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I Abstract 

Abstract 

The objective of this thesis was to investigate the effect of processing on meat protein 

properties, muscle structure and in vitro protein digestibility of beef. Meat processing 

techniques including pulsed electric field (PEF), shockwave (SW) processing, exogenous 

enzyme (actinidin) treatment, and sous vide (SV) cooking were explored, either alone or 

in combination, in this project. This thesis also aimed to study the diffusion of enzymes 

(actinidin from kiwifruit and pepsin in the gastric juice) into the meat.  

The first experiment investigated the effect of PEF processing alone on the ultrastructure 

and in vitro protein digestibility of bovine Longissimus thoracis, a tender meat cut 

(Chapter 3). It was observed that the moisture content of the PEF-treated samples 

(specific energy of 48 ± 5 kJ/kg and 178 ± 11 kJ/kg) was significantly lower (p < 0.05) 

by 1.3 to 4.6 %, compared to the untreated samples. The pH, colour, and protein thermal 

profile of the PEF-treated muscles remained unchanged. Pulsed electric field treatment 

caused the weakening of the Z-disk and I-band junctions and sarcomere elongation (25 to 

38 % longer) of the muscles. The treatment improved in vitro meat protein digestibility 

by at least 18 %. In this thesis, the protein digestibility was determined in terms of the 

ninhydrin-reactive amino nitrogen released during simulated oral-gastro-small intestinal 

digestion. An enhanced proteolysis of the PEF-treated meat proteins (such as α-actinin 

and β-actinin subunit) during simulated digestion was also observed using sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The improvement in 

protein digestibility of the PEF-treated meat was supported by more severe disruption of 

Z-disks and I-bands observed in PEF-treated samples, at the end of simulated digestion. 

In the second experiment, PEF treatment (specific energy of 99 ± 5 kJ/kg) was applied to 

bovine Deep and Superficial pectoral muscles in conjunction with SV cooking (60 ℃ for 



 

 

 

 

 

II Abstract 

24 h) (Chapter 4). This muscle cut was tested as it is a tough cut and requires slow 

cooking. There was no significant difference detected in the specific activities of the 

sarcoplasmic cathepsins present in the cytosol between the control and PEF-treated 

samples, both before and after cooking. In addition, similar micro- and ultrastructures 

were observed between the control SV-cooked and PEF-treated SV-cooked pectoral 

muscles. The combined PEF-SV treatment increased the in vitro protein digestibility of 

the pectoral muscles by approximately 29 %. An improvement in proteolysis of the 

treated meat proteins (e.g. myosin heavy chains and C-protein) during simulated digestion 

was also observed using SDS-PAGE. More damaged muscle micro- and ultrastructures 

were detected in PEF-treated SV-cooked muscles at the end of in vitro oral-gastro-small 

intestinal digestion, showing its enhanced proteolysis compared to the control cooked 

meat.  

Next, the effect of SW processing and subsequent SV cooking on meat protein properties, 

muscle structure and in vitro protein digestibility of bovine Deep and Superficial pectoral 

muscles were investigated (Chapter 5 and 6). Shockwave processing (11 kJ/pulse) alone 

decreased the enthalpy and thermal denaturation temperature of the collagen (p < 0.05) 

when compared to the raw control, studied using a differential scanning calorimeter. The 

purge loss, pH, colour, and the protein gel electrophoresis profile of the SW-treated raw 

muscles remained unaffected. Shockwave processing led to the disorganisation of the 

sarcomere structure and also modified the protein secondary structure of the myofibres. 

After subsequent SV cooking (60 ℃ for 12 h), more severe muscle fibre coagulation and 

denaturation were observed in the SW-treated cooked meat compared to the cooked 

control. An increase in cook loss and a decrease in the Warner-Bratzler shear force were 

detected in the SW-treated SV-cooked meat compared to the control cooked meat (p < 

0.05). The in vitro protein digestibility of the SW-treated SV-cooked meat was improved 



 

 

 

III Abstract 

by approximately 22 %, with an enhanced proteolysis observed via SDS-PAGE, 

compared to the control SV-cooked meat. These results were supported by the 

observation of more destruction of the micro- and ultrastructures of SW-treated cooked 

muscles, observed at the end of the simulated digestion.  

The effect of the kiwifruit enzyme actinidin on muscle microstructure was studied using 

Picro-Sirius Red staining (Chapter 7). Meat samples were subjected to two different 

conditions, simulating meat marination (pH 5.6) and gastric digestion in humans (pH 3). 

Actinidin was found to have a greater proteolytic effect on the myofibrillar proteins than 

the connective tissue under both conditions. When compared with pepsin under simulated 

gastric conditions, actinidin had a weaker proteolytic effect on the connective tissue of 

cooked meats. Nevertheless, incubating the cooked meat in a solution containing both 

actinidin and pepsin resulted in more severe muscle structure degradation, when 

compared to muscles incubated in a single enzyme system. Thus, the co-ingestion of 

kiwifruit and meat could promote protein digestion of meat in the stomach. In addition, 

both actinidin and pepsin were successfully located at the edges of the muscle cells and 

in the endomysium using immunohistofluorescence imaging. The observations suggest 

that the incubation solutions penetrate into the muscle through the extracellular matrix to 

the intracellular matrix, enabling the proteases to access their substrates.  

Overall, the present work demonstrated that there were strong interactions between 

processing, muscle protein properties and structure, and in vitro protein digestibility of 

the meat. Processing induces changes in meat protein properties and muscle structure, 

which in turn affects the digestion characteristics of muscle-based foods.
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1 Chapter 1 

 
Chapter 1 Introduction 

Global meat consumption has doubled over the past 20 years to reach 360 million tonnes 

in 2018 and is projected to increase over the coming years due to growing population and 

rising incomes (Sanchez-Sabate & Sabate, 2019; Whitnall & Pitts, 2019). As one of the 

major global red meat exporters, New Zealand has exported $ 9.4 billion of sheep meat, 

beef, and co-products for the year ending June 2020, achieving a 7 % increment compared 

to the year ending June 2019 (Meat Industry Association, 2020). The volume of beef 

exports has risen by 2 % to 3.8 thousand tonnes and the value has grown by 15 % to $ 3.8 

billion, contributing significantly to the economy of the country. In order to continue to 

be competitive in the global market, the industry has been trying to capture increased 

market value by matching the customer needs and demands. In general, a consumer’s 

purchasing decision is made primarily based on the appearance and organoleptic 

properties of the food products (Troy & Kerry, 2010). However, as there is an increasing 

awareness of the link between food, health and nutrition, consumers are demanding 

products that contain high-value animal protein (Hung et al., 2016; Kraus, 2015). To meet 

consumer demands, novel processing techniques have been explored and used 

extensively by the food industry to create high quality, safe and nutritious products 

without compromising their ‘fresh-like’ product characteristics (Troy et al., 2016).  For 

example, sous vide (SV) cooking (Vaudagna et al., 2002), pulsed electric field (PEF) 

processing (Alahakoon et al., 2018b), shockwave (SW) processing (Bolumar et al., 2014), 

and exogenous enzyme technology such as the use of actinidin (Zhu, Kaur, Staincliffe, et 

al., 2018) have been explored to improve the organoleptic properties of meat by meat 

tenderisation. 



  

 

 

2 Chapter 1 

In the process of designing appetising and wholesome foods, it is important to recognise 

the relationship between the manufacturing process, food structure and human physiology. 

In general, protein is not fully digested before entering the large intestine. The true ileal 

protein digestibility values for most of the dietary proteins (animal- and plant-based) in 

humans were found to be between 84 and 96 % (Mariotti, 2017; Tomé, 2013; Yao et al., 

2016). It has been reported that around 3 to 18 g of protein can reach the colon of a person 

per day, including both undigested dietary proteins and non-dietary endogenous proteins 

excreted by the human body (Chacko & Cummings, 1988; Cummings & Macfarlane, 

1991; Muir & Yeow, 2000). The amount of undigested protein entering the colon depends 

on the daily dietary protein intake and the protein digestibility of the ingested foods. Daily 

dietary protein intake varies between individuals, but the protein digestibility of some 

foods could be improved through food processing (Carmody & Wrangham, 2009; Yao et 

al., 2016).  

Food processing alters the physical and chemical properties of food, which ultimately 

affects its digestive characteristics (Kong & Singh, 2008). For example, cooking meat at 

a temperature between 70 and 75 ℃ improves the protein digestion rate as the treatment 

changes the meat structure, which enhances the accessibility of pepsin during digestion 

(Bax et al., 2012). Hodgkinson et al. (2018) also found that boiled (97 – 99 %) and pan-

fried (97 – 99 %) beef topside had a significantly higher digestible indispensable amino 

acid score (DIAAS) than roasted (91 %) or grilled meat (80 %) in growing pigs. 

Digestible indispensable amino acid score is determined based on the true ileal 

digestibility of the indispensable amino acids. Meat with improved protein digestibility 

and digestion rate results in a steep elevation in postprandial aminoacidemia, providing a 

rapid amino acids supply for protein anabolism (Boirie et al., 1997; Rémond et al., 2007). 

This is beneficial for sports nutrition and in the elderly, where it can combat sarcopenia. 
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 Rapid protein digestion also reduces the possibility of generation of toxic nitrogenous 

metabolites from undigested proteins entering the large intestine (Attene-Ramos et al., 

2010; Hughes et al., 2008).  

The interaction between food consumption and human physiology depends on the food 

composition, properties and structure, along with the pattern and time of consumption 

(Sensoy, 2014). Understanding the interaction between the food matrix, structure, and the 

human digestive system will underpin the rational development of novel muscle-based 

foods with enhanced nutritional value through the use of different processing methods. 

Hence, the main aim of this study is to investigate the effects of different processing 

techniques, alone or in combination, on meat proteins (molecular size and thermal 

stability), muscle structure (molecular, micro- and ultrastructures) and in vitro protein 

digestibility. Meat processing techniques such as PEF, shockwave (SW) processing and 

SV cooking are explored in this project. The findings will provide an insight into how 

different processing techniques affect the meat proteins and structure, which in turn 

influences the digestion characteristics of muscle-based foods. In addition, the thesis aims 

to develop a method to understand the diffusion of enzymes, such as actinidin from 

kiwifruit, and pepsin in the gastric juice, into meat, using advanced microscopy 

techniques.   

This thesis consists of eight chapters and the outline of the thesis with research questions 

and project objectives, is presented in Figure 1-1. In brief: 

Chapter 1 describes the background and outlines the objectives and main framework of 

the research project. 

Chapter 2 is a literature review of the fundamental knowledge of muscle proteins and 

the effects of different processing methods on muscle structure and protein digestibility. 
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Some methodologies used to investigate muscle structure and protein digestibility are also 

discussed.  

Chapter 3 discusses the effect of PEF treatment alone on the physicochemical properties, 

protein thermal profile, muscle structure and in vitro protein digestibility of beef 

Longissimus thoracis.  

Chapter 4 describes the effects of PEF in combination with SV cooking on the muscle 

structure and in vitro protein digestibility of beef Deep and Superficial pectoral muscles. 

The effect of PEF on the activities of lysosomal enzymes was also investigated, before 

and after SV cooking.  

Chapter 5 characterises the effects of SW processing, alone and in combination with SV 

cooking, on the protein thermal profile, protein structural characteristics and muscle 

microstructure of beef Deep and Superficial pectoral muscles. 

Chapter 6 investigates the effects of SW processing in conjunction with SV cooking on 

the physicochemical properties, texture and in vitro digestibility of beef Deep and 

Superficial pectoral muscles. 

Chapter 7 examines the effect of exogenous enzyme actinidin present in the kiwifruit 

extract, on the structure of both raw and SV-cooked beef Deep and Superficial pectoral 

muscles. The effects of a combined actinidin-pepsin system on meat structure during 

simulated gastric digestion were also discussed. A protocol for the localisation of the 

enzymes actinidin and pepsin in meat was also developed using immunohistofluorescence 

approach.      

Chapter 8 concludes all the research findings and provides recommendations and 

directions for future work.    
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Figure 1-1. An overview of the thesis structure with research questions and project objectives. 



  

 

1Part of this chapter has been published as Boland, M., Kaur, L., Chian, F. M., & Astruc, T. (2019). Muscle 

proteins. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 164-179). 

Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21602-8   
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Chapter 2 1Literature review 

This literature review aims to provide a comprehensive summary of the existing literature 

on muscle structure and protein digestibility, and how these are influenced by processing. 

Fundamental information on muscle composition and chemistry, and the principles of 

different processing techniques are presented in this section. Various methodologies to 

examine muscle structure and digestibility are also reviewed.                   

2.1 Muscle structure and composition  

Meat is derived from skeletal muscles that have undergone a series of biochemical 

reactions following the slaughter of animals (Strasburg et al., 2008). Skeletal muscles 

consist of multinucleated muscle fibres made up of bundles of elongated myofibrils in a 

parallel configuration (Figure 2-1) (Gault, 1992; Strasburg et al., 2008). A muscle fibre 

is ensheathed by a fine connective tissue layer network embedded in a proteoglycan 

matrix (the endomysium), which contains blood capillaries and nerves for muscle 

function. Each muscle fibre is composed of dozens of myofibrils and is enclosed by the 

muscle plasma membrane, called the sarcolemma, which is made up of a phospholipid 

bilayer with embedded proteins, glycoproteins and glycolipids. The myofibrils are bathed 

in sarcoplasm containing several nuclei, sarcoplasmic reticulum, Golgi apparatus, 

mitochondria, lysosomes, glycogen granules, enzymes and other soluble constituents, that 

are vital for muscle functionality. The sarcoplasmic reticulum acts as a calcium ion 

reservoir for muscle contraction. Bundles of muscle fibres are organised into fascicles 

that are encased in another layer of connective tissue containing larger blood vessels, 

nerves, and others (e.g. adipocytes and fibroblasts), called the perimysium. Several 

fascicles are assembled into a whole muscle by an outer layer of connective tissue sheaths 

known as the epimysium, which extends into tendons to join muscles and bones together. 

https://doi.org/10.1016/B978-0-08-100596-5.21602-8
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Regardless of the animal species, myofibrils in muscle fibres consist of longitudinal 

myofilaments comprising thick and thin filaments (Strasburg et al., 2008; Tortora & 

Derrickson, 2013). Thick filaments are made up of myosin molecules while thin filaments 

are composed of actin, tropomyosin and troponin. Alternating light isotropic (I-band) and 

dark anisotropic (A-band) bands are seen on myofibrils under polarised light microscopy. 

Longitudinal sections of muscle fibres observed by transmission electron microscopy 

(TEM) show that each I-band is separated into two by a dark and narrow line called the 

Z-disk. The region between two Z-disks is known as a sarcomere, which is the repeating 

longitudinal contractile functional unit of a myofibril. A sarcomere comprises an I-band, 

consisting purely of thin filaments, an A-band containing alternatively overlapping thin 

and thick filaments, a H-zone that is in the centre region of A-band where the thin 

filaments are absent and a M-line that is in the middle of the H-zone. When a muscle 

contracts, the Z-disks shift closer together due to shortening of the I-band, and the length 

of the sarcomere is decreased (Gault, 1992).   

Skeletal muscle proteins can be classified into myofibrillar (50 to 60 %), sarcoplasmic 

(30 %) and stromal (10 % to 20 %) proteins, based on their solubility at varying salt 

concentrations (Strasburg et al., 2008). The myofibrillar proteins, which are soluble at 

high salt concentrations (> 0.3 M), consist of contractile, structural and regulatory 

proteins (Figure 2-2). The sarcoplasmic proteins can be solubilised in low ionic strength 

(< 0.3 mM) and are located in the sarcoplasm surrounding the myofibrils. The 

sarcoplasmic proteins include the oxidative enzymes (e.g. cytochromes), the haem 

pigments (e.g. myoglobin), the glycolytic enzymes (e.g. glyceraldehyde phosphate 

dehydrogenase), the mitochondrial oxidative enzymes (e.g. succinate dehydrogenase), the 

lysosomal enzymes (e.g. cathepsins), the nucleoproteins (e.g. e.g. ribosomes) and others, 

which are involved in various tissue functions (Pearson & Gillett, 2012; Pearson & Young, 
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1989; Smith, 2000; Strasburg et al., 2008). Stromal proteins are relatively insoluble in 

salt solutions and constitute connective tissue, which provides mechanical support and 

protection to the muscle in the form of tendon, epimysium, perimysium and endomysium 

(Gault, 1992; Strasburg et al., 2008). Connective tissue contains different types of cells, 

including fibroblasts, macrophages, lymphoid cells, mast cells and eosinophils and is 

mainly composed of collagen (90 %) along with other fibrous proteins including elastin, 

laminin and fibronectin, and proteoglycans (Chagnot et al., 2012; Voermans et al., 2008).   
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Figure 2-1.Structure of skeletal muscle.  
From Tortora & Derrickson, Principles of Anatomy & Physiology, 14th Edition. Copyright © 2014, 2012, 

2009, 2006, 2003, 2000. © Gerard J. Tortora, L.L.C., Bryan Derrickson, John Wiley & Sons, Inc. Reprinted 

by permission from John Wiley & Sons, Inc. 
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Figure 2-2. (A) Basic functional unit of a myofibril and (B) the arrangement of filaments within 

a sarcomere.  
Reproduced from Boland et al. (2019) with permission from Elsevier Books. 
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2.2 Myofibrillar proteins 

2.2.1 Contractile proteins 

Myosin (molecular weight, MW of 520 kDa) is a filamentous protein that forms the thick 

filaments of muscle cells (Gault, 1992; Strasburg et al., 2008). It is the principal protein 

of the A-band. A myosin molecule has a quaternary structure consisting of six subunits, 

which include two myosin heavy chains (MHC), two essential myosin light chains 

(MLC1) and two regulatory myosin light chains (MLC2), with MW of approximately 220 

kDa, 23 kDa and 20 kDa correspondingly (Clark et al., 2002; Swartz et al., 2009). 

Individual MHC forms a globular head domain at the N-terminal, which is bound to a 

pair of MLC (MLC1 and MLC2) (Strasburg et al., 2008). An α-helix rod is formed at the 

C-terminal of each MHC and the α-helix rods from two MHC intertwine to form an α-

helix coiled rod. Myosin molecules originate from the M-line, orientated symmetrically 

and pointing their head domains away from both sides of M-line. 

Actin is the building block of thin filaments and is present in two forms namely globular 

actin (G-actin) and filamentous actin (F-actin) (Gault, 1992; Strasburg et al., 2008). F-

actin is formed by the polymerisation of G-actin (MW of 42kDa) into double-stranded, 

coiled filaments. F-actin is bound to tropomyosin and troponin, forming thin filaments 

that are originated at the Z-disk and extended in the direction toward the M-line.  

During muscle contraction, actin binds myosin to form actomyosin cross-bridges, which 

activate the myosin ATPase, leading to the pulling of thin filaments by myosin toward 

the M-line, resulting in shortening of the sarcomere (Lawrie, 2006). The binding of actin 

and myosin is regulated by tropomyosin and troponin.  
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2.2.2 Regulatory proteins 

Tropomyosin and troponin are two main proteins that regulate muscle contraction and 

relaxation (Choi & Kim, 2009; Zot & Potter, 1987). They prevent the activation of 

actomyosin ATPase in the absence of calcium ions by interacting with actin filaments to 

block the myosin binding site. Tropomyosin is a long, coiled protein (MW of 65 kDa) 

that comprises two α-helix polypeptide subunits, called α- and β-tropomyosin. 

Tropomyosin molecules bind head-to-tail along the F-actin filament. Each tropomyosin 

molecule is attached to a troponin complex (MW of 80 kDa) which is made up of troponin 

C (MW of 18 kDa), troponin I (MW of 21 kDa) and troponin T (MW of 31 kDa) (Figure 

2-3). Each type of troponin serves a different function in the muscle: troponin C acts as 

the calcium binding site, troponin T connects troponin complex to tropomyosin while 

troponin I inhibits actomyosin ATPase activity when it is bound to actin (Lehman & Craig, 

2008). At high calcium ion concentrations, calcium ions bind to troponin C, which 

initiates a conformation change in the tropomyosin-troponin complex, dislocating 

troponin I, allowing the action of actomyosin ATPase for muscle contraction.    

 
Figure 2-3. A schematic diagram of a thin filament comprising actin, tropomyosin and troponin 

complex troponin T (TnT), troponin I (TnI) and troponin C (TnC).  
Reproduced from Boland et al. (2019) with permission from Elsevier Books. 
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2.2.3 Structural proteins 

The structural proteins comprise titin, nebulin, α-actinin, β-actinin, tropomodulin, desmin, 

filamin, C-protein, H-protein and myomesin, which control the fillamentous structure and 

integrity of myofibrils (Obinata et al., 1981) (Table 2-1).  

Table 2-1. List of structural proteins present in the myofibrils.  

Structural proteins Descriptions 
1Titin/connectin 

(MW: 4200 kDa) 

- Anchors from the Z-disk to the M-line 

- Provides elasticity to the sarcomere  

2Nebulin 

(MW: 800 kDa) 

- Attached to the Z-disk and extends to the end of the thin 

filaments 

- Regulates the length of thin filaments 

3α-Actinin 

(MW: 95 kDa) 

- Major constituent of the Z-disk which attaches actin to the 

Z-disk 

- Interacts with actin and titin which strengthen the Z-disk 
3β-actinin/CapZ protein 

 α-subunit (MW: 37/36 kDa) 

 β-subunit (MW: 34/32 kDa) 

- Binds α-actinin in the Z-disk 

- Prevents network formation between actin filaments 

4Tropomodulin 

(MW: of 40 kDa) 

- Binds tropomyosin and actin 

- Controls the length of thin filaments  

5Desmin (MW: 55 kDa) 

& filamin (MW :300 kDa) 

- Localised at the border of the Z-disk 

- Links the Z-disk to the sarcolemma and stabilises muscle 

structure  

6C-protein (MW: 140 kDa) 

& H-protein (MW: 58 kDa) 

- Myosin-binding proteins found in A-band of thick filaments 

- Contribute to the alignment and stabilisation of thick 

filaments 

- C-protein inhibits the elongation of titin filaments in the A-

band 
7Myomesin 

(MW: 185 kDa) 

- Major protein in the M-line  

- Responsible for the binding of titin and myosin  
1Labeit and Kolmerer (1995) & Tskhovrebova and Trinick (2003);  2McElhinny et al. (2003) & Strasburg 

et al. (2008); 3Obinata et al. (1981) and Strasburg et al. (2008); 4Clark et al. (2002); 5Capetanaki et al. (1997) 

& vanderVen et al. (2000); 6Koretz et al. (1993) & Xiong (1997); 7Strasburg et al. (2008)  

MW represents molecular weight. 
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2.3 Sarcoplasmic proteins 

2.3.1 Cathepsins 

Cathepsins are lysosomal enzymes which are active at an acidic pH, and are released 

postmortem in the sarcoplasm (Geesink & Veiseth, 2008). Among the family of 

cathepsins, cysteine cathepsin B, H and L and aspartic cathepsin D are the most abundant 

in muscles. Cathepsin B has optimum activity at pH 5.5 to 6.5 and is unstable at pH 7. It 

breaks down MHC, troponin T, troponin I, tropomyosin (Bechet et al., 2005), intact 

myofibrils and collagen (Koohmaraie, 1988). Cathepsin H has an optimum pH range of 

5.5 to 6.5 (Huff-Lonergan, 2014). It degrades myosin but is unable to hydrolyse intact 

myofibrils (Ouali et al., 1987). In contrast, cathepsin L acts optimally at pH 5 but remains 

stable at neutral pH, retaining approximately 30 % of its maximum activity (Geesink & 

Veiseth, 2008). It hydrolyses the majority of the myofibrillar proteins (except troponin C 

and tropomyosin) (Matsukura et al., 1981) and collagen (Agarwal, 1990). Cathepsin D 

has an optimum activity at pH 3 to 5 and is inactive at neutral pH (Bohley & Seglen, 

1992). The proteolytic activity of cysteine cathepsins and cathepsin D can be inhibited by 

cystatins (Geesink & Veiseth, 2008)  and pepstatin (Bohley & Seglen, 1992), respectively.     

2.3.2 Calpains 

Calpains are calcium-activated, cysteine proteases which have maximum activity at 

neutral pH (Sentandreu et al., 2002). There are two types of calpain responsible for 

postmortem proteolysis, which are ubiquitous µ-calpain and m-calpain (Raynaud et al., 

2005; Strasburg et al., 2008). The calcium concentrations for the activation of both µ-

calpain and m-calpain are in the range of micromolar and millimolar level 

correspondingly (Camou et al., 2007). In vivo, calpains degrade myofibrillar proteins 

during protein turnover for muscle growth (Goll et al., 2008; Huang & Forsberg, 1998). 
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They are found and act mostly in the Z-disks. Calpastatin is the natural inhibitor of µ-

calpain and m-calpain. 

2.3.3 Myoglobin 

Myoglobin is a haem protein that acts as an oxygen carrier in muscle cells and is 

responsible for the colour of both raw and cooked meat (Claus, 2007; Suman & Joseph, 

2014). Four forms of myoglobin exist in the muscle, including deoxymyoglobin (purplish 

red), oxymyoglobin (cherry red), metmyoglobin (brown) and carboxymyoglobin (cherry 

red) (Figure 2-4) (Suman & Joseph, 2013). The colour of the muscle depends on the ratio 

of these forms of myoglobin (Baldwin, 2012). Cooking of meat results in denaturation of 

myoglobin, causing the oxidation of haem which induces a change in meat colour. For 

example, the denaturation of metmyoglobin produces ferrihemochrome which gives 

cooked meat a dull brownish appearance (King  & Whyte, 2006) 

 
Figure 2-4. Interconversion of myoglobin redox forms in fresh meats.  
Reproduced from Boland et al. (2019) with permission from Elsevier Books. 
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2.4 Stromal proteins 

2.4.1 Collagen  

Collagen is the predominant stromal protein existing in skeletal muscles that is 

synthesised by fibroblasts (Bailey & Light, 1989; Duance et al., 1977; Gault, 1992). There 

are four major classes of collagen based on their aggregation characteristics: striated and 

fibrous (Types I, II, III, V and XI); non-fibrous and network forming (Type IV); 

microfibrillar or filamentous (Type VI), and lastly fibril-associated collagen (Type VII) 

(Bailey, 1991). The basic structure of collagen consists of three polypeptide alpha chains 

with -Gly-X-Y- repeating units, where X and Y are commonly proline and 

hydroxyproline respectively, that coil to create a triple helix structure, forming 

tropocollagen that is about 280 nm in length and 1.4 nm to 1.5 nm in diameter (Astruc, 

2014a; Bailey & Light, 1989; Gault, 1992; Strasburg et al., 2008). Tropocollagen 

molecules are polymerised into collagen fibres via covalent intermolecular cross-links, 

by the formation of aldehydes through oxidative deamination of lysine or hydroxylysine 

residues. These divalent, reducible cross-linkages offer substantial tensile strength to 

collagen fibres. As the collagen fibres age, these cross-linkages interact to form mature 

trivalent, non-reducible, more heat-stable cross-links, which further enhances their 

stability and mechanical strength.  

Collagen has been linked to the toughness of muscle-based foods, and its content and 

extent of cross-linking differ among different animal species, age, muscle function, 

exercise and treatment with growth promoter (Strasburg et al., 2008). Bailey and Light 

(1989), McCormick (1999) and Purslow (2005) reported an increase in meat toughness 

as the animal aged due to an increase in collagen cross-linking and a decrease in collagen 

solubility (Taylor, 2004). It was also found that the tender meat cut, bovine Longissimus 
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dorsi, contains only half to two thirds of the total collagen content and 

hydroxylysylpyridinoline cross-links of that found in the tougher cut, Biceps femoris 

(McCormick, 1999). Various studies have been done to improve the meat quality by 

partial solubilisation of collagen in tough meat cuts such as Semitendinosus (Christensen, 

Bertram, et al., 2011; Christensen, Ertbjerg, et al., 2011; Combes et al., 2004; Sullivan & 

Calkins, 2010). 

2.4.2 Elastin 

Elastin is a minor constituent of connective tissue that offers elasticity to the blood vessels 

and ligaments in the muscles, but it could contribute to meat toughness (Debelle & Alix, 

1999). Elastin is an insoluble, hydrophobic, heat-stable and cross-linked protein fibre that 

behaves in a highly elastic manner in the presence of water. Elastin fibre is characterised 

by the cross-linking of two amino acids, namely desmosine and isodesmosine, which are 

responsible for its extremely insoluble characteristic (Lawrie, 2006). Both desmosine and 

isodesmosine are formed by the condensation of the intermediate products from oxidative 

deamination of lysine side-chains (Anwar, 1990).  

2.5 Postmortem changes in muscles 

The death of animals results in postmortem biochemical, physicochemical and structural 

changes in muscles (Bendall, 1973; Greaser, 1986; Lawrie, 1992). The major biochemical 

events that happen during the conversion of muscle to meat are postmortem glycolysis 

and proteolysis. As blood circulation ceases, the supply of oxygen and nutrients is stopped 

(Honikel, 2014b; Strasburg et al., 2008). However, muscle homoeostasis is still being 

maintained by anoxic regeneration of adenosine triphosphate (ATP). Energy is released 

from the degradation of ATP into adenosine diphosphate (ADP) and inorganic phosphate. 
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This is accompanied by the production of hydrogen ions which accumulate in the cells, 

leading to a pH fall in the muscle. Adenosine triphosphate is regenerated by the following 

three main reactions: 1) conversion of creatine phosphate (CP) into creatine via the 

phosphorylation of ADP, 2) conversion of ADP into ATP and adenosine monophosphate 

(AMP) by myokinase, and 3) degradation of glycogen into lactic acid through the 

anaerobic glycolysis pathway.  

When glycogen is fully depleted, ATP re-synthesis is interrupted, glycolysis reaction 

stops and the pH usually stabilises at around 5.5, which is known as the ultimate pH (pHu). 

The pHu of meat depends on the animal species, muscle types and pre-slaughter stress 

(Honikel, 2014a). Sometimes, glycolysis stops even in the presence of residual glycogen 

(Immonen & Puolanne, 2000). This was deduced to be due to the pH inhibition of 

glycolytic enzymes and/or the unavailability of AMP, a positive cofactor of 

glycogenolytic enzymes. The pHu is near to the isoelectric point of the myofibrillar 

proteins (Huff-Lonergan & Lonergan, 2005). This causes the shrinkage of myofibrils, 

which results in the exudation of intermyofilament water into the sarcoplasm, followed 

by extracellular spaces and finally out of the muscle (Offer & Trinick, 1983; Pearce et al., 

2011). As the CP and glycogen stores in the muscles are depleted, there is a shortage of 

ATP to keep the contractile proteins actin and myosin apart, leading to the formation of 

the actomyosin bond (Hopkins, 2014). This muscle stiffening process is described as rigor 

mortis. This process lasts up to 12 h in red meat and 2 h in poultry.  

After rigor mortis, the muscle enters the ageing process (Strasburg et al., 2008).  At this 

stage, muscle proteins increase in extensibility as a result of proteolysis. This process 

degrades some structural myofibrillar proteins, predominantly along the Z-disks (Listrat 

et al., 2016; Taylor, Geesink, et al., 1995) and to a lesser extent the connective tissue 
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(Nishimura et al., 1995; Taylor, 2004), which tenderises the meat. Degradation of the Z-

disks (Suzuki et al., 1982), desmin (Wheeler & Koohmaraie, 1994), titin (Koohmaraie, 

1994), nebulin (Huff-Lonergan et al., 1995) and troponin T (Wheeler & Koohmaraie, 

1994) have been observed in the postmortem muscle.  

The postmortem decrease of energy supply causes the release of calcium ions from the 

sarcoplasmic reticulum and mitochondria, which triggers the calcium-activated µ-

calpains and m-calpains, especially at pH 6 where glycolysis is yet to be completed (Gault, 

1992). During postmortem ageing, troponin T, titin, nebulin, C-protein, desmin and 

filamin are hydrolysed by calpains whereas the principal contractile proteins, such as 

myosin and actin, are unaffected (Huff-Lonergan et al., 1996; Koohmaraie, 1988). It has 

been concluded that postmortem muscle tenderisation is due mainly to the action of µ-

calpain and to a lesser extent the action of m-calpain (Goll et al., 2003; Koohmaraie & 

Geesink, 2006). 

In addition, the cell membrane of the lysosomes is weakened as the pH falls below 6, 

which releases cathepsins that attack predominantly the contractile proteins and less 

significantly the connective tissue. It has been reported that elevated temperature and 

electrical stimulation accelerate the pH decline in the muscles, which promotes the release 

of cathepsins from the lysosomes and eventually facilitates muscle tenderisation (Dutson 

et al., 1980; Geesink & Veiseth, 2008; Moeller et al., 1977). However, as Cathepsin D is 

active at a pH range from 3 to 5, it has a relatively less important role in muscle 

tenderisation than other cathepsins at a postmortem pH of 5.5 (Mikami et al., 1987).  

Apart from the calpains and the cathepsin system, caspases, which are cysteine aspartic-

specific proteases, have recently received attention in regard to postmortem proteolysis 

and tenderisation (Cramer et al., 2018; Huang et al., 2018; Kemp et al., 2010; Ouali et al., 



  

 

20 Chapter 2 

2013; Ouali et al., 2006). Caspases are involved in the initial mechanisms of apoptosis or 

programmed cell death, which are activated by the release of cytochrome c from the 

mitochondrial membrane to the cytoplasm (Green & Reed, 1998). Apoptosis has been 

identified as the first proteolytic system involved in the degradation of structural proteins 

including actin, troponin T, troponin I, MLC and desmin, postmortem chronologically 

(Becila et al., 2010; Kemp & Parr, 2008). Cramer et al. (2018) discovered a significantly 

lower cytochrome c level and more intact desmin and troponin T during ageing in 

callipyge lamb loins than normal lamb loins, suggesting a weaker apoptosis activity in 

the former which resulted in meat toughness. Callipyge lambs have a genetic mutation 

which results in muscular hypertrophy of the loins and hindquarters, and are usually 

tougher than the normal, non-mutated lambs. Another endogenous protease system, 

proteasomes, which perform ubiquitin-mediated proteolysis in both the cytosol and the 

cell nucleus, have a major role in the intracellular protein degradation (Goll et al., 2008; 

Lee et al., 2010). However, the role of the proteasomes in postmortem meat tenderisation 

is not well understood. Studies have shown that purified proteasome is capable of 

hydrolysing myofibrillar proteins, but the degradation pattern and ultrastructural changes 

differ from typical postmortem ageing (Geesink & Veiseth, 2008; Koohmaraie, 1992; 

Taylor, Tassy, et al., 1995). Instead, the ultrastructural changes in myofibrils incubated 

with purified proteasomes resembles those observed in high pH meat and postmortem 

slow-twitch muscles, showing the possible involvement of proteasomes in meat 

tenderisation (Sentandreu et al., 2002). Liu, Du, et al. (2016) discovered that sheep 

Longissimus lumborum muscles injected with proteasome inhibitor had a less damaged 

muscle ultrastructure after 48 h of injection, suggesting that proteasomes might contribute 

to postmortem meat tenderisation. Dutaud et al. (2006) have also observed 30 to 48 % of 

intact proteasomes in meat after storage at 0 to 4 ℃ for 16 days and proposed that 
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proteasomes might have better proteolytic potential than µ-calpain during ageing. Other 

proteolytic systems such as metalloproteases, thrombin or plasmin may also be involved 

in the postmortem degradation of muscle tissue.  

Ageing improves meat tenderness and may last for a couple of days for poultry, pork and 

lamb and about two weeks for beef. Meat tenderness has been reported to be a function 

of the intramuscular connective tissue content and cross-linking, as well as the formation 

of actomyosin complex in the muscles (Baldwin, 2012). High collagen content and low 

heat-induced collagen solubility contribute to connective tissue toughness while the 

overlapping of myosin and actin filaments during rigor mortis causes actomyosin 

toughness. It has been reported that the myofibrils in pork Longissimus dorsi aged for 

eight days were more fragmented and had smaller particle size distribution than the 

unaged meat (Lametsch et al., 2007).  

2.6 Nutritional characteristics of muscle-based foods 

Muscle-based food is an excellent source of nutrients. It provides micronutrients such as 

iron, selenium and vitamin B12, which are either absent or possess poor bioavailability 

in plant-based foods (Biesalski, 2005). The compositions of lean tissue in muscle-based 

foods are tabulated in Table 2-2 (Foegeding et al., 1996; Strasburg et al., 2008). About 

17 to 23 % of lean muscle is made up of protein which contains all the essential amino 

acids required on a daily basis for muscle growth and health maintenance. The most 

abundant amino acid in meat is glutamine (16.5 %), followed by arginine, alanine and 

aspartic acid (Williams, 2007). Consuming meat with plant-based foods, such as cereals 

and legumes, compensates for the lower levels of lysine (cereals) as well as methionine 

and cysteine (legumes) in the diet (Bodwell & Anderson, 1986). The lipid content and 

composition vary considerably among different animal species and muscle types, as well 
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as the fatty acid profile of the animal feed. In contrast, carbohydrate is relatively scarce 

in meat because glycogen is converted to lactate during the postmortem process. Muscle-

based foods are rich in some water-soluble vitamins, such as vitamin B1, B2, B3, B6 and 

B12 and are relatively deficient in vitamins C, D, E and K. They contain a significant 

amount of highly bioavailable haem iron due to their higher myoglobin content, 

especially red meat (Buzała et al., 2015). Other constituents include minerals, such as 

potassium, phosphorus and magnesium.  

Table 2-2. Composition of lean muscle tissues in general (raw).  

Species 
Proximate composition (%) 

Water Protein Lipid Ash 

Beefa,b,c 70 - 73 20 - 23 3 - 8 1 

Porkb,c 68 - 70 19 - 20 9 - 11 1.4 

Chickenb,c 73.7 20 - 23 4.7 1 

Lamba,b,c 73 20-22 5 - 6 1.6 

Cod (lean fish)b,c 81.2 17.6 0.3 1.2 

Salmon (fatty fish)b,c 64 20 - 22 13 - 15 1.3 

Reproduced from Boland et al. (2019) with permission from Elsevier Books. 
aWilliams (2007) 
bStrasburg et al. (2008) 
cFoegeding et al. (1996) 

 

2.7 Human digestive system and protein digestion 

The human digestive system is a tubular structure extending from the mouth to the anus 

which is responsible for food digestion and absorption (Boland, 2016; Tortora & 

Derrickson, 2013).  The system breaks down ingested food into smaller molecules that 

are available to be taken up and assimilated into the body cells. Digestion involves both 

mechanical and chemical actions. After ingestion, food is mixed with saliva (near neutral 

pH), comminuted into smaller particles by the teeth and forms a bolus. A bolus usually 

consists of food particles that are between 1 to 3 mm, and is transferred to the stomach 

by the tongue and smooth muscle of pharynx and oesophagus (Jalabert-Malbos et al., 

2007; Tortora & Derrickson, 2013). Salivary amylase is secreted by the salivary glands 
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in the mouth to break down carbohydrates, such as starches and disaccharides, into 

smaller molecules, and continues to act on its substrates in the stomach until its 

inactivation by gastric acid.  

The entrance of a bolus to the stomach triggers the secretion of gastric juice by the gastric 

glands (Tortora & Derrickson, 2013). The bolus mixes with gastric juice and its particle 

size is reduced slightly due to the effect of peristaltic movement, forming chyme. Gastric 

juice contains hydrochloric acid, pepsinogen, gastric lipase, gastrin, some intrinsic factors, 

electrolytes and other organic substances. Hydrochloric acid in the gastric juice partially 

denatures food proteins and activates the proteolytic enzyme pepsin, that is secreted by 

the gastric chief cells. Pepsin is an endopeptidase, which initiates protein digestion by 

cleaving peptide bonds located at the interior of the protein chain, producing polypeptide 

fragments with high molecular weight. Pepsin has an optimum activity at pH 2 and is 

inactivated at pH 8 and above (Piper & Fenton, 1965). During the fasting state, the pH in 

the stomach is around 2 or below. The ingestion of food leads to a rise in the pH to 5 or 

more, depending on the buffering capacity of the food. Due to constant secretion of 

hydrochloric acid, the pH in the stomach decreases slowly to fasting pH, which favours 

the proteolytic action of pepsins (Minekus et al., 2014). Pepsins cleave peptide bonds 

adjacent to phenylalanine, tryptophan and tyrosine residues (Blanco & Blanco, 2017). 

Peptic digestion of protein results in the formation of polypeptides and oligopeptides, 

with negligible release of free amino acids (Erickson & Kim, 1990). Gastric lipase, which 

has an optimum activity at pH 5 to 6, has little activity in the acidic environment of the 

adult stomach. Hence, the majority of the digestion of triglycerides occurs in the small 

intestine by pancreatic lipase with the aid of bile. The gastric emptying process starts 

when the particle size of chyme is less than 1 to 2 mm, allowing it to pass through the 
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pyloric sphincter into the first section of the small intestine, the duodenum (Singh et al., 

2015). 

Pancreatic and intestinal juices, and bile secreted into the small intestine further break 

down the partially-digested carbohydrates, proteins and lipids present in the chyme from 

the stomach (Smith & Morton, 2010). Protein and peptide fragments in the small intestine 

are hydrolysed by trypsin, chymotrypsin, carboxypeptidase and elastase in the pancreatic 

juice, and other peptidases, such as aminopeptidases, oligopeptidase, di- and tripeptidases, 

present in the microvilli brush border membranes or the cytosol of the absorptive cells. 

Pancreatic juice contains bicarbonate that neutralises the pH of the chyme, creating a 

favourable environment for these enzymes. The endopeptidases, which include trypsin, 

chymotrypsin and elastase, cleave the peptide bonds  forming smaller peptides from large 

polypeptides (Erickson & Kim, 1990). Trypsin cleaves peptide bonds on the carboxyl 

terminal of basic amino acids (lysine and arginine). Chymotrypsin hydrolyses peptide 

bonds on the carboxyl aromatic amino acids (tyrosine, tryptophan and phenylalanine). 

Elastase breaks down elastin and break the peptide bonds in polypeptides with aliphatic 

amino acid residues (alanine, leucine, glycine, valine and isoleucine) on the carboxyl 

terminal. The exopeptidases include carboxypeptidases A and B, and peptidases present 

in microvilli. Carboxypeptidases cleave single amino acids from the carboxyl terminal 

while aminopeptidases cleave single amino acids from the amino terminal ends of 

peptides (Smith & Morton, 2010). The hydrolysis products produced by the 

endopeptidases are ideal substrates for the carboxypeptidases (Gray & Cooper, 1971). 

Carboxypeptidase A has high specificity for the peptide bonds with neutral amino acid at 

the carboxyl terminal, such as the aromatic and aliphatic amino acids at the carboxyl 

terminal of peptides produced by the actions of chymotrypsin and elastase. 

Carboxypeptidase B favours the peptide bonds with basic amino acid at the carboxyl 
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terminal, such as the peptides produced by the action of trypsin. The hydrolysed 

fragments produced by the pancreatic enzymes, mainly oligopeptides with two to eight 

amino acid residues (~70 %) and some free amino acids (~30 %). The oligopeptides are 

further broken down into single amino acid, dipeptides and tripeptides by peptidases in 

the brush border membrane. The dipeptides and tripeptides enter the absorptive cells of 

the microvilli via hydrogen-dependent secondary active transport, which are further 

degraded into amino acids by cytosolic tri- and dipeptidases. The amino acids enter the 

absorptive cells of the microvilli through active transport or sodium-dependent secondary 

active transport and then being transported into the blood stream through passive 

diffusion (e.g. hydrophobic amino acids such as tryptophan), facilitated diffusion or 

active transport (e.g. all free amino acids). The rate of protein digestion and the absorption 

of dietary amino acids are believed to have an impact on postprandial protein deposition 

(Boirie et al., 1997; Dangin et al., 2001). Various studies have suggested that proteins that 

are digested at a faster rate have an enhanced postprandial protein gain especially in the 

elderly (Boirie et al., 1997; Dangin et al., 2003).  

Unlike fat, which is almost digested completely in ileum, protein tends to enter the colon 

without complete digestion (Jørgensen et al., 2000). Undigested chyme enters the large 

intestine where it is fermented by the microflora present in the lumen. The amount of 

undigested proteinaceous substances reaching the human large intestine has been reported 

to range from 3 to 18 g per day (Cummings & Macfarlane, 1991; Cummings & 

Macfarlane, 1997; Muir & Yeow, 2000). There are approximately 3 g of non-dietary 

endogenous proteins such as glycoproteins and mucinous proteins that enter the large 

intestine daily (Chacko & Cummings, 1988). In addition to daily dietary protein intake, 

the amount of undigested dietary protein reaching the large intestine is affected by the 

protein digestibility of the ingested foods. The protein digestibility is largely dependent 
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on the source and processing history of foods (Yao et al., 2016). High protein digestibility 

reduces the amount of undigested proteinaceous substance entering the colon. Several 

studies have found that the true ileal digestibility of dietary protein in humans to range 

from 84 to 96 % (Mariotti, 2017; Tomé, 2013; Yao et al., 2016). The true ileal digestibility 

of animal proteins such as eggs, meat, and milk were 91 to 96 %, 90 to 94 % and 95 to 

96 %, respectively. Plant proteins were found to have a slightly wider and lower true ileal 

digestibility range, which was between 84 and 92 %. Rapeseed protein (84 %) had a lower 

ileal digestibility while soy protein isolate (91.5 %), pea protein isolate (89.5 to 91.5 %), 

legumes (e.g. soy beans and kidney beans; 89 to 92 %) and oats (90 %) had higher ileal 

digestibility. Nevertheless, the protein digestibility from both animal and plant sources 

could be improved or reduced by processing, depending on the processing methods, 

conditions and severity (Kaur et al., 2016; Li et al., 2017; Sa et al., 2019; van Lieshout et 

al., 2020). 

These undigested proteins are metabolised by colonic microflora either via proteolysis or 

a fermentation process. Fermentation of protein generates nitrogenous metabolites such 

as ammonia, amines, N-nitroso, phenolic, cresolic and indolic compounds (Macfarlane, 

Cummings, et al., 1986). These products may cause long term detrimental effects on 

colonic heath, such as colorectal cancer and inflammatory bowel disease, depending on 

the balance between the rate of toxic metabolite generation, detoxification and excretion 

from the large intestine (Yao et al., 2016). For example, ammonia has been reported to 

adversely affect the epithelial barrier and colonocyte lifespan (Hughes et al., 2008; Lin & 

Visek, 1991). Three to ten hours after reaching the large intestine, chyme is solidified 

forming faeces (Tortora & Derrickson, 2013). Faeces are stored in the rectum before 

excretion via the anus.  
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Other than the enzymatic action of digestive proteases, Astruc (2014b) reported the 

physiochemical environment in the gastrointestinal tract also plays an important role in 

the food digestion process. Subjecting raw bovine Semitendinosus muscle to simulated 

gastric digestion at pH 1.8, both with and without the addition of pepsin, resulted in the 

swelling of muscle cells and collagen fibres, which is consistent with the findings by Kaur 

et al. (2016), Rao et al. (1989) and Bailey and Light (1989). He suggested that the acidic 

pH partially denatures muscle proteins, which aids the access of digestive enzymes to the 

substrates. As excessive protein aggregation caused by thermal unfolding of proteins may 

reduce protein degradation by digestive enzymes (Gatellier & Sante-Lhoutellier, 2009; 

Santé-Lhoutellier et al., 2008), the acid-induced denaturation and swelling of muscle cells 

may limit the penetration of digestive juices into the core of the food (Astruc, 2014b). 

Moreover, he reported that pepsin digestion of meat in the stomach mainly disrupts the 

Z-disks while subsequent trypsin and chymotrypsin digestion in the small intestine 

degrades the sarcomere. The structure weakened during postmortem ageing is also more 

susceptible to hydrolysis by digestive enzymes.  

2.8 Processing techniques and their effects on muscle protein 

structure and consequence on digestibility 

Meat processing impacts the physical and chemical properties of the product by the action 

of mechanical forces, heat or the addition of salts and additives (Lewis, 1992). For 

instance, meat tenderisation through electrical stimulation, ultrasonic waves, blade 

tenderization and pressure treatment have been reported to modify the muscle structure 

and protein profile (Hopkins, 2014). These processes may decrease the overlapping of 

actin and myosin, cause physical damage to the sarcomere and connective tissue, or 

improve proteolysis rates through the activation of calpains by release of calcium ions 



  

 

28 Chapter 2 

and/or lysosomal proteases such as cathepsins, after membrane disruption. These 

structural changes are likely to influence the accessibility of digestive enzymes to their 

substrates, and thus affect the product digestibility in the gastro-intestinal tract (Astruc, 

2014b). For instance, high pressure processing has been reported to alter muscle structure 

and enhance in vitro protein digestibility of beef (Kaur et al., 2016). Many innovative 

meat processing technologies have been explored in recent decades. It is valuable for the 

meat industry to have a better understanding of how these technologies affect muscle 

structure and protein digestibility of meat as there is increasing demand for products that 

contain high-value animal protein (Hung et al., 2016; Kraus, 2015). The technologies 

focused on in this section are pulsed electric field (PEF) processing, hydrodynamic 

shockwave (SW) processing, sous vide (SV) cooking, and exogenous enzyme processing. 

2.8.1 Pulsed Electric field (PEF) 

Pulsed electric field is a non-thermal process used in food and bioengineering applications 

since the 1960s (Toepfl et al., 2007a). This technology involves applying an electric field, 

in the form of short wave pulses, to food placed between two electrodes (O'Dowd et al., 

2013). Pulsed electric field leads to electroporation of cell membrane when the induced 

transmembrane potential goes beyond a critical value of 1 Volt, causing permanent or 

temporary pore formation and cell disintegration (McDonnell et al., 2014; Toepfl et al., 

2007a). In the past, this treatment has been applied mainly for the purpose of food 

preservation in milk, eggs, juices and other liquid foods (Castro et al., 1993; Toepfl et al., 

2007b). High intensity PEF, normally 20 to 80 kV/cm, effectively inactivates microbes 

with minimal detrimental effect on the food properties (Leadley & Williams, 2006). 

Recently, there has been an increasing interest in non-preservative applications of PEF, 

which modifies food properties leading to an enhancement of overall product quality. 
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Low intensity PEF applications, such as juice pressing and extraction, meat tenderisation 

and curing, fruit and vegetable dehydration and others have been studied (Gachovska et 

al., 2006; Mhemdi et al., 2012; O'Dowd et al., 2013; Puértolas et al., 2012).  

Low intensity PEF treatment has been reported to induce changes in the structure of 

myofibrillar-based foods, which could potentially improve their texture and functional 

properties (Arroyo, Eslami, et al., 2015). The effect of PEF on meat depends on both the 

processing parameters and the properties of meat samples (dielectric properties, meat 

types, pre- and post-slaughtering process) (Alahakoon et al., 2016; Toepfl et al., 2007a). 

Pulsed electric field treatment performed at an appropriate electric field strength, pulse 

frequency and or specific energy are required in creating large permanent pores in meat 

tissues, causing structural modification and eventually affecting functional properties of 

meat. Excessive electric field strength (1.7 to 2 kV/cm) led to cooking effect on the edges 

of raw meat (Faridnia et al., 2015). Application of electric pulses perpendicular to the 

muscle fibre direction maximises the electroporation effect while achieving optimum 

electric field strength (Alahakoon et al., 2016).  

2.8.1.1 Effect of PEF processing on muscle protein profile, structure and digestibility  

Low intensity PEF has been reported to cause structural changes in the muscles (Table 2 

-3) but their protein profile was largely unaffected (Faridnia et al., 2014; Gudmundsson 

& Hafsteinsson, 2001). Hence, it was suggested that the impact of low intensity PEF 

treatment on muscle structure was mainly the result of electroporation of cell membrane 

but not protein denaturation. However, increased proteolysis of troponin T and desmin 

were observed in PEF-treated meat during ageing (Suwandy et al., 2015a; Suwandy et al., 

2015b).  
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Troponin T is the substrate of cathepsin L and calpains while desmin is the substrate of 

calpains (Huff-Lonergan, 2014). Hence, the enhanced proteolysis is speculated to be due 

to the release of calcium ions by electroporation, leading to early activation of calpains, 

and/or the action of lysosomal enzymes released due to the permeabilisation of muscle 

cells by PEF (Alahakoon et al., 2016; Bhat et al., 2018b). Recent studies have discovered 

improved calpain activity in PEF-treated beef Semimembranosus (0.36 kV/cm, 90 Hz and 

0.60 kV/cm, 20 Hz) (Bhat, Morton, et al., 2019a) and cold-boned venison Longissimus 

dorsi (2.5 kV, 50 Hz and 10 kV, 90 Hz) (Bhat, Morton, Mason, Mungure, et al., 2019), 

along with increased degradation of troponin T during ageing. However, there is no 

information available on the effect of PEF on lysosomal proteases such as cathepsins in 

meat. 

Scanning electron micrograph of the PEF-treated beef Longissimus thoracis muscles 

showed that the treated muscles were porous, which led to a higher moisture loss from 

the treated cuts than the control untreated meat during storage (Faridnia et al., 2014). The 

size of the muscle cells of the PEF-treated beef, chicken and salmon was smaller than 

their untreated counterparts, which may due to greater water losses after the treatment 

(Gudmundsson & Hafsteinsson, 2001; O'Dowd et al., 2013). Furthermore, gap formation 

(Gudmundsson & Hafsteinsson, 2001),  fragmentation of myofibrils (O'Dowd et al., 2013) 

and elongated muscle bundles (Khan et al., 2017) were observed in PEF-treated meat 

samples. The extent of myofibrillar degradation along the Z-disks of PEF-treated beef 

Biceps femoris was observed to be to a greater than in untreated muscles during the ageing 

process, indicating accelerated postmortem proteolysis (Faridnia et al., 2016).  

To date, limited low intensity PEF treatment studies have been conducted to investigate 

the effect of PEF on individual meat components for meat tenderisation. Alahakoon et al. 
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(2017) observed porous surface structure of the PEF-treated connective tissue isolated 

from beef Deep pectoralis muscle, under scanning electron microscope. A significantly 

decreased denaturation temperature and increased heat solubility of the PEF-treated 

connective tissue isolate were also detected. These observations suggest the use of PEF 

could reduce the cooking time of collagen-rich meat. 

The effect of PEF on muscle protein digestibility has only received attention in recent 

years and is not well studied. In vitro protein digestibility of raw cold-boned bovine Bicep 

femoris (10 kV, 20 Hz, 20 µs) (Bhat et al., 2018c) and cold-boned deer Longissimus dorsi 

(10 kV, 90 Hz) (Bhat, Morton, Mason, Bekhit, et al., 2019) was found to improve with 

increased free individual amino acids measured at the end of digestion using a high 

performance liquid chromatography (HPLC) method. In another study, in vitro protein 

digestibility of PEF-treated (10 kV, 20 Hz, 20 µs) water bath-cooked (core temperature 

of 75 ℃) bovine Semimembranosus was improved while no significant difference was 

observed in the free individual amino acids released (Bhat, Morton, Mason, Jayawardena, 

et al., 2019). Conversely, Alahakoon et al. (2019)  did not detect any improvement in 

protein digestibility of PEF-treated (0.7 and 1.5 KV/cm, specific energy of 90 to 100 

kJ/kg) SV-cooked (60 ℃ for 12 h or 24 h) beef brisket. Current research to understand 

the effect of PEF on meat digestibility is limited, and if the structural changes induced by 

PEF influence meat breakdown during digestion requires further research.   
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Table 2-3. Summary of the effects of low intensity PEF on muscle structure. 

Types of meat 
Processing 

parameters 
Structural changes References 

Chicken 1.36 kV/cm, 40 pulses 

Reduction in muscle cell size 

without visible gapping between 

muscle fibres Gudmundsson 

and 

Hafsteinsson 

(2001) 

Salmon 1.36 kV/cm, 40 pulses 

Leakage of collagen into 

extracellular spaces with visible 

gapping between muscle fibres 

Lumpfish roes 12 kV/cm, 12 pulses 
Roes remain intact and 

unaffected 

Bovine 

Longissimus 

thoracis 

0.2 to 0.6 kV/cm, 1 to 

50 Hz, 20 µs 

Increase in porosity of muscle 

tissue 

Faridnia et al. 

(2014) 

Frozen-thawed 

Bovine 

Semitendinosus 

1.4 kV/cm, 50 Hz, 20 

µs, 250 kJ/kg 

Jagged edges in sarcomere; 

Separation of myofibrils from 

the Z-disks; Rupture of the Z-

disk and I-band junction 

Faridnia et al. 

(2015) 

Bovine 

Semitendinosus 

1.1 to 2.8 kV/cm, 5 to 

200 Hz, 152 to 300 

pulses, 12.7 to 226 

kJ/kg 

More fragmented myofibrils; 

Reduction in muscle fibre 

diameter and volume 

O'Dowd et al. 

(2013) 

Bovine Biceps 

femoris 

1.7 to 2.0 kV/cm, 50 

Hz, 185 kJ/kg 

More ruptured myofibrils along 

the Z-disks and more porous 

structure 

Faridnia et al. 

(2016) 

Beef 

Longissimus 

lumborum 

2.5 kV, 200 Hz, 20 µs 
Formation of gaps between 

elongated muscle bundles 

Khan et al. 

(2017) 

Connective 

tissue isolate 

(bovine  Deep 

pectoralis) 

1.0 and 1.5 kV/cm, 50 

and 100 kJ/kg, 50 Hz, 

20 µs 

Porous structure of the isolated 

connective tissue observed 

under scanning electron 

microscope 

Alahakoon et 

al. (2017) 

 

2.8.1.2 Effect of PEF processing on meat quality 

The colour of meat has been reported to remain unaffected by the low-intensity PEF 

treatment (Arroyo, Lascorz, et al., 2015; Faridnia et al., 2014; Suwandy et al., 2015c). 

However, higher intensity and or repeated PEF treatment resulted in elevated temperature 

of the samples leading to increased myoglobin oxidation and eventually may have 

negatively affected the colour of meat (Alahakoon et al., 2016; O'Dowd et al., 2013). 

Khan et al. (2017) reported a significantly higher lightness (L* value) and lower redness 
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(a* value) in high-intensity PEF-treated bovine Longissimus lumborum (10 kV, 200 Hz, 

20 µs). Pulsed electric field treatment has been reported to increase the purge loss of meat, 

which could be due to the structural changes induced by the processing (Arroyo, Lascorz, 

et al., 2015; Faridnia et al., 2016).  The reported effect of PEF on the cook loss in the 

current literature is not unanimous, due to different cooking methods and rates as well as 

the end-point temperature of the meat (Alahakoon et al., 2016). Low intensity PEF 

treatment has been reported to have no adverse impact on the lipid oxidation of meat 

(Arroyo, Eslami, et al., 2015; McDonnell et al., 2014). However, Khan et al. (2017) 

observed a higher lipid oxidation in beef Longissimus lumborum treated with high PEF 

intensity (10 kV, 200 Hz, 20 µs) when compared to the samples treated with lower PEF 

intensity (2.5 kV, , 200 Hz, 20 µs). Increased lipid oxidation has also been found in 

frozen-thawed PEF-treated muscles (Alahakoon et al., 2016). Faridnia et al. (2015) 

suggested that PEF processing renders frozen-thawed muscles to lipid oxidation during 

storage due to the exposure of fatty acids to pro-oxidant released from muscle cells after 

the freezing-thawing process. Research on the effect of low intensity PEF treatment on 

the protein oxidation of meat is scarce.   

The effects of PEF on muscle texture reported in the literature is also contradictory and 

vary due to the variation in experimental setup, such as processing parameters, sample 

preparation prior to PEF treatment, handling of animals pre- and post-slaughtering and 

muscle types (Alahakoon et al., 2016). Bekhit, van de Ven, et al. (2014) observed 

improved tenderness in PEF-treated cold boned beef Longissimus lumborum (0.31 to 0.56 

kV/cm, 20, 50 and 90 Hz) (19.5 % shear force reduction) and Semimembranosus (0.27 to 

0.56 kV/cm, 20, 50 and 90 Hz) (4.1 to 19.1 % shear force reduction) muscles. Shear force 

is the amount of force required to slice through a piece of meat (Williams, 2008). 

Suwandy et al. (2015a) reported improved tenderness (up to 21.6 % shear force reduction) 
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in PEF-treated hot boned Semimembranosus (0.31 to 0.56 kV/cm, 20, 50 and 90 Hz). 

Pulsed electric field treatment also effectively tenderised frozen-thawed beef 

Semitendinosus (1.4 kV/cm, 50 Hz, 20 µs) (20.13 % shear force reduction) as discovered 

by Faridnia et al. (2015). Conversely, there was no change in the texture of PEF-treated 

bovine Longissimus thoracis (0.2 to 0.6 kV/cm, 1 to 50 Hz, 20 µs) (Faridnia et al., 2014). 

The shear force of beef Semitendinosus was also reported to be unaffected by PEF (1.9 

kV/cm, 65 Hz, 20 µs, pulse number of 250), although there was an increase in myofibrillar 

fragmentation (O'Dowd et al., 2013).  

2.8.2 Hydrodynamic shockwave (SW) processing 

Hydrodynamic SW processing is a novel technology that generates a SW up to 1 GPa 

which travels through water in fractions of a millisecond (Bolumar et al., 2014; Hopkins, 

2014). In food applications, SW processing can be performed as a batch process through 

an explosive approach or as a continuous process by the electrical discharge method. The 

early SW processing work was mainly done based on the use of explosives, which raised 

problems concerning the operators’ safety and the potential contamination of food with 

explosive chemical residues (Bolumar & Toepfl, 2016; Long, 1993; Solomon et al., 1997). 

This led to the development of SW equipment operated by an underwater electric 

discharge, which is more suitable to be transformed for industry use (Long, 2000). The 

electric discharge approach allows an automated continuous process for improved 

throughput in addition to better control of hydrodynamic pressure intensity by 

manipulating electrical voltage and pulse number (Bolumar et al., 2013; Bolumar & 

Toepfl, 2016).  

A SW process can be set up by sealing meat in an impermeable bag and placing it in a 

water-filled container (Hopkins, 2014). As meat is high in moisture, the SW travels from 
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the surrounding water to the meat sample, reflects from the walls of the container and 

intersect, producing an extremely high pressure that is able to cause physical disruption 

of meat. Shockwave processing has been reported to be effective in tenderising meat by 

altering sarcomere structure (Zuckerman & Solomon, 1998). The structural disruption 

may facilitate the penetration and proteolytic action of endogenous enzymes during 

maturation.  

2.8.2.1 Effect of SW processing on muscle protein profile, structure and digestibility  

The effect of SW processing on protein profile is debatable. Bolumar et al. (2014) and 

Schilling et al. (2002) have reported that there was no distinct difference in the 

myofibrillar and sarcoplasmic proteins between the control and explosive or electrical 

SW-treated meat. Marriott et al. (2001) observed no changes in collagen solubility of the 

explosive SW-treated bovine Longissimus lumborum. However, in other studies, it was 

revealed that explosive SW-treated muscle has higher solubility of myofibrillar proteins 

(beef strip loins) (Bowker, Fahrenholz, Paroczay, & Solomon, 2008), increased collagen 

solubility (beef top rounds) (Eastridge et al., 2005), exhibited changes in the profile of 

sarcoplasmic proteins and decreased solubility of sarcoplasmic proteins (beef strip loins) 

(Bowker, Fahrenholz, Paroczay, & Solomon, 2008). Spanier and Fahrenholz (2005) 

observed the actin and myosin in the explosive SW-treated meat changed significantly, 

which was deduced to be due to the breakdown of C-protein resulting in loss of structural 

integrity. A decrease in troponin T band intensity and more intense troponin T 

degradation product band (30 kDa) was observed in explosive SW-treated beef strip loins 

during ageing, indicating their enhanced proteolysis (Bowker, Fahrenholz, Paroczay, 

Eastridge, et al., 2008). 
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The effect of SW processing on the structure of muscle-based foods is summarised in 

Table 2-4. Shockwave treatment led to increased endomysium spaces between muscle 

fibres (Bolumar et al., 2014), myofibrillar fragmentation alongside the Z-disks (Bolumar 

et al., 2014; Zuckerman & Solomon, 1998) and the destruction of collagen fibrils of the 

endomysium (Zuckerman et al., 2013). Hopkins (2014) stated that the physical disruption 

of muscles may have led to the release of endogenous proteases or their activators, thus 

enhancing the tenderization effect. However, Bolumar et al. (2014) did not observe any 

changes in the cathepsin and peptidase activities of electrical SW-treated beef loins. The 

authors suggested that the tenderisation effect of SW treatment is due to the enhanced 

enzymatic contact and the disruption of muscle structure. Bowker, Fahrenholz, Paroczay, 

Eastridge, et al. (2008) also proposed that SW processing altered myofibrillar structure 

which facilitated the action of endogenous proteases during the ageing process. No 

studies were found in the literature which determine the effect of SW processing on 

muscle protein digestibility. 

Table 2-4. Summary of the effects of shockwave processing on muscle structure. 

Types of meat Processing parameters Structural changes References 

Bovine 

Semitendinosus 

150 g explosive (plastic 

container), 35.6 cm between 

explosive and meat;  450 g 

explosive (stainless steel 

container), 61.0 cm between 

explosive and meat; ~100 MPa 

on the meat surface  

Disruption of collagen fibril 

network of the endomysium 

Zuckerman 

et al. (2013) 

Bovine 

Longissimus 

dorsi 

100 g of explosive (~60 to 70 

MPa), 30.5 cm between 

explosive and meat 

Myofibrillar fragmentation 

along Z-disks; Increment in 

intramyofibrillar spaces 

Zuckerman 

and 

Solomon 

(1998) 

Bovine 

Longissimus 

lumborum 

1.8 kV/cm, 11664 J/pulse, 

single pulse, 20 cm between 

meat and electrical spark 

source 

Disruption of muscle fibres 

structure; Increment in  

endomysium spaces; 

Alteration of collagen fibril 

network in endomysium 

Bolumar et 

al. (2014) 
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2.8.2.2 Effect of SW processing on meat quality 

The appearance of SW-treated meat remained uninfluenced when a pressure of 

approximately 100 MPa was applied (Bowker et al., 2016). However, a slight difference 

in shape was observed, depending on the orientation of meat fibres and the direction of 

the shockwave pressure front. Hydrodynamic pressure treatment had no effect on the 

colour (Claus et al., 2001a; Moeller et al., 1999; Solomon et al., 1997) and drip loss 

(Bolumar & Toepfl, 2016; Moeller et al., 1999) of the treated muscles. Mixed effects of 

SW processing on cook loss has been reported, depending on the cooking method, 

cooking rate and the end-point temperature of meat (Claus et al., 2001a, 2001b; Marriott 

et al., 2001; Moeller et al., 1999). No research has been reported on the effect of 

shockwave processing on lipid and protein oxidation of meat.   

Shockwave processing research has focused on meat tenderisation, primarily for red 

meats (Bolumar et al., 2013; Bowker, Liu, et al., 2010; Solomon et al., 1997). Shockwave 

processing of bovine Longissimus dorsi, Semimembranosus, and Biceps femoris muscles 

lowered Warner-Bratzler (WB) shear force by 10 to 70 %, depending on the processing 

parameters and muscle types (Bolumar et al., 2014; Solomon et al., 1997; Spanier et al., 

2005). Shear resistance of beef loin also decreased by 10 to 50 % after explosive SW 

treatment (Spanier & Romanowski, 2000). Other than red meat, the tenderness of poultry 

pectoralis was improved by 12 to 42 % by both explosive and electrical SW treatment 

(Bowker, Callahan, et al., 2010; Claus et al., 2001a, 2001b). The texture variation within 

meat cuts was also reduced. Hopkins (2014) reported that SW processing decreased the 

toughness of cuts high in connective tissue by up to 70 %, even when the cuts that had 

undergone cold-induced shortening after storage. These cuts were stored 1.5 h after 

slaughter at a temperature of 2 to 4 ℃ for a day. The extent of tenderness improvement 
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was associated with the initial tenderness, handling of animal post-slaughter, postmortem 

time and processing conditions of the SW treatment (Bolumar et al., 2013). In general, 

the tenderising effect of the electrical SW treatment was less intense than the explosive 

SW treatment, with only 10 to 30 % decrease in toughness observed across beef, pork, 

turkey and chicken meats. 

2.8.3 Sous vide (SV) cooking 

Thermal processing has been widely adopted alone, or in combination with other 

processing techniques in the food industry (Troy et al., 2016). Conventional thermal 

processing such as roasting applies high heat to food which causes overheating of the 

product surface, leading to undesirable product quality (Chen et al., 2012). Sous vide is a 

cooking method that has been used in the restaurants and food catering services where 

food is cooked under vacuum at a precise and controlled temperature, usually in a water 

bath (Baldwin, 2012; Schellekens, 1996). Cooking under vacuum results in uniform and 

efficient heat transfer from water to food, overcoming the drawback of uneven heating 

encountered in the conventional cooking process. Volatile compounds and moisture in 

food can be better retained. Due to microbiological safety considerations, a minimum 

meat cooking temperature of 60 °C is recommended by the government authority in some 

countries (Purslow, 2018). 

2.8.3.1 Effect of SV cooking on muscle protein profile, structure and digestibility  

During the cooking process, heat denatures proteins leading to several physical changes 

in the muscles. The effect of cooking on muscle protein largely depends on the cooking 

time and temperature as well as the heating rate (Suriaatmaja, 2013). The myofibrillar 

proteins, mostly myosin and actin, shrink during heating, causing the contraction of 

muscle fibres (Baldwin, 2012). When meat is subjected to 40 to 60 ℃, muscle fibres 
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shrink transversely which causes the widening of the gap between them (Palka & Daun, 

1999; Tornberg, 2005). As the temperature further increase, muscle fibres shrink 

longitudinally and water held between thick and thin filaments is expelled. Myosin starts 

to denature from 40 to 50 ℃ while titin and actin begin to denature from 60 ℃ and 70 to 

80 ℃, respectively (Bejerholm et al., 2014). 

The sarcoplasmic proteins start to aggregate and gel when heated at 40 to 60 ℃ (Baldwin, 

2012). At SV cooking temperature range, some of the endogenous proteases remain active 

(Laakkonen, Sherbon, et al., 1970; Laakkonen, Wellington, et al., 1970). At 55 ℃, 

cathepsins B and L were found to be active up to 24 h of cooking whereas both µ- and m-

calpains were inactivated within 10 min (Ertbjerg et al., 2012). Myoglobin starts to 

denature at temperature between 55 and 65 ℃ and the denaturation process usually ends 

by 75 or 80 ℃ (King  & Whyte, 2006).   

In general, connective tissue such as collagen denature and shrink at around 60 ℃ and 

more intensely over 65 ℃ (Baldwin, 2012). This leads to the formation of water-soluble 

random coiled gelatine due to the destruction of triple helix structure of collagen, which 

decreases the adhesion between muscle fibres. The gelatinisation of collagen usually 

occurs at above 75 ℃, but can also be achieved at a lower temperature during extended 

moist cooking (e.g. braising)  (Bejerholm et al., 2014). Roldan et al. (2013) observed that 

in SV-cooked lamb Longissimus dorsi at 70 ℃, connective tissue was denatured and there 

was gel formation which filled the gaps between muscle fibres. Differential scanning 

calorimetry (DSC) analysis done by Christensen et al. (2013) showed that prolonged 

heating at elevated temperature (53 ℃ for 19.5 h) resulted in diminishing of myosin and 

collagen peaks of bull Semitendinosus in the thermograph, indicating the denaturation of 

these proteins after low temperature long time cooking. Although meat proteins were 
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heated at temperature lower than the reported thermal denaturation temperature, 

prolonged heating still resulted in proteins thermal denaturation (Bertola et al., 1994; 

Zielbauer et al., 2016). However, it was found that the collagen in intramuscular 

connective tissue consisted of thermally-liable and -stable fractions (Latorre et al., 2019; 

Purslow, 2018). The latter remained undenatured after heating at 60 ℃ for 24 h, which 

requires further research exploring mechanisms to degrade this fraction for meat 

tenderisation. Elastin remained heat-stable at 100 ℃ (Taylor, 2004). The structural 

changes in muscles during heat treatment are summarised in Table 2-5. 
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Table 2-5. Summary of the effect of thermal processing on muscle structure. 

Types of meat 
Processing 

parameters 
Structural changes References 

Bovine 

Pectoralis 

60 ℃ to 80 ℃; 15 

to 60 min; cook 

vide, SV and 

atmospheric 

pressure cooking 

Granular structure formed at 70 ℃; Less 

compact myofibre-sarcoplama structure 

observed in sous vide-cooked meat 

García-

Segovia et 

al. (2007) 

Ovine 

Longissimus 

dorsi 

60 ℃, 70 ℃, 

80 ℃; 6, 12 and 24 

h 

Granulation and gelation of connective 

tissue at 60 ℃ and 70 ℃ respectively; 

Denser structure of meat cooked at 70 ℃ 

than 60 ℃ and 80 ℃; Visible gaps 

between muscle fibres in meat cooked at 

60 ℃ and 80 ℃ 

Roldan et 

al. (2013) 

Pork cheek 
60 ℃ and 80 ℃; 5 

and 12 h 

Incomplete collagen fibre denaturation at 

60 ℃; Complete collagen denaturation at 

80 ℃ 

Del Pulgar 

et al. (2012) 

Porcine 

Longissimus 

dorsi 

53 ℃, 55 ℃, 

57 ℃ and 59 ℃; 3 

and 20 h 

Reduction in muscle fibre diameter as 

cooking temperature and time increased 

Christensen, 

Bertram, et 

al. (2011) 

Bovine Rectus 

abdominis 

100 ℃ for 15 to 60 

min; 270 ℃ for 1 

min 

Lateral shrinkage, gap formation, 

granulation of myofibrils as well as 

detachment of myofibril from 

sarcolemma observed in all heated 

muscle; High temperature short time 

cooking caused severe gapping between 

muscle bundles 

Astruc et al. 

(2010) 

Bovine 

Semitendinosus 

Internal 

temperature: 

50 ℃, 60 ℃, 

70 ℃, 80 ℃, 

90 ℃, 100 ℃ and 

121 ℃ 

Granulation of perimysium and 

sarcolemma started at 60 ℃; Gradual 

compression of muscle transversely 

when heated at 80 to 121 ℃ 

Palka 

(1999) 

Bovine 

Semitendinosus 

Internal 

temperature: 

50 ℃, 60 ℃, 

70 ℃, 80 ℃, 

90 ℃, 100 ℃ and 

121 ℃  

Granulation when cooked at 70 to 

100 ℃; Clear gap between fibres and 

endomysial tubes when cooked at 50 ℃; 

More compact structure as cooking 

temperature increased, especially at 

100 ℃ and 121 ℃; Decreased muscle 

fibre diameter when heated at 60 to 

121 ℃; Gradual decrease in sarcomere 

length when cooked at 50 to 121 ℃ 

Palka and 

Daun 

(1999) 
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Several studies have been conducted to examine the effect of heating on muscle protein 

digestibility. In most of the literature, protein digestibility was found to be affected by 

heating temperature and time, where protein digestibility decreased as heating 

temperature and time increased (Table 2-6) (Astruc, 2014b; Kaur et al., 2014; Oberli et 

al., 2015). These were explained by different extent of protein structure modification at 

different cooking temperatures. At lower heating temperature, meat protein is denatured 

and substrate cleavage sites are exposed, which favours the enzymatic action of digestive 

proteases. As the temperature further increases, the degree of protein denaturation 

increases and the exposure of hydrophobic residues leads to the formation of aggregates 

that hinder the contact of digestive enzyme to the cleavage sites. Hence, optimum cooking 

temperature and time should be explored in order to prepare meat products that are 

delicious, safe and yet nutritious. In contrast, Bax, Buffiere, et al. (2013) discovered that 

cooking temperature did not affect the overall protein digestibility but protein digestibility 

rate in vivo. Prodhan et al. (2020) reported that different cooking temperature and time 

did not affect the postprandial plasma amino acid concentrations in healthy adults. 
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Table 2-6. Summary of the effect of thermal processing on the protein digestibility of different 

muscles. 

Types pf meat 
Processing 

parameters 
Comments on protein digestibility References 

Beef 
90 ℃ for 30 min; 

55 ℃ for 5 min 

High temperature long time cooking 

reduced the true ileal protein 

digestibility of human subjects 

Oberli et al. 

(2015) 

Bovine 

Longissimus 

dorsi 

100 ℃ for 10 and 

30 min 

Decrease in protein digestibility when 

meat was cooked especially for 

prolonged time, in terms of ninhydrin 

free amino nitrogen released during in 

vitro gastro-small intestinal digestion 

Kaur et al. 

(2014) 

Meat (not 

specified) 
60 ℃ and 90 ℃ 

Decrease in peptides released 

(measured via spectrophotometric at 

280 nm) during in vitro gastro-small 

intestinal digestion in the following 

order: raw meat > cooked meat at 

60 ℃ > cooked meat at 90 ℃  

Astruc 

(2014b) 

Bovine 

Longissimus 

dorsi 

Internal 

temperature:  

60 ℃, 75 ℃ and 

95 ℃ for 30 min 

Protein true ileal digestibility was 

unaffected by cooking temperature in 

mini pigs. 

Bax, Buffiere, 

et al. (2013) 

Bovine 

Semitendinosus 

Control: core 

temperature of 

75 ℃; SV-cooked 

at 60 ℃ for 4.5 h 

and 10 h 

Significantly higher free amino acids 

released from the sous vide-cooked 

meat after 180 min of in vitro gastro-

small intestinal digestion 

Bhat et al. 

(2020) 

Beef rump 

steaks 

Cooking of beef: 

Pan frying at 

240 ℃ for 5 min; 

sous vide cooking 

at 80 ℃ for 6 h 

No significant difference was 

observed in the postprandial plasma 

amino acid concentrations in adults 

consuming steak cooked by different 

methods 

Prodhan et al. 

(2020) 

 

Wen, Zhou, Li, et al. (2015), Filgueras et al. (2011) and Santé-Lhoutellier et al. (2008) 

observed that pepsin acted differently on meat cooked at different temperatures and times, 

which in turn affected the rate of protein digestibility. Cooking of meat induced protein 

oxidation which may reduce the accessibility of pepsins to their substrates. Aromatic 

amino acid residues are very susceptible to the attack of reactive oxygen species, resulting 

in the formation of peptide with α-ketoacyl derivatives on the N-terminal (Berlett & 

Stadtman, 1997). As pepsins cleave peptide bonds adjacent to aromatic amino acids, the 
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peptides with α-ketoacyl derivatives formed due to oxidation might block the access of 

pepsins, resulting in impaired digestibility. In addition, oxidation may also alter the 

protein tertiary structure, influencing proteolytic activity of pepsins. However, it was 

found that partial oxidation of proteins might enhance the cleavage of peptide bonds by 

proteases (Dean et al., 1997). Findings of the effect of cooking temperature and time on 

the rates of proteolysis by digestive enzymes are consolidated in Table 2-7. 

The protein digestion kinetics of different muscles can also be evaluated through 

advanced microscopy techniques. When beef Semitendinosus cooked at 60 ℃ for 45 min 

was subjected to in vitro digestion, disruption of the A-bands,  the I-bands and the Z-disks 

was observed after gastric digestion (Astruc, 2014b). Furthermore, there were swollen 

muscle cells and fading of extracellular space spotted at the peripheral of the sample, 

which might reduce the diffusion rate of the digestive juices into the sample as the 

transport of the solution mainly occurs in the extracellular space of the muscle. When the 

digested muscles were observed under fluorescence microscopy, the fluorescence 

intensity detected from the edge of the sample was lower than the core due to the swelling 

of the muscle cells and the degradation of the myofibrillar proteins. It was also observed 

that digestive enzymes acted randomly on raw bovine Semitendinosus whilst they acted 

from the edges towards the centre of cooked meat during in vitro digestion (Kaur et al., 

2014). This showed that heating modifies myofibrillar structure which affects diffusion 

of digestive juices and enzymes into the meat substrate.  
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Table 2-7. Summary of the effect of thermal processing on the protein digestion rate of different 

muscles. 

Types of meat 
Processing 

parameters 
Comments on protein digestibility rate References 

Bovine Rectus 

abdominis 

100 ℃ for 5, 

15, 30, and 45 

min; 270 ℃ 

for 1 min 

Decreased pepsin proteolysis rate of meat after 

cooking; No significant difference was 

observed in the pancreatic proteolysis rate 

between raw and cooked meats; The overall in 

vitro protein digestion rate was unaffected in 

fast cooked meat (100 ℃ for 5 min and 270 ℃ 

for 1 min) when compared to raw meat 

Santé-

Lhoutellier 

et al. 

(2008) 

Porcine 

Longissimus 

dorsi 

Internal 

temperature: 

60 ℃, 65 ℃, 

70 ℃ and 

100 ℃  

Decrease in in vitro peptic digestion rate as 

meat was cooked at 60 ℃; Rate was further 

decreased as temperature increased from 70 to 

100 ℃; Decreased pancreatic proteolysis rate 

significantly only when meat was cooked at 

100 ℃ 

Wen, 

Zhou, Li, et 

al. (2015) 

Porcine 

Longissimus 

dorsi 

70 ℃, 100 ℃ 

and 140 ℃ 

for 30 min 

In vitro gastric proteolysis rate increased when 

meat was cooked at 70 ℃ and decreased as 

meat was cooked at increasing temperature of 

100 ℃ and 140 ℃; Cooking at 70 ℃, 100 ℃ 

and 140 ℃ increased protein digestion rate in 

small intestine 

Bax et al. 

(2012) 

Rhea 

Gastrocnemius 

pars 

100 ℃ for 30 

min 

Decreased gastric but increased small intestinal 

digestibility rate in vitro in cooked meat 

Filgueras et 

al. (2011) 

Bovine 

Longissimus 

dorsi 

Internal 

temperature: 

60 ℃, 75 ℃ 

and 95 ℃ for 

30 min 

Fastest ileal digestion rate in mini pigs for meat 

cooked at 75 ℃ for 30 min  

Bax, 

Buffiere, et 

al. (2013) 

 

 

2.8.3.2 Effect of SV cooking on meat quality 

During the cooking process, deoxymyoglobin, metmyoglobin and oxymyoglobin 

undergo oxygenation, oxidation and reduction reactions, and the ratio between them 

determines the colour of final product (Liu & Chen, 2001). The colour of the cooked meat 

also depends on the rate in achieving the designated core temperature and the duration it 

is held at that temperature. Cooked meat tends to be redder when the rate of heating is 

faster and paler when it is held at specific temperature longer (Baldwin, 2012). Higher 
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cooking temperature results in more protein denaturation and aggregation, leading to an 

increase in light scattering (Christensen, Ertbjerg, et al., 2011).  

Cooking results in heat denaturation of muscle protein which causes shrinkage of muscle 

fibres and the formation of gaps between myofibrils, leading to water redistribution and 

eventually water expulsion from the muscle (Palka & Daun, 1999; Straadt et al., 2007). 

As the water-binding proteins myosin and actin are denatured during cooking, muscle 

fibres lose their water holding capacity which causes water expulsion (Offer & Knight, 

1988). A recent study conducted by Liu, Arner, et al. (2016) postulates that the gel 

formation of the sarcoplasmic proteins during the cooking process creates a network 

around myofibrils which binds water, preventing water release from the muscle. Many 

studies have shown the effect of different cooking temperature and time combinations on 

the cook loss of meat (Del Pulgar et al., 2012; García-Segovia et al., 2007; Palka & Daun, 

1999). Cook loss has been reported to be more dependent on the cooking temperature and 

it does not necessarily increase during prolonged cooking (Warner et al., 2017).   

Cooking induces the formation of reactive oxygen species, accelerating the protein 

oxidation in meats (Soladoye et al., 2015) The common signs of protein oxidation, such 

as the increased surface hydrophobicity and tryptophan degradation, protein aggregation, 

loss of thiol groups, increased carbonylation, and Schiff base generation, have been 

observed in heat-treated muscles (Gatellier et al., 2010; Mitra et al., 2018; Santé-

Lhoutellier et al., 2008). The extent of protein oxidation is affected by both the cooking 

temperature and time. Higher cooking temperature and longer cooking time have been 

reported to increase the protein oxidation in porcine muscles (Mitra et al., 2018). Lipid 

oxidation plays a major role not only in the formation of the desirable flavour compounds 

during cooking of meat but is also responsible for the deterioration in meat product quality 
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during storage due the formation of rancid and off-flavours (Lorenzo & Domínguez, 

2014). Although an increment in the total volatile compounds in meat was detected by 

Dominguez et al. (2014) after cooking, lower intensity of the desirable flavour 

compounds was observed by Christensen et al. (2012) in the low temperature-long time-

cooked meat as the volatile compounds are usually generated at higher temperatures. 

Limited off-flavour as a result of lipid oxidation, was detected in the SV-cooked roast 

beef (59 or 62 ℃ for 5 h) stored in intact vacuum packages at 2 or 10 ℃ for 34 days 

(Hansen et al., 1995). 

Improved tenderness of sous vide-cooked meat has been reported in various studies  

(Christensen, Ertbjerg, et al., 2011; Christensen et al., 2013; Christensen et al., 2000; 

García-Segovia et al., 2007; Suriaatmaja, 2013). The temperature of SV cooking should 

be set where it is high enough for collagen solubilisation and microbiological inactivation, 

yet has minimum myofibrillar shrinkage, to achieve optimum tenderisation action (Ruiz 

et al., 2013). When a tough meat cut is cooked at a temperature between 55 to 60 ℃ for 

24 h, the tenderness is improved as the collagen is converted to gelatine and the 

myofibrillar proteins are hydrolysed by the endogenous enzymes which are yet to be 

denatured at this temperature (Bouton & Harris, 1981; Tornberg, 2005). During the 

cooking process, meat toughness increases at cooking temperatures between 40 ℃ and 

50 ℃, decreases between 50 ℃ and 65 ℃, and increases again when the temperature 

exceeds 65 ℃ and continues to increase up to 80 ℃ (Baldwin, 2012; Tornberg, 2005) 

(Figure 2-5). The initial toughening might be due to the denaturation of myosin 

(Bejerholm et al., 2014). The improvement in meat tenderness at cooking temperature 

between 50 to 65 ℃ has been proposed to be due partial denaturation, shrinkage and 

solubilisation of collagen along with the formation of a gel from the sarcoplasmic proteins 

which filled the channels between fibre bundles, resulting in a decrease in elastic modulus 
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that requires lesser tensile stress to fracture the meat (Christensen et al., 2000; Tornberg, 

2005). The denaturation and shrinkage of myofibrillar proteins, especially titin and actin, 

results in an increase in toughness when meat continues to be cooked at 65 to 80 ℃. It is 

recommended to SV cook beef, pork or lamb meat at temperatures between 58 ℃ and 

63 ℃ for 10 to 48 h to achieve a tender product (Roldan et al., 2013).  

Recently, multi-stage SV cooking has been explored for meat tenderisation. Uttaro et al. 

(2019) reported that the multi-stage SV cooking of beef at 39 ℃ for 1 h, followed by 49 ℃ 

for 1 h and 59 ℃ for a further 4 h resulted in a shear force reduction of bovine 

Supraspinatus (22.8 % reduction) and Rectus femoris (25.1 % reduction) muscles when 

compared to muscles cooked at 59 ℃ for 22 min (core temperature of 70 ℃) in a water 

bath. A study has been conducted by Ismail et al. (2019) to investigate the effect of single- 

and two-stage SV cooking at different temperatures for either 6 or 12 h. The WB shear 

force of the bovine Semitendinosus muscles were significantly affected by temperatures, 

cooking times, and the interaction between temperatures and cooking times. Meat 

samples which had undergone two-stage (45 ℃ + 60 ℃) SV cooking for 6 h had the 

lowest WB shear force when compared to other SV-cooked muscles, both single- and 

two-stage, at higher temperatures for longer times. In addition, two-stage (45 ℃ + 60 ℃) 

SV cooking of beef for 6 h also better retained the redness of the muscles and reduced 

cook loss.  
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Figure 2-5. Schematic diagram showing the effect of different cooking temperatures on muscle 

proteins thermal stability and meat toughness. 

 

 

2.8.4 Exogenous enzyme processing 

Exogenous proteases have been applied in meat tenderisation for centuries (Sullivan & 

Calkins, 2010). The proteases papain (from papaya), ficin (from fig), bromelain (from 

pineapple), Aspergillus oryzae and Bacillus subtilis are approved as Generally 

Recognized as Safe (GRAS) food additives by the United States Food and Drug 

Administration (FDA). These enzymes have shown their abilities in improving 

actomyosin toughness and background toughness by hydrolysing myofibrillar proteins 

and connective tissue, respectively (Ashie et al., 2002; Ha et al., 2012; Ha et al., 2013; 

Miyada & Tappel, 1956). However, these enzymes have wide substrate specificity and 

they tend to break down most of the major bonds (peptide, amide, ester and thiol ester 

bonds) present in meat proteins (Bekhit, Hopkins, et al., 2014; Huff-Lonergan, 2014). 

Their excessive proteolytic action has the tendency of causing over-tenderisation leading 
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to mushy meat texture (Ashie et al., 2002; McKeith et al., 1994; Weir et al., 1958). This 

has led to the exploration of other enzyme alternatives such as actinidin (from kiwifruit), 

whose tenderising action is milder and more controlled (Aminlari et al., 2009; Christensen 

et al., 2009; Lewis & Luh, 1988).  

Actinidin is a cysteine protease found in kiwifruit, which contains a free sulfhydryl group 

essential for its proteolytic activity (Baker, 1976; McDowall, 1970). Actinidin has a wide 

substrate specificity and it hydrolyses peptide bonds presented in proteins, simple esters 

and amides (Boland, 2013). It has a broader active pH range (pH 3 to 8) than other 

sulfhydryl proteases including papain, ficin and bromelain, and has a lower inactivation 

temperature of 60 ℃ (Boland, 2013; Huff-Lonergan, 2014; McDowall, 1970; Payne, 

2009). Actinidia deliciosa cv. ‘Hayward’ (green kiwifruit) and Actinidia chinenis cv. 

‘SunGold’ (gold kiwifruit) are two of the main commercial varieties where the former 

has approximately eight times higher proteolytic enzyme activity than the latter (Chao, 

2016).  

2.8.4.1 Effect of actinidin treatment on muscle protein profile, structure and digestibility 

Application of actinidin on meat causes the degradation of myofibrillar proteins and 

solubilisation of connective tissue. Actinidin has an optimum pH from 3.0 to 4.5 for all 

myofibrillar proteins in addition to its ability to selectively hydrolyse MHC into 

fragments with smaller molecular mass at pH 5.5 to 8.0 (Nishiyama, 2007). Han et al. 

(2009) observed the formation of new peptides (with MW of 75 kDa, 28 to 32 kDa and 

20 kDa) in the myofibrillar proteins extracted from kiwifruit juice-injected lamb 

Longissimus dorsi, demonstrating the breakdown of muscle protein. Ha et al. (2012) also 

reported the actinidin has an exceptional hydrolysis effect on the myofibrillar proteins 

compared to other commercial plant derived enzymes. Wada et al. (2004) discovered the 
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formation of collagen subunit α- and β-chain by incubating cattle Achilles tendon with 

commercial actinidin at both acidic (pH 3.3) and alkaline (pH 6.0) condition at 20 ℃, 

showing its ability in solubilising collagen without heating. Mostafaie et al. (2008) 

discovered that actinidin hydrolysed purified type I and II collagen at neutral and alkaline 

conditions at 37 ℃. Nevertheless, Toohey et al. (2011) proposed that actinidin prefers to 

act on myofibrillar proteins rather than stromal proteins based on their observation in the 

improvement of shear force but not compression force in bovine Semimembranosus 

treated with actinidin extract. 

Actinidin treatment caused structural changes in meat. Zhu, Kaur, Staincliffe, et al. (2018) 

detected a significant destruction of muscles along the Z-disks and elongated sarcomeres 

with extended A-bands in actinidin-injected raw beef brisket. Endomysium damage, more 

desmin degradation and more heat-soluble collagen were observed in actinidin-treated 

porcine Biceps femoris muscles compared with the untreated muscles (Christensen et al., 

2009).  

The application of kiwifruit extract or actinidin has shown positive effects on meat protein 

digestibility. Zhu, Kaur, Staincliffe, et al. (2018) reported enhanced initial muscle protein 

degradation of actinidin-treated (5 % of 3 mg/ml commercial actinidin extract) SV-

cooked (70 ℃ for 30 min) beef brisket under simulated gastric digestion. Other studies 

have shown the enhancement of meat digestion in the stomach by dietary actinidin (Kaur 

et al., 2010a, 2010b; Montoya et al., 2014; Rutherfurd et al., 2011), but the mechanisms 

of its action are still unclear.   

2.8.4.2 Effect of actinidin treatment on meat quality 

The application of kiwifruit juice and actinidin has been found to be effective in meat 

tenderisation. The shear force of actinidin-injected (5 % of 3 mg/ml commercial actinidin 
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solution) beef brisket SV-cooked at 70 ℃ for 30 min was significantly lower than the 

control water-injected meat, with no impact on the meat colour and cook loss (Zhu, Kaur, 

Staincliffe, et al., 2018). Kiwifruit juice infusion of lamb Longissimus dorsi muscles and 

hind legs has been reported to slow down the lipid oxidation during 21-day ageing and 

subsequent six-day of display when compared to the control (Bekhit et al., 2007). Pooona 

et al. (2019) also observed lower lipid oxidation products in the kiwifruit juice-marinated 

spent hen meat when compared to the control during storage. Both studies suggested that 

the lower the extent of lipid oxidation in kiwifruit juice-treated meat could be due to the 

presence of natural antioxidants in the kiwifruit juice. No information on the effect of 

actinidin treatment on protein oxidation of meats is available in the literature. Lamb 

Longissimus dorsi muscles injected with green kiwifruit juice pre-rigor were significantly 

lower in shear force than non-injected control after six days of infusion due to degradation 

of myofibrillar proteins in the former (Han et al., 2009). There was a 10 % decrease in 

shear force of beef after incubation with actinidin at 37 ℃ for two hours (Aminlari et al., 

2009). It was also found that after two days of actinidin injections, treated porcine Biceps 

femoris had similar WB shear force as control untreated muscles stored for five or nine 

days (Christensen et al., 2009). Actinidin injection (0.5 mg/100 g muscle) of pork and 

rabbit Longissimus muscles, incubation for 3 h at room temperature, followed by cooking 

at 75 ℃ for 30 min, resulted in more than 50 % shear force reduction of the muscles 

(Zhang et al., 2017).  

2.9 Characterisation of muscle protein structure and digestibility 

2.9.1 Digestion Models 

In order to observe and understand the fate and dynamics of food being broken down in 

the gastro-intestinal tract, several models have been developed to simulate digestion 
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process, executed either in vivo or in vitro (Astruc, 2014b; Dyer & Grosvenor, 2014). In 

vivo models are the gold standard and are considered more precise and accurate systems 

involving either animal or human clinical studies. However, the process is time 

consuming, expensive, complex and must be conducted ethically. Hence it is often 

performed at the final stage of the studies to validate the observations or hypotheses from 

in vitro models. In contrast, in vitro models are more commonly being adopted as they 

are relatively inexpensive, rapid and simple. The current models vary in the composition 

of the simulated digestive fluids, the physiological conditions and the residence time 

during digestion. Simulated digestion can be performed either in a simple static model or 

a more complex dynamic model, focusing either on one or multiple compartments of the 

digestive tracts. 

In vitro digestion has been utilised to determine the digestibility of macronutrients such 

as carbohydrates, proteins and fats as well as the accessibility of materials in a delivery 

system (Hur et al., 2011; Minekus et al., 2014). There are different models described in 

the literature which differ across different research groups. The source and activity of 

digestive enzymes, the formulation of simulated digestive juices, the ratio of food to 

digestive enzymes, the physiological conditions, and the time of digestion often vary in 

various studies. These variations lead to difficulty in comparison of the results among 

different studies. 

A static in vitro digestion is a system where the ratio of tested food to simulated digestive 

juices and enzymes, as well the physiological environment such as pH and ionic strength 

remain constant throughout the study (Minekus et al., 2014). In order to provide a 

guideline on setting up a static in vitro digestion model, an internationally agreed protocol 

was proposed by INFOGEST, an international network joined by scientists working on 
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food digestion, which outlined the experimental parameters and conditions that most 

closely mimic human physiology and is applicable to various research topics (Mackie & 

Rigby, 2015; Minekus et al., 2014). The protocol is made up of three major phases, 

namely oral, gastric and intestinal digestion. Each of these digestion phases is conducted 

with the addition of simulated digestive juices of different compositions, as depicted in 

Table 2-8.   

Table 2-8. Recommended concentrations of electrolytes for use in simulated digestive juices 

based on human in vivo data, as suggested by Minekus et al. (2014). 

Components 

Concentration (mmol/L) 

Simulated salivary 

fluid (SSF) 

Simulated gastric 

fluid (SGF) 

Simulated intestinal 

fluid (SIF) 

K+ 18.8 7.8 7.6 

Na+ 13.6 72.2 123.4 

Cl- 19.5 70.2 55.5 

H2PO4
- 3.7 0.9 0.8 

HCO3
-, CO3

2- 13.7 25.5 85 

Mg2+ 0.15 0.1 0.33 

NH4
+ 0.12 1.0 - 

Ca2+ 1.5 0.15 0.6 

 

The proposed sample to simulated digestive fluid ratio, enzyme activity, simulated 

physiological environment and digestion time are illustrated in Figure 2-6. The 

summarised protocols for oral processing, gastric digestion and small-intestinal digestion 

for solid foods are as follows. Solid food is first chopped into smaller particles and is 

mixed with simulated salivary fluid (SSF) (1:1) to create a thin pasty bolus. A mastication 

experiment conducted by Jalabert-Malbos et al. (2007) found the mean particle size of 

cooked meat and ham were near to 1.5 mm with some exceeding 4 mm and bolus particle 

size was generally less than 2 mm before swallowing. To initiate oral digestion, salivary 

α-amylase (75 U/mL in final mixture) is added and the pH is maintained at 7. Incubation 

time of 2 min is recommended for food that contains carbohydrates that are hydrolysable 

by α-amylase. After that, the food bolus is mixed with simulated gastric fluid (SGF) (1:1) 
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followed by the addition of pepsin (2000 U/mL in final mixture) and pH adjustment to 3 

to commerce gastric digestion. Unlike most of the reports (Escudero et al., 2010; Kaur et 

al., 2014; Wen, Zhou, Song, et al., 2015), pH 3 is recommended after taking into account 

the secretion of hydrochloric acid, the buffering effect of ingested food and the active pH 

for pepsin (pH 2 to 4). Based on the first static in vitro digestion protocol (INFOGEST 

method 1.0), gastric lipase was not added due to the unavailability of a commercial gastric 

lipase that has comparable properties to human gastric lipase (Minekus et al., 2014). 

However, in the latest protocol published in year 2019 (INFOGEST 2.0 method), rabbit 

gastric extract which contains both gastric pepsin and gastric lipase in a ratio that 

resembles human gastric fluid was introduced to the protocol (Brodkorb et al., 2019). The 

duration of gastric digestion varies between individuals as well the nature of the ingested 

food and two hours were suggested to cater for a wide range of foods. After two hours of 

gastric digestion, simulated intestinal fluid (SIF) is added into the chyme mixture (1:1) 

and the pH is adjusted to 7. This pH is recommended based on a combination effect of 

the initial pH in the duodenum, the secretion of bicarbonate, the gastric emptying rate as 

well as the nature of the meals ingested. Finally, pancreatin (based on trypsin activity of 

100 U/mL in final mixture) and bile salt (10 mM in final mixture) are added and the 

sample is digested for a further two hours. The whole process is carried out at 37 ℃. Both 

simulated gastric and small intestinal digestion models employ either a stirrer, a shaker 

or an impeller to ensure good mixing of digestive enzymes and substrates and to achieve 

and maintain constant digestion pH during each steps of the digestion. However, these 

agitation methods do not reflect the mechanical action in vivo. Digests are taken out at 

designated time of interest and are suggested to be either snap frozen in liquid nitrogen 

or have protease inhibitor added to them before snap freezing to prevent further enzymatic 
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hydrolysis. It has also been advised to conduct the simulated digestion in individual tubes 

or reactors for different designated time points. 

 
Figure 2-6. Simulated gastro-small intestinal digestion conditions consolidated by Minekus et al. 

(2014) and Mackie and Rigby (2015).  

 

 

Although the INFOGEST consensus paper proposes a protocol that is close to human 

physiological conditions, amendments are still necessary to appropriately fit the current 

research objectives and questions. For instance, the suggested digestive enzyme 

concentration might be too high to study the dynamics of food hydrolysis over time. 

Johnston and Coon (1979) reported a decrease in pepsin concentration increases the test 

sensitivity during protein digestion. Distinct differences in protein digestibility were 

detected in animal proteins digested in a lower pepsin concentration (0.002 %) but not in 

a high pepsin concentration (0.2 %). Different digestive enzyme concentrations for 
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muscle-based foods digestion in the literature are summarised in Table 2-9. Most of the 

studies adopted 2.5 to 10 U/mg, 6.6 U/mg, 0.05 to 0.33 U/mg and 0.01 to 0.04 USP/mg 

meat protein as enzyme concentrations of pepsin, trypsin, chymotrypsin and pancreatin, 

respectively. 

Table 2-9. Summary of digestive enzyme activities and digestion times for gastric and small 

intestinal phases of in vitro methods to study meat digestion from the literature. 

Digestive enzyme concentrations and digestion duration References 

Gastric phase Intestinal phase  

Pepsin:  8 U/mg protein 

*1 h 

Pancreatin: 0.04 USP /mg protein 

*2 h 

Kaur et al. (2016); Kaur et 

al. (2014) 

Pepsin:  2.5 U/mg protein 

*2 h 

Pancreatin: 0.01 USP /mg protein 

*2 h 

Kapsokefalou and Miller 

(1991); Argyri et al. 

(2009) 

Pepsin: 5 U/mg protein 

*1 h 

Trypsin: 6.6 U/mg protein 

α-chymotrypsin: 0.33 U/mg protein 

*0.5 h 

Santé-Lhoutellier et al. 

(2008); Filgueras et al. 

(2011) 

Pepsin: 5 U/mg protein 

*1 h 

Trypsin: 5 U/mg protein 

α-chymotrypsin: 0.05 U/mg protein 

*1 h 

Liu and Xiong (2000) 

Pepsin: 8 U/mg meat 

*2 h 

Trypsin: 20 U/mg meat 

*2 h 

Wen, Zhou, Song, et al. 

(2015) 

Pepsin: 10 U/mg protein 

* 1.5 to 2 h 

Trypsin: 6.55 U/mg protein 

α-chymotrypsin: 0.33 U/mg protein 

*4 h 

Bax, Sayd, et al. (2013); 

Bax et al. (2012) 

Pepsin: 10 U/mg protein 

*0.5 h 

Trypsin: 2.5 U/mg protein 

α-chymotrypsin: 1 U/mg protein 

*0.5 h 

Sun et al. (2011) 

Pepsin: 25 U/mg protein 

*2 h 

Trypsin: 6.55 U/mg protein 

α-chymotrypsin: 0.33 U/mg protein 

*2 h 10 min 

Gatellier and Sante-

Lhoutellier (2009) 

Pepsin: 330 U/mg protein 

*1 h 

Trypsin: 200 U/mg protein 

α-chymotrypsin: 40 U/mg protein 

*4 h 

Huang et al. (2010) 

*digestion time 

 

2.9.2 Characterisation of muscle protein digestibility   

Throughout digestion, food breaks down into components with varying MW (Dyer & 

Grosvenor, 2014). The products generated during protein digestion largely depend on the 

structural properties of food, including protein solubility and accessibility of digestive 
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enzymes. These resultant components can be analysed and evaluated using 

polyacrylamide gel electrophoresis (Kaur et al., 2016; Liu & Xiong, 2000) and chemical 

analyses such as ninhydrin-reactive amino nitrogen test (Kaur et al., 2016; Kaur et al., 

2014) and O-phthalaldehyde (OPA) assay (Yi et al., 2016).  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) has been 

broadly used in muscle protein analysis. Tricine SDS-PAGE is efficient for the separation 

of low MW proteins or fragmented peptides produced from enzymatic hydrolysis with 

high resolution (Haider et al., 2012). Prior to electrophoresis, the meat protein extract is 

first dissolved in sodium dodecyl sulfate (SDS) to break down protein to polypeptide 

subunit level, with the addition of β-mercaptoethanol to create reducing conditions and is 

boiled for 5 min (Greaser, 2008; Toldra & Reig, 2004). Electrophoresis is run by loading 

the protein extract at the top of either a homogeneous acrylamide gel or a concentration-

gradient gel (usually 5 to 15 % polyacrylamide) or a pH-gradient gel. When a current is 

applied to the gel, proteins present in the sample are separated by migrating through the 

gel at different speeds, based on their molecular size. Proteins with small molecular size 

move faster than those with larger molecular size. The gel is often stained with Coomassie 

Blue after the electrophoresis and protein quantification is done by scanning the gel using 

a densitometer. The concentration of protein loaded into the gels affects the intensity of 

each protein band and hence care has to be taken during sample preparation and loading. 

It is recommended to run a standard on the same gel to serve as a control or perform direct 

sample comparison between each other. Tricine SDS-PAGE is very useful for separating 

peptides present in meat digest, ranging from 1 to 30 kDa, for further analysis using mass 

spectrometry (Toldra et al., 2008). 
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The degree of hydrolysis of meat protein in the digests can be determined by 

quantification of the level of free amino nitrogen using a ninhydrin assay (Chalabi et al., 

2014). Ninhydrin reacts with primary amino groups (α-NH2) to form a purple 

chromophore, known as Ruhemann’s purple, when heated to boiling (Friedman, 2004; 

Work & Rurdon, 1981). The resultant coloured mixture is then measured at the absorption 

band of 570 nm using a spectrophotometer. A calibration curve has to be prepared using 

an amino acid as standard. The assay is capable of detecting the amino acids and peptides 

as most of the peptides have α-NH2 after the cleavage of peptide bonds, except peptides 

with N-terminal proline or N-terminal hydroxyproline groups. However, this assay is not 

recommended for samples containing ammonia or primary amines as they readily react 

with ninhydrin to form Ruhemann’s purple.  

The degree of proteolysis can also be determined using an o-phthalaldehyde (OPA) 

fluorometric assay (Church et al., 1985; Rutherfurd, 2010). O-phthalaldehyde reacts with 

the primary amines in amino acids, peptides, and proteins, at the presence of thiol groups, 

forming OPA-amine product which is highly fluorescent (excitation wavelength of 350 

nm; emission wavelength of 450 nm). This assay is not suitable for samples rich in proline, 

cysteine, and lysine. Proline and cysteine have poor reactivity with OPA, resulting in 

underestimation. In contrast, OPA can interfere with the side chains of lysine, leading to 

overestimation. 

2.9.3 Characterisation of muscle structure   

Microscopy and imaging techniques have been used to evaluate food structure. Among 

them, optical microscopy and electron microscopy are the most common techniques 

practised in the food industry and research (Kaláb et al., 1995; Pospiech et al., 2011). 

Other special techniques including confocal laser scanning microscopy, atomic force 
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microscopy, and others are adopted. These techniques enable the detection and 

characterisation of individual components in food (Sifre et al., 2013). 

Optical microscopy such as a bright field microscopy and fluorescence microscopy is the 

oldest and the most versatile technique used in food microstructure analysis (Kaláb et al., 

1995; Quiles et al., 2008). When observing a sample under a bright field microscope, a 

light source is transmitted through the condenser, the sample specimen, and the objective, 

forming a magnified image which is then further magnified by the eyepiece. In general, 

dyes and stains are used to enhance the image contrast especially in muscle cells (Gunning, 

2013). As muscle cells are composed of water enclosed within a phospholipid bilayer, 

relatively similar refractive index of muscle cell and water renders them difficult to 

observe clearly under light microscope.  

Electron microscopes such as transmission electron microscopes (TEM) and scanning 

electron microscopes (SEM) have been used to examine meat ultrastructure (Astruc et al., 

2010; Bolumar et al., 2014; Kaur et al., 2016; Macfarlane, McKenzie, et al., 1986) due to 

their higher magnification properties (Pospiech et al., 2011).  In fact, the operating 

principle of electron microscope is similar to a transmitted light microscope. An electron 

microscope creates images by generating a beam of electrons using an electron gun 

without the use of light (Groves & Parker, 2013).  

In TEM, the electron beam generated is focused by electrostatic and electromagnetic 

lenses and are directed through the column of microscope to a very thinly cut specimen 

and are finally transmitted through the specimen to produce an image on a phosphorescent 

screen (Groves & Parker, 2013; Quiles et al., 2008). Generally, the sample preparation of 

TEM involves primary chemical fixation, washing, dehydration, resin embedding and 

ultra-thin sectioning (70 to 100 nm) using an ultra-microtome, which is very tedious and 
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time consuming. Staining using heavy metal stains such as osmium tetroxide, uranyl 

acetate and lead citrate is typically performed to bind the components and to produce 

good image contrast. Samples are usually fixed in glutaraldehyde, a primary chemical 

fixative with improved fixation rate, followed by post fixation in osmium tetroxide. This 

technique is very useful in characterising the banding of muscle fibres. 

Histological staining is a microscopy technique practised in the assessment of the 

structure of animals and plants by observing the stained section under light or electron 

microscope (Alturkistani et al., 2015). This technique has been used extensively in 

forensic, autopsy, diagnosis and medical studies traditionally. Recently, food scientists 

have adopted histological staining in examining the structure and the individual 

components in muscle-based foods (Astruc, 2014b; Dubost et al., 2013; Kaur et al., 2016). 

For instance, toluidine blue and haematoxylin-eosin staining are the basic staining 

methods used in meat sample analysis, which stain the meat in blue and red respectively 

(Pospiech et al., 2011). Picro-Sirius red staining has been used to localise collagen in 

muscle (Flint & Pickering, 1984; Lattouf et al., 2014). Cryofixation of muscle sample in 

liquid nitrogen (−196 ℃) or chilled isopentane (−160 ℃) is normally performed prior to 

cryosectioning  (Figure 2-7) (Astruc et al., 2010; Kaur et al., 2016; Realini et al., 2013).   

 

 
Figure 2-7. Schematic diagram showing the process of cryofixation and cryosectioning. 
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Recently, the combination of microscopy techniques with spectroscopy, such as Fourier-

transform infrared (FT-IR) has been reported to study the chemical composition of 

microscopic domains in food (Wellner, 2013). This imaging technique creates a 

hyperspectral data cube which is made up of spectra obtained at multiple points in a grid 

pattern overlaid on the sample section. It has been used to study beef and pork muscle 

tissue treated using different processing methods such as cooking, salting and ageing 

(Böcker et al., 2007; Kirschner et al., 2004). 

Fourier-transform infrared microspectroscopy is set up by connecting an infrared 

microscope to an FT-IR spectrometer (Wellner, 2013; You & Cheng, 2014). There are 

three main modes that are available to perform FT-IR microspectrometry, which are the 

transmission, reflection, and attenuated total reflection (ATR) modes. When performing 

FT-IR microspectroscopy, IR light is passed through apertures into a Michelson 

interferometer which modulates and directs IR light to the microscope optics that is 

focused onto the sample. The transmitted or reflected IR light is then collected into the 

IR detector and the measured intensity is converted into a single beam spectrum with a 

fast Fourier transform. The resultant spectrum is the ratio between two single beam 

spectra of sample and blank (without sample). Polar groups, such as hydroxyl group and 

carbonyl group, have strong IR absorption. As such, dry sample sections are preferable 

when water is not of interest in the analysis. Sample drying prevents strong water 

absorption during the analysis, enabling a more accurate and precise characterisation of 

proteins, carbohydrates and lipids in the food samples. It is suggested that high moisture 

content samples are cut to 5 to 10 µm thick to aid in sample drying before the analysis. 

Dry cutting or cryosectioning are also recommended. As infrared absorbs signal from 

glass, the sections have to be mounted on slides made of CaF2 or BaF2 crystals, which are 

IR-transparent, when using transmission mode. Paraffin or polyethylene glycol for 
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sample fixing or embedding should be avoided to prevent overlapping of the band of these 

materials and the samples.  

Microscopic techniques provide both qualitative and quantitative description of the food 

structure (Pospiech et al., 2011). Images created can be analysed using a computer 

program by identifying the selected component of interest and measuring the area of the 

selected section. It is recommended to conduct structural analysis using different methods 

to validate the accuracy of the results as the structure of the samples might be altered 

during sample preparation (Kaláb et al., 1995).     

2.9.4 Characterisation of the diffusion of enzymes into meat matrix 

In order to assess the penetration of the digestive enzymes into muscle during digestion, 

Astruc (2014b) adopted immunohistofluorescence techniques to identify the presence and 

spatial distribution of pepsin in digested meat samples. In short, the digested sample was 

treated with a primary antibody, pepsin antibody, washed, followed by depositing a 

secondary antibody containing a fluorescent marker onto the samples. The antigen-

antibody (Ag/Ab) complex formed was observed under a fluorescence microscope. They 

detected that pepsin was mainly found in perimysium and endomysium and concluded 

that digestive juices first diffused through the extracellular spaces and subsequently into 

intracellular spaces of the muscle. However, there might be some inaccuracy in the 

observation as the fluorescent signal may be corrupted by the collagen autofluorescence 

and some non-specific interactions of the antibodies induced by the muscle structure 

modified by acidic digestive juices. In addition, the activity of the pepsin located in the 

digested sample is yet to be verified. The method could potentially be utilised to locate 

the exogenous enzymes used for meat tenderisation in the meat matrix, such as actinidin. 
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2.10 Gaps in the literature 

The literature survey has provided a good insight into the effect of different processing 

techniques on meat structure. However, there are gaps in the current literature which 

require further investigation. Firstly, little information is available on the effect of 

different meat processing technologies, alone or in combination, on muscle protein 

digestibility. For instance, no studies have been performed on the protein digestibility of 

SW-treated meat. Limited studies on the protein digestibility of PEF-treated meat have 

been reported which focused mostly on biochemical approaches (Alahakoon et al., 2019; 

Bhat, Morton, et al., 2019b; Bhat, Morton, Mason, Jayawardena, et al., 2019). 

Information on other aspects such as the structural changes in meat during digestion is 

not available. The relationship between process-modified muscle structure and protein 

digestibility is underexplored. In addition, limited research has been done to investigate 

the action of proteases on muscle structure (Astruc, 2014b). The action and diffusion of 

enzymes such as exogenous enzymes (e.g. actinidin) used for meat tenderisation on meat 

microstructure are not well understood. Lastly, it is speculated that the enhanced 

proteolysis of PEF-treated meat during ageing is due to the early activation of calpains, 

and/or the action of lysosomal enzymes released due to the permeabilisation of muscle 

cells by PEF (Alahakoon et al., 2016; Bhat et al., 2018a). The former has been verified in 

recent studies by Bhat, Morton, Mason, Mungure, et al. (2019) and  Bhat, Morton, et al. 

(2019a) but no information is available on the effect of PEF on lysosomal proteases such 

as cathepsins in meat. Thus, further studies are needed to investigate these gaps. 
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Chapter 3 2Effect of pulsed electric fields (PEF) on the ultrastructure 

and in vitro protein digestibility of bovine Longissimus thoracis 

3.1 Introduction 

Pulsed electric field processing is a food processing technique that involves applying 

short electric pulses to food products (Toepfl et al., 2007a). This process causes 

electroporation of the cell membrane when the induced transmembrane potential exceeds 

a critical value of 1 Volt. Pulsed electric field treatment has been applied with a high 

intensity for food preservation (20 to 80 kV/cm) (Castro et al., 1993; Toepfl et al., 2007b) 

and with a lower-intensity for non-preservative applications, such as meat tenderisation 

(O'Dowd et al., 2013). Low-intensity PEF treatment causes a modification of food 

structure, which could improve the texture and functional properties of meat (Arroyo, 

Eslami, et al., 2015). For instance, PEF has been reported to improve the tenderness of 

cold-boned bovine Longissimus lumborum muscles (0.31 to 0.56 kV/cm, 20, 50 and 90 

Hz) (Suwandy et al., 2015d) and frozen-thawed beef Semitendinosus muscles (1.4 kV/cm, 

50 Hz, 20 µs) (Faridnia et al., 2015). 

As discussed in section 2.8.1.1, low-intensity PEF treatment induces changes in the 

structure of myofibrillar foods. Pulsed electric field-treated muscles have been found to 

be more porous and smaller in cell size than control untreated meat (Faridnia et al., 2014; 

Gudmundsson & Hafsteinsson, 2001). Gap formation and fragmentation of myofibrils 

were detected in PEF-treated samples (Gudmundsson & Hafsteinsson, 2001; O'Dowd et 

al., 2013). These changes in the physical properties of meat post-PEF processing may 

affect the accessibility of digestive enzymes which in turn influence the protein 

digestibility of meat (Astruc, 2014b; Carmody & Wrangham, 2009).  However, to date, 

there is little information in the literature on how PEF treatment affects the protein 

https://doi.org/10.1016/j.lwt.2019.01.005
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digestibility, especially in regards to meat structure. Although PEF treatment has been 

reported to improve the in vitro protein digestibility of raw cold-boned bovine Bicep 

femoris (Bhat et al., 2018c) and deer Longissimus dorsi (Bhat, Morton, Mason, Bekhit, et 

al., 2019), no information on the structural changes in meat during simulated digestion 

has been provided. Investigation of the structural changes induced by processing and 

subsequent simulated digestion will provide some understanding on the accessibility of 

digestive enzymes to the PEF-treated meat.  

This experiment aims to investigate the effect of low-intensity PEF treatment on the 

protein digestibility of beef muscle using an in vitro digestion model. The ultrastructure 

of beef muscles was also examined after PEF processing and after subsequent simulated 

digestion process. As this chapter is focusing on PEF treatment alone (with no further 

processing such as cooking), ribeye scotch fillet was chosen as the muscle cut for 

investigation. Tender beef cuts, such as the ribeye scotch fillet, are low in connective 

tissue and are normally used in raw beef dishes such as beef carpaccio and beef tartare 

(Bronfen, 2019).  

3.2 Materials and methods  

3.2.1 Pulsed electric field treatment of bovine Longissimus thoracis muscles 

Two days postmortem Hereford heifer (< 18 months old) whole ribeye scotch fillets 

(Longissimus thoracis) were obtained from a local butcher (The Mad Butcher, Dunedin, 

New Zealand). Conductivities of the fillets were 6 ± 3 mS/cm, measured at five different 

positions using a handheld meat conductometer (LF-STAR, R. Mathäus, Nobitz, 

Germany). Pulsed electric field treatment was carried out on meat cut of about 65 g based 

on the method of Alahakoon et al. (2018a) using a pilot scale PEF system (Elcrack-HVP 

5, DIL, Quakenbruck, Germany) with a batch-mode configuration. The samples were 
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placed in the treatment chamber in such a way that the muscle fibre direction was 

perpendicular to the electric current applied during the treatment, as stated in most of the 

literature (Arroyo & Lyng, 2017). The treatment was performed using an electric field 

strength of 1.00 to 1.25 kV/cm at two different pulse numbers of 500 and 2000 (hereafter 

referred to as PN500 and PN2000 respectively) to create specific energies of 48 ± 5 kJ/kg 

and 178 ± 11 kJ/kg respectively, at a constant pulse width of 20 µs and a frequency of 50 

Hz. During the treatment, pulse shape (square wave bipolar) was observed on-line with 

an oscilloscope (Model UT2025C, Uni-Trend Group Ltd., Hong Kong, China). The 

processing parameters were chosen after studying the PEF experiments on meat 

tenderisation application in the literature (Alahakoon et al., 2017; Faridnia et al., 2014; 

Faridnia et al., 2016). The specific input energy of the treatment was calculated using 

equation below: 

Specific energy input (kJ/kg) = pulse number x pulse energy/sample weight --Eq. (3-1) 

The sampling of the control (thereafter referred to as C500 and C2000 respectively) and 

PEF-treated samples of the meat cut is illustrated in Figure 3-1. The samples were 

vacuum-packed and were stored at -20 ℃ for further analysis.  
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Figure 3-1.Meat sampling position of the PEF-treated samples (P) with different pulse numbers 

(left: pulse number 500 (PN500); right: pulse number 2000 (PN2000)) and their control untreated 

counterpart (C) (left: C500; right: C2000) on the meat cut Longissimus thoracis.  
The sampling was conducted by assigning the control and PEF-treated meat adjacent to each other to 

prevent inconsistency results due to inhomogeneity of meat. The meat was cut into triangular pieces (6 cm 

in height, 4 cm in width, and 6 cm in length) of about 65 g for PEF processing. 

3.2.2 pH, moisture content and colour measurements 

The frozen samples were thawed at 4 ℃ for 16 h before the analysis. The pH of the control 

and PEF-treated meat were measured as described by Faridnia et al. (2014) with some 

modifications using a pH meter (S20 SevenEasy™, Mettler-Toledo Limited, New 

Zealand) at 25 ℃. The measurement was performed after homogenising 5 g of the sample 

with 50 mL of Milli-Q water at 20500 rpm for 30 s using an overhead homogeniser 

(DIAX 600, Heidolph Instrument, Germany). The moisture content of the samples was 

determined using the AOAC method 950.46 by drying approximately 2 g of finely 

chopped samples in an oven at 102 ℃ for 16 h (Lawrence, 2010). The moisture content 

was calculated by subtracting the total weight of sample and drying dish before and after 

drying. The drying dishes were cooled in desiccator before weighing. The pH and 

moisture content analyses were performed in triplicate. The colour of the samples was 

measured at 12 different individual measurement points using a handheld Chroma meter 

(CR200, Konica Minolta, Tokyo, Japan) with a ‘D-65’ light source and 10 ° observer 

setting (Brewer et al., 2006). Prior to the measurement, the samples were allowed to 

bloom at 4 ℃ for approximately 30 min. The average value of L* (black-white), a* (red-
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green), b* (blue-yellow) for each sample was determined from 12 individual 

measurements on the surface of each individual triangular-shaped sample.  

3.2.3 Differential Scanning Calorimetry (DSC) 

The protein thermal profiles of the samples were determined using the method of 

Torrescano et al. (2003) with minor modifications of sample weight and heating 

temperature range. The analysis was conducted using a differential scanning calorimeter 

(Q2000, TA instruments, New Castle, DE, USA) by heating both the samples 

(approximately 20 mg of minced samples) and reference empty pans from 20 to 100 ℃ 

at a rate of 2 ℃/min. The thermal curves were analysed using the associated software 

(TA Universal Analysis, TA Instruments, New Castle, DE, USA). DSC measurements 

were done in triplicate. 

3.2.4 Protein digestibility 

3.2.4.1 In vitro digestion 

The in vitro digestion protocol was modified based on the method described by Kaur et 

al. (2016) and Minekus et al. (2014). The protein concentration of the digestive enzymes 

was set based on the findings of the literature review as discussed in section 2.9.1. Four 

grams of samples (approximately 140 mg of nitrogen) were chopped into pieces of about 

2 mm. Simulated oral processing was initiated by mixing the chopped samples with 4 mL 

of simulated salivary fluid (SSF) containing α-amylase (10025, Sigma-Aldrich, Saint 

Louis, MO, USA) (75 U/mL activity in the final mixture) for 2 min at pH 7 ± 0.1. Next, 

16 mL of simulated gastric fluid (SGF) containing pepsin (P7125, Sigma-Aldrich, Saint 

Louis, MO, USA) (2.5 U/mg protein of meat) was added to the simulated bolus and the 

pH was adjusted to 3.0 ± 0.1 using 6 M hydrochloride acid (HCl) to mimic human gastric 

digestion. Five glass balls (3 - 5 mm) were used for sample maceration in each digestion 
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reactor. After an hour of gastric digestion, small intestinal digestion was initiated by 

adding 21 mL of simulated intestinal fluid (SIF) with pancreatin (4 x USP, P1750, Sigma-

Aldrich, Saint Louis, MO, USA) (enzyme: substrate = 1: 100) and 3 mL of bile extract 

(10 mM in final mixture) (B8631, Sigma-Aldrich, Saint Louis, MO, USA) into the reactor. 

The digestion was carried out for a further 120 min at pH 7.0 ± 0.1, adjusting using 1 M 

sodium hydroxide. The simulated digestion was carried out at 37 ℃. Samplings were 

conducted at 0, 30 and 60 min of gastric digestion (cumulative digestion time of 2, 32 and 

62 min) and further 60 and 120 min of small intestinal digestion (cumulative digestion 

time of 122 and 182 min). After sampling, the digests were immersed immediately in an 

ice bath to stop the enzyme activity and the samples were stored at -20 ℃ for further 

analysis. The information of the digestive enzyme types and concentrations, as well as 

the sampling time points in each digestion phase (oral, gastric and small intestinal phase) 

is summarised in Table 3-1. 

Table 3-1. Digestive enzyme types and concentrations, digestion duration and sampling time 

points for each digestion phase (oral, gastric and small intestinal) for the in vitro digestion of the 

control untreated (C500 and C2000) and PEF-treated samples ((PN500, 48 ± 5 kJ/kg) and 

(PN2000, 178 ± 11 kJ/kg)) using an electric field strength of 1.00 to 1.25 kV/cm. 

 

 

Digestion 

phase 

Enzyme 

types 

Enzyme 

concentrations 

Digestion 

duration 

(min) 

Cumulative 

digestion 

time (min) 

Sampling time 

(min) based on 

cumulative 

digestion time 

Oral 

(pH 7 ± 0.1) 
α-amylase 75 U /mL bolus 2 2 No 

Gastric 

(pH 3 ± 0.1) 
Pepsin 

2.5 U/mg meat 

protein 
60 62 2, 32, 62 

Small 

intestinal 

(pH 7 ± 0.1) 

Pancreatin 

1:100 pancreatin 

to meat protein 

ratio (0.04 USP 

pancreatin/mg 

meat protein) 

120 182 122, 182 
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3.2.4.2 Preparation of the digests for further analysis 

The digests were centrifuged at 10000 x g for 20 min at 2 ℃ using a high speed 

refrigerated centrifuge (CR 22 GII, Himac, Hitachi Koki Co., Ltd., Tokyo, Japan). The 

supernatant was filtered through a 0.45 µm polyvinylidene fluoride (PVDF) filter 

(Millex®-HV, Merck Millipore Ltd., Cork, Ireland) and the filtered samples were used 

for the analysis of soluble nitrogen, ninhydrin-reactive amino nitrogen and SDS-PAGE.   

3.2.4.3 Soluble nitrogen 

Soluble nitrogen was analysed using the Kjeldahl method (AOAC, 1981). In short, 

approximately 3 to 4 g of each filtered sample from section 3.2.4.2 was weighed into a 

digestion tube and was digested with the addition of two Kjeltabs (FOSS, Denmark) and 

17 mL of concentrated sulphuric acid. A blank digestion tube was prepared with all the 

reagents except sample. Both blank and sample tubes underwent digestion at 420 ℃ for 

around 2 h until the solution turned clear completely. After cooling, approximately 70 

mL of distilled water was added to each digestion tube and the samples were distilled 

using a distilling unit (KjeltecTM 2100, FOSS, Denmark) under excess sodium hydroxide 

for 4 min. The distillate was collected in a conical flask containing 25 mL of 4 % boric 

acid with bromocresol green and methyl red indicators, and were titrated with 0.1 M HCl 

until a grey-mauve end point was observed. The nitrogen and protein content in the 

digests were calculated using the following equations: 

% Nitrogen = [(Vsample - Vblank) x MHCl x 14 x 100] / (Wt x 1000) -----------Eq. (3-2) 

where V is the volume of HCl used during titration in mL, M is the molarity in M, Wt is 

the sample weight in g. 
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3.2.4.4 Tricine SDS-PAGE 

Tricine-SDS-PAGE was carried out based on the protocol described by Kaur et al. (2014) 

with minor modifications. The filtered gastric and small intestinal digests (as prepared in 

section 3.2.4.2) were diluted with Milli-Q water at pH 3 and 7 (the pH of gastric and small 

intestinal fluids), respectively. The diluted digests were then mixed with tricine sample 

buffer (1:1 ratio) (1610739, Bio-Rad Laboratories, Hercules, CA, USA) containing 5 % 

β-mercaptoethanol (M6250, Sigma-Aldrich, Saint Louis, MO, USA) to achieve a final 

protein concentration of 5 mg/mL, based on the protein contents determined in section 

3.2.4.3. The samples were heated at 100 ℃ for 5 min and were cooled to room 

temperature. After that, the Precision Plus Protein™ Dual Xtra Prestained Protein 

Standards (Bio-Rad Laboratories, Hercules, CA, USA) as well as the samples (20 µg of 

protein per well) were loaded to the wells on 10 to 20 % gradient tricine gels. The tricine 

gels were run using a CriterionTM cell (Bio-Rad Laboratories Pty. Ltd., Hercules, CA, 

USA) filled with diluted 1x Tris/Tricine/SDS running buffer (Bio-Rad Laboratories, 

Hercules, CA, USA) at a constant voltage of 125 V, controlled by a power supply 

(PowerPac™ basic power supply, Bio-Rad Laboratories, Hercules, CA, USA) for 2 h or 

until the bands reached the bottom of gels. The gels were then treated with fixation 

solution (40 % methanol and 10 % acetic acid) for 30 min, followed by staining using 

Bio-SafeTM Coomassie G-250 staining solution (Coomassie Brilliant Blue dye in less than 

5 % phosphoric acid and less than 1 % methanol) (Bio-Rad Laboratories, Hercules, CA, 

USA) for an hour. After that, the gels were washed in Milli-Q water for several times 

until the backgrounds of the gels were clear. Finally, the gels were scanned using a gel 

scanning densitometer (Molecular Imager Gel Doc XR, Bio-Rad Laboratories, Hercules, 

CA, USA) and the images were analysed using the associated software (Image LabTM, 
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Bio-Rad Laboratories, Hercules, CA, USA). One gel was prepared for each digestion 

replicate. 

3.2.4.5 Ninhydrin-reactive amino nitrogen  

Ninhydrin-reactive amino nitrogen (%) was measured as described by Moore (1968) 

using a ninhydrin reagent (N7285, Sigma-Aldrich, Saint Louis, MO, USA). Briefly, 1 mL 

of the diluted, filtered digest (as described in section 3.2.4.2) was mixed with 0.5 mL of 

2 % ninhydrin reagent. The sample-ninhydrin reagent mixture was heated at 100 ℃ for 

10 min and were cooled to room temperature before the addition of 2.5 mL of 95 % 

ethanol. The absorbance of the heated mixture was read at 570 nm using a VIS-

spectrophotometer (Helios Epsilon, Thermo Fisher Scientific, Waltham, MA, USA). A 

stock solution of 50 μM glycine in 0.05 % acetic acid was prepared for the determination 

of a standard curve. The percentage of ninhydrin-reactive amino nitrogen released at 

different digestion time points was calculated using equation below:  

Ninhydrin-reactive amino nitrogen released (%) = Ninhydrin-reactive amino nitrogen in 

the digests / total nitrogen present in meat x 100 ----------------------------------Eq. (3-3) 

The ninhydrin analysis was repeated at least three times for each digestion time for each 

digestion replicate. 

3.2.5 Microscopy analysis 

Thawed control and PEF-treated samples were cut into rectangular (5 mm x 5 mm x 10 

mm) cuboids with the fibre direction parallel to their length. Simulated digestions were 

performed as described in section 3.2.4.1 in a polyester mesh without the addition of glass 

balls. Both undigested and digested (cumulative digestion time of 182 min) samples were 

fixed in 2.5 % glutaraldehyde in 0.1 M sodium cacodylate buffer at pH 5.6. The fixed 
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samples were cut into 1 to 3 mm3 and were washed using 0.1 M sodium cacodylate buffer 

at pH 5.6 for three times, and then post-fixed with 0.04 M Osmium tetroxide in 0.1 M 

sodium cacodylate buffer for one hour at room temperature. The three buffer washes were 

repeated, followed by dehydration using an acetone/water series (25 %, 50 %, 75 %, 95 % 

and 100 %) for 15 min each. The samples were further dehydrated with 100 % acetone 

for an hour twice. The dehydrated samples were first embedded with an acetone/ resin 

(Procure 812, ProSciTech, Queensland, Australia) mixture (1: 1 ratio) on a stirrer 

overnight. Then, the acetone/resin mixture was replaced with 100 % fresh resin, followed 

by constant stirring for 8 h. The change of 100 % fresh resin was repeated twice, with 

constant stirring overnight and a further 8h, respectively. The samples were finally 

moulded in 100 % fresh resin at 60 ℃ for 48 h. Ultra-thin sections (100 nm) were cut 

from the resin blocks and were mounted on copper grids. The sections were stained with 

saturated uranyl acetate in 50 % ethanol for 4 min, washed with 50 % ethanol and Milli-

Q water, stained with saturated lead citrate for another 4 min, followed by final wash with 

Milli-Q water. The stained sections were then viewed under a FEI Tecnai G2 Spirit 

BioTWIN transmission electron microscope (FEI Corp., Brno-Černovice, Czech 

Republic). Sarcomere lengths were measured from the TEM micrograph using ImageJ 

software version 1.52f (National Institute of Health, Bethesda, MD, USA) (Perkins & 

Tanentzapf, 2014). The length of 30 sarcomeres were determined for each treatment using 

the TEM micrographs from one triangular-shaped muscle. Observations were made on 

TEM sections from one digestion replicate. 

3.2.6 Statistical analysis  

The pH, moisture content, colour, sarcomere length and DSC results were analysed 

statistically with one-way analysis of variance (ANOVA) and Tukey’s pairwise 

comparison test (significance level of 0.05) to evaluate the significance of difference 



 

 

75 Chapter 3 

using Minitab Release 17 Statistical Software (Minitab Inc., State College, PA, USA). 

The ninhydrin-reactive amino nitrogen released at different digestion time points were 

analysed using a repeated measures one-way ANOVA at significance level of 0.05 by 

Generalised Linear Model (IBM® SPSS® Statistic version 25, IBM Corporation, 

Armonk, NY, USA) and no violation of sphericity was detected using Mauchly’s Test. 

Results are expressed as means of at least three replicates ± standard deviation of means 

from one Longissimus thoracis muscle. 

3.3 Results and discussion 

3.3.1 Effect of PEF on muscle general properties and protein thermal profile 

The pH, moisture content and colour of control and PEF-treated samples are summarised 

in Table 3-2. Low-intensity PEF treatment did not affect the pH and colour (p > 0.05) of 

meat, which is in agreement with the available literature (Faridnia et al., 2014; Suwandy 

et al., 2015d). However, the treatment significantly decreased the moisture content of the 

treated meat at pulse number 500 (p < 0.05) and 2000 (p < 0.001), with the moisture loss 

increasing with elevating treatment intensity. This is possibly due to more severe changes 

in muscle fibre integrity and membrane disruption in the sample treated with higher PEF 

intensity, leading to more fluid loss, which has also been previously reported in bovine 

Longissimus thoracis muscles (Faridnia et al., 2014).  
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Table 3-2. pH, moisture content, colour and sarcomere length of control untreated (C500 and 

C2000) and PEF-treated samples ((PN500, 48 ± 5 kJ/kg) and (PN2000, 178 ± 11 kJ/kg)) using an 

electric field strength of 1.00 to 1.25 kV/cm. 

Parameters C500 PN500 C2000 PN2000 

pH# 5.54 ± 0.02A 5.51 ± 0.00A 5.51 ± 0.02A 5.50 ± 0.04A 

Moisture content (%) # 72.62 ± 0.00A 71.65 ± 0.00B 72.80 ± 0.00A 69.44 ± 0.01C 

Colour^ 

L* 36.5 ± 0.7A 36.3 ± 0.6A 36.4 ± 0.6A 36.7 ± 0.5A 

a* 13.0 ± 0.7A 13.0 ± 0.4A 13.5 ± 0.6A 13.6 ± 0.9A 

b* 4.8 ± 0.4A 5.1 ± 0.2A 4.9 ± 0.3A 5.2 ± 0.4A 

Sarcomere length (µm)~ 1.68 ± 0.04a 1.99 ± 0.06b 1.69 ± 0.03a 2.17 ± 0.11c 

Values with different uppercase letters within the same row differ significantly (p < 0.05). 

Values with different lowercase letters within the same row differ significantly (p < 0.001). 

# N = 3 (measurements of three individual muscle pieces obtained from one Longissimus thoracis muscle 

as shown in Figure 3-1). 

^ N = 12 (12 measurements from one muscle piece obtained from one Longissimus thoracis muscle as 

shown in Figure 3-1). 

~ N = 30 (30 measurements from one muscle piece obtained from one Longissimus thoracis muscle as 

shown in Figure 3-1). 

Colour measurements definition according to León et al. (2006): 

 L*: lightness (0 indicates black while 100 indicates absolute white). 

 a*: redness (positive value)/ greenness (negative value). 

 b*: yellowness (positive value) /blueness (negative value). 

 

The DSC results of the samples are summarised in Table 3-3. These results may be useful 

in determining the optimum cooking temperature of meat, as the thermal denaturation of 

these proteins is associated with sensory and textural properties of meat (Findlay et al., 

1986). Understanding the thermal denaturation properties of proteins enables the 

selection of the optimal cooking temperatures of meat by setting the temperature high 

enough to denature collagen in order to decrease the adhesion between muscle fibres, but 

low enough to prevent excessive denaturation of most myofibrillar proteins to reduce 

water expulsion from the muscle fibres. The first, second and third peaks of the 

thermogram represent the thermal denaturation of myosin, collagen and sarcoplasmic 

proteins, and actin respectively (Bertola et al., 1994). No significant difference in any of 

the peak temperatures between the PEF-treated samples and their untreated counterparts 
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was observed (p > 0.05). This supports the literature findings that low-intensity PEF 

treatment results in electroporation of muscle cell membrane but not protein denaturation 

in muscle-based foods. The protein profiles of the muscles were not modified by the 

electric pulses applied to the meat, as seen in the gel electrophoresis analysis conducted 

by Faridnia et al. (2014) on beef (0.2 to 0.6 kV/cm, 0.05 to 30 kJ/kg) and Gudmundsson 

and Hafsteinsson (2001) on cod muscles (18.6 kV/cm and seven pulses). There are some 

studies showing protein aggregation and unfolding of lysozyme (35 kV/cm) (Zhao & 

Yang, 2008) and soy protein isolate (> 30 kV/cm) (Liu et al., 2014) after PEF treatments 

that were carried out at a much higher treatment intensity than the current study. Hence 

there is a possibility of protein modification in meat at higher PEF treatment intensities. 

Alahakoon et al. (2017) found that PEF treatment significantly (p < 0.05) decreased the 

thermal denaturation temperature of the extracted connective tissue from beef Deep 

pectoralis muscle in a model agar system. However, the effect of PEF on connective 

tissue in a natural meat system would not be expected to be as significant, particularly in 

Longissimus thoracis, as this muscle has only almost half of the connective tissue content 

compared to Deep pectoralis (Keith et al., 1985). 
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Table 3-3. DSC thermal profiles of control untreated (C500 and C2000) and PEF-treated samples 

((PN500, 48 ± 5 kJ/kg) and (PN2000, 178 ± 11 kJ/kg)) using an electric field strength of 1.00 to 

1.25 kV/cm. The results showed the thermal denaturation temperature of myosin (first peak), 

collagen and sarcoplasmic proteins (second peak) and actin (third peak) when heated from 20 ℃ 

to 100 ℃ at a rate of 2 ℃/min.  

Thermal transition peak C500 PN500 

Temperature 

(℃) 

First 53.1 ± 0.2A 52.9 ± 0.4A 

Second 61.9 ± 0.4A 62.4 ± 0.3A 

Third 74.2 ± 0.2A 74.4 ± 0.2A 

Thermal transition peak C2000 PN2000 

Temperature 

(℃) 

First 53.5 ± 0.9A 53.1 ± 0.2A 

Second 62.6 ± 0.7A 61.5 ± 0.8A 

Third 75.1 ± 0.5A 75.1 ± 0.1A 

Values with different letters within the same row differ significantly (p < 0.05).  

N = 3 (measurements of three individual muscle pieces obtained from one Longissimus thoracis muscle as 

shown in Figure 3-1). 

 

3.3.2 Effect of PEF on muscle ultrastructure 

As shown in Table 3-2, PEF-treated samples PN500 and PN2000 had significantly longer 

sarcomere length than their control untreated counterparts (p < 0.001, N = 30). This 

indicates that PEF treatment caused physical disruption in the muscle fibres. The extent 

of sarcomere elongation also increased with increasing treatment intensity. The 

elongation of sarcomeres might have resulted from the weakening of Z-disk and I-band 

junctions, as observed in the PEF-treated muscle samples (Figure 3-2). Extended 

sarcomere length has also been observed by Vaskoska et al. (2020) in beef muscles after 

postmortem ageing, where the endogenous proteases degrade some structural myofibrillar 

proteins, primarily along the Z-disks. Other structural changes have been described in the 

literature, with reports on the separation of myofibrils from Z-disks, and the presence of 

jagged edges in the muscle cells of PEF-treated samples (Faridnia et al., 2016; Faridnia 

et al., 2015). Physical disruption of muscle structure has a positive correlation with meat 

tenderisation as it has been reported to reduce the tensile strength of myofibrils (Davey 

& Gilbert, 1969) and enhance the contact of endogenous proteolytic enzymes during the 
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postmortem ageing process (Bolumar et al., 2014). Hence, the meat maturation/ageing 

process might be facilitated by PEF treatment due to the disruption of muscle structure. 

The electroporation effect of PEF treatment has also been proposed to cause the release 

of cathepsins from the lysosomes and the activation of calpains by calcium released from 

the sarcoplasmic reticulum, facilitating meat proteolysis during the ageing process 

(Alahakoon et al., 2016). 
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Figure 3-2. Transmission electron micrograph showing elongated sarcomeres and disruption of 

Z-disk and I-band junctions in the PEF-treated meat sample PN2000 (bottom) (pulse number 2000, 

1.00 - 1.25 kV/cm, 178 ± 11 kJ/kg) before in vitro digestion. The sarcomere details of the control 

untreated counterpart (C2000) is presented in the top micrograph. 
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3.3.3 Effect of PEF on muscle protein digestibility in vitro 

3.3.3.1 Tricine SDS-PAGE 

The enzymatic hydrolysis of meat proteins during in vitro digestion was evaluated using 

SDS-PAGE and the findings are shown in Figures 3-3 and Figure 3-4. As both treatment 

intensities showed the same trends, only electrophoretograms of C2000 and PN2000 are 

shown. After 62 min of simulated oral-gastric digestion, new low molecular weight (MW) 

peptides (< 10 kDa) were generated in both control and PEF-treated samples, indicating 

protein hydrolysis by pepsin. A new peptide band appeared in both control and treated 

samples, corresponding to MW 30 kDa, was deduced to be a product of troponin T 

hydrolysis (Cheftel & Culioli, 1997; Kaur et al., 2014). The bands corresponding to MW 

95 kDa (α-actinin) (Obinata et al., 1981) and 34 kDa (β-actinin subunit) (Swartz et al., 

2009) in meat digests from PN2000 almost completely disappeared after 62 min of 

simulated oral-gastric digestion. In contrast, these bands were present, but with decreased 

intensity in the control untreated sample. This shows that the α-actinin and β-actinin in 

the PEF-treated samples were broken down more rapidly by pepsin under stimulated 

gastric digestion condition. As both the α-actinin and β-actinin are the major components 

of Z-disks, their more rapid disintegration in the PEF-treated samples might be due to the 

weakening of Z-disk and I-band junctions caused by the treatment, as observed by TEM 

(Figure 3-2) (Strasburg et al., 2008). Patel and Welham (2013) also reported a decrease 

in the intensity of the band of α-actinin in raw beef digests after 60 min of gastric digestion. 

After 122 min of simulated oral-gastro-small intestinal digestion, the MHC (MW 220 

kDa) was completely digested in both the PEF-treated and control samples. A new faint 

band with MW of 58 kDa was observed, only in PN2000 sample, after 60 min of small 

intestinal digestion. This band was not present in either control or treated samples after 
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oral-gastric digestion, and hence may be the proteolytic product of a higher MW or 

insoluble protein. In addition, it was observed that the intensity of the band with MW of 

39 kDa of the digest of PEF-treated muscle was higher than the control untreated meat 

digest at the end of simulated digestion (182 min). The band corresponding to MW 39 

kDa has been reported to be a degradation fragment of desmin (Soglia et al., 2018). This 

showed that desmin was broken down more in the PEF-treated meat at the end of 

simulated digestion. Overall, the results of SDS-PAGE analysis demonstrate PEF effected 

the digestion pattern of meat proteins, that may be due to the modification of muscle 

structure which in turn influences the accessibility of digestive enzymes (Astruc, 2014b). 

 
Figure 3-3. Tricine SDS-PAGE electrophoretogram showing protein profiles of the digests of 

PN2000 (pulse number 2000, 1.00 - 1.25 kV/cm, 178 ± 11 kJ/kg) and its counterpart untreated 

C2000 during simulated oral-gastric digestion.  
C2 and C62 denote C2000 samples at 2 and 62 min of simulated oral-gastric digestion respectively while 

P2 and P62 denote PN2000 samples at 2 and 62 min of simulated oral-gastric digestion. Std represents the 

molecular weight standards labelled to the left in kDa. 
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Figure 3-4. Tricine SDS-PAGE electrophoretogram showing proteins profile of the digests of 

PN2000 (pulse number 2000, 1.00 - 1.25 kV/cm, 178 ± 11 kJ/kg) and its counterpart untreated 

C2000 during 120 min of in vitro small intestinal digestion following 62 min of oral-gastric 

digestion.  
C122 and C182 denote C2000 samples after 122 and 182 min of simulated oral-gastric-small intestinal 

digestion respectively while P122 and P182 denote PN2000 samples after 122 and 182 min of simulated 

oral-gastric-small intestinal digestion Std represents the molecular weight standards labelled to the left in 

kDa. 

 

 

3.3.3.2 Ninhydrin-reactive amino nitrogen 

The protein digestibility of meat was determined in terms of ninhydrin-reactive free 

amino nitrogen released during simulated oral-gastro-small intestinal digestion, using the 

ninhydrin assay (Table 3-4). Both PN500 and PN2000 released more free amino nitrogen 

than their respective untreated controls at all the digestion time points. However, this 

effect was significant (p < 0.05) only at the end of 182 min in vitro oral gastro-small 

intestinal digestion. In addition, there was no significant difference in the ninhydrin-

reactive amino nitrogen released between various gastric digestion time points among 

individual control and PEF-treated samples (Table 3-4). The pepsin concentration used 

in this experiment might be too low. Thus, the pepsin concentration is increased slightly 

for the in vitro digestion experiments reported in Chapter 4 and Chapter 6. Overall, PEF 
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treatment improved the protein digestibility of the muscles by at least 18 % (up to 31 %) 

after 182 min of simulated oral-gastro-small intestinal digestion, in terms of ninhydrin-

reactive amino nitrogen released.  

Table 3-4. Ninhydrin-reactive amino nitrogen released from the control untreated (C500 and 

C2000) and PEF-treated samples ((PN500, 48 ± 5 kJ/kg) and (PN2000, 178 ± 11 kJ/kg)) using an 

electric field strength of 1.00 to 1.25 kV/cm after in vitro oral-gastric (2, 32 and 62 min) and 

further small intestinal (122 & 182 min) digestion.  

Cumulative digestion time (min) 
Ninhydrin free amino nitrogen released (%) 

C500^ PN500^ 

2 1.8 ± 0.5Aa 2.1 ± 0.5Aa 

32 2.1 ± 0.6Aa 2.6 ± 0.7Aa 

62 1.9 ± 0.4Aa 2.6 ± 0.6Aa 

122 7.4 ± 1.1Ab 8.3 ± 0.4Ab 

182 9.0 ± 0.5Ac 11.9 ± 1.5Bc 

Cumulative digestion time (min) 
Ninhydrin free amino nitrogen released (%) 

C2000* PN2000* 

2 1.8 ± 0.4Aa 2.1 ± 0.3Aa 

32 1.8 ± 0.2Aa 2.4 ± 0.6Aa 

62 1.9 ± 0.1Aa 2.3 ± 0.5Aa 

122 8.2 ± 0.4Ab 9.3 ± 1.4Ab 

182 10.4 ± 0.3Ac 12.2 ± 0.3Bc 

Values with different lower-case letters within the same treatment column differ significantly (p < 0.05). 

Values with different upper-case letters within the same row differ significantly (p < 0.05).  

^Data are shown as mean ± standard deviation of mean. N = 4 (four replicates with 3 measurements from 

each replicate). 

*Data are shown as mean ± standard deviation of mean. N = 3 (three replicates with 3 measurements from 

each replicate). 

 

3.3.4 Ultrastructure of digested meat samples 

The effect of PEF on muscle structural changes after 182 min of in vitro oral-gastro-small 

intestinal digestion was observed using TEM (Figure 3-5). Small grey spots were 

observed in the intermyofibrillar spaces, which might be the products of muscle protein 

degradation, suggesting proteolysis by the digestive enzymes. The Z-disks of both the 

control and PEF-treated samples were degraded after 182 min of incubation with 

simulated digestive juices containing digestive proteases (pepsin followed by pancreatin). 
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However, it was seen that the Z-disk and I-band junctions of the PEF-treated muscle were 

less dense and more coagulated, with more elongated I-bands than the control untreated 

muscle (as indicated in the white box drawn in Figure 3-5). The disruption of the I-bands 

might be due to the proteolytic action of the digestive enzymes along the Z-disks, where 

the thin filaments of I-bands are attached, which corresponds to more rapid degradation 

of Z-disk components (α-actinin and β-actinin) as discussed in section 3.3.3.1. Pepsin 

digestion has been reported to cause Z-disks degradation, and subsequent trypsin and 

chymotrypsin digestion disrupts the whole sarcomere structure (Astruc, 2014b). The 

pepsin-catalysed degradation of Z-disks during gastric digestion was also reported by 

Kaur et al. (2016) and Astruc (2014b). These observations suggested that the PEF-treated 

muscle was more susceptible to digestive enzyme hydrolysis, which is in agreement with 

significantly higher ninhydrin-reactive amino nitrogen released than the control, after 182 

min of in vitro digestion. Myofibrillar disruption, in this case the weakening of the Z-disk 

and I-band junctions caused by the PEF treatment, might enhance the accessibility of 

digestive enzymes to their substrates, resulting in improved protein digestion (Astruc, 

2014b). Dolatowski (1989) also observed that ruptures in the myofibrils and other 

structural disruption of the muscle increased the effectiveness of proteolytic enzyme 

activity in the tissue. The more coagulated I-bands of the PEF-treated sample could be 

associated with a higher extent of protein denaturation and unfolding by the acidic gastric 

environment, leading to the exposure of buried peptide bonds, facilitating the enzymatic 

hydrolysis of the meat proteins during gastric and subsequent small intestinal digestion 

(McGuire & Beerman, 2012).  

 

 

 

 

 



  

 

86 Chapter 3 

 

 
Figure 3-5. Transmission electron micrographs of beef Longissimus thoracis muscles showing 

less dense, more coagulated Z-disk and I-band junctions as well as more elongated I-bands of 

PEF-treated sample PN2000 (pulse number of 2000, 1.00 - 1.25 kV/cm, 178 ± 11 kJ/kg) (bottom 

two) than the untreated control C2000 (top two), after 182 min of in vitro oral-gastro-small 

intestinal digestion, at two different magnifications. 

 

3.4 Conclusions  

The results of this experiment showed that PEF treatment alone does not affect the 

appearance and protein thermal profile of bovine Longissimus thoracis muscles. The 

colour and thermal denaturation temperatures of the major meat proteins, such as myosin, 

collagen and actin, remained unchanged. Moisture loss from the muscle was observed in 
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treated samples, which was deduced to be due to fluid loss resulting from cell membrane 

electroporation. The in vitro protein digestibility of meat treated with PEF was improved, 

which might be due to the disruption of myofibrillar structure, enhancing the accessibility 

of digestive enzymes to their substrates. This chapter showed the positive impacts of PEF 

treatment on in vitro protein digestibility of raw beef ribeye muscles. The effect of PEF 

in combination with SV cooking on beef brisket, a tough meat cut, will be investigated in 

Chapter 4. 



  

 

3Part of this chapter has been published as Chian, F. M., Kaur, L., Oey, I., Astruc, T., Hodgkinson, S., & 

Boland, M. (2021). Effects of pulsed electric field processing and sous vide cooking on muscle structure 

and in vitro protein digestibility of beef brisket. Foods, 10(3), 512. https://doi.org/10.3390/foods10030512 
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Chapter 4 3Effects of pulsed electric fields (PEF) and sous vide (SV) 

cooking on the lysosomal enzyme activities, muscle structure and in vitro 

protein digestibly of beef brisket 

4.1 Introduction 

In recent years, low-intensity pulsed electric field, alone or in combination with other 

processing techniques, has been explored for meat tenderisation. The combined PEF-SV 

cooking process (Alahakoon et al., 2018a), the combined freezing-PEF process (Faridnia 

et al., 2015), and the combined PEF-ageing process (Alahakoon et al., 2019; Bhat et al., 

2018d) have been reported to promote meat tenderisation. The meat tenderisation 

mechanisms of PEF are suggested to be due to an earlier activation of the endogenous 

enzymes, the calpains, by the calcium ions released from the muscle cells, and/or the 

action of lysosomal enzymes released from the lysosomes, as a result of cell 

permeabilisation (Alahakoon et al., 2016; Bhat et al., 2018b).  

Calpain activation by PEF has been verified by some recent studies. Bhat et al. (2018d) 

have discovered improved calpain activity in PEF-treated beef Semimembranosus (0.36 

kV/cm, 90 Hz and 0.60 kV/cm, 20 Hz). Bhat, Morton, Mason, Mungure, et al. (2019) also 

detected a slight increase in calpain activity in PEF-treated cold-boned venison 

Longissimus dorsi (2.5 kV, 50 Hz and 10 kV, 90 Hz) during ageing. An increased 

degradation of troponin T, one of the substrates of calpains, was also observed in both 

studies. However, no study has been conducted to validate the release of lysosomal 

enzymes due to the permeabilisation of lysosomes by the action of PEF. Lysosomal 

enzymes, such as cathepsins, are located within lysosomes in the cytoplasm of cell 

(Geesink & Veiseth, 2008). For meat tenderisation, cathepsins have to be released from 

the lysosomes into the cytosol to access their substrate, the myofibrillar proteins.  

https://doi.org/10.3390/foods10030512
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 Cathepsins are most active in a slightly acidic environment and are more heat-stable than 

calpains (Dominguez-Hernandez et al., 2018). Cathepsins B and L in porcine 

Semitendinosus and Longissimus muscles have been reported to stay active at 58 ℃ for 

17 h (Christensen, Ertbjerg, et al., 2011). Kaur et al. (2020) also reported that cathepsins 

B and L were inactivated after incubating beef brisket at 60 ℃ for 5 h. In contrast, µ-

calpain in porcine Longissimus muscles lost its activity after incubating at 25 °C for 3 h 

while m-calpain were inactivated after holding at 40 ℃ for 3 h (Ertbjerg et al., 2012). 

Both µ- and m-calpains were inactivated after holding at 55 ℃ for 2 min. Due to 

microbiological safety considerations, it is recommended to cook meat at a minimum 

temperature of 60 °C by regulatory bodies in some countries (Purslow, 2018). Cathepsins 

are therefore more likely to contribute to meat tenderisation during low temperature long 

time cooking processes (Dominguez-Hernandez et al., 2018). If PEF treatment results in 

the release of cathepsins from the lysosomes by electroporation, as proposed in the 

literature, the meat tenderisation process could be further promoted during the initial stage 

of low temperature long time cooking, such as SV cooking. The other mechanism behind 

the meat tenderisation of a combined PEF-SV process was an increase in collagen 

solubility during the cooking process, due to the structural disruption of connective tissue 

by PEF (Alahakoon et al., 2018b). 

As consumers are now seeking food products that are tasty and nutritious, it is important 

to understand the effect of the combined PEF-SV processing on the nutritional value of 

meat products, in particular the protein digestibility (Hung et al., 2016). Current research 

to understand the effects of PEF in combination with cooking on meat protein digestibility 

is limited, particularly in regards to understanding of structural changes occurring during 

digestion. The in vitro protein digestibility of PEF-treated water bath-cooked (core 

temperature of 75 ℃) bovine Semimembranosus muscles has been reported to be higher 
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 than the control untreated cooked meat (Bhat, Morton, Mason, Jayawardena, et al., 2019). 

Conversely, Alahakoon et al. (2019) did not detect any effect of the combined PEF (0.7 

kV/cm, 90 to 100 kJ/kg)-SV (60 ℃ for 24 h) process on the in vitro protein digestibility 

of beef brisket. However, the impact of the structural changes induced by a combined 

PEF-cooking process on the enzymatic breakdown of meat proteins during digestion has 

not been explored and requires further research. Thus, this chapter aims to examine the 

in vitro protein digestibility of PEF-treated SV-cooked beef brisket using both 

biochemical and microscopy approaches. In addition, the effect of PEF on the lysosomal 

enzymes activity, alone and in combination with SV cooking, is also investigated. 

4.2 Materials and methods  

4.2.1 Pulsed electric field treatment of beef briskets 

Four whole beef briskets (Deep and Superficial pectoral muscle) from the left and right 

sides of two Hereford sired heifers (19 months old, mix of Friesian and crossbreed, 195.5 

– 270.0 kg carcass weight) were obtained from ANZCO Foods (Eltham, New Zealand). 

The pre-rigor briskets were stored at 15 ℃ for 48 h until they went into rigor. The briskets 

were then vacuum-packed, blast-frozen, and kept at -18 ℃ until PEF treatment. The meat 

was thawed at 4 ℃ for 18 h before PEF treatment. Pulsed electric field treatment was 

conducted in a pilot-scale batch PEF system (Elcrack-HVP 5, DIL, Quakenbruck, 

Germany) as described in section 3.2.1 with modifications. After removing the edges of 

the whole brisket which are too thin for the treatment, the meat was cut into triangular 

shapes that were 6 cm in height, 4 cm in width and 6 cm in length, with an approximate 

weight of 70 g (Figure 4-1). The treatment was carried out using processing parameters 

of 0.7 kV/cm electric field strength to achieve a specific energy of 99 ± 5 kJ/kg, at a 

constant pulse width and frequency of 20 µs and 50 Hz respectively, as optimised by 
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 Alahakoon et al. (2018b). The specific energy was determined using Eq. (3-1). The 

conductivities of the briskets were measured at more than 25 positions across each per 

whole brisket, using a handheld meat conductometer (LF-STAR, R. Mathäus, Nobitz, 

Germany), before and after PEF treatment. The pre- and post-PEF treatment 

conductivities of the meat were 9 ± 2 mS/cm and 13 ± 1 mS/cm correspondingly. The 

temperature of the meat had increased by about 14.0 ℃ after PEF treatment to 22.4 ℃. 

 
Figure 4-1. Meat sampling position of the control untreated (C) and the PEF-treated (P) samples 

on each brisket slab.  
The edges of the brisket which were too thin for PEF processing were removed. In order to minimise the 

inconsistency due to inhomogeneity of meat, sampling was performed by assigning the C and P adjacent to 

each other. The meat was cut into triangular pieces of about 70 g with dimensions of 6 cm in height, 4 cm 

in width and 6 cm in length for PEF treatment. 

 

4.2.2 Sous vide cooking of beef briskets 

After PEF treatment, both control and treated meat samples were vacuum-packed in 

‘cook-in’ clear vacuum bags (Cas-Pak Products Ltd, Silverdale, New Zealand) in two 

different ways. Six triangular pieces, each from the control untreated and PEF-treated 

samples from the same whole brisket, were used as one replicate for the lysosomal 
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 enzyme activity experiment (total of three replicates from three whole briskets). To 

minimise the muscle variability in a whole brisket, each of the six triangular pieces was 

cut and packed in five separate bags for different SV cooking time points (Figure 4-2). 

Each pack contained samples from six triangular pieces of the same whole brisket as one 

replicate. The vacuum-packed samples were then SV-cooked at 60 ℃ for 0, 0.5, 2, 5 and 

24 h. The individual control untreated and PEF-treated triangular pieces from another 

brisket were vacuum-packed intact and were SV-cooked at 60 ℃ for 24 h for protein 

digestibility analysis. All samples (control raw, PEF-treated raw, Control SV-cooked and 

PEF-treated SV-cooked samples) were snap-frozen using liquid nitrogen and were stored 

at -80 ℃ for further analyses.   

 
Figure 4-2. Schematic diagram showing the sample allocation for the lysosomal enzyme activity 

analyses.  
In order to minimise muscle variability in a whole brisket, each triangular piece was divided into five 

individual packages designated for different SV cooking times. Each pack contained samples from six 

triangular pieces of the same whole brisket as one replicate. The vacuum-sealed packs were then SV-cooked 

at 60 ℃ and were sampled at 0, 0.5, 2, 5 and 24 h of cooking. 

 

4.2.3 Endogenous enzyme activities 

4.2.3.1 Cytosolic sarcoplasmic protein extraction 

The sarcoplasmic protein extract for cytosolic lysosomal enzyme activity assays was 

prepared as described by Chéret et al. (2007) and Caballero et al. (2007) with 

modifications. The raw and SV-cooked frozen samples were thawed on ice for 1 h. The 

samples were then briefly chopped into smaller pieces and were mixed with an extraction 
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 buffer comprising 50 mM Tris–HCl (pH 7.5) (T2319, Sigma-Aldrich, Saint Louis, MO, 

USA), 10 mM 2-mercaptoethanol (M6250, Sigma-Aldrich, Saint Louis, MO, USA) and 

1 mM ethylenediaminetetraacetic acid (EDTA) (EDS, Sigma-Aldrich, Saint Louis, MO, 

USA) in a ratio of 1:3. The mixtures were then homogenised (5 pulses in total) gently to 

prevent the disruption of intact cell organelles, in an ice bath using a hand held mixer 

(BSB310, Breville, Australia). The mixture was then centrifuged at 1000 x g for 10 min 

at 4 ℃ (Heraeus Multifuge 15-R centrifuge, Thermo Fisher Scientific, Waltham, MA, 

USA) and the pellet containing the myofibrillar fraction was discarded. The supernatant 

was then centrifuged at 20,000 x g (Sorvall Evolution RC centrifuge, Thermo Fisher 

Scientific, Waltham, MA, USA) for 20 min at 4 ℃ to obtain the cytosolic fraction. After 

the centrifugation, the supernatant was collected as cytosolic extract and the extract was 

filtered using 0.45 µm PVDF syringe filter (Millex®-HV, Merck Millipore Ltd., Cork, 

Ireland), followed by storage in an ice bath. The cytosolic extract was freshly prepared 

for the assays. The pellets, which contain the large intact organelles including intact 

lysosomes, were resuspended in 50 mM sodium acetate buffer containing 1 mM EDTA 

and 0.2 % (v/v) Triton® X-100 (T8787, Sigma-Aldrich, Saint Louis, MO, USA) at pH 5 

(Alberts et al., 2002; Mikami et al., 1987). The mixture was then centrifuged at 20,000 

xg for 20 min and the supernatant was collected as the lysosomal extract. As cellular 

organelles might be disrupted if homogenisation is not done gently, the activities of the 

cathepsins in the lysosomal fraction of the control and PEF-treated raw muscles were 

determined to validate if the extraction process is appropriate (Alberts et al., 2002) 

4.2.3.2 Cathepsin B, B+L and H assays 

The activities of cathepsins B, B+L and H were determined based on the method from 

Chéret et al. (2007) with modifications. The assays were carried out in 96-well 

microplates consisting of 6 µL of 0.08 M CHAPS (3-[(3-Cholamidopropyl) 
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 dimethylammonio]-1-propanesulfonate) (B21927, Alfa Aesar, Lancashire, United 

Kingdom), 1 µL of 1.4 M 2-mercaptoethanol, 16 µL of 0.04 M Brij® 35 (20150, Thermo 

Fisher Scientific, Waltham, MA, USA), 5 µL of 20 mM synthetic fluorogenic substrate 

and 70 µL of 0.4 mM acetate buffer (pH 4) containing 10 mM 2-mercaptoethanol and 1 

mM EDTA at 30 ℃. The fluorogenic substrates for cathepsins B, B+L and H were N-

benzyloxycarbonyl-arginine-arginine-7-amido-4-methylcoumarin hydrochloride (C5429, 

Sigma-Aldrich, Saint Louis, MO, USA), N-benzyloxycarbonyl-phenylalanyl-arginine-7-

amido-4-methylcoumarin hydrochloride (C9521, Sigma-Aldrich, Saint Louis, MO, USA), 

and L-Arginine-7-amido-4-methylcoumarin hydrochloride (A2027, Sigma-Aldrich, Saint 

Louis, MO, USA), respectively, prepared in methanol. The details of the reagents used in 

the enzyme activity assays for cathepsins B, B+L and H are summarised in Table 4-1. 

The reaction was initiated by the addition of 200 µL of cytosolic sarcoplasmic protein 

extract with a control run in parallel where the protein extract was replaced by the 

sarcoplasmic protein extraction buffer. The fluorescence measurement was recorded for 

10 min with intervals of 10 s at an excitation and emission wavelength of 355 nm and 460 

nm, respectively, using a VarioskanTM LUX multimode microplate reader (Thermo Fisher 

Scientific, Waltham, MA, USA). The specific activities of the cathepsins B, B+L and H 

were expressed in FU (fluorescence unit) increase per min per gram of muscle (in 

triplicate for each whole brisket).  
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 Table 4-1. A summary of the reagents used in the enzyme activity assays for cathepsins B, B+L 

and H, as described by Chéret et al. (2007). 

Reagents Volume (µL) 

0.08 M CHAPS 6 

1.4 M 2-mercaptoethanol 1 

0.04 M Brij® 35 16 

20 mM 

synthetic 

fluorogenic 

substrate in 

methanol 

Cathepsin B: N-benzyloxycarbonyl-arginine-arginine-

7-amido-4-methylcoumarin hydrochloride 

5 
Cathepsin B+L: N-benzyloxycarbonyl-phenylalanyl-

arginine-7-amido-4-methylcoumarin hydrochloride 

Cathepsin H: L-Arginine-7-amido-4-methylcoumarin 

hydrochloride 

0.4 mM acetate buffer (pH 4) containing 10 mM 2-mercaptoethanol 

and 1 mM EDTA 
70 

 

4.2.3.3 Cathepsin D assay 

The cathepsin D assay was carried out based on the methods of Anson (1938) and Rico 

et al. (1991) with modifications. The cathepsin D activity was determined by incubating 

the reaction mixture consisting of 2 mL of 0.6 % (w/v) acid-denatured haemoglobin 

(H2625, Sigma-Aldrich, Saint Louis, MO, USA) in 0.2 M citrate buffer (pH 3.7) at 45 ˚C 

for 30 min. The reaction was initiated by the addition of 0.375 mL cytosolic sarcoplasmic 

protein extract and was terminated by the addition of 0.75 mL of 10 % (w/v) 

trichloroacetic acid (TCA) (T6399, Sigma-Aldrich, Saint Louis, MO, USA). The mixture 

was filtered using a 0.45 µm PVDF syringe filter and the TCA-soluble peptides were 

measured spectrophotometrically at 280 nm using a UV-Visible spectrophotometer 

(GENESYS 10 UV, Thermo Fisher Scientific, Waltham, MA, USA). A blank was 

prepared similarly except the TCA was added before the reaction started. The specific 

activity of cathepsin D was expressed as the absorbance increase at 280 nm per hour per 

gram of muscle at 45 ℃ (in triplicate for each whole brisket). 
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 4.2.4 Protein digestibility 

4.2.4.1 In vitro digestion 

The in vitro digestion of the meat SV-cooked at 60 ℃ for 24 h was conducted as described 

in section 3.2.4.1 with a modification of the pepsin concentration to 8 U/mg meat protein.  

The digests (20 mL) were sampled at 0, 30 and 60 min of gastric digestion (cumulative 

digestion time of 2, 32 and 62 min) and 60 and 120 min of small intestinal digestion 

(cumulative digestion time of 122 and 182 min). In order to stop the activities of the 

digestive enzymes, 12 µL of pepstatin A (ab141416, Abcam, Cambridge, UK) (0.5 

mg/mL methanol) was added to every mL of gastric digest while 0.45 mL of 

SIGMAFASTTM protease cocktail solution (S8820, Sigma-Aldrich, Saint Louis, MO, 

USA) (1 tablet/50 mL Milli-Q water) was added to every mL of intestinal digest before 

storage at -20 ℃ (Menard et al., 2018). Four digestions were conducted each for the 

control and PEF-treated SV-cooked samples. 

4.2.4.2 Preparation of the digests for further analysis 

The digests were processed as described in section 3.2.4.2 for subsequent soluble nitrogen, 

SDS-PAGE and ninhydrin-reactive free amino nitrogen analyses. 

4.2.4.3 Tricine SDS-PAGE and ninhydrin-reactive amino nitrogen analysis  

Tricine-SDS-PAGE gel electrophoresis was carried out as described in section 3.2.4.4 on 

a 16.5 % CriterionTM Tris-tricine gel (3450064, Bio-Rad Laboratories, Hercules, CA, 

USA). Each lane was loaded with 20 µg of protein after adjusting the protein 

concentration of the digests-tricine sample buffer mixture (1610739, Bio-Rad 

Laboratories, Hercules, CA, USA) (1: 1 ratio), based on the nitrogen concentration of the 

filtered digests determined using the Kjeldahl method, as described in section 3.2.4.3 
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 (AOAC, 1981). The electrophoresis was then conducted with a CriterionTM Vertical 

Electrophoresis system (1656001, Bio-Rad Laboratories, Hercules, CA, USA) at a 

constant voltage of 125 V until the tracking dye front reaches the end of the gel. One gel 

was prepared for each digestion replicate. Ninhydrin-reactive free amino nitrogen 

released at different digestion time points was determined using ninhydrin reagent 

(N7285, Sigma-Aldrich, Saint Louis, MO, USA), as described in section 3.2.4.5. (Moore, 

1968). The ninhydrin analysis was repeated at least three times for each digestion time 

for each digestion replicate.  

4.2.5 Microscopy analysis of digested muscles 

The control SV-cooked and the PEF-treated SV-cooked samples were subjected to 

simulated oral-gastro-small intestinal digestion, as described in section 4.2.4.1, in a 

polyester mesh without the addition of glass balls. Samplings were conducted at the end 

of 62 min and 182 min of oral-gastro-small intestinal digestion. The digested strips (62 

and 182 min) were snap-frozen in isopentane (−160 °C) chilled by liquid nitrogen 

(−196 °C), followed by storage at −80 °C until use for histochemical analysis. The 

samples digested for 182 min were cut along the direction of the muscle fibre into strips 

of 10 mm x 3 mm x 3 mm and the pieces were immersed in 2.5 % glutaraldehyde in 0.1 

M sodium cacodylate buffer at pH 5.6 overnight at room temperature before storage at 

4 °C for TEM analysis. The undigested control cooked and PEF-treated cooked samples 

were cryofixed and chemically fixed for subsequent comparisons. 

4.2.5.1 Histochemical analysis 

The cryofixed muscle blocks (as mentioned in section 4.2.5) were cut into 10 µm thick 

sections using a cryostat (CM1950, Leica Microsystems GmbH, Wetzlar, Germany) at -

20 °C. The sections were mounted on glass slides followed by staining with Picro-Sirius 
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 Red (Flint & Pickering, 1984). In brief, the muscle sections were incubated in acetone for 

an hour followed by picroformalin (5 % formaldehyde, 90 % ethanol in saturated picric 

acid) for 10 min. Then, the sections were submerged into 90 % ethanol for 1 min, distilled 

water for 10 min and Picro-Sirius Red stain (0.1 % Sirius Red in saturated picric acid) for 

1 h. After that, the sections were put in a bath of 0.01 M HCl for 5 min and distilled water 

for 1 min. Finally, the sections were dehydrated by dipping the slides into a bath of 95 % 

ethanol and two baths of 100 % ethanol, followed by two baths of methylcyclohexane. 

Observations were conducted using an optical transmission microscope coupled to a 

digital acquisition kit (Olympus BX61 microscope, Olympus DP 71 digital camera, 

Olympus France SAS, Rungis, France). Observations were made on histological sections 

from three digestion replicates. 

4.2.5.2 Transmission electron microscopy analysis 

The chemically fixed samples (as mentioned in section 4.2.5) were further processed for 

TEM analysis, as described in section 3.2.5 with modifications. The samples were post-

fixed in 1 % osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.2) and were 

dehydrated through a graded series of ethanol (70 %, 95 % and 100 %). The dehydrated 

sections were then embedded in epoxy resin (TAAB, Eurobio Scientific, Les Ulis, 

France), followed by sectioning into 90 nm of ultra-thin sections. The ultra-thin sections 

were mounted on copper grids, and were stained with saturated uranyl acetate and lead 

citrate for 30 min each (Reynolds, 1963). The ultrastructure was viewed using a 

transmission electron microscope (HM 7650, Hitachi, Tokyo, Japan) coupled with a CCD 

AMT HR digital camera system (Hamamatsu Photonics, Shizuoka, Japan). The reagents 

used in this section were electron microscopy grade (Electron Microscopy Science, 

Hatfield, PA, USA). Observations were made on TEM sections from two digestion 

replicates. 
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 4.2.6 Statistical analysis 

The data were reported as means ± standard deviation of means from at least three 

replications. Statistical analysis was conducted using two-way ANOVA for the 

cathepsins activity analyses using OriginPro 2018b software (OriginLab Corporation, 

Northampton, MA, USA). Repeated measures ANOVA by Generalised Linear Model 

(IBM® SPSS® Statistic version 25, IBM Corporation, Armonk, NY, USA) was performed 

for protein digestibility analysis and no violation of sphericity was detected using 

Mauchly’s Test. Both analyses were then tested using Tukey’s post-hoc analysis to 

evaluate the significance of difference at a confidence level of 0.05.  

4.3 Results and discussion 

4.3.1 Effect of PEF on SV cooking on endogenous enzyme activities of beef brisket 

In order to validate the proposed mechanism that PEF tenderises meat as a result of the 

release of lysosomal proteases into the cytosol, the activities of the lysosomal proteases 

in the cytosolic extract of both control and PEF-treated muscles were quantified. The 

specific activities of the cathepsins B, B+L, H and D of the control and PEF-treated 

brisket at different SV cooking times are depicted in Figure 4-3. Prior to SV cooking 

(time = 0 h), there was no significant difference in the specific activities of the cathepsins. 

Although PEF-treated muscles had higher specific activity of cathepsin B, the difference 

was insignificant. The specific activities of the cathepsins in the cytosol of PEF-treated 

samples were not increased by the action of PEF. This could signify that low intensity 

PEF treatment does not have an electroporation effect on the lysosomal membrane of the 

samples. As the lysosomes are localised within cytoplasm which is high in electrolytes, 

higher frequency electric fields have to be used to disrupt the cytosolic contents (Saito et 

al., 2016). High voltage nano-second electric pulses have been reported to affect cell 
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 organelles, such as lysosomes (Batista Napotnik et al., 2016). However, it is possible that 

the lysosomes were ruptured during the homogenisation process for cytosolic 

sarcoplasmic extraction. To verify if the homogenisation process is appropriate, the 

activity of cathepsin B+L in the lysosomal fraction of the control and PEF-treated raw 

samples was determined. There was still extractable lysosomal enzymes activity of both 

control and PEF-treated raw muscles. No significant difference was observed in the 

activity of the lysosomal cathepsin B+L between the control untreated (1.4 ± 0.1 

FU/min/g meat) and PEF-treated samples (1.2 ± 0.4 FU/min/g meat). These findings 

showed that the homogenisation during the extraction process was appropriate and did 

not rupture the lysosomes. In addition, the muscles used in this experiment were frozen-

thawed before PEF processing and were frozen thawed again after sampling and before 

extraction. Freezing and thawing might result in the rupture of lysosomes, masking the 

electroporation effect of PEF on the lysosomes. Rapid freezing and thawing without the 

use of cryo-protectant has been reported to rupture lysosomes of living cells (Huebinger, 

2018). Kaur et al. (2020) also reported an increase in cathepsin B activity in the frozen-

thawed beef brisket after storage at -20 ℃ for 4 days when compared to the samples 

stored at 4 ℃. The increment in cathepsin B activity was suggested to be due to the 

formation of ice crystals which may have ruptured the lysosomes, resulting in the release 

of the cathepsins. Thus, in future experiments, fresh samples should be used, and the 

endogenous enzymes activity should be quantified immediately after PEF treatment, to 

eliminate the effect of freezing and thawing on the lysosomes. 

In addition, PEF treatment might have weakened the lysosomal membrane integrity, 

causing the membrane to rupture more easily than the untreated membrane at elevated 

temperatures, such as during low temperature cooking. Higher ageing temperatures (22 ℃ 

for 4 h followed by 12 ℃ for 8 h) of Longissimus dorsi muscles (animal source not 
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 mentioned) resulted in higher free enzyme activities of lysosomal enzymes cathepsin C 

and β-glucuronidase than the lower ageing temperature (2 ℃ for 12 h), suggesting 

elevated temperatures facilitate the rupture of the lysosomes (Moeller et al., 1976). An 

increase in the activity of cathepsin B+L in the soluble fraction and decreased activity in 

the membrane fraction of the marinated minced bovine M. sternomandibularis were 

observed when the marination temperature increased from 15 ℃ to 30 ℃, suggesting an 

enhanced release of lysosomal enzymes at a higher temperature (Ertbjerg et al., 1999). 

As such, the activities of the cathepsins at different time points during low temperature 

cooking were examined. As shown in Figure 4-3, there was no significant difference in 

the specific activities of the cathepsins between the control and the PEF-treated meat at 

different cooking time points at 60 ℃.  

It was observed that the specific activities of the cathepsins dropped during the first 0.5 h 

of SV cooking at 60 ℃, especially for cathepsin H. No activity of cathepsin H was 

detected in both control and PEF-treated muscles after 0.5 h of cooking. Cathepsin H 

extracted from rabbit Longissimus dorsi muscles was reported to be heat-stable up to 50 ℃ 

and lost its activity completely after 10 min of incubation at 60 ℃ and above (Matsuishi 

et al., 2003). Kaur et al. (2020) also found that no extractable activity of cathepsin H was 

detected in the beef brisket after cooking at 55 ℃, 60 ℃, 65 ℃, and 70 ℃ for 1 h. They 

suggested that cathepsin H is unlikely to contribute to meat tenderisation during SV 

cooking due to its relatively low heat stability.  

In contrast, the initial specific activities of cathepsins B and B+L of both control and 

treated muscles decreased more gradually after 0.5 h of cooking. The specific activity of 

cathepsin B of the control and PEF-treated muscled reduced by 41.9 % and 44.8 %, 

respectively, after 0.5 h of cooking. As for the specific activity of cathepsin B+L, the 



 

 

102 Chapter 4  

 initial activity was reduced by 54.0 % and 44.3 % in the control and PEF-treated samples 

correspondingly. The specific activities of cathepsins B and B+L continued to lose about 

99.8 % and 93.7 % of their initial activities respectively in the control samples after 1 h 

of cooking. Comparable observations were made for the PEF-treated samples where their 

initial specific activities of cathepsins B and B+L decreased by 98.2 % and 95.7 % 

respectively after SV cooking for an hour. The activities of cathepsins B and B+L of both 

samples were completely lost after 5 h of SV cooking at 60 ℃. A similar observation was 

made by Kaur et al. (2020), where the activities of cathepsins B and B+L of the beef 

brisket lost significantly after 1 h of SV cooking at 60 ℃, and their activities were 

completely lost after 5 h of cooking. However, the activities of cathepsin B and L were 

still measurable in Semitendinosus muscles obtained from both cows and young bulls 

after cooking at 63 ℃ for 19.5 h (Christensen et al., 2013). This difference might be due 

to the properties of different meat cuts and post-slaughter handling of meat samples.  

As for cathepsin D, the initial specific activity of the control and PEF-treated muscles 

dropped by 43.8 % and 38.0 % respectively after cooking for 0.5 h. No activity was 

detected after 1 h of cooking. Draper and Zeece (1989) found that Cathepsin D extracted 

from a bovine heart lost 50 % of its initial activity after incubation at 60 ℃ for 30 min, 

which is similar to the findings of this experiment. Sous vide cooking time was found to 

have a significant interaction between the specific activities of the cathepsins (p < 0.05), 

but PEF treatment was not.  

As most of the cathepsins were inactivated after SV cooking at 60 ℃ for an hour, 

multistage SV cooking could be implemented with a lower initial cooking temperature to 

promote the proteolytic activity of the cathepsins (Ismail et al., 2019; Uttaro et al., 2019). 

The activities of cathepsins B and L increased in porcine Semitendinosus and Longissimus 
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 dorsi when incubated at temperatures from 48 to 58 ℃ (Christensen, Ertbjerg, et al., 

2011). Increasing activities of cathepsins B, L, and H were also observed in beef brisket 

cooked at 50 ℃ for the first 5 h (Kaur et al., 2020). Higher temperature cooking could be 

done at the final stage of multi-stage SV cooking for microbiological safety (Purslow, 

2018). 
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Figure 4-3. The specific activities of cytosolic cathepsins B, B+L, H and D extracted from the 

control ( ) and the PEF-treated ( ) meat after SV cooking for 0, 0.5, 2 and 5 h at 

60 ℃.  
There was no significant difference in enzyme activities between treatments, but there were differences in 

enzyme activities for different SV cooking times (p < 0.05). There was no significant interaction between 

treatment and SV cooking time. Data points with different letters within the same graph differ significantly 

(p < 0.05). Error bars represent the standard deviation. N = 3. 
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 4.3.2 Effect of PEF and SV cooking on muscle protein digestibility in vitro 

4.3.2.1 Tricine SDS-PAGE 

The proteolysis of the meat proteins during in vitro oral-gastro-small intestinal digestion 

was studied using tricine SDS-PAGE (Figure 4-4). During 62 min of in vitro oral-gastric 

digestion, some differences in the intensities of the protein bands were observed. After 

32 min of simulated oral-gastric digestion, the band intensities of the MHC (220 kDa) 

and C-protein (140 kDa) of the digest of the PEF-treated SV-cooked muscles were lighter 

than the digest of the control SV-cooked muscles, indicating more breakdown of these 

proteins in the former. In addition, the intensity of the band with molecular weight (MW) 

of 36 kDa of the digest of PEF-treated SV-cooked muscles was higher than the control 

untreated SV-cooked meat digest. A new band with MW 34 kDa was observed in the 

digest of the treated sample only. Protein bands with molecular weight of 36 kDa and 34 

kDa have been reported to be the α- and β-subunit of the β-actinin respectively (Obinata 

et al., 1981). Similar observations were also made at the end of the simulated oral-gastric 

digestion (62 min), with the PEF-treated SV-cooked samples displaying improved gastric 

proteolysis compared to the control SV-cooked samples. 

After 122 min of in vitro oral-gastro-small intestinal digestion, high MW proteins (MW > 

50 kDa) of both control SV-cooked and PEF-treated SV-cooked samples were fully 

digested by the action of pancreatin. A protein band with a MW of 47 kDa was found in 

the digest of control SV-cooked meat but not in the digest of the PEF-treated SV-cooked 

meat. This band has previously been identified as β-enolase (Lindahl et al., 2010) or the 

degradation product of desmin during aging process (Kaur et al., 2016). An additional 

hour of digestion resulted in the complete disappearance of this band in the digest of 

control SV-cooked meat. This observation shows that the protein corresponds to this band 
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 (47 kDa) was digested faster in the PEF-treated SV-cooked meat. Moreover, the bands 

with MW of 34 kDa, 32 kDa, and 31 kDa were found in both samples at the end of 122 

min of simulated digestion, with the intensities of these bands higher in the control SV-

cooked meat digests. The protein bands with MW of 34 kDa and 32 kDa (unidentified 

protein) were not detected in the digest of both the control and the treated samples at the 

end of 182 min of simulated digestion. At the same time, the intensity of the band with 

MW of 31 kDa (unidentified protein) was further reduced, with a higher band intensity 

found in the digest of control SV-cooked samples. Furthermore, a new band with a MW 

of 26 kDa, which could be the hydrolysis product of higher MW proteins, formed only in 

the digest of PEF-treated SV-cooked meat (Kaur et al., 2014). These observations 

demonstrated that the PEF-treated SV-cooked meat was better hydrolysed when 

compared to the untreated SV-cooked meat during simulated digestion.  Bhat, Morton, 

Mason, Jayawardena, et al. (2019) also observed a greater and faster proteolysis of PEF-

treated cooked beef. He proposed that PEF treatment resulted in protein structural changes 

and improved membrane permeability in meat, increasing the availability of proteolytic 

sites to digestive enzymes. Overall, the SDS-PAGE analysis demonstrated that PEF 

treatment influenced the digestive properties of the SV-cooked meat, where the protein 

and peptide profile of the meat digests was modified. 
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Figure 4-4. Tricine SDS-PAGE electrophoretogram showing the protein profile of the digests of control SV-cooked and PEF-treated SV-cooked meat during 

simulated digestion.  
L7 and L12 are the molecular weight standard, labelled in kDa. L1, L3 and L5 denote control SV-cooked samples at 2, 32 and 62 min of oral-gastric digestion respectively. L2, 

L4 and L6 denote PEF-treated SV-cooked samples at 2, 32 and 62 min of oral-gastric digestion respectively. L8 and L10 represent control SV-cooked samples at 122 and 182 

min of oral-gastric-small intestinal digestion respectively. L9 and L11 represent PEF-treated SV-cooked samples at 122 and 182 min of oral-gastric-small intestinal digestion 

respectively. The protein were identified on the electrophoretogram as described by Kaur et al. (2014), Kaur et al. (2016), and Boland et al. (2019). MHC stands for myosin 

heavy chain.



 

 

108 Chapter 4  

 4.3.2.2 Ninhydrin-reactive amino nitrogen 

The ninhydrin-reactive amino nitrogen released by meat samples at different digestion 

time points was determined as a quantitative measure of in vitro protein digestibility. A 

higher percentage of ninhydrin-reactive amino nitrogen indicates a greater extent of 

protein hydrolysis by the digestive enzymes. As summarised in Table 4-2, there was no 

difference in the percentage of ninhydrin-reactive amino nitrogen released after 122 min 

of in vitro oral-gastro-small intestinal digestion between the control SV-cooked and the 

PEF-treated SV-cooked meat (p > 0.05). However, at the end of 182 min of simulated 

digestion, there was significantly more ninhydrin-reactive amino nitrogen released from 

the PEF-treated SV-cooked meat than the control SV-cooked meat. Overall, the combined 

PEF-SV process increased the in vitro oral-gastro-small intestinal protein digestibility by 

approximately 28.6 %, which is in agreement with the findings of an increased proteolysis 

of the PEF-treated SV-cooked meat as discussed in section 4.3.2.1. However, Alahakoon 

et al. (2019) reported that the in vitro protein digestibility of beef brisket was unaffected 

by the combined PEF-SV cooking process. Although the experiment was conducted with 

the same meat cut (beef brisket) and processing parameters (0.7 kV/cm, 90 to 100 kJ/kg), 

the authors reported no significant difference in the trichloroacetic acid (TCA)-soluble 

peptides concentration between the control SV-cooked and PEF-treated SV-cooked meats 

at the end of the simulated digestion. This might be due to the difference in the assay used 

in determining the extent of proteolysis. Measuring the degree of hydrolysis with TCA-

soluble peptides concentration assumes that all the intact proteins are precipitated by TCA 

and only small peptides and amino acids remain in the soluble fraction (Rutherfurd, 2010). 

However, this assumption might be incorrect as TCA has been reported unable to 

precipitate up to 70 % of proteins or peptides larger than 10 kDa from ileal digest. Thus, 

quantifying TCA-soluble peptides might overestimate the degree of proteolysis if the 
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 digest contains more of the larger peptides that cannot be precipitated by TCA. In addition, 

this method does not quantify the cleavage of peptide bonds (Rutherfurd, 2010). Pulsed 

electric field treatment (0.6 kV/cm, 73.28 kJ/kg) was found to improve the in vitro protein 

digestibility of water bath-cooked bovine Semitendinosus (core temperature of 75℃) by 

approximately 2 %, based on the protein content left undigested in the samples, quantified  

using the Kjeldahl method (Bhat, Morton, Mason, Jayawardena, et al., 2019). 

Table 4-2. Ninhydrin-reactive amino nitrogen released from the control SV-cooked and the PEF-

treated SV-cooked meat after in vitro oral-gastric (2, 32 and 62 min) and further small intestinal 

(122 & 182 min) digestion.  

Cumulative digestion 

time (min) 
2 32 62 122 182 

Ninhydrin-

reactive 

amino 

nitrogen 

(%) 

Control

-SV 
1.9 ± 0.0aA 2.3 ± 0.4aA 2.7 ± 1.0aA 8.1 ± 1.2bA 9.8 ± 0.6cA 

PEF-SV 1.9 ± 0.0aA 2.7 ± 0.6abA 3.4 ± 1.0bA 8.4 ± 0.4cA 12.6 ± 0.7dB 

Values with different lower-case letters within the same row differ significantly (p < 0.05). 

Values with different upper-case letters within the same column differ significantly (p < 0.05).  

Data are shown as mean ± standard deviation of mean. N = 4 (four replicates with 3 measurements from 

each replicate). 

 

4.3.2.3 Structure of digested meat samples 

The microstructure of the control SV-cooked and the PEF-treated SV-cooked meat at 

different stages of in vitro digestion is shown in Figure 4-5. Pulsed electric field treatment 

did not affect the microstructure of the SV-cooked meat. The microstructure of both 

control and PEF-treated samples appeared to be similar after SV cooking. Although a 

reduction in muscle cell sizes and the formation of gaps between muscle fibres were 

observed in PEF-treated raw muscles by Gudmundsson and Hafsteinsson (2001), these 

observations were not detected in PEF-treated SV-cooked muscles in this experiment. 

This might be due to the effect of SV cooking on muscle structure being larger and thus 

masking the effect of PEF on the muscle microstructure. After 62 min of in vitro oral-
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 gastric digestion, the muscle structure of both control SV-cooked and PEF-treated SV-

cooked muscles was damaged at the edges of the meat sections. Further in vitro digestion 

with the addition of pancreatin at pH 7.0 ± 0.1 for 2 h resulted in more breakdown of the 

muscle cells and connective tissue, while the disruption extended towards the core of the 

samples. The damage to the muscle structure was greater in the PEF-treated SV-cooked 

samples at the end of both in vitro oral-gastric and oral-gastro-small intestinal digestion. 

This indicates that the PEF-treated SV-cooked brisket was more susceptible to enzymatic 

hydrolysis by the digestive enzymes, which is in agreement with the outcomes from the 

SDS-PAGE and ninhydrin-reactive amino nitrogen analysis as mentioned in section 

4.3.2.1 and 4.3.2.2, respectively. Swollen muscle cells were observed in both control SV-

cooked and PEF-treated SV-cooked meat after 62 min of simulated oral-gastric digestion, 

with an enhanced swelling effect observed in the PEF-treated meat. Bordoni et al. (2014) 

observed the swelling phenomena of muscle cells due to the penetration of the saliva and 

gastric juices into the meat matrix during simulated digestion. Swelling of muscle cells 

during gastric digestion has been reported to be due to the effect of acidic gastric juice 

but not the action of pepsin (Astruc, 2014b). Astruc detected an increment in the muscle 

cell size in cooked meat samples incubated in simulated gastric juice without the addition 

of pepsin. Acidic pH (pH < 3.52) resulted in an increment in the net positive charges on 

the myofibrillar proteins which increased the electrostatic repulsion forces between 

protein molecules (Ke et al., 2009). This might result in larger spaces between the 

myofilaments, allowing the penetration of the digestive juice into the meat matrix. In 

addition, PEF has been reported to lead to the formation of pores in cell membranes due 

to electroporation (Alahakoon et al., 2016). The formation of pores might enhance the 

diffusion of digestive juices into the meat matrix. The enhanced penetration of digestive 

juices facilitates the accessibility of digestive enzymes to their substrates, enabling 
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 enzymatic protein hydrolysis. Thus, the increased enzymatic breakdown of PEF-treated 

SV-cooked muscle structure could be a consequence of the enhanced diffusion of 

digestive juices, displaying as more swollen cells of the PEF-treated samples during 

simulated digestion as observed in Figure 4-5, promoting the action of digestive enzymes.  

 

 



1
1
2

 
 

 

  

 

 

C
h
a
p
ter 4

  

 
Figure 4-5. Histological sections of the control SV-cooked and the PEF-treated SV-cooked meat at different digestion time points, showing more severe 

structural degradation of PEF-treated meat by the digestive enzymes at the end of simulated digestion. Connective tissue was stained in red by Sirius Red dye 

and muscle cells were stained in yellow by picric acid. 
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As presented in Figure 4-6, the ultrastructure of the control SV-cooked and PEF-treated 

SV-cooked meats was similar. Pulsed electric field treatment did not affect the 

ultrastructure of the SV-cooked meat. Ultrastructural modification has been reported in 

PEF-treated raw muscle. Elongated sarcomeres (Figure 3-2) and sarcomeres with jagged 

edges (Faridnia et al., 2015) were found in low intensity PEF-treated uncooked meat. 

However, these were not observed in the PEF-treated SV-cooked meat. In contrast, both 

control SV-cooked and PEF-treated SV-cooked meats had coagulated myofibrils 

accompanied with the formation of granular aggregates, which have previously been 

detected in thermally treated muscles (Leander et al., 1980; Zhu, Kaur, Staincliffe, et al., 

2018). These observations show that SV cooking had a major effect on the muscle 

ultrastructure when compared to PEF treatment. In addition, degradation of the 

sarcomeres along the Z-disks was observed in both control and PEF-treated muscles after 

SV cooking (white arrows in Figure 6A and 6C). The effect of SV cooking on the 

degradation of sarcomeres along the I-band and Z-disk junctions is considered minor, as 

the denaturation temperatures of the major I-band and Z-disk associate proteins are 

mostly higher than the 60 ℃ (SV cooking temperature). For instance, the actin, which is 

the major component of I-bands and the core of a Z-disk, has maximum thermal 

denaturation temperatures (Tmax) range from 70 to 80 ℃ (Knoll et al., 2011; Purslow et 

al., 2016). Nevertheless, prolonged heating of meat might result in a small proportion of 

actin denaturation at a temperature below its Tmax, but above its denaturation onset 

temperature (Martens et al., 1982). Disintegration of thin filaments at the I-band and Z-

disk junctions were observed in bovine muscles cooked to an internal temperature of 63°C, 

and the extent of disintegration increased as the final internal temperature raised to 73 ℃ 

(Leander et al., 1980). The degradation of the sarcomeres along the I-band and Z-disk 

junctions could also be due to postmortem proteolysis (Astruc, 2014b) and/or protein 
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 hydrolysis during the initial stage of SV cooking by the action of endogenous enzymes. 

The modification of the I-band and Z-disk junctions has been detected in aged muscles 

as a result of postmortem proteolysis (Astruc, 2014b; Ouali, 1990). Endogenous enzymes 

cathepsin H, and cathepsins B, L, and D, were found to be active in the first 30 min and 

1 h of SV cooking, respectively (Figure 4-3). Structure disruption due to postmortem 

proteolysis and the action of endogenous enzymes during low temperature long time 

cooking might promote the action of digestive enzymes during subsequent digestion 

(Astruc, 2014b). 

After 182 min of in vitro oral-gastro-small intestinal digestion, the breakdown of the 

myofibrils was observed in both control SV-cooked and PEF-treated SV-cooked muscles 

(Figure 4-7). The Z-disks were degraded and the sarcomeres were broken down. More 

severe Z-disk and sarcomere disruption was observed in the digested PEF-treated SV-

cooked muscles than in the digested control SV-cooked muscles. This shows that the 

PEF-treated SV-cooked muscles were more susceptible to proteolysis by the digestive 

enzymes, which is consistent with the microstructure analysis as discussed above. In 

addition, more coagulated and elongated I-bands were found in the digested PEF-treated 

SV-cooked muscles. This was also observed in the digested raw PEF-treated bovine 

Longissimus thoracis muscles as shown in Figure 3-5, where the digested PEF-treated 

raw muscles had better protein digestibility than the untreated samples. The more 

coagulated I-bands of the digested PEF-treated muscles might be due to more acid 

denaturation of the protein by the gastric juices, which exposed buried peptide bonds for 

the access of digestive enzymes, leading to improved proteolysis (Chian et al., 2019; 

McGuire & Beerman, 2012).  
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Figure 4-6.Transmission electron micrographs showing the ultrastructure of the control (C) SV-

cooked (A, B) and the PEF-treated SV-cooked (C, D) beef brisket before simulated oral-gastro-

small intestinal digestion.  
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Figure 4-7. Transmission electron micrographs showing the ultrastructure of the control (C) SV-

cooked (A, B) and the PEF-treated SV-cooked (C, D) beef brisket after 182 min of simulated 

oral-gastro-small intestinal digestion.  
The digested PEF-treated SV-cooked meat had more damaged sarcomeres and more coagulated and 

elongated I-bands, indicating more severe proteolysis by the digestive enzymes. 
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4.4 Conclusions  

The results of this experiment provided insights on the effects of low intensity PEF on 

the activities of the cytosolic cathepsins. There was no significant difference in the 

specific activities of cathepsins in the cytosolic and lysosomal extracts of both control 

and PEF-treated raw samples. This indicates that PEF treatment did not promote the 

release of cathepsins from lysosomes by the electroporation. However, it is possible that 

the lysosomes were ruptured during the freezing and thawing process of the meat samples. 

Thus, it is recommended to conduct future studies using unfrozen meat samples to 

eliminate the effect of freezing and thawing on the lysosomes. Furthermore, the 

endogenous enzymes activity should be quantified immediately after PEF treatment. 

There was also no significant difference observed in the specific activities of the 

cathepsins between the control and PEF-treated samples during subsequent SV cooking 

at 60 ℃. The specific activities of the cathepsins were found to be affected significantly 

by the SV cooking time at 60 ℃ but not by PEF treatment. Multistage SV cooking with 

lower initial and higher final cooking temperature could be adopted to promote the 

enzymatic hydrolysis by the cathepsins for meat tenderisation, while ensuring 

microbiological safety of meat.  

The in vitro protein digestibility of meat was improved by the combined PEF-SV process, 

where the PEF-treated SV-cooked meat had higher ninhydrin-reactive amino nitrogen (p 

< 0.05) released at the end of the simulated digestion and improved proteolysis observed 

using tricine-SDS-PAGE, compared to the control SV-cooked meat. The improvement in 

protein digestibility might be due to the disruption of muscle structure by the combined 

PEF-SV process. Although the muscle micro- and ultrastructure of the control SV-cooked 

and PEF-treated SV-cooked meat was similar, their muscle structures changed differently 
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 during simulated digestion. More swollen muscle cells were observed in the PEF-treated 

SV cooked meat after 62 min of simulated oral-gastric digestion, suggesting an enhanced 

penetration of digestive juices in the treated samples. The enhanced penetration of 

digestive juices is postulated be due to the formation of pores in muscle cell membranes 

as a result of the electroporation effect of PEF, facilitating the accessibility of digestive 

enzymes to their substrates. More damaged muscle microstructure and ultrastructure was 

also detected in the PEF-treated SV-cooked muscles at the end of in vitro oral-gastro-

small intestinal digestion, compared to the control cooked samples. These observations 

show that a combination of PEF treatment and SV cooking process resulted in muscle 

structural changes, leading to an improvement in vitro protein digestibility of meat. 
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Chapter 5 4Shockwave (SW) processing of beef brisket in conjunction 

with sous vide (SV) cooking: Effects on protein structural 

characteristics and muscle microstructure 

5.1 Introduction 

Emerging technologies for the production of high-quality products are receiving 

considerable interest from the meat industry. Technologies such as SW processing 

(Bolumar et al., 2013; Claus, 2017), PEF processing (Faridnia et al., 2014), SV cooking 

(Roldan et al., 2013) and exogenous enzyme technologies (Zhu, Kaur, Staincliffe, et al., 

2018) have been investigated in designing processes that may effectively improve meat 

quality, especially those low value tougher meat cuts. Low value meat cuts such as brisket 

(Superficial and Deep pectoral) usually have a problem of background toughness due to 

high connective tissue content (Boland et al., 2019). Processing may modify the protein 

profile and induce structural changes to meat, affecting the organoleptic and nutritional 

quality of meat (Listrat et al., 2016). 

Shockwaves are mechanical high-pressure pulses generated in liquids or gases that can 

result in underwater pressure of up to 1 GPa (Bolumar et al., 2013). The pressure waves 

travel through media in fractions of milliseconds. These pressure waves can be generated 

by using explosive material or conversion of electrical energy into mechanical energy. 

The SW process can be conducted in either batch or continuous mode. Shockwave 

processing using underwater electrical discharge in a continuous way has been described 

as a much safer, cheaper and a more reproducible technique (Bolumar et al., 2013; 

Bolumar & Toepfl, 2016). Microbial and chemical cross-contamination are prevented as 

the meat is vacuum-packed before processing, and the use of explosives is avoided. 

However, there are challenges, such as damage of packaging material during processing, 

https://doi.org/10.1016/j.foodchem.2020.128500
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 which have to be addressed before application in the meat industry (Bolumar & Toepfl, 

2016; Claus, 2017). Shockwave processing causes muscle structure modification, such as 

myofibrillar fragmentation along the Z-disks (Zuckerman & Solomon, 1998) and 

disruption of collagen fibrils (Zuckerman et al., 2013). However, the effect of SW on 

muscle protein molecular structure is unknown. Contrary findings are to be found in the 

literature about the effect of SW on muscle protein profiles (Bolumar et al., 2014; 

Bowker, Fahrenholz, Paroczay, Eastridge, et al., 2008). 

Sous vide cooking, which is commonly adopted in restaurants, has also gained attention 

from the meat industry for manufacturing tender and juicy products. Sous vide cooking 

is a heating process where food is heated at a precisely controlled temperature under 

vacuum, usually in a water bath for a long time, at temperatures lower than usual cooking 

methods (Baldwin, 2012; Boland et al., 2019). Unlike other forms of heating such as 

boiling, grilling and roasting, SV cooking enables mild heating of meat at precise lower 

temperatures. Sous vide cooking of beef is normally conducted at 58 ℃ to 63 ℃, where 

the temperature is high enough to solubilise collagen and inactivate microbes, for 10 to 

48 h (Roldan et al., 2013), and low enough to avoid excessive denaturation of the muscle 

protein (Baldwin, 2012). This leads to milder shrinkage of muscle fibres, which results in 

less water expulsion from the meat. Collagen starts to shrink and is converted to gelatine 

from 60 ℃, which decreases the interfibre adhesion, leading to meat tenderisation.  

As both SW processing and SV cooking are found to affect muscle proteins and structure, 

a combination of these two processes could potentially create new products with 

enhanced organoleptic and nutritional properties. However, to the best of our knowledge, 

there is no information available in the literature on how this process combination would 

affect muscle proteins and structures, which are key determinants in producing quality 
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meat products. Hence, the objective of this chapter is to study the effect of SW processing 

alone and subsequent SV cooking on meat proteins and structure of the low value beef 

brisket. The focus of this chapter is to describe the properties of meat proteins and muscle 

structures, particularly their SW and heat sensitivity and from this to provide 

underpinning knowledge that can guide the development of new meat products with 

enhanced organoleptic and nutritional properties. The textural properties and the in vitro 

protein digestibility of the SW-treated SV-cooked meat will be presented in chapter 6. 

5.2 Materials and methods 

5.2.1 SW processing and SV cooking of beef brisket 

Three whole briskets (Deep and Superficial pectoral muscle, left side) from Simmental 

beef (21 – 22 months old, 485 ± 48 kg pre-slaughter weight) were obtained from a local 

slaughterhouse (Birkenfeld, Germany). The average pH of the whole brisket was 5.73 ± 

0.15, measured at ten different points per whole brisket using a handheld pH meter (Testo 

205, Testo SE & Co. KGaA, Lenzkirch, Germany). After trimming off the visible 

subcutaneous fat and connective tissue, each brisket was cut perpendicularly to the muscle 

fibres, into eight steaks which were comparable in size (approximately 35 mm in width x 

180 mm in length x 50 mm in height, 400 g in weight). The steaks were vacuum-packed 

individually in flexible transparent polyamide/polyethylene bags (SAS Boulegon Parry, 

Clermont Ferrand, France) using a vacuum packer (C200, Multivac, Wolfertschwenden, 

Germany) (Rohlik et al., 2017). As the muscle was not homogenous throughout each 

whole brisket, the 1st, 3rd, 5th and 7th steaks were allocated as control and the 2nd, 4th, 6th, 

and 8th steaks were assigned as SW-treated samples to minimise the effect of sample 

variation within an animal (Figure 5-1). The vacuum-packed steaks were exposed to 

electro-discharging SW prototype system equipped with a conveyor belt (DIL, 
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 Quakenbrueck, Germany) (Figure 5-2). The SW treatment was conducted at a frequency 

of 0.57 Hz, a voltage of 35 kV and a capacitance of 18 µF, resulting in a SW intensity of 

11 kJ/pulse, calculated based on the equation:  

Energy = ½ x capacitance x voltage2 ------------Eq. (5-1) 

(Koita et al., 2017). 

The belt speed was set to 50 % (equivalent to 2.22 cm/s) and total of four pulses were 

received by each piece of brisket steak. The average temperature of the samples before 

and after the SW treatment was 9.6 ± 0.4 ℃ and 11.8 ± 0.5 ℃ respectively, measured 

using an infrared thermometer (Testo 831, Testo SE & Co. KGaA, Lenzkirch, Germany). 

After the SW treatment, half of the control and half of the SW-treated samples from each 

whole brisket were kept raw at 4 ℃. The remaining half of both control and SW-treated 

steaks were SV-cooked at 60 ℃ for 12 h in a water bath (Figure 5-1). A cooking 

temperature of 60 ℃ was chosen as this is the minimum allowable meat cooking 

temperature according to the regulations of some countries (Purslow, 2018). The cooking 

time was set after conducting an informal sensory evaluation on meat SV-cooked for 

different times at 60 ℃. No visible packaging failure was detected throughout the SW 

and SV cooking process. Samples for structural analyses were collected immediately after 

the treatment. The remaining samples were snap-frozen using liquid nitrogen and were 

stored at -80 ℃ for other analyses.   
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Figure 5-1. Meat sampling position of the control untreated (1st, 3rd, 5th, 7th steaks) and SW-treated 

(2nd, 4th, 6th, 8th steaks; 35 kV, 11 kJ/pulse) samples on each brisket slab to minimise muscle 

variation within an animal.  
Each steak was cut into 180 mm by length, 35 mm by width and 50 mm by thickness, of approximately 400 

g. Subsequent SV cooking was done on the 1st and 5th of control untreated steaks as well as the 2nd and 6th 

of SW-treated steaks at 60 ℃ for 12 h while the remaining 3rd, 4th, 7th and 8th steaks were kept raw.  

 

 
Figure 5-2. A schematic diagram showing the setup of the SW treatment of the beef brisket steaks.  
The SW treatment was conducted at a frequency of 0.57 Hz, a voltage of 35 kV and a capacitance of 18 µF, 

resulting in a SW intensity of 11 kJ/pulse. The vacuum-packed samples were conveyed along the SW 

prototype at a speed of 2.22 cm/s so that each brisket steak received a total of four SW pulses when the 

steak travelled under the spark source. The distance between the samples and the spark source was 

maintained at 20 cm. Hold-downs were installed to ensure the samples were fully submerged during the 

SW treatment. The SW treatment was performed at room temperature and the average temperature of the 

samples before and after the treatment was 9.6 ± 0.4 ℃ and 11.8 ± 0.5 ℃ respectively. 
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 5.2.2 Differential Scanning Calorimetry (DSC) 

The protein thermal profiles of the control and SW-treated raw samples were determined 

as described in section 3.2.3 at a heating rate of 2 °C/min from 20 to 100 °C (Chian et al., 

2019). The DSC measurements were made in triplicate. 

5.2.3  Gel electrophoresis 

Whole muscle protein extraction for gel electrophoresis was performed as described by 

Lonergan et al. (2001) with slight modifications. In brief, 0.5 g of frozen muscle was 

homogenised with 8 mL of extraction buffer consisting 10 mM sodium phosphate and 2 % 

SDS at pH 7 using an overhead homogeniser (DIAX 600, Heidolph Instrument, Germany) 

at 13500 rpm for 1 min. The homogenate was centrifuged at 1500 x g for 15 min and the 

protein concentration of the supernatant was quantified using Bio-Rad protein assay dye 

(5000006, Bio-Rad Laboratories, Hercules, CA, USA) (Bradford, 1976). Briefly, 100 µL 

of the samples was mixed with 5 mL of the diluted protein assay dye (dye: water = 1: 4), 

followed by incubation at 20 ℃ for 5 min before measuring the absorbance at 595 nm. 

The absorbance of bovine serum albumin (A1933, Sigma-Aldrich, Saint Louis, MO, USA) 

with different concentrations at 595 nm was determined to construct a standard curve. 

5.2.3.1 Non-reducing and reducing SDS-PAGE  

The extracted proteins were mixed with sample buffer (200 mM Tris-HCl, pH 6.8, 40 % 

glycerol, 2 % SDS, 0.04 % Coomassie Blue G-250) (1610739, Bio-Rad Laboratories, 

Hercules, CA, USA), in 1:1 ratio, with (reducing) or without (non-reducing) 5 % β-

mercaptoethanol (M6250, Sigma-Aldrich, Saint Louis, MO, USA) (He et al., 2018). The 

mixtures were then heated at 100 ℃ for 4 min followed by loading onto a polyacrylamide 

gel (4 % stacking gel and 10 % separating gel) with a final protein concentration of 20 µg 
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per well. The electrophoresis was executed with a Mini-PROTEAN® electrophoresis 

system (Bio-Rad Laboratories, Hercules, CA, USA) at a constant voltage of 200 V for an 

hour or until the tracking dye front was just coming out of the gel. The gel was stained, 

scanned and analysed as described in section 3.2.4.4. A total of three gels were prepared 

for each treatment. 

5.2.3.2 Two-dimensional non-reducing/reducing SDS-PAGE (2D-PAGE) 

Two-dimensional non-reducing/reducing SDS-PAGE (2D-PAGE) was conducted 

according to Dave et al. (2013) with some modifications. Whole muscle protein extracts 

were separated by SDS-PAGE in non-reducing conditions as described in section 5.2.3.1. 

The gel strip of approximately 7 mm in width was excised and were reduced using 0.2 M 

dithiothreitol (DTT) (1610611, Bio-Rad Laboratories, Hercules, CA, USA) solution at 

56 °C for 20 min, followed by washing with excess distilled water for 10 min. The 

reduced gel strip was glued horizontally on the top of a 4 to 20 % Mini-PROTEAN® 

TGXTM gel (4561103, Bio-Rad Laboratories, Hercules, CA, USA) using molten agarose. 

The electrophoresis was run and the gel was scanned as described in 5.2.3.1. A total of 

three gels were prepared for each treatment. 

5.2.4 Structure analysis   

After processing, the samples from each animal were cut into small blocks of 5 mm x 5 

mm x 5 mm followed by snap freezing in liquid nitrogen (−196 °C) chilled isopentane 

(−160 °C) (M32631, Sigma-Aldrich, Saint Louis, MO, USA) for at least 30 s. The frozen 

blocks were kept at −80 °C until use for molecular and microstructure analysis. Other 

samples were cut along the muscle fibre into strips of 10 mm x 3 mm x 3 mm and were 

fixed in 2.5 % glutaraldehyde (16210, Electron Microscopy Science, Hatfield, PA, USA) 
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 in 0.1 M sodium cacodylate buffer (12300, Electron Microscopy Science, Hatfield, PA, 

USA) at pH 5.6 overnight at room temperature before storage at 4 °C for TEM analysis. 

5.2.4.1 Fourier-transform infrared (FT-IR) microspectrometry for molecular structure 

analysis 

The cryofixed muscle cubes from each animal were sectioned transversely into 6 µm thick 

sections using a cryostat (CM1950, Leica Microsystems GmbH, Wetzlar, Germany) at -

20 °C. The sections were collected on a BaF2 window (BAFP13-1, Crystran Ltd, Dorset, 

United Kingdom) with IR spectroscopy compatibility and were air-dried at room 

temperature. The FT-IR microspectrometry analysis was performed as described by 

Motoyama et al. (2017) with modifications. In brief, the infrared spectra were acquired 

using a FT-IR microspectroscope (Nicolet iN10 MX, Thermo Scientific, Waltham, MA, 

USA) using a spatial resolution of 15 x 15 µm. For each section, at least 30 sampling sites 

for both myofibres and connective tissue were scanned with a total of 64 scans 

accumulated. The accumulated spectra were averaged and subtracted from a background 

spectrum obtained at the start of the scan, followed by analysis using the Unscrambler 

software (v9.8, Camo Software AS, Norway). Spectral corrections were performed using 

extended multiple signal correction (EMSC) to remove the effects of fluctuation in 

baseline due to light scattering and non-uniformity of sample thickness. The analysis was 

performed in triplicate (three different animals) for each treatment. 

5.2.4.2 Histochemistry for microstructure analysis 

The cryosectioning, Picro-Sirius Red staining and imaging process were performed as 

described in section 4.2.5.1. Sections were photographed at six different locations per 

replicate, followed by image analysis with ImageJ (1.52f, National Institute of Health, 
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Bethesda, MD, USA). The analysis was performed in triplicate (three different animals) 

for each treatment. 

5.2.4.3 Transmission electron microscopy for ultrastructure analysis 

Transmission electron microscopy (TEM) analysis was performed according to section 

4.2.5.2. The analysis was performed in triplicate (three different animals) for each 

treatment. 

5.2.5 Statistical analysis 

Statistical analysis for the DSC tests and muscle microstructural analysis was performed 

using one-way and two-way ANOVA respectively to evaluate the significance of difference 

at a confidence level of 0.05, followed by a post-hoc Tukey test using 

OriginPro 2018b (OriginLab Corporation, Northampton, MA, USA). Results obtained 

from the statistical analysis are reported as mean ± standard deviation of mean. The FT-IR 

spectra obtained were analysed using principal component analysis (PCA), a multivariate 

statistical analysis, to identify the differences between samples and correlate the differences 

to spectral bands. The PCA was run using the Unscrambler software (v9.8, Camo Software 

AS, Oslo, Norway). The computation of PCA was based on Non-linear Iterative Projections 

by Alternating Least-Squares (NIPALS) algorithm. Correlation loading plots derived from 

the first (PC1) and second (PC2) principal component X-loading plots were used to reveal 

and identify characteristic vibrational absorption bands. The spectral domain was focused 

on the 1500-1800 cm-1 range that includes the amide I and amide II band of proteins. 
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 5.3 Results and discussion 

5.3.1 Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry provides information on the overall heat conformation 

stability of proteins, and detects structural modification of proteins due to processing, 

either via a shift in thermal denaturation temperature and/or a change in the shape of the 

thermogram (Alsenaidy et al., 2014). Representative DSC thermograms for the samples 

and the numerical data are presented in Figure 5-3. The first, second, and third peaks are 

considered to signify the thermal denaturation of myosin; collagen and sarcoplasmic 

proteins; and actin, respectively (Chian et al., 2019). The thermal denaturation 

temperatures and enthalpy of the second peak of the SW-treated raw samples were lower 

than those of the untreated samples (p < 0.05), indicating the SW-treated samples had 

lower thermal stability of connective tissue, i.e. collagen, and sarcoplasmic proteins (e.g. 

myoglobin). Protein that is more thermally unstable is likely to denature at a lower 

temperature and require less energy to be denatured (Shao et al., 2018). The reduced 

thermal stability of collagen in the SW-treated samples is speculated to be due to the 

weakening and disruption of the their quaternary or tertiary structure (collagen triple 

helices), or both, induced by the extreme pressure changes during SW processing, 

rendering the muscle protein more liable to heat denaturation (Meyer, 2019). The 

reduction in the thermal stability enables the collagen of the SW-treated meat to be 

denatured, shrunk and solubilised more easily during subsequent SV cooking, which 

could potentially shorten the cooking time of the tough cuts and eventually reduce the 

production cost (Alahakoon et al., 2017). As collagen starts to shrink at 60 ℃, its triple 

helix tertiary and quaternary structure is destroyed, leading to the formation of random 

coils and water-soluble gelatine during subsequent heating (Baldwin, 2012; Koide, 2007; 
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Tornberg, 2005). The degree of this change is dependent on a few factors (e.g. collagen 

cross-linking), but it is likely that SV heating can decrease the background toughness by 

reducing the interfibre adhesion (Baldwin, 2012).  

There was no difference (p > 0.05) in the thermal denaturation temperatures and 

enthalpies of both myosin and actin between control and SW-treated raw meats. 

Nonetheless, the total thermal denaturation enthalpy of control untreated raw muscle was 

about 40 % higher than that of SW-treated raw muscles (p < 0.05). This suggests that less 

energy would be required for SV cooking of SW-treated meat, which could probably 

reduce the thermal energy and time required for processing. After undergoing SV cooking 

at 60 ℃ for 12 h, no peak was observed in the thermograms of both the control and SW-

treated samples (Figure 5-4), demonstrating that the major muscle proteins were 

denatured by the SV treatment. The DSC results provide an insight into the thermal 

stability of proteins in both control and SW-treated raw meats. However, the mechanism 

of muscle proteins unfolding during heating is very complicated and could not be 

interpreted just from the DSC results. The thermal denaturation of different muscle 

proteins occurs over a wide range of temperature and there are other minor muscle 

proteins (e.g. titin, tropomyosin and others) that may possibly contribute at a lesser extent 

to the three major peaks appeared on the DSC thermogram (Stabursvik & Martens, 1980).



1
3
0

 
 

 

 

 

C
h
a
p
ter 5

  

 

 

Figure 5-3. Thermal denaturation characteristics of both the control (C) and SW-treated raw beef brisket.  
Values with different letters within the same column differ significantly (p < 0.05). 

Data are shown as mean ± standard deviation of mean. N = 3 (3 replicates with 3 measurements from each replicate).  
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Figure 5-4. Differential scanning calorimetry thermograms showing the 3 peaks (attributed to myosin, collagen and sarcoplasmic proteins, and actin) of raw 

muscles. These peaks disappeared after 12 h of SV cooking at 60 ℃ in both the control (C) and SW-treated samples. 
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 5.3.2  Gel electrophoresis   

Under non-reducing conditions (Figure 5-5A), the profiles of proteins with molecular 

weight (MW) of equal to and less than 250 kDa of the control and SW-treated raw 

muscles were similar. Intense protein bands were observed in the sample loading wells 

of all of the samples, indicating the presence of large proteins and possibly cross-linked 

proteins, which could not travel through the stacking gel during the electrophoresis 

process. The intensity of these bands increased after SV cooking, especially in SW-treated 

SV-cooked sample (solid box in Figure 5-5A). The relatively more intense bands at the 

sample loading wells of SV-cooked samples are presumed to be due to the formation of 

protein aggregates as a result of protein denaturation, increased protein surface 

hydrophobicity, and/or through cross-linking such as disulfide bonding, during the 

cooking (He et al., 2018). The most intense band detected in the SW-treated SV-cooked 

meat suggests that more protein aggregates were formed compared to the control SV-

cooked sample, after the heat treatment.  

Under non-reducing conditions, bands with MW above 250 kDa were observed below 

the sample loading wells (dotted box in Figure 5-5A). However, under reducing 

conditions, these bands were not seen in both the control and SW-treated SV-cooked 

samples (dotted box in Figure 5-5B), demonstrating the reduction of disulfide bonds. 

Cooking causes the unfolding of the muscle proteins which can lead to protein 

aggregation promoted by the formation of disulfide bonds from exposed thiol groups (He 

et al., 2018). Thus, 2D non-reducing/reducing PAGE was performed to further investigate 

the disulfide bonding formed during the cooking. By reducing the non-reduced first 

dimension gel before running the second dimension, peptides that are cross-linked with 

disulfide bonds can be detected as they will not lie on the diagonal (Dave et al., 2013). 
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The electrophoretic mobilities of peptides cross-linked with disulfide bonds will be higher 

after reduction. No difference could be observed in the 2D-PAGE between the control 

and SW-treated SV-cooked samples, showing no new disulfide linkages were formed in 

SW-treated meat after SV cooking (Figure 5-6). 

 

Figure 5-5. Sodium dodecyl sulfate–polyacrylamide gel electrophoretogram showing the profiles 

of muscle proteins extracted from the control raw muscle, SW-treated raw muscle (SW Raw), 

control SV-cooked muscle (Control SV) and SW-treated SV-cooked muscle (SWSV) under (A) 

non-reducing conditions and (B) reducing conditions. MWM represents the molecular weight 

standards in kDa. 
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Figure 5-6. Two-dimensional non-reducing/reducing SDS-PAGE electrophoretogram of control 

and SW-treated SV-cooked muscles showing that no additional disulfide bonds have formed in 

SW-treated muscles after SV cooking. 

 

5.3.3 Muscle molecular structure 

As amide I (1600 to 1700 cm-1) and amide II (1500 to 1600 cm-1) vibrational bands reflect 

the polypeptide chain structure, the FT-IR spectra range from 1500 to 1800 cm-1 was used 

for the analysis of protein secondary structure of the control and SW-treated meat samples 

(Figure 5-7) (Motoyama et al., 2017). Principal component analysis of the FT-IR spectra 

of both the myofibres and connective tissue clearly discriminated the raw samples from 

the cooked ones (results not shown) as a consequence of the thermal protein denaturation 

(Astruc et al., 2012; Théron, Vénien, et al., 2014). Shockwave treatment did not change 

the spectral response of the connective tissue both before and after cooking (data not 

shown). This suggests that SW treatment did not affect the protein secondary structure of 

the connective tissue. The lowered in thermal stability of connective tissue in SW-treated 

meat is probably mainly due to the weakening in collagen triple helix tertiary and 

quaternary structure, as speculated and discussed in section 5.3.1 (Meyer, 2019).   
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Conversely, SW processing changed the FT-IR response of the myofibres, both with and 

without SV cooking. The PCA score plot of the raw myofibres highlighted a coarse 

separation between the control and SW-treated samples mostly in the PC1 (83 % of the 

overall variation) and marginally in the PC2 (12 % of the overall variation) (Figure 5-

7A), indicating that SW treatment had altered the protein secondary structure of the 

myofibres. Subsequent SV cooking resulted in an increased separation between the 

control and SW-treated muscle mainly in the PC1 (67 % of the overall variation) and 

slightly in the PC2 (13 % of the overall variation) (Figure 5-7B). As the differences 

between the control and SW-treated samples, with and without SV cooking, were 

explained majorly in the PC1, the correlation loading plot of PC1 was constructed in order 

to get further information on the variance. 

The correlation loading plot of the raw myofibres (Figure 5-7C) reveals that the 

separation of the control and SW-treated samples in the PC1 are mainly related to the 

wavenumbers of 1547, 1616 and 1655 cm-1. The wavenumber 1547 cm-1 is assigned to 

the amide II band of alpha helical structures, the wavenumber 1616 cm-1 is assigned to 

the amide I band of intermolecular aggregated beta sheet structures, while the 

wavenumber 1655 cm-1 is assigned to the amide I band of alpha helical structures (Larrea-

Wachtendorff et al., 2015; Perisic et al., 2011). As SW-treated samples are concentrated 

at the positive scale of the PC1 of the PCA score plot, they are highly correlated to alpha 

helical structures at both the amide I and II band regions (positive peaks showed in the 

correlation loading plot) and negatively correlated to the intermolecular aggregated beta 

sheet structures (negative peak showed in the correlation loading plot). This observation 

was speculated to be due to the reversion of intermolecular aggregated beta sheet in meat 

into native beta sheet, which are then converted to alpha helices, by the action of SW. 

The intermolecular aggregated beta sheet of equine serum albumin was dissociated and 
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 refolded to their native structure after the application of high pressure (90 MPa to 740 

MPa) at 25 ℃ as higher volume of aggregated beta sheet is unfavourable under high 

pressure (Okuno et al., 2007). Huang et al. (2016) also observed significantly decreased 

in beta sheet structure with increasing alpha helical structure in the myofibril isolated 

from porcine Longissimus dorsi treated at 600 MPa at 25 ℃. In contrast, the correlation 

loading plot of the SV-cooked myofibres (Figure 5-7D) shows that the separation of the 

control and SW-treated samples in the PC1 is largely related to the wavenumbers of 1539, 

1628, 1650 and 1701 cm-1. The FT-IR wavenumbers of around 1539 cm-1 are possibly 

aggregated beta sheet or (more likely) denatured random structure of the amide II band 

of proteins (Carton et al., 2009; Perisic et al., 2011). The wavenumbers of 1628 and 1650 

cm-1 are assigned to intramolecular aggregated beta sheet structure of the amide I band of 

proteins and alpha helix structure of the amide I band of proteins respectively (Carton et 

al., 2009; Larrea-Wachtendorff et al., 2015). The positive peaks of 1539 cm-1 and 1628 

cm-1 signified that the SW-treated meats, which concentrated at the positive scale of the 

PC 1 of the PCA score plot, formed more aggregated beta sheet structure and/or denatured 

random structure than the untreated samples after SV cooking, despite retaining more 

alpha helical structure (positive peak of 1650 cm-1). The negative peak at 1701 cm-1 is 

assigned to the C=O stretching mode, but there is not sufficient evidence to assign it to a 

specific macromolecular change (Movasaghi et al., 2008).  
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Figure 5-7. The PCA score plots from FT-IR microscopy showing (A) a coarse separation in the PC1 (83 %) of the control and SW-treated raw myofibres and 

(B) a more distinct separation in the PC1 (67 %) of the control and SW-treated SV-cooked myofibres, in the 1500 to 1800 cm-1 region. The correlation loading 

plots of the (C) control and SW-treated raw myofibres and (D) control and SW-treated SV-cooked myofibres, in the 1500 to 1800 cm-1 region, show the major 

wavenumbers that are responsible for the group separation in PC1. 
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 5.3.4 Muscle microstructure 

The histological characteristics of muscle fibres of both the control and SW-treated 

samples, with and without SV cooking, are tabulated in Table 5-1. The histological 

characteristics studied were the cross-sectional area, perimeter, Feret diameter and 

extracellular spaces area of the muscle fibres. There were no differences (p > 0.05) 

between the control and SW-treated raw samples in terms of the histological 

characteristics studied, indicating that SW processing did not significantly affect muscle 

fibre morphology at the microstructural level (Figure 5-8). However, the muscle fibre 

morphologies of both samples changed (p < 0.05) after 12 h of SV cooking at 60 ℃. The 

muscle fibre cross-sectional area, perimeter and Feret diameter of both control and SW-

treated samples significantly decreased, while the area of extracellular spaces increased 

after SV cooking. These differences were assumed to be due to muscle fibre shrinkage 

during the heat treatment. Heating has been reported to cause transverse shrinkage of the 

muscle fibres between 40 ℃ and 60 ℃ (Boland et al., 2019). The shrinkage of the 

myofibrillar proteins, along with the shrinkage of connective tissue, led to water 

expulsion from the muscles, contributing to the significantly increased area of the 

extracellular spaces after SV cooking (Tornberg, 2005). In addition, the SW-treated 

samples had larger extracellular spaces area than the control samples among the SV-

cooked samples (p < 0.05). This might be due to the disruption of muscle at the molecular 

(Figure 5-7) and ultrastructural level (Figure 5-9) by SW processing, enabling the release 

of water more easily during muscle shrinkage upon heating (Ha et al., 2017). The lower 

denaturation temperature of the connective tissue of SW-treated samples also suggests 

that the shrinkage of the connective tissue had started at lower temperature, which 

possibly resulted in more water expulsion (Table 5-1). 
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Table 5-1. Histological characteristics of muscle fibres of both the control and SW-treated meat before and after SV cooking: muscle fibres cross-sectional area 

(CSA), perimeter, Feret diameter and extracellular spaces area (ECSA).  

 Control Raw SW Raw Control SV SW SV 

Statistical significance 

SW 

treatment 

SV 

cooking 

SW treatment* 

SV cooking 

CSA x 105 (µm2) 3.7 ± 0.2A 3.8 ± 0.2A 2.6 ± 0.1B 2.5 ± 0.1B ns s ns 

Perimeter (µm) 213 ± 12A 217 ± 8A 165 ± 12B 162 ± 11B ns s ns 

Feret diameter (µm) 71 ± 5A 72 ± 3A 53 ± 2B 52 ± 3B ns s ns 

ECSA x 104 (µm2) 3 ± 2A 3 ± 1A 15 ± 2B 20 ± 1C ns s s 

Values with different letters within the same row differ significantly (p < 0.05); s: significantly different (p < 0.05); ns: not significantly different (p > 0.05) 

Data are depicted as mean ± standard deviation of mean. N = 3 (3 replicates with 6 measurements from each replicate). 

 

 

 

 
Figure 5-8. The muscle fibre morphology of the samples observed under light microscope, showing an increase in extracellular space area (ECSA) after SV 

cooking, especially in SW-treated samples. Connective tissue was stained in red by Sirius Red dye while muscle cells were stained in yellow by picric acid. 
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 5.3.5 Muscle ultrastructure 

As depicted in Figure 5-9A and Figure 5-9C, the sarcomeres of the control raw muscle 

were organised and the Z-disks were well aligned. In contrast, the sarcomeres of the SW-

treated raw muscle were disordered. There was the formation of wavy sarcomeres and the 

Z-disks were disorganised (Figure 5-9B and Figure 5-9D). The formation of wavy 

sarcomeres may be due to irreversible changes in the structure of the I-bands after 

extensive stretching caused by the SW treatment (Zuckerman & Solomon, 1998). 

Although the titin filaments of I-bands are known to be flexible in their molecular 

structure, other stretched fibrous proteins of the I-band may not recover when the SW 

applied to the muscle is released (Tskhovrebova & Trinick, 2010). A-bands, which are 

relatively more structurally stable, were mostly unaffected.  

The ultrastructure of both the control and SW-treated muscles changed after 12 h of SV 

cooking at 60 ℃. Sous vide cooking resulted in the disintegration of Z-disk structures, 

coagulation of myofibrils and formation of granular aggregates (Figure 5-9E and Figure 

5-9F) in both samples. The disordered structure along the Z-disks and coagulation of 

sarcomeres were also observed in the SV-cooked beef brisket at 70 ℃ for 30 min (Zhu, 

Kaur, Staincliffe, et al., 2018). When meat is heated to between 40 ℃ and 60 ℃, muscle 

fibres shrink transversely while sarcoplasmic proteins expand, aggregate and form gels 

(Dominguez-Hernandez et al., 2018; Tornberg, 2005). At temperatures of 60 ℃ and 

above, both transverse and longitudinal shrinkage of muscle fibres occur.  It was observed 

that the extent of these structural changes was greater in SW-treated SV-cooked samples. 

More myofibrillar coagulation and aggregation of SW-treated SV-cooked meat indicates 

more severe protein denaturation by heat, which corresponds to higher correlation to the 

aggregated beta sheet structure as discussed in section 5.3.3.  
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Figure 5-9. Transmission electron micrographs showing the ultrastructure of beef brisket with 

and without processing.  
A and C: control untreated raw muscle; B and D: SW-treated raw muscle; E: control untreated SV-cooked 

muscle; F: SW-treated SV-cooked muscle. GA: granular aggregate. Shockwave treatment has caused the 

formation of wavy and disordered sarcomeres. Subsequent SV cooking led to the disintegration of the Z-

disk structures and coagulation of the myofibrils to a greater extent when compared to the control untreated 

SV-cooked meat. 
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 5.4 Conclusions  

Shockwave processing lowered the thermal stability but did not affect the protein 

secondary structure of connective tissue. In contrast, SW affected the protein secondary 

structure of myofibres and the changes were speculated to be due to the reversion of 

intermolecular beta sheet structure to native structure and the formation of alpha helices 

by the application of SW. Shockwave processing disrupted the muscle ultrastructure by 

the formation of wavy sarcomeres and disorganised Z-disks. Subsequent SV cooking 

further modified the molecular, micro- and ultrastructures of the SW-treated muscles. 

More aggregated beta sheet structure and more contracted muscle cells were observed in 

the SW-treated SV-cooked meat, accompanied with more severe disintegration of Z-disks 

and coagulated ultrastructure. As the combination of SW processing and SV cooking has 

a great impact on the muscle structure, it could be a useful approach in adding value to 

tougher meat cuts by possibly improving meat tenderness. Nevertheless, further research 

is needed to fully understand the modification in muscle protein and structure of SW-SV-

processed meat, such as collagen solubility, which is related to thermal stability of the 

connective tissue. The effect of the modifications to meat protein and structure caused by 

SW-SV process on other meat properties such as texture and nutritional qualities will be 

investigated in Chapter 6. 
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 Chapter 6 Shockwave processing and sous vide cooking of beef brisket: 

Effects on meat physicochemical properties, texture and protein 

digestibility in vitro 

6.1 Introduction 

Low value meat cuts such as brisket (Superficial and Deep pectorals) usually have a 

problem of background toughness due to the presence of a higher amount of connective 

tissue (Boland et al., 2019). However, their texture can be improved by partial 

solubilisation of collagen during cooking. The sarcomere structure and postmortem 

proteolysis of myofibrils are also key determinants of meat tenderness (Boland et al., 

2019). It is desirable and beneficial to implement treatments of the tough cuts by targeting 

both the connective tissue and myofibrillar proteins to create meat products with 

improved tenderness. A combined SW-SV process has the potential to act on both the 

connective tissue and myofibrillar proteins for meat tenderisation. 

Shockwave processing can be carried out as a pre-treatment, targeting myofibrillar 

proteins for meat tenderisation and may be followed by subsequent processing such as 

SV cooking for collagen solubilisation, before distribution to the market or consumer 

(Bolumar et al., 2013). As discussed in section 2.8.2, the tenderising effect of SW 

processing is seen to be largely due to muscle structure modification, such as myofibrillar 

fragmentation along the Z-disks (Zuckerman & Solomon, 1998) and disruption of 

collagen fibrils (Zuckerman et al., 2013). These structural disruptions may facilitate the 

penetration of endogenous meat proteases during maturation (Bolumar et al., 2014). In 

contrast, SV cooking results in the shrinkage and conversion of connective tissue (such 

as collagen) to gelatine which decrease the interfibre adhesion, resulting in meat 

tenderisation. The lower temperatures used in SV cooking also prevent excessive 
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 denaturation of the muscle protein, leading to milder shrinkage of muscle fibres (Baldwin, 

2012).  

The study described in Chapter 5 has shown that the combination of these two processes 

affects the muscle protein molecular, micro- and ultrastructures of beef brisket. These 

changes may have the potential to improve the textural and nutritional properties of meat. 

Structural disruption of the muscle has been reported to reduce meat toughness (Boland 

et al., 2019) and affect the efficiency of the digestive proteases (Astruc, 2014b). Hence, 

this chapter aims to investigate the effect of SW processing and subsequent SV cooking 

on the textural properties and in vitro protein digestibility of meat.  

6.2 Materials and methods 

6.2.1 Shockwave processing and SV cooking of beef brisket 

The SW processing and SV cooking of beef briskets were conducted as described in 

section 5.2.1 using the same beef samples. Within 4 h post-treatment, purge loss of the 

control untreated and SW-treated raw samples as well as cook loss and texture analyses 

of the control and SW-treated SV-cooked samples, were determined. The remaining 

samples were snap-frozen using liquid nitrogen and were kept at -80 ℃ for future use.  

6.2.2 pH and colour measurements 

The pH of the control and SW-treated samples, both raw and SV-cooked, was measured 

as described in section 3.2.2. The pH analysis was repeated three times for each replicate 

for each treatment. The colour measurements of the control and SW-treated raw samples 

were taken using a handheld Chroma meter (CR400, Konica Minolta, Tokyo, Japan), 

according to the method mentioned in section 3.2.2. As for the control and SW-treated 

SV-cooked samples, the measurements were made on the inner meat surface after cutting 
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 the SV-cooked brisket steak in half across the muscle fibre direction. The measurement 

was done with a ‘D-65’ light source and 10 ° observer setting (Brewer et al., 2006). The 

average value of L* (black-white), a* (red-green), b* (blue-yellow) for each three 

treatment replicates was determined from 25 individual measurements.  

6.2.3 Purge and cook loss 

Purge loss was determined after SW processing and cook loss was calculated after the 

SV-cooked samples were cooled down to room temperature using the following equations 

(Faridnia et al., 2014): 

Purge loss (%) = (Wtafter sw processing – Wtbefore sw processing)/ Wtbefore sw processing x 100 -------

Eq. (6-1) 

Cook loss (%) = (Wtafter sv cooking – Wtbefore sv cooking)/ Wtbefore sv cooking x 100 ---------------

Eq. (6-2) 

,where Wt is the weight of the meat samples in g. 

Purge loss of the control raw samples was determined by calculating the percentage 

change in weight of the control untreated sample, measured right before and after the SW 

processing conducted for the assigned SW-treated samples. In order to prevent the effect 

of ambient temperature difference on drip loss, the control samples were kept in the same 

room as the SW prototype for the same duration as for the SW treatment (Hertog-

Meischke et al., 1998). Both purge loss and cook loss were determined once for each 

replicate for each treatment. 
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 6.2.4 Warner-Bratzler (WB) shear force and texture profile analysis (TPA) 

Warner-Bratzler shear force and TPA test of SV-cooked meat were performed using a 

TA.XT2 texture analyser (Stable Micro Systems, Godalming, UK) using a 25 kg load cell.  

The analysis was repeated six times for each replicate for each treatment. After 

equilibration to room temperature, SV-cooked samples were cut into strips where the 

muscle fibre direction is parallel to their length (1 cm in width × 1 cm in height x 4 cm in 

length), and each strip was sheared perpendicularly to the direction of the muscle fibres 

with a WB V-slot blade (TA-7) at a constant speed of 1 mms−1 (Roldan et al., 2013). 

Texture profile analysis was conducted using a 40 mm diameter cylindrical probe (TA-

40) (2 mms−1 test speed, 3 s interval time, 0.1 N trigger force, and 80 % strain), through 

a 2 cycle sequence of axial compression (Isleroglu et al., 2015) on cooked samples cut 

into 1 × 1 × 1 cm. The force-time plots obtained were used to determine the TPA attributes.   

6.2.5 Protein digestibility  

6.2.5.1 In vitro digestion  

The in vitro digestion of the SV-cooked sample (both control and SW-treated) was 

conducted as described in section 4.2.4.1. Three digestions were performed each for the 

control and SW-treated SV-cooked samples. 

6.2.5.2 Preparation of the digests for further analysis 

The digests were processed as described in section 3.2.4.2 for subsequent soluble nitrogen, 

tricine SDS-PAGE and ninhydrin-reactive free amino nitrogen analyses.   
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 6.2.5.3 Tricine SDS-PAGE and ninhydrin-reactive amino nitrogen   

Tricine SDS-PAGE was carried out on a tricine gel (acrylamide/bis 40 % = 29:1; 4 % 

stacking gel and 16 % resolving gel) under reducing conditions. The electrophoresis was 

run and the gel was scanned as described in section 3.2.4.4. The protein concentration of 

the digests was adjusted accordingly, based on the protein concentration of filtered digests 

quantified using Kjeldahl method (AOAC, 1981), as described in section 3.2.4.3, so that 

20 µg protein was loaded on each lane of the gel. One gel was prepared each for the three 

individual digestion replicates. Ninhydrin-reactive free amino nitrogen present in the 

digests was determined using ninhydrin reagent (N7285, Sigma-Aldrich, Saint Louis, MO, 

USA) as described in section 3.2.4.5. The analysis was done at least three times for each 

digestion time for each digestion replicate. The analysis was done at least three times for 

each digestion time for each digestion replicate. 

6.2.6 Microscopy analysis of digested muscles 

The SV-cooked samples (both control and SW-treated) were cut into pieces where the 

muscle fibre direction is parallel to their length (5 mm in width × 5 mm in height x 10 mm 

in length). Simulated oral-gastro-small intestinal digestions were carried out as described 

in section 4.2.4.1 in a polyester mesh without the addition of glass balls and samples were 

taken after 62 and 182 min of simulated oral-gastric-small intestinal digestion. The 

digested strips (62 and 182 min) were cryofixed in isopentane (−160 °C) chilled by liquid 

nitrogen (−196 °C), followed by storage at −80 °C until use for histochemical analysis. 

The samples digested for 182 min were cut along the direction of the muscle fibre into 

strips of 10 mm x 3 mm x 3 mm and the pieces were immersed in 2.5 % glutaraldehyde 

in 0.1 M phosphate citrate buffer (pH 7) overnight at room temperature. The fixed 

samples were washed using 0.1 M sodium cacodylate buffer at pH 7.2 thrice for at least 
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 24 h incubation time each to remove the excess phosphate and prevent granular 

precipitates during the osmication step (Schiff & Gennaro Jr., 1979). After that, the 

washed-fixed samples were then stored at 4 °C until subsequent preparation for TEM 

analysis. 

6.2.6.1 Histochemical analysis 

The cryosectioning, Picro-Sirius Red staining and imaging process of the cryo-fixed meat 

samples were performed as described in section 4.2.5.1. One muscle section was observed 

per digestion replicate for each treatment. 

6.2.6.2 Transmission electron microscopy analysis 

Transmission electron microscopy (TEM) analysis was performed according to section 

4.2.5.2. One muscle section was observed per digestion replicate for each treatment. 

6.2.7 Statistical analysis 

Statistical analyses for the purge loss, cook loss and texture analysis were performed using 

one-way ANOVA while the statistical analysis for the pH and colour was conducted using 

two-way ANOVA (Minitab Release 17 Statistical Software, Minitab Inc., State College, 

PA, USA). Statistical analysis for the ninhydrin analysis of digests at different digestion 

time points were conducted using a repeated measures one-way ANOVA by Generalised 

Linear Model (IBM® SPSS® Statistic version 25, IBM Corporation, Armonk, NY, USA) 

and no violation of sphericity was detected using Mauchly’s Test. All the statistical analyses 

were carried out to using a significance of difference at a confidence level of 0.05, followed 

by post-hoc Tukey’s test. Results obtained from the statistical analysis are reported as 

means ± standard deviation of means with a least three replications. 
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 6.3 Results and discussion 

6.3.1 Effects of SW and SV cooking on pH, colour, purge loss and cook loss 

Shockwave processing did not affect the pH value, colour and purge loss of meat samples 

as tabulated in Table 6-1. However, after SV cooking, the pH of both the control and 

SW-treated meat increased (p < 0.05) (Table 6-1). Hamm and Deatherage (1960) reported 

an increment of 0.2 pH unit in meat after cooking at 60 ℃, which was deduced to be due 

to a decrease of carboxyl groups in the meat protein as a result of the conformation change 

induced by thermal denaturation of the muscle proteins. The results of the current study 

show that the L*, a* and b* values were different among raw and SV-cooked meats (p < 

0.05) (Table 6-1), both with and without SW pre-treatment. The change in colour after 

cooking was most likely due to the heat denaturation of muscle proteins, particularly the 

major colour determinant myoglobin, leading to the formation of a dull brown colour 

(Bernofsky et al., 1959). The purge losses of both the control and SW-treated raw meat 

were similar while the cook losses of the SW-SV-cooked meat were higher than those of 

the control SV-cooked meat (p < 0.05) (Table 6-1), which is in agreement with the finding 

of Bowker, Liu, et al. (2010) and the meta-analysis conducted by Ha et al. (2017). This 

might be due to the disruption of muscle protein structure by the SW, resulting in more 

water expulsion as the myofibrillar protein system shrunk during the cooking (Palka & 

Daun, 1999). A significant increment in the extracellular space area denoting shrinkage 

of muscle proteins was also observed in SW-treated SV-cooked meat as discussed in 

section 5.3.4 (Table 5-1 and Figure 5-8).  
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Table 6-1. pH, colour, purge loss and cook loss for control and SW-treated beef brisket, with and without SV cooking.  

 Control Raw SW Raw Control SV SW SV 

Statistical significance 

SW treatment 
SV 

cooking 

SW treatment x 

SV cooking 

pH^ 5.7 ± 0.0A 5.7 ± 0.1A 6.0 ± 0.1B 6.0 ± 0.1B ns s ns 

Colour~ 

L* 39 ± 0A 39 ± 0 A 55 ± 1B 55 ± 1B ns s ns 

a* 13.5 ± 0.4 A 13.5 ± 0.3 A 11.8 ± 0.5 B 10.8 ± 0.5B ns s ns 

b* 5.4 ± 0.3A 5.4 ± 0.4A 9.8 ± 0.5B 10.0 ± 0.6B ns s ns 

Purge loss (%)#@ 0.2 ± 0.1A 0.3 ± 0.1A N.A ns N.A N.A 

Cook loss (%)# N.A 25 ± 2A 28 ± 1B s N.A N.A 

^N = 3 (3 replicates with 3 measurements from each replicate). 

~N = 3 (3 replicates with 25 measurements from each replicate). 

#N = 3 (3 replicates with 1 measurement from each replicate).  

@ Purge loss of the control raw samples was determined by calculating the percentage change in weight of the control untreated sample, measured right before and after the SW 

processing conducted for the assigned SW-treated samples. 

Colour measurements definition according to León et al. (2006): 

 L*: lightness (0 indicates black while 100 indicates absolute white). 

 a*: redness (positive value)/ greenness (negative value). 

 b*: yellowness (positive value) /blueness (negative value). 

Values with different letters within the same row differ significantly (p < 0.05). 

s: significantly different (p < 0.05); ns: not significantly different (p > 0.05); N.A.: not applicable. 

Data are shown as mean ± standard deviation of mean. 
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 6.3.2 Effects of SW and SV cooking on meat texture 

The Warner-Bratzler (WB) shear force and TPA of SV-cooked meat (both control and 

SW-treated) are summarised in Table 6-2. A 11 % reduction in WB shear force was 

observed for the SW-treated SV-cooked meat compared with the cooked control (p < 

0.05). This observation is consistent with the literature, where the reduction in WB shear 

force of SW-treated meat has been found to be around  5 to 30 % for electrical discharge 

SW, depending on the processing conditions and meat cuts (Bolumar & Toepfl, 2016). 

These texture enhancements were concluded to be due to the physical disruption of 

muscle fibres and collagen (Solomon et al., 1998; Zuckerman et al., 2013). 

Disorganisation of the sarcomere structure was also observed in the SW-treated SV-

cooked meat as discussed in section 5.3.5 (Figure 5-9). However, TPA measurements of 

both the control and SW-treated SV-cooked samples were not statistically different. The 

observed differences in measurement of tenderising effect among WB shear force and 

TPA tests might be due to the inhomogeneity distribution of the connective tissue in the 

brisket samples. Although visible connective tissue was removed prior to the texture 

analysis, there is still the possibility of connective tissue embedded in some of the sample. 

As WB shear force has been reported to be more sensitive to myofibrillar components 

than the connective tissue, the embedded connective tissue might not affect the WB shear 

force values when compared to TPA measurements (Møller, 1981). Future work using 

larger sample sizes (for each replicate) for textural analysis will allow clearer observation 

of the effect of SW and subsequent SV cooking on meat texture.  
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Table 6-2. Warner-Bratzler shear force and TPA data for the control and SW-treated SV-cooked 

beef brisket.  
 Control SV SW SV 

WB shear force (N) 45 ± 2A 40 ± 1B 

TPA 

Hardness (N) 123 ± 12A 113 ± 11A 

Chewiness (N) 22 ± 3A 19 ± 2A 

Cohesiveness 0.45 ± 0.03A 0.45 ± 0.01A 

Springiness 0.39 ± 0.01A 0.37 ± 0.00A 

Values with different letters within the same row differ significantly (p < 0.05). 

Data are depicted as depicted as mean ± standard deviation of mean. N = 3 (3 replicates with 6 

measurements from each replicate). 

Measurements definition according to Isleroglu et al. (2015): 

 Hardness: the peak force requires during the first compression. 

 Chewiness: the product of hardness, cohesiveness and springiness. 

 Cohesiveness: the ratio of the positive force area during the second compression to that in the first 

compression. 

 Springiness: the rate at which the sample recovers its original shape after the first compression (the 

ratio of the time difference of the second to the first compression cycle). 

 

6.3.3 Effect of SW and SV cooking on muscle protein digestibility in vitro 

6.3.3.1 Tricine SDS-PAGE 

The protein profile of the digests from both control and SW-treated SV-cooked meat is 

shown in Figure 6-1. The protein profiles of both the samples are similar after 32 min of 

oral-gastric digestion. However, after 62 min of simulated oral-gastric digestion, it was 

observed that the band intensities of MHC (220 kDa) and C-protein (140 kDa) of the SW-

treated cooked meat were less intense than those of the control untreated cooked meat, 

showing the SW treatment improved the peptic hydrolysis of these proteins. The 

increased protein degradation of SW-treated cooked meat by the digestive enzymes was 

more obvious in the small intestinal phase. It can be seen that the intensities of bands 

corresponding to actin (42 kDa) and tropomyosin-α-chain (33 kDa) decreased as the 

digestion progressed in the small intestinal phase. These bands had nearly disappeared in 

the digest of SW-treated cooked meat at the end of the simulated digestion. The intensities 

of bands with molecular weights (MW) of 46 kDa, 30 kDa and 29 kDa in SW-treated 
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 cooked meat were also reduced at the end of digestion. Bands with a MW of 30 kDa were 

deduced to be the hydrolysis product of troponin T, while bands with MW of 46 kDa and 

29 kDa might be the proteolytic products of other high MW myofibrillar proteins (Kaur 

et al., 2014; Toldrá, 2012). The decrease in their band intensity signifies further break 

down of these fragments, especially in the SW-treated SV-cooked samples. In addition, 

the bands with MW of 25 kDa and 18 kDa were also more intense in the SW-treated SV-

cooked meat at the end of digestion. These observations demonstrate improved 

proteolysis of meat protein by the digestive enzymes after SW treatment. Enhanced 

protein breakdown of high hydrostatic pressure-treated meat during simulated digestion 

has also been reported by Kaur et al. (2016). 
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Figure 6-1. Tricine SDS-PAGE electrophoretogram showing protein profiles of the digests of both control and SW-treated SV-cooked meat during simulated 

digestion.  
L1 and L8 are the molecular weight standards labelled in kDa. L2, L4, L6, L9 and L11 denote control SV-cooked samples at 2, 32, 62, 122 and 182 min of oral-gastro-small 

intestinal digestion respectively. L3, L5, L7, L10 and L12 denote SW-treated SV-cooked samples at 2, 32, 62, 122 and 182 min of oral-gastro-small intestinal respectively. The 

meat proteins labelled on the electrophoretogram were identified from their apparent MW, according to Kaur et al. (2014) and Boland et al. (2019). 
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 6.3.3.2 Ninhydrin-reactive amino nitrogen 

The degree of hydrolysis of the meat samples at different digestion times was determined 

as ninhydrin-reactive amino nitrogen released during in vitro oral-gastro-small intestinal 

digestion using the ninhydrin assay (Table 6-3). The ninhydrin-reactive amino nitrogen 

released from both control and SW-treated SV-cooked meat were not significantly 

different after 32 min of oral-gastric digestion. However, at the end of simulated oral-

gastric digestion, the ninhydrin-amino nitrogen released from the SW-treated cooked 

samples was higher than control untreated cooked sample (p < 0.05). This trend continued 

after 122 and 182 min of simulated oral-gastro-small intestinal digestion (p < 0.05). 

Overall, SW processing improved the protein digestibility of the SV-cooked beef by 

approximately 22 %, in terms of ninhydrin-reactive amino nitrogen released, at the end 

of in vitro oral-gastro-small intestinal digestion. 

Table 6-3. Ninhydrin reactive amino nitrogen released from both control and SW-treated SV-

cooked meat after in vitro oral-gastric (2, 32 and 62 min) and further small intestinal (122 & 182 

min) digestion.  

Cumulative digestion 

time (min) 
2 32 62 122 182 

Ninhydrin

-reactive 

amino 

nitrogen 

(%) 

Control

-SV 
1.5 ± 0.4aA 2.0 ± 0.1abA 3.2 ± 0.2bA 9.3 ± 0.7cA 13.1 ± 1.0dA 

SW-SV 1.8 ± 0.3aA 2.1 ± 0.6aA 4.0 ± 0.2aB 12.7 ± 1.9bB 16.0 ± 0.7cB 

Values with different lower-case letters within the same row differ significantly (p < 0.05). 

Values with different upper-case letters within the same column differ significantly (p < 0.05).  

Data are shown as mean ± standard deviation of mean. N = 3 (three replicates with 3 measurements from 

each replicate). 
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6.3.3.3 Structure of digested meat samples 

The effect of SW on muscle microstructural changes of SV-cooked meat during 182 min 

of in vitro oral-gastro-small intestinal digestion was studied using histochemical analysis 

(Figure 6-2). It was observed that after 62 min of oral-gastric digestion, the muscles at 

the edge of both the control SV-cooked and SW-treated SV-cooked samples were 

damaged slightly, probably due to the action of pepsin and the effect of acidic simulated 

gastric fluid (pH 3 ± 0.1). As the digestion further progressed in the small intestinal phase, 

the breakdown of the muscle cell was more severe and the digested area had expanded 

toward the core of the samples, particularly in the SW-treated SV-cooked samples. This 

observation is consistent with the findings from SDS-PAGE and ninhydrin-reactive 

amino nitrogen analysis discussed in section 6.3.3.1 and 6.3.3.2 that showed better protein 

digestibility for the SW-treated SV-cooked samples than the control cooked meat. The 

muscle cells of both control cooked and SW-treated cooked samples were swollen during 

the simulated digestion, which is likely to be due to the effect of acidic simulated gastric 

juices (Astruc, 2014b). The muscle cell swelling was detected when the gastric juice 

entered the meat matrix, using time domain-nuclear magnetic resonance (TD-NMR) 

relaxometry (Bordoni et al., 2014). Although muscle cell swelling has been proposed to 

facilitate the accessibility of the digestive enzymes to their cleavage site, it may lead to a 

reduction in extracellular spaces, limiting the transfer of the aqueous digestive juices to 

the core of the samples (Astruc, 2014b; Offer & Knight, 1988). As the muscle cells of the 

control SV-cooked samples were swollen to a greater extent than the SW-treated cooked 

samples after both oral-gastric and subsequent small intestinal digestion, delayed 

penetration of the digestive juices toward the core of the samples might have occurred, 

resulting in lower digestibility for the control cooked sample. 
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 The ultrastructure of the SV-cooked meat after 182 min of in vitro oral-gastro-small 

intestinal digestion is depicted in Figure 6-3. The Z-disks of both control and SW-treated 

SV-cooked samples were degraded and there was the formation of grey spots in the 

intermyofibrillar spaces, indicating the breakdown of muscle proteins by digestive 

enzymes. More elongated I-bands was observed in the SW-treated cooked meat, which 

might be due to the weakening of the thin filaments in I-bands after excessive enzymatic 

hydrolysis of the Z-disks (Chian et al., 2019; McGuire & Beerman, 2012). Similar effects 

were observed in PEF-treated raw bovine Longissimus thoracis muscles (Figure 3-5) and 

PEF-treated SV-cooked beef brisket (Figure 4-7) with improved protein digestibility. In 

addition, more coagulated sarcomeres was observed in the SW-treated meat after SV 

cooking when compared to the control cooked meat (Figure 5-9), which might have 

exposed buried peptide bonds for the access of digestive enzymes, leading to improved 

proteolysis of the former (McGuire & Beerman, 2012).
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Figure 6-2. Histological sections of both control (C) and SW-treated SV-cooked meat at different digestion time points, showing more severe structural 

degradation of SW-treated cooked meat by the digestive enzymes at the end of simulated digestion. Connective tissue was stained in red by Sirius Red dye and 

muscle cells were stained in yellow by picric acid.
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Figure 6-3. Transmission electron micrographs showing the ultrastructure of control SV-cooked 

(left two) and SW-treated SV-cooked (right two) beef brisket at the end of simulated oral-gastro-

small intestinal digestion.  

The digested SW-treated SV-cooked meat has more elongated I-bands, indicating more severe proteolysis 

by the digestive enzymes.  
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 6.4 Conclusion 

Shockwave processing did not affect the purge loss, pH and colour of meat. Subsequent SV 

cooking increased cook loss while decreasing the WB shear force of beef brisket when 

compared to control SV-cooked meat. Shockwave-treated SV-cooked meat had enhanced 

protein digestibility after 62 min of simulated oral-gastric digestion and during subsequent 

2 h of small intestinal digestion. There was approximately 22 % higher ninhydrin-reactive 

amino nitrogen released from the SW-treated cooked meat at the end of the in vitro oral-

gastro-small intestinal digestion, than the control SV-cooked meat. Tricine SDS-PAGE 

indicates increased proteolysis of the SW-treated SV-cooked meat proteins compared to the 

control SV-cooked meat by the digestive enzymes. The micro- and ultrastructures of the 

SW-treated SV-cooked muscle also showed more break down than the control cooked meat, 

at the end of simulated digestion. These findings suggest combination of SW processing 

and SV cooking can improve not only tenderness but also enhance nutritional quality of 

meat. Further research is needed to fully understand SW-SV processing optimisation and 

to enable a cost-benefit analysis of these processes. 
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 Chapter 7 Effect of kiwifruit extract treatment on muscle 

microstructure and the localisation of actinidin and pepsin in meat using 

immunohistofluorescence imaging 

7.1 Introduction 

Exogenous enzymes, such as papain (from papaya) and bromelain (from pineapple), have 

been used in meat tenderisation for centuries (Sullivan & Calkins, 2010). These enzymes 

reportedly reduce the actomyosin toughness and background toughness of meat, by 

hydrolysing myofibrillar proteins and connective tissue, respectively (Ashie et al., 2002; 

Ha et al., 2012; Miyada & Tappel, 1956). However, these enzymes have the tendency to 

create a mushy meat product due to over-tenderisation (Ashie et al., 2002; McKeith et al., 

1994; Weir et al., 1958). The kiwifruit enzyme actinidin which has a milder and more 

controlled meat tenderising ability, is being explored as an alternative to the traditionally 

used enzymes in order to produce meat products with superior quality (Aminlari et al., 

2009; Christensen et al., 2009; Lewis & Luh, 1988; Zhu, Kaur, Staincliffe, et al., 2018).  

Actinidin is a cysteine protease which has a wide substrate specificity (Boland, 2013; 

Boland & Hardman, 1972). It hydrolyses peptide bonds present in proteins, simple esters 

and amides. Actinidin has a broader active pH range between 3 and 8, and has a lower 

inactivation temperature of 60 ℃ (Boland, 2013; Huff-Lonergan, 2014; McDowall, 1970; 

Payne, 2009; Zhu, Kaur, & Boland, 2018). Actinidia deliciosa cv. ‘Hayward’ (green 

kiwifruit) and Actinidia chinenis cv. ‘SunGold’ (gold kiwifruit) are two of the main 

commercial kiwifruit varieties (Chao, 2016). The green kiwifruit has approximately eight 

times higher actinidin activity than the gold kiwifruit. The application of actinidin on 

meat causes the degradation of myofibrillar proteins and the solubilisation of connective 

tissue (Ha et al., 2012; Nishiyama, 2007; Wada et al., 2004). However, Toohey et al. 
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 (2011) have proposed that actinidin prefers to act on myofibrillar proteins rather than 

connective tissue, as they observed a shear force reduction in the actinidin-treated bovine 

Semimembranosus, but not compression force. 

Actinidin treatment has been reported to affect meat ultrastructure, as discussed in section 

2.8.4.1. Muscle destruction along the Z-disks, elongated sarcomeres with extended A-

bands, and damaged endomysium were observed in the actinidin-treated muscles 

(Christensen et al., 2009; Zhu, Kaur, Staincliffe, et al., 2018). Nevertheless, knowledge 

about the effect of actinidin on meat structure in the current literature is limited, especially 

with regard to the breakdown of muscle microstructure due to the action of actinidin.  

In addition to its meat tenderisation properties, actinidin has been reported to aid in 

protein digestion, particularly in the gastric phase, both in vitro and in vivo. Actinidin 

enhanced the gastric digestion of myofibrillar proteins and improved the small intestinal 

digestion of collagen slightly, in vitro (Kaur et al., 2010a, 2010b). When actinidin was 

added to the diet of growing pigs, a faster gastric emptying rate (dry matter and nitrogen) 

and an improvement in gastric digestion of beef muscle proteins were observed (Montoya 

et al., 2014). However, no study has been conducted to examine the effect of actinidin 

plus pepsin on food structure during digestion. The mechanism by which the dietary 

actinidin, when added to the digestive juices, accesses its substrates is also unknown.  

Astruc (2014b) examined the accessibility of the digestive enzymes in meat by locating 

pepsin in peptic digested meat using immunohistofluorescence imaging. These findings 

would provide some information on the accessibility of pepsin to its substrates during 

meat proteolysis. During the immunostaining, the peptic digested muscles were treated 

with a primary antibody, the anti-pepsin, followed by a secondary antibody containing a 

fluorescent marker, forming an antigen-antibody (Ag/Ab) complex that was able to be 
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 observed under a fluorescence microscope. Hence, immunohistofluorescence imaging 

could also be adopted to locate actinidin in the actinidin-treated meat by immunostaining 

with a primary antibody anti-actinidin. 

The objective of this experiment is to investigate the effects of actinidin on meat 

microstructure during marination for meat tenderisation and also during in vitro gastric 

digestion. As beef brisket muscles are rich in connective tissue, they were selected in this 

experiment so that the effect of actinidin on both connective tissue and muscle cells could 

be examined. In addition, this experiment aims to locate actinidin in the meat, for the first 

time in the literature, via immunohistofluorescence imaging. As the anti-actinidin is not 

commercially available, rabbit anti-actinidin previously raised by our lab is purified for 

the use in immunohistofluorescence imaging. 

7.2 Materials and methods 

7.2.1 Study design 

Beef briskets (approximately 7 to 14 days postmortem) were purchased from a local 

supermarket (New Zealand) and were used in two separate experiments. For experiment 

one, the effect of actinidin on meat microstructure for meat tenderisation was studied. 

Raw meat samples were incubated in kiwifruit extract at pH 5.6 at 20 ℃ for 30 min to 

mimic meat marination. A pH of 5.6 was selected to prevent over-tenderisation of meat, 

as actinidin only hydrolysed MHC but not actin at a pH range of 5.5 to 8.0 (Nishiyama, 

2007). In addition, pH 5.6 is also the average pH of raw beef muscles. The incubation 

time and temperature was chosen after conducting preliminary trials based on the current 

literature and cooking recipes (Harris & Maxwell, 2009; Lewis & Luh, 1988; Zespri, 

2019). In experiment two, the effect of actinidin on meat microstructure during simulated 

gastric digestion were examined. Sous vide-cooked meat samples were subjected to 
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 simulated gastric digestion at 37 ℃ and pH 3 for 3 h. The incubation conditions for the 

simulated gastric digestion were chosen according to section 4.2.4.1 and preliminary trials. 

The details of the incubation are described in section 7.2.4. 

7.2.2 Preparation of kiwifruit extract 

Green kiwifruit (Actinidia deliciosa cv Hayward) was purchased from a local 

supermarket (New Zealand) and the kiwifruit extract was prepared according to the 

method described by Zhu, Kaur and Boland (2018) with modifications. After peeling, the 

fruit was mixed with 0.1 M ice-cold sodium citrate buffer at pH 3 and pH 5.6 (kiwifruit 

to buffer ratio = 1: 0.18) for 20 s, using a hand held mixer (BSB310, Breville, Australia). 

The mixture was then filtered using a cheese cloth followed by centrifugation at 13100 

xg at 0 ℃ for 30 min (HeraeusTM FrescoTM 17, Thermo Fisher Scientific, Waltham, MA, 

USA). The supernatant was collected and placed in an ice bath for enzyme activity 

analysis immediately.  

7.2.3 Determination of actinidin activity of the kiwifruit extract 

The actinidin activity in the kiwifruit extracts at both pH 3 and pH 5.6 were determined 

based on the method of Boland and Hardman (1972) and Chao (2016). In brief, 100 µL 

of the kiwifruit extract was mixed with 100 µL of 0.1 M dithiothreitol (DTT) solution 

(1610611, Bio-Rad Laboratories, Hercules, CA, USA) for 3 min to activate the enzyme. 

After that, 100 µL of 2.74 mM actinidin substrate, the N-α-carbobenzoxy-L-lysine-P-

nitrophenyl ester (Z-L-Lys-ONp) hydrochloride solution (C3637, Sigma-Aldrich, Saint 

Louis, MO, USA), was added to 2.85 mL of 0.1 M sodium citrate buffer (pH 3 or pH 5.6, 

based on the pH of the kiwifruit extract) in a cuvette. After inserting the cuvette into a 

UV-visible recording spectrophotometer (UV-160A, Shimadzu Corporation, Kyoto, 

Japan) to measure the rate of spontaneous hydrolysis of the substrate (~10 to 20 s), 50 µL 
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 of the activated kiwifruit extract (25 µL kiwifruit extract and 25 µL of 0.1M DTT solution) 

was added. The change in absorbance was recorded for 100 s at 348 nm. The enzyme 

activity of the kiwifruit extract was calculated based on the initial absorbance changing 

rate (maximum hydrolysis rate), using the Eq.7-1 (Crowley & Kyte, 2014). 

Enzyme activity = (maximum hydrolysis rate) / [(Δε/1000) x l] x (VR/ VS) -------Eq.7-1 

The Δε, l, VR, and VS stand for the extinction coefficient (5400 M-1cm-1) (Boland, 1973), 

the optical path length (1 cm), the total volume of the reaction mixture (3 mL) and the 

volume of kiwifruit extract (0.025 mL), respectively. The actinidin activity was expressed 

as enzyme activity units per mL of kiwifruit extract (U/mL) at 25 ℃ (N=3).  

7.2.4 Incubation of beef samples in kiwifruit extracts  

For experiment one, raw beef briskets were cut into pieces where the muscle fibre 

direction is parallel to their length (0.5 cm in width × 0.5 cm in height x 2 cm in length; 

0.90 ± 0.10 g in weight) and were incubated in 4.5 mL of the incubation solution (pH 5.6) 

(Table 7-1) at 20 ℃ for 30 min. The actinidin activity of the incubation solutions was set 

after conducting preliminary trials based on the current meat tenderisation literature 

(Aminlari et al., 2009; Liu et al., 2011; Pooona et al., 2019; Zhu, 2017).  

In the experiment two, beef briskets were SV-cooked at 60 ℃ for 24 h. After cooling to 

room temperature, the cooked meat was cut into pieces where the muscle fibre direction 

is parallel to their length (0.5 cm in width × 0.5 cm in height x 2 cm in length; 1.25 ± 0.10 

g in weight), followed by immersion in 4.5 mL of the incubation solution (Table 7-1) at 

37 ℃ for 3 h. The amount of kiwifruit extract added to the incubation solution was 

adjusted based on the MyPlate dietary guidelines (meat: kiwifruit = 1: 1.85) (U.S. 

Department of Health and Human Services and U.S. Department of Agriculture, 2015). 
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 According to the MyPlate dietary guidelines, a serving of protein (65 g of meat) and a 

serving of fruit (120 g of kiwifruit, peeled) has been recommended for inclusion in a meal. 

The pepsin activity used during the simulated gastric digestion was 8 U/mg meat protein, 

as described in section 4.2.4.1. 

For both experiments, the meat samples were cut in half across their length using a scalpel 

and were cryofixed in liquid nitrogen (−196 °C) chilled isopentane (−160 °C) for at least 

30 s, at the end of the designated incubation times. The snap-frozen meat samples were 

then stored at −80 °C for subsequent structural analyses. Both experiments were carried 

out in triplicate. 
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Table 7-1. The details of the incubation solutions for the experiments. 

Experiments Samples Incubation solutions 
Actinidin activity 

(U/g meat) 

One- to study the effect of 

actinidin on meat 

microstructure during 

marination 

A (Control) 4.5 mL of sodium citrate buffer (100 mM, pH 5.6) 0 

B 
60 µL of kiwifruit extract (pH 5.6) and 4.44 mL of sodium citrate buffer (100 mM, pH 

5.6) 
0.25 

C 
416 µL of kiwifruit extract at pH 5.6 and 4.004 mL of sodium citrate buffer (100 mM, pH 

5.6) 
1.7 

Two- to study the effect of 

actinidin on meat 

microstructure during 

simulated gastric digestion 

A (Control) 4.5 mL of sodium citrate buffer (100 mM, pH 3) 0 

B 
Pepsin (8 U/mg meat protein, based on section 4.2.4.1) in 4.5 mL of sodium citrate buffer 

(100 mM, pH 3) 
0 

C 416 µL of kiwifruit extract (pH 3) and 4.084 mL of sodium citrate buffer (100 mM, pH 3) 0.4 

D 
Pepsin (8 U/mg meat protein, based on section 4.2.4.1) in 416 µL of kiwifruit extract (pH 

3) and 4.084 mL of sodium citrate buffer (100 mM, pH 3) 
0.4 
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7.2.5 Purification of anti-actinidin from rabbit serum 

The rabbit serum containing polyclonal anti-actinidin was prepared previously in our lab 

as per the method described by Chao (2016). In brief, the anti-actinidin antibodies were 

raised in a rabbit using purified actinidin. 400 µg of the purified actinidin was emulsified 

with the Freund’s Incomplete Adjuvant in 1: 1 ratio followed by injection into a rabbit. 

150 µg of the purified actinidin was injected into the rabbit as a booster fortnightly after 

the first injection. The blood was collected from the euthanased rabbit after the 

completion of six boosters. After clotting the blood samples for 60 min at room 

temperature, the samples were centrifuged at 10000 x g for 15 min at 4 ℃. The 

supernatant was collected as the rabbit anti-actinidin serum and was stored at -80 ℃ until 

further use. Actinidin was detected in a Western blot analysis using the anti-actinidin 

(raised as mentioned above) as the primary antibody, showing the anti-actinidin was 

successfully produced. The anti-actinidin was purified from the rabbit serum using a 

MelonTM Gel IgG (Immunoglobulin G) Spin Purification kit (45206, Thermo Fisher 

Scientific, Waltham, MA, USA) consisting of an IgG purification support, a purification 

buffer, and spin columns (with top and bottom caps). First, 500 µL of the purification 

support was pipetted into a spin column which was placed in a microcentrifuge tube. The 

spin column was left uncapped and the column-tube assembly was centrifuged at 5000 x 

g for a min. After centrifugation, the flow-through collected in the microcentrifuge tube 

was discarded. Then, the column was washed by adding 300 µL of the purification buffer 

to the column, followed by centrifugation at 5000 x g for 10 s. The flow-through collected 

in the microcentrifuge tube was disposed of. The wash step was repeated once. Next, the 

rabbit serum was diluted with the purification buffer in 1:10 ratio and 500 µL of the 

diluted rabbit serum was added to the column. The column was then capped and incubated 

at 20 ℃ for 5 min with end-over-end mixing. After that, the bottom cap was removed and 
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 the top cap was loosened. The column was placed in a new microcentrifuge tube and was 

centrifuged at 5000 x g for a min. After centrifugation, the flow-through accumulated in 

the microcentrifuge tube was collected as the purified anti-actinidin, which was then 

stored at -20 ℃ for immunostaining.   

7.2.6 Microscopy analysis of treated muscles  

7.2.6.1 Histochemical analysis 

The effect of kiwifruit extract on muscle microstructure under different incubation 

conditions was studied by performing Picro-Sirius Red (PSR) staining on the muscle 

sections. The cryosectioning and the staining of the treated muscles were done as 

described in section 4.2.5.1. The observations were made in triplicate for each treatment. 

7.2.6.2 Immunohistofluorescence imaging for the localisation of actinidin and pepsin 

The cryofixed muscle blocks were cut into 10 µm thick sections using a cryostat (CM1950, 

Leica Microsystems GmbH, Wetzlar, Germany) at -20 °C, followed by mounting on glass 

slides and air-drying at room temperature for at least an hour. The localisation of actinidin 

in the meat sections was done by performing immunohistofluorescence imaging 

according to the standard protocol (Buchwalow & Böcker, 2010). In brief, the meat 

sections were covered in 100 µL of 10 % goat serum (G9023, Sigma-Aldrich, Saint Louis, 

MO, USA) in phosphate buffer saline (P7059, Sigma-Aldrich, Saint Louis, MO, USA) 

for 10 min to prevent non-specific binding of the antibody. The 10 % goat serum in 

phosphate buffer saline was then removed gently from the slides before applying the 

primary antibody solution to the meat sections. The primary antibody solution was 

prepared by diluting the purified rabbit polyclonal anti-actinidin (produced as mentioned 

in section 7.2.5) using phosphate buffer saline solution comprising 1 % goat serum and 

0.01 % Tween® 20 (P7949, Sigma-Aldrich, Saint Louis, MO, USA), in a ratio of 1: 5. 
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 The diluted primary antibody was applied to the meat sections and the glass slides were 

kept in a humidity chamber for 1 h, followed by washing in a washing buffer (phosphate 

buffer saline containing 0.01 % Tween® 20) thrice. The glass slides were then blot-dried 

and all of the subsequent procedures were carried in the dark. After blot-drying, the 

secondary antibody solution was applied to the meat sections and the slides were placed 

in a humidity chamber for an hour. The secondary antibody solution was prepared by 

diluting goat anti-rabbit IgG H&L Cyanine (Cy3®) preadsorbed secondary antibody 

(ab6939, Abcam, Cambridge, UK) using phosphate saline buffer containing 1 % goat 

serum and 0.01% Tween® 20, in a ratio of 1: 1000. After that, the sections were washed 

in the washing buffer thrice, followed by blot-drying of the slides. The Fluoromount™ 

aqueous mounting medium (F4680, Sigma-Aldrich, Saint Louis, MO, USA) was then 

applied to the sections to preserve the fluorescent dye-stained tissues, before cover-

slipping. The slides were allowed to dry for 30 min and the coverslips were sealed with 

nail polish for long term storage. The imaging was performed using an Olympus BX51 

fluorescence light microscope (Olympus Optical, Tokyo, Japan) with a U-61000V2 

D/F/R C29141 filter unit (Cy3®, excitation: 552 nm; emission: 570 nm) (Chroma 

Technology Corp, Bellows Falls, VT, USA). The images were captured via a QImaging 

MicroPublisher™ 5.0 colour CCD camera using the Q-Capture Pro7 software (QImaging, 

Surrey, BC, Canada). The localisation of pepsin was conducted as mentioned above with 

a change of the primary antibodies to the rabbit polyclonal anti-pepsin (ab182945, Abcam, 

Cambridge, UK) (dilution ratio of 1: 166). The observations were made in triplicate for 

each treatment. 



 

   

 

171 Chapter 7  

 7.3 Results and discussion 

7.3.1 The actinidin activity of the kiwifruit extracts 

The actinidin activity of the kiwifruit extracts was quantified for the determination of the 

amount of kiwifruit extracts required in each incubation solution to achieve a desired 

actinidin activity. The actinidin activity of kiwifruit extracts at pH 3 and 5.6 were 

measured during the esterolysis of the actinidin substrate N-α-carbobenzoxy-L-lysine-P-

nitrophenyl ester (Table 7-2). The actinidin activity was higher in kiwifruit extract at pH 

5.6 than the extract at pH 3. Sugiyama et al. (1997) also found that actinidin had the 

highest activity at pH 5 to 6 during esterolysis at 37 ℃. 

Table 7-2. The actinidin activity of kiwifruit extracts at pH 3 and pH 5.6 at 25 ℃.  

N = 3. 

 

7.3.2 Effect of kiwifruit extract on muscle microstructure 

As shown in Figure 7-1 and Figure 7-2, the connective tissue was stained in red by the 

Sirius Red dye and muscle cells were stained in yellow by picric acid. In experiment one, 

small raw beef brisket muscle pieces were placed in incubation solutions with conditions 

mimicking marination for meat tenderisation. Differences were observed between meat 

samples after incubation in different solutions for 30 min. For the control with no kiwifruit 

extract added, the muscle cells were still intact at the end of incubation. The PSR-stained 

section of the control showed a uniform mix of redness and yellowness. In contrast, there 

were structural changes observed at the edges of the meat sections incubated in kiwifruit 

extract at pH 5.6 for 30 min. In the meat sample incubated in kiwifruit extract with a 

higher actinidin activity (Figure 7-1C, 1.7 U/g meat), the damage to the muscle structure 

was greater and expanded toward the core. Most of the muscle cells at the edge of the 

 Kiwifruit extract (pH 3) Kiwifruit extract (pH 5.6) 

Actinidin activity (U/mL extract) 5.6 ± 0.1 18.7 ± 0.7 
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 section were destroyed. In addition, the PSR-stained sections of the meat samples 

incubated in kiwifruit extract showed a high intensity of redness at the edges of the meat 

sections, unlike the control sample. The lack of yellowness at the edges of the meat 

sections incubated in the kiwifruit extract suggests the degradation of the muscle cells by 

the enzyme actinidin. The area that was high in redness was bigger in the sample 

incubated in the kiwifruit extract with an actinidin activity of 1.7 U/g meat, showing more 

muscle cell hydrolysis compared to the sample incubated in the kiwifruit extract with a 

lower actinidin activity (0.25 U/g meat). Furthermore, as depicted in Figure 7-1C, the 

connective tissue which was stained in red had degraded along with the muscle cells at 

the end of incubation. These observations demonstrate the ability of actinidin to hydrolyse 

both the myofibrillar proteins and the connective tissue, particularly the former, at a 

slightly acidic pH.  

The proteolytic activity of actinidin on both myofibrillar proteins and collagen has been 

reported in several studies. Actinidin has been found to be able to hydrolyse all the 

myofibrillar proteins at a pH range of 3.0 to 4.5 at 25 ℃ (Nishiyama, 2007). At pH 

between 5.5 and 8.0, MHC was hydrolysed into smaller fragments by actinidin, but actin 

remained unaffected. Thus, the meat tenderisation level caused by actinidin could 

potentially be controlled by manipulating the pH during treatment (Zhu, 2017). 

Christensen et al. (2009) discovered degradation of desmin, a reduction in myofibrillar 

particle size and an increment in heat-soluble collagen in porcine Biceps femoris muscles 

injected with neutral marinade containing actinidin, after storage at 2 ℃ for 2 days.  

Disruption of type I collagen fibres was detected in raw pork incubated in kiwifruit extract 

(pH 3.4) at 25 ℃ for 4 h by Nishiyama (2000). Wada et al. (2004) observed the hydrolysis 

of cattle Achilles tendon treated with actinidin solution at pH 6 and pH 3.3, but not at pH 
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 below 3. The collagen subunits α-chain and β-chain were detected using SDS-PAGE for 

the tendon samples incubated in actinidin solutions (pH 6 and 3.3) at 20 ℃ for 24 h. These 

studies showed that actinidin was able to hydrolyse collagen at pH 3 to 6 at room 

temperature, which was also observed in Figure 7-1.  
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Figure 7-1. Histological sections of meat samples after incubation in (A) sodium citrate buffer at pH 5.6 (control), (B) kiwifruit extract (0.25 U/g meat) at pH 

5.6 and (C) kiwifruit extract (1.7 U/g meat) at pH 5.6, at 20 ℃ for 30 min. Connective tissue was stained in red by the Sirius Red dye and muscle cells were 

stained in yellow by picric acid.  
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 In experiment two, small pieces of SV-cooked beef brisket muscles were placed in 

incubation solutions with conditions simulating gastric digestion in humans. It was 

observed that the microstructure of meat incubated in different solutions were dissimilar 

after 3 h of incubation. For the control with no kiwifruit extract added (Figure 7-2A), 

there was no visible disruption in the meat microstructure. The muscle cells and 

connective tissue remained intact at the end of incubation. In contrast, the muscle samples 

placed in incubation solutions containing enzymes had their microstructures damaged in 

different ways and to different extents. In the samples placed in an incubation solution 

containing either pepsin (Figure 7-2B, 8 U/mg meat protein) or actinidin (Figure 7-2C, 

0.4 U/g meat), the muscle structures at the edges of the sections were damaged. Both the 

muscle cells and connective tissue were disintegrated. However, in the sample incubated 

in the kiwifruit extract, it was observed that the PSR-stained section had relatively higher 

amounts of redness at the edge of the section than the sample incubated in pepsin solution, 

showing a high concentration of undegraded connective tissue in the former. These 

findings showed that actinidin had a greater proteolytic activity on the myofibrillar 

proteins than on the connective tissue at acidic pH (pH 3) at 37 ℃. Pepsin was able to 

hydrolyse connective tissue more efficiently than actinidin during simulated gastric 

digestion.  

When both pepsin and actinidin were included in the incubation solution (Figure 7-2D), 

the muscle structure of the sample was degraded more and the area of muscle structure 

destruction was extended towards the core of the section, when compared to meat samples 

incubated in solutions containing either pepsin or actinidin. Although a large red area was 

also observed at the edge of the PSR-stained section of the sample incubated in both 

kiwifruit extract and pepsin, the red area was more damaged than the red area observed 

in the sample incubated in kiwifruit extract without pepsin. This shows a synergistic 
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 proteolytic effect of both enzymes under simulated gastric conditions, suggesting that co-

ingestion of kiwifruit with meat would promote protein digestion in stomach.  

Kaur et al. (2010a) reported an improvement in myofibrillar proteins hydrolysis when 

subjecting myofibrillar proteins to in vitro gastric digestion (pH 1.9) in the presence of 

both pepsin and actinidin. The degradation of the troponin T and other high molecular 

weights proteins was greater in the presence of both pepsin and actinidin rather than 

pepsin alone. The combined actinidin and pepsin system did not have any effect on 

collagen but had a minor effect on gelatine during simulated intestinal digestion (Kaur et 

al., 2010b). Sugiyama et al. (2005) stated that kiwifruit juice was able to degrade the 

globular domains of the denatured collagen such as gelatine, but was unable to hydrolyse 

the collagen triple helical structure. Sous vide cooking results in thermal denaturation of 

collagen, converting the collagen into random coiled gelatine through triple helical 

structure destruction (Baldwin, 2012), 

Similarly, native collagen which has a rigid supermolecular structure was found to be 

resistant towards gastrointestinal enzymatic hydrolysis (Harkness et al., 1978; Sugiyama 

et al., 2005). Limited dialysable material was formed by incubating bovine tendon in 

human gastric juice (pH 1.5) at 37 ℃ for 2 h. The degree of hydrolysis of collagen was 

1.15 % after incubating in simulated gastric juice (pH 2) for 4 h at 37 ℃ (Liang et al., 

2014). In contrast, gelatine was partially digested by pepsin, where Giménez et al. (2013) 

observed a decrease in the intensity of bands corresponding to β-chain (~200 kDa) and 

α1-chain (~100 kDa) of gelatine after simulated peptic digestion at 37 ℃ for 30 min. This 

is in agreement with the observation in Figure 7-2B, where the connective tissue of the 

SV-cooked meat was digested along with the muscle cells by pepsin, at the end of 

incubation.  
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Figure 7-2. Histological sections of meat samples after incubation in (A) sodium citrate buffer at 

pH 3 (control), (B) sodium citrate buffer at pH 3 containing pepsin (8 U/mg meat protein), (C) 

kiwifruit extract (0.4 U/g meat) at pH 3, and (D) kiwifruit extract (0.4 U/g meat) at pH 3 

containing pepsin (8 U/mg meat protein), at 37 ℃ for 3h. Connective tissue was stained in red by 

the Sirius Red dye and muscle cells were stained in yellow by picric acid.  

7.3.3 Localisation of actinidin and pepsin using immunohistofluorescence imaging 

Both actinidin and pepsin were identified on the meat sections using 

immunohistofluorescence imaging. During the immunostaining, the antigens, in this 

experiment the actinidin and pepsin, bound to the primary antibodies followed by forming 

complexes with the secondary antibodies labelled with fluorescent markers. As the 

secondary antibody used in this experiment was labelled with a cyanine dye (Cy3) 
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 fluorophore, the antigen-antibody complex glowed red when the fluorophore was excited 

by the incident light during imaging. For both experiments, actinidin was identified in the 

meat sections incubated in kiwifruit extracts. In experiment one, no bright dot was 

observed in the control meat section (Figure 7-3 A). Bright red dots were detected in both 

samples incubated in the kiwifruit extract at pH 5.6, with more bright dots observed in 

the meat section incubated at a higher actinidin activity (Figure 7-3 C, 1.7 U/mg meat).  

As for the experiment two, there was no actinidin observed in both the samples incubated 

in sodium citrate buffer (Figure 7-4A) and pepsin solution (Figure 7-4B), at pH 3. In 

contrast, high numbers of bright red dots were identified in both the samples incubated in 

kiwifruit extract (Figure 7-4C) and kiwifruit extract containing pepsin (Figure 7-4D). 

These observations showed that actinidin was successfully located using the purified anti-

actinidin via immunohistofluorescence imaging. In addition, it was observed that most of 

the actinidin was identified at the edges of the muscle cells, and the endomysium which 

surrounds individual muscle cells. The findings were similar to the observation made by 

Astruc (2014b), where pepsin was located in the perimysium and endomysium of the 

peptic digested raw meat. He suggested that digestive juices, which contain the digestive 

enzymes, travel through the extracellular spaces (connective tissue) to the intracellular 

spaces (muscle cells), facilitating the accessibility of digestive enzymes to their substrates.  

As for the localisation of pepsin, bright red dots were observed only in samples kept in 

the incubation solutions containing pepsin (Figure 7-5B and Figure 7-5D). Pepsin was 

located at the edges of muscle cells and in the extracellular spaces, which was also 

reported by Astruc (2014b). However, the number of bright red dots detected was very 

low which might be due to insufficient concentration of the anti-pepsin. Optimal anti-

pepsin concentration should be determined in the future to better visualise pepsin in the 

meat structure.
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Figure 7-3. Actinidin localisation in the raw beef brisket incubated in (A) sodium citrate buffer at pH 5.6 (control), (B) kiwifruit extract (0.25 U/g meat) at pH 

5.6 and (C) kiwifruit extract (1.7 U/g meat) at pH 5.6, at 20 ℃ for 30 min. Actinidin was identified on the muscle sections as bright red dots (white arrows). 
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Figure 7-4. Actinidin localisation in the cooked beef brisket incubated in (A) sodium citrate 

buffer at pH 3 (control), (B) sodium citrate buffer at pH 3 containing pepsin (8 U/mg meat protein), 

(C) kiwifruit extract (0.4 U/g meat) at pH 3, and (D) kiwifruit extract (0.4 U/g meat) at pH 3 

containing pepsin (8 U/mg meat protein), at 37 ℃ for 3h. Actinidin was identified on the muscle 

sections as bright red dots (white arrows).  
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Figure 7-5. Pepsin localisation in the cooked beef brisket incubated in (A) sodium citrate buffer 

at pH 3 (control), (B) sodium citrate buffer at pH 3 containing pepsin (8 U/mg meat protein), (C) 

kiwifruit extract (0.4 U/g meat) at pH 3, and (D) kiwifruit extract (0.4 U/g meat) at pH 3 

containing pepsin (8 U/mg meat protein), at 37 ℃ for 3h. Pepsin was identified on the muscle 

sections as bright red dots (white arrows).  
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 7.4 Conclusions  

This experiment revealed the effects of actinidin and pepsin on both myofibrillar proteins 

and connective tissue under different conditions. It was observed that the kiwifruit 

enzyme actinidin had a greater proteolytic effect on the myofibrillar proteins than on the 

connective tissue at both pH 3 and pH 5.6. For the raw samples incubated in kiwifruit 

extract at pH 5.6, the edges of the PSR-stained sections had a higher intensity in redness 

(connective tissue) accompanied with a lack of yellowness (muscle cells) at the end of 

incubation. These observations were also made in SV-cooked meats incubated in 

kiwifruit extract at pH 3 for 3 h. Pepsin was found to have a greater proteolytic effect on 

the connective tissue of cooked meats than actinidin, under gastric conditions. When 

incubating cooked meats with both pepsin and actinidin, more muscle structure 

breakdown was observed at the end of incubation when compared to meat samples 

incubated with a single enzyme. This suggested that the co-ingestion of kiwifruit and 

meat could promote protein digestion in the stomach. Actinidin and pepsin were 

successfully located via immunohistofluorescence imaging. The findings provide some 

insights into the penetration of enzymes into meat structure. Both enzymes were 

identified at the edges of the muscle cells and in the endomysium, suggesting that the 

incubation solutions diffuse into the muscle through the extracellular matrix to the 

intracellular area, facilitating the accessibility of enzymes to their substrates. Localisation 

of the enzymes could be done at different incubation times in the future to have a better 

understanding on the diffusion path of the enzymes in meat.
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Chapter 8 Overall conclusion and recommendations 

8.1 Overall conclusion 

This thesis studied the impact of different processing technologies on meat protein 

properties, muscle structure and in vitro protein digestibility of beef. In this project, the 

PEF, SW, and actinidin treatments were applied to beef muscles either alone, or in 

combination with SV cooking. The effect of different treatments on beef muscle structure 

was investigated using different imaging techniques. A static in vitro digestion model was 

used to determine the effect of different processing techniques on meat protein 

digestibility. The impact of processing on meat protein properties, such as the molecular 

size and thermal stability, was also characterised. The interactions between the processing, 

muscle protein and structure, and in vitro meat protein digestibility were examined. The 

following research questions were answered in this thesis (Figure 8-1): 

8.1.1 What is the effect of PEF, SW, and kiwifruit extract treatment alone on beef 

muscle structure and meat protein? 

All of the treatments resulted in muscle structural changes at either molecular, micro- 

and/or ultrastructural levels. Pulsed electric field treatment on bovine Longissimus 

thoracis muscles caused sarcomere elongation and disruption at the Z-disk and I-band 

junctions. A sarcomere length increment of approximately 25 to 38 % was detected in the 

PEF-treated muscles compared to the untreated muscles, depending on the PEF intensities. 

Shockwave processing of bovine Deep and Superficial pectoral muscles led to the 

disorganisation of sarcomere structure and the formation of wavy sarcomeres. The protein 

secondary structure, as studied by the FT-IR microspectrometry, of the myofibres of the 

SW-treated muscles was affected. Kiwifruit extract treatment of bovine Deep and 

Superficial pectoral muscles resulted in the breakdown of both muscle cells and 
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 connective tissue at the microstructural level, particularly in the muscle cells, due to the 

proteolytic action of the enzyme actinidin present in the extract.  

Meat proteins were affected by SW processing but not by PEF treatment. Based on the 

differential calorimetric analysis, the thermal denaturation temperature and the enthalpy 

of collagen were reduced significantly in the SW-treated bovine Deep and Superficial 

pectoral muscles, compared to the untreated control muscles. The overall denaturation 

enthalpy of the former was also significantly lower than the latter, showing that SW 

treatment reduced the thermal stability of collagen, likely through the disruption of 

collagen triple helical tertiary or quaternary structure. No difference was observed in the 

protein profiles, studied using both reducing and non-reducing gel electrophoresis, 

between the SW-treated and untreated meat.  

8.1.2 What is the effect of PEF and SW treatment on beef muscle structure and 

meat proteins after SV cooking? 

No micro- or ultrastructural differences were discovered in both the control SV-cooked 

and PEF-treated SV-cooked bovine Deep and Superficial pectoral muscles. Shockwave 

processing in combination with SV cooking caused a more severe muscle fibre 

coagulation and denaturation of bovine Deep and Superficial pectoral muscles, when 

compared to the untreated SV-cooked muscles. A significant increment in the 

extracellular space area and more contracted muscle cells of the SW-treated SV-cooked 

muscles were observed. Differences in the secondary structure of the myofibres were 

detected between the control SV-cooked and SW-treated SV-cooked meat.  

Meat proteins were affected by a SW-SV process but not by a PEF-SV process. Greater 

numbers of large proteins were observed in the electropherogram of the SW-treated SV-

cooked bovine Deep and Superficial pectoral muscles, compared to the untreated SV-
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 cooked muscles. This observation shows that SW-SV treatment resulted in more protein 

aggregation and cross-linking, when compared to SV cooking alone. However, no new 

disulfide linkages were observed in the SW-SV treated meat, as shown in the 2D non-

reducing/reducing PAGE analysis. Although PEF treatment has been reported to facilitate 

the release of cathepsins from the lysosomes into the cytosol, there was no significant 

difference in the cytosolic cathepsins activities between the PEF-treated and control 

untreated bovine Deep and Superficial pectoral muscles, before and during SV cooking 

for 0.5, 1, 2, and 5 h. These findings led to a speculation that the intensity of the PEF 

treatment applied in this experiment might not be high enough to result in the 

electroporation of the intracellular components such as the lysosomes. Thus, fresh 

samples should be used, and the endogenous enzymes activity should be quantified 

immediately after PEF treatment, to eliminate the effect of freezing and thawing on the 

lysosomes in the future.    

8.1.3 Can meat processing improve muscle protein digestibility in vitro?  

Pulsed electric field processing improved the in vitro protein digestibility of raw bovine 

Longissimus thoracis muscles by at least 18 %, in terms of the ninhydrin-reactive amino 

nitrogen released at the end of simulated digestion. A significantly higher in vitro protein 

digestibility was also observed in the PEF-treated SV-cooked (~29 % higher) and the 

SW-treated SV-cooked (~22 % higher) bovine Deep and Superficial pectoral muscles, 

compared to the untreated SV-cooked meat. The enzymatic hydrolysis of the meat 

proteins was also investigated using the reducing tricine SDS-PAGE. All of the treated 

muscles had their SDS-PAGE protein profiles altered, showing that the muscle protein 

breakdown during digestion was affected by meat processing.  
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 8.1.4 What is the interaction between muscle structure and in vitro protein 

digestibility?  

In this project, the muscle structure was closely related to the in vitro protein digestibility 

of meat. Process-induced structural changes were found to enhance the meat protein 

digestibility. Muscle structure modifications were observed in both PEF-treated bovine 

Longissimus thoracis muscles and SW-treated SV cooked bovine Deep and Superficial 

pectoral muscles. Both treatments led to an improvement in in vitro protein digestibility 

of meat. Although PEF-treated SV-cooked bovine Deep and Superficial pectoral muscles 

had improved protein digestibility, no muscle structural changes were detected compared 

with the cooked control after meat processing. However, differences were identified in 

the muscle micro- and ultrastructures during simulated digestion. 

It was observed that the size of the muscle cells of both control and PEF-treated SV-

cooked (60 ℃ for 24 h) Deep and Superficial pectoral muscles increased after 60 min of 

simulated gastric digestion. The muscle cell swelling was likely due to the absorption of 

the acidic simulated gastric juice. More severe muscle cell swelling was found in the PEF-

treated SV-cooked pectoral muscles which had greater protein digestibility, compared to 

the control untreated SV-cooked muscles. The improved protein digestibility of the PEF-

treated SV-cooked meat might be due to the enhanced penetration of gastric juice into 

meat, which has been reported to facilitate the accessibility of the digestive enzymes to 

their substrates (Astruc, 2014b; Bordoni et al., 2014). Muscle cell swelling during 

simulated digestion was also observed in both control and SW-treated SV-cooked 

pectoral muscles (60 ℃ for 12 h). Unlike the observations made in the control and PEF-

treated SV-cooked meat samples, the muscle cell swelling in the SW-treated SV-cooked 

muscles occurred to a smaller extent than the control untreated SV-cooked muscles, 

despite the fact that the former had a higher protein digestibility. As excessive swelling 
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 of the muscle cells might lead to a reduction in extracellular spaces, the transfer of the 

aqueous digestive juices to the core of the control untreated SV-cooked samples might be 

limited, causing the muscles to have a lower protein digestibility than the SW-treated SV-

cooked meat (Astruc, 2014; Offer & Knight, 1988). When compared the muscle swelling 

observations from both experiment, the muscle cell size of meat samples SV-cooked at 

60 ℃ for 12 h (both control and SW-treated samples) were larger than the samples SV-

cooked for 24 h (both control and PEF-treated samples) after 62 min of simulated oral-

gastric digestion. This shows that the muscle cell swelling during simulated digestion was 

also affected by SV cooking duration. Overall, the muscle microstructure of both 

PEF/SW-treated SV-cooked pectoral muscles was more damaged than the control SV-

cooked meat at the end of simulated digestion.  

In addition, the ultrastructures of all the treated samples were different from the control 

untreated samples at the end of simulated digestion. More degraded sarcomeres along 

with more severely coagulated and elongated I-bands were detected in the digested 

muscles of all the treated meat when compared to the untreated meat. The more 

coagulated I-bands might be due to more acid denaturation of the protein by the gastric 

juices, which exposed buried peptide bonds for the access of digestive enzymes, leading 

to improved proteolysis (Chian et al., 2019; McGuire & Beerman, 2012). From the 

observations made in this thesis, it can be concluded that with appropriate processing, 

meat structure can be modified to improve the accessibility of digestive proteases to their 

substrates, leading to an improvement in protein digestibility. 
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 8.1.5 How do the enzymes penetrate into the meat? 

The study investigated the penetration of enzyme actinidin, for the first time, and pepsin 

into meat, using immunohistofluorescence imaging. Both the enzyme actinidin and 

pepsin, were located at the edges of the muscle cells and in the endomysium after 

incubation. These observations suggest that the incubation solutions diffuse into the 

muscle through the extracellular matrix (endomysium) to the intracellular area (muscle 

cells), facilitating the accessibility of enzymes to their substrates.  
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Figure 8-1. A schematic illustration of how the research questions in this thesis were addressed.
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8.2 Recommendations 

This study has examined different meat processing techniques to discover how effectively 

they improve the in vitro protein digestibility of beef. Future studies could further explore 

the interaction between the processing methods, meat structure and protein digestibility. 

Some recommendations for future studies are listed below. 

8.2.1 Selection of muscle-based foods  

Different meat cuts from different animal sources might respond differently to different 

processing. The muscle-based foods explored in this thesis were the bovine Longissimus 

thoracis muscles (ribeye) and the bovine Deep and Superficial pectoral muscles (brisket). 

Other popular beef cuts such as Semitendinosus (eye of round), Longissimus lumborum 

(striploin) and Semimembranosus (top round) could be studied in the future. For instance, 

SW has found to mainly act on the myofibrillar proteins and slightly on the connective 

tissue. Thus, it might be worth investigating the effect of SW on premium cuts, such as 

the striploin (lower in connective tissue content), for meat tenderisation and to reduce the 

ageing time. Moreover, the current application of SW technology is not economically 

feasible due to the requirement of cost intensive strong and resilient packaging materials 

(Toepfl et al., 2013). Shockwave processing of premium cuts has the potential to absorb 

the high production costs incurred which could be beneficial to the industry. Meat cuts 

from porcine, ovine, and marine sources could also be explored. As meat is a biological 

tissue which is inherently variable, it is also recommended to conduct future studies using 

larger sample size to confirm findings of the current study.  

8.2.2 Exploration of different processing methods and parameters 

Different processing parameters for the PEF processing, SW processing, exogenous 

enzymes treatment and SV cooking could also be investigated in the future. For instance, 
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 a multistage SV cooking with a lower initial and a higher final cooking temperature could 

be studied as this process has the potential to promote the enzymatic hydrolysis by the 

cathepsins for meat tenderisation, while ensuring microbiological safety of meat. It would 

also be interesting to explore the PEF processing of meat using a continuous PEF system 

for solid foods, such as the Elea GmBH PEF AdvantageTM Belt developed by the German 

Institute of Food Technology (DIL). The PEF experiments presented in this were done 

using a batch system which has an approximate processing cost of about NZD 8 cents/kg 

meat (excluding the costs of meat and packaging materials) due to low product 

throughputs and relatively high labour costs (Rohlik et al., 2017). Thus, exploring the 

continuous PEF system might lower the production cost and would be profitable to the 

industry. However, more trials and process optimisation would be required before 

commercialisation of this technology. 

In addition to the processing techniques studied in this thesis, other processing such as 

ohmic heating (Hradecky et al., 2017), microwave heating (Wang, Muhoza, et al., 2019), 

ultrasonic processing (Bagarinao et al., 2020; Barekat & Soltanizadeh, 2017), and 

fermentation (Charmpi et al., 2020) could be explored in the future. In addition to whole 

muscles, the impact of different processing methods on comminuted meat products such 

as burger patties and sausages could be considered. 

8.2.3 Characterisation of meat digests  

The SDS-PAGE analysis performed in this project was done using the soluble fraction of 

the meat digests. A homogenised meat digest consisting of both the soluble and insoluble 

fractions of the digests should be carried out in the future to understand the breakdown of 

the muscle proteins in both fractions at different digestion time points. More sampling 

time points could be used to have more detailed information on the digestion kinetic of 

the samples. In addition to SDS-PAGE analysis and ninhydrin assay, mass spectrometry 
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 such as liquid chromatography–mass spectrometry (LC-MS) and matrix-assisted laser 

desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS) could be 

performed for protein and peptide identification of the digests (Toldra et al., 2008). 

Furthermore, MALDI-MS imaging could be done to study protein fragments and 

enzymatic reaction within the muscle structure (Théron, Venien, et al., 2014), along with 

other histochemical staining analyses. The swelling of the muscle cells at different time 

points of in vitro digestion could also be quantified to establish a correlation between 

muscle cell swelling and enzymatic degradation of the muscles.   

8.2.4 Characterisation of the accessibility of enzymes in meat 

In this project, both actinidin and pepsin were successfully located in meat using 

immunohistofluorescence imaging. However, only a small amount of pepsin was 

identified which might have been due to insufficient antibody concentration. The optimal 

concentration of anti-pepsin should be determined in the future. Other than pepsin and 

actinidin, the accessibility of other digestive enzymes (e.g. trypsin) and food enzymes 

used as processing aids (e.g. actinidin, papain, bromelain) in meat could be studied using 

immunohistofluorescence imaging. The localisation of enzymes could also be done at 

different incubation times to give a better understanding of the diffusion path of the 

enzymes in meat. More work could also be done to study the relationship between the 

enzymes diffusion and the extracellular matrix of meat, so that the diffusion rate of the 

enzymes to the meat could be manipulated, potentially controlling the meat tenderisation 

process or enhancing the protein digestibility. The diffusion of gastric juice into meat 

could also be investigated using other methods such as hyperspectral imaging and 

fluorescence recovery after photobleaching (FRAP) technique. The former was used to 

map the hydrochloric acid distribution in different foods at different gastric digestion time 

points (Somaratne et al., 2019). The latter was performed to identify the diffusion 
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 properties of the fluorescein isothiocyanate (FITC)-labelled pepsin in dairy gels using a 

confocal scanning microscope (Thevenot et al., 2017).  

8.2.5 In vitro digestion using a dynamic model 

In this thesis, the in vitro protein digestibility of meat was studied using a static model. 

Although a static model provided some insights in the protein digestibility, the model 

does not mimic the actual digestion process in humans. A dynamic model should be used 

in the future to simulate the dynamic and transient nature of the human digestive system, 

such as the movement of the stomach wall and gastric emptying. Some of the dynamic 

models available are the Human Gastric Simulator (HGS) (Kong & Singh, 2010), the 

Dynamic Gastric Model (DGM) (Thuenemann et al., 2015), the TNO’s gastro-intestinal 

model (TIM) (Minekus, 2015), the DIDGI® (Ménard et al., 2015), the artificial gastric 

digestive system (AGDS) (Liu et al., 2019) and the new dynamic in vitro human stomach 

system (new DIVHS) (Wang, Wu, et al., 2019). In addition, only porcine pepsin was used 

in the static simulated gastric digestion in this project. Raw ribeye and cooked brisket 

tested in this project have approximate fat contents of 8.5 % and 7.1 to 14.4 % respectively 

(Purchas & Wilkinson, 2013). Although these samples have a reasonably high amount of 

lipids, no gastric lipase was used in the simulated digestion due to the unavailability of a 

commercial gastric lipase that has comparable properties to human gastric lipase in the 

past (Brodkorb et al., 2019). As the rabbit gastric extract, which contains gastric pepsin 

and gastric lipase in a ratio that resembles human gastric fluid, is now available 

commercially, it should be used in the simulated gastric digestion instead of porcine 

pepsin as the only digestive enzyme.   
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 8.2.6 In vivo animal and human studies 

In vivo models are the gold standard which provide a more precise and accurate systems 

to study food digestion (Astruc, 2014b). As in vivo studies are usually time consuming, 

expensive, and complex, they could be performed at the final stage of the studies to 

validate the observations from in vitro models. For instance, in vivo studies could be 

conducted to investigate the postprandial plasma amino acid composition in growing pigs 

or in the elderly to demonstrate if meat processing improves their postprandial protein 

gains from meat.
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