
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Symmetric Parallel

Class Expression Learning

TRAN, Cong An

School of Engineering and Advanced Technology

Massey University

New Zealand

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

June, 2013

ii

For my grandparents, my parents, my wife and my son

iii

iv

Acknowledgements

I would like to take this opportunity to thank my supervisors, Prof. Hans

W. Guesgen, Prof. Jens Dietrich and Prof. Stephen Marsland for their guid-

ance and support. I am thankful that I could benefit from their combined

research experience. Prof. Hans W. Guesgen introduced me the world of

Ambient Intelligent with its humanistic ideas of helping the elderly to have

a better life. Prof. Jens Dietrich attracted me to his colourful world of Soft-

ware Engineering. His endless source of ideas impressed me that this is the

world of the active and creative people. Prof. Stephen Marsland, a ‘diverse’

professor with the excellent background in mathematics and computer sci-

ence, encouraged me into his mysterious world of Machine Learning.

I also want to thank Jens Lehmann, the research group leader of Machine

Learning and Ontology Engineering (MOLE) Group at the University of

Leipzig, as well as the author of the DL-Learner framework, for his kind-

ness to grant me permission to access his DL-Learner framework repository

as well as for his valuable advice to evaluate learners. I also highly appre-

ciate Prof. Adrian Paschke, Director of RuleML Inc., for his advice on my

research direction.

I would like to thank the Ministry of Education and Training of Vietnam

for awarding me the scholarship for my study. Thanks also go to the School

of Engineering and Advanced Technology (SEAT) for the financial support

that has enabled me to attend international conferences, which not only

improved my research but also enriched my life.

Thanks to all members of Massey University Smart Home (MUSE) research

group for their valuable discussions and feedbacks on my research. I also

v

want to thank Michele Wagner for her administrative support throughout

my degree.

This thesis would not be possible without the warm and support of my

Palmy-based family, Mr. Vo The Truyen and his family, Mr. Nguyen Buu

Huan and Mr. Nguyen Van Long, who give me a home away from home.

In particular, my special thanks go to Mr. Truyen’s for treating me as

their little brother and Mr. Huan for checking and giving me many helpful

advices on my writing. I could not have asked for more warm and kind

friends as them.

Finally, I would like to give all my deepest gratitude and respect to my fam-

ily. To my grandparents and my parents for their continuous love, support

and patience. To my parents-in-law for taking good care of my son in more

than four years, which released me from family concerns to concentrate on

my research. To my sister and brother for being with my parents during my

study. To my beloved wife, Nguyen Thu Huong, and my son, Tran Cong

Huan. It is my fortune to have them in my life. They are always by my

side to share all the laughers and tears.

vi

Abstract

The growth of both size and complexity of learning problems in description logic

applications, such as the Semantic Web, requires fast and scalable description logic

learning algorithms. This thesis proposes such algorithms using several related ap-

proaches and compares them with existing algorithms. Particular measures used for

comparison include computation time and accuracy on a range of learning problems of

different sizes and complexities.

The first step is to use parallelisation inspired by the map-reduce framework. The

top-down learning approach, coupled with an implicit divide-and-conquer strategy, also

facilitates the discovery of solutions for a certain class of complex learning problems. A

reduction step aggregates the partial solutions and also provides additional flexibility

to customise learnt results.

A symmetric class expression learning algorithm produces separate definitions of

positive (true) examples and negative (false) examples (which can be computed in

parallel). By treating these two sets of definitions ‘symmetrically’, it is sometimes

possible to reduce the size of the search space significantly. The use of negative example

denotions enhances learning problems with exceptions, where the negative examples

(‘exceptions’) follow a few relatively simple patterns.

In general, correctness (true positives) and completeness (true negatives) of a learn-

ing algorithm are traded off against each other because these two criteria are normally

conflicting. Particular learning algorithms have an inherent bias towards either cor-

rectness or completeness. The use of negative definitions enables an approach (called

fortification in this thesis) to improve predictive correctness by applying an appropriate

level of over-specialisation to the prediction model, while avoiding over-fitting.

The experiments presented in the thesis show that these algorithms have the po-

tential to improve both the computation time and predictive accuracy of description

logic learning when compared to existing algorithms.

vii

viii

Contents

Acknowledgement v

Abstract vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Scope of Study . 8

1.4 Aims and Objectives . 8

1.5 Thesis Overview . 10

2 Preliminaries and Related Work 13

2.1 Description Logics and Web Ontology Language 13

2.1.1 Description logic languages . 13

2.1.2 Description logic knowledge bases 17

2.1.3 The Web Ontology Language (OWL) 23

2.2 Description Logic and OWL Learning 26

2.2.1 Description logic learning problem 26

2.2.2 Basic approaches in DL learning 29

2.3 Related Work . 32

2.3.1 Description logic learning . 32

ix

CONTENTS

2.3.2 Parallel description logic learning 34

2.3.3 Numerical data learning in description logics 35

2.3.4 Class Expression Learner for Ontology Engineering (CELOE) . . 36

3 Evaluation Methodology 39

3.1 Introduction . 39

3.2 Evaluation Metrics . 40

3.2.1 Accuracy . 40

3.2.2 Learning time . 41

3.2.3 Definition length . 42

3.2.4 Search space size . 42

3.3 Experimental Design . 42

3.3.1 Experimental framework . 42

3.3.2 Comparison algorithms . 48

3.3.3 Evaluation Datasets . 50

3.4 Implementation and Running the Code 58

4 Adaptive Numerical Data Segmentation 61

4.1 Introduction . 61

4.2 Motivation . 62

4.3 Description of Our Method . 65

4.4 The Algorithms . 67

4.5 Evaluation Results . 68

4.5.1 Segmentation result . 70

4.5.2 Experimental results on the accuracy 71

4.6 Conclusion . 75

5 Parallel Class Expression Learning 77

5.1 Parallelisation for Class Expression Learning 77

5.2 Description of Our Method . 79

5.3 The Algorithms . 83

5.4 Evaluation Result . 88

x

CONTENTS

5.4.1 Experiment 1 - Comparison between ParCEL and CELOE . . . 89

5.4.2 Experiment 2 - Effect of parallelisation on learning speed 96

5.4.3 Experiment 3 - Definition reduction strategy 98

5.5 Conclusion . 100

6 Symmetric Class Expression Learning 103

6.1 Exceptions in Learning . 103

6.2 Symmetric Class Expression Learning 106

6.2.1 Overview of our method . 106

6.2.2 Description of our method . 108

6.2.3 The algorithm . 111

6.2.4 Counter-partial definitions combination strategies 116

6.3 Evaluation . 118

6.3.1 Experiment 1 - Combination strategies comparison 119

6.3.2 Experiment 2 - Search tree size comparison 122

6.3.3 Experiment 3 - Predictive accuracy and learning time 124

6.3.4 Experiment 4 - The learnt definitions 128

6.4 Conclusion . 132

7 Improving Predictive Correctness by Fortification 135

7.1 Problem Description . 135

7.2 Fortification Candidates Generation . 140

7.3 Fortification Strategy . 143

7.3.1 Fortification candidates scoring 143

7.3.1.1 Training coverage scoring 144

7.3.1.2 Fortification concept similarity scoring 145

7.3.1.3 Fortification validation scoring 157

7.3.1.4 Random score . 160

7.3.2 Fortification cut-off point computation 160

7.4 Evaluation . 161

7.4.1 Fortification evaluation methodology 161

7.4.2 Experimental results . 162

xi

CONTENTS

7.5 Conclusion . 176

8 Conclusions and Future Work 181

8.1 Discussion and Contributions of the Thesis 181

8.2 Threats to Validity of the Results . 184

8.2.1 Threats to internal validity . 184

8.2.2 Threats to external validity . 186

8.3 Future Work . 187

A Accessing the Implementation 191

A.1 Software Structure . 191

A.1.1 DL-Learner architecture . 191

A.1.2 Our algorithms packages . 192

A.2 Checking Out and Compiling Code . 193

A.2.1 Checking out the project . 194

A.2.2 Compiling code . 195

B Reproducing the Experimental Results 197

B.1 System Requirements . 197

B.2 Running the Experiments . 198

B.2.1 Syntax . 198

B.2.2 Learning configuration file naming conventions 199

B.3 Learning Configuration . 199

B.4 Test Cases . 202

C List of Publications 211

Glossary 213

References 217

xii

List of Figures

1.1 A typical search tree produced by a top-down learning approach for the

Tweety problem. 6

2.1 An example of the top-down approach in DL learning 31

2.2 An example of the bottom-up approach in DL learning 32

3.1 Data partition for a 10-fold cross-validation 44

3.2 An example of the inconsistency in parallel learning 45

3.3 Termination of learning algorithms . 48

3.4 The MUSE dataset ontology visualised in Protege 55

3.5 RDF graph of an activity in the MUSE dataset 56

3.6 The concept hierarchy of the MUBus dataset visualised in Protege . . . 57

4.1 Specialisation of numeric datatype properties. 63

4.2 Segmentation of numeric datatype properties 64

4.3 Inappropriate segmentation of the data property values prevents the spe-

cialisation of an overly general expression 64

4.4 A relation graph between examples and numeric values 66

4.5 Segmentation of data property values . 67

4.6 Segmentation of the data property values in Figure 4.3 67

5.1 The specialisation using a downward refinement operator 81

5.2 Parallel exploration of the search tree using two workers 83

5.3 Reducer-Worker interaction. 84

xiii

LIST OF FIGURES

5.4 Accuracy against learning time of CELOE and ParCEL on the Carcino-

Genesis dataset using different number of workers. 96

5.5 Accuracy against learning time of CELOE and ParCEL on the UCA1

dataset using different number of workers. 97

5.6 Speed-up efficiency of ParCEL on the UCA1 dataset. 98

6.1 Exception patterns in learning . 105

6.2 Different approaches to learning the definition for the extended Tweety

learning problem. 107

6.3 The top-down learning step aims to find both partial definitions and

counter-partial definitions . 111

6.4 Top-down learning in SPaCEL with multiple workers. 112

7.1 The creation of a prediction model for a learning problem 137

7.2 A prediction scenario of the prediction model in Figure 7.1 138

7.3 Decrease of predictive accuracy caused by inappropriate fortification. . . 139

7.4 Fortification candidates learning . 141

7.5 Family concepts hierarchy. 150

A.1 DL-Learner architecture . 193

B.1 Check required softwares in the system including JDK, Subversion and

Maven. 206

B.2 Install required softwares for compilation the project: JDK, Subversion

and Maven . 206

B.3 Check out the project from the repository 207

B.4 Compile the DL-Leaner and ParCEL core components project. 207

B.5 Compile the interface project. 207

B.6 Compile the ParCEL CLI project. 207

B.7 Command line to learn the Forte-Uncle dataset using CELOE 208

B.8 Command line to learn the Forte-Uncle dataset using ParCEL 208

B.9 Command line to learn the Forte-Uncle dataset using SPaCEL 209

xiv

List of Tables

2.1 Basic concept constructors in description logics 15

2.2 Letters used to name description logic languages. 16

2.3 The semantics of basic concept constructors in description logics. 18

2.4 DLs notations and OWL notations . 24

2.5 OWL constructors and the corresponding constructors in DLs 25

3.1 Size and complexity of the evaluation datasets 51

3.2 Properties of the evaluation datasets . 52

4.1 Reduction of numeric data properties values resulting from the adaptive

segmentation strategy. 70

4.2 Training and predictive accuracies of CELOE on the ILDP dataset using

for the two segmentation strategies. 72

4.3 Training and predictive accuracies of ParCEL on the ILDP dataset using

for the two segmentation strategies. 73

4.4 Predictive accuracy of CELOE and ParCEL on the UCA1 dataset using

for the two segmentation strategies. 74

5.1 ParCEL and CELOE experimental results. 90

5.2 Balanced accuracy of CELOE and ParCEL on unbalanced datasets. . . 94

5.3 ParCEL and CELOE experimental results with one worker. 95

5.4 Speed-up of ParCEL on the UCA1 dataset 98

5.5 Definition length comparison between three reduction strategies 99

6.1 Basic description learning algorithms and their usage of examples. . . . 108

xv

LIST OF TABLES

6.2 SPaCEL experimental result – Combination strategies 119

6.3 SPaCEL experimental results – The search tree size 123

6.4 SPaCEL experimental result – Learning time and predictive accuracy . 124

6.5 Balanced predictive accuracy of unbalanced datasets 127

6.6 SPaCEL experimental result – Definition length of the learning problem 128

7.1 Fortification experimental result with CELOE 166

7.2 Fortification experimental result on ParCEL 170

7.3 Fortification experimental result with SPaCEL 173

7.4 Experimental results for new cut-off points 178

B.1 Common components in DL-Learner framework and their parameters . 200

B.2 Actions and expected result of the test case. 204

xvi

Chapter 1

Introduction

In this chapter, we first provide the research background of the thesis, partic-

ularly the description logic learning problem, and identify the problems to be

addressed. Next, we describe the motivations and the aims and objectives of

this thesis. Finally, we present an overview of the thesis.

1.1 Introduction

Description logic learning has its roots in Inductive Logic Programming (ILP), a sym-

bolic approach in machine learning that aims to learn general rules from specific facts

[76, 77, 102, 104]. Given a background knowledge and a set of observed facts repre-

sented in the form of logic programs [51, 86, 99], ILP aims to learn a set of rules that

describe the given facts. Therefore, it can be used to derive new knowledge (the learnt

rules) from the current knowledge and observed facts:

knowledge base
observed facts−−−−−−−−−→ (learnt) rules.

In description logic learning, description logics (DLs) are employed to represent

the knowledge bases and observed facts. DLs are a family of formal knowledge rep-

resentation languages that emerged from earlier research on semantic networks and

frame-based systems [4, 98, 109, 125]. Given a knowledge base and two sets of in-

stances (called positive and negative example sets) represented in description logics,

1

1. Introduction

description logic learning aims to find a description such that all positive (true) exam-

ples are instances of the learnt description1 and none of the negative (false) examples

is an instance of the learnt description (see Chapter 2 for basic concepts in description

logics). The elements of the positive and negative example sets are called positive and

negative examples respectively. The learnt description corresponds to the learnt rule in

inductive logic programming and it is called the definition of the positive examples. It

can be considered as the new knowledge derived from the observations (i.e. from posi-

tive and negative examples). Example 1.1 illustrates a simple description logic learning

problem.

Example 1.1 (A simple example of description logic learning). Consider a

knowledge base that contains four classes: Person, Male, Female and Uncle; three

properties: married, hasSibling and hasChild; and some instances of these classes

that relate to the description of the uncle relationship. A general description logic learn-

ing algorithm can produce description(s) that describe the uncle concept, for example

(written in Manchester OWL syntax [62]):

Male AND (hasSibling SOME (hasChild SOME Person) OR

(married SOME hasSibling SOME hasChild SOME Person))

�

The biggest benefits of symbolic over sub-symbolic approaches in machine learn-

ing are the interpretability and the rich hierarchical structure and semantics of the

knowledge base. The interpretability of symbolic approaches is represented by two

aspects. First, knowledge represented in logic-based languages is generally easier for

humans to analyse and understand than the forms of knowledge representation used in

sub-symbolic approaches as it is relatively close to human knowledge representation.

Second, many logic reasoners, particularly web ontology language reasoners such as

RacerPro [55] and Pellet [107], provide justifications of inferences [71]. Justifications,

also called explanations or traces, are a (minimal) set of rules sufficient to produce an

inference. They can be considered as explanations of an inference and can be used

to justify a decision made by a decision support system. For example, the inference

1It is also said that the description covers the instances.

2

1. Introduction

“John is a father” can be supported by an explanation, such as, ‘(because) John

is man AND he has a child”. Therefore, justifications can help to increase the trust

(in the inferences produced by systems) of systems that use this approach. This is an

essential requirement for some types of application that require a high level of trust

in the decisions of the system such as expert systems for human disease diagnosis, or

decision support systems for elderly care.

Description logics are the underlying logic language of the Web Ontology Language

(OWL), which was endorsed as a standard ontology language for the Semantic Web

[14] by the World Wide Web Consortium (W3C)2 in 2004 [96]. With the advent of

semantic technologies, particularly the Semantic Web, OWL has become a prominent

paradigm for knowledge representation and reasoning.

Currently, the semantic web is growing steadily – it has developed from more than

10 million semantic web pages in 2010 to approximately 230.6 million in 2011 [24]. It

contains knowledge from various areas such as biomedicine, science, social networks,

and general (upper) ontologies [54, 94, 105, 119]. Coupled with the development of

web ontology language and semantic web applications, the demand for techniques for

automated schema acquisition is increasing [16, 83, 89, 90, 112, 143]. Consequently,

many induction techniques for description logics have been proposed [32, 45, 80, 85,

114, 115] to meet this demand. They are used in various applications in domains

including biology, medicine, cognitive systems and software engineering [35, 60, 125].

1.2 Motivation

Description logic learning problems are increasing in both size (the number of concepts

and instances in the knowledge base) and complexity (the number of concepts and

roles in the learnt description). This raises the need for faster learning algorithms

to process the tasks faster by using system resources such as CPU and memory more

effectively. More importantly, when the applications get bigger and more complex,

scalability becomes a critical requirement. This property indicates the ability of the

learning algorithm to deal with large and complex learning problems.

2http://www.w3.org/Consortium/

3

1. Introduction

As an example, a decision support system in a bank often has only limited resources

to perform maintenance works such as learning credit card fraud detection patterns from

a day’s data to update its information system, e.g. within 1 hour from 1am everyday.

This is a strict requirement regardless of how many transactions have been performed

that day. As another example, consider an abnormal behaviour detection for elderly

care in smart homes, in which a learning algorithm is called to update the definition

of abnormal behaviour when new patterns in the inhabitant’s behaviour emerge. The

normal/abnormal behaviour patterns may become more complicated over time. To

ensure that the detection system does not miss any abnormal behaviours caused by

long learning time, a learning algorithm is often required to run within a given duration

regardless of the complexity of the learning problem. Therefore, the learning algorithms

are required to deal with the various complexity levels of the learning problems so that

they are usable in real-word applications.

Learning in description logics is essentially a search problem: it searches for a right

description3 in the search space that consists of potential descriptions constructed

from the vocabulary of the language. The potential descriptions in the search space are

usually generated dynamically by an operator such as downward/upward refinement or

the Most Specific Concepts (MSC) operator (see Section 2.2). Therefore, the speed of

a description learning approach depends upon the number of computations (searches)

per second and the number of computations per answer, i.e. the time to find the right

answer. On the other hand, the scalability can be influenced by the learning strategy,

i.e. how to construct the solution.

A popular technique for speeding up programs is parallelisation, which takes the

advantage of multi-core processors and multi-processor systems. Multiple searches can

run concurrently on multiple cores to increase the number of computations per second.

While this technique has been applied to inductive logic programming to speed up the

learning algorithms, it has not yet been used in description logic learning. In this thesis,

we propose an approach to parallel description logic learning that uses the advantages

of parallelisation to speed up the learning algorithm.

In addition, we also employ the implicit divide and conquer learning strategy to help

3Complete and correct description with respect to the sets of examples (c.f. Section 2.2)

4

1. Introduction

our learning approach to handle complex learning problems more effectively. The basic

idea behind this strategy is to allow the learning algorithm to learn the definitions

for subsets of instances in the positive example set, i.e. partial solutions, and then

combine them to construct a final solution. The subsets of instances are not explicitly

divided, but they are implicitly defined depending on the definitions found by the

learning algorithm. Intuitively, finding partial solutions is likely to be easier than

finding a complete one. A similar learning strategy was reported in the literature

(see Section 2.3). However, the combination of definitions in the approach in the

literature simply creates the disjunction of all definitions and thus the solution is likely

to contain redundancies. We address this problem by proposing a reduction before the

combination step to select the best definitions for the combination.

The second method for speeding up the learning algorithm is to reduce the number

of computations required to find a solution. In a learning approach based on search,

the number of computations for finding the solution is basically affected by two factors:

i) the search heuristics, and ii) the effectiveness of using the descriptions in the search

space. The search heuristic controls the selection of the descriptions in the search space

for further solution exploration. This factor can be adjusted according to particular

learning problem.

The strategy for using descriptions in the search space suggests a more general

approach to reduce the number of computations needed to find a solution. Existing de-

scription logic learning approaches reported in the literature (see Section 2.3) generate

and search for descriptions that cover all positive and no negative examples. Descrip-

tions that cover only negative examples are removed from the search space as they

are said to be useless for learning the solution. A problem with this approach is that

sometimes descriptions in the search space are not used effectively.

To illustrate this point, consider a classical example used in logic programming,

Tweety, which can be used to learn the definition of flying birds. This problem comes

with a knowledge base that contains a hierarchical structure of concepts, a set of pos-

itive examples that contains instances of flying birds, and a set of negative examples

containing instances of birds and other objects that cannot fly (such as penguins).

Then, the expected definition for positive examples is Bird � ¬Penguin. A typical

5

1. Introduction

Figure 1.1: A typical search tree produced by a top-down learning approach for the
Tweety problem.

TOP

Bird

TOP concept in DLs

definition

Bird TOP Bird

Penguin

Penguin

Bird Bird Bird Penguin

Bird Penguin

TOP TOP . . .

search space (tree) produced by a top-down learning approach for this problem is given

in Figure 1.1. Popular description logic learning algorithms will ignore the description

Penguin in the search tree as it does not cover any positive examples. However, this

simple definition of the negative examples can be combined with another simple de-

scription Bird to construct the solution that is Bird AND not Penguin to describe the

flying birds. This thesis addresses this problem by proposing a ‘symmetric’ description

logic leaning approach that uses definitions of both positive and negative examples in

learning the solution. This approach uses the descriptions in the search tree more effec-

tively, which can help to reduce the necessary search space size for learning a problem.

As a consequence, this approach can improve the learning speed.

In description logic learning, the top-down approach, also called specialisation, is

commonly used as it can facilitate the rich hierarchical structure of knowledge bases to

construct the search space. Definitions learnt by this approach are likely to be shorter

and more concise than those of other approaches [82]. For this reason, they are often

more general than the learnt definitions of other approaches (see Section 2.2.2 for a

discussion of the generality of a definition). Consequently, the learnt definitions of this

approach favour completeness (the true positive) over correctness (the true negative)

of the prediction. This bias may fit certain kinds of application. However, there are

also applications that prefer correctness to completeness.

As an example, consider a surveillance system that learns the normal behaviour

pattern of the elderly and use the patterns, coupled with the ‘negation as failure’

inference rule, for detecting abnormal behaviours. The learnt pattern is complete if it

6

1. Introduction

can cover all normal behaviours and correct if it does not cover any abnormal behaviour.

In such a system, correctness of the learnt definitions is favoured over completeness as

misclassifying abnormal behaviours as normal ones may threaten the person’s safety.

The above scenarios, together with the symmetric approach in description logic

learning, motivate us to propose a method that can provide a trade-off between com-

pleteness and correctness of the prediction for description logic learning algorithms.

The basic idea of this approach is to fortify the learnt definitions by including redun-

dant specialisations to improve the predictive correctness. The redundant specialisation

is performed by using a set of negative example definitions. In addition, to prevent the

over-specialisation of the learnt definition, the redundant specialisation is controlled by

a fortification strategy. This strategy aims to estimate the level of specialisation that

should be applied to the learnt definitions.

We also propose a method for numerical data refinement that will be the basis for

algorithms to learn numerical data. This is motivated by the fact that the existing

description logic learning algorithms mainly focus upon learning the concepts without

having appropriate attention for learning numeric data. In fact, learning symbolic

concepts is the ultimate purpose of the symbolic learning approach and thus it is

reasonable for the existing learning algorithms to pay attention to this aspect. However,

there is also the fact that there are certain circumstances in which the data needs to

be represented numerically.

To learn the numeric datatype properties, we need to identify a set of values used for

refinement and then define the refinement operator on the set. Most existing description

logic learning approaches attempt to use a fixed-size segmentation method to identify

the set of values for refinement. Given a set of all asserted values of a numeric datatype

property, the fixed-size segmentation approach divides the values into a fixed number of

segments. Then, values on the boundaries of the segments are used for the refinement

operator. However, this method may produce redundant values or miss necessary values

for refinement. Therefore, we propose a novel approach for the dynamic segmentation

of numeric datatype properties values based on a relation graph. Our approach can

eliminate the redundancy and the insufficiency of the refinement values.

7

1. Introduction

1.3 Scope of Study

The work of this thesis is mainly related to description logic learning, particularly the

web ontology language. Specific limitations include:

• Symbolic approach: the learning technique used in our thesis is based on induction

and the knowledge is represented using description logics, particularly the Web

Ontology Language (OWL).

• Supervised learning: the learning is based on labelled datasets.

• Positive and negative learning setting: this thesis is restricted to the positive and

negative examples learning setting where the training dataset must contain both

positive and negative examples. In supervised learning, this learning setting is

more general than the other one: the positive examples only learning setting.

• Numeric data learning: our approach supports the integer and real datatype, and

two restrictions: maximal (≤) and minimal value (≥).

1.4 Aims and Objectives

This thesis is about improving the speed and scalability of description logic learning,

and providing a flexible trade-off between completeness and correctness of the pre-

dictions in description logic learning. First, our method for segmentation of numeric

datatype provides a better strategy in learning numeric data for description logic learn-

ing algorithms. Then, two approaches to speed up and scale up the description logic

learning are proposed to help the learning algorithm to deal with various types and

complexity levels of learning problems. Finally, the fortification method supports a

flexible and configurable balance between correctness and completeness to match the

requirements of particular applications. The detailed objectives of this thesis are listed

below.

1. The first objective is to provide a method to segment the values of datatype

properties. It is expected to be able to compute a set of values used for refinement

of the datatype properties in the learning problem such that:

8

1. Introduction

• none of the values needed to distinguish between positive and negative ex-

amples are missed, and

• redundant values that are unnecessary for distinguishing between positive

and negative examples can be eliminated.

2. The second objective is to provide a parallel description learning algorithm that

is able to:

• find a definition for a set of positive examples given sets of positive and

negative examples and a knowledge base,

• utilise parallel computing to find the sub-solutions in parallel to increase the

learning speed and ability to handle complex learning problems, and

• provide basic reduction strategies to aggregate sub-solutions into a final so-

lution.

3. The third objective is to develop a description logic learning algorithm that can

learn from labelled data symmetrically and is able to:

• learn definitions for both positive and negative examples,

• provide combination strategies for combining the descriptions that are nether

the definitions of positive examples nor negative examples with the defini-

tions of negative examples to create definitions for positive examples, and

• provide basic reduction strategies to aggregate definitions of positive exam-

ples into a final solution.

4. The final objective of this thesis is to provide a method for fortifying the predictive

correctness in description logic learning that is able to:

• learn the negative examples definitions (called fortifying definitions) using a

given description logic learning algorithm, and

• select the best fortifying definitions for fortification such that the predictive

correctness can be increased without decreasing the predictive accuracy.

9

1. Introduction

All the above objectives are evaluated using the cross-validation method on a set

of datasets that vary in size, complexity (i.e. length of the target definition), noise

(i.e. with and without noise) and field of application (e.g. biology, smart homes and

transportation). The experimental results are compared with other description logic

learning algorithms to assess the efficacy of our approaches.

1.5 Thesis Overview

This thesis is organised into 8 chapters, including this chapter, and 2 appendices.

The contributions of this thesis are described in chapters 4-7. Other chapters provide

supplementary background knowledge, description of the evaluation method as well as

discussion on the results and findings of the thesis. An overview of the chapters is given

below.

Chapter 2 (Preliminaries and Related Works) covers the background knowledge

related to description logic learning, which helps with understanding the remaining

chapters in the thesis. It briefly introduces the history of description logic learning

and then some elementary concepts in this research area. Then, two basic approaches

of description logic learning, the top-down and bottom-up approaches, are described

along with a list of applications of description logic learning. This chapter ends with a

literature review of this research.

Chapter 3 (Evaluation Methodology) describes the methodology used for the

evaluation, which plays an important role in this research. This chapter first introduces

some classic datasets used in the evaluation. These datasets have been widely used in

the evaluations of other machine learning research. In addition, one novel smart home

datasets and another dataset extracted from a bus service schedule are also presented.

Next, details of the evaluation methodology are described including the cross-

validation methodology and a statistical significance test. Some details of the computer

system and learning configuration used for the evaluations are also discussed. Finally,

this chapter introduces the learning algorithms that are used as the comparators to

evaluate the algorithms proposed in this thesis.

10

1. Introduction

Chapter 4 (An Approach to Numeric Data Property Values Segmentation)

proposes a method for computing the values used for refinement of numeric datatype

properties. This chapter first describes current approaches to refinement of numeric

datatype properties in description logic learning and identifies their limitations. Then,

it describes an approach for dynamic segmentation of numeric datatype property val-

ues to address the problems of the existing approaches. Finally, an implementation

is introduced and experimental results are shown to demonstrate the efficacy of the

approach.

Chapter 5 (An Approach to Parallel Class Expression Learning) introduces a

parallel description logic learning approach that combines the top-down method with

an aggregation method to speed up the learning algorithm. It uses an explicit divide

and conquer strategy to find the sub-solutions. This helps the learning algorithm to

handle complex learning problems more easily. In addition, this approach also requires

an aggregation to build the final solution. We introduce a reduction step before the

aggregation to reduce the redundancy in the final solution. Some reduction strategies

are proposed corresponding to certain properties of the learnt definitions such as the

definition length, or the number of sub-solutions.

Chapter 6 (Symmetric Class Expression Learning) proposes a method that can

reduce the search space by using sets of positive and negative examples symmetrically.

This method learns definitions for both positive and negative examples simultaneously.

Definitions of negative examples are then used to construct the definitions of positive

examples. This approach uses the descriptions in the search space effectively and thus

it can help to increase the learning speed. It is also shown that this approach is suitable

for learning problems that contain exceptions.

Chapter 7 (Improving Predictive Correctness by Fortification) presents a

method for improving the predictive correctness in description logic learning. It first

describes an idea for learning the fortifying definitions given a description logic learning

algorithm. Then, some strategies for selecting the best candidates for the fortification

are described. We also introduce a method for estimating the cut-off point for the

11

1. Introduction

fortification. The experimental results are compared with the original learning results

(i.e., without fortification) to assess the impact of this technique.

Chapter 8 (Conclusions and Future Works) concludes the results and the findings

of this thesis, and outlines the prospects for future work.

Appendix A (Accessing the Implementation) introduces the implementation of

the methods proposed in this thesis. This chapter first introduces briefly the DL-

Learner, an open source machine learning framework our implementations rely on.

Then, the structure of the implementation is described. Finally, instructions to check-

out and compile the implementation from its repository are provided.

Appendix B (Reproducing the Experimental Results) provides instructions for

reproducing the experimental results reported in this thesis.

12

Chapter 2

Preliminaries and Related Work

This chapter provides the background of this thesis, description logic (DL)

learning, and its related work. DLs and the web ontology languages, the rep-

resentation languages used in the proposed algorithms, are first introduced.

Then, DL learning is described including basic concepts, notations and ap-

proaches. This chapter ends with a summary of recent work in DL learning.

2.1 Description Logics and Web Ontology Language

This thesis is about the inductive learning for description logics, particularly the web

ontology language. Therefore, this section first provides an overview of these languages.

Description logics (DLs) is a family of knowledge representation formalisms that

emerged from earlier research on semantic networks and frame-based systems [3, 98,

109]. The earliest work on description logics is called ‘structured inheritance networks’

by Brachman [21]. They are essentially fragments of first order logic [118] with less

expressive power. However, most variants of description logics are decidable, which is

one of the desirable properties of a knowledge representation language [3].

2.1.1 Description logic languages

A description logic knowledge base is constructed based on a vocabulary, which consists

of concept names (atomic concept), role names and objects (individuals), and a set of

13

2. Preliminaries and Related Work

language constructors. A concept name is a common name for a set of objects, e.g.

Person, Mother, Father. Roles are used to describe relationships between objects,

e.g hasChild, daughterOf; and objects are constants that represent objects in the

application domain, e.g. tom, jerry.

Language constructors are used to create complex concepts (or concepts in short,

or descriptions). A concept in a description logic is a formal definition of a concept

(or notation) in the application domain. For example, the complex concept Woman � ∃
hasChild.Person defines the concept Mother in the real world. The notations � and

∃ are the description logic constructors. Table 2.1, which is adopted from [3], lists the

basic constructors in description logics.

Description logics is a family of languages. Each language supports a different set

of constructors that represent its expressive power. Languages in description logics are

named according to their expressive power. Each letter in their name describes the sup-

ported features. Table 2.2 provides a list of letters that are used to name the description

logic languages. For example, the description logic ALC is the attribute language with

complement. This is an extension of the AL language defined in Definition 2.1 that

adds support of negation, i.e. if C is a concept, ¬C is also a concept.

In this section, the syntax of two basic DL languages are provided: AL and SRIOQ.

AL is the most basic language in description logics, which is the extension of all other

languages. SRIOQ is an underlying logic for the most-up-to-date W3C recommendation

for semantic web language OWL-DL [64]. Their syntaxes are defined below.

Definition 2.1 (Syntax of AL language). Let NC be a set of atomic concepts

(concept names) and NR be a set of roles names (NC and NR are disjoint). Concepts

in the AL language are defined as follows:

1. Every atomic concept C ∈ NC is a concept.

2. 	 (top) and ⊥ (bottom) are concepts.

3. If C and D are concepts, and r is a role, the followings are also concepts:

• C �D (disjunction), C �D (conjunction),

• ∀r.C (universal restriction), ∃r.C (existential restriction). �

14

2. Preliminaries and Related Work

Table 2.1: Basic concept constructors in description logics. A,C,D are atomic concepts,
r is a role name and n denotes an integer number.

Constructor Syntax Example

atomic concept concept name C,D, Person

role role name r, s, hasChild

top (TOP) concept 	 -

bottom (BOTTOM) concept ⊥ -

conjunction � C �D

disjunction � C �D

complement ¬ ¬C
existential restriction ∃ ∃r.C
universal restriction ∀ ∀r.C
at-least restriction ≥ ≥ n r

at-most restriction ≤ ≤ n r

qualified at-least restriction ≥ ≥ n r.C

qualified at-most restriction ≤ ≤ n r.C

The SROIQ language is more expressive than AL, but is still decidable. This

language is an extension of AL with more supported constructors including concept

complement, role transitivity, role inversion, nominals, qualified number restrictions

and complex role inclusions. Its syntax is defined as follows:

Definition 2.2 (Syntax of SRIOQ language). Let NC be a set of atomic concepts

(concept names), NC be a set of roles names and NI be a set of individuals (NC , NR

and NI are disjoint). Concepts in SROIQ language are defined as follows:

1. Every atomic concept C ∈ NC is a concept.

2. 	 (top) and ⊥ (bottom) are concepts.

3. If C and D are concepts, r is a role, the followings are also concepts:

• C �D (disjunction), C �D (conjunction), ¬C,

• ∀r.C (universal restriction), ∃r.C (existential restriction),

• {a1, . . . , an}, with ai ∈ NI (nominal),

• ≥ n r.C, ≤ n r.C (qualified number restrictions). �

15

2. Preliminaries and Related Work

Table 2.2: Letters used to name description logic languages.

Letter Abbreviation for Features supported

A attribute Basic constructors to describe attributes of concepts,
roles and objects including conjunction, disjunction,
universal restriction, limited existential restriction
(support restriction of 	 only).

C complement Complementarity (negation) of concepts.

S ALC and transitive All features of AL language plus complement and
transitivity for roles. Given a role r, role transitive
defines that r(a, b), r(b, c) implies r(a, c).

H role hierarchy Sub-roles. If r is a sub-role of s, r(a, b) implies
s(a, b).

E full existential re-
striction

Full existential restriction: restriction that can be
applied on any concepts, not restricted on 	.

I inverse role inverse roles. If r is an inverse role of a role s, r(a, b)
iff s(b, a).

O nominal Transform object names into concept description. It
can also be used to enumerate objects for value re-
strictions.

N number restriction At-least and at-most restrictions.

Q quantified number
restriction

Quantified at-least and at-most restrictions.

F functional role Define functional roles

R complex role inclu-
sion

Complex role inclusions that have form of r1 ◦ . . . ◦
rn r.

D data types Data types such as integer, string, etc.

16

2. Preliminaries and Related Work

Example 2.1 (AL and SROIQ concepts). Given a set of concept names NC =

{Person, Male, Female, Father, Mother} and a set of role namesNR = {hasChild},
the following first two concepts are both AL and SRIOQ concepts while the third con-

cept is the SRIOQ concept only:

1. Father � Mother (Father or Mother)

2. Female � ∃hasChild.Person (Definition of Mother)

3. Person � ≥ 2 hasChild.Male (People who have more than one sons) �

The formal semantics of description logic concepts is defined by the interpretations.

Definition of interpretation is adopted from [3] as follows:

Definition 2.3 (Interpretation). A description logic interpretation I consists of:

1. a non-empty interpretation domain �I, which contains a set of objects or indi-

viduals in the application domain, and

2. an interpretation function ·I, which assigns:

(a) each individual name to an element aI ∈ �I,

(b) every atomic concept A to a set AI ⊆ �I, and

(c) every role r to a binary relation rI ⊆ �I ×�I. �

Table 2.3 defines the semantics of the constructors in Table 2.1 based on the above

interpretation.

2.1.2 Description logic knowledge bases

A typical knowledge base in description logics consists of two parts: a TBox and an

ABox. The TBox is also called a terminology, i.e. the vocabulary of the application

domain, whereas, the ABox contains instances (assertions of concepts). In some sys-

tems, the knowledge base has one more part called the RBox. In this case, roles are

separated from the TBox and then contained in the RBox. In this section, discussion

is restricted to knowledge bases with TBox and ABox.

17

2. Preliminaries and Related Work

Table 2.3: The semantics of basic concept constructors in description logics.

Constructor Syntax Semantics

atomic concept A AI ⊆ �I

role r rI ⊆ �I ×�I

top (TOP) concept - �I

bottom (BOTTOM) concept - ∅
conjunction C �D (C �D)I = CI ∩DI

disjunction C �D (C �D)I = CI ∪DI

complement ¬C (¬C)I = �I \ CI

existential restriction ∃r.C (∃r.C)I =
{a | ∃b (a, b) ∈ rI ∧ b ∈ CI}

universal restriction ∀r.C (∀r.C)I =
{a | ∀b (a, b) ∈ rI ⇒ b ∈ CI}

at-least restriction ≥ n r (≥ n r)I =

{a
∣∣∣ ∣∣{b | (a, b) ∈ rI}∣∣ ≥ n}

at-most restriction ≤ n r (≤ n r)I =

{a
∣∣∣ ∣∣{b | (a, b) ∈ rI}∣∣ ≤ n}

qualified at-least restriction ≥ n r.C (≥ n r.C)I =

{a
∣∣∣ ∣∣{b | (a, b) ∈ rI}∣∣ ≥ n}

qualified at-most restriction ≤ n r.C (≤ n r.C)I =

{a
∣∣∣ ∣∣{b | (a, b) ∈ rI}∣∣ ≤ n}

18

2. Preliminaries and Related Work

The TBox

The TBox of a knowledge base is usually stable. It contains a set of terminological

axioms that are defined as follows:

Definition 2.4 (Terminological axiom). Given two concepts C and D, a terminolog-

ical axiom has the form of an inclusion axiom C D or an equality axiom C ≡ D. �

An inclusion axiom is also called a subsumption axiom (C D is read “C is

subsumed by D”). Informally, this is an is-a relationship. An equality axiom is called

a definition if its left hand side is an atomic concept. An example of terminological

axioms is given below.

Example 2.2 (Axiom and definition). Given a set of concept names and role names

defined in Example 2.1, the following are some terminological axioms. The last axiom

is also a definition:

Woman Person

∃hasChild.Person ≡ Mother � Father

Father ≡ Male � ∃hasChild.Person �

The terminological axioms for roles are defined similarly, and can be found in [3].

The semantics (satisfaction) of inclusion and equality axioms are defined as follows:

Definition 2.5 (Satisfaction of axiom). Let I be an interpretation. Then:

• An inclusion axiom C D is satisfied by I if CI ⊆ DI.

• An equality axiom C ≡ D is satisfied by I if CI = DI. �

Informally, C D holds if all instances of C are instances of D, and C ≡ D if C

and D have the same set of instances, i.e. C D and D C. The above definition of

the axiom satisfaction can be extended to sets of axioms: An interpretation I satisfies

a set of axiom T if I satisfies all axioms in T. This leads to the definition of the concept

of a model.

Definition 2.6 (Model of a TBox). An interpretation I is called a model of an

axiom (respectively a set of axioms) A, denoted by I |= A, if I satisfies A (respectively

all axioms in A). I is called a model of a TBox if it satisfies all axioms in the TBox. �

19

2. Preliminaries and Related Work

Knowledge representation systems provide means not only for knowledge represen-

tation, but also for reasoning. The basic reasoning tasks on a TBox includes termi-

nology classification, logical implication and consistency checking. The first two tasks

are essentially based on the problem of checking subsumption and equivalence relations

between concepts. We introduce some basic concepts that support the above tasks as

follows (adopted from [3] and [82]):

Definition 2.7 (Consistency). A TBox is consistent if it has a model. �

Definition 2.8 (Satisfiability). A concept C is satisfiable with respect to a TBox

T if there is a model I of T such that CI is not empty. Otherwise, C is said to be

unsatisfiable. �

Definition 2.9 (Subsumption). A concept C is subsumed by a concept D with

respect to the TBox T, denoted by C D if for any model I of T we have CI ⊆ DI. �

Definition 2.10 (Equivalence). A concept C is equivalent to a concept D with re-

spect to a TBox T, denoted by C ≡ D, if for any model I of T we have CI = DI. �

Checking the satisfiability of a concept is the most is the most common task in

TBox reasoning. Some other reasoning tasks such as checking equivalence, disjointness,

or subsumption, can be reduced to the checking for satisfiability/unsatisfiability. For

instance, a concept C is subsumed by a concept D if and only if C�¬D is unsatisfiable,

or C and D are disjoint if and only if C �D is unsatisfiable.

The ABox

An ABox contains assertions including concept assertions and role assertions. Concept

assertions represent objects in the domain of discourse and role assertions represent re-

lationships between objects. A concept assertion has the form C(a) and a role assertion

has the form r(b, c), where a, b and c denote individual names, C is a concept and r

is a role. Knowledge in an ABox usually depends upon particular circumstances and

thus it is subject to change more often than the TBox.

Example 2.3 (Assertion in the ABox). Given a set of concept names NC and role

names NR described in Example 2.1 and a set of individuals NI = {john,mary, tom},
the following is an example of an ABox that contains concept and role assertions:

20

2. Preliminaries and Related Work

ABox A = {
Male(john)

Male(tom)

Female(mary)

hasChild(john, tom)

hasChild(mary, tom)

} �

Similar to the TBox, there are also some reasoning tasks on ABoxes. The most basic

reasoning tasks on an ABox are consistency checking, instance checking and instance

retrieval. Before describing these task, we introduce some related concepts:

Definition 2.11 (Assertions satisfaction). An interpretation I is said to satisfy :

• a concept assertion C(a) if aI ∈ CI,

• a role assertion r(a, b) if (aI, bI) ∈ rI, and

• an ABox A if it satisfies all assertions in A. �

Similarly, an interpretation I is said to satisfy an assertion A (concept or role) with

respect to a TBox T if it is satisfies both A and T. Then, the concept model of an ABox

is defined as follows:

Definition 2.12 (Model of an ABox). An interpretation is called a model of:

• an ABox A if it satisfies all assertions in A, and

• an ABox A with respect to a TBox T if it is a model of both A and T. �

The consistency of an ABox and basic tasks in the ABox can now be defined as

follows:

Definition 2.13 (Consistency). An ABox A is consistent if it has a model and

consistent with respect to a TBox T if there exists an interpretation that is a model of

both A and T. �

Definition 2.14 (Instance check). Given a knowledge base K = (T,A), a concept C

and an individual name a ∈ NI , a is an instance of C with respect to K, denoted by

K |= C(a), iff for any models I of K (i.e. model of both A and T), we have aI ∈ CI. �

21

2. Preliminaries and Related Work

An instance check problem can be defined based on the definition of consistency:

K |= C(a) if K ∪ {¬C(a)} is inconsistent. If a is not an instance of a concept C with

respect to a knowledge base K, it is denoted by K � C(a).

Definition 2.15 (Instance retrieval). Given a concept C, an instance retrieval prob-

lem for C with respect to a knowledge base K is to find all individuals a such that

K |= C(a). �

Example 2.4 (DL knowledge base and reasoning tasks). Given a set of concept

names NC and a set of role names NR in Example 2.1; a set of individuals NI in

Example 2.3; and the knowledge base K = (T,A) and an interpretation I as follows:

TBox T = {
Woman Person

∃hasChild.Person ≡ Mother � Father

Father ≡ Male � ∃hasChild.Person
}
ABox A = {

Male(john)

Male(tom)

Female(mary)

hasChild(john, tom)

hasChild(mary, tom)

}
Interpretation I = {

�I = {JOHN, MARY, TOM} (objects in the application domain)

johnI = JOHN, (tom)I = TOM, maryI = MARY

PersonI = { JOHN, MARY, TOM }
FemaleI = { MARY }
MaleI = { JOHN }
FatherI = { JOHN }
MotherI = ∅
hasChildI = { (JOHN, TOM), (MARY, TOM) }

}

22

2. Preliminaries and Related Work

Then, I does not satisfy the ABox A as it does not satisfy the assertion Male(tom)

as tomI /∈ MaleI (TOM /∈ {JOHN}). I also does not satisfy the TBox T as it does not

satisfy the following axiom:

∃hasChild.Person ≡ Mother � Father

because:

∃hasChild.PersonI = {JOHN, MARY} �= (Mother � Father)I = {JOHN}.
Consider an interpretation I1 is the same I with one modification MaleI = { JOHN,

TOM }. I1 is now satisfy A as it satisfies all assertions in A (I is now satisfies Male(john)

as johnI ∈ MaleI). However, it still does not satisfy T.

Given another interpretation I2 is the same I1 with one modification that the map-

ping Mother is modified to MotherI = {MARY}, I2 satisfies both A and T as it now

satisfies the equality axiom ∃hasChild.Person ≡ Mother � Father:

∃hasChild.PersonI = {JOHN, MARY}= (Mother � Father)I = {JOHN, MARY}.
In this case, I2 is also a model of K. �

2.1.3 The Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a W3C recommendation for the Semantic Web

[14, 96]. This is a family of languages that are based on description logics. OWL

has some additional features to integrate it with other web standards such as Uniform

Resource Identifier (URI) [97] and to address specific use cases, such as imports of

external knowledge bases, and support for Resource Description Framework (RDF)

and Resource Description Framework Schema (RDFS) [91, 95]. In addition, OWL also

uses a different terminology (closer to the object-oriented terms) for the basic concepts

defined in description logics. Table 2.4 summarises this correspondence.

The first version of OWL included three flavours: OWL Lite, OWL DL and OWL

Full [96]. The first two languages are based on the SHIF(D) and SHOIN(D) description

logic respectively. OWL Full supports some features of RDFS that are beyond the

expressive power of description logics. It is considered as the union of OWL DL and

RDFS, a schema language of the Semantic Web.

The most up-to-date version of OWL is OWL2, which comes in two flavours: OWL2

DL and OWL2 Full [59, 100]. OWL2 DL is based on the SROIQ(D) language. This

23

2. Preliminaries and Related Work

Table 2.4: DLs notations in comparison with OWL notations. This table shows only
notations that are different between two languages.

DL notation OWL notation

atomic concept class

concept assertion class assertion

role property

role assertion property assertion

concept/description class expression

axiom axiom

object/individual individual/assertion

subsumption subclass/superclass

flavour has three profiles: OWL2 EL, OWL2 RL and OWL2 QL, that offer some

flexibility to trade off between expressiveness and reasoning efficiency. OWL2 Full is

compatible with RDFS. OWL2 Full is considered as the union of RDFS and OWL2 DL

and is a semi-decidable language.

Amongst the various flavours of OWL, OWL DL is the most expressive that is still

decidable. DL Lite is decidable, but less expressive than OWL DL while OWL Full

is more expressive than OWL DL, but is not decidable (it is semi-decidable). More

details on the OWL language can be found in [59] and on the W3C website1.

Similar to description logics, sub-languages of OWL have different expressive pow-

ers. Each of them supports a different number of OWL language constructors. In ad-

dition, there are also several syntaxes for OWL such as OWL/XML [100], RDF/XML

[12], Turtle [13] and Manchester OWL Syntax [62]. Table 2.5, adopted from [82], shows

basic OWL constructors in DL and Manchester OWL Syntax.

A knowledge base in OWL is called an ontology. In OWL, Thing (or TOP) is the

superclass of all classes in an ontology. In addition, properties are distinguished into

object and data properties. An object property describes a relation between two in-

stances, whereas, a data property describes a relation between an instance and a literal

(constant).

In addition to the development of the OWL language, several reasoners have been

1http://www.w3.org/TR/owl2-overview/

24

2. Preliminaries and Related Work

Table 2.5: OWL constructors and the corresponding constructors in DLs. Upper case
C, D denote concepts/classes; lower cases a, b denote objects/individuals; r denotes
roles/properties; and n denotes an integer value.

OWL construc-
tor

DL notation Example (DL) Examples (Manch-
ester OWL)

Thing 	 - Thing

Nothing ⊥ - Nothing

complementOf ¬ ¬C not C

intersectionOf � C �D C and D

unionOf � C �D C or D

allValueFrom ∀ ∀r.C r only C

someValueFrom ∃ ∃r.C r some C

maxCardinality ≤ ≤ n r r max n

minCardinality ≥ ≥ n r r min n

cardinality ≤,�,≥ (≤ n r) � (≥ r n) r exact n

oneOf � a1 � . . . � an {a1, . . . , an}
subClassOf C D C SubClassOf D

equivalentClass ≡ C ≡ D C EquivalentTo D

disjointWith ≡,¬ C ≡ ¬D C DisjointWith D

sameAs ≡ a ≡ b a SameAs b

differentFrom ≡,¬ a ≡ ¬b a DifferentFrom b

domain ∀, ∀r.	 C r Domain C

range ∀, 	 ∀r.C r Range C

subPropertyOf r1 r2 r1 SubPropertyOf r2

25

2. Preliminaries and Related Work

developed to provide reasoning service for OWL knowledge bases. Similar to description

logics, reasoning in OWL includes classification, checking for the consistency of knowl-

edge bases, checking for the satisfiability of axioms (descriptions/concepts), checking

for subsumption relationships and instance checking. Some popular OWL reasoners

are RacerPro [56], Pellet [107], FaCT [63], and HerMiT [117]. Some of them, such as

RacerPro and Pellet, also provide justification (or explanation/trace) for inferences or

inconsistency checks [38, 71]. This feature is useful for debugging ontologies and to

increase the trust in inferred knowledge.

2.2 Description Logic and OWL Learning

Description logic learning has its roots in inductive logic programming [101, 104]. In

description logic learning, description logics are used as the knowledge representation

language. The essential idea of induction is to obtain principles from experiences [8,

9]. The idea was employed in machine learning with different names before it was

first named Inductive Logic Programming by Stephen Muggleton in 1990 [101]. Then,

induction was employed in description logics [6, 31, 85] and it obtained more attention

when the semantic web became widely used [79, 83, 143].

2.2.1 Description logic learning problem

Since OWL has its root in description logics, learning problem in OWL and DLs shares

similar concepts and notations. Therefore, DL and OWL learning are used interchange-

ably. A description logic learning problem can be described as follows:

Definition 2.16 (Description logic learning). Given a knowledge base K and a

set of positive E+ and negative E− examples such that E+ ∩ E− = ∅, description logic

learning aims to find a concept C such that K |= C(e) for all e ∈ E+ (complete) and

K � C(e) for all e ∈ E− (consistent/correct). �

A description logic learning problem can be described as a structure 〈K, (E+,E−)〉
where K is a knowledge base (ontology), E+ is a set of positive examples and E− is a

set of negative examples. A learnt concept is also called a hypothesis or definition.

Notation |= is defined in Definition 2.14 to denote an instance checking problem.

26

2. Preliminaries and Related Work

K |= C(a) denotes a is an instance of class C with respect to the knowledge base K.

If K |= C(a) is satisfied, C is also said to cover a with respect to K.

The learning problem described in Definition 2.16 is called learning from positive

and negative examples. It is distinguished from two other learning problems: learning

from positive examples only, and concept learning. One of the approaches to learn

from positive examples only is to transform it into learning from positive and negative

examples problem by considering negative examples as the set of {e ∈ K | e /∈ E+}
where E+ is a set of positive examples. In concept learning, a concept name is provided.

All instances of the given concept are used as positive examples and instances of other

classes in the knowledge base are used as negative examples.

In this thesis, the discussion is restricted to the positive and negative examples

learning problem. An example of a description logic learning problem is given below.

Example 2.5 (Description logic learning problem). Given an ontology (in Manch-

ester OWL syntax):

• TBox:

Class: Person SubClassOf: Thing

Class: Male SubClassOf: Person

Class: Female SubClassOf: Person

ObjectProperty: hasChild

Domain: Person, Range: Person

• ABox (assertions):

Individual: john Types: Male

Facts: hasChild tom

Individual: mary Types: Female

Facts: hasChild tom

Individual: tom Types: Male

Individual: eve Types: Female

Individual: peter Types: Male

Facts: hasChild mary

27

2. Preliminaries and Related Work

and a set of positive examples E+ = {john, peter} (who are fathers) and negative

examples E− = {mary, tom, eve} (who are not fathers). The following concept can be

produced by a typical inductive description logic learning algorithm that describes the

family relationship Father :

Male and hasChild some Person

Similarly, if E+ = {john, peter,mary} (parents) and E− = {tom, eve} (who are not

parents), the following concept can be produced that describes the family relationship

Parent :

hasChild some Person

�

Some properties of a learnt concept are defined below:

Definition 2.17 (Complete, correct and accurate concepts). Given a description

logics learning problem P = 〈K, (E+,E−)〉 and a concept C learnt from P, C is:

• complete with respect to P if K |= C(e) for all e ∈ E+,

• correct with respect to P if K � C(e) for all e ∈ E−, and

• accurate if C is both complete and correct. �

Definition 2.18 (Incomplete and incorrect concepts). Given a description logic

learning problem P = 〈K, (E+,E−)〉 and a concept C learnt from P, C is:

• incomplete with respect to P if ∃e ∈ E+ such that K � C(e), and

• incorrect with respect to P if ∃e ∈ E− such that K |= C(e) �

Definition 2.19 (Overly general and overly specific concepts). Given a descrip-

tion logic learning problem P = 〈K, (E+,E−)〉 and a concept C learnt from P :

• C is overly general if it is complete but incorrect.

• C is overly specific if it is correct but incomplete. �

28

2. Preliminaries and Related Work

Example 2.6 (Overly general and overly specific concept). Given a background

as in Example 2.5, a set of positive examples E+ = {john, peter,mary} (parents) and

E− = {tom, eve} (who are not parents). Then, the concept:

• Person is overly general as it is complete (covers all positive examples) and in-

correct (covers some negative examples).

• Male AND hasChild SOME Person is overly specific as it correct (covers no neg-

ative examples) and incomplete (does not cover all positive examples). �

2.2.2 Basic approaches in DL learning

Learning in description logics is essentially a search problem: it searches for an accurate2

concept in a search space that consists of a potential infinite set of concepts constructed

from the vocabulary of language of a given knowledge base. Concepts in the search

space are generated by refinement operators and they are organised in an ordering

structure.

There are two types of refinement operator: downward and upward refinement

operators. Given a concept, a downward refinement operator computes a set of concepts

that aremore specific than the given concept. An upward refinement operator computes

a set of concepts that are more general than the given concept. In description logics

and OWL, the generality and specificity relations between concepts are based on the

inclusion (subclass/superclass) relationship. A description C subsumes a description

D (or C is a superclass of D) if all instances of D are also instances of C. Therefore,

C is said to be more general than D, or D is more specific than C. C is called a

generalisation of D and D is a specialisation of C. A refinement operator based on

these relations can be defined as follows:

Definition 2.20 (Refinement operator in description logics). Given a descrip-

tion logic language L and a concept C in L. A downward (respectively upward)

refinement operator ρ is a mapping from C to a set of concepts D in L such that

∀D ∈ D : D C (respectively C D). D is called refinement of C. �

2Complete and correct

29

2. Preliminaries and Related Work

Definition 2.20 implies that the refinement process can be applied recursively and

it may be infinite. Therefore, practically, a refinement task is often provided with a

maximal length of the concepts in the refinement result to help the refinement become

finite. There are several methods to define concept length. In this thesis, the concept

length computation is adopted from [82] as follows:

Definition 2.21 (Length of a concept in description logics). The length of a

concept in description logics is the total number of symbols in the concept including

class names, role names, individual, and constructors. �

In particular, the length of an ALC concept is defined as follows:

Definition 2.22 (Length of an ALC concept). The length of a concept C, denoted

by |C|, is inductively defined as follows:

|A| = |	| = |⊥| = 1 (A is an atomic concept)

|¬D| = 1 + |D|
D � E = |D � E| = 1 + |D|+ |E|
|∀r.D| = |∃r.D| = 2 + |D| �

Corresponding to two types of refinement operator, there are two basic search di-

rections: top-down and bottom-up. It results in the two basic inductive learning ap-

proaches: top-down and bottom-up approach respectively.

Top-down (specialisation) approach

In the top-down learning approach, the search starts from a general concept, usually

the Thing (TOP), and uses a downward refinement operator to specialise concepts in

the search space until a concept or set of concepts that cover all positive examples and

no negative ones is found. The basic tasks of a downward refinement are:

• replacing primitive concepts and properties in the description by their sub-concepts

or sub-properties, and

• specialising the range of properties, and

• adding more primitive concepts and properties into the description.

30

2. Preliminaries and Related Work

Figure 2.1: The top-down approach for learning concept Father described in Example
2.5. The search starts from the most general concept TOP and uses a refinement operator
ρ to specialise the descriptions until it reaches the accurate concept Male AND hasChild

SOME TOP.

(. . .)

TOP

Male Female hasChild some TOP

Male and Female Male and
 hasChild some TOP

Female and
 hasChild some TOP

overly general

overly general overly general

accurate concept incorrect & incomplete

overly specific

incorrect + incomplete

 (TOP)

(. . .)

An example of a top-down learning approach for learning the Father concept de-

scribed in Examples 2.5 is shown in Figure 2.1.

Bottom-up (generalisation) approach

In the bottom-up learning approach, the search is in the reverse direction. It starts

from a very specific concept and uses an upward refinement operator to generate more

general concepts. Basic tasks of an upward refinement are:

• replacing examples with their most specific concepts using the Most Specific Con-

cepts operator (MSC) [2, 5, 30, 74], and

• removing axioms from the concept.

MSC is the most popular upward refinement operator in description logics. How-

ever, it may not be available for some languages of description logics. Currently, the

number of description logic languages supported by the MSC is limited. Figure 2.2

illustrates a bottom-up learning approach for learning the Parent concept described in

Example 2.5.

It is important to note that a specialisation may produce overly specific concepts

(too strong theories) and thus a generalisation may be needed to correct those concepts.

Analogously, a bottom-up approach may also need to use specialisation to correct overly

general concepts generated by the downward refinement operator [104].

31

2. Preliminaries and Related Work

Figure 2.2: The bottom-up approach for learning concept Parent described in Example
2.5. The search starts from an example and uses a the the most specific concept (MSC)
operator and removal of axioms to generalise the descriptions until it reaches an accurate
concept hasChild SOME TOP.

john

Male and hasChild some Person

hasChild some Person Male

MSC(john, peter)

Parent is john: overly specific

remove axioms

overly specific

accurate concept incorrect & incomplete

In DL/OWL learning, the top-down approach is used more widely as it can facilitate

the rich structural concept hierarchy in the ontology.

2.3 Related Work

This section discusses related work in description logic and OWL class expression learn-

ing, parallelisation, and numerical data learning approaches in symbolic machine learn-

ing. A detailed description on CELOE, a comparator algorithm used to evaluate ap-

proaches proposed in this thesis, is also provided.

2.3.1 Description logic learning

As has just been described, there are two fundamentally different strategies for de-

scription logic learning: the top-down and bottom up learning approaches. One of the

early works in description logic learning is [32]. This is a bottom-up approach that

creates concepts by joining most specific concepts created for positive examples using

disjunction. This is a very simplistic approach that creates large concept definitions

that are not truly intentional.

An approach that is more closely related to the work in this thesis was introduced in

[6]. This is a top-down learning approach that uses a refinement operator designed for

ALER description logic. However, as discussed in [82], this refinement operator cannot

be extended to handle more expressive description logic language such as SRIOQ(D),

32

2. Preliminaries and Related Work

which is the language on which OWL2 is based.

Lisi [85] has proposed an alternative top-down approach based on the hybrid AL-log

language, which combines the ALC description logic language and Datalog. An ideal

downward refinement operator [104] for AL-log language was proposed that is based on

the notation of B-subsumption. This is a generalisation of the generalised subsumption

to the AL-log language. This approach is suitable for the hybrid knowledge represen-

tation systems that are constituted by the relational and structural subsystems. This

approach was implemented in the A-QuIn (AL-log Query Induction) system.

In [43, 66], a top-down refinement operator for the ALC language is used in com-

bination with a bottom-up MSC operator. The essential idea of these studies lies in

the concept of counterfactual. This can be considered as the errors within candidate

hypotheses. Therefore, for each candidate hypothesis, the learning algorithm uses a

MSC operator to find the concept(s) representing errors and remove them from the

candidate hypothesis. However, this approach has two disadvantages: i) the finding of

concept(s) for counterfactuals may be repeated for a same set of errors, and ii) as a

result, it tends to generate unnecessarily long concepts.

The most recent description logic learning algorithms have been proposed in [80].

Two top-down refinement operators have been proposed. One is for the EL language

and the other is for ALC (although it can be extended to more expressive languages).

The latter is the most expressive refinement operator proposed so far. In addition,

several learning approaches based on the proposed refinement operators were also de-

veloped. Two interesting algorithms in this framework are Class Expression Learner for

Ontology Engineering (CELOE) and OWL Class Expression Learner (OCEL). These

algorithms are evaluated and compared very well with other learning approaches [57].

However, they are sequential algorithms and thus they cannot take advantages of par-

allel systems such as multi-core processors, or cloud computing platforms. In addition,

these algorithms focus on generating short descriptions and thus they have another dis-

advantage: they cannot handle complex learning problems (see [57] and the evaluation

in Chapter 5).

DL-FOIL [45] combines both top-down and bottom-up learning. The top-down

step finds a set of correct concepts such that each of them correctly defines a subset of

33

2. Preliminaries and Related Work

the positive examples. Then, the bottom-up step computes a complete concept that

defines all positive examples. This approach handles complex concepts better than

the top-down or bottom-up approach alone. However, it produces longer concepts

in comparison with the approaches proposed in [80]. The unnecessarily long learnt

concepts are caused by the lack of optimisation in the aggregation step. In addition,

like other existing description logic learning algorithms, this approach is serial by nature

and thus it cannot take advantage of concurrency.

2.3.2 Parallel description logic learning

Parallel computing has a long history of development from the late 1950s, from multi-

processor computer systems, to multi-core processors. Parallelisation helps to use the

computer resources more effectively in order to: i) create fast and efficient algorithms, ii)

create highly scalable algorithms. Currently, parallelisation can be found in every area

of computing with many parallel frameworks developed such as Parallel Virtual Machine

(PVM) [126], Apache Hadoop [15] and applications/systems that use parallelisation.

In logics, parallelisation has been used to develop parallel logic programming lan-

guages such as PARLOG [53] and PEPSys [111]. These research relate to the paralleli-

sation for logic deduction.

In inductive logic programming, a parallel inductive logic programming approach

was proposed in [37]. The basic idea of this approach is to partition positive examples

into several sets depending on the parallel level of the system. Concepts for the par-

titioned sets are combined at the end. In [93], several parallelisation strategies were

implemented in FOIL, an inductive logic learning algorithm [108]. These strategies

mainly differ in the dividing strategies. The first strategy divides search space among

processors, i.e. the multiple refinements work in parallel. The second strategy is similar

to [37], i.e. examples are partitioned into several sets and they are learnt independently.

In the last strategy, examples are divided based on the background knowledge. Inde-

pendent examples are divided into different sets. Our parallel learning approach is

similar to the first strategy. We explore the search space in parallel. However, our

approach is different from this approach with respect to the learning strategy used:

we employ concepts for a subset of positive examples and use a reduction strategy to

34

2. Preliminaries and Related Work

construct the final concept. In addition, our learning approach uses description logic

instead.

In description logics, parallelisation is also used. However, the use of parallelisation

is limited in parallel description logic reasoning with some parallel description reasoners

developed such as Deslog reasoner [141], or parallel inferencing algorithms for OWL

[84, 122]. There is no parallel description logic learning algorithm proposed so far.

2.3.3 Numerical data learning in description logics

Amongst the existing description and class expression learning algorithms such as AL-

QuIn [85], DL-FOIL [45], YinYang [66] and a set of learning algorithms in the DL-

Learner framework such as CELOE, OCEL, ELTL [80], numeric data property learning

strategy was only explicitly described and supported by the algorithms in DL-Learner

framework. In these algorithms, a fixed-size segmentation strategy is used to compute a

set of values used for refinement of numerical data. In this method, a maximal number

of values for refining numerical data is assigned. Then, the numerical values are split

into equal parts according to the maximal number of values allowed and the middle

values of split parts are used for the refinement. This strategy can reduce the number

of values used for refinement and therefore it can reduce the search space. However,

this strategy may remove some meaningful values from the refinement.

In inductive logic programming, the root of description logic learning, many other

strategies were proposed. For example, in Aleph, several strategies were supported such

as guessing the values used for refinement or using lazy evaluation (this strategy has not

been described in detail), etc. [123]. However, it was reported that these approaches

do not always work. Fixed increment and decrement are also used in Aleph. This is

used more commonly for integer datatypes. For example, the value of an attribute is

increased or decreased by a fixed value, e.g. 1, 2, etc. in each refinement step. Closer to

our approach, a modification of discretisation method proposed in [46] was used in the

Inductive Constraint Logic (ILC) system [133]. The essential idea of discretisation of

continuous data proposed in [46] is based on information entropy. Potential cut points

(segmentations) are estimated using a class entropy function. However, when this

approach was used in ILC, it was reported that very few subintervals were generated

35

2. Preliminaries and Related Work

and therefore they combined discretisation approach with a fixed numbers of values

desired to be generated, e.g. 10 values or 20 values, etc.

2.3.4 Class Expression Learner for Ontology Engineering (CELOE)

CELOE is a top-down OWL class expression learning algorithm in the DL-Learner

framework, which is the most recently developed OWL class expression learning al-

gorithm [82]. This algorithm uses a downward refinement operator that supports the

ALC description logic language to specialise the descriptions in the search space. The

implementation of this refinement operator was extended to support more expressive

power such as datatype (D) and number restrictions (N).

As a typical top-down description logic learning approach, this algorithm starts

from a general concept, the TOP concept by default, and uses the refinement operator

to generate descriptions in the search space until an accurate description found. The

selection of descriptions in the search space for refinement (expansion) is based on the

score of a description, which is mainly based on the descriptions’ accuracy. The score

of a description C is defined as follows:

score(C) = accuracy(C) + 0.2× accuracy gain(C)− 0.05× n

where accuracy(C) is the accuracy of description C (see Definition 3.2); accuracy gain(C)

is the difference between accuracy of C and its parent; and n is the horizontal expansion

of C.

The horizontal expansion of a description is the sum of its length and the number of

times it was refined. A description in the search space may be refined many times. The

refinement operator is only allowed to produce descriptions with a length that is shorter

or equal the horizontal expansion of the refined description. This is a mechanism used

to deal with the infinite property of the refinement operator. As this algorithm finds

single descriptions that describes all positive examples, overly specific descriptions are

ignored, i.e. they are not added into the search space for further refinement (expansion).

This algorithm was implemented and distributed with DL-Learner, an open source

machine learning framework. It was well evaluated and compared with popular de-

36

2. Preliminaries and Related Work

scription learning algorithms. The evaluation shows that this is a promising OWL class

expression learning algorithm that produce very concise (short and readable) concepts

[57]. However, as this algorithm only uses the top-down learning approach, it cannot

deal well with complex learning problems that require long descriptions to describe the

positive examples.

37

2. Preliminaries and Related Work

38

Chapter 3

Evaluation Methodology

This chapter describes the evaluation methodology of the proposed algorithms

in this study. We first provide a description of evaluation metrics. Next,

there is a detailed account of our experimental framework including a cross-

validation procedure, a statistical significance test method. The control of the

algorithm terminations is also discussed. The chapter ends with the introduc-

tion of comparison algorithms and evaluation datasets.

3.1 Introduction

As was described in the introductory chapter, this thesis proposes four new approaches

to description logic learning. The aim of the approaches is to improve the learning

speed, the capability to deal with complex learning problems, and the flexibility to

trade off the predictive correctness and completeness.

In this chapter, we describe the evaluation methodology for our proposed algo-

rithms. A thorough evaluation includes running the algorithms on selected datasets

and gathering interested metrics that help to reflect achievements of the proposed algo-

rithms. Then, the experimental results are compared with existing algorithms to assess

the achievements of our algorithms. Therefore, the evaluation methodology includes

the selections of: i) evaluation metrics (described in Section 3.2), ii) a method for mea-

suring the evaluation metrics and comparison with existing algorithms (described in

39

3. Evaluation Methodology

Section 3.3.1), iii) some existing algorithms for comparison with our algorithms (de-

scribed in Section 3.3.2), and iv) a set of evaluation datasets (described in Section

3.3.3).

3.2 Evaluation Metrics

Selected evaluation metrics must reflect the essential features of the evaluation algo-

rithms. In machine learning, predictive accuracy is the most important metric. It

represents the predictive power of the learnt concepts. However, it is useful to have a

more thorough assessment of a learning algorithm. Based on the aims of this thesis we

are also interested in learning time, search space size and definition length. The learning

time represents the speed of an algorithm, whereas the search space size indicates the

effectiveness of the memory usage. The last metric, definition length, provides a mea-

sure of the readability of the definition (in general, short definitions are more readable

than long definitions). Computation of these metrics is defined below.

3.2.1 Accuracy

Accuracy is a combination of completeness and correctness. In Definition 2.17, com-

plete, correct and accurate concepts were defined. However, that definition is used to

assess these metrics qualitatively, i.e. whether a concept is complete or incomplete,

correct or incorrect and accurate or inaccurate. We are defining these metrics in a

different context: for measuring the amount of completeness, correctness and accuracy.

Before introducing the calculation of these metrics, we restate the definition of instance

retrieval (see Definition 2.15) in form of a formula to simplify the use of this task.

Definition 3.1 (Cover). Let P = 〈K, (E+,E−)〉 be a learning problem defined in

Definition 2.16, E = (E+,E−) and C be a concept. Then, cover(K, C,E) is a function

that computes a set of examples covered by C with respect to K and is defined as:

cover(K, C,E) = {e ∈ E | e is covered by C with respect to K} �

The calculation of the completeness, correctness and accuracy can now be defined.

40

3. Evaluation Methodology

Definition 3.2 (Completeness, correctness and accuracy). Let P = 〈K, (E+,E−)〉
be a learning problem. Then,

• completeness is the ratio of positive examples covered by C to the total number

of positive examples:

completeness(C,P) =
|cover(K, C,E+)|

|E+|

• correctness is the ratio of negative examples uncovered by C to the total numbers

of negative examples:

correctness(C,P) = 1− |cover(K, C,E−)|
|E−|

=
|E− \ cover(K, C,E−)|

|E−|

• accuracy is the ratio of number of positive examples covered by C and the number

of negative examples uncovered by C to the total number of all examples:

accuracy(C,P) =
|cover(K, C,E+)|+ |E− \ cover(K, C,E−)|

|E+ ∪ E−| �

Accuracy with respect to training data is called training accuracy and accuracy

with respect to test data is called predictive accuracy.

3.2.2 Learning time

The learning time of a learning algorithm is counted from when it starts to search for a

definition until the definition is found or the timeout is reached. The time for loading

the knowledge base into the reasoner is not counted. There are two basic methods to

measure learning time: using wall-clock time, the actual time that elapses from start to

end of a learning task; and using CPU time, which measures only the actual time that

the CPU works on the learning task. Technically, computation of CPU time is more

complicated than wall-clock time. However, if the evaluation system has constant loads,

wall-clock time is approximately equal to CPU time. Therefore, in our experiments,

41

3. Evaluation Methodology

we compute learning time using wall-clock time. To ensure the system has constant

loads, we can manually observe then system loads while the learners is running.

3.2.3 Definition length

The calculation of this metric was defined in Definitions 2.21 and 2.22. It is the total

number of symbols that appear within the definition excluding punctuations such as

“(”, “)”, “.” and “,”. For example, the length of the following definition is 5:

Male � ∃hasChild.Person

(or in Manchester OWL syntax: Male AND hasChild SOME Person).

In our implementation, the nomalisation procedure in the DL-Learner framework

is used to normalise the learnt definition.

3.2.4 Search space size

Search space size is the total number of descriptions generated by the refinement opera-

tor(s). This metric is used to assess the memory consumption of the learning algorithms,

also relates to learning time. Given the same learning problem, a learning algorithm

that can find a solution with a smaller search space than others is considered to have a

better search strategy. It also influences the scalability of a learning algorithm as using

the memory more effectively allows the algorithm to deal better with bigger (knowledge

base size, search tree size, etc.) learning problems.

3.3 Experimental Design

Our experimental design aims to produce reliable experimental results, fair comparisons

and accurate assessments of the achievement of our algorithms. The following sections

will describe methods to achieve these expectations.

3.3.1 Experimental framework

Evaluation of selected algorithms on a set of datasets includes running the experiment

for each algorithm on each dataset and measuring the relevant evaluation metrics. The

42

3. Evaluation Methodology

experimental results of the selected algorithms will be compared with each other and

the statistically significant differences will be computed. Therefore, four questions need

to be addressed in designing the experimental framework:

Q1. How many runs are sufficient to help the measurement of the evaluation metrics

to be reliable?

Q2. How to deal with small datasets (i.e. that have small number of examples)?

Q3. How to compare the experimental results and test for statistical significance?

Q4. How to control the termination of the learning algorithms in the case that there

is no accurate solution for the learning algorithm with respect to the dataset?

In the following sections, we will describe appropriate methods that answer the

above questions.

K-fold cross-validation (Q1 + Q2)

K-fold cross-validation is a popular evaluation method in machine learning. The basic

idea of this method is to partition the evaluation dataset into k sub-datasets and

repeat the experiment for each sub-dataset and measure the evaluation metrics of the

algorithm. Performing a k-fold cross-validation for a learning algorithm on a dataset

includes the following steps:

1. Randomly shuffle positive and negative examples in the dataset.

2. Divide examples into k equal-size parts, called sub-samples. If the number of

example in each example set is not divisible by k, size of the sub-samples may be

slightly different. Figure 3.1 demonstrates how to split examples into sub-samples

for a 10-fold cross-validation (k = 10).

3. For each of the k folds of the data we use (k - 1) parts for training and the

remaining part of each set for testing, and then calculate the interested metrics.

The final reported value of each metric is the average and standard deviation of

k folds.

43

3. Evaluation Methodology

Figure 3.1: Partitioning the set of examples for a 10-fold cross-validation. The set ith is
used for the ith fold of the cross-validation. The shaded parts are used for training and
upward diagonal patterned parts are used for testing.

 Sub-
 samples

Pa
rt

 1

Pa
rt

 2

Pa
rt

 3

Pa
rt

 4

Pa
rt

 5

Pa
rt

 6

Pa
rt

 7

Pa
rt

 8

Pa
rt

 9

Pa
rt

 1
0

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

Examples

The partition of the dataset helps to deal with the small datasets (addressing Q2),

which do not have enough examples to separate into training and test sets. In addi-

tion, the repeat of the experiment helps the experimental results to be more reliable

(addressing Q1).

We mainly used 10-fold cross-validation in our evaluation. However, one of the

constraints for the k-fold cross-validation is that the number of folds must be smaller

than or equal the number of positive examples and negative examples. Therefore, we

sometimes use 5-fold cross-validation for small datasets to satisfy this constraint and

also to prevent too small test sets. This is reported in the evaluation result if it happens.

In our evaluation, there are several parallel learning algorithms. A parallel learning

algorithm may give different results on the same training set and the same system

between different runs. This happens because the order of descriptions generated in

search space may be different among runs due to the scheduling for threads in parallel

systems. Figure 3.2 demonstrates this property of the parallel learning algorithms.

Therefore, we also use amulti-run k-fold cross-validation for parallel learning algorithm.

We repeat the k-fold cross-validation several times (mainly 3 times) and the reported

results for each metric include the mean of the mean and the mean of the standard

44

3. Evaluation Methodology

Figure 3.2: Learning results from a parallel learning algorithm may be different between
different runs. Letters, e.g. A, B, C,... represent concepts, superscripts represent scores
and subscripts represent generation orders of concepts. Arrows describe the specialisation
relations, e.g. B, C and D are specialisation of A. In this example, the learning algorithm
starts from node A and it can process 2 descriptions at the same time (represented by solid
and dashed lines). Concepts that have the highest scores in the search space are chosen to
process first. Concepts with score 1 (shaded) are the accurate concepts.

(a) E and F (order 2) are generated
before G and H (order 3). There-
fore, E is chosen for processing next
and thus the learnt concept is I.

.

. . .

. . . .

(b) G and H (order 2) are generated
before E and F (order 3). There-
fore, C is chosen for processing next
and the concept is X..

. . .

. . . .

deviation of 3 runs.

Statistical significance test (Q3)

The experimental results can be used to compare between algorithms, e.g. faster or

slower, more or less accurate, etc. However, it is useful to know that whether the

differences between experimental results of the algorithms reflect a pattern or just

occur by chance. Therefore, we measure the statistical significance to identify the

differences between the experimental results reflecting a pattern or occurring by chance

with respect to a threshold of probability (addressing Q3).

Essentially, a statistical significance test begins with a null hypothesis and an al-

ternative hypothesis. A typical null hypothesis in a statistically significant difference

test is that there is no difference in the observations1 and an alternative hypothesis is

that there exists differences within the observations. Then, an appropriate test statistic

is employed to calculate the sampling distribution under the null hypothesis, which is

1In our case, the observations are the experimental results.

45

3. Evaluation Methodology

a function of the observations. There are a number of tests we can use to identify

statistically significant difference between experimental results, such as z-test, t-test,

chi-squared and F-test. The t-test is suitable for pairing tests of the mean of the two

results and a small number of folds (less than 30 folds) [103, 127]. The z-test is similar

to the t-test but it is used for a big number of folds (more than 30 folds). The F-test

is used to compare the variances of the two results, and the chi-square is not suitable

for pairing tests. Therefore, we use the t-test to identify the statistically significant

difference between the experimental results.

The result of a test statistic is used to determine (usually through a p-value [135])

whether a null hypothesis can be rejected with respect to a significance level. If the

null hypothesis can be rejected, the differences between the observations are statistically

significant with respect to the given significance level. The significance level represents

the confidence of the test conclusion. The lower significance level is selected, the higher

the confidence in the test conclusion. The common significance levels are 1%, 5% and

10%.

Given experimental results of two learning algorithms on a dataset, the t-value of

the t-test method for a metric (e.g. learning time, predictive accuracy or search space

size) is calculated using the following formula:

t =
x1 − x2√
s21 + s22

k

where:

x1 and x2 are the means of the metric for the 2 sets,

s1 and s2 are the standard deviations of the metric,

k is the number of folds of the cross-validation.

Then, p-value with respect to t can be estimated using the t-distribution table [137]

or using some p-value calculation utilities such as the TDIST(...) function in Excel2

or the pt(...). function in R3. If the p-value is smaller of equal statistical significance

level, the difference between evaluation results is statistically significant. Otherwise, it

2http://office.microsoft.com/en-nz/excel-help/tdist-HP005209312.aspx
3http://stat.ethz.ch/R-manual/R-patched/library/stats/html/TDist.html

46

3. Evaluation Methodology

is not statistically significant.

Timeout for the learning algorithms (Q4)

A learning algorithm may not find a perfectly accurate definition. The basic reasons

are:

• The learning algorithm is not complete, i.e. it cannot produce some types of

concept, and the expected definition belongs to one of those types.

• The dataset contains noise and thus there is no accurate definition.

• There is not enough resource (e.g. memory) for the learning algorithm to find

the definition.

In this case, the learning algorithm will run out of memory before it produces and

returns the solution. As a result, some evaluation metrics cannot be computed.

Therefore, a maximal learning time, also called the timeout, for each learning algo-

rithm is assigned with respect to a dataset. If a learning algorithm reaches the maximal

learning time assigned before it produces an accurate solution, the algorithm will stop

and return the best solution it has produced so far (addressing Q4). The timeout value

assigned for an algorithm must ensure the learning algorithm stops and returns the

solution without running out of memory. In addition, it must not be too short to avoid

premature learning results.

To identify an appropriate timeout value for a learning algorithm with respect to a

dataset, we first run the learning algorithm on the dataset until it terminates. There

are two possible scenarios: i) the learning algorithm finds and returns a definition, and

ii) it runs out of memory without returning a definition. Figure 3.3 demonstrates the

above scenarios: the algorithm A can find a definition in around 10 minutes, whereas

the algorithm B runs out of memory after more than 50 minutes without getting an

accurate definition.

Based on the result of the investigation, the maximal learning time for a learning

algorithm is estimated as follows:

47

3. Evaluation Methodology

Figure 3.3: Termination of learning algorithms: Algorithm A can find a definition and
return the result while algorithm B runs out of memory before it find a definition.

accuracy (%)

time (min.) 10 20 30
0

20

40

60

80

100

 algorithm A
 algorithm B

out of memory

40

1. If the learning algorithm can find the definition (e.g. algorithm A in Figure

3.3), there is no need to control its termination. However, to prevent unforeseen

circumstances (i.e. the termination of the algorithm on other training sets of the

dataset), we also assign the maximal learning time for the algorithm based on its

learning time in the investigation. It is around 1.5 times longer than the learning

time.

2. If the learning algorithm runs out of memory (e.g. algorithm B in Figure 3.3),

we need to control the termination of the algorithm. The maximal learning time

is estimated using the trend of the learning accuracy. We first choose a point

such that from that point, the learning accuracy almost stays flat or increases

very slowly. For example, in Figure 3.3, this point is around the 18th to the 20th

minute of the algorithm B. From that point, we extend the maximal learning

time as in the above scenario, i.e. around 1.5 times longer than that point. For

the algorithm B in Figure 3.3, we would choose the maximal learning time to be

between 25 and 35 minutes.

3.3.2 Comparison algorithms

The typical description logic learning algorithms that have been proposed and imple-

mented are DL-FOIL [45], YinYang [66], AL-QuIn [85] and a set of algorithms in the

DL-Learner framework such as CELOE (Class Expression Learning), OCEL (OWL

48

3. Evaluation Methodology

Class Expression Learner) and ELTL (EL Tree Learner) [82]. Amongst the above

algorithms, we chose CELOE and OCEL to compare with our algorithms because:

1. They were well tested. Some detailed evaluations and comparisons were con-

ducted for these algorithms [57, 80]. They were compared with YinYang, ELTL,

Generic Programming (developed within DL-Learner), etc. The experimental re-

sults were also analysed and discussed using the basic metrics such as predictive

accuracy, learning time and definitions length. Therefore, it enables the implicit

comparison with other algorithms.

2. Evaluations in [57, 80] suggest that, overall, these algorithms produced better

results than other algorithms.

3. These algorithms and the DL-Learner framework are publicly available and they

can be accessed at the Sourceforge repository4. They also have a big user and

developer community.

4. They support expressive language. Although they were reported to support the

ALC language, the current implementation was extended to more expressive

power, e.g. at-least restriction and at-most restriction, and they approach the

support of the SHOIN(D) language.

In addition, these algorithms are the most recently developed description logic learn-

ing algorithms (in 2010). They were implemented in Java, a favourite platform used

best for web ontology language technologies and based on DL-Learner, an open source

framework for learning in description logics and OWL. The DL-Learner framework

provides core functionalities for implementation of description logic and OWL learn-

ing algorithms such as interfaces for different knowledge sources (e.g. OWL files and

SPARQL endpoints [29]), reasoner interfaces (e.g. OWLAPI reasoner interfaces and

DIG [10]), normalisation procedure, and implementation of some refinement operators.

Therefore, it allows direct comparisons by using the same methods for some parts (e.g.

refinement operator, reasoner interface and normalisation) of the implementation of

our learning algorithms. This helps to accomplish fair comparisons.

4http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/

49

3. Evaluation Methodology

3.3.3 Evaluation Datasets

To ensure that our evaluations cover as much as possible of the space of cases, which

helps to achieve a thorough assessment of the algorithms involving in the evaluations,

we chose datasets that vary in: i) size, both for knowledge base and set of examples,

ii) the length of definitions, and iii) the noise property. In addition, datasets that

are commonly used in evaluations of symbolic machine learning may provide implicit

comparisons with other related approaches. Therefore, we also chose some datasets

commonly used in evaluation of symbolic learning algorithms, particularly in inductive

logic programming and description logic learning.

Based on the above criteria, we chose the following datasets for our evaluation.

The summary of their basic characters are given in Table 3.1 and their properties

are summarised in Table 3.2. In Table 3.1, we used CELOE, one of our comparison

algorithms, as the reference algorithm for estimation of the definition length of the

learning problems with respect to the datasets. We also assess the complexity of the

learning problems. The definition length is used as a proxy for the complexity.

However, this assessment may not be accurate if the dataset is noisy or the expected

definition for the learning problem with respect to the dataset is too long for CELOE

to produce the definition under an evaluation condition (e.g. memory). For example,

the average definition length for the CarcinoGenesis dataset produced by CELOE is 5

axioms. This is a short definition length and thus it is classified as a low complexity

learning problem. However, this is not a plausible classification as this is a noisy dataset

and the short definitions are caused by noisy data rather than a simple learning problem.

The average predictive accuracy of CELOE on this dataset is around 56%.

Moral

This dataset was first introduced in [140] and is available at the University of California

Irvine (UCI) machine learning repository5 [50]. This dataset contains concepts and

observations that are related to classification of activities as ‘guilty’ and ‘not guilty’.

It is intended to be used to learn definitions of harm-doing activities. This dataset

5http://archive.ics.uci.edu/ml/datasets/Moral+Reasoner

50

3. Evaluation Methodology

Table 3.1: Basic characters of the evaluation datasets. Some datasets include
several sub-datasets. Therefore, they may have more than one values for a charac-
teristic.

No Dataset TBox sizea ABox sizeb Complexityc Noise

1. Moral Large Large Low No

2. Forte Uncle Small Small Medium No

3. Poker Medium Medium to
Large

Medium to
High

No

4. Family Small Medium Low to
Very high

No

5. CarcinoGenesis Large Large Low Yes

6. UCA1 (MUSE) Large Medium Medium No

7. ILPD Large Large Medium Yes

8. MUBus Medium Large Low to
Medium

No

aTotal number of classes and properties. Small: (0, 8]; Medium: (8, 15]; Large: (15, ∞).
bTotal number of assertions. Small: (0, 500]; Medium: (500, 1000]; Large: (1000, ∞)
cThe complexity is approximately estimated based on the definition length. Low: (0, 8];

Medium: (8, 15]; High: (15, 20]; Very High: above 20.

includes two sub-datasets in which one of them requires a simple definition for harm-

doing activities, for example:

(blameworthy OR vicarious_blame)

Another one requires more complex definition for harm-doing activities, e.g.:

(NOT justified) AND (responsible OR vicarious)

Forte uncle

This is used to learn the definition of the concept Uncle. It was modified from the

Uncle dataset within the Family dataset by Lehmann [78]. A possible definition for

this learning problem is:

Male AND ((hasSibling SOME (hasChild some Person))

OR (married SOME (hasSibling SOME (hasChild SOME Person))))

51

3. Evaluation Methodology

Table 3.2: Properties of the evaluation datasets. OPs and DPs are short for Object
Properties and Data Properties respectively. Number of examples is given in the form
positive/negative examples.

No Dataset Classes OPs DPs
Assertions

Examples
Class OP DP

1. Moral 43 0 0 4646 0 0 102/100

2. Forte uncle 3 3 0 86 251 0 23/163

3. Poker 4 6 0 374 1080 0 4/151

4. Carcino-
Genesis

142 4 15 22,372 40,666 11,185 182/155

5. ILPD 4 0 10 976 0 1952 323/165

6. UCA1
(MUSE)

30 4 11 300 200 200 73/77

Family dataset

7. Aunt 4 4 0 606 728 0 41/41

8. Brother 4 4 0 606 728 0 43/30

9. Cousin 4 4 0 606 728 0 71/71

10. Daughter 4 4 0 606 728 0 52/52

11. Father 4 4 0 606 728 0 60/60

12. Grandson 4 4 0 606 728 0 30/30

13. Uncle 4 4 0 606 728 0 38/38

MUBus12 Dataset

14. [07:00-09:10] 25 0 12 2675 0 32110 383/2292

15. [07:00-12:00] 25 0 12 6314 0 75766 670/5643

16. [07:00-21:30] 25 0 12 17128 0 205534 1250/15877

52

3. Evaluation Methodology

This dataset is available at the DL-Leaner repository6.

Poker

This dataset contains description of poker hands. Each example in this dataset is a

description of a poker hand that consists of 5 cards drawn from a standard desk of

52 cards. Each card has two properties: suit and rank. There are four different suits:

Hearts, Spades, Diamonds and Clubs; and 13 different ranks: Ace, 2, 3, . . . , Queen,

King. There are totally 10 predictive attributes for a poker hand (i.e. suit of card 1,

rank of card 1, . . . , suit of card 5, rank of card 5).

A poker hand also has a Class attribute that describes its situation, e.g. one pair

(one pair of equal rank within five cards), two pairs (two pairs of equal rank within

five card), straight (five cards sequentially ranked with no gaps), etc. There are totally

10 poker hand classes. Therefore, this dataset can be used to learn the properties (or

the definitions) of poker hand classes. This dataset can be customised into binary-class

learning. It is available at the UCI repository7.

Family

This is a set of datasets that contains observations about the family relations such

as aunt, brother, cousin, daughter, father, grandson and uncle [113]. Therefore, there

are many learning problems in this dataset in which each of them is used to learn a

definition of a family relation. For example, the aunt relation is possibly defined as

follows:

Female AND ((hasSibling SOME hasChild SOME Thing) OR (married SOME

hasSibling SOME hasChild SOME Thing))

Or the definition of “Brother” relation, for instance, is as follows:

Male AND hasSibling SOME Thing

This dataset can be found in many repositories. In our evaluation, we use the

dataset distributed with the DL-Learner package (or can be found at the DL-Learner

6http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/forte/
7http://archive.ics.uci.edu/ml/datasets/Poker+Hand

53

3. Evaluation Methodology

repository8).

CarcinoGenesis

This dataset is used to learn the structure of chemical compound and bio-essay that

may cause cancer. Data of this dataset was obtained from US National Toxicology

Program. It was transformed into logic programming and used for evaluation of ILP

algorithms by many authors such as in [7, 124]. This dataset was transformed into

OWL ontology format and used to evaluate the description logic learning algorithms

in the DL-Learner framework [80]. This is a challenging problem in machine learning

for both symbolic and sub-symbolic learning approaches, which is reported to contain

noise [80]. Therefore, this dataset is useful for testing the capability of dealing with

noise of the learning algorithms.

The OWL format of this dataset can be found in the DL-Learner distribution or

the DL-Learner repository9.

MUSE Dataset

This is a simulated smart home dataset created by the MUSE (Massey University Smart

Environment) research group [88] and available at the DL-Learner repository10. It is

simulated based on a set of use cases that particularly focus on describing normal and

abnormal behaviours of an inhabitant in a smart home. A major difference between this

dataset and other smart home datasets is that this dataset has richer context awareness

information. In most of the existing smart home datasets such as MIT [128], the only

context information involved is the time. However, the time data in that dataset is

only used to represent the order of the activities in the dataset. Other information of

the time data is not used such as the day of week and the season.

In the MUSE dataset, context awareness is taken into consideration. More infor-

mation is involved in the dataset than the existing home datasets such as seasons,

8http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/

family-benchmark/
9http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/

carcinogenesis/
10http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/

showering-duration/

54

3. Evaluation Methodology

Figure 3.4: A part of the MUSE knowledge base visualised in Protege. It contains the
basic concepts and properties for describing activities and the context information in smart
home environment.

(a) Class hierarchy. (b) Object properties. (c) Data properties.

weekday/weekend, day of week, etc. Figure 3.4 shows a part of this dataset knowledge

based, visualised by Protege [61], including the class hierarchy and properties. The

smart home use cases suggest that behaviours of inhabitants in smart homes can be

effected by many factors. Therefore, consideration of context information may help to

describe the behaviours more precisely.

The knowledge base also contains some equivalent classes for reasoning about the

season given the month of year. For example, following is the definition of the Winter

concept (that applies to the Southern Hemisphere only):

Winter ≡ Timepoint AND (hasMonthValue SOME integer[> 5]) AND (

hasMonthValue SOME integer[< 9])

In our experiments, only the use case UCA1 in [88], which describes normal and

abnormal shower duration, is used. In this use case, shower duration is supposed to

depend upon the seasons. Cool seasons may cause the showers to be shorter, whereas

warm seasons may cause the showers to be longer. Figure 3.5 shows a showering activity

and its context information represented in the form of RDF graph. In this dataset, only

55

3. Evaluation Methodology

Figure 3.5: An example of a shower activity showering 001 in MUSE dataset and its
context information represented in form of a RDF graph.

showering_001

6

Showering

rdf:type

timepoint_001

Timepoint

rdf:type

hasMonthValue
duration_001

Duration

rdf:type

15

hasDurationValue

hasStarttimehasDuration

the month value of a timepoint is currently used. The month and duration values are

described by an integer value.

ILPD Dataset

This dataset contains liver function test records of patients collected from the North

East of Andhra Pradesh, India (Indian Liver Patient Dataset). Each record comprises

patient information such as age and gender and result of liver function tests including

total Bilirubin, direct Bilirubin, Albumin, total protein, Albumin/Globulin ratio, Ala-

nine, Aspartate and Alkaline Phosphatase. Based on the patient information and the

test results, experts were asked to classify patients’ record into cancer patient (denoted

by ‘1’) and non-cancer patient (denoted by ‘2’) classes. Therefore, this dataset can

be used to identify the characters of liver and non-liver cancer patient groups. This

dataset is also available in the UCI repository11.

The liver function test results are numeric values. In our evaluation, background

knowledge of liver function test is also included in the knowledge base of the learning

problem. This includes the definition of “normal” and “abnormal” value of the test

results based on reference range [52] collected and aggregated from several health labs

and website such as MedlinePlus12, a service of the US National Library of Medicine,

Virtual Medical Center13, a leading medical information website of Australia.

11http://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset)
12http://www.nlm.nih.gov/medlineplus/ency/article/003436.htm
13http://www.virtualmedicalcentre.com/health-investigation/liver-function-tests-lfts

56

3. Evaluation Methodology

Figure 3.6: The concept hierarchy of the MUBus dataset visualised in Protege.

MUBus Dataset

This dataset is about the operation time of the route 12 of the Horizons bus service 14.

This dataset was generated from the bus schedule in which the data was sampled every

5 minutes. Each record has the form record id(day, month, year, hour, minute,

bus/no bus). Operation time of this bus route depends upon several conditions such

as weekday or weekend, holiday or normal day, type of holiday, and summer or school

year. For simplicity, similar conditions are grouped accordingly to their influence on

the bus schedule. For example, we created the concept Holiday1 to represent for the

holidays: ANZAC Day, Christmas, Easter Sunday and Good Friday. These holidays

have the same characteristic that the bus does not operate on these days. The basic

concepts used in the bus schedule and their hierarchical structure are given in Figure

3.6. The full description of this bus schedule including the criteria is provided on the

Horizons bus website.

This dataset includes several sub-datasets. We perform our experiments on three

datasets named “MUBus12 [07:00 - 09:20]” (shortened as MUBus-1), “MUBus12 [07:00

- 12:00]” (shortened as MUBus-2) and “MUBus12 [07:00 - 21:30]” (shortened as MUBus-

3). Numbers inside the square brackets indicate time ranges used to generate sampling

data. For example, “[07:00 - 21:30]” means that data were sampled from 07:00 to 21:30.

In addition, we did the sampling around one week for each month. If there are holidays

14http://www.horizons.govt.nz/assets/getting-people-places-publications/

PNthbustimetableNOV2012web.pdf

57

3. Evaluation Methodology

in a month, the sampling is extended to cover the holidays. This ensures the dataset

contains sufficient information for learning the patterns of bus operation time.

The learning problems with respect to this dataset are very complex learning prob-

lems. The bus operation schedule influences by many factors and thus the pattern to

describe the bus schedule is very long. For example, to describe only the bus schedule

in the weekend, the following description (or other equivalent descriptions) is required:

(NOT Holiday1) AND ((hasMinute VALUE 0 and hasHour VALUE 9) OR

(hasMinute VALUE 20 AND

(hasHour VALUE 10 OR hasHour VALUE 14 OR hasHour VALUE 16)) OR

(hasMinute VALUE 40 AND

(hasHour VALUE 11 OR hasHour VALUE 13 OR hasHour VALUE 15)))

Or the criteria of the bus depart at 09:20 is as follows:

(hasHour VALUE 9 AND hasMinute VALUE 20) AND

Weekday AND (NOT Holiday1) AND (NOT MidYearBreak2) AND

(NOT MidYearBreak1) AND (NOT SemesterBreak) AND (NOT SummerSemester)

The full description of the bus schedule is very complex. Therefore, this dataset is

used to assess the ability of the learning algorithms in handling the complex learning

problems. This dataset is also suitable for evaluating the symmetric learning approach

as the negative examples in this dataset can be described by simple description, e.g.

NOT Holiday1. This dataset is available at the DL-Learner repository15.

3.4 Implementation and Running the Code

Our algorithms have been implemented in Java programming language. This is the

favourite platform used best for web ontology language technologies such as OWL

application programming interface (OWLAPI [11]) and OWL reasoners (e.g. Pellet

[107], Hermit [117] and FaCT [63]). Therefore, using this platform will facilitate our

implementation and also help our work to be as close as possible to others.

Our evaluation is implemented and available online 16. Scripts for reproducing

15http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/trunk/examples/
16https://parcel-2013.googlecode.com/files/parcel-cli.zip

58

3. Evaluation Methodology

the experimental results are also included in this package. A detailed description of

the evaluation system configuration and instructions for running evaluation scripts are

provided in Appendix B.

Note that different evaluation system configurations may produce different experi-

mental results for some particular metrics. Learning time is the most sensitive metric to

the evaluation system configuration. Other metrics such as learnt concept, search space

size and accuracy are less dependent on the system configuration than learning time

and thus the evaluation usually produces the similar results for these metrics regardless

of the evaluation system.

59

3. Evaluation Methodology

60

Chapter 4

Adaptive Numerical Data

Segmentation

This chapter describes an approach to segmentation of numeric data property

values that will be useful in the rest of the thesis. We first present the standard

approach to refinement of numeric data properties in description logic learning

and discuss its limitations. Then, we propose an approach to segmentation

of numeric data property values. Finally, we present experimental results to

demonstrate the effectiveness of our approach.

4.1 Introduction

Refinement of a description is done by: i) adding (specialisation) or removing (gen-

eralisation) primitive concepts, roles and restrictions to/from the description, and ii)

refining the primitive concepts, roles and restrictions in the description. The refine-

ment of a primitive concept, role and restriction are based on a quasi-order space that

consists of a set of values and a quasi-ordering [104]. They are basically a replacement

of the concept, role or restriction by a more specific (downward refinement) or a more

general (upward refinement) element in the quasi-order set.

The quasi-order space for primitive concept refinement consists of the set of prim-

itive concepts in the TBox (NC) and the sub-concept relation (). Similarly, the

61

4. Adaptive Numerical Data Segmentation

quasi-order space for role refinement consists of primitive roles in the TBox (NR) and

the sub-role relation (). Identifying quasi-order sets for primitive concepts and roles

are straight forward, as all required information is available within the knowledge base.

However, a quasi-order set for refinement of restrictions is not always available, par-

ticularly for numeric datatypes. The quasi-ordering for numbers is obviously available.

For examples, we can use >,≥, <, or ≤ to define the generality and specificity be-

tween the numeric values. On the other hand, the set of elements of the quasi-order set

for numeric datatype restriction refinement is not explicitly available in the knowledge

base. A computation is often needed to identify this set.

In this chapter, a method for identifying the elements of the quasi-order set for

refinement for numeric datatype properties is proposed. This is a pre-processing step,

that only has to be done once, before the learning starts. This method will be used by

all the learning algorithms developed in this thesis. To demonstrate the efficacy of the

method, we will present experimental results of this method implemented in CELOE

and one of our algorithms, the ParCEL algorithm, developed in Chapter 5.

4.2 Motivation

Learning symbolic concepts is the ultimate purpose of the symbolic learning approach.

Therefore, most existing approaches in description logic learning focus upon learning

symbolic concepts without appropriate attention to learning numeric datatypes. How-

ever, in many real-world applications, numeric data has an important role in knowledge

representation and it cannot always be replaced by qualitative representations, i.e sym-

bolic concepts.

In existing description logic learning approaches, the most common method for re-

fining numeric datatype properties is to use the maximal (≤) and minimal (≥) value

restriction (quasi-orderings) on a set of values, which are usually obtained from the

range values of the datatype properties’ assertions. Figure 4.1 visualises the speciali-

sation process for a numeric datatype property p. Specialisation in Figure 4.1(a) uses

either the maximal or minimal value restriction and the specialisation in Figure 4.1(b)

uses both of them. With n possible values for refinement for a datatype property p,

62

4. Adaptive Numerical Data Segmentation

Figure 4.1: Specialisation of numeric datatype properties.

(a) Either maximal or minimal value restriction is used by the specialisation.

(b) Both maximal and minimal value restrictions are used by the specialisation.

1 2 3 4 5 6 . . . n-2 n-1 n Property p

1 p n
p (n-1)

2 p n

specialisation specialisation

there are 2n possible combinations for one-sided specialisation and n(n+1)
2 combinations

for two-sided specialisation of p, as illustrated in Figures 4.1(a) and 4.1(b) respectively.

To the best of our knowledge, amongst description logic learning algorithms devel-

oped, the only description logic learning algorithms that explicitly describe and imple-

ment the specification of the numeric datatype property refinement are the CELOE,

OCEL and ELTL algorithms in the DL-Learner framework [82]. As the number of

assertions of a datatype property may be very big, using all the values of the assertions

may explode the search space due to the number of possible combinations. Therefore,

in these algorithms, a fixed-size segmentation method is used to reduce the refinement

space. In this method, a maximal number of values for refining a numeric datatype

property is assigned. If k is the maximal number of values used for the refinement of a

datatype property, the assertion values of the datatype property are split into k equal

parts and the middle values of split parts are used for refinement (they are rounded for

the integer datatype). Figure 4.2 describes a segmentation for a data property p that

63

4. Adaptive Numerical Data Segmentation

Figure 4.2: Segmentation of a datatype property assertion values to reduce the refinement
space. The refinement space of this property decreases from 102 possible combinations
(w.r.t 12 values) to 25 (w.r.t 5 values).

p ≥ 1.0 p ≥ 3.5

p ≤ 18
p ≤ 30

. . .

. . .

Property p

Figure 4.3: Overly general expression, 3.5 ≤ p ≤ 30, cannot be further specialised due
to an inappropriate segmentation of the data property values. Superscript + indicates the
value of positive examples and superscript − indicates value of negative examples.

1 2 3 4 5+ 6+ 10+ 12+ 16+ 20+ 28 30

1

3.5

Property p

specialisation specialisation

has 12 values into 4 parts.

However, fixed-size segmentation of the datatype properties may lead to a cir-

cumstance in which some meaningful values are ignored while unnecessary values are

included in the set of values used for the refinement. For example, suppose that the

datatype property p in Figure 4.2 describes an allowable range based on positive ex-

amples {5, 6, 10, 12, 16, 20} and negative examples {1, 2, 3, 4, 28, 30}. The problem is

demonstrated in Figure 4.3. It is obvious that the segmentation in Figure 4.2 is not

appropriate and it prevents the specialisation from working correctly. The expression

3.5 ≤ p ≤ 30 is overly general (complete but not correct) and it cannot be specialised

as the next values for the specialisation (8 and 18) produce overly specific concepts.

Therefore, the fixed-size segmentation for data properties values may lead to inap-

propriate segmentations. Using all values of the data properties values can help to avoid

the problem, but it may explode the refinement spaces with unnecessary values. For

example, some values such as {2, 3, 6, 10, 12, 16} in Figure 4.2 can be eliminated from

64

4. Adaptive Numerical Data Segmentation

the segmentation without any problem. However, the relations between the values of

data properties and the examples are not explicitly available. Therefore, we approach

this problem by proposing an adaptive segmentation method that creates a relation

graph between literals of data properties and examples, and segments the datatype

property values based on the relation graph.

4.3 Description of Our Method

In this section, we describes our method to compute a set of values used for refinement

of numeric data properties such that: i) the redundant values are eliminated to reduce

the refinement space of the data properties, and ii) the set of values contains necessary

values to construct the definitions for positive examples. The set of values computed

depends upon the sets of examples and their relations to the property values. Therefore,

it is called the adaptive segmentation method.

Figure 4.3 gives an example of an inappropriate segmentation that misses some nec-

essary values for constructing the definitions. The set values for refinement of the prop-

erty p in this segmentation method is {1, 3.5, 8, 18, 30}. However, some values between

4 and 5, and 20 and 28 are needed to construct the definitions of positive examples.

If the above values are segmented into 6 parts, the set of values for the segmentation

is {1, 2.5, 4.5, 8, 14, 24, 30} and thus we can get the necessary values. However, this

segmentation produces redundant values, e.g. {2.5, 8, 14}.
Therefore, to eliminate the redundancy and to avoid missing any necessary values,

the approach to segmentation of data properties values requires the information about

the relations between the values of the data properties and the examples. These rela-

tions are identified by using a relation graph. A relation graph is a directed graph that

represents the relations between the individuals and the literals based on the assertions

in the ABox. The nodes in a relation graph are the class assertions or literals of data

properties and the edges are the property assertions that connect their domain value

(individuals) to their range value (individuals or literals). Figure 4.4 shows a simple

relation graph that describes the relations between some examples and the values of

the datatype property p.

65

4. Adaptive Numerical Data Segmentation

Figure 4.4: A relation graph of examples and numeric values of the datatype property
p. Shaded ellipse nodes are examples, with solid lines representing positive examples and
dashed lines representing negative examples. Unshaded ellipse nodes are instances. Rect-
angular nodes represent values (literals) of the datatype property p. Superscripts +, − or
± of a value implies the value has relation with only positive example(s), only negative
example(s), or both positive and negative examples respectively.

instance_01 instance_02 instance_03

example_01

1 2 10+

instance_04

18±

example_02 example_03 example_04 example_05

Property p

Object property

Property p Property p Property p

Object property Object property Object property Object property

Given a relation graph, a value is said to be related to an example if there exists a

path from the example to the value. Each value of a datatype property may be related

only to the positive or negative example(s) or both types of example. For example, in

Figure 4.4, the literals “1” and “2” of the datatype property p relate only to the positive

examples (denoted by +), literal “10” relates only to the negative examples (denoted

by –) and the literal “18” relates to both positive and negative examples (denoted by

±).

To segment the values of each datatype property, they are first sorted into a specified

order. Then, it is obvious that for the values that have types “+” or “–”, jumping

through the values with the same type in the specialisation does not affect the overly

general or overly specific property of the refined concept. For example, given the values

for the data property p in Figure 4.3 and an expression p SOME double[≥ 1], then the

specialisation of the expression by increasing 1 to 2, 3 and 4 will not result in an overly

specific expression. This property may only be changed when we move to a value with

another type, i.e. from 4 to 5. Therefore, these values can be considered as redundant

values for specialisation. Only the values at the boundaries of each group are needed.

For the values with “±” type, they cannot alone distinguish the positive examples.

Therefore, no redundancy strategy is proposed for those values. They are segmented

value by value.

66

4. Adaptive Numerical Data Segmentation

Figure 4.5: Segmentation of data property values. Values are sorted and then grouped
by type. There are 6 segments from s1 to s6 and 7 values are computed for specialisation.

v1 v2 v3 v4
+ v5

+ v6
+ v7

+ v8
± v9

± v10
+ v11 v12

 v13

s1 s2 s3 s4 s5 s6

Values

Segments

Values for spec. (v3 + v4)/2 (v7 + v8)/2
(v8 + v9)/2

(v9+ v10)/2
(v11+ v12)/2

Figure 4.6: Applying our segmentation method for segmenting the values in Figure
4.3 and computing the values for the specification. There are 3 segments and 4 values
computed.

1 2 3 4 5+ 6+ 10+ 12+ 16+ 20+ 28 30 Values

Segments

Values for spec.

s1 s2 s3

4.5 24

Finally, the set of values used for the specialisation of each data property is com-

puted from the values at the boundary of the segments. They may be the average of

the two values at the boundary. Rounding may be needed for integer datatype prop-

erties. Figure 4.5 demonstrates a segmentation and the computation of the values for

specialisation with 7 values are computed for the specialisation. Figure 4.6 shows gives

a particular example for segmenting the values in Figure 4.3. There are 3 segments and

only 4 values are computed for the specialisation.

A disadvantage of this strategy in comparison with the fixed-size segmentation

strategy is that it requires an extra computational cost for building the relation graph.

4.4 The Algorithms

Our datatype property values segmentation aims to reduce redundancy and avoid miss-

ing any necessary values in the refinement of numeric data properties. Our approach

is based on the directed graph that represents relation between examples and values

of the numeric data properties. Therefore, the first step in our algorithm is to build a

relation graph. Then, we check if a value is connected with positive or negative exam-

ples or both of them. Finally, the values of numeric data properties using the above

information are segmented.

The algorithm for building relation graphs is given in Algorithm 4.1. Each edge v

67

4. Adaptive Numerical Data Segmentation

in the relation graph has the form of (startnode, endnode, label), in which label is the

label of v. Figure 4.4 is an example of a relation graph that describes relations between

the examples and numerical values.

Algorithm 4.1: Relation graph node builder algorithm – NodeBuilder(T,A)

Input: an ontology O including a TBox T (consisting of sets of concepts NC

and properties NR) and an ABox A.
Output: a labelled directed graph G = (V,E) such that for each property

assertion property(a, b) ∈ ABox : a ∈ V , b ∈ V and there exists an
edge e = (a, b, property) ∈ E such that a and b are two vertices of e,
and property is the label of e.

1 begin
2 V = ∅ /* set of vertices */

3 E = ∅ /* set of edges */

4 foreach property ∈ NR and property(a, b) ∈ A do
5 if a /∈ V then V = V ∪ a
6 if b /∈ V then V = V ∪ b
7 if (a, b, property) /∈ E then
8 E = E ∪ (a, b, property) /* see text */

9 return G = (V,E)

Algorithm 4.2 is our proposed algorithm for segmenting the values of a numerical

data property. In this algorithm, the function ExistPath checks for the existence of

a path between two nodes in the relation graph such that one of the vertices must

have a given label. In addition, a function Average calculates the average of values

depending on the datatype of those values.

4.5 Evaluation Results

To investigate the effect of the adaptive segmentation strategy on the refinement space

for numeric datatype properties and predictive accuracy of the learning algorithms,

two experiments were conducted. CELOE [82] and ParCEL, one of our new learners

(which will be explained more detail in Chapter 5), were chosen as the learners to

implement the segmentation strategies. The ILDP and UCA1 datasets described in

the previous chapter were also selected for our experiments as these datasets contain

numeric datatype properties.

68

4. Adaptive Numerical Data Segmentation

Algorithm 4.2: Numeric data property values segmentation algorithm –
AdaptSegments(O,E+,E−, pro).

Input: an ontology O consists of a TBox T and an ABox A, sets of positive E+

and negative E− examples, and a numeric data property pro.
Output: a set of values {v1, v2, . . . , vn} for refinement of the data property pro.

1 begin
2 (V,E) = NodeBuilder(T,A) /* cf.Algorithm 4.1 */

3 G = (V,E)
4 values = ∅ /* set of values used for the segmentation */

5 foreach (domain, range, property) ∈ E do
6 if property = pro then
7 create a structure val : val.value = range and val.type = nil
8 values = values ∪ {val}

9 seg values = ∅ /* segmented values */

/* identify type of the elements of values */

10 foreach val ∈ values do
11 if ∃e ∈ E+ s.t. ExistPath(e, val.value, pro, G) = true then /* see

text for the explanation of the ExistPath() function */

12 val.type = pos /* val is connected to positive example(s) */

13 if ∃e ∈ E− s.t. ExistPath(e, val.x, pro, G) = true then
14 if val.type = nil then val.type = neg
15 else val.type = both

/* each element of the set values has 2 fields:value and type */

16 sort values by its elements’ value ;
17 for i=1 to values.length-1 do /* segment the values */

18 if values[i].type �= values[i+ 1].type or values[i].type = both then
19 seg values = seg values ∪ {Average(values [i].value,

values [i+1].value)}

20 return seg values

69

4. Adaptive Numerical Data Segmentation

Table 4.1: Reduction of numeric data properties values resulting from the adaptive seg-
mentation strategy.

Property No of values No of segmented
values

The UCA1 dataset

hasDurationValue 37 6

hasMonthValue 12 12

The ILPD dataset

hasAlbumin 142 67

hasTotalBilirubin 102 33

hasDirectBilirubin 74 24

hasAGRatio 163 81

In the first experiment, the segmentation strategy was used to compute the number

of segmented values for the datatype properties in the two learning problems. This

result illustrates the reduction of the number of values caused by our strategy. This

result was also used to select the number of segments used in fixed-size segmentation

strategy to compare with the adaptive strategy.

The second experiment was used to measure the predictive accuracy of the two

learning algorithms on the selected datasets using the two segmentation strategies. This

experiment was repeated several times with different timeout values to demonstrate the

influence of the segmentation strategies on the predictive accuracy. The experimental

results are shown in the following sections.

4.5.1 Segmentation result

Table 4.1 summarises the number of values of the numeric datatype properties in UCA1

and ILPD datasets before and after the segmentation. Overall, the number of values

computed by the adaptive segmentation strategy is significantly smaller than the orig-

inal values. The number of the segmented values will be used to refine the datatype

properties if the adaptive segmentation is used. Therefore, for fair comparison, these

values were used as reference segmentation sizes for some of fixed-size segmentation

strategy experiments.

70

4. Adaptive Numerical Data Segmentation

4.5.2 Experimental results on the accuracy

In this experiment, the predictive accuracy of CELOE and ParCEL on the two datasets

were measured using both the fixed-size and adaptive segmentation methods. There-

fore, there are 4 experimental results reported in this section.

The experimental result on the IDLP dataset

CELOE over-fits on the ILDP datasets: the higher the training accuracy, the lower

the predictive accuracy. Therefore, the training accuracy is needed to demonstrate the

effect of the segmentation on learning results.

In CELOE, a number of segmentations are used for all datatype properties, i.e.

different numbers of segmentations for each property cannot be selected. Therefore, the

number of segmentations used in this experiment was selected based on: i) the default

number of segmentations used by CELOE (10 segments), ii) the minimal number of

segmented values computed by the adaptive segmentation (24) for the given dataset

(see Table 4.1), iii) the maximal number of segmented values computed by the adaptive

segmentation (81), and iv) the maximal number of values of all properties (163). The

experimental result of CELOE on the ILDP datasets is shown in Table 4.2.

Both CELOE and ParCEL were first used to learn this problem but both these al-

gorithms could not find solutions in more than 10 minutes. Therefore, several timeouts

for the experiment were assigned: 60s, 90s, 120s and 180s. The experimental results

show that CELOE always got highest training accuracy with the adaptive segmentation

strategy for each timeout value. The accuracy of the fixed-size segmentation with 10

segments at 108s is still lower than that of the adaptive strategy at 60s. The highest

accuracy of the largest segmentation (i.e. segment size 163) is equal to that of the

adaptive strategy at 60s. Further investigation with the largest segmentations shown

that this strategy was able to achieve the same accuracy with that of the adaptive

strategy at 120s, at 600s. This is attributed by the bigger search space of the (largest)

fixed-size segmentation in comparison with the adaptive segmentation.

Therefore, it can be concluded that the adaptive segmentation can help the learning

to achieve higher accuracy faster than the fixed-size segmentation. In addition, it can

avoid the inappropriate segmentation problem found by the fixed-size strategy.

71

4. Adaptive Numerical Data Segmentation

Table 4.2: Predictive accuracy of CELOE on the ILDP dataset for the two segmentation
strategies (means ± standard deviations of 10 folds). Italic values are statistically signif-
icantly lower than the corresponding adaptive segmentation strategy results at the 95%
confidence level.

Learning
time (s)

Accuracy
(%)

Segmentation size

10 24 81 163 Adaptive

60
Training 76.457

±0.332
76.48

±0.291
76.662
±0.329

76.662
±0.329

76.685
±0.29

Testing 76.016
±2.609

76.016
±2.609

76.012
±3.431

76.012
±3.431

75.808
±3.105

90
Training 76.457

±0.332
76.48

±0.291
76.685
±0.29

76.662
±0.329

76.913
±0.403

Testing 76.016
±2.609

76.016
±2.609

75.808
±3.105

76.012
±3.431

75.608
±2.672

120
Training 76.457

±0.332
76.48

±0.291
76.685
±0.29

76.662
±0.329

77.072
±0.439

Testing 76.016
±2.609

76.016
±2.609

75.808
±3.105

76.012
±3.431

75.191
±2.74

180
Training 76.457

±0.332
76.48

±0.291
76.685
±0.29

76.685
±0.29

77.072
±0.439

Testing 76.016
±2.609

76.016
±2.609

75.808
±3.105

75.808
±3.105

75.191
±2.74

The t-test on the experimental results at the 95% confidence level shows that the

predictive accuracies of CELOE achieved with the adaptive segmentation strategy were

not statistically significantly higher than those with the fixed-size segmentation strat-

egy. However, there were 10/16 cases where the training accuracy of CELOE achieved

with the adaptive strategy were statistically significantly higher than those with the

fixed-size strategy.

A similar experiment was conducted for ParCEL and it was also over-fitting on

this dataset. The results in Table 4.3 show that ParCEL got higher accuracy with the

adaptive segmentation strategy than those with the fixed-size segmentation strategy.

Both training and predictive accuracies produced by ParCEL when it used the adaptive

strategy at 60s were higher than those produced with the largest fixed-size segmentation

(163 segments) at 180s. When the number of segments is small (i.e. the segments’ size

are big), some necessary values used to distinguish the positive and negative examples

may be segmented in the same group. Therefore, they are ignored in the refinement

72

4. Adaptive Numerical Data Segmentation

Table 4.3: Predictive accuracy of ParCEL on the ILDP dataset for the two segmentation
strategies (means ± standard deviations of 10 folds). The statistical significance test results
are presented using the same conventions as in Table 4.2.

Learning
time (s)

Accuracy
(%)

Segmentation size

10 24 81 163 Adaptive

60
Training 58.583

±1.679
66.984
±1.391

75.954
±1.799

77.138
±1.761

83.628
±1.369

Testing 54.278
±9.907

62.477
±7.818

64.068
±8.608

64.472
±8.906

68.567
±7.413

90
Training 58.583

±1.679
66.984
±1.391

78.892
±1.555

77.867
±1.378

84.971
±1.349

Testing 54.278
±9.907

62.477
±7.818

65.709
±7.633

64.472
±8.906

69.804
±6.923

120
Training 58.583

±1.679
66.984
±1.391

79.689
±1.553

78.391
±1.595

85.404
±1.184

Testing 54.074
±9.768

62.477
±7.818

67.359
±7.214

65.493
±8.25

70.004
±7.482

180
Training 58.583

±1.679
66.984
±1.391

80.736
±1.538

82.466
±1.489

85.632
±1.178

Testing 54.074
±9.768

62.477
±7.818

67.997
±7.349

67.967
±6.559

70.629
±7.031

that resulted in the low learning accuracy. The learning accuracy of the fixed-size

segmentation strategy was also lower than the adaptive segmentation even when the

number of segmentations was set to the maximal numbers of possibles values in the

domain. This can also be attributed to the bigger search space of this strategy in

comparison with the adaptive segmentation strategy.

The t-test on the training and predictive accuracies at 95% confidence shows that

the training accuracies of the adaptive segmentation strategy on UCA1 dataset were

statistically significantly higher than those of the fixed-size strategy for all segment

sizes and learning times. On the other hand, the predictive accuracies of the adaptive

strategy were statistically significantly higher than the fixed-size strategy when the

segment sizes are 10 and 24.

The experimental result on the UCA1 dataset

The number of segments used for the fixed-size segmentation strategy was selected

similarly for the UCA1 dataset. Both CELOE and ParCEL were not over-fitting on

73

4. Adaptive Numerical Data Segmentation

Table 4.4: Predictive accuracy of CELOE and ParCEL on the UCA1 dataset for the
two segmentation strategies (means ± standard deviations of 10 folds). The statistical
significance test results are presented using the same conventions as in Table 4.2. The
actual learning times are reported when the learning algorithms found accurate solution
on training set, prefixed by @.

Algorithm
Learning
time (s)

Segmentation size

6 12 37 Adaptive

CELOE
180 76.208

±11.677
88.167

±10.075
94.042
±4.915

94.042
±4.915

300 76.208
±11.677

88.167
±10.075

94.042
±4.915

94.042
±4.915

ParCEL
180 80.03

±8.825
94.708
±5.249

100
±0

100
±0

300 80.03
±8.825

94.708
±5.249

@63.458
±9.434

@29.75
±5.77

this dataset. Therefore, only the predictive accuracy is presented. The experimental

result of CELOE and ParCEL on this dateset are shown in Table 4.4.

Similar to the ILDP dataset, the predictive accuracy increased when the number

of segments was increased. The predictive accuracy of the fixed-size segmentation

strategy was equal to the adaptive strategy when the largest segmentation was used,

i.e. all values were used for the refinement. On this dataset, as CELOE did not found

an accurate solution and it was terminated by timeout, the learning times between

the two strategies could not be compared. It is worth noting that the length of all

definitions produced by CELOE in this experiment were equal (9 axioms). However,

they have different accuracies.

ParCEL also got higher accuracy when the higher number of segments was used.

It found accurate definitions with the adaptive segmentation and the largest fixed-size

segmentation strategies. In this case, the learning time of ParCEL using the adaptive

segmentation strategy was significantly smaller than the finest fixed-size segmentation.

The t-test at 95% confidence shows that the predictive accuracies of CELOE achieved

with the adaptive strategy were statistically significantly higher than the predictive ac-

curacy CELOE achieved with 6 segments. For ParCEL, the result produced with the

adaptive strategy was statistically significantly higher than those produced with the

6 and 12 segments size. When ParCEL got 100% accuracy with both strategies, the

74

4. Adaptive Numerical Data Segmentation

learning time with the adaptive strategy was statistically significantly smaller than

those resulted by the largest fixed-size segmentation strategy.

4.6 Conclusion

The approach to segmentation of the numeric data property produced promising results.

It helped to reduce the number of values used in refinement of numeric data properties

significantly. More importantly, the experimental results showed that decrease of the

refinement values did not lessen the predictive accuracy. Moreover, it increased the

predictive accuracy for some learning problems by avoid missing of any necessary values

in the refinements.

75

4. Adaptive Numerical Data Segmentation

76

Chapter 5

Parallel Class Expression

Learning

This chapter proposes a Parallel Class Expression Learning approach to learn-

ing Web Ontology Language (OWL) class expressions. We first describe the

class learning problem and some existing approaches in the literature. Then,

we present an approach to class expression learning that combines the top-

down approach with a reduction strategy, and uses parallelisation to improve

the learning speed. Finally, evaluations of our proposed approach, together

with comparisons with other algorithms, are presented.

5.1 Parallelisation for Class Expression Learning

Parallelisation is a popular technique to speed up the processing of an application. It

has been used in many application domains, particularly following the introduction

of multi-core processors, as are currently used in most computer systems. In logic

programming, this technique is used to create parallel logic programming or parallel

inference algorithms such as [28, 53, 84, 129]. In inductive logic programming, the

root of description logic learning, some parallel inductive logic learning algorithms

have also been proposed [37, 49, 93, 106]. However, in description logics, particularly

77

5. Parallel Class Expression Learning

in Web Ontology Language, parallelisation is being mainly used only in the OWL

inference algorithms [122]. In description logic learning, to the best of our knowledge,

there is no parallel description logic learner. Therefore, the main objective of this

chapter is to propose a Parallel Class Expression Learning algorithm that employs

parallelisation to utilise the power of multi-core computers or that can be developed

for cloud computing platforms such as Amazon EC2. The name Class Expression

Learning is used instead of Description Logic Learning to focus on the Web Ontology

Language (OWL) representation languages, related techniques and applications.

Class expression learning

As defined in Definition 2.16, the description logic learning problem is to find a concept

(class expression) that covers a set of examples. Given a knowledge base K and sets of

positive E+ and negative E− examples such that E+∩E− = ∅, description logic learning

aims to find a class expression C such that K |= C(e) for all e ∈ E+ and K � C(e) for

all e ∈ E−.

There are two basic approaches to class expression logic learning. The top-down

approach is preferred as it can utilise the sub-concept (subclass) semantics provided

within the knowledge base for performing specialisation in its downward refinement

operator [6, 43, 66]. Most existing description logic learning algorithms use this ap-

proach, as reported in the literature, such as [43, 45, 66, 85]. On the other hand, the

bottom-up approach cannot inherit the concept hierarchy structure of the knowledge

base. The upward refinement operators used in this approach mainly use the most

specific concepts (MSC) calculation based on the set of positive examples [31, 72]. The

most specific concept of an individual is the most specific class expression such that

the individual is an instance of that expression.

Empirically, the top-down learning algorithms tend to produce short and readable

definitions. Contrarily, bottom-up learning algorithms tend to generate (unnecessarily)

long concepts. In addition, MSC have only been used with FL and FLE languages [39].

MSC for more expressive languages have not yet been investigated and hence they can

only be approximated [3, 34, 75]. Therefore, the top-down approach is preferred to the

bottom-up approach in description logic learning. However, this approach does not suit

78

5. Parallel Class Expression Learning

well for learning long definitions.

A combination of the top-down and bottom-up approaches was proposed in DL-

FOIL [45]. In this approach, top-down (specialisation) is the main task in the learning

process to find definitions for positive examples and disjunction is used to generalise

the set of definitions. A combination of downward refinement and the MSC operator

for specialisation and disjunction for generalisation is introduced in YinYang [66]. A

major advantage of this approach over the top-down approach is that it can deal well

with complex learning problems, i.e. learning problems that need a long definition.

However, the experimental results show that YinYang still produces unnecessarily long

concepts [80]. Similarly, the current greedy partial solutions disjunction strategy of

DL-FOIL is not an optimal strategy for short definitions.

Amongst the existing class expression learning approaches, the combination of the

top-down and bottom-up approaches is the most suitable for parallelisation as the par-

tial solutions can be learnt simultaneously. Therefore, a three-step class expression

learning approach, which is based on the above approach, is proposed to benefit par-

allelisation for class expression learning and address the problem of unnecessarily long

learnt definitions. In this approach, the generalisation is separated from the speciali-

sation by a reduction step. It allows the creation of the final definition according to

the specific requirements, such as short final definition and small number of definitions

involved in the final definition.

5.2 Description of Our Method

In this section, a Parallel Class Expression Learning algorithm (ParCEL) is proposed

that combines both the top-down and bottom-up approaches to handle learning prob-

lems that require long definitions. In addition, a reduction operation between the

top-down and bottom-up steps is also introduced to reduce the definition length. This

operation can be customised to achieve other criteria instead of short definition length

such as a smaller number of partial definitions (see Definition 5.2).

The learning process is separated into three steps: specialisation, reduction and

generalisation (aggregation). First, the specialisation is used to generate correct, but

79

5. Parallel Class Expression Learning

not necessarily complete, class expressions (i.e. each expression must cover some posi-

tive examples and no negative ones). Then, the class expressions produced in the first

step are reduced to select the best candidates for building the final definition. Finally,

the best candidates are aggregated to form the final definition. In this approach, the

aggregation simply creates the disjunction of the best candidates.

Before describing the approach in detail, we introduce some related concepts.

Definition 5.1 (Irrelevant concept). Given a description logic learning problem

LP = 〈K, (E+,E−)〉 as defined in Definition 2.16, a concept C is called irrelevant if

K � C(e) for all e ∈ E+, i.e. it covers none of the positive examples. �

Definition 5.2 (Partial definition). Given a learning problem LP = 〈K, (E+,E−)〉,
a concept is called a partial definition if it is correct (i.e. covers no negative example)

and not irrelevant (covers some positive examples) with respect to LP. It is also called

the definition of the covered positive examples. �

Therefore, the first step of the approach aims to find partial definitions for the

positive examples. Formally, given a learning problem LP = 〈K, (E+,E−)〉, this step is

to find a set of partial definitions P such that
⋃

pi∈P cover(K, pi,E
+) = E+. The finding

of partial definitions uses the top-down approach, which starts from the most general

concept TOP. Then, the downward refinement operator proposed by Lehmann et al.

[82] is adopted to specialise the concepts until all positive examples are covered by the

partial definitions. Figure 5.1 demonstrates the specialisation process. The expressions

are organised as a tree of expressions called the search tree. The children of a node are

the refinement result of their parent node. Therefore, the learning problem is a search

for partial definitions in a search tree.

The downward refinement operator used in CELOE [82] is modified to make it

suitable for our approach. The top-down step of our algorithm aims to find the partial

definitions instead of a complete definition. In addition, since the disjunction is used

in the generalisation step to combine the partial definitions, it is not necessary to

use disjunction in the top-down step. The downward refinement operator used in our

approach can now be defined:

Definition 5.3 (ParCEL downward refinement operator ρ¬�). Given an expres-

80

5. Parallel Class Expression Learning

Figure 5.1: The specialisation process. ρ is a downward refinement operator. Ci are class
expressions. The children of a node are the refinement results of that node.

(TOP)

(C1)

TOP

C1 C3 C4

C11 C12 C41

(C4)

C2

sion C, a set of concept names NC and a set of property (role) names NR in which NRO

is a set of object properties and NRD is a set of data properties, then ρ¬� is defined as

follows:

1. if C ∈ NC (C is an atomic concept):

ρ¬�(C) = {C ′ | C ′ � C and �C ′′ ∈ NC : C ′ � C ′′ � C} ∪ {C � C ′ | C ′ ∈ ρ¬�()}
(if C is an atomic concept, it is specialised by using its proper sub-concepts or

creating a conjunction with the refinements of the TOP concept).

2. if C = 	 (C is the TOP concept):

ρ¬�(C) = {C ′ | C ′ ∈ NC , �C ′′ ∈ NC : C ′ � C ′′ � C}
∪ {¬C ′ | C ′ ∈ NC , �C ′′ ∈ NC : C ′′ � C ′}
∪ {∃r.	 | r ∈ NRO} ∪ {∀r.	 | r ∈ NRO}
∪ {∃r.V | r ∈ NRD, V ∈ mgdr(r)} ∪ {∀r.V | r ∈ NRD, V ∈ mgdr(r)}

(if C is the TOP concept, specialise it by using its proper sub-concepts or property

restrictions)

3. if C = ¬D,D ∈ NC (C is a negation of an atomic concept):

ρ¬�(C) = {¬D′ | D � D′ and �D′′ : D � D′′ � D′} ∪ {C � C ′ | C ′ ∈ ρ¬�()}
(if C is a negation of a concept, specialise it by the upward refinement of the

negated concept)

4. if (C = C1 � ... � Cn (C is a conjunctive of descriptions):

ρ¬�(C) = {C ′ | C ′ ∈ ρ¬�(Ci), 1 ≤ i ≤ n}
(if C is a conjunction, it is specialised by refinements of its conjuncts)

81

5. Parallel Class Expression Learning

5. if C = ∀r.D, r ∈ NRO: ρ
¬�(C) = {∀r.D′ | D′ ∈ ρ�(D)}

(if C is a ‘for all’ object property restriction, it is specialised by refinements of its

range)

6. if C = ∃r.D, r ∈ NRO: ρ
¬�(C) = {∃r.D′ | D′ ∈ ρ¬�(D)}

(this rule is for the ‘exists’ object property restriction, similar to the 5th rule.)

7. if C = ∀r.V, r ∈ NRD: ρ
¬�(C) = {∀r.V ′ | V ′ = next(r, V)}

(if C is ‘for all’ datatype property restriction, it is specialised by using the next

value in its segments (see Section 4.3))

8. if C = ∃r.V, r ∈ NRD: ρ
¬�(C) = {∃r.V ′ | V ′ = next(r, V)}

(similar to the 7th rule, applied for ‘exists’ datatype property restriction) �

where mgdr(r) is the most general data range value for the property r and next(r,

V) is the next value of V in r. Here, the scope of the refinement is restricted to the

numeric data properties and they are defined as:

mgdr(r) = {≥ min(AdaptSegments(r)),≤ max(AdaptSegments(r))}

next(r, V) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≥ u′ | u′ ∈ AdaptSegments(r) and u′ > u and

�u′′ ∈ AdaptSegments(r) : u′ > u′′ > u, if V ∈ ≥ u

≤ u′ | u′ ∈ AdaptSegments(r) and u′ < u and

�u′′ ∈ AdaptSegments(r) : u′ < u′′ < u, if V ∈ ≤ u

where AdaptSegments(r) is the set of segmented values for the property r. A method

for computation of this set is described in Section 4.3 and Algorithm 4.2.

The selection of nodes (expressions) in the search tree is controlled by the score

of the nodes that are calculated by a search heuristic. In addition, parallelisation is

employed to find the partial definitions in parallel. In particular, multiple branches

within the tree can be traversed by multiple workers to find the partial definitions.

A central reducer monitors the finding of the partial definitions of the workers until

the partial definitions cover all positive examples. Then, it aggregates the partial

definitions to the overall definition. The reducer also has the responsibility of removing

redundant partial definitions that cover overlapping sets of positive examples. The

parallel exploration of the search tree by two workers is demonstrated in Figure 5.2.

82

5. Parallel Class Expression Learning

Figure 5.2: Parallel exploration of the search tree by two workers. Double-lined nodes
are partial definitions. Dotted lines from partial definitions to positive examples represent
coverage relation, e.g. expression C3 covers {p1, p3, p4}. C2 has not been refined as it is
assumed to have lower score than other nodes.

(TOP)

(C1)

TOP

C1 C4

C11 C12

(C3)

worker 1

worker 1

worker 1 worker 2

p1

p2

p3

p4

p5

p6

.

.

.

worker 2

C3

. . .

. . .
C41

C2

positive examples

This approach follows the general idea of the map-reduce architecture [15, 26, 36]

and therefore it lends itself to parallelisation using either multiple threads that can

take advantage of multi-core processors, or it may be developed for a cloud computing

platform such as Amazon EC2 in the future. It also has an advantage that the resulting

system shows anytime characteristic [144], which mean that: i) it can return a correct

solution even if it is interrupted before a complete solution is computed, and ii) the

solution is expected to improve (i.e. the completeness is higher) with increasing runtime

of the system.

5.3 The Algorithms

The parallelisation architecture of the learning algorithm is inspired by the map-reduce

framework. An informal illustration of the algorithm is given in Figure 5.3. It shows

the interaction between the two part of the algorithm: i) the workers that receive the

assigned class expression from the reducer and then produce the refinements of the

class expression and find the partial definitions within the refinement result, and ii)

the reducer that monitors the workers and then compacts and aggregates the partial

definitions when the learning is finished.

The coordination is done using an agenda, which contains the class expression to

83

5. Parallel Class Expression Learning

Figure 5.3: Reducer-Worker interaction.

worker pool reducer
start

worker

start

refine

submit task

receive
partial

definitions

complete?

shutdown
workers pool

reduce
partial definitions

evaluate

irrelevant?

correct? agenda

end

poll

no

discard
description

yes

add new
expression

no

yes

return partial definition
yes

no

class expression

initialise
workers pool &

agenda

be refined (search tree), and ordering of the expressions within the agenda is controlled

by the expansion scores computed by an expansion heuristic. The expansion score of a

class expression is computed as follows:

Definition 5.4 (ParCEL class expression score). Let LP = 〈K, (E+,E−)〉 be a

learning problem as defined in Definition 2.16, C be a class expression and C ′ be

parent expression of C. Then, score of C is computed by the following formulae:

score(C) = correctness(C,LP)

+ α× gain(C,LP) + β × completeness(C,LP)− γ × length(C,LP)

(α ≥ 0, β ≥ 0, γ ≥ 0)

where gain(C,LP) = accuracy(C,LP)− accuracy(C ′, LP) �

The scoring idea is adopted from [82]. However, the factors involving in the scor-

ing function and their weights are redefined accordingly to our learning strategy. The

84

5. Parallel Class Expression Learning

heuristic is mainly based on correctness of the class expression ([82] is based on ac-

curacy). Then, a penalty is applied for long definitions to avoid infinite deep search

because the refinement operator used in our learning algorithm is infinite. On the other

hand, a level of bonus for accuracy gained by an expression is also applied. The intu-

ition behind the bonus for accuracy gained by expressions is that those expressions are

more likely to be close to the solution. In addition, a bonus is given for the completeness

of expressions.

We chose α = 0.2, β = 0.01, γ = 0.05. The choice of these values is based on experi-

mental investigations in [82]. These values can be adjusted based on the characteristics

of the learning problem. For instance, we can decrease the penalty level for learning

problems that have been reported to have long definitions so that the search will give

bias towards deep search.

Our algorithm can now be defined in two parts. The computationally heavy part

is done by the multiple workers : this is the refinement and the evaluation of class

expressions. In particular, the evaluation of (complex) concepts (i.e. checking whether

a given example is an instance of a concept) requires an ontology reasoner. By default,

Pellet [107] is used for this purpose.

The reducer creates a worker pool, which manages a number of workers, assigns new

tasks (class expressions for refinement and evaluation) to the worker pool, and updates

the agenda and the set of cumulative partial definitions based on the refinement result

returned from workers until the completeness of the combined partial definitions is

sufficient. Then the reducer tries to reduce the number of partial definitions in order to

remove redundancies using a reduction function Reduce (see Algorithm 5.3). While

the reducer computes sets of concepts, these sets can be easily aggregated into a single

concept using disjunction. Before introducing the complete learning problem, a function

cover to compute a set of instances covered by a set of class expressions is introduced

as below.

Definition 5.5 (Cover function). Given a knowledge base K, a set of individuals E

and a set of class expressions X, then function cover is defined as follows:

cover(K,X,E) = {e ∈ E | ∃C ∈ X such that K |= C(e)} �

85

5. Parallel Class Expression Learning

The complete algorithm of the Reducer is given in Algorithm 5.1.

Algorithm 5.1: Reducer Algorithm

Input: a learning problem LP = 〈K, (E+,E−)〉 as defined in Definition 2.16, and
a noise value ε ∈ [0, 1] (0 means no noise).

Output: a set of partial definitions X s.t. |cover(K,X,E+)| ≥ (|E+| × (1− ε))
and cover(K,X,E−) = ∅ (empty set).

1 begin
2 initialise an agenda = {	} /* 	: the TOP concept */

3 cum pdefs = ∅ /* cumulative partial definitions */

4 cum upos = E+ /* cumulative uncovered positive examples */

5 initialise a worker pool

6 while |cum upos| > (|E+| × ε) do
7 execute the following tasks in parallel:

8 begin [task: submit tasks to the worker pool]
9 if worker pool is not full then

10 select the highest score expression C in agenda
11 submit new task (C,E+,E−) to worker pool

12 begin [task: receive result from workers]
13 wait for sets of (expressions, pdefs) from workers
14 agenda = agenda ∪ expressions
15 cum pdefs = cum pdefs ∪ pdefs

/* remove positive examples covered by pdefs from cum upos */

16 cum upos = cum upos \ cover(K, pdefs, E+)

17 return Reduce(cum pdefs) /* cf. Algorithm 5.3 */

The worker algorithm refines an expression and evaluates the refinement results. It

will first check whether concepts are irrelevant. If this is the case, the concepts can be

safely removed from the computation as no partial definition can be computed through

specialisation. If an expression is a partial definition (i.e., correct and not irrelevant),

it is added to the partial definitions set. If a concept is not irrelevant, but also not

correct (i.e., if it covers some positive and some negative examples), it is added to the

set of new expressions. Then, the worker returns these sets back to the reducer. The

complete algorithm for workers is defined in Algorithm 5.2.

Note that the concepts that have been refined can be scheduled for further refine-

86

5. Parallel Class Expression Learning

ment. This is necessary as each refinement step computes only a finite (and usually

small) number of new concepts, usually constrained by a complexity constraint. For

example, a concept of a given size N could first be refined to compute new concepts

of a length N + 1, and later it could be revisited to compute more concepts of length

N + 2, etc. This technique is used in the original DL-Learner and discussed in detail

in [82]. When implementing workers, an additional redundancy check takes place to

make sure that the same concept computed from different branches in the search tree

is not added twice to the agenda.

Algorithm 5.2: Worker Algorithm

Input: a class expression C, a set of positive examples E+ and a set of negative
examples E−

Output: a set of partial definitions pdefs ⊆ ρ¬�(C); a set of new expressions
∈ ρ¬�(C) such that ∀D ∈ expressions : D is not irrelevant and
D /∈ pdefs; in which ρ¬� is the downward refinement operator defined in
Definition 5.3.

1 begin
2 refinements = ρ¬�(C) /* refine C */

3 expressions = ∅ /* set of new expressions */

4 pdefs = ∅ /* set of partial definitions */

5 foreach exp ∈ refinements do
6 evaluate(exp) /* calculate correctness and completeness of exp */

7 if exp is not irrelevant then
8 if exp is correct then
9 pdefs = pdefs ∪ exp

10 else
11 expressions = expressions ∪ exp

12 return (expressions, pdefs)

For the actual reduction step, we have investigated three simple algorithms:

• GMPC (greedy minimise partial definition count)

• GMPL (greedy minimise partial definition length)

• GOLR (greedy online algorithm - first in first out)

As the names suggest, they are all greedy optimisation algorithms that are based on

87

5. Parallel Class Expression Learning

sorting the partial definitions. Once the partial definitions are sorted, a new solution

set (called the reduction set) is created and solutions are added to this set in descending

order. A definition is added only if it covers at least one positive example not yet covered

by any other solution in the reduction set. A formal generic reduction algorithm based

on a sort function is defined in Algorithm 5.3.

Different sort criteria have been used, resulting in the different algorithms. In

GMPC, partial definitions are sorted according to the number of positive examples

they cover, preferring definitions that cover more positive examples. If two definitions

cover the same number of positive examples, the lexicographical order of the respective

string representations is used as a tiebreaker. This is important to make the results

repeatable. Otherwise, the order that is used when iterating over definitions could

depend on internal system hash codes, which the application does not control.

In GMPL, definitions are sorted according to their expression lengths, preferring

definitions with a shorter length. If two definitions have the same expression length,

we again use the lexicographical order.

In GOLR, we use time stamps assigned to definitions when they are added to the

solutions, preferring definitions that were added earlier. While the other two heuristics

have to be run in batch mode after a complete set of definitions has been computed, this

algorithm can be employed just-in-time: the reduction can take place whenever a new

definition is found and added. This algorithm is therefore very space efficient compared

to the other two. On the other hand, how timestamps are assigned in an application

may depend on thread scheduling. This again cannot be controlled completely by the

application, causing variations in the results between runs.

5.4 Evaluation Result

To evaluate the proposed algorithms, three experiments were conducted using the eval-

uation methodology described in Chapter 3. For the experiments, we used a Linux

server with a 2 x Intel Quad-core Xeon E5440 @2.83GHz processor, 32GB memory

and the Redhat 4.1.2 (Linux version 2.6.18) operating system with a JRE 1.6.0 (64-bit)

Java Virtual Machine (JVM). The default heap size of the JMV in our experiments was

88

5. Parallel Class Expression Learning

Algorithm 5.3: Generic greedy reduction algorithm based on sorting

Input: a set of class expression D, a Sort function that provides a strategy for
sorting a set of class expressions, and a learning problem 〈K, (E+,E−)〉.

Output: a set of class expressions D′ ⊆ D such that⋃
d∈D cover(K, d,E+) =

⋃
d∈D′ cover(K, d,E+) = E+, in which function

cover is defied in Definition 3.1.
1 begin
2 D′ = ∅ (empty set)
3 cpos = ∅ /* covered positive examples */

4 while D is not empty and cpos ⊂ E+ do
5 Sort(D) /* sort class expressions in D */

6 d = poll(D) /* remove and assign the top element in D to d */

7 if cover(K, d,E+) � cpos then
8 D′ = D′ ∪ d
9 cpos = cpos ∪ cover(K, d,E+)

10 return D′

8GB. The computer used in the experiments has 8 cores. The number of workers used

for ParCEL is 6 workers as we wanted to reserve 1 core for the learner (main thread)

and 1 core for the system tasks.

The first experiment aims to investigate the predictive accuracy and learning time

of our learning algorithm and compare the experimental results with CELOE, our

selected comparison algorithm (Section 5.4.1). The second experiment observes the

affect of parallelisation on the learning process (Section 5.4.2). The third experiment is

to demonstrate the effect of the reduction strategy on the length of the learnt definitions

(Section 5.4.3).

5.4.1 Experiment 1 - Comparison between ParCEL and CELOE

In this experiment, both CELOE and ParCEL were executed on the same system for

the selected datasets and the predictive accuracy, learning time and description length

produced by these algorithms on each dataset were then measured. Timeouts were

also assigned for these algorithms based on the strategy described in Chapter 3. The

length of definition reported is the length of the best expression learnt so far. Table

5.1 shows a summary of the experimental results. In this table, the definition length of

89

5. Parallel Class Expression Learning

ParCEL is reported by the number of partial definitions and the average length of the

partial definitions. Therefore, the average length of ParCEL definitions are the product

of those numbers. The reduction mechanism used in our experiments is GMPC (see

Section 5.2).

Table 5.1: Experiment result summary (means ± standard deviations of 10 folds). Bold
values are statistically significantly better than the unformatted values in the statistical
significance test at the 95% confidence level. There was no significance test for the definition
length.

Problem Learning time (s) Accuracy (%)
(Avg. partial)∗

def. length
No. of

partial

def.

CELOE ParCEL CELOE ParCEL CELOE ParCEL ParCEL

Moral 0.15

±0.03

0.02

±0.01

100.00

±0.00

100.00

±0.00

3.00

±0.00

1.52

±0.05

2.10

±0.32

Forte 2.60

±1.64

0.23

±0.17

98.86

±2.27

100.00

±0.00

13.50

±1.00

7.75

±0.05

2.00

±0.00

Poker-

Straight

0.36

±0.71

0.59

±0.08

100.00

±0.00

96.43

±4.12

11.70

±0.68

10.90

±1.31

1.70

±0.68

Aunt 30.01

±0.02

0.26

±0.15

96.5

±0.00

100.00

±0.00

19.00

±0.00

8.80

±0.48

2.00

±0.00

Brother 0.19

±0.16

0.03

±0.02

100.00

±0.00

100.00

±0.00

6.00

±0.00

6.00

±1.83

1.00

±0.00

Cousin 3.79

±0.54

0.54

±0.20

99.29

±0.00

99.29

±2.26

23.40

±2.59

8.50

±0.00

2.00

±0.00

Daughter 0.2

±0.02

0.03

±0.03

100.00

±0.00

100.00

±0.00

5.00

±0.00

5.25

±1.09

1.10

±0.32

Father 0.02

±0.10

0.03

±0.03

100.00

±0.00

100.00

±0.00

5.00

±0.00

5.50

±0.53

1.00

±0.00

Grandson 0.08

±0.07

0.19

±0.79

100.00

±0.00

100.00

±0.00

7.25

±0.50

7.25

±0.50

1.00

±0.00

Uncle 34.13

±14.94

0.29

±0.18

95.83

±6.80

98.75

±3.95

19.00

±14.94

8.40

±0.38

3.00

±0.00

Continued on next page

90

5. Parallel Class Expression Learning

Table 5.1 – continued

Problem Learning time (s) Accuracy (%)
(Avg. partial)∗

def. length
No. of

partial

def.

CELOE ParCEL CELOE ParCEL CELOE ParCEL ParCEL

Carcino-

Genesis

int.∗∗

@2000s

int.∗∗

@2000s

53.73

±4.79

56.05

±4.30

4.80

±0.42

55.87

±9.52

72.70

±3.43

UCA1 int.∗∗

@2000s

29.75

±5.77

91.42

±7.01

100.00

±0.00

9.00

±0.00

12.75

±0.00

4.00

±0.00

MUBus-1 int.∗∗

@600s

395.33

±11.82

53.61

±2.45

99.63

±0.31

12.70

±0.48

16.99

±0.42

15.00

±1.56

MUBus-2 int.∗∗

@600s

int.∗∗

@600s

14.35

±1.10

97.91

±0.50

2.00

±0.00

16.07

±0.00

24.80

±3.52

MUBus-3 int.∗∗

@900s

int.∗∗

@900s

11.34

±0.06

95.85

±0.31

2.00

±0.00

14.64

±0.13

25.40

±1.58

ILPD int.∗∗

@120s

int.∗∗

@120s

76.02

±2.61

71.12

±5.36

5.80

±1.69

8.34

±0.12

42.80

±1.69

Note: ∗: For ParCEL. The average definition length of ParCEL is the product

of this value and the number of partial definitions.

∗∗: Interrupted

In general, there is no statistically significantly different between CELOE and Par-

CEL on small datasets with simple definitions such as Father and Grandson in the

Family dataset. This can be attributed to the more complex runtime architecture of

ParCEL that required additional overhead for thread creation and synchronisation.

However, when either the data or the queries became more complex, ParCEL outper-

formed CELOE. This was apparent in the Family dataset: CELOE was much better

at answering simple queries that require less reasoning, while ParCEL performed bet-

ter on complex queries on derived relationships. There were two reasons for this: (i)

ParCEL obviously better utilises the multi-core processor(s) due to its parallel architec-

ture, and (ii) different ParCEL workers explore different branches of the search tree at

the same time, while CELOE may spend longer exploring branches that in the end do

not yield results, (iii) ParCEL offers a trade-off between the readability of the learning

91

5. Parallel Class Expression Learning

result and the accuracy and learning time using the combination of specialisation and

generalisation.

Amongst the datasets, the UCA1 dataset (see Section 3.3.3) was chosen to inves-

tigate the capability of the evaluation algorithms in learning long definitions. This is

a noiseless dataset with expected definition length from 30 to more than 50 axioms.

For this dataset, ParCEL outperformed CELOE on both learning time and accuracy.

Although the length of the definition produced by ParCEL was longer than CELOE,

it was readable and described the scenario accurately (positive examples’ definition).

For example, the learnt definition produced by ParCEL for the normal showering was

the disjunction of the following partial definitions:

1. activityHasDuration SOME (hasDurationValue >= 4.5 AND

hasDurationValue <= 15.5)

2. activityHasDuration SOME (hasDurationValue >= 15.5 AND

hasDurationValue <= 19.5) AND activityHasStarttime SOME Spring

3. activityHasDuration SOME (hasDurationValue >= 15.5 AND <= 19.5) AND

activityHasStarttime SOME Summer

4. activityHasStarttime SOME Autumn AND activityHasDuration SOME

(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5)

while CELOE can only generate a definition with length 9 as follows:

activityHasDuration SOME (hasDurationValue >= 4.5 AND

hasDurationValue <= 19.5)

which does not describe the scenario accurately.

One of the most difficult learning problems in the experiment was the CarcinoGen-

esis dataset. Learning results for this dataset reported in [45, 142] shown that CELOE

gave the best accuracy in comparison with other learners with a certain learning con-

figuration. In the experiment, neither CELOE nor ParCEL could find an accurate

definition on the training dataset before they ran out of memory. CELOE ran out of

memory in around 2,100 seconds and ParCEL was be able to run for approximately

92

5. Parallel Class Expression Learning

15,800 seconds with the same JVM heap size. The predictive accuracy of CELOE and

ParCEL on this dataset with 2000s timeout were 54.62% ± 2.71% for CELOE and

55.60% ± 9.52% respectively. The difference between these results was not statistically

significant. The accuracies in Table 5.1 were obtained at 2,000 seconds when CELOE

was approaching the out of memory exception. Although ParCEL was be able to run for

more than 15,800 seconds, we only let it run the same amount of time as CELOE. Our

experiments demonstrated that the accuracy did not improve significantly for longer

runs. Note that this result was generated by the default learning configuration and it

might be different for the refined learning configuration. For example, the predictive

accuracy can be improved by allowing a level of noise in the training dataset. How-

ever, default learning configurations were used for all algorithms and datasets in the

experiments for fair comparisons.

Another noisy dataset is ILPD. For this dataset, CELOE has better predictive accu-

racy than ParCEL. However, this is an unbalanced dataset with the number of positive

examples being more than two times bigger than the number of negative examples:

323 positive examples and 155 negative examples. Therefore, there may be an inflated

performance estimate for CELOE, which favours short definitions. The balanced accu-

racy is reported to work better in this case [87, 121, 134] to avoid inflated performance

estimation. The balanced predictive accuracy is defined as follows:

Definition 5.6 (Balanced accuracy). Given a learning problem LP = 〈K, (E+,E−)〉,
C is an expression, then:

balanced accuracy(C, LP) =
1

2
× (completeness(C,LP) + correctness(C,LP))

=
1

2
×

(|cover(K, C,E+)|
|E+| +

|E− \ cover(K, C,E−)|
|E−|

)
�

Using the above calculation, the balanced predictive accuracy of CELOE was 64.62%

± 4.83 and that of ParCEL was 70.94 ± 10.87. With this result, CELOE is not statis-

tically significantly more accurate than ParCEL on this dataset.

MUBus-1, MUBus-2 and MUBus-3 are also unbalanced datasets. However, the

number of negative examples is larger than the number of positive examples in these

93

5. Parallel Class Expression Learning

Table 5.2: Balanced accuracy of CELOE and ParCEL on unbalanced datasets (means ±
standard deviations of 10 folds). Bold and highlighted values are statistically significantly
better than the unformatted values in the statistical significance test at 95% confidence.

Dataset CELOE ParCEL

MUBus-1 71.12 ± 0.65 99.68 ±0.60

MUBus-2 52.09 ± 0.06 91.86 ±3.02

MUBus-3 52.18 ± 0.33 73.07 ±1.91

ILDP 64.62 ± 4.83 70.94 ± 10.87

datasets. The balanced predictive accuracy of ParCEL and CELOE on these datasets

were also computed to get a fairer comparison. Originally, predictive accuracy of Par-

CEL on these datasets were much higher than CELOE, e.g. 99.63% ± 0.31% in com-

parison with 53.61% ± 2.45% on MUBus-1 dataset, or 95.85% ± 0.31% in comparison

with 11.34% ± 0.60% on MUBus-3. Using the calculation in Definition 5.6, the bal-

anced accuracies of ParCEL and CELOE on these datasets are given in Table 5.2.

The balanced predictive accuracy of ParCEL on these datasets was still statistically

significantly higher than that of CELOE.

The t-test was used to check the statistical significance of the difference between

learning times of the two algorithms. There were 12 datasets where both the algo-

rithms finished (i.e. without timeout). In those 12 datasets, the t-test rejects the null

hypothesis of 9 of them at the 99% confidence level and one of them at 95% confidence

level. ParCEL had small learning time in all these 9 datasets. Three datasets where

the learning times of CELOE and ParCEL were not statistically significantly different

are Poker-Straight, Father and Grandson, which are the simple datasets with short

definition lengths.

The t-test was also used to check the statistical significant difference of the predictive

accuracy in the experimental results. CELOE and ParCEL achieved 100% predictive

accuracy on 5 datasets. Therefore, they were not tested. In the remaining 11 datasets,

CELOE was statistically significantly more accurate than ParCEL in 1 dataset, ILPD,

and ParCEL was statistically significantly more accurate than CELOE in 5 datasets.

However, CELOE was not statistically significantly more accurate than ParCEL on

94

5. Parallel Class Expression Learning

Table 5.3: Comparison between CELOE and ParCEL learning time with one worker
(means ± standard deviations of 10 folds). Bold values are statistically significantly faster
than the unformatted values in the statistical significance test at the 95% confidence level.
Highlights denote the changes in the t-test results in comparison with the results presented
in Table 5.1.

Problem CELOE ParCEL

Moral 0.15 ± 0.03 0.02 ± 0.03

Forte 2.60 ± 1.64 0.21 ± 0.15

Poker-Straight 0.36 ± 0.71 1.72 ± 0.27

Aunt 30.01 ± 0.02 2.27 ± 0.31

Brother 0.19 ± 0.16 0.07 ± 0.09

Cousin 3.79 ± 0.54 2.67 ± 0.32

Daughter 0.2 ± 0.02 0.08 ± 0.08

Father 0.02 ± 0.10 0.08 ± 0.09

Grandson 0.08 ± 0.07 0.50 ± 0.12

Uncle 34.13 ± 14.94 2.04 ± 0.34

UCA1 interrupted @2000s 59.18 ± 21.61

MUBus-1 interrupted @3000s 2,003.77 ± 65.84

the ILDP dataset when the balanced accuracy was used. Using the balanced accuracy

computation, ParCEL was still statistically significantly more accurate than CELOE

on 5 datasets.

Although ParCEL aims to take advantage of multi-core processors, a further ex-

periment was also conducted to measure the learning time of ParCEL with one worker

to compare with the learning time of CELOE. The experimental results are presented

in Table 5.3. The learning problems where both ParCEL and CELOE timed out are

not shown. There was only one change in the t-test results: CELOE was statistically

significantly faster than ParCEL on the Poker-Straight dataset while it was not in the

previous experiment where ParCEL ran with 6 workers (in Table 5.1). In this experi-

ment, as ParCEL took more than 2000 seconds to learn the MUBus-1 dataset, CELOE

was also reran on this dataset with 3000s timeout, but it still could not get an accurate

solution.

95

5. Parallel Class Expression Learning

Figure 5.4: Accuracy against learning time of CELOE and ParCEL on the CarcinoGenesis
dataset using different number of workers.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
8.

4
16

.8
25

.2
33

.6 42
50

.4
58

.8
67

.2
75

.6 84
92

.4
10

0.
8

10
9.

2
11

7.
6

12
6

13
4.

4
14

2.
8

15
1.

2
15

9.
6

16
8

17
6.

4
18

4.
8

19
3.

2
20

1.
6

21
0

21
8.

4
22

6.
8

23
5.

2
24

3.
6

25
2

26
0.

4
26

8.
8

27
7.

2
28

5.
6

29
4

Ac
cu

ra
cy

Time (s)

CELOE 1 worker 4 workers 6 workers

5.4.2 Experiment 2 - Effect of parallelisation on learning speed

This experiment is to demonstrate the effect of parallelisation on the learning speed.

The CacinoGenesis and UCA1 datasets were used for this experiment. Various number

of workers (1, 2, 4, 6, 8, 10 and 12) were chosen for ParCEL to assess the speed-up of

this algorithm. In addition, a monitoring thread was also used to investigate the level

of approximation that the learners can achieve by time. A background watcher took

frequent probes from learner thread(s) and recorded them. This thread represented

some overhead, so the net computation times were in fact slightly less than the values

given below.

Figures 5.4 and 5.5 show the level of approximation that the learners can achieve

by two algorithms on the CarcinoGenesis and UCA1 datasets respectively. In the

experimental result of the CarcinoGenesis dataset (Figure 5.4), the slightly odd values

on the time-axis were caused by the fact that they were taken from the timestamps

when the monitoring thread returns data. CELOE computed a solution of about 55%

accuracy very quickly (the first probe already returns this value), but then it stayed

flat. On the other hand, ParCEL almost reached maximum accuracy, i.e., a level of

completeness of more than 95%. The figure illustrates the impact of the number of

threads: adding more threads can speed up the computation.

For the UCA1 dataset (Figure 5.5), CELOE could not compute an accurate result

96

5. Parallel Class Expression Learning

Figure 5.5: Accuracy against learning time of CELOE and ParCEL on the UCA1 dataset
using different number of workers.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
3.

6
7.

2
10

.8
14

.4 18
21

.6
25

.2
28

.8
32

.4 36
39

.6
43

.2
46

.8
50

.4 54
57

.6
61

.2
64

.8
68

.4 72
75

.6
79

.2
82

.8
86

.4 90
93

.6
97

.2
10

0.
8

10
4.

4
10

8
11

1.
6

11
5.

2
11

8.
8

Ac
cu

ra
cy

Time (s)

CELOE 1 worker 4 workers 6 workers

before it has timed out (600s), whereas ParCEL succeeds. Similar to the Carcino-

Genesis experimental result, adding more threads can again speed up the computation

significantly on the UCA1 dataset.

Table 5.4 provides the speed-up computation of the ParCEL on the UCA1 dataset.

UCA1 was chosen for speed-up computation as: i) ParCEL can find solution for this

dataset, and ii) the learning time of ParCEL on this dataset is long enough to demon-

strate the effect of different number of workers. Speed-up is defined as follows:

Speedup(n) =
T1

Tn
(5.1)

where n is the number of workers, T1 is the learning time with 1 worker (i.e. sequential

execution of the algorithm) and Tn is the learning time with n workers.

Computation of the speed-up efficiency is also provided in Table 5.4 and the result

was also plotted in Figure 5.6. Speed-up efficiency is computed by the following formula:

Efficiency(n) =
Speedup(n)

n
(5.2)

where n is the number of workers and Speedup(n) is the speed-up computation defined

in Equation (5.1).

97

5. Parallel Class Expression Learning

Table 5.4: Speed-up of ParCEL on the UCA1 dataset. The learning time of CELOE is
included for comparison. CELOE was timeout after 600 seconds.

Workers CELOE 1 2 4 6 8 10 12

Learning time (s) 600.00 86.48 46.23 27.00 20.11 16.52 19.40 19.15

Speedup 1.00 1.00 1.87 3.20 4.30 5.24 4.46 4.62

Efficiency 1.00 1.00 0.94 0.80 0.72 0.65 0.45 0.38

Figure 5.6: Speed-up efficiency of ParCEL on the UCA1 dataset.

1
0.94

0.80
0.72

0.65

0.45
0.38

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8 10 12

Ef
fic

ic
en

cy

Number of workers

5.4.3 Experiment 3 - Definition reduction strategy

This experiment is to compare the three reduction algorithms discussed earlier. Here,

the length of descriptions was measured and the number of descriptions produced was

counted. To compare the description length, the method defined above was used, i.e.,

the lengths of the virtual disjunction we could create from the set of partial definitions

were measured. To keep the result concise, we used only some of datasets in this

experiment that cover sufficient space of cases, i.e. simple to complex, short to long

definition. A comparison between reduction strategies is given in Table 5.5.

The results shows that GMPC gave the shortest definition in most of the experi-

ments and thus the definitions are more readable, while GORL produced the longest

definitions in all the experiments. However, GMPC requires all partial definitions to be

kept until the learning finishes, while GORL can perform the reduction on-the-fly while

the learning algorithm is running. This may offer a trade-off between the readability of

the learnt definition and the memory used by the learner as well as the learning time.

98

5. Parallel Class Expression Learning

In all experiments, GMPC was used as the default reduction strategy as it produced

shorter definitions than the other strategies. The GORL strategy is similar to the

generalisation process in DL-FOIL.

Table 5.5: Definition length comparison between three reduction strategies (means ±
standard deviations of 10 folds). The bold values are statistically significantly better than
the other values; the unformatted values are statistically significantly worse than the other
values; the bold and italic values are statistically significantly better than the unformatted
values and statistically significantly worse than the bold values in the statistical significance
test at 95% confidence.

Dataset
GMPC GOLR GMPL

avg.

partial

def.

length

no. of

partial

def.

avg.

partial

def.

length

no. of

partial

def.

avg.

partial

def.

length

no. of

partial

def.

Moral 1.52

±0.05

2.10

±0.32

2.15

±1.26

3.40

±0.97

1.67

±0.00

3.00

±0.00

Forte 7.75

±0.50

2.00

±0.00

7.71

±0.43

2.30

±0.68

7.62

±0.21

2.30

±0.68

Poker-straight 10.90

±1.31

1.70

±0.68

9.88

±1.46

2.70

±0.48

9.48

±0.98

2.70

±0.48

Aunt 8.80

±0.48

2.00

±0.00

7.75

±0.29

8.90

±2.08

7.48

±0.31

8.30

±1.42

Brother 6.00

±1.83

1.00

±0.00

5.60

±0.52

1.00

±0.00

5.10

±0.32

1.00

±0.00

Cousin 8.50

±0.00

2.00

±0.00

8.50

±0.58

8.20

±4.16

8.10

±0.21

5.70

±1.25

Daughter 5.25

±1.09

1.10

±0.32

7.55

±2.41

1.50

±0.53

5.33

±0.47

1.40

±0.84

Father 5.50

±0.53

1.00

±0.00

5.20

±0.42

1.00

±0.00

5.30

±0.48

1.00

±0.00

Grandson 7.25

±0.50

1.00

±0.00

7.53

±0.55

2.90

±0.57

7.20

±0.50

2.5

±0.71

Uncle 8.40

±0.38

3.00

±0.00

7.92

±0.16

7.10

±1.29

7.75

±0.48

6.80

±1.14

Continued on next page

99

5. Parallel Class Expression Learning

Table 5.5 – continued

Dataset
GMPC GOLR GMPL

avg.

partial

def.

length

no. of

partial

def.

avg.

partial

def.

length

no. of

partial

def.

avg.

partial

def.

length

no. of

partial

def.

UCA1 12.75

±0.00

4.00

±0.00

13.48

±0.22

9.70

±1.06

13.06

±0.47

5.50

±1.18

5.5 Conclusion

Our approach to parallelising class expression logic learning showed promising results

on the datasets used in the evaluation. By dividing the learning process into two

separate stages, one for generating correct, but potentially incomplete, definitions and

another one for aggregating the partial definition to a complete (or nearly complete)

solution, the task was able to be spread over several subprocesses that can run in

parallel. As a result, multi-core machines were able to be utilised and potentially also

cloud computing, which makes the task of description logic learning more scalable.

Since the aggregation of partial solutions is now not integrated in the refinement

procedure anymore, but runs as a separate thread concurrently to it, different strategies

for aggregating the partial definitions are easily found to be tested. The ones that we

have tested are greedy strategies that avoid exhaustive search for an optimal aggregate

and therefore scale more easily.

In most datasets in the experiments, our learning algorithm produced promising

results in terms of both accuracy and learning time. Decrease of learning time was

not only caused by the parallelisation, but also by the combination of the top-down

and implicitly conquer and divide learning approaches. For example, in the Uncle and

Aunt datasets, the faster learning could be caused by the learning strategy: finding

partial definitions represents the nature of these relations, e.g. an uncle is the brother

of one’s father or mother, or the husband of one’s aunt. Obviously, finding separate

simple definitions is easier than finding one complete definition.

ParCEL was only slower than CELOE in 2 datasets: Father and Grandson. How-

100

5. Parallel Class Expression Learning

ever, these are very small datasets with short definitions: from 5 to 7 axioms, and the

differences between learning times were not statistically significant. In addition, this is

not our objective as the algorithm is expected to deal with complex learning problems.

For the noisy dataset CarcinoGenesis, ParCEL could not give a better result than

CELOE, which shows that our learning currently might not deal well with noisy data

and this is a future development so that the algorithm can deal with various learning

problems. For another noisy dataset ILPD, ParCEL predictive accuracy was lower than

CELOE. However, it was caused by the imbalance between positive and negative ex-

amples. A further investigation showed that our learning algorithm was more accurate

if the balanced predictive accuracy was used.

A disadvantage of our learning approach is that it produced longer definitions than

CELOE. In some circumstances, long definitions were needed to describe accurately the

learning problems. However, there were also unnecessarily long definitions caused by

overlap between partial definitions. Using normalisation and simplification can reduce

the definition length [3, 51, 65, 86]. This has not been implemented yet and is left for

future work.

101

5. Parallel Class Expression Learning

102

Chapter 6

Symmetric Class Expression

Learning

This chapter introduces a Symmetric Class Expression Learning approach to

description logic learning that aims to optimise the search space and benefit

learning problems with exception patterns. Some scenarios to motivate our

approach are first described, followed by the method and design of the algo-

rithms. The chapter ends with an evaluation to demonstrate the effectiveness

of our method.

6.1 Exceptions in Learning

In machine learning we often encounter datasets that can be described using simple rules

and regular exception patterns describing situations where those rules do not apply. A

simple example that demonstrates this scenario is the Tweety problem, a classical

example used in logic programming. This example describes the flying capability of

birds. Typically, all birds can fly and therefore the general rule to describe this relation

is: ‘All birds can fly’. However, there is a kind of bird that cannot fly, penguin.

Therefore, this rule is not applicable for penguins and thus the rule for inference of the

flying capability of birds is: ‘All birds can fly except penguins’.

103

6. Symmetric Class Expression Learning

Another scenario is the problem of learning inhabitant’s normal behaviours in houses

such as in the UCA1 dataset (see Chapter 3). In this scenario, it is often the case that

a normal behaviour can consist of a general rule and then a set of exceptions. For

example, a person may usually go to the library at 9AM on Mondays. However, this

pattern might be broken by particular circumstances such as rain, or public holidays.

Therefore, rather than ‘The person goes to the library on Mondays at 9AM’, the rule

becomes ‘The person goes to the library on Mondays at 9AM as long as it is not

raining and it is not a public holiday’.

The term exception is used in this sense: a small set of examples that are incorrectly

covered by simple concepts that describe the vast majority of examples correctly. In

the above examples, ‘All bird can fly’ and ‘The person goes to the library on Monday

at 9AM’ are the general rules that describe the normal flying ability and going to

library activity pattern of most of birds and going to library activities respectively.

Penguins, rain and public holidays are the exceptions in these scenarios that require

further constraints (rules) to make the general rules correct.

Most existing DL learning algorithms, e.g. AL−QuIn [85], DL-FOIL [45], CELOE

[82] and ParCEL (Chapter 5), focus only on the definitions of positive examples. Learn-

ing starts from a very general concept, usually the TOP concept in DL. Then, subclasses

and sub-properties (specialisation), conjunction (intersection) and the combination of

conjunction and negation (subtraction) are used to remove the negative examples from

the potential concepts.

This approach suits many learning problems and has been used successfully in

[57, 82] and the experiments in Chapter 5. However, this strategy does not deal very

well with learning problems that have exceptions to the normal patterns. It also does

not use the descriptions in the search space effectively. Here CELOE and ParCEL are

used as representative algorithms for two different approaches, the top-down and the

combination of top-down and bottom-up approaches, to demonstrate the weakness of

these approaches in dealing with exceptions in learning. Given a learning problem with

a set of positive (+) and negative (–) examples, the concepts D1, D2, N1, N2 and their

coverage (Figure 6.1(a)), top-down learning algorithms such as CELOE [82] find the

single concept C = (D1 � ¬N1) � (D2 � ¬N2), algorithms that combine both top-down

104

6. Symmetric Class Expression Learning

Figure 6.1: Exception patterns in learning. Pluses (+) denote positive examples, minus
(–) denotes negative examples. The ellipses represent coverage of the corresponding class
expressions.

(a) The target concept
can be constituted from
simple descriptions
D1, D2, N1 and N2:
(D1�¬N1)� (D2�¬N2)

(b) ParCEL learnt con-
cepts: constructed from
more complex descrip-
tions P1 = D1�¬N1 and
P2 = D2 � ¬N2 describe
the dataset concisely

(c) CELOE learnt con-
cept: a single complex
description C = (D1 �
¬N1)� (D2 �¬N2) is re-
quired

and bottom-up approaches such as ParCEL and DL-FOIL find two simpler concepts

P1 = D1�¬N1 and P2 = D2�¬N2 separately. These concepts are visualised in Figures

6.1(c) and 6.1(b), respectively.

The difference between the above approaches causes the difference in the search

tree construction. While CELOE tries to construct the search tree using a downward

refinement operator until it finds a node (expression) that correctly and completely

defines the positive examples, ParCEL combines the search tree construction using a

downward refinement operator with the checking for the possibility of a combination

of several nodes in the search tree to constitute a complete and correct definition. This

effects the search tree size. If all of the concepts D1, D2, N1 and N2 have the same

length of 3, the length of the longest concepts generated by the first and the second

approach are 16 (4 concepts of length 3 plus 4 operators) and 8 (2 concepts of length

3 plus 2 operators) respectively. If a concept is of length 16 then it must occur at

depth at least 16 in the search tree. Thus, CELOE will only be able to identify this

concept after searching the previous 15 levels of the search tree. However, Figure 6.1(a)

suggests that there is a possibly better solution with the usage of exception definitions

in the learning problem. The target concept can be computed from simple expressions

D1, D2, N1 and N2 that may occur at depth 3 in the search tree.

The Tweety example is extended as a further demonstration for the benefits of

105

6. Symmetric Class Expression Learning

using the definitions of exceptions in learning as shown in Figure 6.2. This figure

represents a search tree for the three learning strategies described above. As was

discussed above, finding a complete definition (triple-line node, e.g. CELOE) requires

a deeper search tree than finding several partial definitions (double-line nodes, e.g.

ParCEL, DL-FOIL). Moreover, using definition of exceptions (dotted-line nodes) can

produce shallower search trees.

6.2 Symmetric Class Expression Learning

6.2.1 Overview of our method

To address the problem described in Section 6.1, a Symmetric Class Expression Learn-

ing (SPaCEL) learning approach is proposed that processes the positive and negative

examples symmetrically and simultaneously. Definitions of both positive and negative

examples are sought separately and then they are combined to construct a complete

definition. The negative example definitions are used to remove the negative examples

from the concepts in the search tree to create definitions for positive examples. This

learning approach can combine (potentially very short) concepts and so define relatively

complex concepts based on much smaller depth traversals. This is particularly useful

where removing negative examples leads to shorter definitions of positive examples.

Consequently, concepts in the search tree are used more effectively. It helps to

reduce the search space of the learning problem and thus the learning time can be re-

duced. This approach is best suited to learning problems with exceptions as described

in Section 6.1, especially when the exceptions follow a few relatively simple patterns. A

simple pattern corresponds to a short, and therefore easily comprehensible, definition.

Here, the pattern is used analogously to the definition in the context of description

logics, i.e. a description that describes the characteristics of a set of examples. These

benefits can help the learning approach to be more scalable with respect to the com-

plexity of the learnt concept (definition length). Table 6.1 summarises the usage of

positive and negative examples in learning of basic description logic learning.

106

6. Symmetric Class Expression Learning

Figure 6.2: Different approaches to learning the definition for the extended Tweety learn-
ing problem.

(a) The knowledge base of the
learning problem.

(b) Visualisation of the knowledge
base.

(c) The search tree for learning the extended Tweety example with three approaches illustrated.
Triple-line nodes represent complete definitions (e.g. for CELOE). Double-line nodes represent
partial definitions (e.g. for ParCEL). Dashed-line nodes represent definitions of some negative
examples. The ellipses represent the combinations of an (incorrect and incomplete) expression
with a definition of negative examples constitutes a partial definition. Solid arrows represent the
paths to the definitions for positive or negative examples.

107

6. Symmetric Class Expression Learning

Table 6.1: Basic description learning algorithms and their usage of examples.

Type of pattern Our approach
(SPaCEL)

YinYang Others, e.g. CELOE,
ParCEL, DL-FOIL

positive patterns top-down top-down top-down

negative patterns top-down bottom-up –

6.2.2 Description of our method

In this learning approach, the positive and negative examples are used symmetrically.

Definitions of both positive and negative examples are employed to learn the final

definition. Basically, our learning approach consists of three main steps:

1. Find the definitions for positive and negative examples such that all the defini-

tions, together, cover all positive or negative examples.

2. Reduce the partial definitions to remove the redundancies and select the best

candidates for constructing a complete definition.

3. Aggregate the best candidates to form the complete definition using disjunction.

In the first step, partial definitions can be produced directly by specialisation using

a downward refinement operator as in some other algorithms such as DL-FOIL and

ParCEL. In this approach, as was described in Section 6.1, beside the partial definitions,

the definitions of negative examples are also computed and used in combination with

existing expressions in the search tree to create partial definitions.

Definitions of negative examples are called counter-partial definitions. They are

formally defined as follows:

Definition 6.1 (Counter-partial definition). Given a learning problem LP = 〈K,

(E+,E−)〉 as defined in Definition 2.16, a class expression C is called a counter-partial

definition if cover(K, C,E−) = ∅ and cover(K, C,E−) �= ∅. �

The top-down step consists of the usage of a refinement operator to find the partial

definitions and counter-partial definitions, and a combination operator to compute more

partial definitions from the counter-partial definitions and existing expressions in the

108

6. Symmetric Class Expression Learning

search tree. In real scenarios, the exception may or may not exist. Therefore, the search

for partial and counter-partial definitions are performed separately and simultaneously.

This helps our approach not to be too specific to the learning problems that contain

exceptions.

The combination acts as an extra step to deal with the exceptions with the support

of counter-partial definitions. In this approach, only one downward refinement operator

is used in the specialisation step to generate both partial and counter-partial definitions.

The combination strategy is essentially the checking for the possibility of creating new

partial definitions from an expression and counter-partial definitions using conjunction

and negation. It can be defined as follows:

Definition 6.2 (Combinability). Given a learning problem LP = 〈K, (E+,E−)〉 as

defined in Definition 2.16; a set of counter-partial definitions Q, and an expression C

such that cover(K, C,E+) �= ∅ and cover(K, C,E−) �= ∅, then C is said to be combinable

with Q iff:

cover(K, C,E−) ⊆ cover(K,Q,E−)

that means C can be “corrected” by Q. �

The above combination strategy also helps to avoid the use of negation in the

refinement without any loss of generality. In this approach, the refinement operator

defined in Definition 5.3 is redefined by removing the negation from refinement rules.

It is formally defined below.

Definition 6.3 (SPaCEL refinement operator ρ�). Given an expression C, a set

of concept names NC and a set of property (role) names NR in which NRO is a set

of object properties, NRD is a set of data properties and the refinement operator ρ¬�
defined in Definition 5.3, the SPaCEL refinement operator ρ� is defined as follows:

1. if C = 	 (C is the TOP concept):

ρ�(C) = {C ′ | C ′ ∈ NC , �C ′′ ∈ NC : C ′ � C ′′ � C}
∪ {∃r.	 | r ∈ NRO} ∪ {∀r.	 | r ∈ NRO}
∪ {∃r.V | r ∈ NRD, V ∈ mgdr(r)} ∪ {∀r.V | r ∈ NRD, V ∈ mgdr(r)}

(negation is removed from the refinement in comparison with ρ¬�)

2. otherwise, ρ�(C) = ρ¬�(C) �

109

6. Symmetric Class Expression Learning

It is important to realise that the first rule of ρ� is corresponding to the second rule

of ρ¬� with the generation of negation removed. Therefore, the third rule of ρ¬�, which

defines the refinement of negated expressions, is also implicitly removed.

The top-down step finishes when either the partial definitions cover all positive

examples or the counter-partial definitions cover all negative examples. It can now be

formally defined below.

Definition 6.4 (SPaCEL top-down learning). Given a learning problem LP =

〈K, (E+,E−)〉, the top-down step in this approach aims to find a set of partial definitions

P, a set of counter-partial definitions Q and a set of expressions X such that:

cover(K,P,E+) ∪ cover(K,X,E+) = E+,

such that ∀C ∈ X | C is combinable with Q, or

cover(K,Q,E−) = E−. �

Note that the above definition of SPaCEL top-down learning does not take the noise

into consideration. In the real learning problems, there may be noise in the training

data and thus a certain noise percentage may be allowed. In that case, given an allowed

noise value ε ∈ [0, 1] (0: no noise), P and X only need to cover |E+| × (1 − ε) positive

examples. Moreover, there may be some other constraints on the termination of the

learning such as the maximal learning time (called timeout).

Figure 6.3 demonstrates the top-down step in our approach that uses the refinement

operator ρ� to produce both partial and counter-partial definitions. In this examples,

the combination of the counter-partial definition C2 and the expression C12 creates a

partial definition C12 � ¬C2.

As in the ParCEL algorithm, the selection of expressions in the search tree for

refinement is controlled by node scores that are computed by a learning heuristic, which

was defined in Definition 5.4. The learning is also optimised by removing irrelevant

expressions from the search tree. Irrelevant expressions are expressions, from which

no partial or counter-partial definition can be produced. Note that, this definition is

different from the definition of irrelevant expressions in ParCEL (see Definition 5.1).

110

6. Symmetric Class Expression Learning

Figure 6.3: The top-down learning step aims to find both partial definitions and counter-
partial definitions. Double-line nodes are partial definitions, dashed-line nodes are counter-
partial definitions. ρ� is the refinement operator defined in Definition 6.3. Connections
from nodes to examples represent the coverage of the expressions.

(TOP)
TOP

C1 C4

C11 C12

(C4)

p1

p2

p3

p4

p5

p6

.

.

. . . .

C41

C2

positive examples

n1

n2

n3

n4

n5

n6

.

.

.
negative examples

C3

C12 C2

The irrelevant expression in SPaCEL is defined as follows:

Definition 6.5 (Irrelevant class expression in SPaCEL). Given a learning prob-

lem LP = 〈K, (E+,E−)〉, a concept C is irrelevant if cover(K, C,E+) = ∅ and cover(K,

C,E−) = ∅, i.e. it covers no positive and no negative example. �

In addition, it makes sense to use the parallelisation in this approach: several

expressions (branches) in the search tree can be processed (refined and evaluated) in

parallel using multiple workers to find the partial definitions. A central reducer controls

the finding of partial and counter-partial definitions of the workers until the condition

described in Definition 6.4 is met. Then, it performs the reduction and aggregation

steps to create a final definition. The parallel exploration of the search tree by multiple

workers is illustrated in Figure 6.4.

The main learning algorithm is implemented on the reducer side. In the design, the

reducer performs not only the reduction, as its name suggests, but also most of the tasks

in Algorithm 6.1. Therefore, the terms reducer and learner are used interchangeably.

6.2.3 The algorithm

The learning algorithm is essentially a top-down learning approach combined with a

reduction task. The top-down step is used to solve the sub-problems of the given

learning problem and the reduction is used to reduce and combine the sub-solutions

111

6. Symmetric Class Expression Learning

Figure 6.4: Top-down learning in SPaCEL with multiple workers.

(TOP)

(C1)

TOP

C1 C4

C11 C12

(C4)

worker 1

worker 1

worker 1

worker 2

p1

p2

p3

p4

p5

p6

.

.

.

worker 2

C3

. . .

C41

C2

positive examples

n1

n2

n3

n4

n5

n6

.

.

.

negative examples

into an overall solution. The top-down step is performed by the downward refinement

operator and a combination strategy while the reduction step currently uses a set

coverage algorithm to choose the best partial definitions and disjunction to form the

overall solution.

Algorithm 6.1 describes the main part of our learning algorithm, the reducer. It

chooses the best concepts (i.e. highest score, based on the search heuristic described in

Definition 5.4) from the search tree and uses the Specialise algorithm (see Algorithm

6.2) for refinement and evaluation until the completeness of the partial definitions is

sufficient. Concepts are scored using an expansion heuristic that is mainly based on

the correctness of the concepts. In addition, a penalty is applied for complexity of

the concepts (short expressions are preferred), and bonuses for accuracy and accuracy

gained (see Definition 5.4).

The sets of new descriptions, partial definitions and counter-partial definitions re-

turned from the specialisation algorithm are used to update the corresponding data

structures and the set of covered positive and negative examples in the learning algo-

rithm. In addition, the new descriptions are combined with the counter-partial defi-

nitions to create new partial definitions if possible. It is important to note that the

concepts that have been refined can be scheduled for further refinements.

The refinement operator in Definition 6.3 is infinite, but in practice each refinement

step is finite, since it is only allowed to generate descriptions at a given length. For

example, a concept of length N will first be refined to concepts of length (N + 1),

112

6. Symmetric Class Expression Learning

Algorithm 6.1: Symmetric Class Expression Learning Algorithm–
SPaCEL(K,E+,E−, ε)

Input: background knowledge K, a set of positive E+ and negative E−

examples, and a noise value ε ∈ [0, 1] (0 means no noise)
Output: a definition C such that |cover(K, C,E+)| ≥ (|E+| × (1− ε)) and

cover(K, C,E−) = ∅
1 begin
2 initialise the search tree ST = {	} /* 	: TOP concept in DL */

3 cum pdefs = ∅ (empty set) /* set of cumulative partial definitions */

4 cum cpdefs = ∅ /* set of cumulative counter-partial definitions */

5 cum cp = ∅ /* set of cumulative covered positive examples */

6 cum cn = ∅ /* set of cumulative covered negative examples */

/* there may be more conditions, e.g.timeout */

7 while |cum cp| < (|E+| × (1− ε)) and |cum cn| < |E−| do
8 get the best concept B and remove it from ST /* see text */

9 (pdefs, cpdefs, descriptions) = Specialise(B,E+,E−) /* cf.Alg.6.2 */

10 cum pdefs = cum pdefs ∪ pdefs
11 cum cpdefs = cum cpdefs ∪ cpdefs

12 cum cp = cum cp ∪ {e | e ∈ cover(K, P,E+), P ∈ pdefs}
13 cum cn = cum cn ∪ {e | e ∈ cover(K, P,E−),P ∈ cpdefs}

/* online combination, see Sec.6.2.4 */

14 foreach D ∈ descriptions do
/* if D can be ‘‘corrected’’ by existing cpdefs */

15 if (cover(K, D,E−) \ cum cn) = ∅ then
/* combine D with cpdefs if possible */

16 candidates = Combine(D, cum cpdefs,E−) /* cf.Alg.6.3 */

17 new pdef = D � ¬(⊔A∈candidates(A)) /* new partial def. */

18 cum pdefs = cum pdefs ∪ new pdef
19 cum cp = cum cp ∪ cover(K, D,E+)

20 else
21 ST = ST ∪ {D}

/* explore more partial definitions to meet the completeness */

22 if |cum cp| < (|E+| × (1− ε)) then
23 foreach D ∈ ST do
24 candidates = Combine(D, cum cpdefs,E−)
25 new pdef = D � ¬(⊔A∈candidates(A))
26 cum pdefs = cum pdefs ∪ new pdef

27 return Reduce(cum pdefs) /* for description, see text */

113

6. Symmetric Class Expression Learning

and later, when it is revisited, to concepts of length (N + 2), etc. For the sake of

simplicity, we use ρ� in the algorithms to refer to one refinement step rather than the

entire refinement. This technique is used in DL-Learner and discussed in detail in [82].

When the algorithm reaches a sufficient degree of completeness, it stops and reduces

the partial definitions to remove the redundancies using the Reduce function, which

is essentially a set coverage algorithm: given a set of partial definitions X and a set

of positive examples E+, it finds a subset X′ ⊆ X such that E+ ⊆ ⋃
D∈X′(cover(K, D,

E+)). The solution returned by the algorithm is a disjunction of the reduced partial

definitions. However, returning the result as a set of partial definitions instead may be

useful in some contexts, e.g. to make the result more readable. The reduction algo-

rithm may be tailored to meet particular requirements such as the shortest definition

or the least number of partial definitions. Note that the combination of descriptions

and counter-partial definitions in Algorithm 6.1 is one of the combination strategies

implemented in our evaluation. This strategy is called an on-the-fly combination strat-

egy; it gave the best performance in our evaluation (see Section 6.3.1). A discussion of

the combination strategies is given in Section 6.2.4.

The specialisation is described in Algorithm 6.2. The specialisation performs the

refinement and evaluation of the concepts assigned by the learning algorithm. Firstly, it

refines the given concept (ρ�(C)) and evaluates the result (cover(K, C,E+) and cover(K,

C,E−)). Irrelevant concepts are removed from the result as no partial definition or

counter-partial definition can be computed though the irrelevant concept specification.

Then, the specialisation finds new partial definitions, counter-partial definitions and

descriptions from the refinements. Practically, redundancies are often checked before

evaluating descriptions to avoid redundant evaluations and duplicated descriptions in

the search tree as a description can be generated from different branches.

Algorithm 6.3 describes the combination algorithm that is used to combine the

descriptions and counter-partial definitions to construct new partial definitions. This

is basically a set coverage algorithm. A smallest set of counter-partial definitions that

together cover all negative examples covered by the given expression will be returned.

This set of counter-partial definitions is then used to correct the given expression.

114

6. Symmetric Class Expression Learning

Algorithm 6.2: Specialisation algorithm – Specialise(C,K,E+,E−)
Input: a description C and a learning problem LP = 〈K, (E+,E−)〉.
Output: a triple consisting of a set of partial definitions pdefs ⊆ ρ�(C); a set of

counter-partial definitions cpdefs ⊆ ρ�(C); and a set of new
descriptions descriptions ⊆ ρ�(C) such that
∀D ∈ descriptions : D is not irrelevant and D /∈ (pdefs ∪ cpdefs), in
which ρ� is the refinement operator defined in Definition 6.3.

1 begin
2 pdefs = {D ∈ ρ�(C) | cover(K, D,E+) �= ∅ ∧ cover(K, D,E−) = ∅}
3 cpdefs = {D ∈ ρ�(C) | cover(K, D,E+) = ∅ ∧ cover(K, D,E−) �= ∅}
4 descriptions = {D ∈ ρ�(C) | cover(K, D,E+) �= ∅ ∧ cover(K, D,E−) �= ∅}
5 return (pdefs, cpdefs, descriptions)

Algorithm 6.3: Combination algorithm – Combine(C, cpdefs,E−)
Input: a description C, a set of counter-partial definitions cpdefs and a set of negative

examples E−

Output: a set candidates ⊆ cpdefs such that
cover(K, C,E−) ⊆ ⋃

P∈candidates(cover(K, P,E−))
1 begin
2 candidates = ∅ /* candidate counter-partial definitions */

3 cn c = cover(K, C,E−) /* negative examples covered by C */

4 while cpdefs �= ∅ and cn c �= ∅ do
5 sort cpdefs by descending coverage of negative examples
6 get and remove the top counter-partial definition D from cpdefs
7 if (cover(K, D,E−) ∩ cn c) �= ∅ then
8 candidates = candidates ∪D
9 cn c = cn c \ cover(K, D,E−))

10 if cn c �= ∅ then
11 return ∅ /* return an empty set */

12 else
13 return candidates
14

115

6. Symmetric Class Expression Learning

6.2.4 Counter-partial definitions combination strategies

Counter-partial definitions are combined with expressions in the search tree to create

new partial definitions if possible. A combination of an expression C with a set of

counter-partial definitions X has the form of C � ¬(�D∈XD). The combinability of an

expression with respect to a set of counter-partial definitions is defined in Definition

6.2. The combination may be performed at several stages of the learning algorithm.

Each of them gives a different effect on the learning result. Here, three combination

strategies are proposed. The evaluation of these strategies is discussed in Section 6.3.1.

Lazy combination

In this strategy, the learner maintains sets of partial definitions and counter-partial

definitions separately. When all positive or negative examples are covered (or other

termination conditions are reached if any such as timeout, number of examples covered,

etc.), the learner will combine descriptions from the search tree and the set of counter-

partial definitions.

Since the combination is performed after the learning stops, this strategy may pro-

vide a better combination, i.e. it may have better choices of counter-partial definitions

for the combination. This advantage may result in shorter partial definitions. However,

for the learning problems in which both positive and negative examples need negation

to be completely defined, the algorithm may not be able to find the definition because

the refinement operator designed for this algorithm does not use negation. If this is the

case and the timeout is set, the combination will be made when the timeout is reached

to find the definition. Otherwise, it will not terminate.

For example, the learning problem shown in Figure 6.2 may cause this strategy to

run out of memory without finding an accurate concept if timeout or noise is not set.

To cover all positive examples, we need a class expression with negation as follows:

Bat � (Bird � ¬Penguin)

and to completely cover all negative examples, the following class expression is needed:

Penguin � (Mammal � ¬Bat)

116

6. Symmetric Class Expression Learning

To produce the definition for positive examples, the counter-partial definition Penguin

is needed to combine with the expression Bird. This expression cannot be produced

directly by the refinement due to the removal of negation from the refinement operator.

However, in this strategy, the combination is only called when all positive examples or

negative examples are covered. Therefore, in this case, the combination can only be

called when all negative examples are covered. Unfortunately, this condition is never

met as the expression ¬Bat cannot be produced due to the removal of negation from

the refinement operator.

On-the-fly combination

This strategy is used in Algorithm 6.1. In this strategy, when a new description is gen-

erated from the refinement or an existing description is revisited (e.g. for refinement),

it is combined with the existing counter-partial definitions if possible. Practically, the

combination is performed on the worker side as new descriptions are always generated

by workers. This strategy can avoid the termination problem discussed in the lazy

combination strategy because negation is used in the combination which is performed

for every new description. The evaluation suggests that this strategy, overall, gives

the best performance and the smallest search tree. However, the final result should be

optimised, as a counter-partial definition can be combined with many expressions and

thus the final definition is unnecessary long.

For example, in the learning problem described in Figure 6.2, when description Bird

is generated, there is no counter-partial definition to combine with. However, when it

is revisited for refinement, it will be combined with the new counter-partial definition

Penguin to produce a partial definition Bird � ¬Penguin. Therefore, it can avoid the

termination problem that occurs when the lazy combination strategy is used.

Delayed combination

This is an intermediate solution between the above strategies that checks the possibility

of combinations when a new description is generated. However, even if the combination

is possible, only the set of cumulative covered positive examples is updated (by removing

from this set the elements that are covered by the new description), while the new

117

6. Symmetric Class Expression Learning

description is put into a potential partial definitions set. The combination is executed

when the termination condition is reached, i.e. either all positive examples or all

negative examples are covered, or the timeout is approached.

This strategy may help to prevent the problem of the lazy combination strategy. In

addition, it may return better combinations in comparison with the on-the-fly strategy

because it inherits the advantage of the lazy combination strategy. However, as the

combinable descriptions in this strategy are not combined until the learning terminates,

they can be refined and therefore the search tree is likely to be bigger than that of the

on-the-fly strategy.

6.3 Evaluation

The Symmetric Class Expression Learning approach was evaluated by four experiments

using the 10-fold cross-validation method and the datasets described in Chapter 3. The

first experiment was to investigate the effect of combination strategies on the search

tree size and predictive accuracy. The results from this experiment was the basic to

select the default combination strategy used with SPaCEL in further experiments. The

second experiment was to measure the search tree size generated by three algorithms on

each learning problem. In the third experiment, the predictive accuracy and learning

time of the three algorithms was computed. Finally, the length of the learnt definitions

produced by the three algorithms were examined in the fourth experiment.

The results of each experiment (except the first experiment, which uses only some

learning problems) in this chapter are divided into three groups. The first group in-

cludes the results of the 7 low to medium complexity learning problems. All learning

algorithms can find an accurate definition on the training set (i.e. without timeout) of

these datasets. The second group includes the results of 3 high to very high complexity

learning problems for which all learning algorithms can find accurate definitions of the

training set (i.e. without timeout). Finally, the third group contains the 6 remaining

learning problems, i.e. the learning problems for which at least one of the learning

algorithms could not find an accurate definition on the training set, i.e. a timeout oc-

curred. The reason for treating problems in this group separately is that some metrics

118

6. Symmetric Class Expression Learning

cannot be compared if the learning algorithm could not find the solution.

6.3.1 Experiment 1 - Combination strategies comparison

As was discussed in Section 6.2.4, three combination strategies were implemented: lazy,

delayed and on-the-fly. Table 6.2 shows the experimental results of the strategies.

Table 6.2: Combination strategies experimental result (means ± standard deviations of
10 folds).

Metric Lazy Delayed On-the-fly

UCA1

Learning time (s) 1.01 ± 0.33 0.54 ± 0.23 0.72 ± 0.17

Accuracy (%) 100.00 ± 0 100.00 ± 0 100.00 ± 0

Definition length 20.20 ± 0.63 58.60 ± 21.31 66.60 ± 1.90

No of descriptions 11,137.30 ± 2,711.99 5,065.30 ± 1,867.64 6,998.70 ± 859.74

No of pdef. 1 1.00 ± 0.00 3.40 ± 1.27 4.00 ± 0.00

Avg.2 pdef. length 20.20 ± 0.63 17.65 ± 2.02 16.65 ± 0.47

MUBus1

Learning time (s) 47.59 ± 17.66 23.02 ± 28.33 7.52 ± 2.37

Accuracy (%) 100.00 ± 0 99.81 ± 0.36 99.74 ± 0.36

Definition length 297.30 ± 22.67 383.00 ± 170.47 393.30 ± 73.51

No of descriptions 39,096.80 ± 12,210.86 14,463.90 ± 20,232.28 2,130.10 ± 1,179.48

No of pdef. 1.00 ± 0.00 4.20 ± 1.69 6.30 ± 1.25

Avg. pdef. length 297.30 ± 22.67 145.32 ± 155.66 63.40 ± 10.54

MUBus2

Learning time (s) int.3 @600s 90.97 ± 73.43 48.46 ± 16.56

Accuracy (%) 99.89 ± 0.15 99.84 ± 0.20 99.78 ± 0.23

Definition length 1,419.20 ± 328.20 1,372.30 ± 539.13 1,179.50 ± 209.80

No of descriptions 187,279.60 ± 2,584.59 23,843.40 ± 21,430.22 8,575.10 ± 4,184.27

No of pdef. 8.00 ± 0 8.60 ± 0.10 12.00 ± 2.79

Avg. pdef. length 177.40 ± 41.03 161.52 ± 67.40 101.29 ± 45.37

MUBus3

Continued on next page

1Partial definitions
2Average
3Interrupted

119

6. Symmetric Class Expression Learning

Table 6.2 – continued

Metric Lazy Delayed On-the-fly

Learning time (s) int. @900s 566.89 ± 224.52 495.94 ± 267.67

Accuracy (%) 99.83 ± 0.10 97.96 ± 1.90 99.72 ± 0.40

Definition length 4,120.10 ± 1,045.59 3,740.50 ± 1,228.56 3,728.00 ± 1,598.00

No of descriptions 141,243.00 ± 2,185 49,980.00 ± 21,778 23,477.00 ± 13,897

No of pdef. 18.20 ± 0.79 15.70 ± 2.83 18.10 ± 1.85

Avg. pdef. length 225.38 ± 51.33 249.16 ± 100.58 205.90 ± 85.49

The experimental results show that these strategies achieved similar accuracy. How-

ever, the learning time and search space size were very different. As discussed in Section

6.2.4, the lazy combination strategy did not terminate in some cases. The experimental

result of the MUBus-2 dataset shows that the learner was interrupted (by timeout) af-

ter 10 minutes. However, by using the combination algorithm after the algorithm was

interrupted, a definition with 100% accuracy on the training dataset was produced.

This means the solution existed implicitly, but the learner was not able to compute it.

To make sure that the learner was not terminated too early, the experiment was rerun

for 3 hours. However, the learner was still not able to find the solution on the training

dataset. This demonstrates the disadvantage of this strategy.

In addition, as the lazy combination strategy performed the combination at the

end, only when all positive or negative examples are covered, its learning times were

always longer than other strategies. However, this strategy might produce more concise

solutions than the on-the-fly strategy. In contrast, the on-the-fly and delayed strategies

might miss some better combinations due to their early combining. For example, look

at the following partial definitions of the UCA1 dataset produced by the on-the-fly

strategy:

1. activityHasDuration SOME hasDurationValue ≤ 15.5 AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≤ 4.5))

2. activityHasStarttime SOME Autumn AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≤ 4.5)) AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≥ 19.5))

120

6. Symmetric Class Expression Learning

3. activityHasStarttime SOME Summer AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≤ 4.5)) AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≥ 19.5))

4. activityHasDuration SOME hasDurationValue ≥ 4.5 AND

activityHasStarttime SOME Spring AND

(NOT (Activity AND activityHasDuration SOME hasDurationValue ≥ 19.5))

and by the delayed strategy:

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND

hasDurationValue ≤ 19.5) AND

(NOT (activityHasStarttime SOME Winter AND activityHasDuration SOME

hasDurationValue ≥ 15.5))

The partial definitions produced by the on-the-fly strategy consist of a larger number

of short expressions and counter-partial definitions (length is from 5 to 7) while partial

definitions produced by the lazy strategy consisted of a small number of long counter-

partial definitions (length is 9). Therefore, the final definitions produced by the on-the-

fly strategy were usually longer than the definitions produced by the delayed strategy.

However, one of the weak points of the lazy strategy is that it might not achieve an

accurate solution even if a solution exists. The different combination strategies all have

different trade-offs between definition length and learning time.

The on-the-fly strategy produced promising results. It dominated other strategies

in most aspects, especially the learning time and the number of descriptions (search

space). There was only one exception in the dataset MUBus-1, where this strategy

produced a longer definition than others. The number of partial definitions involved

in the solution can help to explain the difference: there were common parts (counter-

partial definitions) amongst the partial definitions.

Finally, the delayed combination strategy was better than the lazy evaluation strat-

egy, but worse than the on-the-fly strategy, on the learning time and the number of

descriptions. This strategy was expected to get the advantages of both on-the-fly and

lazy strategies to produce shorter definitions than the lazy strategy and use smaller

search spaces than the on-the-fly strategy. However, the experimental results showed

121

6. Symmetric Class Expression Learning

that this idea did not help much. The definitions produced by the delayed strategy

were not always shorter than the definitions produced by the lazy strategy while the

search spaces were always bigger. Therefore, the on-the-fly was chosen as the major

combination strategy for the SPaCEL algorithm to compare with other learners in the

evaluation.

6.3.2 Experiment 2 - Search tree size comparison

The search tree size reported in this experiment is the total number of all descriptions

that are inserted into the search tree, including the irrelevant descriptions (the partial

and counter-partial definitions which are removed later by the algorithm). If an algo-

rithm can find the solution, the result reported is the search tree size after the learning

algorithm has terminated. Otherwise, it is the search tree size at the moment when the

timeout has occurred. In this case, the comparison should be treated with caution as

it depends upon the timeout assigned for the learning algorithm.

The search tree size generated by the three algorithms on the evaluation datasets

is shown in Table 6.3. In this experiment, only learning problems on which at least

one of the algorithms found an accurate definition on the training set were considered.

The comparison cannot be made if all three learning algorithms time out. Therefore,

the results for the CarcinoGenesis and ILDP learning problems are not reported.

In the first group of learning problems, SPaCEL had smaller search trees than both

CELOE and ParCEL for 4/7 learning problems and smaller than one of them in the

remaining 3 learning problems. However, this group might not reflect well the reduction

of the search tree size by our approach as it contains low to medium complexity prob-

lems. The definitions of these learning problems were short and therefore the search

tree sizes were usually small. Consequently, they were sensitive to the parallelisation.

In detail, as the search tree in our algorithm is expanded by multiple workers, the so-

lution may be found by one of the workers while the other workers are still processing

the search tree. Consequently, the search tree may be expanded redundantly and thus

the reported search tree sizes might be unnecessarily larger than the minimal search

tree size required to learn the problem.

In the second and the third groups, SPaCEL always produced the smallest search

122

6. Symmetric Class Expression Learning

Table 6.3: The experimental result on the search tree size (means ± standard deviations
of 10 folds). The underlined values are the search tree size after the timeout has occured.
Result of the statistical significance t-test (at the 95% confidence level) is also included:
the bold values are statistically significantly higher than other values; the unformatted
values are statistically significantly lower than other values; the bold and italic values are
statistically significantly lower than the bold values, and statistically significantly higher
than the unformatted values.

Problem CELOE ParCEL SPaCEL

Low to medium complexity learning problems without timeout

Moral 540.5 ± 16.9 33.3 ± 11.0 223.4 ± 364.2

Forte 64,707.9 ± 33,641.9 859.5 ± 251.2 174.1 ± 108.2

PokerStraight 1,090.8 ± 12.5 14,204.8 ± 2,847 2,105.0 ± 1,217.7

Brother 37.0 ± 0 104.4 ± 92.6 18.4 ± 9.1

Daughter 21.0 ± 0 111.3 ± 110.2 18.1 ± 5.9

Father 29.0 ± 0 82.9 ± 63.8 23.0 ± 7.0

Grandson 80.5 ± 3.0 1,867.5 ± 1,519.3 125.3 ± 25.3

High to very high complexity learning problems without timeout

Aunt 85,883.8 ± 67,328.8 7,023.4 ± 2,912.1 2,127.8 ± 1,160.9

Cousin 20,331.6 ± 233.6 35,484.4 ± 39,055.4 6,761.1 ± 722.9

Uncle 541,081.8 ± 0 6,332.5 ± 3,247.9 2,400.0 ± 551.2

Learning problems with at least 1 timeout

UCA1 1,465,263.2 ± 11,515.5 28,676.0 ± 14,935.2 6,998.70 ± 859.7

MUBus-1 161,832.2 ± 3,054.5 643,401.5 ± 139,303 2,130.1 ± 1,179.5

MUBus-2 79.959.2 ± 118.5 879,866.1 ± 34,000.4 8,575.1 ± 4,184.3

MUBus-3 55,130.4 ± 73.7 453,605.1 ± 7,565.3 23,477.0 ± 13,897

123

6. Symmetric Class Expression Learning

trees for all learning problems in comparison with CELOE and ParCEL. The search

tree sizes generated by the three algorithms for the same learning problem in this

group were extremely different. For examples, SPaCEL only needed to explore about

2,400 expressions to find the solution for the Uncle learning problem while CELOE had

to explore more than 541,081 expressions. Similarly, SPaCEL found a solution after

exploring about 2,130 expressions while ParCEL needed to explore 643,401 expressions

on the MUBus-1 learning problem. CELOE could not find an accurate solution for this

learning problem and timed out after 10 minutes. The average search tree size at the

time of timeout was about 161,832 expressions.

A t-test rejected the null hypothesis for all learning problems at the 99% confidence

level. That means all differences between search tree sizes generated by three algorithms

on each dataset were statistically significant at the 1% significance level. Therefore, the

search trees generated by SPaCEL were statistically significantly smaller than CELOE

in 12/14 learning problems and than ParCEL for 13/14 learning problems.

6.3.3 Experiment 3 - Predictive accuracy and learning time

In this experiment, the predictive accuracy and learning time of the three learning

algorithms on the evaluation datasets were measured and compared. The experimental

results are shown in Table 6.4.

Table 6.4: Learning time and predictive accuracy experimental results summary (means
± standard deviations of 10 folds). Result of the statistical significance t-test (at the 95%
confidence level) is also included: the bold and highlighted values are statistically signifi-
cantly better than other values; the unformatted values are statistically significantly worse
than other values; the bold and italic and highlighted values are statistically significantly
worse than the bold and highlighted values, and statistically significantly better than the
unformatted values; the underlined values represent the values that are not statistically
significantly different from the other values.

Problem Predictive accuracy (%) Learning time (s)

CELOE ParCEL SPaCEL CELOE ParCEL SPaCEL

Low to medium complexity learning problems without timeout.

Moral 100.00

±0.00

100.00

±0.00

100.00

±0.00

0.15

±0.03

0.02

±0.01

0.03

±0.02

Continued on next page

124

6. Symmetric Class Expression Learning

Table 6.4 – continued

Problem Predictive accuracy (%) Learning time (s)

CELOE ParCEL SPaCEL CELOE ParCEL SPaCEL

Forte 98.86

±2.27

100.00

±0.00

100.00

±0.00

2.60

±1.64

0.23

±0.17

0.05

±0.02

Poker-Straight 100.00

±0.00

96.43

±4.12

98.21

±3.57

0.36

±0.71

0.59

±0.08

0.32

±0.18

Brother 100.00

±0.00

100.00

±0.00

100.00

±0.00

0.19

±0.16

0.03

±0.02

0.02

±0.01

Daughter 100.00

±0.00

100.00

±0.00

100.00

±0.00

0.2

±0.02

0.03

±0.03

0.02

±0.01

Father 100.00

±0.00

100.00

±0.00

100.00

±0.00

0.02

±0.10

0.03

±0.03

0.02

±0.01

Grandson 100.00

±0.00

100.00

±0.00

100.00

±0.00

0.08

±0.07

0.19

±0.79

0.05

±0.02

High to very high complexity learning problems without timeout.

Aunt 96.5

±0.00

100.00

±0.00

100.00

±0.00

30.01

±0.02

0.26

±0.15

0.22

±0.15

Cousin 99.29

±0.00

99.29

±2.26

100.00

±0.00

3.79

±0.54

0.54

±0.20

0.80

±0.28

Uncle 95.83

±6.80

98.75

±3.95

95.42

±10.84

34.13

±14.94

0.29

±0.18

0.16

±0.11

Learning problems with timeout.

CarcinoGenesis 53.73

±4.79

56.05

±4.30

60.52

±6.06

int.∗

@2000s

int.∗

@2000s

int.∗

@2000s

UCA1 91.42

±7.01

100.00

±0.00

100.00

±0.00

int.∗

@2000s

29.75

±5.77

0.72

±0.17

MUBus-1 53.61

±2.45

99.63

±0.31

99.74

± 0.36

int.∗

@600s

395.33

±11.83

7.52

±2.37

MUBus-2 14.35

±1.10

97.91

±0.50

99.78

±0.23

int.∗

@600s

int.∗

@600s

48.46

±16.56

MUBus-3 11.34

±0.06

95.85

±0.31

99.72

±0.40

int.∗

@900s

int.∗

@900s

495.94

±267.67

Continued on next page

125

6. Symmetric Class Expression Learning

Table 6.4 – continued

Problem Predictive accuracy (%) Learning time (s)

CELOE ParCEL SPaCEL CELOE ParCEL SPaCEL

ILPD 76.02

±2.61

71.12

±5.36

72.67

±8.12

int.∗

@120s

int.∗

@120s

int.∗

@120s

Note: ∗: Interrupted by timeout

In general, SPaCEL achieved better predictive accuracy in most learning problems

in comparison with CELOE and ParCEL. In the first two groups (10 learning problems)

all three learning algorithms archived very high accuracy. There were 5 learning prob-

lems that the three algorithms achieved 100% accuracy. In the remaining 5 learning

problems, SPaCEL was statistically significantly more accurate than CELOE for 3/5

and ParCEL for 1/5 problems. There was no learning problems in this group where

SPaCEL was statistically significantly less accurate than CELOE and ParCEL.

In the last group, SPaCEL outperformed CELOE on 5/6 and ParCEL on 3/6 learn-

ing problems. The dataset MU-Bus is a complex learning problem in which the target

definition is very long as the bus operation time depends upon many conditions (see

Section 3.3.3). For this dataset, SPaCEL outperformed both ParCEL and CELOE.

It always found the complete definition on training set and the accuracy on the test

set was always over 99.7%, while CELOE could not find accurate definitions on the

training set and the accuracy on the test set was very low, from 11.34% to 53.61%.

ParCEL performed better than CELOE and the accuracy was also very high but it was

still statistically significantly less accurate than SPaCEL. The predictive accuracy of

ParCEL on these learning problems were from 95.85% to 99.63%. The only learning

problem in this group where CELOE achieved higher predictive accuracy than SPa-

CEL was the ILPD dataset. It achieved 76.02% ± 2.61% accuracy in comparison with

72.671% ± 8.123% of SPaCEL but the difference was not statistically significant.

However, as the ILPD and MuBus datasets are unbalanced, the comparison is more

accurate if we use the balanced accuracy (see Definition 5.6) for these learning problems

instead. Table 6.5 shows the balanced predictive accuracy for ILPD and some other

unbalanced learning problems. The balanced accuracy of SPaCEL and ParCEL on

the ILDP learning problem were statistically significantly higher than CELOE. The

126

6. Symmetric Class Expression Learning

Table 6.5: Balanced predictive accuracy of unbalanced datasets in Table 6.4. Conventions
of the results’ representation are similar to that of in Table 6.4.

Problem Balanced predictive accuracy (%)

CELOE ParCEL SPaCEL

MUBus-1 71.12 ± 0.65 99.68 ± 0.60 99.74 ± 0.62

MUBus-2 52.09 ± 0.06 91.86 ± 3.02 99.78 ± 0.59

MUBus-3 52.18 ± 0.03 73.07 ± 1.91 99.02 ± 2.67

ILDP 64.62 ± 4.83 70.94 ± 10.87 71.73 ± 12.29

outcome of the statistical significance test on the balanced accuracy of other learning

problems did not change.

Our symmetric approach to class expression learning not only increased the predic-

tive accuracy but also decreased the learning time. For the low and medium learning

problems in the first group, the improvement on learning time was not obvious as com-

pared with both CELOE and ParCEL. In some cases, SPaCEL even took longer than

CELOE or ParCEL, e.g. it took longer than ParCEL on the Poker datasets. For the

datasets in the second group, the improvement in learning time of SPaCEL was very

significant compared to CELOE. However, it was slower than ParCEL on the Cousin

dataset.

In the last group of high and very high complexity leaning problems with timeout,

SPaCEL dominated all other learning algorithms. Except on the noisy datasets Car-

cinoGenesis and ILPD on which all three learning problems could not find the solution

for training datasets, SPaCEL outperformed both CELOE and ParCEL in all other

datasets.

The t-test result on learning time shows that SPaCEL was statistically significantly

faster than CELOE in 13/14 problems and than ParCEL for 10/14 learning problems. It

was statistically significantly slower than ParCEL for 2/14 problems. It is worth noting

that all the slower learning times of SPaCEL were in the first and second groups. The

definition lengths in this group were short and the learning times were very small.

127

6. Symmetric Class Expression Learning

6.3.4 Experiment 4 - The learnt definitions

Besides the search tree size, the learning time and the predictive accuracy, the defini-

tions produced by the three learning algorithms and their length were also analysed.

Table 6.6 presents the definitions’ length produced by the three algorithms in the ex-

periment. In this table, definition length of ParCEL and SPaCEL are reported by the

number of partial definitions and the average length of the partial definitions. There-

fore, their average length definitions are the product of those numbers.

Table 6.6: Definition length of the learning problems (means ± standard deviations of 10
folds). The bold values are the definition lengths after the timeout occurred.

Problem (Partial) definition length No of partial definitions

CELOE ParCEL SPaCEL ParCEL SPaCEL

Low to medium complexity learning problems without timeout

Moral 3.00

±0.00

1.52

±0.05

1.50

±0.00

2.10

±0.32

2.00

±0.00

Forte 13.50

±1.00

7.75

±0.50

8.50

±0.00

2.00

±0.00

2.00

±0.00

PokerStraight 11.70

±0.68

10.90

±1.31

19.75

±2.50

1.70

±0.68

1.00

±0.00

Brother 6.00

±0.00

6.00

±1.83

6.40

±0.84

1.00

±0.00

1.00

±0.00

Daughter 5.00

±0.00

5.25

±1.09

6.20

±0.63

1.10

±0.32

1.00

±0.00

Father 5.00

±0.00

5.50

±0.53

5.90

±0.98

1.00

±0.00

1.00

±1.00

Grandson 7.25

±0.50

7.25

±0.50

8.00

±0.00

1.00

±0.00

1.00

±0.00

High to very high complexity learning problems without timeout

Aunt 19.00

±0.00

8.80

±0.48

10.10

±0.97

2.00

±0.00

2.00

±0.00

Cousin 23.40

±2.59

8.50

±0.00

8.50

±0.00

2.00

±0.00

2.00

±0.00

Continued on next page

128

6. Symmetric Class Expression Learning

Table 6.6 – continued

Problem (Partial) definition length No of partial definitions

CELOE ParCEL SPaCEL ParCEL SPaCEL

Uncle 19.00

±14.94

8.40

±0.38

10.15

±1.67

3.00

±0.00

2.00

±0.00

Learning problems with timeout

CarcinoGenesis 4.80

±0.42

55.87

±9.52

138.00

±51.46

72.70

±3.43

17.00

±5.74

UCA1 9.00

±0.00

12.75

±0.00

16.65

±0.47

4.00

±0.00

4.00

±0.00

MUBus-1 12.70

±0.48

16.99

±0.42

63.40

±10.54

15.00

±1.56

6.30

±1.25

MUBus-2 2.00

±0.00

16.07

±0.19

101.29

±45.37

24.80

±3.52

12.00

±2.79

MUBus-3 2.00

±0.00

14.64

±0.13

205.90

±85.49

25.40

±1.58

18.10

±1.85

ILPD 5.80

±1.69

8.34

±0.12

13.30

±1.40

42.80

±1.69

37.00

±2.06

The experimental results show that ParCEL and SPaCEL produced longer defini-

tions than CELOE for most learning problems. By manually inspecting results, the

following reasons were identified:

1. The overlap between partial definitions.

2. ParCEL and SPaCEL tend to produce more specific definitions than CELOE due

to the use of sub-solutions.

3. Long definitions are necessary: Long definition are necessary to describe the learn-

ing problem accurately while the shorter definition cannot completely describe the

problem. It may be a partial result received when the algorithm could not find

the solution within given restrictions (time, memory, etc.).

For the learning problems in the first two groups, where all three algorithms can find

the definition for the training sets without timeout, the differences in definition length

129

6. Symmetric Class Expression Learning

between three algorithms were small. This was caused by the overlap between partial

definitions. In some cases, they can be shortened using some optimisation strategies.

For example, the definitions produced by CELOE and SPaCEL for the Forte dataset

(the uncle relationship definition) are:

• CELOE:

male AND ((married SOME sibling SOME Person) OR

(married SOME hasSibling SOME hasChild SOME Thing))

• SPaCEL (two partial definitions):

1. hasSibling SOME hasChild SOME Thing AND (NOT female)

2. married SOME hasSibling SOME hasChild SOME Thing AND (NOT female)

The length of the definition produced by CELOE is 15 and SPaCEL is 19 (length

of two partial definitions plus 1 for disjunction). However, at least 3 axioms in the

SPaCEL final definition can be reduced by removing the common part among partial

definitions, i.e. AND NOT female. That means if the same normal form [51, 86] is

applied for both CELOE and SPaCEL, the difference between their lengths can be

reduced. Moreover, NOT female can be replaced by Male if male and female are

declared as disjoint properties. This is the idea of the optimisation and simplification

in description logic [3, 65]. Currently, this idea has not yet been implemented in

our algorithm. However, breaking down a long definition (as for CELOE) into several

smaller partial definitions (as for SPaCEL) may help the definitions to be more readable,

particularly for long definitions.

For the learning problems on which at least one of the learning algorithms cannot

find an accurate definition on the training set, i.e. the timeout occurred in the exper-

iments, definitions produced by SPaCEL are significant longer than those of CELOE.

In some learning problems, CELOE produced shorter definitions because it could not

find the solution for the training set. This is also the major class of learning problem

that we want to focus on, i.e. complex learning problems. The experimental result

on the UCA1 dataset is used to demonstrate the difference in searching for the defini-

tions between the three algorithms. This is a complex and noiseless learning problem.

130

6. Symmetric Class Expression Learning

Therefore, the distraction of the noisy data in the learning strategy can be avoided.

The definitions produced by three algorithm for the UCA1 dataset are as follows:

• CELOE:

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND

hasDurationValue ≤ 21.5)

• ParCEL:

1. activityHasDuration SOME (hasDurationValue ≥ 4.5 AND

hasDurationValue ≤ 15.5)

2. activityHasDuration SOME (hasDurationValue ≥ 15.5 AND

hasDurationValue ≤ 19.5) AND activityHasStarttime SOME Spring

3. activityHasDuration SOME (hasDurationValue ≥ 15.5 AND

hasDurationValue ≤ 19.5) AND activityHasStarttime SOME Summer

4. activityHasStarttime SOME Autumn AND activityHasDuration SOME

(hasDurationValue >= 4.5 AND hasDurationValue <= 19.5)

• SPaCEL (lazy combination):

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND

hasDurationValue ≤ 19.5) AND (NOT (activityHasDuration SOME

hasDurationValue ≥ 15.5 AND activityHasStarttime SOME Winter))

Obviously, the short definition (length 9) produced by CELOE does not fully de-

fine the positive examples (both training accuracy and predictive accuracy were not

100%). Meanwhile, ParCEL produced a longer definition (length 51) but it describes

the positive examples accurately (both training and predictive accuracy were 100%).

The definition produced by SPaCEL for this dataset better demonstrates the idea of

using the symmetric learning approach and exceptions in learning in comparison with

the result on the Forte dataset discussed above. The definition found by SPaCEL is a

combination of the following expression:

131

6. Symmetric Class Expression Learning

activityHasDuration SOME (hasDurationValue ≥ 4.5 AND hasDurationValue ≤
19.5)

and a counter-partial definition:

activityHasDuration SOME (hasDurationValue ≥ 15.5 AND activityHasStarttime

SOME Winter)

This definition is shorter than the definition produced by ParCEL and it still de-

scribes the positive examples accurately.

6.4 Conclusion

A symmetric approach to class expression learning has been proposed where we learn

from both positive and negative examples simultaneously. This is motivated by learning

scenarios where negative examples can be classified using simple patterns. This is

common in practice and our empirical experiments suggested that our approach dealt

well with this kind of scenario. More importantly, this approach to class expression

learning is not only suited for the motivation scenario but can deal with other kinds

of learning problems, as shown in Table 6.4. For example, the Forte learning problem

can be solved by the top-down approach (e.g. CELOE and ParCEL) without using

negation, i.e. negative example definitions (see Section 6.3.4). However, this learning

problem has been solved faster by SPaCEL, which uses the definitions of negative

examples, without decreasing the predictive accuracy.

Some current learning algorithms, e.g. CELOE and ParCEL, which were used in

our evaluations, can also solve this category of problem by specialising the concepts or

using negation and conjunction to remove negative examples from candidate concepts.

However, for some datasets with regular exception patterns such as MUBus and UCA1,

these algorithms had difficulties in finding the right concept: their learning times were

very long in comparison with SPaCEL, which sometimes caused the system to run out

of memory before the definition can be found. The most impressive improvements were

in the search tree size and learning time. Although SPaCEL often generated longer

definitions than other algorithms, there was no over-fitting for the datasets used.

132

6. Symmetric Class Expression Learning

However, the definitions generated by SPaCEL are not optimised. The normalisa-

tion and simplification can be used to produce better definitions, i.e. shorter and more

readable. This, together with the investigations on more datasets will be the future

work for further research.

133

6. Symmetric Class Expression Learning

134

Chapter 7

Improving Predictive Correctness

by Fortification

This chapter proposes a method to improve the predictive correctness of class

expression learning. The motivation for this is described first, followed by a

method for addressing the problem. Then, the architecture and algorithm for

the proposed method is introduced. The chapter ends with several experi-

ments to demonstrate the efficacy of the proposed method.

7.1 Problem Description

Predictive accuracy is the basic criteria used in assessment of the learnt concepts in

machine learning. It reflects the prediction ability of the learnt concepts over unseen

examples. Essentially, predictive accuracy of a learnt concept depends upon the number

of covered positive (true positives) and uncovered negative (true negatives) examples of

the learnt concept. These are the two main factors that directly affect the completeness

and correctness of the prediction (see Section 3.2.1 for details).

In description logic learning, the top-down approach is mostly used in comparison

with other approaches as it can use the rich hierarchical structure of the knowledge

base to build the search tree. This approach produces short, concise definitions and

135

7. Improving Predictive Correctness by Fortification

thus the learnt definitions tend to be biased towards generality, i.e. the completeness of

the prediction. This is suitable for some types of applications. However there are also

certain types of application that require bias towards the correctness of the prediction.

For example, consider the criminal behaviour warning systems that observe and

learn the usual patterns of the daily life activities and use them, along with the Negation

As Failure (NAF) inference rule [27, 40], to predict criminal activities. In these systems,

missing criminal behaviours is very serious. Therefore, suppose that the cry-wolf effect

[19, 22, 139] can be avoided, such systems usually prefer the false positives to the false

negatives. Similarly, consider the elderly care systems in which the systems also observe

and learn the normal behaviours of the elderly and use the learnt behaviours, together

with NAF inference rule, to detect abnormalities. Missing any abnormal behaviours

may threaten the inhabitant’s safety. In other words, correctness of the learnt rules

is more important than the completeness. It is worth noting that normal and legal

(moral) behaviours occur much more often than abnormal and criminal behaviours.

Therefore, learning the normal and moral behaviours will result in better descriptions

of the behaviours than that of the criminal or abnormal behaviours. Consequently, it

is more plausible to learn and use moral and normal behaviour patterns (with NAF)

to detect the criminal and abnormal behaviour than to learn and use the normal and

criminal or abnormal behaviour patterns.

Learning in description logics is essentially a search problem (see Section 2.2.2) and

most learning algorithms use a search heuristic to guide the search. A common method

for trading off between completeness and correctness of the learnt concepts is to adjust

the search heuristic [69, 70]. A learning algorithm that uses a search heuristic pri-

oritising completeness will likely produce higher completeness concepts than learning

algorithms that prioritise correctness and vice verse. However, an inappropriate ad-

justment to the search heuristic may prevent the learning algorithm from achieving the

right definition. Moreover, this approach is not flexible as changing the trade-off level

requires the learning problem to be relearnt. Therefore, in this chapter, an approach is

proposed to improve the predictive correctness for class expression learning algorithms

that can avoid the above problems. The basic idea of this method is to fortify the

learnt concept by a redundant specialisation to reduce the number of false positives. In

136

7. Improving Predictive Correctness by Fortification

Figure 7.1: The creation of a prediction model for a learning problem. Pluses (+) and
minuses (–) represent positive and negative examples in training set respectively.

(a) Generation of a prediction model: D is
a description, N1, N2, and N3 are counter-
partial definitions produced by a learning
algorithm.

(b) Prediction model after the combination
and reduction: C ≡ D � ¬(N1 � N2) de-
scribes all positive examples and no nega-
tive examples.

addition, to prevent the cry-wolf problem, a balanced trade-off between the predictive

correctness and completeness must be maintained. That means the predictive accuracy

should not be decreased by over-specialisation.

Figures 7.1 and 7.2 describe the basic idea of our approach. Figure 7.1 shows

a learning problem with a set of training positive (pluses) and negative (minuses)

examples. Let D be a description, N1, N2 and N3 counter-partial definitions generated

by a learning algorithm with their coverage are described in Figure 7.1(a). A possible

prediction model (definition) for the learning problem is C ≡ D�¬(N1�N2) as depicted

in Figure 7.1(b). N3 is not included in the learning result as C is sufficient to accurately

define the positive examples of the learning problem.

A possible prediction scenario of the prediction model C in Figure 7.1(b) is illus-

trated in Figure 7.2(a). In this scenario, the prediction model produces some false

positives as it covers 4 negative examples in the test set (grey minuses) that are sup-

posed to be covered by the redundant counter-partial definition N3. Therefore, the

prediction model C can avoid producing false positive predictions if it is fortified by

making conjunction with the negation of N3: C ≡ D � ¬(N1 �N2) � ¬N3.

The above example demonstrates that fortification of the learnt concept by speciali-

sation might help to increase the predictive correctness of the learnt concept. However,

it might also decrease the predictive completeness as shown in Figure 7.2(b). One

137

7. Improving Predictive Correctness by Fortification

Figure 7.2: A prediction scenario of the prediction model in Figure 7.1. Grey pluses and
minuses represent positive and negative examples in the prediction (test set).

(a) Prediction model without N3. There
are 4 negative examples covered by C that
are also covered by N3. However, N3 was
removed by reduction as it is redundant in
the training model.

(b) Prediction model with N3. If N3 is
included in C, 4 covered negative examples
in Figure 7.2(a) can be removed from the
C coverage. However, N3 also excludes one
positive example from C coverage.

more positive example is misclassified caused by the fortification. Moreover, inappro-

priate fortification not only cannot increase predictive correctness, but also decreases

predictive completeness. For example, Figure 7.3(a) shows a learning problem with 6

learnt descriptions. Three of them, D,N1 and N2, are sufficient to construct the final

definition. The remaining descriptions, N3, N4 and N5, are the potential candidates

for fortification of the learnt concept. However, the predictive model in Figure 7.3(b)

suggests that only N3 can help to increase predictive correctness and accuracy. On the

other hand, N4 does not change the prediction accuracy while N5 decrease predictive

completeness and accuracy.

Therefore, there are a number of challenges to improve the predictive correctness

using fortification, with the constraint on the balance trade-off between the predictive

correctness and predictive completeness, as follows:

Q1. How to generate candidates for fortification? Fortification candidates are descrip-

tions that can remove negative examples covered by the learnt concept in the test

set or more generally in the prediction (classification). The proposed method must

be general so that it can be used with most class expression learning algorithms.

Q2. How to choose the best candidates for fortification? As was described in Fig-

ure 7.3(b), fortification candidates may have different effects on the fortification.

138

7. Improving Predictive Correctness by Fortification

Figure 7.3: Decrease of predictive accuracy caused by inappropriate fortification. Nota-
tions are used similarly in Figure 7.1.

(a) A learning problem with several de-
scriptions produced. An accurate defini-
tion for this learning problem can be con-
structed from D,N1 and N2 : D�¬(N1�
N2). N3, N4, N5 can be considered as re-
dundancies in the prediction model.

(b) Using N3 for fortification helps to in-
crease predictive correctness (and accu-
racy). However, using N4 does not help.
Moreover, using N5 decreases the predic-
tive accuracy (does not increase correct-
ness and decreases completeness).

Some descriptions may help to increase the predictive correctness while some oth-

ers do not. Moreover, some of them may effect the predictive accuracy badly, i.e.

they decrease the predictive completeness.

Q3. How many descriptions should be used for the fortification? The more descrip-

tions are used for fortification, the more chances to increase predictive correct-

ness. However, it also increases the chance of decreasing predictive completeness.

Therefore, how many descriptions are sufficient for the fortification that ensures

the predictive accuracy does not decrease?

This chapter proposes a fortification method for class expression learning that will

address the above questions to improve the predictive correctness of the learnt concepts

without reduction of the predictive accuracy. Besides, this approach is expected to be

as independent of the training model as possible so that it can be applied to various

class expression learning algorithms. Our method can be used in applications that

favour correctness over completeness.

This problem is approached by first proposing an architecture for producing the can-

didates for fortification. Then, four strategies for scoring and selecting the fortification

candidates are described. Finally, several experiments are performed to demonstrate

139

7. Improving Predictive Correctness by Fortification

effects of our methods on the predictive correctness improvement.

7.2 Fortification Candidates Generation

In this section, a method to generate the fortifying definitions using class expression

learning algorithms is described. One of the most important objectives of this method

is that it must be general enough so that it can be used with several class expression

learning algorithms. This addresses question Q1 in the problem description section

(Section 7.1).

In general, a class expression learning algorithm uses a knowledge base and sets of

positive and negative examples as input and produces one or more descriptions such

that each of them covers all positive examples and no negative examples in the training

set (also called definitions). The learnt definitions are expected to have predictive

capability to classify positive examples. A formal definition of the class expression

learning problem was given in Definition 2.16. For the purpose of this chapter, the

class expression learning problem with the consideration of noise and multiple learnt

concept results is redefined as follows:

Definition 7.1 (Class expression learning with noise). Given a learning problem

LP = 〈K, (E+,E−)〉 as defined in Definition 2.16 and a noise value ε ∈ [0, 1], a class

expression learning problem with noise, denoted by a structure 〈K, (E+,E−), ε〉, is to

compute a set of descriptions X = {C ∣∣ |cover(K, C,E+)| ≥ (|E+|×(1−ε)) and cover(K,

C,E−) = ∅}. �

Practically, some class expression learning algorithms produce only one solution, i.e.

one concept, such as CELOE. This may be considered as a special case of the above

definition where the solution set consists of only one solution.

The basic idea of fortification is to fortify the learnt concepts using a redundant

specification. This is essentially a further specialisation of the learnt concepts using a

set of descriptions that are expected to be able to cover some negative examples in the

test set (prediction). Therefore, the descriptions used for fortification are actually the

definitions of negative examples generated by a class expression learning algorithm so

that they can predict the negative examples in the test set. A fortification candidates

140

7. Improving Predictive Correctness by Fortification

Figure 7.4: Fortification candidates learning. A class expression learning algorithm L

as defined in Definition 7.1 is used to learn a set of definitions for positive examples and
then it is used to produce a set of fortifying definitions by swapping positive and negative
examples.

start

learn a set of definitions
Y = L(K, E+, E ,)

C = best definition in Y

end

learn the set of
fortifying definitions
X = L(K, E , E+, t)

return (C, X)

learning problem can now be defined below.

Definition 7.2 (Fortification candidates learning problem). Given a class ex-

pression learning algorithm L, a learning problem LP = 〈K, (E+,E−)〉, a noise value

ε ∈ [0, 1] and a fortification coverage threshold t ∈ [0, 1], a fortification candidates

learning problem is to find a description C such that |cover(K, C,E+)| ≥ (|E+| ×
(1 − ε)) and cover(K, C,E−) = ∅ and a set of descriptions X = {D ∣∣ |cover(K, D,

E−)| ≥ (|E−| × (1− t)) and cover(K, D,E+) = ∅} using the learning algorithm L. �

C is the definition of the positive examples of the learning problem LP produced

by L and the descriptions in X are the candidates for the fortification of the learnt

definition. Basically, descriptions in X are the counter-partial definitions as defined

in Definition 6.1. However, in this chapter, these definitions are used for a different

purpose and therefore they are named the fortifying definitions to reflect their function.

Given a general class expression learning algorithm, a method for learning an additional

set of fortifying definitions is proposed as illustrated in Figure 7.4.

The learning problem LP is first passed to the class learning algorithm L to compute

141

7. Improving Predictive Correctness by Fortification

the set of definitions of the positive examples. Then, the set of positive and negative

examples are swapped and passed to the algorithm L again together with the fortifica-

tion threshold to compute a set of fortifying definitions. In this step, the fortification

threshold is used as the noise percentage for the swapped learning problem (i.e. the

learning problem with positive and negative examples being swapped). For example, if

the fortification threshold is set to 10%, the learning algorithm can accept descriptions

that cover 10% of the positive examples of the swapped learning problem, i.e. 10% of

the negative examples in the original fortification candidates learning problem. There-

fore, this is a constraint on the selection of the class expression learning algorithm used

for learning the fortification candidates.

A formal fortification candidate learning algorithm is given in Algorithm 7.1. In

this algorithm, a function Accuracy() is used to compute the accuracy of a given

description on the training dataset (see Definition 3.2).

Algorithm 7.1: Fortification candidates learning –
FCandLearning(L,K,E+,E−, ε, t).

Input: a class expression leaning algorithm L, a class expression learning
problem 〈K, (E+,E−)〉, a learning noise value ε ∈ [0, 1] (0 means no
noise) and a fortification coverage threshold value t ∈ (0, 1) acts as the
learning noise.

Output: a definition C and a set of fortifying definitions X produced by L such
that |cover(K, C,E+)| ≥ (|E+| × (1− ε)) and |cover(K, C,E−)| = 0 and
∀D ∈ X : |cover(K, D,E−)| ≥ (|E−| × (1− t)) and cover(K, D,E+) = ∅.

1 begin
/* perform normal learning to learn the definition for pos.

examples */

2 Y = L(K,E+,E−, ε) /* find a set of definitions using L */

3 select a definition C ∈ Y | ∀E ∈ Y : Accuracy(C) ≥ Accuracy(E)

/* learn the fortifying definitions by reversing the sets of

examples and using the threshold t */

4 X = L(K,E−,E+, t)

5 return (C,X)

The definition of positive examples is called the learnt definition to distinguish with

the fortifying definitions that are the definitions of negative examples.

142

7. Improving Predictive Correctness by Fortification

7.3 Fortification Strategy

In this section, we describe some fortification strategies that aim to select the most

promising candidates for fortification within a set of fortifying definitions produced

by a fortification candidate learning algorithm as described in Algorithm 7.1. The

general idea of our strategies include two steps. The first is to assign each fortifying

definition a score and rank them accordingly to their score. Then, an appropriate

number of fortifying definitions is selected so that it can help to increase the predictive

correctness without decreasing the predictive accuracy.

The strategies address two questions Q2 and Q3 in the problem description section

(Section 7.1): i) how to choose the best candidates for fortification?, and ii) how many

candidates are sufficient for fortification?

7.3.1 Fortification candidates scoring

The aim of fortification candidates scoring is to score the fortifying definitions ac-

cordingly to their potential impact. The scores are then used to rank the fortifying

definitions to support the selection of the most promising fortifying definitions.

A fortifying definition is promising for the fortification if it can help to exclude

the negative examples covered by the learnt concept in the test set (see Figure 7.3b).

However, as the negative examples in the test set are unknown when the learning

takes place, a method for predicting the influence of the fortifying definitions is needed.

Fortifying definitions can be considered as prediction models for the negative examples.

Therefore, scoring the fortifying definitions is basically the estimation of their predictive

power. This motivates two methods for scoring the fortifying definitions. The first is

to consider their training coverage as the factor that represents their predictive power.

The second is to use a dataset, called the (fortification) validation dataset, to evaluate

their predictive power. This dataset does not overlap with the training and test sets.

A fortifying definition that give a good prediction power on the validation dataset is

expected to have a similar performance on the test set.

In addition, the prediction scenario illustrated in Figure 7.3(b) motivates another

method for scoring the fortifying definitions. This method is based on the overlap

143

7. Improving Predictive Correctness by Fortification

between the learnt concept and the fortifying definitions. Here, the concept overlap is

used with the following meaning: Two descriptions are overlapped if they cover some

common instances. The scenario in Figure 7.3(b) shows that if a fortifying definition is

not overlapped with the learnt concept, it will not influence the predictive correctness

even if it covers many negative examples. For example, in Figure 7.3(b), N3 can help

to exclude some negative examples covered by the learnt definition C as it covers

some common negative examples (overlapped) with C. On the other hand, although

N4 covers some negative examples, it does not influence the predictive correctness as

it covers negative examples that are not covered by the learnt definition (i.e. not

overlapped).

Therefore, in this method, the concept similarity measure is used to compute the

overlap between the fortifying definition candidates and the learnt concept. The simi-

larity measure based on both the ABox and TBox of the knowledge base are combined.

The more overlap between a fortifying definition and the learnt concept there is, the

more influence the fortifying definition has in the prediction. The following sections

provide detailed description of our scoring methods.

7.3.1.1 Training coverage scoring

In this method, the training coverage of the fortifying definitions is used as their score.

This information is the result of the training (learning) process and it is associated with

every fortifying definition. The essential idea behind this method is that the training

coverage potentially implies the generality and the predictive power of the fortifying

definitions. The more general a fortifying definition is, the more chance for it to cover

more negative examples in the test set in comparison with a less general definition.

The biggest advantage of this method is that the coverage is available from the

learning process. Therefore, there is no extra computation required for scoring the

fortifying definitions. In addition, high predictive power of the fortifying definitions

(high coverage) may imply a higher chance for it to cover negative examples in the test

set. The score of a fortifying definition C in this method is defined as follows:

score(C) =
|cover(K, C,E−)|

|E−| (7.1)

144

7. Improving Predictive Correctness by Fortification

This value is actually the training completeness of the fortifying definition. There-

fore, this information is associated with each fortifying definition and thus it does not

need to be re-computed. In addition, higher priority is given to short fortifying defini-

tions in case the fortifying definitions have the same coverage on E−. In the top-down

approach, shorter definitions are usually more general than longer ones. Therefore, this

factor is used as a tiebreaker in scoring the fortifying definitions. It can now be defined

as below.

Definition 7.3 (Training coverage score). Let LP = 〈K, (E+,E−)〉 be a learning

problem, C a fortifying definition learnt from LP, max fdlength the maximal length of

all fortifying definitions learnt and length(C) a function that returns the length of the

definition C. The score of the fortifying definition C based on the training coverage

scoring method is defined as follows:

TCScore(C) =
|cover(K, C,E−)| ×max fdlength− length(C)

|E−| ×max fdlength
(7.2)

�

The multiplication cover(K, C,E−) with max fdlength in Equation (7.2) is to en-

sure the training coverage is used as the primary criteria when ranking (sorting) the

fortifying definition and the division is to scale the score into [0, 1]. The algorithm for

scoring a set of fortifying definitions is given in Algorithm 7.2.

7.3.1.2 Fortification concept similarity scoring

In this strategy, the overlap between the fortifying and the learnt definitions is used to

score the fortifying definitions.

Concept overlap measure

There are several approaches to assess the overlap between concepts that are based on

the computation of similarity between concepts. The first approach is based on the

overlap between instances in the ABox of the knowledge base [33, 34, 44, 68]. There

are also some other approaches that use the refinement or subtraction operators in

description logics such as [120, 130]. In our method, the overlap between concepts is

145

7. Improving Predictive Correctness by Fortification

Algorithm 7.2: Training coverage scoring – TCScore(X,K,E+,E−).
Input: a set of fortifying definitions X and a learning problem

LP = 〈K, (E+,E−)〉
Output: a set of scored fortifying definitions based on Equation (7.2).

1 begin
2 max length = 0 /* maximal length of the fortifying definitions */

3 Y = ∅ /* set of scored fortifying definitions */

/* calculate the maximal length of the fortifying definitions */

4 foreach C ∈ X do
5 if max length < length(C) then max length = length(C)

/* compute the score for the fortifying definitions */

6 foreach C ∈ X do
7 coverC = cover(K, C,E−) /* set of neg.examples covered by C */

8 scoreC = (coverC ×max length− length(C)) / (|E+| ×max length)
9 Y = Y ∪ {(C, scoreC)}

10 return Y

computed based on the instances in the ABox. Basically, overlap between concepts is

measured by the ratio between common instances over total instances covered by both

descriptions (i.e. the Jaccard coefficient) as follows:

JOverlap(C,D) =
|cover(K, C,E) ∩ cover(K, D,E)|
|cover(K, C,E) ∪ cover(K, D,E)| (7.3)

where C,D are two descriptions, E is a set of instances in which the similarity is tested

and K is the knowledge based that contains the concepts and instances.

In our method, the similarity measure proposed in [34] is adopted, which extends

Equation (7.3) with the reduction by the major incidence of the intersection with

respect to either concept (see [34] for more details).

overlap(C,D) =
|cover(K, C,E) ∩ cover(K, D,E)|
|cover(K, C,E) ∪ cover(K, D,E)| ×

max

(|cover(K, C,E) ∩ cover(K, D,E)|
|cover(K, C,E)| ,

|cover(K, C,E) ∩ cover(K, D,E)|
|cover(K, D,E)|

)
(7.4)

146

7. Improving Predictive Correctness by Fortification

The following example illustrates the overlap calculation between concepts defined

in Equation (7.4).

Example 7.1 (Concept similarity calculation). Let NC be a set of concept names,

NR be a set of role names, K = (T,A) be a knowledge base with TBox T and ABox A,

and E be a set of instances of the concepts in K as follows:

• NC = {Person,Male,Female,Mother,Father,Child}

• NR = {married, hasChild, hasParent}

• T =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Male Person,Female Person,Male ≡ ¬Female

Mother ≡ Female � ∃hasChild.Person
Father ≡ Male � ∃hasChild.Person
Child ≡ Person � ∃hasParent.Person

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

• A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Person(a),Female(a), hasChild(a, b), hasChild(a, c)

Person(b),Male(b), hacChild(b, d), hasParent(b, a)

Person(c),Male(c), hasChild(c, e), hasParent(c, a)

Person(e),Female(e), hacParent(e, c)

Person(d),Female(d), hasChild(d, h), hasParent(d, b),marriedTo(d, g)

Person(h),Female(h), hasParent(h, d), hasParent(h, g)

Person(g),Male(g),marriedTo(g, d))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

• E = {a, b, c, d, e, g, h}

Then, examples of the computation of the overlap between concepts are given below.

(1) overlap(Person, Female) :

� cover(K,Person,E) = {a, b, c, d, e, g, h}
� cover(K,Female,E) = {a, d, e, h}
⇒ overlap(Person,Female) =

|{a, d, e, h}|
|{a, b, c, d, e, g, h}|×

max

(|{a, d, e, h}|
|{a, b, c, d, e, g, h}| ,

|{a, d, e, h}|
|{a, d, e, h}|

)

=
4

7
= 0.571

147

7. Improving Predictive Correctness by Fortification

(2) overlap(Female,Mother) :

� cover(K,Parent,E) = {a, b, c, d, g}
� cover(K,Female,E) = {a, d, e, h}
⇒ overlap(Female, Mother) =

|{a, d}|
|{a, b, c, d, e, g, h}|×

max

(|{a, d}|
|{a, b, c, d, g}| ,

|{a, d}|
|{a, d, e, h}|

)

=
2

7
× 2

4
=

1

7
= 0.143

(3) overlap(C, D) : where,

C ≡ Person � ∃hasChild.Person
D ≡ Person � ∃marriedTo.Person

� cover(K, C,E) = {a, b, c, d, g}
� cover(K, D,E) = {d, g}
⇒ overlap(C, D) =

|{d, g}|
|{a, b, c, d, g}| ×max

(|{d, g}|
|{a, b, c, d, g}| ,

|{d, g}|
|{d, g}|

)

=
2

5
= 0.4

�

The algorithm for measuring the overlap between two concepts is given in Alg. 7.3.

Concept similarity measure

The method above computes the overlap between two concepts based on the ABox,

i.e. the instances (or the snapshot) of the knowledge base. As the result, it is sen-

sitive to the change of instances of the knowledge base. Therefore, in our fortifying

definition scoring is based on the overlap between the learnt concept and the fortify-

ing definition, the semantics of the concepts in the descriptions is used to strengthen

the measure of Equation (7.4) to reduce the dependency of the measure on the ABox.

This method uses the semantics of the concepts defined by the TBox (e.g. subclass,

sub-role, equivalent class, etc.) to estimate the similarity between concepts. Here, the

word similarity is used to imply the independence of the measure on the instances or

148

7. Improving Predictive Correctness by Fortification

Algorithm 7.3: Concept overlap measure – COverlap(C, D, K,E)

Input: Two description C, D, a knowledge base K = (T,A) and a set of
instances E.

Output: an overlap value between C and D as defined in Equation (7.4).
1 begin

/* see Definition 3.1 for definition of function cover () */

2 intersection = cover(K, C,E) ∩ cover(K, D,E)
3 union = cover(K, C,E) ∪ cover(K, D,E)

/* overlap without dissimilarity factor */

4 basicOverlap = |intersection| / |union| /* |X|: no.of X’s elements */

/* dissimilarity factor */

5 dissimilarity =
max(|intersection| / |cover(K, C,E)|, |intersection| / |cover(K, D,E)|)

6 return (basicOverlap× dissimilarity)

snapshot of the knowledge base and the stability by using the semantics of the concepts

in the TBox. Intuitively, concept similarity is more general than concept overlap. The

overlap between concepts indicates the similarity between them. However, two similar

descriptions do not necessarily have common instances. Similarity implies the potential

or probability of the overlap between descriptions. The more similar the concepts are,

the more they are likely to have common instances.

There is no widely accepted method for measuring the similarity between descrip-

tions using the TBox. As the above overlap computation uses a particular ABox, the

amount of the overlap can always be computed. On the other hand, concepts them-

selves sometimes do not provide sufficient information for estimation of their similarity.

For example, given a concept hierarchy as shown in Figure 7.5, there may not have any

information about the similarity between the concepts Father and Brother without a

particular ABox. A father may be a brother or not, depending upon the particular

circumstances.

However, in some cases, semantics of the concepts may help to estimate the chance

of being similar between concepts or compare the chance of being similar amongst con-

cepts. For example, the similarity between Child and Son is higher than the similarity

between Brother and Father. In addition, if a statistical distribution is identified for

the distribution of the instances of Child, Son and Daughter concepts, we can estimate

149

7. Improving Predictive Correctness by Fortification

Figure 7.5: Family concepts hierarchy. Arrows represent subclass relations (superclass
−→ subclass)

Thing

Person

Male Female Parent Child

Brother Father Son Mother Daughter Sister Dad Mom

a specific value for the similarity between Child and Son or Child and Daughter. For

example, if the instances of these three concepts follow the uniform distribution [73],

the probability of an instance of the concept Child being also an instance of the concept

Son is about 50%. This probability can be used to estimate the similarity between the

above concepts.

In this method, the Jaccard coefficient similarity and the semantics of the concepts

defined in the TBox are used to estimate the similarity between two descriptions based

on their composite atomic concepts and roles. Jaccard is a popular method to compute

the overlap between (elements of) two sets [67, 110]. It is defined as the ratio between

the intersection of the two sets over the union of the two sets. Given two descriptions

C and D in disjunctive normal form: C ≡ C1 � . . . � Cn and D ≡ D1 � . . . �Dm, then

we define the Jaccard similarity between C and D is the maximal similarity of all pair

of disjuncts (Ci, Dj) as follows:

JSim�(C,D) =

⎧⎪⎪⎨
⎪⎪⎩

1, if C ≡ D

0, if C �D ≡ ⊥
maxi=1..n,j=1..m JSim(Ci, Dj)

(7.5)

where JSim(Ci, Dj) is the Jaccard similarity between two descriptions with no disjunc-

tion. The max function used in the case of disjunction is one of the possible methods

that is chosen due to its simplicity. In addition, the intuition behind this selection is

that sub-concepts in disjunctions account for a certain aspect of the overall concept.

Hence, if they perfectly match on one aspect, then their individuals may be interchange-

150

7. Improving Predictive Correctness by Fortification

able. Other aggregations such as min, the composition of min and max, or a weighted

average may be viable options with an intuitive criterion in the background.

The similarity computation of a concept is separated into two parts: i) similarity

between composite concepts at the top level and the similarity between properties of

the given concept. The similarity result is the sum of those values. It is defined as

follows:

JSim(Ci, Dj) = λ [simPrim(Ci, Dj) + simPro(Ci, Dj)] (7.6)

where,

• λ is the scoring factor. It is used to normalise the scoring value (e.g. into the

range of [0, 1]).

• simPrim(Ci, Dj) is the similarity between the primitive concepts of two descrip-

tions Ci and Dj . It is computed as the average of the Jaccard index of all pairs

of primitive concepts (A,B) in Ci and Dj :

simPrim(Ci, Dj) =
1

|cname(Ci)| × |cname(Dj)|
∑

A∈cname(Ci)
B∈cname(Dj)

jIndex(A,B) (7.7)

where cname(X) is the set of primitive concepts occurring at the top level of X

and jIndex(A,B) is the Jaccard coefficient similarity (Jaccard index) between two

primitive concepts A and B, which is defined as the Jaccard similarity between

the sub-concepts of A and B. In description logics, there may be equivalence

relations between concepts and properties, the intersection (or union) operator

in the original computation must be re-defined. In our method, the intersection

operator, denoted by �, is redefined and the Jaccard similarity computation is

defined as follows:

jIndex(A,B) =
|subcon(A) � subcon(B)|
|subcon(A) ∪ subcon(B)| (7.8)

where,

151

7. Improving Predictive Correctness by Fortification

– subcon(C) is a set of (inferred) sub-concepts of the primitive concept C with

respect to the TBox T:

subcon(C) =

{
{D ∈ T | D C}, if ∃D ∈ T such that D �= C and D C

C, otherwise.

– � is the intersection operator, which can deal with the equivalence semantics

of the elements of two sets:

X � Y =
{
C | (C ∈ X and C ∈ Y)

or (C ∈ X and ∃D ∈ Y : C ≡ D)

or (C ∈ Y and ∃D ∈ X : C ≡ D)
}

• simPro(Ci, Dj) is the similarity between properties in descriptions Ci and Dj :

simPro(Ci, Dj) =

⎧⎪⎨
⎪⎩

0, if rcomm(Ci, Dj) = ∅
1
n

∑
P∈rcomm(Ci,Dj)

JSim(range(P,Ci), range(P,Dj)), otherwise

(7.9)

where,

– rcomm(Ci, Dj) is a set of properties that are used in both Ci and Dj ,

– n = |rcomm(Ci, Dj)|,
– range(P,X) is the range of a property P in the description X. If the property

P is used more than one time in X, the conjunction of the ranges is returned.

As this method is based on the TBox without reference to the concepts population,

i.e. the number of instances of the concepts, it is assumed that the distribution of in-

stances of the concepts follows the uniform distribution [73]. The similarity calculation

between properties is projected into the similarity calculation between the ranges of

the common properties of the descriptions. The following example demonstrates the

computation of similarity between descriptions using our method.

152

7. Improving Predictive Correctness by Fortification

Example 7.2 (Description similarity calculation using Jaccard method). This

example demonstrates the computation of similarity between concepts in disjunctive

normal form described in Equation (7.6). To scale the similarity value into [0, 1],

λ = 1/2 is chosen if there are both concepts and properties in the descriptions and

λ = 1 otherwise. Given a TBox as shown in Figure 7.5, similarity of some concepts

based on Jaccard method are computed as follows:

(1) JSim(Male, Female): as these descriptions have no property, the similarity be-

tween concepts (the first part of Equation (7.6)) is computed as follows:

� simPrim(Male,Famale) = jIndex(Male,Female)

=
|subcon(Male) � subcon(Female)|
|subcon(Male) ∪ subcon(Female)|

=
|{Dad,Father, Son,Brother} � {Mom,Mother,Daughter, Sister}|
|{Dad,Father, Son,Brother} ∪ {Mom,Mother,Daughter, Sister}| = 0

⇒ JSim(Male, Female) = 0

(2) JSim(Female, Mother) : similar to the above example, we have:

� simPrim(Female, Mother) = jIndex(Female, Mother)

=
|subcon(Female) � subcon(Mother)|
|subcon(Female) ∪ subcon(Mother)|

=
|{Mom, Mother, Daughter, Sister} � {Mother}|
|{Mom, Mother, Daughter, Sister} ∪ {Mother}| =

2

4
= 0.5

⇒ JSim(Female, Mother) = 0.5

(3) JSim(C,D), where:

C ≡ Person � ∃hasChild.Person
D ≡ Person � ∃marriedTo.Person

We have:

� simPrim(C,D) = jIndex(C,D)

=
|subcon(Person) � subcon(Person)|
|subcon(Person) ∪ subcon(Person)| = 1

153

7. Improving Predictive Correctness by Fortification

� simPro(C,D) = 0 (as rcomm(C,D) = ∅)
⇒ JSim(C,D) =

1

2
× (1 + 0) = 0.5 �

The algorithm for computing Jaccard similarity between two normal form descrip-

tions described in equation (7.6) basically includes 4 steps: i) flatten the two descrip-

tions into sets of primitive concepts and properties in the two descriptions, ii) calculate

the similarity between primitive concepts of the two descriptions, iii) find a set of

common properties of C and D and compute the similarity between the ranges of com-

mon properties, and finally iv) aggregate concept and property similarity into overall

similarity of two descriptions.

Computation of the concept and property similarities is based on the Jaccard sim-

ilarity between two primitive concepts (defined in Equation (7.8)). The algorithm for

this computation is introduced in Algorithm 7.4. It has 3 steps: i) find the sub-concepts

of two input primitive concepts, ii) compute the intersection of the sub-concepts of two

input primitive concepts including the processing for equivalent concepts (the � oper-

ator), and iii) return the ratio between the intersection and union of the sub-concepts.

Algorithm 7.4: Jaccard similarity (index) – jIndex(C,D,T, NC , NR)

Input: two primitive concepts C and D ; a TBox T together with a set of
concept names NC and role names NR.

Output: a Jaccard similarity value between two primitive concepts C and D
(Equation (7.8)).

1 begin
/* 1.compute sub-concepts of C and D */

2 subconC = {C ′ ∈ NC | C ′ T C}
3 subconD = {D′ ∈ NC | D′ T D}
4 if subconC = ∅ then subconC = {C}
5 if subconD = ∅ then subconD = {D}

/* 2.compute Jaccard similarity of C and D */

6 intersection = subconC ∩ subconD /* common concepts of C and D */

/* process the equivalent classes */

7 intersection = intersection ∪ {{X,Y } | X ≡ Y and {X,Y } ∩ subconC �= ∅
and {X,Y } ∩ subconD �= ∅}

8 return |intersection| / |subconC ∪ subconD|

The algorithm for calculation similarity between two descriptions is given in Al-

154

7. Improving Predictive Correctness by Fortification

gorithm 7.5. Firstly, the similarity between primitive concepts is computed based on

the Jaccard coefficient calculation implemented in Algorithm 7.4. Then, the similarity

for the properties of the descriptions is calculated by recursively calling the similarity

calculation for the ranges of the common properties of the two descriptions. The simi-

larity between two description is the sum of concept similarity and property similarity

multiply with the scoring factor λ.

Fortifying definition scoring

The score of the fortifying definitions based on the concept overlap and similarity is

computed as follows:

Definition 7.4 (Concept similarity score). Let C be a fortifying definition, D a

learnt definition from the same learning problem, overlap(C, D) a function function that

measures the overlap between C and D as defined in Equation (7.4) and JSim�(C,D)

a function that compute the similarity between C and D as defined in Equation (7.5).

The score of C is defined as follows:

CSScore(C) = overlap(C,D) + JSim�(C,D) �

The overlap (based on ABox) and similarity (based on TBox) in Definition 7.4 seem

to be treated equally. However, we can adjust the impact of these parts according to

the particular learning problem using the similarity scoring factor in Definition 7.6.

The following example illustrates the calculation of similarity between descriptions

using the fortification concepts similarity scoring method.

Example 7.3. Given a knowledge base as shown in Example 7.1, then the calculation

of fortifying definition score is given below.

(1) CSScore(Female,Mother):

� overlap(Female, Mother) = 0.286 (see Example 7.1).

� JSim � (Female, Mother) = 0.5 (see Example 7.2).

⇒ CSScore(Female, Mother) = (0.286 + 0.5) = 0.786

155

7. Improving Predictive Correctness by Fortification

Algorithm 7.5: Jaccard similarity scoring – JSim(C,D, λ,T, NC , NR)

Input: two descriptions in normal form C, D ; the scoring weighting factor λ; a
TBox T together with a set of concept names NC and role names NR.

Output: Jaccard similarity value between C and D (Equation (7.6)).
1 begin

/* 1.compute similarity between primitive concepts */

/* 1.1.get lists of primitive concepts occurring at the 1st level of C

and D */

2 primC = {C ′ | C ′ ∈ NC and C ′ occurs at 1st level of C}
3 primD = {D′ | D′ ∈ NC and D′ occurs at 1st level of D}

/* 1.2.similarity of all pairs of disjuncts primitive concepts */

4 csim = 0 /* primitive concepts similarity */

5 foreach X ∈ primC do
6 foreach Y ∈ primD do
7 csim += jIndex(X,Y,T, NC , NR)

8 csim = csim / (|primC |.|primD|) /* calculate the avg.value */

/* 2.calculate similarity between common properties of C and D */

/* 2.1.find list of common properties between C and D */

9 proC = {C ′ | C ′ ∈ NR and C ′ occurs at the 1st level of C}
10 proD = {D′ | D′ ∈ NR and D′ occurs at the 1st level of D}
11 pcomm = proC ∩ proD /* common properties of C and D */

/* 2.2.compute the similarity of the common properties */

12 psim = 0 /* properties similarity */

13 if |pcomm| > 0 then
14 foreach P ∈ pcomm do
15 rangePC = {�C ′ | ∃P.C ′ or ∀P.C ′ occurs in C}
16 rangePD = {�D′ | ∃P.D′ or ∀P.D′ occurs in D}
17 psim += JSim(rangePC , rangePD, λ,T, NC , NR)

18 psim = psim / |pcomm|
19 return λ× (csim+ psim)

156

7. Improving Predictive Correctness by Fortification

(2) CSScore(C,D), where:

C ≡ Person � ∃hasChild.Person
D ≡ Person � ∃marriedTo.Person

We have:

� overlap(C,D) = 0.4 (see Example 7.1).

� JSim(C,D) = 0.5 (see Example 7.2).

⇒ CSScore(C,D) = (0.4 + 0.5) = 0.9 �

The formal algorithm for this computation is presented in Algorithm 7.6.

Algorithm 7.6: Concept similarity scoring – CSScore(X, D, β,K,E+,E−).
Input: a set of fortifying definitions X, a learnt definition D, a concept

similarity factor β and a learning problem LP = 〈K, (E+,E−)〉.
Output: a set of scored fortifying definitions based on Definition 7.4.

1 begin
2 Y = ∅ /* set of scored fortifying definitions */

3 NC = set of concept names in K

4 NR = set of role names in K

5 T = TBox in K

6 foreach C ∈ X do
7 overlap = COverlap(C,D,K,E−) /* cf.Algorithm 7.3 */

8 similarity = JSim(C,D, β,T, NC , NR) /* cf.Algorithm 7.5 */

9 scoreC = overlap+ similarity /* cf.Definition 7.4 */

10 Y = Y ∪ {(C, scoreC)}
11 return Y

7.3.1.3 Fortification validation scoring

The third method for scoring the fortifying definition employs the idea of the cross

validation method in machine learning (see Chapter 3). In this method, a dataset,

called the fortification dataset, is used to evaluate the fortifying definitions to select

the most promising ones. This is a labelled dataset, i.e. the examples are labelled as

positive or negative examples, and it is different from the training dataset.

157

7. Improving Predictive Correctness by Fortification

The fortification validation dataset is used similarly as a test set in cross-validation

to measure the metrics that constitute the score of the fortifying definitions. The ratio-

nale behind this method is that we use the fortification validation dataset to simulate

a real scenario for fortification to score the fortifying definitions accordingly to their

performance on this dataset. Therefore, the best fortifying definitions in this step are

assumed to have similar performance in real scenarios.

The main factor in the score of the fortifying definitions is the number of negative

examples that the fortifying definition can remove from the set of negative examples

covered by the learnt concept. The removal of negative examples from the coverage

of the learnt concept helps to increase the predictive correctness, which is the main

objective of our method. However, to avoid any decrease in the predictive accuracy,

the fortifying definition score is reduced for each common positive example covered by

both the fortifying definitions and the learnt concept. As in the scoring method based

on the training coverage (Section 7.3.1.1), the definition length is also used to favour

shorter definitions. This factor has a lower weight so that it is used as a secondary

criteria in selecting the most promising fortifying definitions. The score of a fortifying

definition can now be defined:

Definition 7.5 (Fortification validation score). Let LP = 〈K, (E+,E−)〉 be a learn-
ing problem, Ev a fortification validation dataset that consists of a set of positive

examples E+
v and a set of negative examples E−

v , C a fortifying definition and D a

learnt definition of LP, length(C) a function that returns the length of the definition

C and max fdlength a maximal length of all fortifying definitions of LP. The score of

the fortifying definition C based on the fortification validation method is defined as

follows:

FVScore(C) = λ× |cover(K, C,E−
v) ∩ cover(K, D,E−

v)|
|E−

v |

−α× |cover(K, C,E+
v) ∩ cover(K, D,E+

v)|
|E+

v |

+β ×
(
1− length(C)

max fdlength

)
(7.10)

158

7. Improving Predictive Correctness by Fortification

�

λ, α and β in Equation (7.10) are used to adjust the effect of the three factors on

the fortification candidate’s score. As the number of negative examples covered by a

candidate is the main factor, λ often has highest value in comparison with α and β. In

our implementation, we chose λ = 1, α = 0.5 and β = 0.1 as the default values.

Besides the above scoring metrics, training coverage may be a useful supplement

to assess the potential of the fortifying definitions, particularly when the fortification

validation dataset is small.

Algorithm 7.7 introduces a formal algorithm for this scoring method. Given a

set of fortifying definitions together with some other information such as the learnt

concept, knowledge base, etc. that are necessary for scoring the fortifying definitions,

this algorithm returns a set of scored fortifying definitions based on their coverage on

the fortification validation dataset and length.

Algorithm 7.7: Fortification validation scoring –
FVScore(X, D, λ, α, β,K,E+

v ,E
−
v).

Input: a set of fortifying definitions X, a learnt definition D, scoring factors
λ, α, β and a learning problem LP = 〈K, (E+,E−)〉

Output: a set of scored fortifying definitions based on Definition 7.5.
1 begin
2 max length = 0 /* maximal length of the fortifying definitions */

3 Y = ∅ /* set of scored fortifying definitions */

/* calculate the maximal length of the fortifying definitions */

4 foreach C ∈ X do
5 if max length < length(C) then max length = length(C)

/* compute the score for the fortifying definitions, see Def.7.5. */

6 foreach C ∈ X do
7 commonNeg = |cover(K, C,E−

v) ∩ cover(K, D,E−
v)| / |E−

v |
8 commonPos = |cover(K, C,E+

v) ∩ cover(K, D,E+
v)| / |E+

v |
9 lengthScore = 1− (length(C) / max length)

10 scoreC = λ× commonNeg− α× commonPos+ β × lengthScore
11 Y = Y ∪ {(C, scoreC)}
12 return Y

159

7. Improving Predictive Correctness by Fortification

7.3.1.4 Random score

In this scoring method, the fortifying definition scores are assigned randomly in [0, 1].

This method aims to illustrate the effect of the above proposed scoring methods.

7.3.2 Fortification cut-off point computation

In this section, a method is proposed to compute a cut-off point in the selection of

fortification candidates that addresses question Q3 in Section 7.1. The cut-off point

computation method is used to define a suitable number of fortifying definitions to

fortify the learnt definition.

Basically, our approaches to score the fortifying definition are based on the fortifi-

cation validation dataset. In the scoring process, the fortifying definitions are tested

under that dataset to provide the necessary information for the scoring algorithms.

Our method to identify the cut-off point also uses the fortification validation dataset

to empirically define the cut-off point. It is defined as the maximal number of forti-

fying definitions that are best used to fortify the learnt concepts on the fortification

validation datasets. A formal procedure for identifying the cut-off point based on a

fortification validation dataset is described in Algorithm 7.8.

Algorithm 7.8: Fortification cut-off point – CutOff(C,X,K,E+
f ,E

−
f).

Input: a learnt concept C, a set of fortifying definitions X, a knowledge base K

and sets of fortification validation dataset (E+
f ,E

−
f)

Output: a cut-off point, i.e. the number of fortifying definitions should be used
for fortification.

1 begin
2 cp = cover(K, C,E+) /* pos. examples covered by C */

3 cn = cover(K, C,E−) /* neg. examples covered by C */

4 cutoff = 0 /* cut-off point */

5 foreach fdef ∈ X do
6 cpf = cover(K, fdef,E+) /* pos. examples covered by fdef */

7 cnf = cover(K, fdef,E−) /* neg. examples covered by fdef */

8 if (|cpf ∩ cp| / |E+
f |) ≥ (|cnf ∩ cn| / |E−

f |) then
9 cutoff = cutoff + 1

10 return cutoff

160

7. Improving Predictive Correctness by Fortification

7.4 Evaluation

Efficacy of fortification was evaluated by implementing our methods in CELOE, Par-

CEL and SPaCEL and conducting several experiments using these algorithms. These

algorithms use different approaches in class expression logic learning and thus this se-

lection allows a thorough assessment of the fortification approach. The fortification

candidates generation algorithm (Algorithm 7.1) was first implemented in CELOE and

ParCEL. For SPaCEL, its unused counter-partial definitions were employed as the for-

tifying definitions. Then, an evaluation methodology was designed based on the eval-

uation methodology described in Chapter 3 and the fortification strategies in Section

7.3 to measure the metrics with and without the fortification.

7.4.1 Fortification evaluation methodology

To evaluate the fortification approach, we used 10-fold cross-validation on the learning

problems introduced in Chapter 3. In the evaluation of fortification, in addition to the

training and test sets, another dataset, called the fortification validation dataset, was

also needed to suppose the fortification strategies (see Sections 7.3.1.2 and 7.3.1.3).

Therefore, in each fold, we used 8 parts for training, 1 for fortification validation and

1 for testing.

In addition, the procedure for measuring the evaluation metrics was also revised to

involve the fortification. Each fold of the cross-validation includes the following tasks:

1. Learn the concept C and a set of fortifying definitions X using the training set of

the validation dataset i.

2. Score the fortifying definitions in X using a fortification strategy and sort them

according to their score. The fortification validation set in validation dataset i is

used if it is needed by the fortification strategy.

3. Compute the cut-off point for the fortification.

4. Measure the evaluation metrics (accuracy, completeness and correctness) for the

learnt definition C using the test set in evaluation dataset i.

161

7. Improving Predictive Correctness by Fortification

5. Perform the fortification by making the conjunction: C = C � ¬⊔
Di, ∀Di ∈ X

such that Di is within the cut-off point.

6. Recompute the evaluation metrics for the fortified definition C.

7.4.2 Experimental results

This section provides the experimental results of the fortification approach on CELOE,

ParCEL and SPaCEL. In this evaluation, the predictive accuracy, correctness and com-

pleteness with and without fortification of each algorithm will be compared. In this

approach, a trade-off between the predictive correctness and completeness is expected.

Therefore, the baseline used to assess the success of this approach is that the average

predictive correctness with fortification is higher than for the original algorithm and

the average predictive accuracy of the fortification is not lower than for the original

algorithm. However, the assessment of the achievement should also take the predictive

accuracy without fortification into consideration. For learning problems where learn-

ing algorithm achieved 100% predictive correctness, keeping the predictive accuracy

unchanged is considered to be a good achievement.

The following subsections will provide the experimental results for the three learn-

ing algorithms. The four fortification scoring strategies training coverage, concept

similarity, fortification validation, and randomly scoring are named TCScore, CSScore,

FVScore and Random respectively. The experimental results without fortification are

also presented and compared with the fortification results. As described in Section

7.4.1, the training sets of the learning problems in these experiments is smaller than

the training sets used in the experiments in Chapters 5 and 6. Therefore, the experi-

mental results without fortification in this section may be different from the results in

the previous experiment. The experimental results with full training set in the previous

experiments are also included for reference (called “Full training”).

The t-test at the 95% confidence level was conducted to check the statistical signif-

icant differences between the experimental results with and without fortification.

162

7. Improving Predictive Correctness by Fortification

Experimental results on CELOE

Table 7.1 shows the experimental result of fortification on the CELOE algorithm. For

the low and medium complexity learning problems (Group 1 in the result table),

CELOE achieved 100% of accuracy for most of them (5/7 learning problems). For

the 5 learning algorithms on which CELOE achieved 100% accuracy, fortification did

not reduce the predictive accuracy of any of them. For the two remaining learning

problems, the improvement on predictive correctness and accuracy was not significant.

There was also no decrease of the predictive completeness for the datasets in this group.

In the high and very high complexity learning problems without timeout (Group

2 in the result table), the effect of the fortification was clearer. On the Aunt dataset,

TCScore and CSScore improved both predictive correctness and accuracy significantly

while the improvement made by FVScore was not significant. However, the predictive

accuracy and correctness of the Cousin learning problem stayed unchanged. Note that

CELOE got 100% predictive correctness on this learning problem. Therefore, no more

improvement can be made. On the remaining dataset, Uncle, the improvement of the

predictive correctness and accuracy was also not statistically significant.

Fortification worked best on learning problems where at least one learning algorithm

timed out (Group 3 in Table 7.1). This group consists of 6 learning problems. All

fortification strategies increased the predictive correctness and accuracy for all learning

problems. The t-test at the 95% confidence level suggested that the increasing of both

accuracy and correctness in 4 learning problems is statistically significant. There is no

significant decrease of completeness on any dataset.

It is worth noting that the TCScore strategy decreased the predictive completeness

of the CarcinoGenesis significantly. However, the predictive accuracy and correctness

also increased significantly. This was caused by the increase of correctness was more

significant than the decrease of completeness. The maximal confidence level such that

the decrease of completeness was still significant was about 97.1% while those for the

correctness and accuracy were about 99.8% and 98% respectively.

There were several impressive improvements by fortification in the experiments. For

example, in the CarcinoGenesis learning problem, the correctness increased from 0.67

± 2.11% to 13.46 ± 11.35% by TCScore and to 11.46 ± 8.24% and 8.46 ± 12.13% by

163

7. Improving Predictive Correctness by Fortification

FVScore and CSScore respectively. Even for the learning problems in which CELOE

achieved very high accuracy such as the Aunt learning problem, fortification also im-

proved the predictive correctness and accuracy significantly. The predictive accuracy

for this learning problem was increased from 95.25 ± 8.45% to 100% which was caused

by the increase of the predictive correctness from 90.05 ± 17.07% to 100%.

Experimental results on ParCEL

The experimental results for the ParCEL algorithm are presented in Table 7.2. In

the first group of learning problems, ParCEL achieved 100% predictive accuracy for

4/7 learning problems. The predictive accuracy of all these learning problems was not

decreased by the fortification. In the three remaining learning problems, fortification

decreased the predictive accuracy of the Forte dataset (except the TCScore strategy)

and increased the predictive accuracy of the Moral and Poker Straight datasets. The

t-test at the 95% confidence level suggests that there was a significant improvement of

the predictive correctness on the Moral dataset.

In the second group of learning problems, ParCEL also produced very high accuracy.

It got 100% predictive accuracy on two datasets and the fortification did not decrease

their predictive accuracy. For the remaining dataset, the fortification could not improve

the predictive correctness. Moreover, CSScore decreased the predictive accuracy of this

dataset that was resulted by the decreased of the completeness. However, the decreases

were not statistically significant.

As in the CELOE experimental results, fortification in this experiment also had a

strong effect on the learning problem in Group 3. In general, the predictive accuracy

increased in all 6 learning problems in this group. The correctness increased signifi-

cantly for 3/6 learning problems in this group, i.e. the CarcinoGenesis, MUBus-2 and

MUBus-3 datasets. In the UCA1 dataset, the fortification also helped to achieve 100%

predictive accuracy.

Experimental results on SPaCEL

The last algorithm used in our evaluation is SPaCEL. The experimental result on this

algorithm is shown in Table 7.3. In the total 16 learning problems, this algorithm

164

7. Improving Predictive Correctness by Fortification

achieved 100% predictive accuracy for 4 of them. Fortification also did not decrease

the predictive accuracy of these learning problems.

In the 12 remaining learning problems, fortification gave higher average predictive

accuracy in 9 of them, in which there are two learning problems that had significant

improvement of correctness with 95% confidence. One of them had a significant im-

provement on the accuracy at the same confidence level. The predictive accuracy was

decreased in 1/3 remaining learning problems. One of them was caused by the higher

decrease of completeness over correctness and the other was caused by the decrease of

completeness without improvement on correctness. However, the decrease of complete-

ness and accuracy were not significant at the 95% confidence level.

165

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.1
:
F
o
rt
ifi
ca
ti
o
n
ex
p
er
im

en
ta
l
re
su
lt
s
w
it
h
C
E
L
O
E
(m

ea
n
s
±

st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
1
0
fo
ld
s)
.
T
h
e
n
u
m
b
er

u
n
d
er
/
fo
ll
ow

in
g

th
e
le
a
rn
in
g
p
ro
b
le
m

n
a
m
e
is

th
e
cu
t-
o
ff

p
o
in
t.

W
e
al
so

en
co
d
e
th
e
co
m
p
a
ri
so
n

b
et
w
ee
n

re
su
lt
s
of

th
e
fo
rt
ifi
ca
ti
o
n

st
ra
te
g
ie
s

w
it
h
th
e
N
o
fo
rt
ifi
ca
ti
o
n

re
su
lt
s
u
si
n
g
th
e
t-
te
st

w
it
h
9
5
%

co
n
fi
d
en

ce
:
i)

b
ol
d
va
lu
es

a
re

st
a
ti
st
ic
a
ll
y
si
g
n
ifi
ca
n
tl
y
h
ig
h
er

th
a
n
th
e

co
rr
es
p
o
n
d
in
g
N
o
fo
rt
ifi
ca
ti
o
n

va
lu
es
,
ii
)
it
a
li
c
va
lu
es

a
re

st
a
ti
st
ic
a
ll
y
si
g
n
ifi
ca
n
tl
y
lo
w
er

th
a
n
th
e
co
rr
es
p
o
n
d
in
g
N
o
F
o
rt
ifi
ca
ti
o
n

va
lu
es
,
ii
i)

u
n
fo
rm

a
tt
ed

va
lu
es

a
re

n
o
t
st
a
ti
st
ic
a
ll
y

si
g
n
ifi
ca
n
tl
y

d
iff
er
en
t
fr
o
m

th
e
co
rr
es
p
o
n
d
in
g
N
o

F
o
rt
ifi
ca
ti
o
n

va
lu
es
.

T
h
e

u
n
d
er
li
n
ed

va
lu
es

a
re

th
e
h
ig
h
es
t
re
su
lt
s
w
it
h
in

th
e
fo
rt
ifi
ca
ti
o
n
st
ra
te
g
ie
s
re
su
lt
s.

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

L
o
w

a
n
d

m
ed

iu
m

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

1
)

M
o
ra
l
(0
)

A
cc
.1

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
rr
.2

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
m
p
.3

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

F
or
te

(2
)

A
cc
.

9
8
.8
6

±
2
.2
7

9
3
.1
0

±
1
1
.9
5

9
3
.1
0

±
1
1
.9
5

9
3
.1
0

±
1
1
.9
5

9
5
.4
0

±
7
.9
6

9
3
.1
0

±
1
1
.9
5

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

9
5
.2
4

±
8
.2
5

9
2
.0
6

±
1
3
.7
5

C
o
m
p
.

9
5
.8
3

±
8
.3
3

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

P
ok
er
-S
tr
a
ig
h
t
(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
8
.0
8

±
3
.8
5

1
0
0
.0
0

±
0
.0
0

9
8
.0
8

±
3
.8
5

1
0
0
.0
0

±
0
.0
0

9
8
.0
8

±
3
.8
5

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
7
.9
2

±
4
.1
7

1
0
0
.0
0

±
0
.0
0

9
7
.9
2

±
4
.1
7

1
0
0
.0
0

±
0
.0
0

9
7
.9
2

±
4
.1
7

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

1
P
re
d
ic
ti
v
e
a
cc
u
ra
cy

2
P
re
d
ic
ti
v
e
co
rr
ec
tn
es
s

3
P
re
d
ic
ti
v
e
co
m
p
le
te
n
es
s

166

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.1

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

B
ro
th
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

D
a
u
g
h
te
r
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

F
at
h
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

G
ra
n
d
so
n
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

H
ig
h

a
n
d

v
e
ry

h
ig
h

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

2
)

A
u
n
t
(1
)

A
cc
.

9
6
.5

±
0
.0
0

9
5
.2
5

±
8
.5
4

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
7
.7
5

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
rr
.

9
5
.5

±
9
.5
6

9
0
.5
0

±
1
7
.0
7

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

1
0
0
.0
0

±
0
.0
0

C
o
m
p
.

9
7
.5

±
7
.9
1

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
6
.3
3

1
0
0
.0
0

±
0
.0
0

C
o
u
si
n
(0
)

A
cc
.

9
9
.2
9

±
2
.0
0

9
9
.2
9

±
2
.2
6

9
9
.2
9

±
2
.2
6

9
9
.2
9

±
2
.2
6

9
9
.2
9

±
2
.2
6

9
9
.2
9

±
2
.2
6

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
m
p
.

9
8
.5
7

±
4
.5
2

9
8
.5
7

±
4
.5
2

9
8
.5
7

±
4
.5
2

9
8
.5
7

±
4
.5
2

9
8
.5
7

±
4
.5
2

9
8
.5
7

±
4
.5
2

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

167

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.1

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

U
n
cl
e
(2
)

A
cc
.

9
5
.8
3

±
6
.8
0

9
3
.3
3

±
1
0
.9
7

9
3
.1
0

±
1
1
.9
5

9
3
.1
0

±
1
1
.9
5

9
5
.4
0

±
7
.9
6

9
3
.1
0

±
1
1
.9
5

C
o
rr
.

9
1
.6
7

±
1
3
.6
1

8
9
.1
7

±
1
8
.4
5

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

9
5
.2
4

±
8
.2
5

9
2
.0
6

±
1
3
.7
5

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

L
ea

rn
in

g
p
ro

b
le
m
s
w
it
h

ti
m
eo

u
t
(G

ro
u
p

3
)

C
a
rc
in
o
G
en
es
is

(8
)

A
cc
.

5
3
.7
3

±
4
.7
9

5
4
.0
1

±
1
.0
2

5
7
.5
5

±
4
.9
1

5
6
.3
9

±
3
.9
8

5
8
.7
3

±
3
.5
0

5
5
.4
9

±
3
.0
0

C
o
rr
.

2
.6
3

±
3
.4
0

0
.6
7

±
2
.1
1

1
3
.4
6

±
1
1
.3
5

8
.4
6

±
1
2
.1
3

1
1
.4
6

±
8
.2
4

4
.5
4

±
5
.3
3

C
o
m
p
.

9
7
.2
2

±
7
.1
0

9
9
.4
4

±
1
.7
6

9
5
.1
2

±
6
.4
8

9
7
.2
8

±
5
.9
1

9
8
.8
9

±
2
.3
4

9
8
.8
9

±
2
.3
4

U
C
A
1
(1
)

A
cc
.

9
1
.4
2

±
7
.0
1

9
0
.7
4

±
8
.1
2

9
1
.4
1

±
8
.6
2

9
1
.4
1

±
8
.6
2

9
1
.4
1

±
8
.6
2

9
0
.7
4

±
8
.1
2

C
o
rr
.

8
3
.3
9

±
1
3
.5
5

8
9
.6
4

±
1
1
.6
0

9
1
.0
7

±
1
1
.9
3

9
1
.0
7

±
1
1
.9
3

9
1
.0
7

±
1
1
.9
3

8
9
.6
4

±
1
1
.6
0

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
1
.9
6

±
1
4
.0
7

9
1
.9
6

±
1
4
.0
7

9
1
.9
6

±
1
4
.0
7

9
1
.9
6

±
1
4
.0
7

9
1
.9
6

±
1
4
.0
7

M
U
B
u
s-
1
(6
)

A
cc
.

5
3
.6
1

±
2
.4
5

5
4
.3
1

±
3
.2
8

6
8
.1
5

±
2
.0
1

7
8
.0
9

±
2
.0
6

6
6
.8
4

±
2
.9
6

6
8
.0
0

±
3
.9
3

C
o
rr
.

4
7
.9
1

±
2
.8
7

4
8
.5
2

±
3
.4
5

6
8
.1
5

±
2
.0
1

6
8
.1
5

±
2
.0
1

6
8
.1
5

±
2
.0
1

6
8
.1
5

±
2
.0
1

C
o
m
p
.

8
7
.7
1

±
3
.9
7

8
9
.0
2

±
3
.8
9

8
9
.0
2

±
3
.8
9

8
9
.0
2

±
3
.8
9

8
9
.0
2

±
3
.8
9

8
9
.0
2

±
3
.8
9

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

168

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.1

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

M
U
B
u
s-
2
(4
)

A
cc
.

1
4
.3
5

±
1
.1
0

1
4
.3
5

±
0
.5
4

3
5
.4
5

±
6
.9
9

4
6
.9
8

±
1
.7
9

3
5
.5
5

±
9
.8
2

3
3
.3
1

±
6
.7
4

C
o
rr
.

4
.1
8

±
0
.6
0

4
.1
8

±
0
.6
0

2
7
.7
9

±
7
.8
2

4
0
.6
9

±
2
.0
0

2
7
.8
9

±
1
0
.9
8

2
5
.4
0

±
7
.5
4

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

M
U
B
u
s-
3
(4
)

A
cc
.

1
1
.3
4

±
0
.0
.0
6

1
1
.3
4

±
0
.1
4

4
0
.1
8

±
0
.9
5

4
3
.5
1

±
1
.0
4

4
0
.1
8

±
0
.9
5

2
6
.1
6

±
5
.8
3

C
o
rr
.

4
.3
6

±
0
.1
5

4
.3
6

±
0
.1
5

3
5
.4
7

±
1
.0
2

3
9
.0
6

±
1
.1
2

3
5
.4
7

±
1
.0
2

2
0
.3
4

±
6
.2
8

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

IL
D
P

(3
)

A
cc
.

7
6
.0
2

±
2
.6
1

7
1
.5
1

±
1
.2
8

7
1
.6
8

±
1
.6
6

7
2
.5
5

±
2
.4
7

7
1
.6
8

±
1
.7
3

7
1
.8
6

±
1
.4
3

C
o
rr
.

2
9
.5
6

±
8
.6
8

2
.4
6

±
6
.0
1

4
.3
0

±
5
.9
1

6
.1
4

±
1
1
.4
1

4
.2
7

±
7
.8
0

3
.6
8

±
7
.8
8

C
o
m
p
.

9
9
.6
9

±
0
.1
0

9
9
.0
3

±
1
.7
0

9
8
.5
5

±
1
.7
0

9
9
.0
3

±
1
.7
0

9
8
.5
5

±
1
.7
0

9
9
.0
3

±
1
.7
0

169

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.2
:
F
o
rt
ifi
ca
ti
o
n
ex
p
er
im

en
ta
l
re
su
lt
w
it
h
P
ar
C
E
L
(m

ea
n
s
±

st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
1
0
fo
ld
s)
.
N
o
ta
ti
o
n
s
u
se
d
in

th
is

ta
b
le

a
re

si
m
il
a
r
to

th
o
se

o
f
T
ab

le
7
.1
.

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

L
o
w

a
n
d

m
ed

iu
m

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

1
)

M
o
ra
l
(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
7
.0
0

±
3
.5
0

9
9
.0
0

±
2
.1
1

9
8
.5
0

±
3
.3
8

9
8
.5
0

±
3
.3
8

9
8
.5
0

±
3
.3
8

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
6
.0
0

±
5
.1
6
4

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
9
.0
0

±
3
.1
6

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
4
.2
2

9
8
.0
0

±
4
.2
2

9
7
.0
0

±
6
.7
5

9
7
.0
0

±
6
.7
5

9
8
.0
0

±
4
.2
2

F
or
te

(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

8
9
.6
6

±
1
7
.9
2

9
0
.8
1

±
1
5
.9
3

8
4
.9
8

±
1
1
.0
0

8
7
.2
7

±
1
6
.2
5

8
4
.9
8

±
1
1
.0
0

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

8
7
.3
0

±
2
1
.9
9

8
8
.8
9

±
1
9
.2
5

8
8
.8
9

±
1
9
.2
5

8
7
.3
0

±
2
1
.9
9

8
8
.8
9

±
1
9
.2
5

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
5
.8
3

±
7
.2
2

9
5
.8
3

±
7
.2
2

7
3
.8
1

±
1
2
.6
7

8
6
.3
1

±
1
4
.3
2

7
3
.8
1

±
1
2
.6
7

P
ok
er

S
tr
a
ig
h
t
(2
)

A
cc
.

9
6
.4
3

±
4
.1
2

9
2
.7
2

±
5
.8
4

9
6
.2
9

±
4
.2
9

9
4
.5
1

±
3
.6
7

9
6
.2
9

±
4
.2
9

9
4
.5
1

±
3
.6
7

C
o
rr
.

9
8
.0
8

±
3
.8
5

9
4
.2
3

±
7
.3
7

9
8
.0
8

±
3
.8
5

9
6
.1
5

±
4
.4
4

9
8
.0
8

±
3
.8
5

9
6
.1
5

±
4
.4
4

C
o
m
p
.

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

B
ro
th
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

D
a
u
g
h
te
r
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

F
at
h
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

170

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.2

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

G
ra
n
d
so
n
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

H
ig
h

a
n
d

v
e
ry

h
ig
h

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

2
)

A
u
n
t
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
u
si
n
(0
)

A
cc
.

9
9
.2
9

±
2
.2
6

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

U
n
cl
e
(1
)

A
cc
.

9
8
.7
5

±
3
.9
5

9
8
.7
5

±
3
.9
5

9
8
.7
5

±
3
.9
5

9
7
.5
0

±
5
.2
7

9
8
.7
5

±
3
.9
5

9
5
.0
0

±
6
.4
6

C
o
rr
.

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

1
0
0
.0
0

±
0
.0
0

9
2
.5
0

±
1
2
.0
8

L
ea

rn
in

g
p
ro

b
le
m
s
w
it
h

ti
m
eo

u
t
(G

ro
u
p

3
)

C
a
rc
in
o
G
en
es
is

(4
)

A
cc
.

5
6
.0
5

±
4
.3
0

5
2
.7
8

±
7
.1
2

5
4
.8
8

±
6
.0
5

5
3
.3
7

±
7
.0
2

5
3
.9
6

±
5
.9
1

5
3
.0
9

±
6
.1
6

C
o
rr
.

7
5
.2
9

±
1
1
.9
1

6
1
.0
8

±
1
1
.0
1

6
9
.5
8

±
8
.4
6

6
2
.3
8

±
1
0
.8
6

6
5
.5
8

±
1
0
.4
6

6
4
.3
3

±
1
1
.0
0

C
o
m
p
.

3
9
.4
2

±
1
1
.4
1

4
5
.4
4

±
1
1
.8
4

4
2
.1
1

±
1
2
.4
8

4
5
.4
4

±
1
1
.8
4

4
3
.7
7

±
1
2
.2
9

4
3
.2
2

±
1
3
.4
5

U
C
A
1
(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
9
.3
8

±
1
.9
8

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
8
.6
6

±
2
.8
3

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
8
.7
5

±
3
.9
5

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
8
.7
5

±
3
.9
5

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
8
.5
7

±
4
.5
2

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

171

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.2

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

M
U
B
u
s-
1
(3
)

A
cc
.

9
9
.6
3

±
0
.3
1

9
9
.5
1

±
0
.4
7

9
9
.5
1

±
0
.4
7

9
9
.7
4

±
0
.3
6

9
9
.5
1

±
0
.4
7

9
9
.6
3

±
0
.4
7

C
o
rr
.

9
9
.6
1

±
0
.4
3

9
9
.5
2

±
0
.4
3

9
9
.5
2

±
0
.4
3

9
9
.7
8

±
0
.3
1

9
9
.5
2

±
0
.4
3

9
9
.6
9

±
0
.4
6

C
o
m
p
.

9
9
.7
4

±
0
.8
3

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
9
.2
1

±
1
.2
7

M
U
B
u
s-
2
(4
)

A
cc
.

9
7
.9
1

±
0
.5
0

9
8
.0
5

±
0
.5
7

9
8
.1
2

±
0
.5
3

9
8
.2
6

±
0
.6
1

9
8
.1
2

±
0
.5
3

9
8
.0
8

±
0
.5
9

C
o
rr
.

9
9
.5
4

±
0
.4
5

9
9
.4
9

±
0
.2
4

9
9
.5
6

±
0
.2
4

9
9
.7
2

±
0
.2
5

9
9
.5
6

±
0
.2
4

9
9
.5
2

±
0
.2
7

C
o
m
p
.

8
4
.1
8

±
5
.5
9

8
5
.9
7

±
6
.2
6

8
5
.9
7

±
6
.2
6

8
5
.9
7

±
6
.2
6

8
5
.9
7

±
6
.2
6

8
5
.9
7

±
6
.2
6

M
U
B
u
s-
3
(3
)

A
cc
.

9
5
.8
5

±
0
.3
1

9
4
.5
7

±
0
.3
2

9
4
.6
5

±
0
.3
2

9
4
.6
5

±
0
.3
2

9
4
.6
5

±
0
.3
2

9
4
.5
8

±
0
.3
3

C
o
rr
.

9
9
.7
4

±
0
.1
7

9
9
.8
6

±
0
.0
5

9
9
.9
4

±
0
.0
6

9
9
.9
4

±
0
.0
6

9
9
.9
4

±
0
.0
6

9
9
.8
8

±
0
.0
5

C
o
m
p
.

4
6
.4
0

±
3
.6
6

2
7
.3
6

±
4
.4
8

2
7
.3
6

±
4
.4
8

2
7
.3
6

±
4
.4
8

2
7
.3
6

±
4
.4
8

2
7
.2
8

±
4
.3
9

IL
D
P

(2
)

A
cc
.

7
1
.1
2

±
5
.3
6

7
0
.2
4

±
6
.7
6

7
2
.0
7

±
6
.8
6

6
9
.2
2

±
5
.6
6

7
2
.0
6

±
7
.0
1

6
9
.8
4

±
5
.9
5

C
o
rr
.

2
9
.5
6

±
8
.6
8

6
7
.2
8

±
1
2
.7
4

7
4
.4
9

±
1
2
.4
2

6
7
.9
0

±
1
2
.9
8

7
4
.4
9

±
1
2
.4
2

6
9
.1
5

±
1
1
.5
9

C
o
m
p
.

9
9
.6
9

±
0
.1
0

7
1
.8
0

±
1
1
.3
2

7
0
.8
7

±
1
1
.4
0

6
9
.9
3

±
1
0
.5
1

7
0
.8
6

±
1
1
.4
2

7
0
.2
5

±
1
0
.1
0

172

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.3
:
F
or
ti
fi
ca
ti
o
n
ex
p
er
im

en
ta
l
re
su
lt
w
it
h
S
P
a
C
E
L
(m

ea
n
s
±

st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
1
0
fo
ld
s)
.
N
o
ta
ti
o
n
s
u
se
d
in

th
is
ta
b
le

a
re

si
m
il
a
r
to

th
o
se

o
f
T
ab

le
7
.1
.

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

L
o
w

a
n
d

m
ed

iu
m

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

1
)

M
o
ra
l
(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
4
.2
2

9
8
.0
0

±
4
.2
2

9
8
.5
0

±
3
.3
8

9
8
.0
0

±
4
.2
2

9
8
.5
0

±
3
.3
8

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
6
.3
3

9
8
.0
0

±
6
.3
3

9
9
.0
0

±
3
.1
6

9
8
.0
0

±
6
.3
3

9
9
.0
0

±
3
.1
6

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
6
.3
3

9
8
.0
0

±
6
.3
3

9
8
.0
0

±
6
.3
3

9
8
.0
0

±
6
.3
3

9
8
.0
0

±
6
.3
3

F
or
te

(2
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

8
9
.6
6

±
1
7
.9
2

9
1
.9
1

±
1
1
.0
6

8
9
.6
1

±
9
.0
8

8
9
.6
1

±
9
.0
8

9
1
.9
1

±
1
1
.0
6

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

8
7
.3
0

±
2
1
.9
9

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

9
2
.0
6

±
1
3
.7
5

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

9
5
.8
3

±
7
.2
2

9
1
.0
7

±
7
.7
8

8
2
.7
4

±
6
.7
6

8
2
.7
4

±
6
.7
6

9
1
.0
7

±
7
.7
8

P
ok
er

S
tr
a
ig
h
t
(1
)

A
cc
.

9
8
.2
1

±
3
.5
7

9
4
.5
1

±
6
.8
9

9
6
.2
9

±
4
.2
9

9
6
.2
9

±
4
.2
9

9
6
.2
9

±
4
.2
9

9
6
.2
9

±
4
.2
9

C
o
rr
.

9
8
.0
8

±
3
.8
5

9
6
.1
5

±
7
.6
9

9
8
.0
8

±
3
.8
5

9
8
.0
8

±
3
.8
5

9
8
.0
8

±
3
.8
5

9
8
.0
8

±
3
.8
5

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

7
5
.0
0

±
5
0
.0
0

B
ro
th
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

D
a
u
g
h
te
r
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

F
at
h
er

(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

173

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.3

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

G
ra
n
d
so
n
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

H
ig
h

a
n
d

v
e
ry

h
ig
h

co
m
p
le
x
it
y
le
a
rn

in
g
p
ro

b
le
m
s
w
it
h
o
u
t
ti
m
eo

u
t
(G

ro
u
p

2
)

A
u
n
t
(1
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
8
.7
5

±
3
.9
5

9
8
.7
5

±
3
.9
5

9
8
.7
5

±
3
.9
5

9
8
.7
5

±
3
.9
5

9
7
.7
5

±
4
.7
8

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
7
.5
0

±
7
.9
1

1
0
0
.0
0

±
0
.0
0

9
8
.0
0

±
6
.3
3

C
o
u
si
n
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

9
7
.3
2

±
5
.6
6

9
7
.3
2

±
5
.6
6

9
7
.3
2

±
5
.6
6

9
7
.3
2

±
5
.6
6

9
7
.3
2

±
5
.6
6

C
o
rr
.

1
0
0
.0
0

±
0
.0
0

9
4
.6
4

±
1
1
.3
3

9
4
.6
4

±
1
1
.3
3

9
4
.6
4

±
1
1
.3
3

9
4
.6
4

±
1
1
.3
3

9
4
.6
4

±
1
1
.3
3

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

U
n
cl
e
(1
)

A
cc
.

9
5
.4
2

±
1
0
.8
4

9
5
.8
3

±
6
.8
0

9
8
.3
3

±
5
.2
7

9
4
.5
8

±
7
.1
0

9
7
.0
8

±
6
.2
3

9
4
.5
8

±
7
.1
0

C
o
rr
.

9
0
.8
3

±
2
1
.6
8

9
1
.6
7

±
1
3
.6
1

9
6
.6
7

±
1
0
.5
4

9
4
.1
7

±
1
2
.4
5

9
6
.6
7

±
1
0
.5
4

9
1
.6
7

±
1
3
.6
1

C
o
m
p
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

9
5
.0
0

±
1
0
.5
4

9
7
.5
0

±
7
.9
1

9
7
.5
0

±
7
.9
1

L
ea

rn
in

g
p
ro

b
le
m
s
w
it
h

ti
m
eo

u
t
(G

ro
u
p

3
)

C
a
rc
in
o
G
en
es
is

(7
)

A
cc
.

6
0
.5
2

±
6
.0
6

5
6
.3
6

±
7
.2
2

5
7
.2
4

±
6
.3
3

5
7
.8
5

±
5
.8
7

5
7
.5
7

±
8
.5
6

5
6
.6
3

±
9
.0
7

C
o
rr
.

3
5
.4
2

±
8
.3
9

4
3
.2
5

±
1
0
.3
2

5
3
.5
0

±
5
.4
5

5
0
.3
3

±
5
.8
7

5
1
.0
0

±
9
.5
7

4
7
.7
5

±
1
2
.3
0

C
o
m
p
.

8
1
.9
0

±
6
.7
7

6
7
.5
4

±
1
0
.0
5

6
0
.3
2

±
1
1
.3
6

6
4
.2
7

±
9
.1
2

6
3
.1
3

±
9
.9
6

6
4
.2
1

±
1
2
.2
5

C
o
n
ti
n
u
ed

o
n
n
ex
t
pa
ge

174

7. Improving Predictive Correctness by Fortification

T
a
b
le

7
.3

–
c
o
n
ti
n
u
e
d

M
e
tr
ic

F
u
ll

tr
a
in
in
g

N
o
fo
rt
ifi
c
a
ti
o
n

T
C
S
c
o
re

C
S
S
c
o
re

F
V
S
c
o
re

R
a
n
d
o
m

U
C
A
1
(0
)

A
cc
.

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

1
0
0
.0
0

±
0
.0
0

B
u
s-
1
(2
)

A
cc
.

9
9
.7
4

±
0
.3
6

9
9
.5
9

±
0
.4
5

9
9
.5
9

±
0
.4
5

9
9
.7
8

±
0
.3
6

9
9
.5
9

±
0
.4
5

9
9
.5
1

±
0
.5
0

C
o
rr
.

9
9
.7
4

±
0
.4
2

9
9
.6
1

±
0
.4
3

9
9
.6
1

±
0
.4
3

9
9
.8
3

±
0
.4
2

9
9
.6
1

±
0
.4
3

9
9
.6
1

±
0
.4
3

C
o
m
p
.

9
9
.7
4

±
0
.8
1

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
9
.4
7

±
1
.1
1

9
8
.9
5

±
1
.8
4

B
u
s-
2
(3
)

A
cc
.

9
9
.7
8

±
0
.2
3

9
9
.7
6

±
0
.2
1

9
9
.7
6

±
0
.2
1

9
9
.8
7

±
0
.1
6

9
9
.7
8

±
0
.2
0

9
9
.7
6

±
0
.2
0

C
o
rr
.

9
9
.8
1

±
0
.1
8

9
9
.7
7

±
0
.2
4

9
9
.7
7

±
0
.2
4

9
9
.8
9

±
0
.1
9

9
9
.7
9

±
0
.2
3

9
9
.7
9

±
0
.2
3

C
o
m
p
.

9
9
.5
5

±
1
.0
0

9
9
.7
0

±
0
.6
3

9
9
.7
0

±
0
.6
3

9
9
.7
0

±
0
.6
3

9
9
.7
0

±
0
.6
3

9
9
.5
5

±
0
.7
2

B
u
s-
3
(5
)

A
cc
.

9
9
.7
2

±
0
.4
0

9
9
.6
7

±
0
.1
4

9
9
.8
0

±
0
.0
9

9
9
.8
1

±
0
.1
9

9
9
.8
0

±
0
.0
9

9
9
.6
6

±
0
.1
5

C
o
rr
.

9
9
.8
4

±
0
.0
6

9
9
.6
7

±
0
.1
5

9
9
.8
1

±
0
.1
0

9
9
.8
4

±
0
.1
7

9
9
.8
1

±
0
.1
0

9
9
.6
7

±
0
.1
5

C
o
m
p
.

9
8
.1
6

±
5
.2
8

9
9
.6
0

±
0
.6
8

9
9
.6
0

±
0
.6
8

9
9
.5
2

±
0
.7
7

9
9
.6
0

±
0
.6
8

9
9
.5
2

±
0
.8
6

IL
D
P

(3
)

A
cc
.

7
2
.6
7

±
8
.1
2

7
1
.4
6

±
8
.1
5

7
3
.0
8

±
8
.1
2

7
0
.8
2

±
8
.5
4

7
2
.8
7

±
8
.2
9

7
2
.0
7

±
7
.8
1

C
o
rr
.

6
8
.9
7

±
1
3
.1
9

6
3
.0
2

±
1
4
.0
0

6
9
.6
3

±
1
2
.8
4

6
4
.7
8

±
1
3
.4
2

6
9
.6
3

±
1
2
.8
4

6
6
.0
3

±
1
2
.4
3

C
o
m
p
.

7
4
.5
4

±
1
1
.3
9

7
5
.7
9

±
1
1
.8
4

7
4
.8
5

±
1
2
.0
0

7
3
.9
1

±
1
2
.9
5

7
4
.5
4

±
1
2
.6
5

7
5
.1
6

±
1
2
.4
0

175

7. Improving Predictive Correctness by Fortification

7.5 Conclusion

This chapter has presented a fortification method for improving the predictive accu-

racy of the class expression learning algorithms. A fortification method consists of

a method for generating the fortifying definition, a fortification scoring and a cut-off

point computation strategies.

This chapter has also provided one method for fortifying definition generation, three

fortification scoring methods and one cut-off point computation strategy. Overall, the

experimental results in Tables 7.1, 7.2 and 7.3 show that this method improved the

predictive predictive accuracy of most learning problems in the experiments. This

means that the predictive accuracy was increased and the increase of the predictive

correctness was higher than the decrease of the completeness (if any).

The experiments were conducted on three learning algorithms that use three dif-

ferent class expression learning approaches. The experimental results of CELOE and

ParCEL were better than those of SPaCEL: 14/30 results of CELOE and 8/30 results

of ParCEL were above the baseline in comparison with 6/33 results of SPaCEL. One

of the possible reasons is that CELOE and ParCEL had better fortifying definitions

for fortification than SPaCEL. In SPaCEL, some of the fortifying definitions were used

to construct the learnt concept (counter-partial definitions) and they may be the most

promising definitions for the fortification.

Amongst the three fortification strategies, CSScore produced better results in more

learning problems than TCScore and FVScore. However, the TCScore strategy does not

require an additional step to compute the fortification score. The result of the random

fortifying definition selection was also presented in Tables 7.1, 7.2 and 7.3. The results

illustrates the positive effect of the fortification strategies on the fortification result.

The random selection strategy gave lower accuracy than the other strategies in more

learning problems.

The current cut-off point computation strategy produced promising results. The

increase of predictive correctness that was caused by the fortification was higher than

the decrease of predictive completeness in most of learning problems in the experiments.

As a result, the predictive accuracy also increased. There was no significant decrease

176

7. Improving Predictive Correctness by Fortification

of predictive completeness in the experiments. The current cut-off point computation

method is based on the fortification validation dataset. Therefore, it may be recom-

puted according to the change of data or the performance of the fortification on the

classification.

Further investigation on the fortifying definitions suggests that the fortification

results can be further improved by more appropriate cut-off points. Table 7.4 shows

the predictive accuracy and correctness at other cut-off points (that is called the new

cut-off point in the table) for the CarcinoGenesis and MUBus-1 datasets in the CELOE

and SPaCEL results. The new cut-off points produce higher results and some of them

are statistically significant higher than the results without fortification, whereas the

results produced by the current cut-off points are not. To produce the results in Table

7.4, we used all fortifying definitions and observe the fortification result incrementally.

After that, we selected the first result that is better than the current cut-off point.

These are still not necessarily the best results that the fortification can produce. A

more thorough investigation on the cut-off point computation may involve more factors

that have not been investigated yet.

Nevertheless, the fortification experimental results are promising, particular for the

top-down learning approaches (e.g. CELOE and ParCEL). For example, experimental

results on CELOE suggests that 14/48 results were above the baseline, i.e. they are

statistically significantly better than the prediction result without fortification at 95%

confidence. There were 18/48 results in which the predictive accuracy is 100%.

Therefore, this approach is applicable for class expression learning, as top-down

learning is the most popular approach in class expression learning. The experimental

results suggest that our approach not only ensured a balanced trade-off between the

predictive correctness and the predictive completeness, but also achieved promising

results. The gained predictive correctness was higher than the lost predictive com-

pleteness in most learning problems. Therefore, the predictive accuracy was increased

respectively. In 144 results (3 algorithms, 16 datasets and 3 fortification strategies),

28 results were above baseline, and none of the results was below the baseline. It is

worth noting that in 144 validation results, there were 51 results in which the predictive

accuracy is 100%.

177

7. Improving Predictive Correctness by Fortification

Table 7.4: Experimental results for new cut-off points (means ± standard deviations of
10 folds). The pairs of numbers below the learning problem names represent the current
(Old) and the new (New) cut-off points respectively. The representation conventions are
similar to Table 7.1. “No fort.” is the abbreviation for “No fortification”.

Problem Metric
No
fort.

TCScore CSScore FVScore

Old New Old New Old New

ParCEL

CarcinoGenesis
(8, 5)

Acc. 52.78
±7.12

54.88
±6.38

54.55
±6.31

53.08
±6.83

54.57
±5.05

54.25
±6.70

53.98
±4.88

Corr. 61.08
±11.01

69.58
±8.46

73.46
±6.82

62.38
±10.86

68.83
±8.75

65.58
±10.46

70.83
±10.81

MUBus-1
(6, 16)

Acc. 99.51
±0.47

99.51
±0.47

99.78
±0.26

99.74
±0.36

99.78
±0.26

99.51
±0.47

99.78
±0.26

Corr. 99.52
±0.43

99.52
±0.43

99.83
±0.23

99.78
±0.31

99.96
±0.14

99.52
±0.43

99.83
±0.23

SPaCEL

MUBus-1
(2, 21)

Acc. 99.59
±0.45

99.59
±0.45

99.89
±0.18

99.78
±0.36

99.81
±0.26

99.59
±0.45

99.85
±0.19

Corr. 99.61
±0.43

99.61
±0.43

99.96
±0.14

99.83
±0.42

99.91
±0.28

99.61
±0.43

99.91
±0.18

MUBus-2
(2, 21)

Acc. 99.76
±0.21

99.76
±0.21

99.83
±0.20

99.87
±0.16

99.94
±0.08

99.78
±0.20

99.83
±0.20

Corr. 99.77
±0.24

99.77
±0.24

99.84
±0.23

99.89
±0.19

99.97
±0.08

99.79
±0.23

99.84
±0.23

178

7. Improving Predictive Correctness by Fortification

In the three fortification scoring strategies, the TCScore strategy does not require

additional computation and dataset to score the fortification candidates. Therefore, it

is suitable for learning problems that do not have enough additional data for scoring.

This strategy is also suitable for learning problems where the training data contains

enough information to describe the scenario.

On the other hand, CSSccore and FVScore require additional computation and a

validation dataset. As these strategies use a separate dataset for scoring, they can

deal with the unseen characteristics in the training data, i.e. incomplete training data.

CSScore also uses the similarity between concepts to score the candidates. Therefore,

it often had stronger impact on the fortification results. Using both ABox and TBox

in scoring the candidates also help this strategy to be less dependant on the additional

dataset. If there is no additional dataset, it can be adjusted to use only the TBox. In

comparison with the TCScore and FVScore that use only the ABox, the combination

of both ABox and TBox of the CSScore produced better results.

As each of the strategies uses different aspects to score the candidates, e.g. TCScore

employs the training model, and CSScore employs the concept model (TBox) and a

validation model (similarity based on ABox), a combination of them may create a

potential scoring strategy. This is left as future work.

179

7. Improving Predictive Correctness by Fortification

180

Chapter 8

Conclusions and Future Work

In this chapter, we first summarise the results and contributions of the thesis.

Then, we point out potential threats to the validity of results and discuss

future work.

8.1 Discussion and Contributions of the Thesis

This thesis proposes novel approaches in description logic learning to improve speed

and scalability, and to provide flexibility to trade off between predictive correctness and

predictive completeness.

Two approaches have been proposed to speed up learning and improve the ability

of the learning algorithms to deal with complex learning problems. In the first ap-

proach, the Parallel Class Expression Learning (ParCEL) algorithm, the learning is

sped up by increasing the number of computations of the learning algorithm in a unit

of time. The approach uses parallelisation to take advantage of multi-core processors

and multi-processor systems. Moreover, the implicit divide and conquer strategy be-

hind the three-step learning approach, which combines both top-down and bottom-up

learning and a reduction step, helps to increase the scalability of the learning algo-

rithm when the complexity of the learning problems increases. The reduction step

enables customisation of the learnt models, i.e. to create bias towards a certain metric

such as total definition length or the number of sub-solutions. The experiments show

181

8. Conclusions and Future Work

promising results for both learning time and the ability to deal with complex learning

problems. The results were compared with the Class Expression Learner for Ontology

Engineering algorithm (CELOE), a top-down OWL class expression learning that was

recently developed. The experimental results show that ParCEL outperformed CELOE

on most learning problems in the experiments. The ParCEL approach addresses the

second objective of the research and it was presented in Chapter 5.

A Symmetric Class Expression Learning (SPaCEL) approach has also been intro-

duced to improve learning speed. The idea underlying this approach is to reduce the

number of computations necessary to find the solution. This objective was achieved

by using downward refinement to build models for both positive and negative exam-

ples simultaneously. In other words, the approach utilises definitions of both positive

and negative examples. The downward refinement operators for description logics are

not dedicated to finding the definition of positive or negative examples. They simply

specialise a given description and therefore refinement results may be the definitions of

positive or negative examples. Most top-down learning approaches only seek a defini-

tion for positive examples and they are completely based on the refinement operators.

However, models of positive examples can be constructed using the models of neg-

ative examples. For instance, the concept Father can be defined not only as Male

AND hasChild SOME Person but also as hasChild SOME Person AND (not Female)

where Female is a model of negative examples. Intuitively, a symmetric approach can

use the refinement results more effectively and thus can reduce the search space size.

In addition, this approach is also beneficial for parallelisation. The evaluation results

suggest that combining these methods reduced the search space significantly in com-

parison with CELOE, a top-down class expression learning algorithm. The SPaCEL

approach addresses the third objective of the research and it was presented in Chapter

6.

An Adaptive Numerical Data Segmentation approach that aims to segment the

values of numerical datatype properties to add support for numerical data learning

in description logic learning has been introduced. This approach contributes to the

improvement of the scalability and speed of description logic learning. We have shown

that this approach computes quasi-order sets for refinement of numerical datatype

182

8. Conclusions and Future Work

properties based on relational graphs that describe relationships between examples and

the values of datatype property assertions. The relational graphs provide necessary

information to reduce redundancy and avoid the missing of any necessary values in

the quasi-order space. As the result, this approach decreases the learning search space

and speeds up the learning algorithms. The Adaptive Numerical Data Segmentation

approach addresses the first objective of our research and it was presented in Chapter

4.

To provide flexibility to trade off between predictive correctness and predictive

completeness, fortification of the prediction model has been proposed. In description

logic learning, the top-down approach is most used and it tends to create bias towards

predictive completeness. Therefore, a method that can improve predictive correctness

to provide flexibility to trade off between these factors has been proposed. The basic

idea of this approach is to fortify the predictive correctness by applying a level of over-

specialisation on the prediction model. Two questions in this problem were addressed:

i) how to specialise the prediction model, and ii) how much specialisation should be

applied.

A method for producing fortification candidates has been proposed that can be

applied to arbitrary class expression learning algorithms. Fortification candidates can

be computed by swapping the sets of positive and negative examples and using the

allowed noise percentage in the learning setting. More over-specialisation can poten-

tially provide higher prediction correctness, but it can lead to over-fitting. Therefore,

methods for ranking the fortification candidates and identifying appropriate levels of

over-specialisation for the prediction model have been proposed. Three ranking meth-

ods have been proposed, based respectively on training coverage, fortification validation

and concept similarity. These methods use different aspects to rank the candidates and

thus each of them is suitable for a particular class of problems. The number of candi-

dates used for fortification, called cut-off point, is computed based on the fortification

validation dataset.

The experiments show promising results, particularly on top-down learning ap-

proaches such as CELOE and ParCEL. However, further investigation suggests that

the proposed cut-off strategy is not optimal. The fortification results could be further

183

8. Conclusions and Future Work

improved by a more appropriate cut-off point computation strategy. The Fortification

Approach to Improve Predictive Correctness addresses the fourth objective of the thesis

and it was described in Chapter 7.

In addition to the above-mentioned findings, this thesis also produced some other

considerable contributions. Two learners, ParCEL and SPaCEL, and a fortification

model were implemented and integrated into DL-Learner, a popular description logic

learning framework1 (see Appendix A). In addition, an evaluation methodology that

was designed in Chapter 3 includes all aspects of a thorough evaluation: selection

of datasets; evaluation metrics; measurement methodology and statistical significance

tests. An overview of the literature in the field of class expression learning was also

provided in Chapter 2.

8.2 Threats to Validity of the Results

In this section, we discuss the uncontrollable factors that impact on the results of

the experiments (internal validity) and the generalisability of the findings (external

validity).

8.2.1 Threats to internal validity

Four potential threats to the internal validity of the experimental results have been

identified:

1. Thread scheduling. Class expression learning is essentially a search problem

where the exploration of the search space is controlled by a search heuristics. In

parallel class expression learning, multiple workers are used to explore the search

space (search tree) simultaneously. Although the descriptions in the search space

(branches) are assigned to the workers based on the search heuristic, the order of

refinements may be slightly different between different runs of the same learning

problem depending on the order in which the workers are scheduled. Potential

metrics affected by this threat are the learning time and the predictive accuracy.

Our investigation suggested that there was not a significant variation between

1http://dl-learner.svn.sourceforge.net/viewvc/dl-learner/

184

8. Conclusions and Future Work

runs. However, this does not mean that the threat caused by thread scheduling

can be completely ignored. It can be addressed by using the multi-run k-fold

cross-validation method.

2. Concurrency control. In a parallel programming paradigm, concurrency con-

trol between threads is an important issue. In our implementation, monitor locks

(i.e. synchronized blocks) and concurrent data structures were used for con-

currency control [25, 47, 136]. While the concurrent data structures allow for

higher guarantees of concurrency control, the monitoring locks have the poten-

tial to cause conflicts between threads. Using concurrency is a trade-off between

avoiding concurrency-related problems such as deadlocks and taking advantage of

parallelism. Our implementation might not strike the optimal balance, affecting

the learning time and accuracy.

3. Calibration of problems. In general, default learning configurations suggested

by the learners were always used (see [82] for CELOE settings and Chapters 6

for ParCEL and SPaCEL settings). However, other settings may yield better

results. In particular, there are two basic learning settings that influence the

learning results: the allowed noise percentage and the search heuristic. The first

setting is very important to deal with the noisy learning problems. In our ex-

periments, CarcinoGenesis and ILDP are noisy datasets. It was reported that

CELOE achieved the highest accuracy on the CarcinoGenesis dataset when the

allowed noise percentage is 30% [82]. Similarly, the learning heuristic is also a

potential factor that influences the experimental results. Appropriate learning

heuristics can help to improve the learning time and perhaps the predictive ac-

curacy. For example, the solution for a complex learning problem can be found

faster if the penalty on the description length is low or vice versa.

There are two reasons for using the default learning setting in our experiments.

First, investigating this cracks the combinatorial exploration of a problem that is

already computationally expensive. Second, it is necessary to avoid the favouritism

between learning algorithms that is caused by the customised learning configura-

tions. For example, we may set an inappropriate penalty factor for the comparison

185

8. Conclusions and Future Work

algorithm while optimising this factor for our algorithm. Therefore, if the exper-

imental results are used to compare between learners, the impact of this threat

upon the results will not be significant. Otherwise, this threat should be treated

with caution. It can be counteracted by using a validation dataset to investigate

the best learning setting.

8.2.2 Threats to external validity

Two threats that potentially influence the generalisability of the findings should be

considered:

1. Implementation language selection bias. Our algorithms have been imple-

mented in Java, which is widely used by the Semantic Web community. Therefore,

it can benefit the implementation of existing semantic web techniques such as the

application programming interface for OWL (OWLAPI) and the OWL reason-

ers. This language also strongly supports concurrency control techniques that

are necessary for implementing parallelisation. However, the more benefits the

implementation got, the more difficult the migration of the implementation would

be. In the context of the Semantic Web application, the influence of this threat

to validity of our implementation is not a major concern. Therefore, we consider

it as a minor threat to the external validity of our implementation.

2. Dataset and reasoning framework selection. The low to high complexity

datasets, whose definitions have from several to hundreds of axioms, were used

for evaluation. However, the size of these datasets ranges only from small to

medium. Therefore, this allows the entire knowledge base of the learning problems

to be loaded into memory and reasoner for processing and reasoning. In real-

world applications, there are many large to very large ontologies that contain

thousands to hundred thousands of classes and properties such as DBpedia, Cyc,

etc. [18, 94]. Our algorithms cannot be applied directly to learning problems

with such knowledge bases. The reason for this issue is that the OWL reasoners

used in our algorithms, Pellet [107] and Fast Instance Check (FIC) [81], cannot

load the entirety of the large ontologies into memory for reasoning. The initial

186

8. Conclusions and Future Work

time for loading and classifying such ontologies is time-consuming. This can

be considered a major threat for our algorithms as the learning problems are

increasing not only in term of complexity (of the definitions) but also in term

of size (of the knowledge base). A potential solution for this problem is to use

the knowledge fragment selection approach [58, 116], which allows the reasoning

to be performed within a ‘related part’ of the knowledge base towards a given

reasoning request. Another solution is to use the parallel semantic web reasoning

frameworks that are developed for web-scale knowledge bases such as LarKC [48],

Reasoning-Hadoop [132] and WebPIE [131].

8.3 Future Work

Our experiments achieved promising results in improving class expression learning al-

gorithms’ performance and providing a flexible trade-off between predictive correctness

and completeness. However, our investigations have shown that there are other inter-

esting properties that have not been explored yet.

It would be useful to test the learning algorithms with more learning problems,

particularly learning problems with large knowledge bases and noisy datasets. This

would provide more thorough investigations into the ability of the learning algorithms

to deal with large knowledge bases and noisy datasets, which would help improve the

algorithms’ applicability for real-world applications. This is a challenging work as

handling noisy data is a difficult problem in machine learning.

The second direction is to investigate more reduction strategies for the Parallel

Class Expression Learning algorithm. The current reduction strategies are based on

the greedy strategy combined with a scoring criteria that creates bias towards certain

metrics. Each of the current reduction strategies uses only one certain condition to score

the partial solutions such as training coverage or definition length. Of a partial solution,

these two basic attributes are currently used separately. However, a combination of

these metrics may result in a more promising reduction strategy. For example, consider

two partial definitions with length 5 where each of them covers 80% of the positive

examples and their combination covers 100% of the positive examples. The combination

187

8. Conclusions and Future Work

of these partial definitions is preferred to a definition with length 15 that has 100%

coverage. However, a definition with length 15 that covers 100% of the positive examples

is better than 3 partial definitions with length 10 where each of them covers 40% and

their combination covers 100% of the positive examples. This example implies that a

more thorough reduction strategy requires the combination of different metrics.

Another direction that is also related to the construction of the final definition is

the normalisation and simplification of the learnt definitions. As discussed in Section

6.3.4, the current partial definition aggregation simply creates disjunction of all reduced

partial definitions. This may produce redundancies in the final definition, particularly

in the SPaCEL approach, where the counter-partial definitions can be used in many

partial definitions. Optimisation and simplification can be used to optimise and simplify

descriptions in description logics [3, 65]. They can remove redundancy in the learnt

definitions to reduce their length and increase the readability.

Fortification scoring and cut-off point estimation strategies can also be improved

further. An initial investigation into the experimental results in Section 7.5 shows

that although the current fortification and cut-off point estimation strategies produce

promising results, they have potential to produce even more promising results. Each of

the current fortification scoring strategies is based on a certain aspect such as training

coverage and concept similarity. A combination of these aspects can result in a more

robust strategy. In addition, a cut-off point strongly influences the fortification results.

The current strategy uses a fortification validation dataset for estimating the cut-off

points. However, a combination with training accuracy, completeness and correctness

may produce a better strategy.

Improving the scalability of the learner with respect to the size of the learning prob-

lem’s knowledge base is an indispensable direction to help the learners to be more useful

for real-word applications. As was explained in the discussion of potential threats to ex-

ternal validity of the research (see Section 8.2.2), there are two possible approaches for

this direction. The first approach is to use more scalable reasoning frameworks for the

learners, particularly the parallel and web-scale reasoners frameworks such as LarKC

[48], Reasoning-Hadoop [132] and WebPIE [131]. Another approach is to use the knowl-

edge fragment selection technique to reduce the size of the knowledge base required for

188

8. Conclusions and Future Work

instances checks [58, 116]. This technique identifies a minimal segment of knowledge

base that is relevant to the instance checks of a learning problem. This approach is

particularly useful for learning problems that use the general (upper) ontologies as the

knowledge base.

Another potential direction for future work is to redesign the learner to enable

the use of cloud computing [1, 23, 41]. An advantage for this direction is that the

current learners use the map-reduce architecture. This model is used for most cloud

technologies such as Hadoop [138] and CGL-MapReduce [42]. However, as with other

parallel and distributed algorithms, dealing with the concurrency and latency between

nodes in the cloud is the most challenging problem. The latency between cloud nodes

may influence the learnt result as it may influence the learning heuristics’ impact.

However, this direction, together with the improvement of the reasoning scalability, will

result in a highly scalable class expression learner that can handle learning problems

that have web-scale knowledge bases.

189

8. Conclusions and Future Work

190

Appendix A

Accessing the Implementation

The algorithms proposed in this thesis including ParCEL, SPaCEL and Fortification

for description logic learning are implemented based on the DL-Learner, an open source

machine learning framework [79]. This appendix first introduces briefly the DL-Learner

framework architecture based on its manual. After that, we present structure of the

algorithms proposed in this thesis. Finally, we provide instructions for checking out

and compiling the projects.

A.1 Software Structure

Our algorithms are implemented based on DL-Learner framework. This is an open

source Web Ontology Language learning framework developed by Lehmann and his

team [79]. It is written in Java and developed using Maven software project man-

agement architecture [92]. It provides flexibility for developing and new description

learning algorithms and integrating them into this framework as it uses the component

based model.

A.1.1 DL-Learner architecture

The architecture of this framework is adopted from [79] as shown in Figure A.1. There

are four core components:

Knowledge source – is a wrapper for knowledge bases and provides interface for ac-

191

A. Accessing the Implementation

cessing data inside the knowledge bases. This component is used by reasoner com-

ponents. Some types of knowledge sources currently supported by this framework

are OWL files (in various syntax), SPARQL endpoints and linked data [17, 29].

Reasoning component – provides reasoning services on knowledge sources to the

learning algorithm and learning problem components. It supports DIG 1.1 [10]

and OWLAPI [11] reasoner interfaces to connect to most of OWL reasoners such

as Pellet, FaCT and Hermit.

Learning problem – specifies types of learning problem (see Section 2.2 for more

details) accompanying the necessary information to describe a learning problem,

e.g. sets of positive and negative examples. This component also provides cal-

culations related to the learning problem such as completeness, correctness and

accuracy.

Learning algorithm – provides methods to solve one or more types of learning prob-

lem. The relation between this component and other components is illustrated in

Figure A.1.

This framework also provide interfaces (graphical and command line) for running

and interacting with the learning algorithm. More details can be found in [79].

A.1.2 Our algorithms packages

Our algorithms are developed based on the DL-Learner framework. Therefore, they

inherit the architecture of this framework, i.e. they are written in Java programming

language and follow Maven project management architecture. In addition, Subversion

is used to manage the project code revisions. We have developed three packages:

1. Package org.dllearner.algorithms.ParCEL implements the ParCEL algorithm

(details are provided in Chapter 5).

2. Package org.dllearner.algorithms.ParCELEx implements the SPaCEL algo-

rithm (details are provided in Chapter 6).

192

A. Accessing the Implementation

Figure A.1: DL-Learner architecture [79]

3. Package org.dllearner.cli.ParCEL implements fortification strategy and com-

mand line interface for running the algorithms (details are provided in Chapter

7).

Our code is being maintained in a Google Code repository at http://code.google.

com/p/parcel-2013/

A.2 Checking Out and Compiling Code

In this section, we provide instructions for checking out and compiling the project code.

There are no special hardware requirement for these tasks. The hardware is only needed

to be able to run the required softwares. Software requirements are listed as follows:

1. Subversion (SVN) client 1.6.x or above for checking out the source code. It can be

found at: http://subversion.apache.org/. For Linux systems, this package is

also provided in apt-get repositories.

2. Maven 3.x or above for managing the compilation, test and deployment. This

software can be found at: http://maven.apache.org/. Note that the most up-

to-date version in apt-get repositories is 2.x. Therefore, it does not satisfy the

193

A. Accessing the Implementation

requirement and a newer version must be downloaded from the Apache website

provided.

3. Java Development Kit (JDK) 1.5 or above. It can be found at: http://www.

oracle.com/technetwork/java/javase/downloads/index.html and in apt-get

repositories.

A.2.1 Checking out the project

The project code can be checked out at: https://parcel-2013.googlecode.com/

svn/trunk/. The top level has three folders corresponding to three sub-projects and a

project configuration file:

1. components-core: contains the core components of the DL-Learner framework.

2. interfaces: contains the DL-Learner interfaces including command line interface

and a GUI. This project used components-core as its dependency.

3. parcel-components-core: contains algorithms proposed in this thesis including

ParCEL and SPaCEL. This project uses components-core as its dependency.

4. parcel-interfaces: contains interface for running DL-Learner and our learn-

ing algorithms. It also support cross-validation and fortification strategy. This

project depends on three above projects.

5. examples: contains the datasets and learning configuration files used in our ex-

periments. This project is essentially a folder that contains datasets and learning

configuration used for evaluations.

6. pom.xml: a common configuration for building all sub-projects.

The following command is used to checkout the projects from the repository:

svn checkout http://parcel-2013.googlecode.com/svn/trunk/ [

containing folder]

194

A. Accessing the Implementation

A.2.2 Compiling code

To produce a runnable jar file for ParCEL and SPaCEL algorithms command line

interface, we need to compile all four projects. Compiling a project and creating a jar

file for it include two steps (using command line):

1. Navigate to the project folder.

2. Enter the following command:

mvn clean install -Dmaven.test.skip=true

Output of the compilation are the Java class files and a project jar file in the

target folder of the project. For example, to compile and create a jar file for the

components-core project, we follow the steps below:

1. In the terminal, change to the components-core folder.

2. Run the following command:

mvn clean install -Dmaven.test.skip=true

Outputs of this step are Java class files a jar file components-core-1.0-SNAPSHOT.jar

in the folder target of this project.

Compilation of other projects can be done in the same manner. They must be com-

piled in the following order: components-core, parcel-components-core, interface

and parcel-interfaces. Note that the first time these projects are compiled, Maven

may checkout the DL-Learner package from the remote repository and it may not be

compatible with our algorithms. Therefore, if the compilation of the interfaces or

parcel-interfaces project has error related to DL-Learner package, recompile the

projects again.

The final jar file that is used for running the algorithms (experiments) is the jar file

of the parcel-interfaces project parcel-cli.jar. This is a runnable jar file that

contains all necessary dependencies inside. Syntax for running this file is provided in

Appendix B.

195

A. Accessing the Implementation

196

Appendix B

Reproducing the Experimental

Results

This appendix provides instructions for reproducing experimental results reported in

this thesis. Metrics that are related to performance (e.g. learning time) of the algo-

rithm depend upon computer hardware (e.g. CPU and memory) and software (e.g.

numbers of workers and splitting strategy). Therefore, different experimental systems

may produce different results. Other metrics such as learnt concept and search tree size

are often similar to the reported result. Basic learning configuration parameters are

also provided. Finally, a test case is given as a step-by-step demonstration for learning

a dataset with several learning algorithms on a system with no required applications

installed, i.e. the test case starts from scratch.

B.1 System Requirements

There is no specific hardware requirement for running our algorithms. Any comput-

ers that can run the required softwares can also run our algorithms. The software

requirements are as follows:

1. Java Runtime Environment (JRE) 1.5 or above.

2. Runnable ParCEL interfaces runnable jar file parcel-cli.jar.

197

B. Reproducing the Experimental Results

3. Datasets and learning configuration files. We provide a set of datatsets and learn-

ing configuration files for these datasets in the folder examples in the repository.

The examples folder must be put in the same level with the folder containing

the jar file parcel-cli.jar. If it is placed in another level, paths in background

knowledge files must be modified correspondingly.

All files in the 2nd and 3rd requirements can be downloaded at our project repos-

itory: http://parcel-2013.googlecode.com/files/parcel-2013.zip. The zip file

contains:

1. A bin folder: this folder contains ParCEL interface runnable jar dile parcel-cli.jar

and two script files cli.bat and cli.sh for running the experiment in Windows

and Linux respectively.

2. An examples folder: this folder contains the datasets and learning configurations

files used in our experiments. Each dataset and the learning configuration files

for the dataset are organised in a separate folder.

3. A README.txt file: this file provides brief instructions for running the experi-

ments.

B.2 Running the Experiments

B.2.1 Syntax

To run an experiment (learning options are indicated in the learning configuration file),

we firstly extract the downloaded file (see Section B.1). Then, go to the bin folder and

run the following command:

• On Linux or Mac OS: ./cli.sh <learning configuration file>

For example:

./cli.sh ../examples/forte/uncle_owl_large_parcel_learn.conf

• On Windows: cli.bat <learning configuration file>

For example:

198

B. Reproducing the Experimental Results

cli.bat ..\examples\forte\uncle_owl_large_parcel_learn.conf

The learning result is outputted both to the terminal and a log file saved in the

bin\log folder.

B.2.2 Learning configuration file naming conventions

Learning configuration files are named using the following naming convention:

<dataset name>_<algorithm name>_<experiment type>.conf

Algorithm name can be: celoe, parcel or parcelex (SPaCEL). On the other

hand, experiment type is abbreviated as follows: learn stands for learning only, cross

stands for running cross-validation and fort stands for running cross-validation with

fortification.

For example, the file uncle owl large parcel learn.conf is a learning config-

uration file for learning the concept for uncle owl large dataset using the parcel

algorithm without running cross-validation procedure.

B.3 Learning Configuration

Our algorithms are developed based on the DL-Learner framework as described in Sec-

tion A.1.2. Therefore, a learning configuration file must provide sufficient information

for the four components. An example of a typical learning configuration file is:

//command line interface (CLI) component

cli.type = "org.dllearner.cli.ParCEL.CLI"

cli.performCrossValidation = true

cli.nrOfFolds = 3

cli.fortification = false

cli.fairComparison = false

//knowledge source component

ks.type = "OWL File"

199

B. Reproducing the Experimental Results

ks.fileName = "forte_family.owl"

//reasoner component

reasoner.type = "fast instance checker"

reasoner.sources = {ks}

//algorithm component

alg.type = "org.dllearner.algorithms.ParCEL.ParCELearner"

alg.numberOfWorkers = "4"

alg.maxExecutionTimeInSeconds = "180"

//learning problem component

lp.type ="org.dllearner.algorithms.ParCEL.ParCELPosNegLP"

lp.positiveExamples = {

...

}

lp.positiveExamples = {

...

}

Common parameters of the components are described in Table B.1.

Table B.1: Common components in DL-Learner framework and their parameters. Manda-
tory options are marked with ∗ and conditional mandatory options are marked with ∗∗

(described in their description).

Option Description Type

Knowledge source (ks)

type∗ Type of the knowledge source. Some common types

are: OWL File, KB File, SPARQL Endpoint

String

fileName∗∗ A path to a knowledge base file. This is used if the

type of knowledge source is OWL File

String

Continued on next page

200

B. Reproducing the Experimental Results

Table B.1 – continued

Option Description Type

url∗∗ A path to a KB file or an URL of a SPARQL End-

point. This is used if the knowledge source type is

KB File or SPARQL Endpoint.

String

Reasoner

type∗ Type of the reasoner. Some common reasoners

are: fast instance checker, PelletReasonser,

DIGReasoner.

String

source∗∗ A knowledge source component. This is used

if the reasoner is fast instance checker or

PelletReasoner.

Component

(ks)

url∗∗ An URL of a DIG reasoner. This is used if the rea-

soner is DIGReasoner.

String

Learning problem (lp)

type∗ Type of the learning problem. It can be

posNegStandard, ClassLearningProblem,

PosOnlyLP, ParCELPosNegLP (full qualified names

are recommended).

String

positiveExamples∗∗ Set of positive examples. Set of

string

negativeExamples∗∗ Set of negative examples. Set of

string

Learning algorithm (la)

type∗ Learning algorithm type. Common algorithms are:

celoe, ocel, ParCELearner, ParCELearnerExV2

(SPaCEL) (full qualified names are recommended).

String

maxExcution-

TimeInSeconds

Maximal seconds that an algorithm is allowed to

learn a given problem.

Integer

numberOfWorkers Maximal number of workers (see Chapter 5) are used

in learning. This is used with ParCEL and SPaCEL

algorithms.

Integers

noisePercentage Percentage of the negative examples are allowed to

be covered by a learnt concept.

Integer

Continued on next page

201

B. Reproducing the Experimental Results

Table B.1 – continued

Option Description Type

splitter A splitter component that is used to create split val-

ues for numeric datatype properties. This option is

supported by ParCEL and SPaCEL algorithms.

Component

(sp)

maxNoOfSplits Max number of splits are used to split numeric

datatype properties.

Integer

Splitter (sp)

type∗ Type of splitter. Currently, the only splitter sup-

ported is ParCELDoubleSplitterV1.

String

Command line interface (cli)

type∗ Type of command line interface. CLI is usually

used to run the cross-validation. Two currently

supported CLIs are: org.dllearner.cli.CLI and

org.dllearner.cli.ParCEL.CLI.

String

perform-

Crossvalidation

Used to indicate to run a training or a cross valida-

tion procedure. Default value is false.

Boolean

nrOfFolds Number of cross-validation folds. This is used if

performCrossValidation is true. Default value is

10 folds.

Integer

fortification Used to indicate to run the fortification or not. This

option is only available if performCrossValidation

is true and ParCEL CLI is used. Default value is

false.

Boolean

fairComparison Used to indicate to perform a fair comparison for the

fortification or not. This option is only available if

fortification is true. Default value is false.

Boolean

B.4 Test Cases

This section summarises the commands to perform all tasks introduced in Appendix A

(checking out and compiling code) and Appendix B (running experiments) by giving a

test case. All tasks in this test case have been successfully tested under:

• three operating systems: Windows 7, Ubuntu 10.04 and 12.10, Mac OS X Moun-

202

B. Reproducing the Experimental Results

tain Lion, and

• JDK 1.6.x and 1.7.x.

In this section, we show the test case under Ubuntu 12.10 and JDK 1.7.0 09. The

only difference when running this test case under other operating systems is the in-

stallation of the required softwares. In Ubuntu, we use apt-get utility for installing

required softwares while in Windows and Mac OS, we can use installers available on

their vendor’s website. Otherwise, the commands for the remaining steps are similar

to in Ubuntu. Following is the summary of this test case:

• Objectives: are to successfully:

1. check out and compile the project code of this thesis, and

2. run three learning algorithms CELOE, ParCEL and SPaCEL for the forte-uncle

dataset.

• Pre-conditions:

1. A fresh Ubuntu system (i.e. system has not been installed any required

softwares described in A.2) with an internet connection.

2. The project code is committed to the repository at https://code.google.

com/p/parcel-2013/.

3. Maven3 had been downloaded from http://maven.apache.org/.

The test case execution (actions and results) is demonstrated by showing the figures

that are captured from the execution. Summary of actions and expected results are

given in Table B.2.

203

B. Reproducing the Experimental Results

Table B.2: Actions and expected result of the test case.

No Action Expected result Figure

1. Check the required softwares installa-

tion: Execute three required applica-

tions (described in Section A.2) using

the commands in line 1, 11 and 15 in

Figure B.1.

No required applications have

been installed as shown in Figure

B.1.

B.1

2. Install required applications JDK, Sub-

version and Maven3: JDK and Subver-

sion are installed using the commands

in line 1 and 3 in Figure B.2. Maven3

is extracted and configured as shown in

Figure B.2 from line 10 to 15.

Applications are installed and

tested successfully as shown in line

4 to 7 and 16 to 22 in Figure B.2.

B.2.

3. Checkout the project code from repos-

itory: Create a folder in the home

folder to contain the project (line 1)

and checkout the project using svn as

shown in line 3, Figure B.3). The pa-

rameter “-q” is used for eliminating the

messages fomr svn. It can be removed

with affecting on the result.

Four projects, one folder contain-

ing experimental datasets and one

POM file should be downloaded

into the desired folder as shown in

line 5, Figure B.3.

B.3

4. Compile the components-core project

using Maven and install its jar file into

local repository. Command for doing

this task is given in line 2 in Figure B.4.

Compiled classes are created in

folder target and a jar file is cre-

ated (line 6 in Figure B.4) and

copied to the Maven local repos-

itory.

B.4

5. Compile the parcel-components-core

project: similar to step 4.

Compiled classes and a jar file

containing all compiled classes are

created in folder target of this

project. Jar file is also copied to

Maven local repository (as shown

in line 13, Figure B.4.

B.4

Continued on next page

204

B. Reproducing the Experimental Results

Table B.2 – continued

No Actions Expected result Figure

6. Compile the interfaces project: sim-

ilar to the above projects.

A runnable jar file

dl-learner.jar is created in

folder target of this project.

B.5

7. Compile the parcel-interfaces

project: similar to the interfaces

project.

A command line interface for

ParCEL is creared in the folder

target of this project. This is a

runnable jar file parcel-cli.jar

and it contains all necessary li-

braries for running this jar file.

B.6

8. Run CELOE for the Forte-

Uncle dataset: run the jar file

dl-learner.jar and pass the learning

configuration file for CELOE algorithm

as in lines 2-3 in Figure B.7.

CELOE learns and finishes with a

set of solutions in which there is

an accurate concept as shown in

lines 33-34 in Figure B.7.

B.7

9. Run ParCEL for the Forte-Uncle

dataset: similar to step 8 but for Par-

CEL algorithm as shown in lines 1-2,

Figure B.8.

Two partial definitions are re-

turned as shown line 22-23 in Fig-

ure B.8.

B.8

10. Run SPaCEL for the Forte-Uncle

dataset: similar to step 8 but for SPa-

CEL algorithm as shown in lines 1-2,

Figure B.9.

Two partial defintion are returned

as shown in line 28-31 in Figure

B.9.

B.9

205

B. Reproducing the Experimental Results

Figure B.1: Check required softwares in the system including JDK, Subversion and
Maven.

Figure B.2: Install required softwares: JDK, Subversion and Maven. JDK and Subversion
are installed using apt-get while Maven3 is installed manually. “> null” in lines 1, 3 and
11 is used to turn off the messages when install or extract the softwares.

206

B. Reproducing the Experimental Results

Figure B.3: Check out the project from the repository. “-q” in line 3 is used to tell svn
not to display the messages.

Figure B.4: Compile the DL-Leaner and ParCEL core components project.

Figure B.5: Compile the interface project.

Figure B.6: Compile the ParCEL CLI project.

207

B. Reproducing the Experimental Results

Figure B.7: Learning the Forte-Uncle dataset using CELOE. By default, CELOE displays
the best 10 solutions. This figure keeps only the best one, which has 100% accuracy.

Figure B.8: Learning the Forte-Uncle dataset using ParCEL.

208

B. Reproducing the Experimental Results

Figure B.9: Learning the Forte-Uncle dataset using SPaCEL.

209

B. Reproducing the Experimental Results

210

Appendix C

List of Publications

Parts of this thesis are based on previously published materials as follows:

• An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Mars-

land. Improving Predictive Specificity of Description Logic Learner

by Fortification. Journal of Machine Learning Research - Proceedings Track,

29:419-434, 2013.

• An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland.

An Approach to Numeric Refinement in Description Logic Learning

for Learning Activities Duration in Smart Homes. In Proceeding of the

Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13) Work-

shop on Space, Time and Ambient Intelligence, pages 22–28, 2013.

• An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland.

Two-way Parallel Class Expression Learning. Journal of Machine Learning

Research - Proceedings Track, 25:443–458, 2012.

• An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland.

An approach to parallel class expression learning. In Rules on the Web:

Research and Applications, pages 302–316. Springer, 2012.

• An C. Tran, Stephen Marsland, Jens Dietrich, Hans W. Guesgen,

and Paul Lyons. Use cases for abnormal behaviour detection in smart

211

C. List of Publications

homes. In Aging Friendly Technology for Health and Independence, pages 144–

151. Springer, 2010.

• Paul Lyons,, An C. Tran, Joe H. Steinhauer, Stephen Marsland,

Jens Dietrich, and Hans W. Guesgen. Exploring the responsibilities

of single-inhabitant Smart Homes with Use Cases. Journal of Ambient

Intelligence and Smart Environments, 2(3):211–232, 2010.

212

Glossary

AL a short for Attribute Language, the most basic language in the description logic

language family. 14

SRIOQ a description logic language, which is an underlying logic for the most-up-to-

date W3C recommendation for semantic web language OWL2-DL. 14, 15

BOTTOM a special concept in description logics (also denoted by ⊥) with no individuals

are its instances. 15, 18

TOP a special concept in description logics (also denoted by) that subsumes all other

concepts in the TBox, i.e. all individuals in the knowledge base are its instances.

15, 18, 24

Thing the super class of all class in a OWL knowledge base (ontology). 24

SPaCEL a short for Symmetric Class Expression Learning algorithm (see Chapter 6).

106

ParCEL a short for Parallel Class Expression Learning algorithm (see Chapter 5). 62,

68, 79

ABox a part description logic knowledge base that contains concept and role asser-

tions. 17, 20

axiom (in DLs) an axiom is a concept in the form of C D (inclusion axiom) or

C ≡ D (equality axiom), where C and D are concepts. 19, 26

213

Glossary

CELOE a short for Class Expression Learner for Ontology Engineering algorithm.

This is an OWL learning algorithm in DL-Learner framework developed by Lehmann

et al. [80]. 33, 49, 62, 68

CPU time the actual time taken by the CPU(s) to process a certain task. 41

decidable in general, a logical system is decidable if it can compute the truth value

of all inference tasks within a finite time. In description logics, a description

logic language is decidable if there exist algorithms that can give an answer for a

subsumption (or satisfiability) check in a finite number of steps. 13, 15, 24

DL a short for Description Logics, a family of knowledge representation formalisms.

1, 13

ILP a symbolic approach in machine learning (i.e. an intersection of Machine Learning

and Logic Programming), which aims to learn general rules from specific facts. 1

OCEL a short for Ontology Class Expression Learning Algorithm. This is an OWL

learning algorithm in DL-Learner framework developed by Lehmann et al. [80].

33, 49, 63

OWL a short for Web Ontology Language which is a family of knowledge representa-

tion languages for the Semantic Web endorsed by World Wide Web Consortium

(W3C). 3, 23

RBox a part of description logic knowledge base that contains role axioms. 17

scalable (a system) is able to handle a growing amount of work in a capable manner

or to enlarge to accommodate that growth [20]. 34

semi-decidable in general, a logical system is semi-decidable if it can compute the

truth value of all inference tasks within a finite time if the inference is hold but

it may not give the answer if the inference is not hold. In description logics,

a description logic language is semi-decidable if there exist algorithms that can

give an answer for a subsumption (or satisfiability) check in a finite number of

214

Glossary

steps if the subsumption (or satisfiability) is hold and there may not have such

an algorithm if the subsumption (or satisfiability) is not hold. 24

speeding up in parallel computing, speed-up aims to decrease the time taken for

performing a task in proportion to the increase of the degree of parallelisation. 4

TBox a part of description logic knowledge base that contains concept and role axioms.

In case that the knowledge base has RBox, this part contains only concept axioms.

17, 19

wall-clock time the actual time taken by a computer to process a task that includes

the CPU time, I/O time and delay time caused by waiting for availability of

required resources. 41

215

Glossary

216

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,

Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel

Rabkin, Ion Stoica, et al. A view of cloud computing. Communications

of the ACM, 53(4):50–58, 2010.

[2] Franz Baader. The Instance Problem and the Most Specific Concept

in the Description Logic EL w.r.t Terminological Cycles with Descrip-

tive Semantics. In KI 2003: Advances in Artificial Intelligence, pages 64–78.

Springer, 2003.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele

Nardi, and Peter F. Patel-Schneider. The description logic handbook:

Theory, implementation and applications. Cambridge University Press, 2010.

[4] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics

as ontology languages for the Semantic Web. Mechanizing Mathematical

Reasoning, pages 228–248, 2005.

[5] Franz Baader, Ralf Kusters, and Ralf Molitor. Computing least

common subsumers in Description logics with existential restrictions.

In International Joint Conference on Artificial Intelligence, pages 96–101. Morgan

Kaufmann Publishers Inc., 1999.

[6] Liviu Badea and Shan-Hwei Nienhuys-Cheng. A refinement operator

for Description logics. Inductive Logic Programming, pages 40–59, 2000.

217

REFERENCES

[7] Dennis Bahler. The Induction of rules for predicting chemical Car-

cinogenesis in Rodents. In Intelligent Systems for Molecular Biology, pages

29–37. AAAI/MIT Press, 1993.

[8] Jonathan Barnes. Aristotle’s Posterior analytics. Oxford University Press,

1976.

[9] Jonathan Barnes. Posterior analytics. Oxford University Press, USA, 1994.

[10] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG De-

scription logic interface: DIG/1.1. In Proceedings of the 2003 Description

Logic Workshop (DL 2003), 2003.

[11] Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the Se-

mantic Web with the OWL API. The Semantic Web-ISWC 2003, pages

659–675, 2003.

[12] Dave Beckett and Brian McBride. RDF/XML Syntax specification

(revised). W3C Recommendation, 2004.

[13] David Beckett. New syntaxes for RDF. Technical report, Institute For

Learning And Research Technology, Bristol, 2004.

[14] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Semantic

Web. Scientific American, 284(5):28–37, 2001.

[15] Milind Bhandarkar. MapReduce programming with apache Hadoop.

In Parallel & Distributed Processing (IPDPS) Symposium, pages 1–1. IEEE, 2010.

[16] Chris Biemann. Ontology learning from text: A survey of methods. In

LDV forum, number 2, pages 75–93. 2005.

[17] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - The

story so far. International Journal on Semantic Web and Information Systems

(IJSWIS), 5(3):1–22, 2009.

218

REFERENCES

[18] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer,

Christian Becker, Richard Cyganiak, and Sebastian Hellmann. DB-

pedia – A crystallization point for the Web of data. Web Semantics:

Science, Services and Agents on the World Wide Web, 7(3):154–165, 2009.

[19] James P. Bliss. The Cry Wolf Phenomenon and its Effects on Alarm Responses

(False Alarms). PhD thesis, PhD dissertation, University of Central Florida,

USA, 1993.

[20] André B. Bondi. Characteristics of scalability and their impact on

performance. In Proceedings of the 2nd International workshop on Software

and Performance, WOSP ’00, pages 195–203, New York, NY, USA, 2000. ACM.

[21] Ronald J. Brachman. Structured inheritance networks. Research in

Natural Language Understanding, Quarterly Progress Report, (1):36–78, 1978.

[22] Shlomo Breznitz. Cry wolf: The psychology of false alarms. Lawrence Erlbaum

Associates Hillsdale, NJ, 1984.

[23] HAYES Brian, Thomas Brunschwiler, Heinz Dill, Hanspeter Christ,

Babak Falsafi, Markus Fischer, Stella Gatziu Grivas, Claudio Gio-

vanoli, Roger Eric Gisi, Reto Gutmann, et al. Cloud computing.

Communications of the ACM, 51(7):9–11, 2008.

[24] Stéphane Campinas, Diego Ceccarelli, Thomas E . Perry, Renaud

Delbru, Krisztian Balog, and Giovanni Tummarello. The Sindice-

2011 dataset for entity-oriented search in the web of data. In 1st Inter-

national Workshop on Entity-Oriented Search (EOS), pages 26–32, 2011.

[25] Thomas W. Christopher and George Thiruvathukal. High Performance

Java Computing: Multi-threaded and Networked programming. Prentice Hall,

2000.

[26] Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Brad-

ski, Andrew Y Ng, and Kunle Olukotun. Map-Reduce for machine

219

REFERENCES

learning on multicore. Advances in neural information processing systems,

19:281–288, 2007.

[27] Keith L. Clark. Negation As Failure. In Logic and Data Bases, pages

293–322. Springer, 1978.

[28] Keith L. Clark. Parallel logic programming. The Computer Journal,

33(6):482–493, 1990.

[29] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL

protocol for RDF. World Wide Web Consortium (W3C) Recommendation,

2008.

[30] William W Cohen, Alex Borgida, and Haym Hirsh. Computing least

common subsumers in Description logics. In Proceedings of the National

Conference on Artificial Intelligence, pages 754–754. John Wiley & Sons Ltd.,

1992.

[31] William W. Cohen and Haym Hirsh. Learnability of Description logics.

In Proceedings of the fifth annual workshop on Computational learning theory,

pages 116–127. ACM, 1992.

[32] William W. Cohen and Haym Hirsh. Learning the CLASSIC descrip-

tion logic: Theoretical and experimental results. In Proceedings of the 4th

International conference on Principles of Knowledge representation and Reason-

ing, pages 121–133, 1994.

[33] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. A dissimi-

larity measure for ALC concept descriptions. In Proceedings of the 2006

ACM Symposium on Applied Computing, pages 1695–1699. ACM, 2006.

[34] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. A semantic

similarity measure for expressive Description logics. In Proceedings of

Convegno Italiano di Logica Computazionale, CILC05, 2009.

[35] John Davies, Rudi Studer, and Paul Warren. Semantic Web technologies:

Trends and research in ontology-based systems. Wiley, 2006.

220

REFERENCES

[36] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data

processing on large clusters. Communications of the ACM, 51(1):107–113,

2008.

[37] Luc Dehaspe and Luc De Raedt. Parallel inductive logic programming.

In Proceedings of the MLnet Familiarization Workshop on Statistics, Machine

Learning and Knowledge Discovery in Databases, page 5, 1995.

[38] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette

de Keizer. Comparison of reasoners for large ontologies in the OWL2

EL profile. Semantic Web, 2(2):71–87, 2011.

[39] Felix Distel. Model-Based Most Specific Concepts in Some Inexpres-

sive Description Logics. CEUR Workshop Proceeding, 2010.

[40] Francesco M Donini, Daniele Nardi, and Riccardo Rosati. Descrip-

tion logics of minimal knowledge and Negation As Failure. ACM Trans-

actions on Computational Logic (TOCL), 3(2):177–225, 2002.

[41] Jaliya Ekanayake and Geoffrey Fox. High performance parallel com-

puting with clouds and cloud technologies. In Cloud Computing, pages

20–38. Springer, 2010.

[42] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. MapRe-

duce for data intensive scientific analyses. In Proceeding of the 2008 Fourth

IEEE International Conference on eScience, pages 277–284. IEEE, 2008.

[43] Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano,

and Giovanni Semeraro. Knowledge-intensive induction of terminolo-

gies from metadata. The Semantic Web–ISWC 2004, pages 441–455, 2004.

[44] Nicola Fanizzi and Claudia d’Amato. A similarity measure for the

ALN Description logic. In Proceedings of the Italian Conference on Compu-

tational Logic (CILC), pages 26–27, 2006.

221

REFERENCES

[45] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL

concept learning in Description logics. Inductive Logic Programming, pages

107–121, 2008.

[46] Usama Fayyad and Keki Irani. Multi-interval discretization of

continuous-valued attributes for classification learning. In The 13th In-

ternational Joint Conference on Artificial Intelligence, pages 1022–1027, 1993.

[47] Pascal Felber and Michael K. Reiter. Advanced concurrency control

in Java. Concurrency and Computation: Practice and Experience, 14(4):261–

285, 2002.

[48] Dieter Fensel, Frank van Harmelen, Bosse Andersson, Paul Bren-

nan, Hamish Cunningham, Emanuele Della Valle, Florian Fischer,

Zhisheng Huang, Atanas Kiryakov, TK-I Lee, et al. Towards LarKC:

A platform for web-scale reasoning. In Semantic Computing, 2008 IEEE

International Conference on, pages 524–529. IEEE, 2008.

[49] Nuno A. Fonseca, Ashwin Srinivasan, Fernando Silva, and Rui Ca-

macho. Parallel ILP for distributed-memory architectures. Machine

learning, 74(3):257–279, 2009.

[50] Andrew Frank and Arthur Asuncion. UCI Machine learning reposi-

tory, 2010. Available from: http://archive.ics.uci.edu/ml.

[51] Dov M. Gabbay, Christopher John Hogger, John Alan Robinson,

J. Siekmann, Donald Nute, and Anthony Galton. Handbook of Logic

in Artificial Intelligence and Logic Programming. Clarendon Press, 1998.

[52] Anne Geffré, Kristen Friedrichs, Kendal Harr, Didier Concordet,

Catherine Trumel, and Jean-Pierre Braun. Reference values: A re-

view. Veterinary Clinical Pathology, 38(3):288–298, 2009.

[53] Steve Gregory. Parallel logic programming in PARLOG: The language and

its implementation. Addison-Wesley Pub. Co. Inc., Reading, MA, 1987.

222

REFERENCES

[54] Pierre Grenon, Barry Smith, and Louis J. Goldberg. Biodynamic on-

tology: Applying BFO in the Biomedical domain. Ontologies in Medicine,

102:20, 2004.

[55] Volker Haarslev, Kay Hidde, Ralf Möller, and Michael Wessel. The

RacerPro knowledge representation and reasoning system. Semantic

Web, 3(3):267–277, 2012.

[56] Volker Haarslev and Ralf Möller. Racer: An OWL Reasoning agent

for the Semantic Web. In Proc. of the International Workshop on Applications,

Products and Services of Web-based Support Systems, in conjunction with, pages

91–95, 2003.

[57] Sebastian Hellmann. Comparison of Concept learning algorithms. Master’s

thesis, The University of Leipzig, 2008.

[58] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of

OWL class descriptions on very large knowledge bases. International

Journal on Semantic Web and Information Systems (IJSWIS), 5(2):25–48, 2009.

[59] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-

Schneider, and Sebastian Rudolph. OWL 2 Web ontology language

primer. W3C Recommendation, 27:1–123, 2009.

[60] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Founda-

tions of semantic web technologies. Chapman and Hall/CRC, 2009.

[61] Matthew Horridge et al. A Practical Guide To Building OWL On-

tologies Using Protégé 4 and CO-ODE Tools Edition 1.2. The University

of Manchester, 2009.

[62] Matthew Horridge and Peter F. Patel-Schneider. OWL 2 web on-

tology language Manchester syntax. W3C Working Group Note, 2009.

[63] Ian Horrocks. FaCT and iFaCT. In Proceedings of the International Work-

shop on Description Logics (DL99), pages 133–135, 1999.

223

REFERENCES

[64] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irre-

sistible SROIQ. In Proceeding of the 10th International Conference on Princi-

ples of Knowledge Representation and Reasoning (KR 2006), pages 57–67, 2006.

[65] Ian Horrocks and Peter F. Patel-Schneider. Optimizing description

logic subsumption. Journal of Logic and Computation, 9(3):267–293, 1999.

[66] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm

based on counterfactuals for concept learning in the Semantic Web.

Applied Intelligence, 26(2):139–159, 2007.

[67] Paul Jaccard. Etude comparative de la distribution florale dans une portion

des Alpes et du Jura. Impr. Corbaz, 1901.

[68] Krzysztof Janowicz. Sim-DL: Towards a Semantic Similarity Mea-

surement Theory for the Description Logic ALCNR in Geographic

Information Retrieval. In On the Move to Meaningful Internet Systems 2006:

OTM 2006 Workshops, pages 1681–1692. Springer, 2006.

[69] Frederik Janssen and Johannes Fürnkranz. On trading off consistency

and coverage in inductive rule learning. In Proceedings of the LWA, pages

306–313. Citeseer, 2006.

[70] Frederik Janssen and Johannes Fürnkranz. An empirical investiga-

tion of the trade-off between consistency and coverage in rule learning

heuristics. In Discovery Science, pages 40–51. Springer, 2008.

[71] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren

Sirin. Finding all justifications of OWL DL entailments. The Seman-

tic Web, pages 267–280, 2007.

[72] Jörg-Uwe Kietz and Katharina Morik. A polynomial approach to

the constructive induction of structural knowledge. Machine Learning,

14(2):193–217, 1994.

[73] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of

sequences. Courier Dover Publications, 2006.

224

REFERENCES

[74] Ralf Küsters and Ralf Molitor. Computing most specific concepts

in Description logics with existential restrictions. In LTCS-report 00-05,

Lufg Theoretical Computer Science, RWTH, 2000.

[75] Ralf Küsters and Ralf Molitor. Approximating most specific con-

cepts in Description logics with existential restrictions. AI Communica-

tions, 15(1):47–59, 2002.

[76] Nada Lavrac and Saso Dzeroski. Inductive logic programming: Techniques

and applications. New York, Ellis Horwood, 1994.

[77] Nada Lavrac and Luc De Raedt. Inductive logic programming: A

survey of European research. AI Communications, 8(1):3–19, 1995.

[78] Jens Lehmann. Hybrid learning of ontology classes. Machine Learning

and Data Mining in Pattern Recognition, pages 883–898, 2007.

[79] Jens Lehmann. DL-Learner: Learning concepts in Description logics.

The Journal of Machine Learning Research, 10:2639–2642, 2009.

[80] Jens Lehmann. Learning OWL Class Expressions. AKA Akademische Verlage-

sellschaft, 2010.

[81] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp.

Class expression learning for ontology engineering. Web Semantics: Sci-

ence, Services and Agents on the World Wide Web, 9(1):71–81, 2011.

[82] Jens Lehmann and Pascal Hitzler. Concept learning in Description

logics using Refinement operators. Machine Learning, 78(1):203–250, 2010.

[83] Man Li, Xiaoyong Du, and Shan Wang. A semi-automatic ontology ac-

quisition method for the Semantic Web. Advances in Web-Age Information

Management, pages 209–220, 2005.

[84] Thorsten Liebig and Felix Müller. Parallelizing tableaux-based de-

scription logic reasoning. In On the Move to Meaningful Internet Systems

2007: OTM 2007 Workshops, pages 1135–1144. Springer, 2007.

225

REFERENCES

[85] Francesca A. Lisi and Donato Malerba. Ideal refinement of Descrip-

tions in AL-Log. Inductive Logic Programming, pages 215–232, 2003.

[86] John Wylie Lloyd. Foundations of logic programming. Springer-verlag Berlin,

1984.

[87] Yann Loyer and Umberto Straccia. Any-world assumptions in Logic

Programming. Theoretical Computer Science, 342(2):351–381, 2005.

[88] Paul Lyons, An C. Tran, H. Joe Steinhauer, Stephen Marsland, Jens

Dietrich, and Hans W. Guesgen. Exploring the responsibilities of

single-inhabitant Smart Homes with Use Cases. Journal of Ambient In-

telligence and Smart Environments, 2(3):211–232, 2010.

[89] Alexander Maedche and Steffen Staab. Mining ontologies from text.

Knowledge Engineering and Knowledge Management Methods, Models, and Tools,

pages 169–189, 2000.

[90] Alexander Maedche and Steffen Staab. Ontology learning for the

Semantic Web. IEEE Intelligent Systems, 16(2):72–79, 2001.

[91] Frank Manola, Eric Miller, and Brian McBride. RDF Primer. W3C

Recommendation, 10:1–107, 2004.

[92] Vincent Massol and Timothy M O’Brien. Maven: A developer’s notebook.

O’Reilly Media, Incorporated, 2005.

[93] Tohgoroh Matsui, Nobuhiro Inuzuka, Hirohisa Seki, and Hidenori

Itoh. Comparison of three parallel implementations of an induction

algorithm. In 8th Int. Parallel Computing Workshop, pages 181–188, 1998.

[94] Cynthia Matuszek, John Cabral, Michael Witbrock, and John DeO-

liveira. An introduction to the syntax and content of CYC. In Pro-

ceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling

Background Knowledge and Its Applications to Knowledge Representation and

Question Answering, 2006.

226

REFERENCES

[95] Brian McBride et al. The resource description framework (RDF) and

its vocabulary description language RDFS. Handbook on Ontologies, pages

51–66, 2004.

[96] Deborah L. McGuinness, Frank Van Harmelen, et al. OWL web on-

tology language overview. W3C Recommendation, 10(2004-03):10, 2004.

[97] Michael Mealling and Ray Denenberg. Report from the Joint

W3C/IETF URI Planning Interest Group: Uniform Resource Iden-

tifiers (URIs), URLs, and Uniform Resource Names (URNs): Clarifi-

cations and Recommendations. Technical report, RFC 3305, 2002.

[98] Marvin Minksy. A framework for representing knowledge. The Psychol-

ogy of Computer Vision, McGraw-Hill, pages 211–277, 1975.

[99] Tom M. Mitchell. Generalization as search. Artificial intelligence,

18(2):203–226, 1982.

[100] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille

Fokoue, and Carsten Lutz. OWL 2 web ontology language: Profiles.

W3C Recommendation, 27:61, 2009.

[101] Stephen Muggleton. Inductive logic programming. New generation com-

puting, 8(4):295–318, 1991.

[102] Stephen Muggleton and Luc De Raedt. Inductive logic programming:

Theory and methods. The Journal of Logic Programming, 19:629–679, 1994.

[103] Todd Neideen and Karen Brasel. Understanding statistical tests. Jour-

nal of surgical education, 64(2):93–96, 2007.

[104] Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of Induc-

tive logic programming. Springer, 1997.

[105] Ian Niles and Adam Pease. Towards a standard upper ontology. In

Proceedings of the International Conference on Formal Ontology in Information

Systems, pages 2–9. ACM, 2001.

227

REFERENCES

[106] Hayato Ohwada and Fumio Mizoguchi. Parallel execution for speeding

up inductive logic programming systems. In Discovery Science, pages 75–

75. Springer, 1999.

[107] Bijan Parsia and Evren Sirin. Pellet: An OWL DL reasoner. In Third

International Semantic Web Conference-Poster, page 18, 2004.

[108] J. Ross Quinlan. Learning logical definitions from relations. Machine

learning, 5(3):239–266, 1990.

[109] M. Ross Quinlan. Semantic memory. Semantic Information Processing,

pages 216–270, 1968.

[110] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.

Cambridge University Press, 2011.

[111] Michael Ratcliffe and Jean-Claude Syre. A parallel logic program-

ming language for PEPSys. In Proceedings of the 10th International Joint

Conference on Artificial Intelligence, 1, pages 48–55. Morgan Kaufmann Pub-

lishers Inc., 1987.

[112] Lawrence Reeve and Hyoil Han. Survey of Semantic annotation plat-

forms. In Symposium on Applied Computing: Proceedings of the 2005 ACM

Symposium on Applied Computing, pages 1634–1638, 2005.

[113] Bradley L. Richards and Raymond J. Mooney. Automated refinement

of first-order Horn-clause domain theories. Machine Learning, 19(2):95–

131, 1995.

[114] Riccardo Rosati. DL+ Log: Tight integration of Description logics and

Disjunctive datalog. Proceeding of the 10th International Conference on the

Principles of Knowledge Representation and Reasoning (KR 2006), pages 68–78,

2006.

[115] Céline Rouveirol and Véronique Ventos. Towards learning in

CARIN-ALN. Inductive Logic Programming, pages 191–208, 2000.

228

REFERENCES

[116] Julian Seidenberg and Alan Rector. Web ontology segmentation:

Analysis, classification and use. In Proceedings of the 15th International

Conference on World Wide Web, pages 13–22. ACM, 2006.

[117] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A highly-

efficient OWL reasoner. In Proceedings of the 5th International Workshop on

OWL: Experiences and Directions (OWLED 2008), pages 26–27, 2008.

[118] Raymond M. Smullyan. First-order logic. Dover Publications, 1995.

[119] Vaclav Snasel, Pavel Moravec, and Jaroslav Pokorny. WordNet

ontology based model for web retrieval. In Proceedings in the Interna-

tional Workshop on Challenges in Web Information Retrieval and Integration

(WIRI’05), pages 220–225. IEEE, 2005.

[120] Antonio A. Snchez-Ruiz, Santiago Ontan, PedroAntonio Gonzlez-

Calero, and Enric Plaza. Measuring Similarity in Description Logics

Using Refinement Operators. In Ashwin Ram and Nirmalie Wiratunga,

editors, Case-Based Reasoning Research and Development, 6880 of Lecture Notes

in Computer Science, pages 289–303. Springer Berlin Heidelberg, 2011.

[121] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond

accuracy, F-score and ROC: A family of discriminant measures for

performance evaluation. AI 2006: Advances in Artificial Intelligence, pages

1015–1021, 2006.

[122] Ramakrishna Soma and Viktor K. Prasanna. Parallel inferencing for

OWL knowledge bases. In 37th International Conference on Parallel Process-

ing (ICPP’08), pages 75–82. IEEE, 2008.

[123] Ashwin Srinivasan. The Aleph Manual, 2004. Available from: http://www.

comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.

[124] Ashwin Srinivasan, Ross D. King, Stephen Muggleton, and

Michael JE. Sternberg. Carcinogenesis predictions using ILP. Inductive

Logic Programming, pages 273–287, 1997.

229

REFERENCES

[125] Steffen Staab and Rudi Studer. Handbook on Ontologies. Springer Verlag,

2009.

[126] Vaidy S. Sunderam. PVM: A framework for parallel distributed com-

puting. Concurrency: practice and experience, 2(4):315–339, 2006.

[127] Barbara G. Tabachnick, Linda S. Fidell, and Steven J. Osterlind.

Using multivariate statistics. Allyn and Bacon Boston, 2001.

[128] Emmanuel Tapia, Stephen Intille, and Kent Larson. Activity recog-

nition in the home using simple and ubiquitous sensors. Pervasive Com-

puting, pages 158–175, 2004.

[129] Stephen Taylor and Ehud Y. Shapiro. Parallel logic programming tech-

niques. Prentice Hall, 1989.

[130] Gunnar Teege. Making the difference: A subtraction operation for

description logics. In Proceedings of the Fourth International Conference on

the Principles of Knowledge Representation and Reasoning (KR94), pages 540–

550, 1994.

[131] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank Van Harme-

len, and Henri Bal. OWL reasoning with WebPIE: Calculating the

closure of 100 billion triples. In The Semantic Web: Research and Applica-

tions, pages 213–227. Springer, 2010.

[132] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank Van Harme-

len. Scalable distributed reasoning using MapReduce. In The Semantic

Web-ISWC 2009, pages 634–649. Springer, 2009.

[133] Wim Van Laer, Luc De Raedt, and Sago Dzeroski. On multi-class prob-

lems and discretization in Inductive logic programming. Springer, 1997.

[134] Digna R. Velez, Bill C. White, Alison A. Motsinger, William S.

Bush, Marylyn D. Ritchie, Scott M. Williams, and Jason H. Moore.

A balanced accuracy function for epistasis modeling in imbalanced

230

REFERENCES

datasets using multifactor dimensionality reduction. Genetic Epidemi-

ology, 31(4):306–315, 2007.

[135] Andrew Vickers. What is a P-value anyway?: 34 stories to help you actually

understand statistics. Addison-Wesley, 2010.

[136] Andrew Wellings. Concurrent and real-time programming in Java. Wiley,

2005.

[137] John White, Alan Yeats, and Gordon Skipworth. Tables for statisticians.

Nelson Thornes, 1979.

[138] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[139] Michael S. Wogalter. Handbook of Warnings. CRC Press Inc., 2006.

[140] James Lee Wogulis. An approach to repairing and evaluating first-order the-

ories containing multiple concepts and negation. PhD thesis, University of Cali-

fornia at Irvine, Irvine, CA, USA, 1994. UMI Order No. GAX94-12189.

[141] Kejia Wu and Volker Haarslev. A parallel reasoner for the Descrip-

tion Logic ALC. In Proceedings of the 2012 International Workshop on De-

scription Logics (DL 2012), 2012.

[142] Filip Železnỳ, Ashwin Srinivasan, and David Page. Lattice-search run-

time distributions may be heavy-tailed. Inductive Logic Programming, pages

333–345, 2003.

[143] Lina Zhou. Ontology learning: State of the art and open issues. Infor-

mation Technology and Management, 8(3):241–252, 2007.

[144] Shlomo Zilberstein. Using anytime algorithms in intelligent systems.

AI magazine, 17(3):73, 1996.

231

