instance, 
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the differential equation 

dU dU 
dt(t) = F(t, U(t), dt(t)) 

can be solved for ~~ (t) to give 

dU 
dt(t) = G(t, U(t)). 

However no such simplification is possible in the case of equations (3.2) or (4.1). 

For each of these equations, existence of a solution to an initial-value problem was 

shown under certain conditions on the the right-hand side operator F. 

5.2 Further Work 

One avenue for generalisation from here would be into generalised Cauchy-Riemann 

operators of the n th order. As in Section 1.3, let J be some holomorphic function 

on the disc (1.3), and let z0 be some point on the interior of the disc. The Cauchy 

integral formula gives a bound not only on ~~(z0 ), but also on ~:£ (z0 ), where n 

is any positive integer. Integrating a.round the same circle C of radius p, (see 

Figure (1.1)), 

As p-, so - lzol, the bound 

n! J J(z)dz 
21ri Jc (z - z0 )n+1 

< ~27rpfil 
27r pn+I 

n!IIJII 

l
dn[(zo)I::::; n!ilfll 
dz so - lzol 

is obtained. In terms of the sea.le {Br} of complex function spaces, this means that 

if the operator 
Dn = dn 

dzn 

is viewed as mapping from Br to Es, where O ::::; s < r :::; so, then 
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Therefore F: Br - Es is a generalised Cauchy-Riemann operator of order n if, 

whenever u, v E Br, 

IJF(u) - F(v)lls ~Kil~= :j~ 
for some positive constant K. It is probable that similar techniques to those used 

in this thesis could be used to prove existence theorems for initial-value problems 

in scales of Banach spaces for differential equations whose right-hand sides are 

generalised Cauchy-Riemann operators of order n, for n > 1. In the case of the 

scale {Br} of complex function spaces, a simple example of a partial differential 

equation which could be modeled in this way is 

au fru 
75t(t, z) = fJzn (t, z). 

Another possible generalisation would be to consider systems of simultaneous 

first order differential equations in scales of Banach spaces. A coupled pair of 

equations of the class (2.4), for instance, might be considered. 
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