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Abstract 
 

 

In order for the meat industry to move towards a carcase payment system that is more 

consumer-focused, there is a need to identify carcases that have a higher yield of 

superior eating quality meat. Through a series of experiments, this thesis investigates 

the relationships between video image analysis (VIA) variables and saleable meat yield 

(SMY%) of high-value cuts in beef carcases, and also the relationships between visible-

near infrared (NIR) spectra and instrumental meat quality parameters in beef, lamb and 

venison of various breeds and genders.  

 

Results showed that VIA could effectively replace the visual classifier for classifying 

beef carcases according to the EUROP carcase classification system, and that both 

visual and VIA systems showed some promise for predicting the yield of high-value 

sirloin yield through the EUROP-grid information. Both VIA and visual systems could 

only account for approximately 57% of the variation in sirloin SMY%, but the 

relationship between SMY% and other possible VIA outputs such as lengths, widths 

and volumes remains largely uncharacterized.  

 

Instrumental measures of meat quality (shear force, pH and colour) of M. longissimus 

thoracis et lumborum (LTL) from 234 beef carcases and 208 Texel lambs showed that 

gender had a larger effect on meat quality than breed. Data from these two experiments 

was used to determine the relationship between NIR spectra and instrumental meat 

quality parameters in beef and lamb LTL. NIR showed promise for identifying beef 

with high ultimate pH values and lamb with high intramuscular fat percentages, but the 

prediction of shear force using NIR spectra in both beef and lamb was less accurate. 

 

The effects on meat quality of sex, breed, chilled aging and location within venison M. 

Longissimus lumborum, for samples from 79 farmed deer showed that all factors 

influenced venison meat quality, with aging time and gender having the largest effects. 

The relationships between NIR spectra and venison meat quality indicated that NIR 

spectra could be used to identify samples with high ultimate pH and high shear force 

values. 
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1 Introduction 
 

 

The production, processing and selling of meat can be broken down into a series of 

transactions that form a value-chain. Farmers breed and finish animals which they sell 

to meat processors who process the animal into meat and co-products. Processors 

supply meat products to retailers for sale to consumers. Value is added at each step of 

the chain and players operating at each step aim to sell the value-added 

commodity/product for a profit. Within the commercial meat value chain, saleable meat 

is the most valuable component in the carcase. After processing into cuts, meat is sold 

based on a weight and specification (such as the type of cut) but the transaction between 

the producer and processor relies on evaluation of the carcase.  

 

The objective of carcase evaluation is to determine the value per unit weight of the 

carcase as this should form the basis of the transaction between the producing and 

processing sectors of the meat industry. Three main constituents of a carcase are lean 

meat, fat and bone. Where the percentage of lean meat yield (LMY%) in the carcase is 

determined by the percentage of fat (FAT%) and the ratio of muscle weight to bone 

weight (Purchas et al. 2002b). Similarly, SMY% refers to the weight of lean meat plus a 

specified amount of fat as a percentage of carcase weight meaning that SMY% is 

usually greater than LMY% for a given carcase. Because of different market 

requirements for the amount of fat left on the cut of meat, SMY% tends to be less 

consistent than LMY%. The most variable carcase component is FAT%; often excess 

fat must be removed for the product to meet market specifications – adding to 

processing cost. Accurate, precise predictions of both SMY% and FAT% is therefore of 

great importance when evaluating carcases in order for the evaluation to reflect the main 

value component in the carcase - the yield of saleable meat. 

 

Carcase evaluation worldwide involves sorting carcases into categories so a value can 

be assigned. Grading and classification are terms that are often used interchangeably; 

both sort carcases into categories but there are some differences. Grading aims to sort 

carcases based on merit or worth, thus imputing a value element, while classification 

aims to categorize carcases on the basis of a standard description leaving the purchaser 
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to determine which category is best suited to their needs (Kirton 1989). Classification is 

thus often more objective than grading and is more widely used (Kempster et al. 1982a). 

 

In the United Kingdom (UK), beef and lamb carcases are currently classified by trained 

assessors according to the EUROP classification scheme where each letter (E, U, R, O 

and P) correspond to a conformation class (Fisher 2007). Because conformation 

includes both fat and lean meat, a second factor (usually a numerical value between 1 

and 5) is used alongside the conformation to account for the percentage of fat in the 

carcase. The combination of a conformation class and fatness factor along with 

information on the age and gender of the carcase correspond to a point on a pricing grid, 

which, when multiplied by the carcase weight completes the evaluation process as far as 

the producer is concerned.  

 

Meat processors add value to the carcase through conditioning (allowing the meat to 

tenderize), fabricating (preparing saleable cuts of meat) and packing the meat into 

portions ready for the end user - the consumer. A number of animal production factors 

such as growth path (Purchas et al. 2002a), genotype (Shackelford et al. 1995; Maltin et 

al. 2001; Prieto et al. 2011) and gender (Purchas and Aungsupakorn 1993; Sinclair et al. 

1998) can affect meat quality. Arguably, meat processing techniques have even larger 

effects on meat quality where a number of interventions such as electrical stimulation 

(Davey et al. 1976; Hwang and Thompson 2001; Hwang et al. 2003), chilling rate 

(Aalhus et al. 2001) and aging time (Farouk et al. 2009) play an important role in 

ensuring optimal beef meat quality. 

 

Because consumers are the ultimate arbiters of meat eating quality, factoring meat 

eating quality into carcase evaluation is necessary to ensure that the meat value chain 

can match production and breeding goals with consumer demand. The total food quality 

model (Grunert 2005) explains that consumers are much more likely to repeat an initial 

purchase of meat when the actual eating quality of the meat exceeds the expectations 

they formed at the point of purchase. Unfortunately information available to the 

consumer at the point of purchase is usually not indicative of the actual eating quality 

(taste, texture, juiciness etc.). Consequently, there is a need for additional meat quality 

indicators (such as an eating quality guarantee) that relate closely to the actual meat 

eating quality. Consumers may use such information to make more-informed purchase 
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decisions and such information could also be factored into carcase evaluation systems. 

This concept is known as value-based marketing (VBM) and has gained much more 

traction in the beef industry (Cross and Whittaker 1992; Polkinghorne and Thompson 

2010). The benefits of such a system to the meat industry are two-fold, firstly, there is 

extensive research that concludes consumers are willing to pay a premium for superior 

eating quality and secondly, an increase in repeat purchases can be expected due to 

consumers being satisfied with their initial purchase (Grunert 2005). 

Despite this, there is little emphasis on meat quality in current classification methods 

used worldwide to evaluate carcases, although there is a quality grade in the USA and 

Canada and some Asian countries measure the level of intramuscular fat (marbling) in 

the longissimus muscle.  

 

The meat standards Australia (MSA) system is also an exception in that individual cuts 

are appraised and labelled with appropriate ratings for meat quality (comprising of 

tenderness, juiciness, flavour and overall liking) with various cooking methods 

(Polkinghorne and Thompson 2010). Despite the intricate detail of the MSA system, 

beef carcases are still classified into boning groups based on carcase weight, maturity 

(dentition) and back fat depth, no premiums for producers can be gained based on 

objective measures of meat quality. This is mainly because there are very few methods 

of predicting meat quality that are suitable for abattoir conditions. Various methods 

have been devised for measuring or predicting meat quality in an intact or quartered 

carcase although few have been used routinely for carcase evaluation. Until a suitable 

method of quantifying meat quality is identified, carcases evaluation is unlikely to 

comprehensively embrace all or most elements of meat quality, consumer preferences 

will not be accurately reflected in prices paid to the producer. 

 

It is arguable that meat quality may actually be assessed indirectly in systems that 

differentiate carcases on age, gender and fatness. For example, carcasses of older 

animals are known to have higher proportions of insoluble collagen resulting in tougher 

meat (Young and Braggins 1993). Fatter carcases may be less susceptible to the 

phenomenon of cold shortening due to the insulating effects of fat. A rapid drop in 

muscle temperature before sufficient pH decline post mortem can result in an early 

onset of rigor and cold shortening which is linked to toughness in meat (Dransfield and 
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Rhodes 1976). Similarly, many experiments have reported the meat of bulls to be 

tougher than that of steers (Reagan et al. 1971; Purchas and Aungsupakorn 1993; 

Purchas and Grant 1995; Purchas et al. 2002a). The biological mechanisms 

underpinning these various effects are important, but there is still variation in meat 

quality characteristics within these groups. In considering this problem through an 

outcome-based approach, there is a need to develop tools that can be used to improve 

the consistency of quality meat on offer to the public, irrespective of the biological 

variation. 

 

Improvement (and refinement) of carcase evaluation based on both SMY% and meat 

quality parameters requires safe, cost effective, non-destructive and preferably objective 

measurement or prediction of SMY% and at least some aspects of meat eating quality. 

Two technologies have been identified that may provide solutions to the problem. Video 

image analysis (VIA) technology has been developed to predict SMY% in a highly 

consistent way (Allen and Finnerty 2000). Visible-near infrared (NIR) spectroscopy is 

able to assess some meat quality parameters (Prieto et al. 2009a). Both technologies 

scan the carcase, the former operates on the intact carcase side whereas the latter scans 

the meat surface. The accuracy, precision and consistency of VIA and NIR operating 

under commercial abattoir conditions has not been extensively investigated.  

 

Through a series of experiments, the broad aim of the research reported in this thesis 

was to investigate the relationships between VIA-predicted variables and the yield of 

high-value trimmed, boneless cuts in beef carcases and to investigate relationships 

between NIR spectra and instrumental meat quality parameters in beef, lamb and 

venison of various genders and genotypes.  

 

The main emphasis for the VIA section is on determining the ability of the technology 

to measure the SMY% and composition of the high-value loin region. In terms of NIR, 

the main emphasis is on identifying meat where the quality is poor with a view to 

improving the consistency of whole meat products on offer to consumers rather than to 

elucidate the biological mechanism underpinning the relationship between NIR spectra 

and meat quality per se. 
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1.1  Specific objectives  

 

1. To summarize the development and application of VIA for evaluation of beef 
carcases and discuss the advantages, shortfalls and future research needs of the 
technology (Chapter 2). 

2. To appraise the performance of NIR spectroscopy for predicting meat quality 
traits and identify the areas where further research is required (Chapter 2). 

3. To compare carcase traits and the trimmed, boneless yield of sirloin and fillet 
meat for groups of cattle differing in gender and breed and assess the accuracy 
with which these characteristics were predicted by VIA and visual carcase 
classification systems (Chapter 3). 

4. To characterize the effects of gender and genotype on instrumental measures of 
beef quality in the M. longissimus thoracis and evaluate the effectiveness with 
which NIR spectroscopy used under abattoir conditions predicted instrumental 
measures of beef quality in the M. longissimus thoracis (Chapter 4). 

5. To evaluate sex effects on lamb meat quality parameters of M. longissimus 
lumborum and M. semimembranosus in Texel ram and ewes lambs and 
characterize the effect of the TM-QTL on meat quality parameters of M. 
semimembranosus (Chapter 5). 

6. To determine the ability of NIR spectroscopy data collected on fresh (never-
frozen) lamb M. longissimus lumborum to predict instrumental meat quality 
parameters of M. longissimus lumborum, M. semimembranosus and M. vastus 
lateralis (Chapter 6).  

7. To investigate the effects of sex, genotype, sampling location and chilled aging 
on meat quality parameters of venison short-loin produced, processed, and aged 
under commercial conditions (Chapter 7).  

8. To determine whether NIR spectra can be used to predict instrumental meat 
quality parameters of venison M. longissimus lumborum (Chapter 8). 

9. To present findings as a summary in a suitable format for meat industry use 
(Chapter 11). 
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2 Review of the literature 
 

 

Publications based on this chapter: 

Craigie CR, Navajas EA, Purchas RW, Maltin CA, Bunger L, Hoskin SO, Ross DW, 
Morris ST, Roehe R (2012) A review of the development and use of video image 
analysis (VIA) for beef carcase evaluation as an alternative to the current EUROP 
system and other subjective systems. Meat Science 92, 307-318. 

 

Abstract 

 

The first part of this review discusses carcase evaluation and focuses mainly on beef 

carcase evaluation. The development and use of video image analysis for beef carcase 

evaluation is considered as an alternative to the current EUROP system and other 

subjective systems. Such systems are still largely dependent on visually assessed 

fatness and conformation; their purpose is to provide a common basis for the 

description of carcases for use in trade, price reporting and intervention. The meat 

industry requires a carcase evaluation system based on accurately predicted saleable 

meat yield (SMY%) and meat eating quality parameters. The current EUROP carcase 

classification system shows highly variable correlations to SMY% due in part to the 

variable distribution of fat throughout the carcase as affected by breed, sex, diet, and 

the level of fat trimming, and has no provision for meat quality. Video image analysis 

technology is capable of improving the precision and accuracy of SMY% prediction 

even for specific carcase joints and simultaneously mimics the visual assessment to 

comply with EU regulations on carcase classification. The second part of this review 

explains meat eating quality, how it is routinely measured and also discusses why meat 

eating quality is important for consumers.  The third part of the review considers 

visible-near infrared (NIR) spectroscopy and reviews the ability of NIR in conjunction 

with chemometric analyses to predict meat quality parameters in beef and lamb in a 

fast, non-destructive, safe, accurate and repeatable way.  
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2.1 Introduction 

 

The evaluation of beef, lamb and venison carcases usually forms the basis for the 

transaction between livestock producers and meat processors. Carcase classes or 

grades are defined in such a way that they describe carcases on the basis of some 

selected characteristics that determine merit or value per unit of carcase weight. 

Frequently, carcase classification or grading is a topic of contention, and hence it is 

important that the process is fair, accurate (un-biased) and precise (repeatable), and 

that it is standardized.  

 

The evaluation of beef, lamb and venison carcases is achieved through the use of a 

systematic method of determining the merit or value of a carcase against a standard 

description which differs by species and among countries. Polkinghorne and 

Thompson (2010) reviewed beef carcase evaluation systems employed in different 

countries. The common element being that carcase value per unit weight is largely 

determined by the yield of saleable meat (SMY%) and to a lesser extent the eating 

quality of the meat. In contrast, carcase lean meat yield (LMY%) is determined by the 

percentage of fat (FAT%) in a carcase and the ratio of muscle weight to bone weight 

(Purchas et al. 2002b). Commercial carcase processing involves a considerable level 

of dissection but a distinction needs to be made between LMY% and SMY%. The 

former relates to lean meat (i.e. meat with all visible fat and bone removed) expressed 

as a percentage of carcase weight and the latter refers to the weight of lean meat plus a 

specified amount of fat and sometimes bone (depending on the market) as a 

percentage of carcase weight. As a result, SMY% is usually greater than LMY% for a 

given carcase, and owing to different market requirements for the amount of fat left on 

the cuts of meat, SMY% tends to be less consistent than LMY% between different 

experiments. The fact that some cuts such as a rack or leg of lamb are sold inclusive of 

bone add further complication to the definition of SMY%. 

Almost all carcase evaluation systems reward producers for higher yields of saleable 

meat and there is usually no direct assessment of meat eating quality. Meat eating 

quality (MEQ) parameters such as tenderness, juiciness and flavour are subjective and 

difficult to define measure and predict. As a consequence, the direct measurement or 

prediction of MEQ at the point of carcase evaluation is not well developed.  
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Selection for lean meat yield and growth rate has been shown to have an impact on the 

meat quality, because it changes the proportions of the main muscle fibre types. For 

example, selecting for very lean pig carcases had profound effects on the muscle fibre 

composition of the pork, reducing the percentage of slow oxidative fibres and 

increasing the percentage fast glycolytic fibres which are associated with increased 

toughness in pork (Maltin et al. 2003). Slow oxidative fibres have also been associated 

with tenderness in lamb (Wojtysiak et al. 2010) and the percentage of slow fibres is 

lower in the M. longissimus lumborum (LL) in Texel lambs than in the Scottish 

Blackface lambs which are, regarding carcase quality, a less-improved breed (Bunger 

et al. 2009). The same trend has also been seen in cattle with highly-muscled Belgian 

blue cattle  having a lower number and percentage area of slow oxidative fibres in 

their muscles than Galloway, German Angus and Holstein Friesian breeds (Wegner et 

al. 2000). Over a period of time, selection for yield-related traits without consideration 

for meat eating quality is likely to have a negative impact on tenderness, juiciness and 

flavour. 

 

In general, the various visual carcase evaluation systems used worldwide correlate 

with commercially desirable yield traits in the carcase, yet it has been argued that the 

actual application of such systems is their major shortfall (Hedrick et al. 1969; 

Borggaard et al. 1996; Ruiz de Huidobro et al. 2004). Moreover, visual carcase 

classification is inappropriate for the measurement of phenotypes required for 

performance recording and breed improvement in terms of carcase and MEQ traits due 

to variability arising from human error (Conington et al. 2006). Specifically, it is 

essential for performance recording that the measured phenotype reflects the true 

variation in the animal with minimal variation arising from the assessment method or 

the preparation of the carcase. In response to these issues, there is a drive to move 

towards a carcase evaluation system based on SMY% and MEQ which can therefore 

address the needs of industry in terms of product quantity and quality (Cross and 

Whittaker 1992). Indeed, the quest to objectively evaluate carcase traits that relate to 

the SMY% and MEQ has been an active area of research since the 1980’s (Cross et al. 

1983). In particular, the focus has been on using video image analysis (VIA) for 

carcase evaluation and visible-near infrared (NIR) spectroscopy for meat evaluation 

because both VIA and NIR are non-destructive, non-invasive, objective, cost-

effective, safe, and can be automated in the slaughter chain at line speed. 
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The objectives of this review are to: 

 Summarise the development and application of VIA for evaluation of beef 
carcases and discuss the advantages, shortfalls and future research needs of the 
technology. 
 

 Appraise the performance of NIR spectroscopy for predicting meat quality 
traits and identify the areas where further research is required. 

 
2.2 Carcase evaluation 

 

In the United Kingdom (UK), scientific inquiry into carcase composition was 

underway as early as the 1850’s (Lawes and Gilbert 1857). Indeed, the importance of a 

common carcase description became paramount when the chilled export trade began to 

grow in the late 19th century (Kempster et al. 1982a). Yet it was not until 1928 that 

beef carcase grading in the UK (largely based on show ring attributes) was proposed 

and finally materialized when support payments were introduced after the Second 

World War (1939-45) according to the Agricultural and Horticultural Development 

Board (AHDB Industry Consulting 2008).  

 

2.2.1  Grading and classification 

 

The terms carcase classification and carcase grading are often used interchangeably 

because they refer to similar procedures, yet grading and classification have differing 

objectives and underlying assumptions, especially in the UK. The definition of carcase 

classification given by the AHDB (AHDB Industry Consulting, 2008) is: “A common 

descriptive language that defines – without any cachets of quality – those 

characteristics of carcases and meat that would be useful in trading”. Carcase grade 

implies that carcases are evaluated in terms of merit from the most preferred to the 

least preferred ‘grades’ assuming that all buyers in the carcase market have the same 

preferences with regard to carcase and meat eating quality (Kempster et al. 1982a). 

Important differences between classification and grading are summarised in Table 2.1.  

 
Table 2.1 Important differences between carcase classification and carcase grading 
Classification Grading 
Describes carcases Imputes value to carcases 
No provision for meat quality Best quality implications 
Neutral grade names Grade names are suggestive of quality 
More objective More subjective 
Table adapted from Kirton (1989). 
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2.2.2 Terminology for describing carcases 

 

Conformation, muscularity and fleshiness are descriptors of carcase shape that have 

similar meanings, but there are some important differences which need to be taken into 

account when comparing experiments. Conformation is defined as the thickness of 

muscle and fat in relation to skeletal dimensions, whereas muscularity refers only to 

the muscle thickness or volume in relation to skeletal dimensions and fleshiness is the 

thickness of flesh relative to skeletal dimensions, where flesh is muscle plus 

intermuscular fat (De Boer et al. 1974). Inspectors assess different parts of the carcase 

such as the fore and hind quarters. The problem with using conformation to describe 

carcase shape is that it makes no distinction between lean meat and fat components, 

but this can be overcome to some extent by incorporating a fatness score to account 

for the fat component of conformation. 

 

2.3 Visual carcase assessment 

 

2.3.1 The EUROP grid 

 

The need for a common carcase classification scale arose when member states of the 

European Community (EC) began operating in the common beef market in 1968 (EEC 

No. 805/68 (European Community 1968)) and price reporting to the EC became 

mandatory. The EUROP grid method of carcase classification was developed for use 

by countries in the EC who were trading in the common beef market. The EUROP 

grid system is based on visually-assigned scores for conformation and fat classes 

which are combined to form a categorical description of the carcase according to the 

defined standards implemented by European Community Regulations (No. 1208/81 

(European Community 1981b) and No. 1026/91 (European Community 1991)). The 

conformation score ranges from S (Superior) – a less commonly used category (used 

by some countries to describe double-muscled carcases; notably Spain) via E 

(Excellent) through to P (Poor) and from 1 (low) to 5 (high) for fat class (European 

Community 2007). The system is based on the use of a common language to describe 

carcases using characteristics that are commercially significant (Fisher 2007). When 

the system was adopted for national classifications yet, no attempt was made to relate 
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the various classes to levels of LMY% because there was no standard definition of 

lean meat yield (Allen 2003).  

 

The EUROP system is derived from the ‘European Association of Animal Production 

(EAAP) 15 point scale’, which further divides each category into low (–), medium (=) 

and high (+) sub-categories (De Boer et al. 1974). This 15 point scheme was originally 

proposed to allow comparisons between experiments conducted by different research 

groups and was considered too complicated for commercial application (Fisher 2007). 

Due to the large variation in cattle across the EU member states, provision is made for 

the use of subclasses if the 5 point scale provides insufficient resolution. Table 2.2 

shows the subdivisions of the 15 point EAAP scale and those used in the UK. 

 
Table 2.2 The 15 point EAAP scale for classification of beef carcases based on conformation and 
fatness, the EUROP system and those used in the United Kingdom (UK) - derived from Fisher 
(2007). 
Conformationa Poor                                                                                                                                                       Excellent 

15 Point Scale 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EUROP –P P P+ –O O O+ –R R R+ –U U U+ –E E E+ 

UK  –P  P+ –O  O+  R  –U  +U  E  

Fatnessa Low                                                                                                                                                      Excessive 

15 Point Scale 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

EUROP –1 1 1+ –2 2 2+ –3 3 3+ –4 4 4+ –5 5 5+ 

UK  1   2   3  4L  4H 5L  5H 
a Note that the terms “Poor”, “Excellent”, “Low” and “Excessive” are for illustration only, in application 
the classification scheme uses the EUROP symbols only. 
 

2.3.2 Use of the EUROP classification scheme in the European Union 

 

EU member states can opt for a sub-set of the 15 point EUROP scale to suit their cattle 

population. For example in the UK and Ireland, there is greater resolution for fatness 

at the excessive end of the scale with H and L subclasses used. Out of the EU27, 20 

member states use the 5 main classes to describe conformation and 13 member states 

use the five main fat classes, the remaining states use the full 15 point scales for 

conformation (n = 7) and fatness (n = 14) (personal communication, Andrzej 

Piekarewicz, European Commission Directorate-General for Agriculture and Rural 

Development). 
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2.3.3 Relationship between EUROP and LMY% 

 

Although no attempt was initially made to relate EUROP scores with SMY% for 

classification, much research has focused on this area in the past few years. Results 

summarised in Table 2.3 and Table 2.4 show how point changes in the EUROP grid 

relate to changes in the yield of lean meat (LMY%) in the whole beef carcase as well 

as in to the yield of high value cuts relative to carcase weight (the differences between 

LMY% and SMY% are outlined in Section 2.1). The studies indicated that the 

percentage of variation (R2 range 55-75%, Table 2.3) in carcase LMY% explained by 

the EUROP grid was much greater using the entire carcase than using high-value cuts 

only (R2 range 28-57%, Table 2.4), which comprise the cube-roll, strip-loin and fillet 

(Conroy et al. 2009; Conroy et al. 2010a; Conroy et al. 2010b). While these cuts are a 

small percentage of the carcase LMY%, they account for a large proportion of carcase 

value so classification should accurately reflect this. Moreover, for high value cuts a 

single unit increase in conformation and decrease in fat class were associated with 

relatively small increases in LMY% (maximum 2.0% and 1.50% for conformation and 

fatness respectively on the 15 point scale but this varies between studies and sexes 

(Table 2.4). The EUROP system has been adapted for use on sheep carcases with 

similarly low accuracies (Johansen et al. 2006) and deer carcases (Wiklund and 

Johansson 2011) but there is little research that has linked EUROP to LMY% in deer. 
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2.3.4 Limitations of carcase conformation 

 

Defining and interpreting “carcase conformation” is difficult, because the objective is to 

describe a complex shape using an index (Kempster et al. 1982a) and because the 

definition of conformation includes fat (De Boer et al. 1974). Several authors have 

suggested that there is a poor relationship between carcase conformation and LMY% 

after correcting for breed and carcase weight, but the opposite is true for fat class (Cole 

et al. 1962; Harries et al. 1974; Riordan and Mellon 1978; Kempster and Harrington 

1980; Colomer-Rocher et al. 1986). Harries et al. (1974) previously suggested that the 

poor relationship reported in their study between “carcase conformation” and traits 

measured by dissection may be because judges are using different (un-measured) traits 

to define conformation. Another possible reason for the poor relationship is that 

carcases have excessive fat (Purchas and Wilkin 1995). This highlights two areas of 

ambiguity in the application of a carcase conformation score as a measure of carcase 

SMY%. Firstly, how an individual classifier interprets the reference photographs and 

subsequently applies carcase classification scales, and secondly, whether or not carcase 

classification really is a useful predictor of SMY%.  

 

In beef cattle, it has been suggested that conformation and fat scores tend to be 

positively associated with each other and fatness inversely related to LMY% at a 

constant conformation (Kempster et al. 1982b). This is because the muscle-to-bone ratio 

tends to be greater in carcases with superior conformation (at a constant fatness, the 

LMY% will be higher). Also, in certain breeds of sheep, especially those with high fat 

content, it has been noted that fat and conformation may be confounded (i.e. fatness 

increased as conformation improved) (Jones et al. 1999; Navajas et al. 2007). 

Furthermore, as carcase conformation improves, the resulting estimation of LMY% may 

be subject to bias if carcase shape (conformation) is used to indicate muscle : bone ratio 

(Purchas et al. 2002b; Johnson et al. 2005). Similar arguments exist regarding the use of 

subcutaneous fatness as a measure of total carcase fat content. Carcases differ in the 

partitioning of fat between the various fat depots (subcutaneous (SF), intermuscular 

(IF), intramuscular (IMF) and kidney knob and channel fat [KKCF]) according to 

breed, sex and plane of nutrition (Kempster et al. 1982a; Fisher and Bayntun 1984). 

SMY% is currently the main component valued in a carcase and determined by the 
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FAT% and the ratio of muscle-to-bone. Conformation without accurate determination of 

the FAT% is, by definition, a suboptimal mode of determining the LMY%. 

 

Carcase conformation and fat class are relatively poor predictors of carcase composition 

even when applied in a consistent manner (Keane et al. 2000; Pabiou et al. 2011b). The 

potential for inconsistency of the classifiers is a widely recognised shortcoming of 

visual classification - although hard evidence for this is scarce. Johansen et al. (2006) 

reported that trained classifiers tended to over score conformation and underscore fat 

class of lambs compared to EU reference assessors. The influence of contextual 

information (information that is unrelated to carcase classification such as work load, 

supplier details, breed, other tasks such as labelling etc.) on classifier performance is not 

known. But, as an example, a perceived ideal aesthetic appeal increases consistency at 

the superior end of the scale, whereas at the poorer end, carcases may be classed as poor 

for a greater number of reasons (excessive fat cover, different fat colour, inferior 

muscling etc.) (Warriss 2000). A number of investigators have tested the consistency of 

judges assessing lamb and beef carcases, and generally noted that consistency of 

assessment was optimized using a 7-point scale, and that better agreement between 

judges was noted if photographic references were available (Williams 1969; Harries et 

al. 1974). A scale of 1 to 5 is said to be too narrow for adequate discrimination between 

classes, a scale greater than 10 is too wide for most people to operate successfully 

(Kempster et al. 1982a). Harries et al. (1974) recommended that a 7 category scale 

should be extended to 10 in order to decrease the distances between points to allow for 

greater precision. In this sense, accuracy refers to the correct application of a categorical 

scale, and precision relates to the repeatability of this process. Categorization of a 

continuous variable does not account for variation contained within a category, so 

carcase evaluation on a continuous scale is preferable. The prediction accuracy of a 

continuous variable (such as SMY%) is a combination of the level of bias of the 

predicted value and the precision (repeatability and reproducibility) of the predicted 

value. Therefore, to increase both accuracy and precision of carcase evaluation, highly 

repeatable prediction and reference measures such as LMY% or SMY% are needed. 
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2.3.5 Alternative methods of carcase assessment 

 

Objective methods of carcase evaluation (other than carcase weight) have been widely 

investigated in order to increase accuracy and precision. For decades, the gold standard 

has been either the physical dissection of the whole or half carcase into lean meat, fat, 

and bone components, where LMY% is the objective, or in the use of expert classifiers 

where the visual determination of carcase conformation and fat class is the objective. 

Both approaches have drawbacks, but for different reasons. The physical dissection is 

very time consuming and expensive and an expert classification is challenged by the 

lack of total consistency between individual classifiers. Physical dissection is very 

resource intensive and costly, so there have been many attempts to predict the 

composition of the whole carcase from the dissection of certain primal joints (Lush 

1926; Hammond and Appleton 1932; Hankins and Howe 1946; Callow 1962; Johnson 

and Charles 1981). 

 

2.3.6 Partial dissection and linear measures as predictors of carcase composition 

 

Interestingly, it has been found that certain primal joints, (such as the 9-10-11th rib 

section (Hankins and Howe 1946) or the fore-shin (Callow 1962), that are easily 

separated into lean meat, fat and bone under commercial conditions, can be useful 

predictors of overall carcase composition for beef carcases with minimal impact on the 

processing of carcases into saleable meat. For example, by processing the 9-10-11th rib 

section into lean meat, fat and bone components, Hankins & Howe (1946) estimated 

correlation coefficients (r) between rib primal LMY% and carcase LMY% to be 0.92 

for steers, 0.72 for heifers and 0.85 overall. A major drawback of this approach for 

predicting carcase composition in industry was that the accuracy of prediction is directly 

affected by the accuracy with which the joints/tissues can be separated and weighed at 

line speed in a commercial abattoir (Williams et al. 1974). Modern approaches to 

carcase processing that incorporate robots and other automated processes may reduce 

the variation in primal cutting (Wadie and Khodabandehloo 1995) but carcase break-

down will vary according to customer specification which would need to be accounted 

for.  

 



Chapter 2 - Literature review 
 

18 

Navajas et al. (2010a) recently used Computed Tomography (CT) to determine the 

carcase composition of beef cattle and reported accuracies (R2 values) of 99%, 92% and 

95% for the prediction of muscle, fat and bone tissue weights. These estimates indicate 

that CT can also be used as an accurate reference method for carcase composition of 

beef. Even though the beef half-carcase needed to be split into primals and transported 

to the CT scanner, this technique is more cost-effective and more standardized than 

physical dissection. In a further study, Navajas et al. (2010b) used the CT-scanned fore-

rib section to predict the total weight of lean meat, fat and bone in the half carcase. The 

accuracies of prediction (R2) were 9%, 60% and 52%, for weight of lean meat, fat and 

bone respectively, after R2 values were adjusted for the number of explanatory variables 

in the model. By additionally adjusting for breed and sex, the amount of variation 

accounted for increased to 85%, 73% and 67% respectively (Navajas et al. 2010b). 

 

2.3.7 Image analysis techniques 

 

Besides CT scanning (which at present has only been used on samples or primals of 

beef carcases), two main types of image analysis have been applied to predict beef 

carcase composition on large numbers of beef animals or carcases: 

(i) Ultrasonic determination of loin muscle and back fat depth, which has been in use 

since the 1950s on live animals (Houghton and Turlington 1992), and which has been 

investigated for carcase evaluation purposes (Cross and Whittaker 1992). Ultrasound 

continues to play an important role in progeny testing of bulls (Kemp et al. 2002) and 

the wider applications of beef cattle research and management (Lambe et al. 2010c).  

(ii) Video image analysis (VIA) was developed in the USA specifically for objective 

beef carcase evaluation in the early 1980’s (Cross et al. 1983). Since the 1980’s, VIA 

has been applied to many different facets of both carcase and meat eating quality 

evaluation. Examples include (1) to classify carcases into payment categories based on 

levels of intramuscular fat at the 12/13th rib (Wyle et al. 2003; Jackman et al. 2009b), 

(2) to improve consistency of EUROP classification relative to visual appraisal 

(Borggaard et al. 1996; Allen and Finnerty 2000), (3) to estimate LMY% (Swatland 

1995; Hopkins 2008; Rius-Vilarrasa et al. 2009), (4) to predict tenderness from the meat 

surface (Wulf et al. 1997; Wyle et al. 2003), (5) to quantify the amount of intramuscular 

fat in beef (Albrecht et al. 1996), (6) to measure meat colour (Gerrard et al. 1996) and 
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(7) to evaluate water holding capacity (Irie et al. 1996). But this part of the review is 

concerned primarily with VIA applications relating to beef carcase shape and 

composition rather than to the prediction of beef eating quality. Meat eating quality will 

be discussed in Section 2.6. and the application of imaged-based technologies for 

prediction of meat quality will be discussed in Section 2.7. 

 

2.4 Development of VIA for carcase evaluation 

 

A natural starting point was to investigate the ability of VIA image analysis to measure 

cross sectional area of the M. longissimus interface between the 12th and 13th ribs as it 

was well established that loin muscle area (LMA) and fat depth information were 

correlated to composition of the loin. The work of Cross et al. (1983) in the USA 

augmented earlier work (Hankins and Howe 1946; Cole et al. 1962) by applying image 

analysis technology to predict composition of the 9-10-11th rib section, and to quantify 

intramuscular fat content from the cut surface. Results showed that the VIA approach 

could explain 89% (LMY%) and 86% (FAT%) of the variation in 9-10-11th rib 

composition. A VIA system that involved scanning the meat surface formed by 

quartering between ribs 12 and 13 under fluorescent lighting was used to measure gross 

fat and muscle areas and convert these into areas, percentages or predictions as required 

(Cross et al. 1983; Wassenberg et al. 1986). 

 

Knowing the composition of the 9-10-11th rib was found to be of limited value on its 

own. In an attempt to improve the prediction, Wassenberg et al. (1986) assessed the 

ability of the same camera-based system to predict the primal (round, loin, rib and 

square cut chuck) lean cut-out (eight and yield of saleable meat) from 115 steers and 

compared the performance of VIA to a committee of three trained USDA grading 

experts. In predicting kilograms of lean meat and LMY%, the VIA data showed R2 

values of 96% and 46%, respectively, which were comparable to the committee scores 

of 94% and 46%. The model included side weight, lean meat area at the 12/13th rib 

interface, the percentage of fat area and muscle lightness (colour). The VIA data 

accounted for less variation in total primal fat weight than the USDA grading experts 

(R2 = 68% and 76%, respectively) and both methods accounted for less variation in 

FAT% than primal fat weight (R2 = 52% and 65% for VIA and USDA grading experts, 

respectively). The distribution of lean meat within the carcase was not considered in this 
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analysis as the meat removed from primals was summed and analysed as a total weight 

of lean meat and LMY%. Nevertheless, the prototype VIA systems demonstrated that 

the technology held considerable promise as an objective, non-destructive tool for 

predicting carcase composition under abattoir conditions. 

 

2.4.1 Refinement of VIA 

 

Refinement of VIA made slow progress for almost a decade in the USA as the result of 

a decision by the industry that VIA on pre-rigor un-ribbed carcases would be preferable, 

and that measuring more traits was expensive and prone to failure (Cross and Whittaker 

1992). Research into VIA for carcase evaluation continued to progress. In Canada, 

researchers using the VIAscan (Cedar Creek Company, Australia) to scan the 12/13th 

rib-surface obtained promising results when predicting LMY% on commercial beef 

carcases prior to further processing into different cuts of beef (Morgan-Jones et al. 

1992; Tong et al. 1999). 

 

Applying VIA to a meat cut after carcase cutting has been tried a number of times (with 

variable results) on a section of longissimus thoracis from the posterior half of the 12th 

thoracic vertebra. (Shackelford et al. 1998; Teira et al. 2003; Farrow et al. 2009). 

Shackelford et al. (1998) developed a 5-variable prediction equation, that accounted for 

89% of the variation in SMY% across the combined experimental and validation 

datasets but they did not report the accuracy of their VIA system for predicting FAT% 

or total fat trim (kg). Teira et al. (2003) derived equations to predict individual sub-

primal yields using a removed steak that could explain 45% of the variation in pistola 

cut SMY% (including top round, bottom round, eye round, knuckle, rump, cube roll, 

strip-loin, and fillet as percentages of carcase weight). Farrow et al. (2009) could 

explain 68% of the SMY% variation in 87 steers (coefficient of variation (CV) = 7.3%) 

from an image of the 12/13th rib interface with more complex equations. These findings 

are summarised in Table 2.5. The R2 and RSD values were very low in the results 

presented by Teira et al. (2003), which is probably because there was very little 

variation (CV = 4.0%) in SMY% in the Nelore steers used in that experiment. In 

contrast, a higher amount of variation (CV = 9.6%) existed between steers and heifers in 

the results of Shackelford et al. (1998) and a higher R2 and lower RSD values for the 

prediction equation were obtained. This shows that comparisons between experiments 
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on the basis of R2 and RSD values should be made in light of the type of carcases used 

for developing prediction equations, as the variation in SMY% will have a direct effect 

on these criteria of predictive ability. 

 
Table 2.5 Summary of image analysis experiments where saleable meat yield percentage (SMY%) 
was predicted from images of the 12/13th rib interface of M. longissimus thoracis after removal from 
the carcase. 

Reference n / categorya HCWb 
(kg) 

Trim level 
(mm) R2 (%)c RSDc 

Wassenberg et al. 
(1986)d 

115 steer carcases, unknown 
genotype 329.1 ≤ 12.7 46 1.1 

Shackelford et al. 
(1998)e 66 Piedmontese steers & heifers 295.8 ≤ 7.6 88 2.6 

Teira et al. (2003)f 51 Nelore cross steers 274.6 Devoid 45 0.65 
Farrow et al. (2009)g 87 Continental cross steers 355.6 ≤ 6.0 68 2.4 
a n = number of carcases, category refers to their gender and genotype. 
b HCW = Average hot carcase weight. 
c R2 = coefficient of determination and RSD = residual standard deviation.  
d Wassenberg et al. used HCW as a predictor. 
e Shackelford et al. did not use HCW as a predictor. 
f Teira et al. predicted pistola SMY% and used pistola weight in prediction equations. 
g Farrow et al. used HCW as a predictor and reported an adjusted R2 value. 
 

It was suggested, early in development, that 12/13th rib-surface VIA would not be viable 

as a stand-alone grading tool and was best suited to augmenting visual appraisals 

(Wassenberg et al. 1986), although it was later argued that this conclusion was 

premature and was a result of the operational limitations of positioning the hand-held 

VIA properly at line speed (Shackelford et al. 1998). In fact, progress has been made by 

augmenting (rather than replacing) the current grading process with VIA instruments. 

 

2.4.2 Augmenting USDA grading 

 

Several studies have investigated how VIA can supplement the visual USDA carcase 

grading system for assignment of yield grade, (Belk et al. 1998; Cannell et al. 1999; 

Wulf and Page 2000; Cannell et al. 2002; Steiner et al. 2003; Wyle et al. 2003) and 

quality grade (Wulf and Page 2000; Wyle et al. 2003). Some of these integrated 

approaches have resulted in commercial developments as outlined in Section 2.4.3. 

Using the computer vision system (CVS) Beefcam® instrument, Cannell et al. (2002) 

found that a model including expert grader estimates of adjusted fat thickness and 

percentage of kidney, pelvic and heart fat, as well as measured hot carcase weight, and 

VIA measured rib eye area, was the most accurate for determining percentage of fat 

trim. Even though 77% of the variation was explained, the VIA-measured rib eye area 

only reduced the residual standard deviation for carcase fat weight from 1.40 to 1.39 kg. 



Chapter 2 - Literature review 
 

22 

Table 2.6 summarises results of studies where an augmentation approach using VIA has 

been applied to traditional grading techniques in the USA using commercially 

developed instruments. It should be noted that in these studies, only the SMY% was 

predicted and not the more informative LMY% (Purchas et al. 2002b). 

 

Table 2.6 Results from studies that used imaging technologies to predict saleable meat yield 
percentage (SMY%), cut yield, fat trim percentage, and adjusted preliminary yield grade (APYG). 
Image technology Dependant variable, 

[trim level] 
Mean 
(SD) N Model R2(%), 

RSD Reference 

VIAscan CAS 
(chiller system) Cut yield% [6.0 mm] naf 493 VIAREAa, VIAFATb,  

HCWc 55, 1.32 Morgan-Jones et al. 
(1995a)  

VIAscan CAS 
(chiller system) SMY% [≤ 6.4 mm] 70.66 

(1.95) 240 VIAREAa, ADJFATd,  
HCWc 72, 1.12 Cannell et al. (1999) 

CVS BeefCam  SMY% [≤ 6.4 mm] 71.66 
(2.15) 296 VIAREAa, VIAFATb,  

HCWc 60, 1.47 Cannell et al. (2002) 

CVS BeefCam Fat trim% [≤ 6.4 mm] Na 296 VIAREAa, KPHe (expert), 
ADJFATd, HCWc 77, 1.39 Cannell et al. (2002) 

CVS BeefCam SMY% [≤ 6.4 mm]  Na 290 Yield grade (0.1), KPHe (%) 63, 1.20 Steiner et al. (2003) 

CVS BeefCam APYG  3.3 
(0.5) 290 VIAREAa, KPHe (kg),  

HCW c 89, 0.31 Steiner et al. (2003) 

Viascan CAS APYG  3.3 
(0.5) 290 VIAREAa, KPHe (kg),  

HCWc 81, 0.40 Steiner et al. (2003) 

MARC (VBG 2000) APYG  3.30 
(0.62) 800 5 VIA variables  

(plus HCWc) 88, 0.21 Shackelford et al. 
(2003) 

a Video image analysis rib eye area. 
b Video image analysis fat depth at 12/13th rib. 
c Hot carcase weight. 
d Expert grader adjusted fat depth. 
e Kidney, pelvic and heart fat estimated by expert grader (expert), actual recorded weight (kg) or percentage (%). 
f na = not available. 
 
 

It is also important to note that rib-surface VIA systems do not always offer large 

improvements in accuracy over visual grading. For example in one study, the maximum 

R2 for cut yield was 50% (RSD = 1.40) with 3 grader-assessed variables in the model, 

whereas the accuracy using VIA was R2 = 55% (RSD = 1.32) with 6 variables in the 

model (Morgan-Jones et al. 1995a; Morgan-Jones et al. 1995b; Cannell et al. 2002). By 

observing the principle of maximum parsimony and the fact that the researchers did not 

report the significance of the added terms, the importance of this difference is 

questionable. Similarly, in a different experiment, expert graders were able to predict 

wholesale cut yield with an R2 of 67% (RSD = 1.33) whereas the best VIA equation, 

showed an R2 of 60% (RSD = 1.47) (Cannell et al. 2002). 

 

2.4.3 Commercial VIA on the quartered carcase 

 

Based on the results from the use of VIA on the cut surface at quartering, three 

commercially available grading systems have been developed to measure a variety of 
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traits. The Chiller Assessment System (CAS) developed by VIAscan in Australia was 

the first commercial version of this technology (Ferguson et al. 1995b). The second 

system is the CVS Beefcam®, which is a handheld device that was developed by 

Colorado State University together with Hunter Associates Laboratory, Inc. [Reston, 

VA] (Belk et al. 2000). The third system is the VBG 2000 developed by E+V GmbH in 

Germany and the US Meat Animal Research Centre (MARC) (Shackelford et al. 2003) 

for use in the USA (http://www.eplusv.de/VBG). There are at least 20 installations of 

the VBG 2000 in the US and another three in Canada (Furber 2010). All systems have 

been developed for use at the 12/13th rib interface which is the site of quartering in 

North America. 

 

The main difference between the three systems in terms of functionality may be due to 

prediction equations used in the conversion of raw data into estimates of LMY% or 

SMY%. A system developed on an animal population of a particular breed/breed type 

or produced under specific production conditions may not adequately explain variation 

observed in a different population. This is probably why the VIAscan CAS (Australia) 

and the CVS Beefcam® (USA) produced slightly different results on the same animals, 

in terms of sub-primal cuts as a percentage of chilled side weight (R2 = 60%, RSD = 

1.3% and R2 = 63%, RSD = 1.2%, respectively) (Steiner et al. 2003). Differences in 

thresholds used for determining tissue boundaries could explain why the LMA 

measured by the CVS was ~6% greater than that by the VIAscan. Interestingly the 

LMA measured by a panel of 4-6 expert USDA graders using a grid pattern approach 

was between that of the VIA measures, and the prediction accuracy of the panel for 

determining sub-primal cut yield was appreciably better (R2 = 71%, RSD = 1.1%) 

(Steiner et al. 2003). Such variation may present a problem if the definition of LMA, 

LMY% or SMY% is inconsistent across different carcase supply regions. Further 

complications can be encountered where different trimming specifications are used or 

where the objective is to predict SMY% rather than LMY%. All of these commercial 

realities highlight the critical need for a calibration phase when using the VIA system 

outside of its development conditions. Since different markets prefer half carcases to be 

quartered at different anatomical locations along the spine, investigation of the 

predictive ability of measures taken at alternative positions may also be important. 
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2.4.4 Applying VIA at other quartering points 

 

Worldwide, the quartering locations for carcases tend to vary (Scotland at the 10/11th 

rib, for example) and in some countries beef sides are de-boned without quartering 

either before or after chilling. Vote et al. (2009) applied the CVS Beefcam® to the 

10/11th interface and found that the existing software could not accurately measure fat 

depths due to the variability in presence, size, and shape of the trapezius muscle. In 

another example, an experiment involving 73 Japanese black steers, Karnuah et al. 

(2001) found that information recorded with VIA at the 6/7th rib surface could explain 

57% of the observed variation in LMY%, 66% in FAT% and 42% in BONE%. There 

was very little variation in LMY% in the Japanese black steers used in this experiment, 

with coefficients of variation (CV%) for LMY% of 4.4-4.9%, FAT% of 8.2-13.4% and 

bone percentage of 9.8-10.2% for the two subsets of steers. LMA can be measured at 

the 8/9th rib (Smekal et al. 2005) and the 11/12th rib (Bozkurt et al. 2008) but neither 

experiment used LMA to predict whole carcase LMY% or SMY%.  

 

The advantages of augmenting other carcase classification systems (such as the current 

EUROP classification system) with any commercially available hand-held VIA device 

at the quartering point have yet to be demonstrated. To verify and calibrate the existing 

commercial rib surface VIA systems at different quartering positions or on carcases 

with different trim specifications would require software changes and a comprehensive 

validation experiment. Interestingly, recent research involving VIA technology applied 

to the meat surface seems to have focused more on predicting meat eating quality rather 

than LMY% (Tan 2004; Zheng et al. 2008; Jackman et al. 2009a; Jackman et al. 2010). 

 

2.4.5 Whole-side VIA 

 

There have been a number of drivers for the development of whole-side VIA as an 

alternative approach to the rib-surface systems. In Europe for example, there was a need 

to mimic the visual classification because a standardized carcase classification system 

was required by the EU market for trade, price reporting and intervention (AHDB 

Industry Consulting 2008). This effectively meant that VIA for assessing carcase sides 

of beef was the preferred approach. Furthermore, predicting carcase composition from 

the 12/13th rib cross section was not a viable option in markets where quartering is 
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performed at different positions in the carcase or where carcases are hot-boned. In most 

cases, is also preferable to evaluate the carcase shortly after slaughter so that suppliers 

can be paid sooner. Initially, linear dimensions (length, width, depth etc.) of beef 

carcases were found to have low correlations with carcase composition (Kempster et al. 

1982a), but ratios between measures of length and width of muscles such as the M. 

semimembranosus and M. longissimus thoracis et lumborum vary between carcase 

classes (Bass et al. 1981). The feasibility of measuring a large number of anatomical 

features on the beef side to search for useful indicators of carcase composition was, like 

the rib surface VIA, dependant on the potential of automation. Therefore, image 

analysis was the method of choice. It is simpler to acquire digital images of carcases as 

they move past a fixed camera than it is to manually position a hand-held camera on the 

rib surface of a carcase, thus making whole side VIA an attractive alternative to the rib 

surface VIA systems. From the late 1980’s researchers in several countries including, 

France, Denmark, Germany and Australia focused their efforts on whole-side VIA 

systems, while industry in the USA pursued an ultrasonic solution to carcase grading 

(Cross and Whittaker 1992). 

 

2.4.6 Whole-side VIA operation 

 

The philosophy behind the whole-side approach is that it can be integrated into the 

slaughter chain and work autonomously. Whole-side VIA systems are designed to 

operate on hot (pre-rigor) intact sides or whole carcases that are suspended by the 

Achilles tendons (Sørensen 1984; Sørensen et al. 1988; Ferguson et al. 1995b; 

Augustini et al. 1997). Most systems are fully automated and operate on-line via a 

handling mechanism that momentarily presents the carcase or side to a camera while the 

line pauses before returning to the default position allowing the carcase to progress 

towards the chiller (Borggaard et al. 1996). The position of the VIA system is usually 

close to the chiller so all necessary dressing of the carcase is completed before weighing 

and evaluation. VIA information is captured, processed, and stored in abattoir records. It 

is generally accepted that whole-side VIA systems can operate at speeds required by 

most European beef processing plants. Five whole-side VIA systems are commercially 

available for beef grading as of June 2012 (Table 2.7) but there are currently (as of May 

2012) no CVS systems in operation anywhere in the world (personal communication, 

Bob Richmond, Research Management Systems Inc. Colorado). All systems operate on-
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line and all use similar methods for classifying carcases or predicting SMY%. A 

feasibility study investigating the ability of whole-side VIA to objectivity classify beef 

carcases was carried out in Denmark in the early 1980’s (Sørensen 1984). Sørensen et 

al. (1988) described the first commercial trial of the original beef classification centre 

(BCC-1) device developed by the Danish Meat Research Institute (DMRI). The system 

used a monochrome camera to evaluate either a half or a whole carcase in a stainless 

steel enclosure, together with an optical reflectance probe to determine fat and muscle 

depth. Results with 389 fully-dissected carcases showed that similar information about 

carcase composition to that obtained from the EUROP grid could be obtained 

objectively with a high repeatability for LMY% (r = 0.94) and similar accuracies, with 

the BCC-1 explaining 73%, 77% and 79% of the variation in LMY%, FAT% and 

BONE% respectively. In comparison, visually assessed EUROP conformation (15-point 

scale) and fatness (5-point scale) could explain 74% 75% and 77% of the variation in 

LMY%, FAT% and BONE% respectively (Sørensen et al. 1988).  
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Almost half of the samples were young bulls or male calves and only 17 were steers or 

older bulls. In Denmark, there was a need to score fat colour because meat tends to 

darken and fat becomes increasingly yellow with increasing age of cull dairy cows 

(Shemeis et al. 1994). Subcutaneous fat colour was scored on a 10 point scale. This led 

to the development of the BCC-2, a system that predicts fat colour on the 10 point scale 

with an R2 of 89% (S.E.P = 0.59) (Borggaard et al. 1996; Madsen et al. 1996). 

 

The French company Normaclass developed a VIA system that was first installed in 

1993 (personal communication, C. Précetti CEO, Normaclass 2009). Meat and 

Livestock Australia (MLA) had installations of their VIAscan hot carcase system (HCS) 

in several plants undergoing commercial testing over the period between 1993 and 1995 

(Eldridge 1994; Ferguson et al. 1995b). At around the same time, E+V GmbH in 

Germany developed the VBS 2000, which was first mentioned in the literature in 1997 

(Augustini et al. 1997). The VBS 2000 consists of a handling unit that presents the side 

of beef to a camera. Two images are taken, the first is a two-dimensional image, and the 

second image is a pseudo three-dimensional using structured light (Figure 2.1). The first 

commercial installation was in 1998 and there are currently around 40 installations of 

the VBS 2000 (Brinkmann and Eger 2008) located in Germany, France, Norway, 

Uruguay, UK (Northern Ireland/Scotland), Hungary and Ireland (personal 

communication, A. Hinz, E+V GmbH). 

 

 
Figure 2.1 Two-dimensional (left) 
and pseudo three-dimensional 
(right) images from the VBS 2000 
(Image courtesy of E+V GmbH, 
Germany). 
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2.4.7 Overall summary analysis of whole-side VIA 

 

The accuracy of commercial whole-side VIA systems has been investigated a number of 

times but an overall assessment of accuracy is lacking. The results from publications 

that included predictions of SMY%, FAT% and BONE% (derived mostly from 

commercial cutting trials) and visual EUROP conformation and fatness classifications 

(15 point scales) were subjected to a summary analysis (Table 2.8). The accuracy in 

each study was derived from average or median published R2 and RSD values for each 

analysis presented in the references. The average number of carcases used in analyses is 

presented for each system. The average and median of the R2 values from all systems 

are presented to give an indication of the overall accuracy of commercially available 

whole-side VIA technology. 

 

It is difficult to draw conclusions on the overall accuracy of VIA in the absence of a 

clear SMY% definition or the level of trim (which is the case for most of the 

experiments listed in Table 2.8). The accuracy of SMY% prediction increases as the 

level of fat left on the carcase decreases (Cannell et al. 1999; Vote et al. 2009) because 

fat trimming is a known source of variation. The lower average amount of variation in 

SMY% explained by the VIAscan system is largely a result of lower adjusted R2 values 

reported by Ferguson et al. (1995a) based on four small groups of animals (~30) 

finished on vastly different diets. The poor VIA performance is most likely because 

there was very little variation in SMY% in the carcases with the coefficient of variation 

(CV) ranging from 1.7 to 2.7%. This also reduces the average accuracy of VIA 

technology to predict SMY% when accuracy is expressed as an R2 value. Excluding 

these experiments plus the CVS hot carcase system (which operates as a dual 

component system with the rib-surface camera), on average, VIA accounted for 

approximately 71% of the variation in SMY% with an average RSD of 1.06 percentage 

points. 



  T
ab

le
 2

.8
 A

ve
ra

ge
 c

oe
ff

ic
ie

nt
s 

of
 d

et
er

m
in

at
io

n 
(R

2 ) 
an

d 
re

si
du

al
 s

ta
nd

ar
d 

de
vi

at
io

ns
 (

R
SD

) 
in

di
ca

tin
g 

th
e 

ac
cu

ra
cy

 w
ith

 w
hi

ch
 w

ho
le

-s
id

e 
vi

de
o 

im
ag

e 
an

al
ys

is 
sy

st
em

s e
st

im
at

ed
 c

ar
ca

se
 sa

le
ab

le
 m

ea
t y

ie
ld

 (S
M

Y
%

), 
ca

rc
as

e 
fa

t o
r 

ca
rc

as
e 

bo
ne

, a
nd

 a
 su

m
m

ar
y 

of
 a

ll 
re

su
lts

 c
om

bi
ne

d.
 

V
IA

 sy
st

em
/re

su
lts

a  
SM

Y
 (%

) 
Fa

t (
%

) 
B

on
e 

(%
) 

C
on

fo
rm

at
io

nb  
Fa

tn
es

sb  
R

ef
er

en
ce

s a
nd

 n
ot

es
 

B
C

C
-1

 
 

 
 

 
 

 
R

2 (%
) (

R
SD

) 
75

 (1
.2

3)
 

86
 (1

.0
4)

 
82

 (1
.0

6)
 

90
 

63
 

M
ad

se
n 

&
 T

ho
db

er
g 

(1
99

4)
 

N
um

be
r o

f a
na

ly
se

s 
1 

1 
1 

1 
1 

 
A

ve
ra

ge
 n

um
be

r o
f c

ar
ca

se
s i

n 
tri

al
s 

23
0 

23
0 

23
0 

28
10

 
28

10
 

 
B

C
C

-2
 

 
 

 
 

 
 

A
ve

ra
ge

 R
2 (%

) (
R

SD
) 

70
 (1

.2
0)

 
66

 (-
) 

82
(-)

 
90

 (0
.7

0)
 

82
 (1

.1
4)

 
M

ad
se

n 
et

 a
l. 

(1
99

6)
 

B
or

gg
aa

rd
 e

t a
l. 

(1
99

6)
 

A
lle

n 
&

 F
in

ne
rty

 (2
00

0)
 

N
um

be
r o

f a
na

ly
se

s 
2 

1 
1 

2 
2 

A
ve

ra
ge

 n
um

be
r o

f c
ar

ca
se

s i
n 

tri
al

s 
30

5 
47

6 
47

6 
32

20
 

32
20

 
V

B
S 

20
00

 
 

 
 

 
 

 
A

ve
ra

ge
 R

2 (%
) (

R
SD

) 
76

 (1
.5

8)
 

75
 (1

.8
4)

 
82

 (0
.8

3)
 

90
 (0

.7
6)

 
83

 (1
.1

5)
 

A
ug

us
tin

i e
t a

l. 
(1

99
7)

, B
ra

ns
ch

ei
d 

et
 a

l. 
(1

99
9)

 
 A

lle
n 

&
 F

in
ne

rty
 (2

00
0)

, P
ab

io
u 

et
 a

l. 
(2

01
1b

) 
N

um
be

r o
f a

na
ly

se
s 

4 
3 

3 
3 

3 
A

ve
ra

ge
 n

um
be

r o
f c

ar
ca

se
s i

n 
tri

al
s 

19
6 

21
7 

21
7 

11
29

 
11

29
 

V
IA

sc
an

 
 

 
 

 
 

 
A

ve
ra

ge
 R

2 (%
) (

R
SD

) 
49

 (1
.2

4)
 

80
 (1

.6
0)

 
61

 (1
.1

0)
 

83
 (0

.8
0)

 
85

 (1
.3

8)
 

Fe
rg

us
on

 e
t a

l. 
(1

99
5a

) (
10

-1
2m

m
 tr

im
), 

M
or

ga
n-

Jo
ne

s e
t a

l. 
(1

99
5a

; 1
99

5b
) 

A
lle

n 
&

 F
in

ne
rty

 (2
00

0)
, V

ot
e 

et
 a

l. 
(2

00
9)

 (3
 le

ve
ls 

of
 fa

t t
rim

m
in

g)
 

N
um

be
r o

f a
na

ly
se

s 
13

 
1 

1 
1 

1 
A

ve
ra

ge
 n

um
be

r o
f c

ar
ca

se
s i

n 
tri

al
s 

14
1 

28
8 

28
8 

29
69

 
29

69
 

V
IA

sc
an

 +
 C

V
S 

B
ee

fc
am

c  
 

 
 

 
 

 
A

ve
ra

ge
 R

2 (%
) (

R
SD

) 
66

 (1
.4

0)
 

84
 (1

.4
0)

 
63

 (1
.1

0)
 

- 
- 

V
ot

e 
et

 a
l. 

(2
00

9)
 3

 le
ve

ls
 o

f f
at

 tr
im

m
in

g 
N

um
be

r o
f a

na
ly

se
s 

1 
1 

1 
- 

- 
A

ve
ra

ge
 n

um
be

r o
f c

ar
ca

se
s i

n 
tri

al
s 

28
8 

28
8 

28
8 

- 
- 

V
IA

sc
an

 +
C

A
Sd  

 
 

 
 

 
 

A
ve

ra
ge

 R
2 (%

) (
R

SD
) 

71
 (0

.7
1)

 
- 

- 
- 

- 
M

or
ga

n-
Jo

ne
s e

t a
l. 

(1
99

5a
; 1

99
5b

) (
10

-1
2m

m
 tr

im
) 

N
um

be
r o

f a
na

ly
se

s 
2 

- 
- 

- 
- 

A
ve

ra
ge

 n
um

be
r o

f c
ar

ca
se

s i
n 

tri
al

s 
46

5 
- 

- 
- 

- 
Su

m
m

ar
ye  

 
 

 
 

 
 

A
ve

ra
ge

 R
2 (%

) 
67

 
78

 
74

 
88

 
78

 
 

M
ed

ia
n 

R
2 (%

) 
70

 
80

 
82

 
90

 
83

 
 

To
ta

l c
ou

nt
 o

f a
na

ly
se

s 
23

 
7 

7 
7 

7 
 

N
ot

es
: A

ve
ra

ge
 c

oe
ffi

ci
en

t o
f d

et
er

m
in

at
io

n 
(R

2 ) a
nd

 re
sid

ua
l s

ta
nd

ar
d 

de
vi

at
io

n 
(R

SD
) v

al
ue

s f
or

 e
ac

h 
V

IA
 sy

st
em

 c
al

cu
la

te
d 

fro
m

 a
 n

um
be

r o
f p

ub
lis

he
d 

an
al

ys
es

. 
a 
N

um
be

r o
f a

na
ly

si
s =

 th
e 

nu
m

be
r o

f e
xp

er
im

en
ts

 w
he

re
 tr

ai
t h

as
 b

ee
n 

in
ve

st
ig

at
ed

. 
b 
EU

R
O

P 
co

nf
or

m
at

io
n 

an
d 

fa
tn

es
s a

re
 o

n 
th

e 
15

 p
oi

nt
 sc

al
e.

  
c 
Th

e 
C

V
S 

B
ee

fc
am

 w
as

 a
pp

lie
d 

at
 th

e 
10

/1
1th

 ri
b 

(V
ot

e 
et

 a
l. 

20
09

). 
 

d 
C

A
S 

= 
V

IA
sc

an
 c

hi
lle

r a
ss

es
sm

en
t s

ys
te

m
. 

e 
Su

m
m

ar
y 

in
fo

rm
at

io
n 

is 
an

 a
ve

ra
ge

 a
nd

 m
ed

ia
n 

R
2  o

f a
ll 

V
IA

 sy
st

em
s a

nd
 th

e 
to

ta
l c

ou
nt

 o
f a

na
ly

se
s i

s t
he

 n
um

be
r o

f e
xp

er
im

en
ts

 th
at

 h
av

e 
in

ve
sti

ga
te

d 
th

e 
ab

ili
ty

 o
f V

IA
 to

 p
re

di
ct

 e
ac

h 
tra

it.

30 



Chapter 2 - Literature review 
 

31 

2.4.8 Validation of VIA for use in the European Union 

 

For testing any alternative carcase evaluation system, EU guidelines require a 

concordance trial consisting of a panel of five trained assessors for the comparison 

based on carcase classification (European Community 2003). The visual assessment 

system against which VIA is benchmarked in the EU is problematic because the 

comparison is not representative of “normal” operating conditions, as usually only one 

trained assessor is classifying carcases at a given time in each processing plant. It would 

be more appropriate to validate VIA based on its ability to determine carcase 

composition which could then be related back to conformation and fatness for the 

purposes of price reporting. Highly accurate, non-destructive methods of determining 

beef carcase composition using a CT scanner have recently been developed which 

would be a suitable alternative to dissection of carcases into lean meat, fat, and bone 

components (Navajas et al. 2010a). Undoubtedly there are other factors that must be 

taken into account for validation and routine on-site auditing of carcase evaluation. 

Mobile CT scanners are operating in the UK for on-farm determination of sheep carcase 

composition for breeding purposes (Bunger et al. 2011) so it is possible to CT-scan on-

site. As an alternative to LMY%, SMY% is a useful reference for VIA under 

commercial conditions, but it is highly plant-specific rendering it an unsuitable 

reference measure across different plants unless tight specifications are set. 

 

Despite being an unrealistic mode of VIA validation in the EU, concordance trials are 

the method used to validate VIA for use in EU member states. Points are awarded (or 

deducted) for the percentage of carcases that are classified within 0, 1, 2, 3, or greater 

than 3 subclasses of the median panel reference score on the EUROP 15 point scale 

(European Community 2003). The same approach has been used to compare VIA and 

visual classification for research purposes (Branscheid et al. 1999; Allen and Finnerty 

2000). Results of trials undertaken in the EU with four whole-side VIA systems (Table 

2.9) showed less agreement between each VIA system (where data were available) and 

reference panels on exact fatness compared to exact conformation. Overall, the 

concordance classes of exact prediction or prediction within ±1, and ±2 classes were 

55%, 68% and 92% for conformation and 34%, 47% and 83% for fatness, respectively 

(Table 2.9). 
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Table 2.9 The concordance between video image analysis (VIA) systems and panels of classifiers for 
determining the EUROP conformation and fatness classes on 15 point scalesa. 

 Conformation Fatness 
VIA system/result Exact ±1pt ±2pts –1ptb +1ptb Exact ±1pt ±2pts –1ptb +1ptb 
BCC-2           
Average concordance (%) 58 - - 23 16 35 - - 23 22 
Number of analyses 1 - - 1 1 1 - - 1 1 
Average number of carcases in trials 2226 - - 2226 2226 2226 - - 2226 2226 
Normaclass MAC-Sc           
Average concordance (%) 60 97 99 - - - - - - - 
Number of analyses 6 6 6 - - - - - - - 
Average number of carcases in trials 3159 3159 3159 - - - - - - - 
VBS 2000           
Average concordance (%) 54 39 86 14 29 37 47 83 17 27 
Number of analyses 8 7 7 1 1 8 7 7 1 1 
Average number of carcases in trials 449 195 195 2226 2226 449 195 195 2226 2226 
VIAscan           
Average concordance (%) 49 - - 22 23 30 - - 32 14 
Number of analyses 1 - - 1 1 1 - - 1 1 
Average number of carcases in trials 2226 - - 2226 2226 2226 - - 2226 2226 
Total average concordance (%) 55 68 92 20 23 34 47 83 24 21 
Total median concordance (%) 56 68 92 22 23 35 47 83 23 22 
Total count of analyses 16 13 13 3 3 10 7 7 3 3 

a Concordance with a panel of classifiers is determined as the percentage that are exact prediction or the percentages of prediction 
that are within 1 or 2 classes, which is a form of assessment used in the EU to validate VIA systems.  
b The plus and minus one sub-class deviation were analysed separately by Allen and Finnerty (2001). 
c Data for the MAC-S was collected by the Institut de l'Elevage (French Livestock Institute) and made available for this analysis 
courtesy of Cyrille Précetti, Normaclass. 
 

The UK validation for the VBS 2000 was performed in 2010 using carcases from 885 

steers, 439 heifers, 511 young bulls and 240 cows (personal communication, Mike 

Tempest, Livestock and Meat Commission for Northern Ireland [LMCNI]). The VBS 

2000 satisfied the requirements in terms of accuracy and precision outlined in EU 

legislation (European Community 2003) and is now approved for use in the UK. 

Reports for industry presented the difference between the total panel score and the 

predicted VIA in terms of the percentage of carcases classified into each conformation 

and fat score category. Table 2.10 details these results by category. Results presented in 

this way do not show the concordance between VIA and the reference panel on a 

carcase level, and should be considered in light of the distribution of carcases across fat 

and conformation classes as the sample size will be much smaller at the extremes of the 

scales. 
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Table 2.10 Percentage of each category of animal assigned to each carcase conformation and fat 
class by the 5-person panel and by the VBS 2000 video image analysis system (personal 
communication, Mike Tempest, LMCNI). 

Category steer (n = 885) heifer (n = 439) young bull (n = 511) cow (n = 240) 

 
Panel 
(%) 

VIA 
(%) Diff1 Panel 

(%) 
VIA 
(%) Diffc Panel 

(%) 
VIA 
(%) Diff1 Panel 

(%) 
VIA 
(%) Diffc 

Confa             
E - - 0 - - 0 4 1 –3 - - 0 
U 13 9 –4 15 9 –6 29 19 –10 4 - –4 
R 29 34 +5 51 55 +4 30 40 +10 13 17 +4 
O+ 17 15 –2 26 19 –7 13 15 +2 11 8 –3 
O= 13 12 –1 5 10 +5 11 10 –1 9 11 +2 
O– 16 12 –4 1 3 +2 9 10 +1 17 13 –4 
P 10 18 +8 1 3 +2 3 5 +2 47 48 +1 
Fatnessb             
1 0 1 1 - - 0 2 4 +2 18 20 +2 
2 8 11 +3 4 6 +2 37 48 +11 17 15 –2 
3 53 47 –6 37 38 +1 53 45 –8 27 30 +3 
4 36 39 +3 56 51 –5 7 3 –4 32 26 –6 
5 1 2 +1 2 4 +2 - - 0 7 6 –1 

a Conformation assigned by VIA was measured on the15 point scale but only 7 points were used in accordance with UK 
classification. 
b Fatness was also measured on the 15-point scale but converted to 5-points used in the UK.  
c The Diff columns are the percentage point difference between the VIA and the 5 person panel.  
 

2.4.9 VIA prediction of the proportion of high-value cuts 

 

Saleable meat from a carcase can be divided (graded) into various value categories. For 

example, Pabiou et al. (2011b) divided meat into categories of very high-value (VHVC, 

which include the rib-roast, strip loin and fillet cuts), high-value, medium value, and 

lower value cuts. A larger proportion of total SMY% in the VHVC category is 

desirable, but in order for this to be evaluated, an accurate measure of both carcase 

composition and primal composition is required (Drennan et al. 2008). As shown in 

Table 2.3 and Table 2.4, EUROP classification accounts for much less variation in the 

LMY% of the VHVC than the total LMY%. Although VHVC are a small proportion 

(~7%), of total carcase SMY%, accurate prediction is essential for accurate carcase 

evaluation. 

 

Breeding strategies aimed at maximizing the proportion of lean meat in high-value cuts 

need to capitalize on underlying variation of the trait(s) segregating in the population. 

With the exception of muscular hypertrophy found in some breeds of cattle (Arthur 

1995), variation in lean meat distribution throughout the carcase is low. One experiment 

reported that the CV in percentage of total lean meat occurring in higher priced joints 

ranged from 4.8% in the Topside to 9.4% in the wing-rib in 643 steers of 10 British and 

continental breeds (Kempster et al. 1976). The level of variation in lean meat 

distribution was similarly low (CV < 10%) in a more recent dissection trial conducted in 

2006, and involving 22 steers of UK Aberdeen Angus and Limousin crossbreds (R. 
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Roehe, SAC unpublished results). This low variation presents a further challenge for 

VIA because very precise predictions would be required to detect such small differences 

between carcases. But again, the difference between SMY% and LMY% is important, 

because the variation in SMY% throughout the carcase will be a combination of the 

variation in LMY% and FAT% for any given cut.  

 

Besides predicting SMY%, FAT%, BONE% and classifying carcases according to the 

EUROP grid, VIA can also measure the distribution of meat within a beef carcase 

(personal communication, Axel Hinz E+V GmbH, Germany), which cannot be achieved 

by a human classifier; this differentiates VIA from visual appraisal. If VIA can 

accurately predict the proportion of meat in cuts of different value, there is potential for 

a pricing mechanism to reflect both the total SMY% and the SMY% of individual 

carcase cuts (assuming that the differential value of cuts such as the sirloin, cube-roll 

and fillet is related to consumer demand and willingness to pay).  

 

Published results detailing the ability of VIA to directly predict the SMY% and 

composition of primal joints are scarce. One experiment, involving 232 steers (Pabiou 

et al. 2011b) included VIA variables + cold carcase weight (CCW) in a prediction 

model that accounted for 71% (RSD = 1.90%), 72% (RSD = 1.70%), and 75% (RSD = 

0.90%) of the variation in carcase SMY%, FAT% and BONE% respectively. The 

corresponding accuracies using VIA-predicted EUROP + CCW in the model were 74% 

(RSD = 1.79%), 63% (RSD = 1.93%), and 63% (RSD = 1.09%), for SMY%, FAT% 

and BONE% respectively. Pabiou et al. (2011b) also reported accuracies for yield of 

VHVC as a percentage of carcase weight of R2 = 45% (RSD = 0.52%) using VIA-

assessed EUROP + CCW. When excluding EUROP but retaining other VIA variables 

along with CCW they reported an R2 = 52% (RSD = 0.48%) for yield of VHVC. The 

similarity between R2 and RSD values associated with prediction of SMY% based on 

VIA variables directly or VIA-assessed EUROP classification indicates that both 

prediction systems can be used, which is important because the EUROP classification is 

required by law. The reduction in R2 associated with prediction of VHVC yield in 

comparison to carcase SMY% highlights the difficulties of predicting yield of VHVC 

yield as also shown in previous experiments (Table 2.4) and is again similar when using 

VIA variables directly or by using the VIA assessed EUROP classes in the prediction 

model. 
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2.4.10 Shortcomings of VIA 

 

Whilst VIA might appear to offer solutions for many of the problems encountered in 

carcase evaluation and benchmarking, it is not perfect. Most researchers have found that 

VIA-predicted conformation has a higher correlation to the reference panel values than 

VIA-predicted fat class (Madsen and Thodberg 1994; Madsen et al. 1996; Augustini et 

al. 1997; Branscheid et al. 1999) while others have found the correlations to be similar 

for both conformation and fat class prediction (Allen and Finnerty 2000; Sonnichsen et 

al. 2006). It is important to remember that EUROP conformation and fatness are not 

always accurate determinants of carcase composition. Results of Pabiou et al. (2011b) 

show that performance of VIA for carcase SMY% prediction was not as accurate for 

heifers (R2 = 36%, RSD = 3.26%) as for steers (R2 = 75%, RSD = 1.77%). Those 

authors also reported that in Belgian Blue x Dairy steers VIA estimates were subject to 

significant negative bias for total fat weight (–3 kg, p < 0.05) and that VIA 

underestimated the weight of lower value cuts in crossbred steers of dairy breeds (–5.4 

kg, P < 0.001) (Pabiou et al. 2011b). It is important to note that the VBS 2000 currently 

does not estimate carcase FAT% by default and the VIA images were subject to further 

processing by E+V GmbH to obtain FAT% (personal communication, T. Pabiou, Irish 

Cattle Breeders Federation). 

 

2.4.11 VIA and the distribution of fat 

 

All whole-side VIA machines (except the MACS) collect information from the lateral 

view of the carcase only, so predictions of fat class or FAT% are based on subcutaneous 

fat coverage. Although FAT% is not currently an output of VIA machines, it is needed 

if the SMY% is to be determined. Carcase FAT% is the most variable carcase 

component and is also most difficult to measure by VIA because fat is deposited in 

several different locations in the carcase some of which are not superficial. These sites 

include subcutaneous fat (SF), intermuscular fat (IF), intramuscular fat (IMF) and 

kidney, knob and channel fat (KKCF) depots (Kempster et al. 1982a). A further 

complicating challenge is that the partitioning of total carcase fat between these depots 

varies by breed, sex, maturity, and diet (McPhee et al. 2009). As an example of the 

breed effect, the SF:IF ratio is considerably higher in beef steers than dairy crossbred 

steers so prediction of carcase composition in dairy cattle will be less stable if based on 
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the SF depot only (Fisher and Bayntun 1984). Fortunately, SF is usually the largest 

depot and the easiest to trim off (Kempster 1981), but being subcutaneous, it is also 

susceptible to uncontrolled/spurious removal during hide pulling. In the UK and some 

other countries, KKCF is removed prior to carcase evaluation, IMF (marbling) can add 

value in certain markets, and IF is often removed during carcase break-down. 

  

2.4.12 Other constraining factors 

 

Two further constraints for the implementation of VIA are, first, the space requirements 

for installation, and, secondly, the fact that small abattoirs will face a larger cost relative 

to throughput than their larger counterparts so that their uptake of a VIA system may be 

lower. VBS 2000, for example, requires 9.2 M2 of floor space. As many abattoirs were 

not designed to have extra space in the slaughter line, making the space for a VIA 

system can be expensive. A more compact VIA system may be a solution to the first 

constraint, the VIAscan system is more compact, but it has not gained wide acceptance 

in Europe. The solution to the second constraint relates to economies of scale either 

achieved by increasing throughput or reducing the processing cost per carcase, and to 

the availability of appropriate business, purchase, or other support models that may 

facilitate the acquisition of VIA technology. 

 

2.4.13 Further development of VIA 

 

Current commercial VIA systems were developed mainly in the 1990’s, but it is now 

possible to capture images in far greater resolution at a much lower cost and to handle 

much larger volumes of data. Oliver et al. (2010), for example, used two-dimensional 

still digital photographs and image analysis software to predict the weight of meat in 

four categories for 91 young bulls in Spain, and showed that image analysis accounted 

for more variation in cut weight than hot carcase weight alone, or combined with visual 

conformation scores that were assigned by two classifiers (Table 2.11). The young bull 

carcases in the experiment of Oliver et al. (2010) were very lean (FAT% of 9.2%) and 

the prediction equations were for saleable meat weight rather than the more informative 

SMY%. The comparison between image analysis and [S]EUROP conformation without 

fat class may be problematic if applied to other types of cattle where the FAT% is much 

higher. Unfortunately Oliver et al. (2010) did not apply their image analysis techniques 
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to predict FAT%. In a pilot trial involving 29 cross-bred steer and heifer carcases under 

abattoir conditions, the area of fat on the carcase explained between 1 and 2% of the 

variation in total fat weight in the half carcase (Prieto et al. 2009c). With addition of 

linear dimensions from the images, models could account for 48% of the variation in fat 

weight from the half carcase (Prieto et al. 2009c). 

 

Table 2.11 Prediction of different cut weights from hot carcase weight (HCW) and its combination 
with visual conformation ([S]EUROP) or image analysis parameters on ventral and lateral digital 
photographs of 91 young bull half carcases with a mean carcase weight of 174.3 kg (range 101.4-
225.3 kg). Derived from Oliver et al. (2010). 

Hot carcase weight (HCW) HCW + Visual conformation HCW + Image analysis 
Cut class (kg ± SD) R2 (%) RSD R2 (%) RSD R2 (%) RSD 
Extra a (3.4 ± 0.57) 50 0.4 66 0.33 79 0.26 
First b (77.0 ± 11.74) 80 5.24 93 3.06 94 2.74 
Second c (9.3 ± 1.41) 83 2.26 78 0.65 84 0.55 
Third d (34.1 ± 5.52) 72 0.75 87 2.01 90 1.73 
Total meat e (123.9 ± 18.74) 84 7.59 93 4.76 96 3.84 
Note: The mean ± SD of each class are given in parentheses.  
a Extra (included the fillet only). 
b First (included strip-loin, rump, knuckle, rump tail, chuck, silverside, topside, eye-round, shoulder, chuck tender, heel). 
c Second (included fore shin, shank, blade). 
d Third (included neck, flank, brisket). 
e Total meat is the sum of all the cut classes from a half carcase. 

 

A common method of determining the three-dimensional carcase shape is measuring the 

extent to which bands of structured light are deformed by surface curvature (Vuylsteke 

1990; Yang 1993). Using triangulation it is possible to calculate the profile of the 

carcase because the angles of the light projector and camera are fixed. Structured light is 

used by the BCC-2 and the VBS 2000 (Figure 2.1). Refining this method of obtaining 

three-dimensional imaging may enable VIA to be much more compact.  

 

Photogrammetric stereo is an alternative method that involves mounting two cameras at 

a known distance apart so that two photographs of the same scene are produced and a 

three-dimensional image developed by overlaying the two images. This approach has 

been used to create three-dimensional images of live pigs (Wu et al. 2004). An 

advantage of photogrammetric stereo is that it can be performed in normal light or in 

combination with a structured light pattern (Mazaheri and Momeni 2008). 

 

As new technologies such as stereoscopic infrared cameras (Menesatti et al. 2007) and 

three-dimensional high-definition video cameras become smaller and more affordable, 

they may be suitable for online application within VIA systems. EU regulations might 

require new validation trials if the technology used by systems such as the VBS 2000, 
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BCC-2 and Normaclass MAC were to change. This could act as a disincentive to 

upgrading the technology, yet Carometic A/S is endeavouring to upgrade the camera 

and server systems in the BCC-2 so that a second set of prediction equations can be 

customized for individual plant management requirements (personal communication, 

Henrik Andersen Carometic A/S, Denmark). 

 

2.5 Summary and conclusions for VIA 

 

The main conclusions of this review with respect to VIA for carcase evaluation are as 

follows:  

1. VIA can be applied either to the whole carcase before entry to the chiller or to 
the rib surface of the quartered carcase after chilling. 
 

2. The rib surface approach is used extensively in the USA and Canada. 
 

3. For markets such as the EU, where there is a need to automate visual assessment 
of whole carcases the whole-side approach to VIA is preferred. 
 

4. VIA is objective, fast, and in the case of whole-side systems, is totally 
automated.  

 
5. Whole-side VIA is more versatile because it is performed before carcase cutting 

and is not reliant on a specific quartering position. 
  

6. VIA systems tend to be able to account for more variation in SMY% with 
greater repeatability than visual assessment methods. 
 

7. The use of the expert panel for validating VIA for carcase classification on the 
EUROP grid is not representative of everyday operating conditions where a 
single classifier is used.  

 
8. The use of CT scanning to determine carcase composition (e.g. LMY%, FAT%, 

muscle distribution, and muscle-to-bone ratio) would be a more robust and 
informative method of validating VIA than a panel of five trained assessors.  

 
9. Regression equations can be used to determine the ability of VIA to predict 

SMY%, but the accuracy and precision of predictions are heavily dependent on 
the SMY% variation in the sample carcases, the level of fat trimming, and the 
variability in fat trimming.  

 
10. An overall appraisal of the accuracy of whole-side VIA has been lacking to date, 

the summary provided in this review shows that the overall predictive ability of 
VIA is remarkably good with median R2 values of 70%, 80%, 82%, 90% and 
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83% for SMY%, FAT%, BONE% EUROP conformation, and fatness, 
respectively.  

 
11. The ability to measure the distribution of SMY% within high value portions 

opens up the possibility of rewarding producers on that basis. Producer 
remuneration based on LMY% or SMY% can be used to help producers 
improve carcase quality and improve industry efficiency. Future research efforts 
should focus on improving the accuracy and precision with which VIA predicts 
FAT% and LMY% for purposes of carcase evaluation. 

 
12. Very few recent investigations have tested VIA variables such as lengths, 

widths, areas and ratios as predictors of LMY%. As a result, it is not clear 
whether predictions of carcase LMY% or indeed the yield of high value cuts 
could be improved through the use of other VIA variables in prediction 
equations. 
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2.6 Meat eating quality 

 

At the point of evaluation, carcases are still treated as a commodity product as opposed 

to saleable meat. The key difference is that the qualitative value aspect of a carcase can 

be very different to that of the saleable meat, particularly in carcase evaluation systems 

that do not evaluate meat quality. For example, the EUROP carcase classification 

system does not measure meat eating quality or even SMY%, rather conformation and 

fatness are the parameters. The correlation between EUROP classification and SMY% 

is variable for a number of reasons and the relationship between EUROP and 

consumers’ perception of meat quality is not known. At the point of purchase the eating 

quality of meat is unknown. Further preparation is required before consumption and the 

ultimate assessment of eating quality by the consumer. As a result, consumers must 

predict eating quality at the point of purchase based on any available information at 

hand. The total food quality model (Grunert 2005) explains consumer satisfaction by 

comparing expectations formed at the point of purchase with the actual eating 

experience. If the actual eating quality (determined during consumption) matches or 

exceeds expectations formed at purchase, the customer is satisfied and is more likely to 

repeat their purchase. Considering a whole-meat product, there is basic expectation of 

“wholesomeness” which relates to nutritional quality, and microbiological and chemical 

safety (Gellynck et al. 2006). The size, shape and packaging of meat also affect 

consumers purchase decisions due to a convenience element (Grunert 2005).  

 

There are many interactions between meat production, processing and preparation 

parameters that influence components of meat quality which are beyond the scope of 

this review, but are often topics of investigation in the literature. The following sections 

will focus on intrinsic components of whole meat such as the visual aspects (e.g. colour 

of lean meat) and the palatability aspects (such as tenderness, juiciness and flavour) 

rather than the consumer perceptions of meat quality per se, the role of science in 

consumer perception has been reviewed by Troy and Kerry (2010). Visual factors such 

as lean meat and fat colour as well as the amount of intramuscular, intermuscular or 

subcutaneous fat present are also used by consumers to infer eating quality at the point 

of purchase (Grunert et al. 2004). 
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2.6.1 Meat colour 

 

The redness of meat is used by consumers to infer freshness (Mancini and Hunt 2005) 

but the correlation between colour traits and meat eating quality is low (Moore and 

Young 1991). Some beef carcase evaluation systems such as Meat Standards Australia 

(MSA) recognise the importance of meat colour to consumers and evaluate meat colour 

in the chiller (Polkinghorne and Thompson 2010), but it is not clear if meat colour is a 

useful predictor of MQ4 which is the scale of meat eating quality used in the MSA 

system (Watson et al. 2008). The most common way of measuring colour 

instrumentally is with a hand-held chroma meter such as a Minolta or Hunter-LAB 

instrument but meat colour can also be measured from digital images (Larraín et al. 

2008). Chroma meters measure colour as coordinates in a three-dimensional colour 

sphere with a lightness (L*) axis ranging from black (0) to white (100), a red-green (a*) 

axis where positive values are more red and negative values are more green, and a blue-

yellow (b*) axis where positive values are more yellow and negative values are more 

blue (Hunt et al. 1991). The three colour coordinates taken on a sample using a chroma 

meter (such as a Minolta CR-410) are used to describe the sample’s colour in a three-

dimensional colour space. In meat science, the L*, a* and b* values are often used 

separately, but the hue angle, and chroma (or saturation), are also calculated from the 

L*, a* and b* values using standard formulas (for example see Ripoll et al. (2011)). 

Hue angle is the proportion of redness and yellowness indicated by the angle at which a 

vector radiates into the red-yellow quadrant (Liu et al. 1996). Chroma relates to the 

vividness of colour, where low values represent a lack of colour (Ripoll et al. 2011). 

Some researchers have proposed consumer acceptability thresholds for fresh lamb meat 

colour (Hopkins 1996; Khliji et al. 2010). Khliji et al. (2010) proposed that a minimum 

L* of 44 and an a* of 14.5 is required for 95% of consumers to find lamb meat 

acceptable in terms of colour; but there are few such thresholds in the published 

literature.  

 

Meat colour can be affected by many aspects of production, processing and packaging. 

One of the more common factors afflicting meat colour is the condition of dark cutting. 

Meat is described as dark cutting when the colour is noticeably darker than normal due 

to high ultimate pH. Dark cutting is usually as a result of ante-mortem stress depleting 

cellular glycogen reserves (Kreikemeier et al. 1998). Dark cutting meat has a shorter 
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shelf life because bacteria can survive at the elevated pH and is also less visually 

acceptable to consumers than normal coloured meat; although differences in terms of 

tenderness, juiciness and flavour can appear minimal (Viljoen et al. 2002; Bass et al. 

2008). Meat surface colour is also affected by the oxidative state of myoglobin, where 

de-oxymyoglobin (purple colour) quickly becomes cherry red oxymyoglobin on 

exposure to oxygen which oxidizes to the brown metmyoglobin (Mancini and Hunt 

2005). Packaging also has a large effect on meat colour. The review by McMillin (2008) 

details the development and use of modified atmosphere packaging of meat to improve 

colour stability. There is also a relationship between colour and IMF, because meat with 

a higher IMF content appears lighter (Fiems et al. 2000). The level of IMF is valued in 

some markets such as Japan and Korea (Thompson 2004; Polkinghorne and Thompson 

2010). 

 

2.6.2 Fat 

 

Besides IMF, the level of subcutaneous or intermuscular fat can also affect consumer 

perceptions, particularly in lamb (Jeremiah et al. 1993). As well as having an impact on 

pre-purchase meat appearance, IMF also plays a role in the palatability of meat, where 

increasing levels are generally associated with improved eating quality (Hocquette et al. 

2010). Although the interaction between IMF and palatability is not well understood, 

one theory is that a higher percentage of IMF results in a lower percentage of muscle 

fibres and connective tissue resulting in a lower density meat that has less resistance to 

chewing (Nishimura et al. 1999; Warner et al. 2010). The effect of IMF on juiciness is 

thought to be due to the stimulation of salivation leading to a lubrication effect during 

mastication (Thompson 2004). Levels of IMF can range from very low < 1% in venison 

(Purchas et al. 2010) and < 2% in some breeds of sheep (Lambe et al. 2008; Navajas et 

al. 2008; Lambe et al. 2011) to very high in some breeds of cattle (Hocquette et al. 

2010). M. longissimus lumborum from lamb chops purchased at retail outlets in the UK 

had an average of 3.20% (Angood et al. 2008). One experiment in Scotland reported 

IMF in beef to range between 1.65-5.70% with an average of 3.89% (Prieto et al. 2011). 

Several authors have recommended minimum IMF% for acceptable eating quality, 

which is about 3-4% for beef (Savell and Cross 1986) and greater than 5% for lamb 

(Hopkins et al. 2006), although approximately 2% is thought to be sufficient in UK 

markets (personal communication, J.D. Wood, University of Bristol). As opposed to the 
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role of IMF in the palatability aspects of meat quality, the review by Wood et al. (2008) 

discusses the role of IMF composition in terms of nutritional meat quality. Despite 

variation within and between species, IMF could be considered a key element of meat 

quality as it is affects the nutritional quality, visual appeal and palatability of meat. 

 

2.6.3 Tenderness 

 

Extensive consumer testing in several countries has identified tenderness as the major 

factor contributing to a positive meat eating quality experience (Huffman et al. 1996; 

Bickerstaffe et al. 2001; Miller et al. 2001; Maltin et al. 2003; Price et al. 2008). 

Tenderness is defined in three stages, the ease of teeth penetration on the first bite, the 

ease at which the meat becomes fragmented and thirdly, the amount of residual material 

left after chewing (Weir 1960). The tenderness of cooked meat can be assessed either 

with humans via a trained or untrained sensory panel, or using mechanical laboratory-

based shear force tests. Typically shear force tests such as the Warner-Bratzler (Bratzler 

1949), Volodkevich (Volodkevich 1938), MIRINZ tenderometer (Macfarlane and Marer 

1966) or rapid slice shear force (Shackelford et al. 1999a; Shackelford et al. 2004) are 

applied across the muscle fibre axis on samples of a pre-defined dimension. Higher peak 

shear force values are indicative of tougher meat in all tests. Although shear force 

devices only approximate actual tenderness, they are used in place of sensory panels to 

minimize cost. Ideally a high correlation between shear force tests and tenderness as 

defined by a sensory panel is desirable. An important factor affecting tenderness is the 

degree of “doneness” of the meat resulting from varying end point cooking temperatures 

(Luchak et al. 1998; Purchas et al. 2010). When measuring tenderness, samples must be 

cooked to a constant temperature to eliminate the “doneness” effect before tenderness or 

shear force can be determined. Table 2.12 lists correlations obtained between shear 

force instruments and tenderness as determined by a trained sensory panel. As expected 

the peak shear force values produced by all instruments are negatively correlated to 

trained sensory tenderness, but there is considerable variability between experiments. 

Correlations between shear force measures and a trained sensory tenderness score may 

be improved by using the entire force deformation curve (force over time) in a 

multivariate analysis approach (Hildrum and Narum 2006). Correlations between shear 

force instruments and consumer panels are much less common, although Wheeler et al. 

(2004) reported a correlation of –0.92 between 14d shear force and an a mean 
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tenderness score from 16 un-trained consumer panellists. The relationship between 

trained sensory panellists and untrained consumers is not necessarily strong (Lorenzen 

et al. 2003; Aalhus et al. 2004), possibly due to differences in training, and because 

tenderness varies within and between muscles. The correlations between muscles are 

not necessarily strong, leading some researchers to conclude that tenderness is muscle 

specific (Aalhus et al. 2004; Polkinghorne and Thompson 2010). There are several 

biological factors affecting meat tenderness, for instance, chilled aging of meat 

increases tenderness due to post mortem proteolysis by the calpain system which breaks 

down meat structure (Koohmaraie et al. 1991). The calpain system is a family of Ca2+ 

dependant cysteine proteases that are largely responsible for the tenderization of meat 

during the aging process (Koohmaraie 1996). Of the calpains, Geesink et al. (2006) 

reported that μ-calpain is largely responsible for the post mortem proteolysis of muscle 

proteins. The rate of post mortem proteolysis also varies by species, venison for 

example, has a fast tenderization rate compared to beef (Barnier et al. 1999; Farouk et 

al. 2007). Other factors such as ultimate pH and temperature also play an important role 

in tenderization of meat. A rapid drop in muscle temperature before sufficient pH 

decline post mortem can result in an early onset of rigor and “cold shortening” which is 

linked to toughness in meat (Dransfield and Rhodes 1976). 

 
Table 2.12 A selection of correlation coefficients (r) between shear force and tenderness (as assessed 
by a trained sensory panel) for a range meat types and shear force tests taken from the published 
literature. 
Reference Samples Shear force testa Aging time (days)b Correlation 
Safari et al. (2001) 60 lambs WBSF  7 –0.71 
Muchenje et al. (2008) 34 steers WBSF  2 –0.23-–0.48 
Ross et al. (2009) 150 steers and heifers SSF  3 –0.60 
 150 steers and heifers SSF 14 –0.47 
 150 steers and heifers Volodkevich 14 –0.47 
 131 steers and heifers MIRINZ 14 –0.58 
Lambe et al. (2011) 40 Texel lambs Volodkevich 7 –0.36 
Chambaz et al. (2003) 64 steers WBSF  14 –0.43 
Peachy et al. (2002) 117 bulls and steers WBSF 7 –0.73 
  MIRINZ  7 –0.71 
Shackelford et al. (1995) 16 steers WBSF  14 –0.73 
Shackelford et al. (1999a) 479 steers and heifers WBSF  14 –0.77 
 479 steers and heifers SSF 14 –0.82 
Sullivan and Calkins (2011) Meta analysis WBSF  Various –0.84 
a WBSF = Warner-Bratzler shear force, SSF = rapid slice shear force, MIRINZ = MIRINZ tenderometer. 
b The duration of chilled aging before testing. 
 

2.6.4 Juiciness 

 

According to Weir (1960), the definition of juiciness consists of two stages, firstly the 

wetness experienced during the first few chews and secondly the sustained sensation of 
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moistness resulting from the stimulatory effect of fat on the salivary glands. Despite 

this, juiciness is assessed as a single attribute (Dransfield et al. 1984). Excessive 

moisture loss results in dry meat, the ability of meat to retain moisture (or water holding 

capacity, WHC) is therefore a trait of interest, although the relationship between 

juiciness and WHC is inconsistent (Winger and Hagyard 1995). The amount of moisture 

lost during cooking is a common proxy indicator of WHC as is purge (sometimes called 

drip loss) which is defined as the amount of moisture lost in packaging (Wiklund et al. 

2001). The filter paper press method (Hamm 1986) is another method of determining 

WHC where expressed juice is calculated by dividing the juice-stained area on filter 

paper by the sample weight after pressing for a set time between two flat plates. The 

correlation between cooking loss and juiciness is one of the most common measures of 

WHC reported in published literature (Table 2.13). 

 
Table 2.13 Published correlation coefficients (r) between cooking loss and juiciness as assessed by a 
trained sensory panel. 
Reference Samples Muscle Cooking methoda, 

Temperature Correlation 

Stevenson et al. (1992) 20 Red deer stags Longissimus thoracis Dry, 65°C –0.47 
  Semimembranosus Dry, 65°C –0.58 
Safari et al. (2001) 60 lambs Longissimus thoracis Dry, 76°C –0.32 
Vipond et al. (1995) 24 lambs Longissimus thoracis Dry, 65°C –0.40 
  “Leg steak” Dry, 70°C –0.40 
Schönfeldt and Strydom (2011) 61 beef carcases Triceps brachii Moist, 70°C –0.57 
  Biventer cervicis Moist, 70°C –0.51 
  Vastus lateralis Moist, 70°C –0.46 
  Longissimus thoracis Dry, 70°C –0.45 
  Psoas major Dry, 70°C –0.33 
a “Dry” refers to open grilling and roasting, “Moist” refers to roasting in a closed dish. 
 

2.6.5 Flavour 

 

Flavour of cooked meat is highly subjective; there are few methods of measuring 

flavour besides a sensory panel. One alternative is the “Electronic Nose” based on gas 

chromatography as described by Ghasemi-Varnamkhasti et al. (2009). The “electronic 

nose” technology is still relatively new and there are few reports containing correlations 

to sensory panels. One report has detailed breed differences using this technology and 

reported that Belgian Blue bull beef generated more odour-active compounds than 

Limousin or Aberdeen Angus bull beef (Machiels et al. 2004). Generally speaking, 

panellists describe the taste (such as “sweet” or “bitter”) and flavour of meat such as 

“milky”, “fishy, “flavour” and “abnormal flavour” on a hedonic scale (Sañudo et al. 

2007; Maughan et al. 2012). Many factors are known to affect flavour in meat; Calkins 
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and Hodgen (2007) review some of the key compounds contributing to meat flavour. 

The importance of meat flavour to the overall eating quality experience is difficult to 

define and is species specific, the often-intense flavour of game meats (Hoffman et al. 

2009) is an example of this, and flavour may be more important than tenderness for 

consumer preference in lamb (Sañudo et al. 2007). Schreurs et al. (2008b) review how 

forage-based diets affect sheep meat flavour. The effects of some poly-unsaturated fatty 

acids on meat flavour are discussed by (Sañudo et al. 1998; Wood et al. 2008). 

Thompson (2004) reported that the correlation between IMF% and beef flavour is 0.41 

after adjusting to a constant tenderness, although in beef, flavour does not differ 

between muscles in the same way as tenderness. It has been reported that, there is 

between three and four times more variation in beef tenderness than beef flavour 

(Shackelford et al. 1995) and it is important to note that meat flavour can be easily 

influenced through the use of marinades and bastings (Van Wezemael et al. 2012). 

 

2.6.6 Consumer willingness to pay for meat eating quality 

 

The concept of paying more for better eating quality is not new, in terms of beef, table 

cuts such as the fillet, sirloin, rib-eye and rump command premium prices per kilo over 

lower quality cuts which are often minced or diced (Pabiou et al. 2011a). At an animal 

level there is a possibility that carcase evaluation could be based on SMY% and factor 

in higher yields of high value cuts if measurement techniques are practicable. 

Considering consumers’ willingness to pay (WTP) at an industry level, there is a need 

to improve meat product consistency to minimize the chance of a poor eating quality 

experience and to capitalize on price premiums associated with higher prices and higher 

repeat purchases (Grunert 2005). This relies on the assumption that consumers are 

willing to pay for superior eating quality. There is a growing body of evidence that has 

investigated consumers’ WTP for superior beef eating quality. Perhaps the largest 

experiment investigating the magnitude of the premiums is the research of Lyford et al. 

(2010) who investigated WTP based on the MSA system. These authors collated WTP 

from 6718 untrained Australian, American (USA), Japanese and Irish consumers who 

had a preference for a medium level of “doneness”. Interestingly consumers in all 

countries would pay twice as much for “good everyday” (3-star) beef than 

“unsatisfactory” (2-star) beef (Table 2.14). For example, using the WTP results for 

Australian consumers in Table 2.14 reported by Lyford et al. (2010) if a good everyday 
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steak was priced at £15.99 per kg then if it was of unsatisfactory quality it would be 

worth £9.11 per kg, conversely if it was better than every day or premium it would be 

worth £24.14 per kg or £33.60 per kg respectively. The relationship between WTP and 

meat eating quality was linear in Australia, Japan and the USA with Irish consumers 

showing the smallest increase in WTP for quality. In Japan the WTP for 4- and 5-star 

beef was curvilinear with consumers willing to pay increasingly higher premiums for 

increasing beef eating quality. In another experiment where South African and 

Australian consumers were compared, the WTP was again similar across countries 

(Table 2.14) (Thompson et al. 2010). One other interesting finding in both the work of 

Lyford et al. (2010) and Thompson et al. (2010) as well as other reports was the 

consistent interaction between age and WTP for beef eating quality in all countries 

investigated, where younger consumers were more willing to pay a higher premium 

than older consumers (Lusk et al. 2001; Lyford et al. 2010; Thompson et al. 2010). 

 
Table 2.14 Mean and standard deviation of the price that consumers are willing to pay for beef 
eating quality relative to 1.00 for 3-star “good every day” quality from consumer sensory 
evaluations in different countries. 
  Quality grade 
Country Number of 

Consumers 
2-star 
unsatisfactory 

3-star 
good everyday 

4-star 
better than everyday 

5-star 
premium 

Reference: Lyford et al. (2010)     
Australia 2116 0.57 (0.23) 1.00 1.51 (0.32) 2.10 (0.61) 
USA 1338 0.56 (0.20) 1.00 1.64 (0.44) 2.37 (0.80) 
Japan 1471 0.48 (0.16) 1.00 1.69 (0.38) 2.86 (1.00) 
Ireland  960 0.49 (0.21) 1.00 1.46 (0.31) 1.97 (0.55) 
Reference: Thompson et al. (2010)     
Republic of South Africa 545 0.47 (0.24) 1.00 1.55 (0.48) 2.35 (1.09) 
Australia 533 0.44 (0.20) 1.00 1.51 (0.29) 2.15 (0.62) 
 Note: Standard deviations are included in parentheses. 
 

There is little information available on WTP for lamb, except for a pilot trial conducted 

in Scotland (n = 85 consumers for lamb and n = 100 consumers for beef) (Craigie 2011) 

90% of consumers were prepared to pay more for guaranteed eating quality and the 

premium was approximately 10% for both lamb and beef. Around 90% of those 

consumers also supported the concept that farmers and meat processors should be 

rewarded for producing lamb or beef with a superior eating quality. The problem with 

this analysis was that there was no indication of what a guarantee might mean, although 

the questions posed to the consumers were expressed in relation to a six products 

sourced from retail outlets which the consumers had just assessed in a hall test. A 

further criticism of many WTP analyses is that consumers do not actually purchase the 

meat in the protocol. Results reported by Polkinghorne et al. (2008) show clearly that 
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consumers are willing to pay for a quality guarantee when they actually purchase the 

meat. Although the MSA system has been demonstrated to add value, it is possible for 

retailers to purchase beef under the MSA scheme and re-brand it as their own premium 

brand. This undermines the MSA system by removing the association between MSA 

ratings and the intrinsic attributes of the product. The only brand of beef to carry a 

tenderness guarantee in the USA is the “Rancher’s Reserve” brand from Safeway which 

is underpinned by a rapid slice shear force test developed by Shackelford et al. (1999) 

(personal communication, M. Koohmaraie, IEH Laboratories Inc.). It is not clear how 

the tenderness guarantee translates into carcase evaluation or producer premiums. WTP 

based on eating quality is a useful concept; but eating quality indicators based on 

reliable, published methods of predicting meat eating quality remain illusive. 

 

There are several drawbacks associated with using sensory panels or mechanical 

tenderness tests to judge meat eating quality. Firstly, each test requires destruction of 

the product; secondly, trained sensory evaluations are expensive and are not necessarily 

representative of consumer perceptions of meat eating quality (Lorenzen et al. 2003). 

Thirdly, sensory parameters such as tenderness, juiciness and overall liking tend to be 

highly correlated when assessed by untrained consumer panels (Hwang et al. 2008; 

Thompson et al. 2010). Furthermore, none of these methods are suitable for use at line 

speed under abattoir conditions and are therefore unsuitable for carcase evaluation 

purposes, with perhaps the exception of rapid slice shear force which was intended to 

operate at line speed for beef (Shackelford et al. 1999a). Consequently, there has been 

much interest from a number of countries in the non-destructive prediction of meat 

eating quality using the MSA system (Polkinghorne and Thompson 2010), but to date 

the MSA system has not gained wide acceptance outside of Australia. Methods for 

predicting meat eating quality parameters need to be safe, non-destructive accurate, 

precise and informative to be suitable for carcase evaluation purposes. 

 

2.7 Visible-near infrared spectroscopy 

 

Visible-near infrared (NIR) spectroscopy applied to whole meat has been identified as 

technology that is possibly suitable for predicting meat eating quality. NIR has been 

widely investigated with respect to its ability to predict instrumentally derived meat 

quality traits (such as shear force, pH and colour), sensory properties and chemical 
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composition as described by three excellent reviews (Prevolnik et al. 2004; Prieto et al. 

2009a; Weeranantanaphan et al. 2011). NIR spectroscopy is a spectroscopic method 

that utilizes the visible (~400-700 nm) and near infrared (~800-2500 nm) regions of the 

electromagnetic spectra for determining chemical composition of a given sample. NIR 

has two main modes of application; transmittance mode where light is shone through a 

sample (usually in a cuvette) into a detector, and reflectance mode where light is shone 

at a sample and a detector measures the reflected light (Osborne et al. 1993). 

Transmittance NIR is more suited to non-particulate liquids whereas, reflectance 

spectroscopy is more suited to opaque solids including whole meat (Osborne and Fearn 

1986). Furthermore, there are two types of reflectance termed “specular”, where 

radiation is reflected off the surface (like a mirror) and “diffuse” where light that enters 

the sample becomes diffused by random reflections, refractions and scatter at further 

interfaces within the sample (Osborne and Fearn 1986). The same authors explain that 

diffuse reflectance spectra of biological samples relate to discrete structural components 

or particles, as well as to molecular structures. 

 

2.7.1 Mechanics of NIR spectroscopy 

 

Absorption of electromagnetic radiation at specific wavelengths relates to changes in a 

molecule’s vibration state (Cardarelli 2008). Upon exposure to electromagnetic 

radiation, particular molecular moieties absorb radiation and are excited to a higher 

energy level, (known as a transition). Depending on the transition state (how excited the 

molecule is), first, second and third overtones are detected in the resulting reflected 

spectra (Weyer 1985). For example, the first, second and third overtones for H2O at 

room temperature are detected at ~1458, ~980 and ~744 nm respectively, the O-H 

bonds vibrate in a different way upon exposure to the discrete electromagnetic 

wavelengths (or ranges of wavelengths) (Osborne et al. 1993). In a NIR spectrometer, 

reflected electromagnetic radiation is detected by a photoelectric diode or similar device 

(Workman 2004). Particular molecules and moieties absorb electromagnetic radiation; 

the amount of energy reflected is lower at specific wavelengths where electromagnetic 

radiation has been absorbed by particular molecules in the sample. Because different 

moieties have different bonding structures, the specific wavelength that is absorbed 

varies accordingly, hence NIR electromagnetic radiation can be used to partially 

determine the chemical composition of a sample. In order for an NIR spectrometer to 
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determine the specific wavelengths where absorption has occurred, a reference measure 

is needed. A white calibration tile that reflects 100% of the radiation at all NIR 

wavelengths is used as a reference measure, after scanning, sample reflectance is 

expressed as a percentage of the reference (Workman 2004). The absorbance is the 

difference between the sample reflectance and the calibration reflectance where 

absorbance = log(1/Reflectance) (Naes et al. 2002). The relationship between 

reflectance and absorbance is complicated by scatter effects and path length differences 

resulting from interactions between light and structural properties of the sample (such as 

particles or droplets) (Osborne et al. 1993). Scatter effects add noise to NIR spectra and 

complicate analysis because not all missing energy is absorbed. In order to improve the 

signal to noise ratio, various mathematical pre-treatments can be applied to the spectra 

that aim to separate the chemical absorbance from the physical absorbance that is 

mainly responsible for the noise. 

 
2.7.2 Scatter effects and data pre-treatments 

 

There are two types of scatter effects, termed additive and multiplicative (Esbensen et 

al. 2009). Additive effects are seen as different y-axis offsets for different spectra while 

multiplicative scatter effects are seen as peak intensity dependant spread between 

different spectra. Plotting individual spectra against the average spectra enables the 

analyst to determine whether additive or multiplicative scatter effects are present and to 

decide on an appropriate pre-treatment (Geladi et al. 1985). The mathematical pre-

treatment required depends on the type of scatter effects encountered. Many 

mathematical pre-treatments can be deployed to remove samples or variables for 

example, variable (spectra-based) treatments include normalizing, weighting, smoothing 

(using derivatives), baseline correction and multiplicative scatter correction (MSC) 

which can correct additive, multiplicative or both types of scatter effects (Esbensen et 

al. 2009). Sample-based pre-treatments can include mean centring and variable 

weighting (Beebe et al. 1998; Duckworth 2004). A full explanation of all pre-

processing techniques used to prepare data for analysis can be found in (Beebe et al. 

1998) and the typical NIR pre-treatments used in meat applications for a number of 

recent experiments are provided by Weeranantanaphan (2011). It is worth noting that 

the predictive ability of NIR in meat is seldom attributed to the spectral pre-treatment 
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alone, as other factors such as the precision of the reference method have a much larger 

effect on the development of a calibration model. 

 

2.7.3 Advantages of NIR spectroscopy 

 

Because reflectance NIR is conducted on the sample surface, minimal sample 

preparation is required before scanning (Murray and Cowe 2004). NIR spectra 

collection is rapid (1-2 seconds), a Quartz tungsten-halogen monofilament lamp can be 

used as a source of electromagnetic radiation (Workman 2004) and the collection of 

spectra does not destroy the sample. The fact that NIR spectroscopy can be used to 

measure several properties simultaneously provided the models have been developed is 

also advantageous. These properties render NIR spectroscopy suitable for testing the 

composition and properties of a range of biological materials, including meat. 

Conventional analyses of meat quality parameters such as tenderness, juiciness and 

flavour require destruction of the sample. For example, determination of instrumental 

meat tenderness requires removal of the meat from the carcase, joint, package etc., 

cooking in a standardized manner, preparation of the cooked sample into uniform 

blocks and shearing with a blade attached to a load cell (Purchas and Aungsupakorn 

1993). Furthermore, in order to determine sensory properties of meat, a trained sensory 

panel is required and to determine the fatty acid profile of meat, gas chromatography is 

used (Sinclair et al. 1982). These methods are, slow, expensive and unsuitable for high 

throughput in an abattoir environment. Before NIR spectroscopy can replace these 

traditional methods, robust prediction equations need to be developed in the calibration 

phase of model development. 

 

2.7.4 Calibrating NIR Spectroscopy to predict meat quality 

 

Calibration requires collecting spectra (explanatory variables) on intact, homogenised or 

minced meat which are subsequently calibrated against the meat quality parameter of 

interest as the reference to determine the parameter (dependent variable) of interest. A 

model must be developed that is able to predict the reference value from the absorption 

profile of the spectra. Various statistical procedures are invoked to develop a prediction 

equation. Because there are often > 1000 explanatory (x) variables in NIR spectra and 

there is a high level of collinearity (x variables are intercorrelated), multivariate data 
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analysis techniques must be used. The most common method for developing a 

calibration model from NIR spectra is partial least squares regression (PLSR). PLSR 

solves the collinearity problem by first decomposing all x variables into orthogonal, 

linear principal components, which are subsequently used in a multiple linear regression 

approach (Naes et al. 2002). The optimal number of principal components is reached 

when the root mean square is minimized, but it is important to avoid over fitting, as this 

results in a data-dependant model with poor results (Naes et al. 2002). Other 

quantitative analytical approaches such as discriminant analysis and artificial neural 

networks are described by Kramer et al. (2004). 

 

2.7.5 Validation of NIR prediction equations 

 

It is necessary to validate models developed during the calibration phase to test their 

robustness in terms of accuracy and repeatability. Internal cross-validation and external 

validation (or prediction) are the two main methods of validating models (Esbensen et 

al. 2009). Cross-validation entails removing and predicting each record in a sequential 

manner. The advantage of cross validation is that every record is used both in the 

calibration and validation phases. In contrast, external validation involves the testing of 

models on naïve samples (samples that were not used in the calibration phase) (Naes et 

al. 2002). The disadvantage of this approach is that the data must be split into 

calibration (~70%) and validation (~30%) datasets. The validation set therefore cannot 

be used in the calibration phase which is disadvantageous in situations where the sample 

size is small. Depending on the intended use of the model, it is arguable that the cross-

validation method is actually still part of the calibration phase rather than a form of 

model validation. This is because predictive performance on naïve samples ultimately 

determines the future performance of the models. Because of the increased interest in 

NIR for practical applications in the meat industry, external validation has become 

increasingly common in recent years (Weeranantanaphan et al. 2011). 

 

2.7.6 Performance of NIR spectroscopy 

 

There are many reports detailing the performance of NIR for predicting a variety of 

instrumentally-measured meat quality traits. The details of the experiments including 

the number and type of samples used, and the traits predicted using NIR spectroscopy 



Chapter 2 - Literature review 
 

53 

are listed in Table 2.15, Table 2.16, Table 2.17 and Table 2.18. Of the instrumental 

parameters predicted by NIR, Warner-Bratzler shear force is the most common, 

followed by the meat colour traits and cooking loss. Most reports are on Beef M. 

longissimus thoracis where the NIR spectra have been collected on intact samples, 

although some protocols have homogenized (Prieto et al. 2008) or minced the meat 

samples prior to collecting NIR spectra (De Marchi et al. 2007; Cecchinato et al. 2011). 

There are two main modes of shear force prediction, the first is a prediction of absolute 

values of tenderness on a continuous scale (Table 2.15, Table 2.16 and Table 2.17) 

although correlation coefficients above 0.6 are rare for predicting tenderness 

(Weeranantanaphan et al. 2011). The second type of prediction tests the ability (% of 

correctly classified samples) of NIR to classify meat into tenderness categories 

(Shackelford et al. 2005; Rust et al. 2008; Ripoll et al. 2008; Shackelford et al. 2012a; 

Shackelford et al. 2012b). The percentage of “correct” categorizations is usually much 

higher than predictions of a continuous variable because the variation within a category 

does not need to be discerned; therefore a less precise model is sufficient for 

categorization. The more tenderness categories are used, the lower the accuracy of 

correct classification. It appears that the tenderness classification approach is gaining 

more traction in USDA select grade carcases (Shackelford et al. 2012b), although 

thresholds used for the boundaries between categories tend to have a strong influence on 

the predictive ability of classification models, the lower the threshold, the higher the 

error rates (Rust et al. 2008; Shackelford et al. 2012a). In the US Meat Animal 

Research Centre research protocol for beef, there are two categories, “predicted tender” 

and “not predicted tender” where the median of the dataset is used as the threshold 

(Table 2.18). The mean shear force values of the “predicted tender” and “not predicted 

tender” groups are then tested for a significant difference. As a measure of error, the 

percentage of extra tough steaks with shear force values greater than 25 kgF placed in 

each category is also quoted. The results of these analyses are summarised in Table 

2.18. It is arguable that category thresholds based on the characteristics of the data (e.g. 

> 5%, > 10% toughest etc.) are somewhat arbitrary and of little practical significance to 

industry. The argument is especially strong when the correlation between the reference 

measures (e.g. Warner-Bratzler shear force or rapid slice shear force) and consumers is 

not known. Price et al. (2008) found that a three-category scale based on consumer trials 

was less successful than categories based on shear force because the mean shear values 

of tender and intermediate categories discerned by consumers were too similar. 
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2.7.7 Current shortcomings of NIR spectroscopy 

 

There are many aspects of NIR spectroscopy that require further investigation. The 

reviews of Prevolnik et al. (2004), Prieto et al. (2009a), and Weeranantanaphan et al. 

(2011) all concluded that a higher number of accurate reference measures are needed to 

develop more robust models and that this approach could eventually result in more 

uptake by industry. While this may be the case, it is important that these higher numbers 

are derived from different slaughter plants. Differences in slaughter, cutting processes 

and chilling are known affect meat quality. The model developed by Shackelford et al. 

(2005) was derived on samples and NIR spectra collected from two slaughter plants and 

later validated on samples from one of those plants (Shackelford et al. 2012b). 

Calibrating models on samples from a range slaughter plants appears to resolve this 

issue in terms of categorizing samples as “predicted tender” or “not predicted tender” 

(Shackelford et al. 2012a). Currently, it is not known how NIR calibration models 

developed on meat samples from one slaughter plant perform on samples produced at 

another site, so it is not known if NIR calibration models are plant specific. If NIR 

calibration equations are indeed plant specific, plant specific (or cross-plant) calibration 

equations will be required and a plant specific validation trial would also be required 

which may be problematic for meat processors and industry. Further work is also 

required to address the relationship between muscles and it has yet to be determined if 

NIR predictions on the loin are robust enough to be used on other cuts of meat. Sawyer 

et al. (2006) successfully predicted tenderness on M. semimembranosus, M. 

semitendinosus and M. biceps femoris from NIR scans taken on those respective 

muscles (Table 2.15), but M. longissimus thoracis was not included in their experiment 

so a comparison between these muscles and M. longissimus thoracis predictions is not 

possible. Several reports have shown that peak shear force of M. Longissimus thoracis 

is generally not highly correlated to peak shear force in other muscles, with correlation 

coefficients mostly lower than 0.5 (Shackelford et al. 1995; Johnston et al. 2003; Rhee 

et al. 2004). One report involving 75 animals (Venel et al. 2001) and investigated NIR 

on both M. longissimus thoracis and M. semimembranosus reported that NIR was 

unable to predict the organoleptic properties of the latter despite being able to predict 

Warner-Bratzler shear force on the former with an R2 of 51%. Certainly, there is a 

theory in the MSA system that an individual muscle-based model is more appropriate 

than a single muscle model based on the loin (Polkinghorne and Thompson 2010). 
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 The field of view of the NIR measurement head varies between models of NIR 

spectrometer, a larger measurement head, has a larger field of view. The placement of 

the probe is important since this can affect the level of fat or lean present in the field of 

view. These factors are likely to influence the NIR spectra and open up the potential for 

operator error, to date, few studies have addressed this important area. Operator error 

may also be a problem with regard to the blooming time of meat, particularly if the 

blooming time is varied before recording NIR spectra (Moss et al. 2010). Shackelford et 

al. (2012a) solved this problem by developing prediction equations based on a range of 

blooming times. Hyperspectral imaging may be a solution to the probe placement part 

of operator error, since in this technology, NIR spectra are collected for every pixel in 

the image (Naganathan et al. 2008; Cluff et al. 2008; Wu et al. 2010). A region of 

interest can be selected from the image and NIR spectra analysed from a selected tissue 

type (Naganathan et al. 2008). 

 

2.7.8 Further directions for NIR spectroscopy 

 

To date, the majority of NIR predictions on whole meat quality have been on a 

relatively small number beef and pork, there is far less information available on the 

predictive ability of NIR in other species of red meat, particularly lamb and venison. In 

lamb, there are only two published articles to date that have reported some evidence that 

NIR spectroscopy can be used to predict lamb meat quality (McGlone et al. 2005; 

Andrés et al. 2007). There are currently no reports of NIR being used to predict venison 

quality attributes. There is a clear need for more investigation of NIR in both lamb and 

venison. The reviews of Prevolnik et al. (2004); Prieto et al. (2009a) and 

Weeranantanaphan et al. (2011) detail the developments in NIR up to 2010. The time 

span of these reviews allows some comparison to be made with regard to the 

development and uptake of NIR technology in the meat industry. In terms of 

development, all three reviews conclude that the ability of NIR spectroscopy to predict 

sensory and technological aspects of meat quality is rather poor. The main reason cited 

for this is the poor precision of the reference methods of meat quality against which 

NIR calibration equations are made. As a result Prevolnik et al. (2004) reported there 

had been poor uptake by industry, a sentiment which appears not to have changed in 

recent years (Weeranantanaphan et al. 2011). Prieto et al. (2009a) speculated that the 
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uptake of NIR by industry would improve as error in reference measures and prediction 

calibrations is reduced through the use of a larger, more heterogeneous group of 

samples. 

 

2.8 Summary and conclusions for NIR 

 

The main conclusions regarding the use of NIR to predict meat quality characteristics 

from the current review are as follows:  

 

1. The accuracy and repeatability of NIR spectroscopy for predicting meat quality 
traits is highly variable and has been generally been assessed on small numbers 
of animals. 
 

2. The prediction accuracy of NIR spectroscopy for predicting meat quality traits is 
highly dependant on accurate and repeatable reference measures. Many meat 
quality reference measures such as sensory scores and shear force traits are not 
highly repeatable, and this has been cited on several occasions as the reason for 
the poor prediction accuracy of NIR spectroscopy. 

 
3. By considering tenderness in categories, some researchers have been able to 

improve the apparent effectiveness of NIR spectroscopy by removing the need 
to account for variation within the categories. Unfortunately very few such 
reports have based the tenderness category thresholds on consumer or trained 
sensory panel data or relevance to the meat industry requirements, so results 
must be interpreted in light of this fact. 
 

4. Many researchers have reported the performance of an NIR calibration model by 
internal cross-validation which uses the same samples as were used in the 
calibration phase. It is arguable that prediction on an independent dataset would 
be a more appropriate validation method. 
 

5. It is not known if NIR calibration models are site-specific, but it is possible to 
develop calibrations from data collected across different processing plants. 
 

6. The extent to which operator error can affect NIR prediction is not known. 
 

7. It is not known whether NIR calibration models developed on one muscle can be 
applied to other muscles with similar accuracy and repeatability. 
 

8. There are very few published reports where NIR has been applied to predict 
lamb and venison meat quality traits. 
 

9. Hyperspectral imaging appears to offer some advantages over current NIR 
spectroscopy by enabling spectra from a region of interest to be extracted and 
used in a calibration equation. 
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Rather than a list of NIR shortcomings, the conclusions points above should be viewed 

as areas that need further investigation by researchers. The ability to predict meat eating 

quality and to factor this into carcase evaluation systems is summarised by the 

following quote from Gernert et al. (2005) “only when producers can translate 

consumer wishes into physical product characteristics, and only when consumers can 

then infer desired qualities from the way the product has been built, will quality be a 

competitive parameter for food producers”. 
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3 Prediction of saleable meat yield from the sirloin and 
fillet cuts of beef carcases from different breeds and 

genders using video image analysis (VIA) and 
classification information 

 
 

Presentations based on the results reported in this chapter: 

Craigie CR, Ross DW, Maltin CA, Nath M, Hoskin SO, Morris ST, Roehe R (2009) 
Objective measures of predicted sirloin and fillet weights from commercial cattle - 
preliminary findings. Proceedings of the 55th International Congress of Meat Science 
and Technology, Copenhagen, Denmark 503-506. 

Craigie CR, Purchas RW, Maltin CA, Bunger L, Hoskin SO, Ross DW, Morris ST, 
Roehe R (2010) Video image analysis and near infrared spectroscopy applied to beef 
carcass evaluation. Institute of Veterinary, Animal and Biomedical Sciences Research 
Colloquium, Palmerston North, 25th November 2010. 

Craigie CR, Ross DW, Maltin CA, Purchas RW, Morris ST, Roehe R (2010) The 
relationship between beef quality and carcass quality attributes measured under 
commercial conditions. Proceedings of the British Society of Animal Science annual 
conference, Belfast Abstract 129. 
 

Abstract 

 

Carcase quality of 72 steers, 48 heifers and 21 bulls from continental and dairy 

crossbred genotypes were compared on the basis of conformation, fatness and saleable 

meat yield (SMY%) of the fillet and trimmed boneless sirloin cuts. Comparisons 

between genotype-gender groups showed that steers from beef breeds had higher 

EUROP conformation scores than those from dairy crossbreds which corresponded to a 

higher SMY% of sirloin and fillet. The EUROP grid underestimated the sirloin SMY% 

of Charolais heifers due to their higher muscle-to-bone ratio. Furthermore, the 141 

carcases were used to assess the accuracy with which video image analysis (VIA) and 

visual classification in a commercial abattoir predicted the weight and SMY% of the 

sirloin and fillet. Both VIA and the visual carcase classification systems resulted in 

similar accuracies for prediction of sirloin SMY% (R2 = 58%, RSD = 0.35% for VIA 

and R2 = 57%, RSD = 0.35% for visual classification respectively) but fillet yield was 

poorly predicted by both VIA and visual classification systems. Including the weight of 

excess fat removed during sirloin trimming as an additional covariate for sirloin SMY% 
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prediction did not offer any substantial improvement in predictive ability. Inclusion of 

bone weight did show some promise for improving the prediction accuracy of fillet 

SMY%. 

 

3.1 Introduction 

 

Within the European Union, adult bovine carcases are evaluated according to the 

EUROP carcase classification scheme under the European Community regulations 

1208/81 and 2930/81(European Community 1981a; European Community 1981b). The 

EUROP scheme includes carcase conformation scores on a 15-point scale with 5 main 

classes, E, U, R, O and P, and 10 sub-classes, and five main fatness scores (1, 2, 3, 4 

and 5) also with 10 sub-classes (Fisher 2007). During development of the EUROP 

scheme, no attempt was made to relate it to the amount of lean meat as a percentage of 

the dressed carcase, known as saleable meat yield (SMY%), which is lean meat sold 

with a certain amount of fat still attached, (Kempster et al. 1980). The reason for the 

lack of alignment between EUROP and yield traits was because there was no 

standardized definition of SMY% (Allen 2003). It has been argued that carcase 

evaluation must relate to SMY% so prices can give clear production objectives to 

producers through a value-based marketing system (Cross and Whittaker 1992).  

 

As a result, recent research has focused on relating carcase classification to SMY% 

(Conroy et al. 2009; Conroy et al. 2010a; Conroy et al. 2010b). The EUROP scheme for 

carcase evaluation has been widely criticized on account of its subjective (visual) mode, 

even when assessed by a trained classifier using photographic references. Although 

there is little evidence to support this criticism, it is impossible to demonstrate the 

objectivity of the system as long as human classifiers are involved (Allen 2003). To 

address this weakness, objective carcase evaluation methods based on video image 

analysis (VIA) were developed which allowed a large number of variables (lengths, 

widths, areas, volumes etc.) to be measured on a carcase in a matter of seconds. VIA 

systems that assess whole sides of beef can be installed on-line in abattoirs to operate 

autonomously at line speeds up to 800 beef carcases per hour (Ross et al. 2011) and up 

to 800 lamb carcases per hour (Rius-Vilarrasa et al. 2009). 
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Four different makes of commercially available whole-side VIA systems have been 

used in Europe to classify beef carcases according to the EUROP conformation and fat 

class grid, including the BCC-2 (Borggaard et al. 1996), VIAscan (Allen and Finnerty 

2001) VBS 2000 (Augustini et al. 1997) and the Normaclass Machine à classer (MAC) 

(Allen 2007). Features of these VIA systems are reviewed in Section 2.4.6. 

 

In an experiment undertaken by Teagasc in the Republic of Ireland, the VIAscan, VBS 

2000 and BCC-2 systems were able to predict SMY% from the same carcases with 

similar accuracies (RSD between 1.1 and 1.2%; (Allen and Finnerty 2001). VIA has 

since been successfully applied to carcase classification in the Republic of Ireland on an 

industrial scale since 2004 using VBS 2000 machines (Allen 2007; Pabiou et al. 2011b). 

Many studies have investigated the ability of the VBS 2000 to assess carcases from a 

variety of cattle populations in Germany, (Augustini et al. 1997; Branscheid et al. 1998; 

Sonnichsen et al. 2006; Brinkmann 2007), Norway (Jørgenvåg et al. 2009) and the 

Republic of Ireland (Allen and Finnerty 2000; Allen and Finnerty 2001; Allen 2005; 

Pabiou et al. 2009; Pabiou et al. 2011b). Most of these experiments have assessed the 

ability of VIA to classify carcases according to the EUROP grid, yet all whole-side VIA 

systems are able to directly predict carcase SMY%, this feature has seldom been 

assessed under commercial conditions. 

 

The aims of the current experiment were: 

 To compare carcase traits and the trimmed, boneless yield of sirloin and fillet 
meat for groups of cattle differing in gender and breed. 
 

 To assess the accuracy with which these characteristics were predicted by VIA 
and visual carcase classification systems. 

 

3.2 Material and methods 

 

3.2.1 Animals 

 

Between March and May 2009, 141 cattle below 30 months of age were selected for 

inclusion in the experiment at the point of inspection and classification in a commercial 

abattoir located in Perthshire, Scotland. Each week for 6 weeks, 4 steers and 4 heifers 

were selected from Charolais and Limousin breeds and 4 bulls and 4 steers were 
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selected from dairy breeds based on passport breed codes, age, and gender. After 6 

weeks the data set comprised 24 Charolais heifers (CH), 23 Charolais steers (CS), 25 

Limousin heifers (LH), 24 Limousin steers (LS), 24 dairy steers (DS) and 21 dairy bulls 

(DB). Breed codes are entered on the passports by the producer and are derived from the 

sire breed (Todd et al. 2011). All Charolais and Limousin were crossbreds, whereas of 

the 45 dairy animals, 34 were Holstein-Friesians, 4 were Holstein Friesian crosses, 4 

were Holsteins and 3 were British Friesians according to the breed code descriptions 

(Todd et al. 2011). 

 

3.2.2 Abattoir protocol 

  

Cattle were stunned using a captive bolt pistol, exsanguinated, and subjected to 

electrical stimulation (90 volts for 30 seconds at 10 minutes post mortem) during hide 

removal. Carcases were dressed to UK specification as described in the Meat and 

Livestock Commercial Services Limited beef authentication manual 

(www.mlcsl.co.uk). Visual carcase classification for conformation and fatness was 

performed by a trained Meat and Livestock Commercial (MLC) services human 

assessor using the more-restricted version of EUROP classification scale used in the UK 

(MLCuk) that uses 8 of the 15 categories for conformation (MLCCuk) and 7 out of the 15 

categories for fatness (MLCFuk) (European Community 1981a; European Community 

1981b). Both MLCCuk and MLCFuk values were expressed on the full 15 point scale for 

analysis (the conversions from UK scale to the 15 point scale are provided in Table 3.2). 

A VIA system (VBS 2000, E+V GmbH, Germany) also estimated classification scores 

for conformation and fatness on both the UK (VIACuk and VIAFuk, respectively, or 

VIAuk collectively) and full 15 point scales (VIAC15 and VIAF15, respectively or VIA15 

collectively) that are common across the European Union (De Boer et al. 1974). A 

direct prediction of whole-carcase SMY% was also obtained from the VIA system 

(VIA-SMY%). VIA data was available on 137 out of 141 carcases. The VIA system 

was operated on-line and independently from the human classifier. Hot carcase weight 

(HCW) was recorded at the same point as carcase classification and was used as one 

input to the VIA system. 
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3.2.3 Carcase cutting protocol  

 

All 141 carcases were quartered between the 10th and 11th ribs at 48 hours post mortem 

into hind (pistola) and forequarters. A schematic of the cutting protocol is shown in 

Figure 3.1. The complete sirloin (CSL) was removed bone-in and untrimmed from the 

hindquarter as described by Kempster et al. (1980). The untrimmed fillet (FIL) 

(containing M. Psoas major and M. Psoas minor) was removed from the complete 

sirloin and weighed, the bone (BON) and excess fat (XSF) (fat trimmed to a maximum 

depth of 9 mm at the ¾ point across the longissimus thoracis et lumborum muscle at the 

10th rib) of the sirloin were also weighed. The resulting trimmed, boneless saleable meat 

of the sirloin (SS), which included parts of M. longissimus thoracis et lumborum, M. 

multifidus dorsi and M. longissimus costarum, was weighed, and the yield of saleable 

sirloin [SS/HSW (%)] and fillet [FIL/HSW (%)] were calculated as a percentage of the 

hot side weight (0.5 x the HCW), while sirloin muscle-to-bone ratio (M:B) was 

calculated as SS divided by BON. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 

Fillet (FIL) 

Bone (BON) 

Fat (XSF) 

Complete 
Sirloin (CSL) 

 
Saleable 

Sirloin (SS) 
trimmed to 9 

mm fat 

Removed 

components 

HSW 

Figure 3.1 Schematic of the carcass cutting procedure. 
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3.2.4 Statistical analysis  

 

The percentage distribution of carcases by conformation and fat classification as 

assigned by the human classifier was performed using the FREQ procedure of SAS 

(SAS Inst. Inc., Cary, NC). Traits analyzed included hot carcase weight, age at 

slaughter, carcase traits assessed by visual and VIA carcase classification, weights of 

the sirloin and its dissected components, and yields of the latter. A general linear model 

(PROC GLM) was used to estimate least-squares (L-S) means for the genotype-gender 

effects (CH, CS, LH, LS, DS and DB) after adjusting for batch (determined by slaughter 

day, n = 6). Additionally, HCW was fitted as a covariate for all traits except for animal 

age. Comparison of L-S means among genotype-gender effects were performed using t-

tests (Bonferroni adjusted to account for multiple comparisons). Moreover, three non-

orthogonal contrasts were employed to make comparisons between genotypes and 

genders using “estimate” statements in SAS. Then, pair-wise residual correlations 

among traits were estimated using the MANOVA option in PROC GLM, in the first 

analysis adjusting for batch effects only, and in the second analysis by additionally 

adjusting for genotype-gender effects. Finally, several different general linear models 

were fitted to evaluate the accuracy of those models (R2 and RSD) to predict sirloin and 

fillet cut weights, cut yields and sirloin M:B ratios. 

 
Table 3.1 A list of the six genotype-gender groups and corresponding abbreviations. 
Genotype-gender group Abbreviation 
Charolais cross heifer CH 
Charolais cross steer CS 
Limousin cross heifer LH 
Limousin cross steer LS 
Dairy cross steer DS 
Dairy cross young bull DB 
 

 

3.3 Results and discussion 

 

The distribution of the experimental carcases into EUROP conformation and fat classes 

(as allocated by a trained assessor on the UK scale) is presented in Table 3.2, together 

with the distribution of prime cattle slaughtered in Great Britain (GB) in 2009 for 

comparison. Most carcases in this study were in the in the R (45.5%) –O (22.8%) and 
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O+ (14.9%) conformation classes and the 4L (44.0%), 4H (30.5%) and 3 (21.3%) 

fatness categories. The sample distribution was broadly similar to that in the GB prime 

cattle population slaughtered in 2009, but there was a higher proportion of 4H carcases 

(30.5% vs. 12.1% in the GB population), fewer in the O+ and more in the –O 

conformation classes in the sample set. These differences are probably a result of the 

inclusion of the DB, which tended to have a poorer than average conformation and the 

fact that some abattoirs were not penalizing fatter carcases at that time the experiment 

was conducted. 

Table 3.2 The distribution (percentage) of carcases (n = 141) used in the current experiment based 
on visually-assigned EUROP conformation and fat classes. The distribution (%) of all prime beef 
animals slaughtered in Great Britain in 2009 is included for comparison. 
 Fatnessa  
  2 (5) 3 (8) 4L (10) 4H (12) 5L (13) 5H (15) Total GB 2009 (%)c 
Conformationa         
U+ (12)b 0 0 0.7 1.4 0.4 0 2.5 2.3 
–U (10) 0 1.4 6.4 5.0 0 0 12.8 13.0 
R (8) 0.7 4.3 20.6 19.2 0.7 0 45.5 44.2 
O+ (6) 0 4.3 8.5 1.4 0.7 0 14.9 26.6 
–O (4) 1.4 11.4 7.8 3.6 0 0 22.8 11.5 
P+ (3) 0.4 0.9 0 0 0 0 1.3 1.8 
–P (1) 0.7 0 0 0 0 0 0.7 0.3 
Total 1.1 21.3 44.0 30.5 1.42 0 100  
GB 2009 (%)c 10.8 30.8 44.0 12.1 0.9 0.1   
a Conformation and fatness classification scores determined by a trained assessor on the UK scale.  
b Numbers in brackets are the corresponding categories on the 15-point EUROP scale (Fisher 2007). 
c GB 2009 refers to all prime cattle slaughtered in England, Scotland and Wales between 1st January and 31st December 2009 
(Courtesy of Kim Matthews, English Beef and Lamb Executive). 
 

3.3.1 Genotype-gender effects 

 

Least-squares means of genotype-gender effects for carcase classification (all on a scale 

of 1-15) are shown in Table 3.3. Significant batch effects were present for VIAFuk, 

VIAF15 and VIA-SMY% (data not shown). As might be expected, beef steers (LS and 

CS) had significantly higher conformation class scores than dairy crossbred steers (DS), 

with this being more pronounced with visual classification, than VIACuk, or VIAC15 (P 

< 0.001 in all cases). There was no significant difference between steers for fatness, but 

DS were significantly fatter than DB according to both visual and VIA classifications (P 

< 0.001) and the difference was more pronounced for the VIAF15 system (3.29 ± 0.44, P 

< 0.001). In contrast, there was no significant difference in conformation class between 

DS and DB according to MLCCuk, whereas VIACuk and VIAC15 determined that DB 

had higher conformation scores than DS with differences of 0.92 ± 0.39 (P = 0.02) and 

0.97 ± 0.36 (P < 0.008) respectively. Overall, heifers were significantly fatter than 
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steers (3rd contrast in Table 3.3) with the largest difference being found when assessed 

by MLCFuk (1.75 ± 0.36, P < 0.001). This difference was considerably less when 

assessed by VIAFuk (1.59 ± 0.40, P = 0.001) and VIA15 (1.49 ± 0.39, P < 0.001). Heifers 

were found to have higher conformation scores than steers, but only when assessed by 

VIACuk (0.88 ± 0.35, P = 0.01), this difference was no longer significant based on 

VIAC15 (0.56 ± 0.32, P = 0.08).  

 

Carcase conformation and fatness as determined visually and by VIA were considerably 

different. MLCFuk scores were consistently lower than VIAF15 and VIAFuk in both beef 

genotypes, yet VIAFuk predicted the fat class of DB to be approximately a sub-class 

(1/15) lower than values determined by MLCFuk. In the comparison between DS and 

DB, the VIAF15 estimated fatness difference between the genders were higher in DS by 

around 3 sub-classes whereas MLCFuk estimated the difference to be around 1.5 sub-

classes. In a previous report where dairy crossbred bulls and steers were assessed by 

VIA in the Republic of Ireland on the 15-point EUROP scale, the difference in mean 

fat-class between genders was 0.7 sub-classes (Conroy et al. 2010b), but of the prime 

cattle slaughtered in the UK in 2009 (1.95 million head), the fat class of young bulls 

was 2-3 sub-classes (visually assessed on the UK scale but converted to the 15 point 

scale) lower than steers and heifers (personal communication, Kim Matthews, English 

Beef and Lamb Executive).  

 

The difference between genotype-gender effects is important (particularly in terms of 

SMY%), but the ability of visual and VIA carcase evaluation systems to detect these 

differences is more appropriate basis of comparison. Further investigation into the 

significance of the differences between VIA and visual classification need to include 

carcase classification as a whole, i.e. fat class and conformation class since both are 

used together to describe the merits of a carcase. 
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3.3.2 Carcase classification 

  

Further enquiry into the ability of the EUROP carcase classification to determine 

SMY% is only possible when either fat class or conformation class (but not both) are 

significantly different in a given comparison at a common level of fat trimming 

(Kempster 1986). The present results satisfy this condition in the first contrast in Table 

3.3: “Beef steers vs. Dairy steers” and between genders, within the Charolais genotype 

only (data not shown). In the first contrast, the beef steers had significantly higher 

conformation scores than the dairy steers according to MLCCuk, VIACuk and VIAC15, 

but there were no significant differences in fat class between the genotypes. In 

Charolais, CH had higher fat class scores than CS according to MLCFuk, VIAFuk and 

VIAF15 but there was no significant difference in carcase conformation. SMY% traits 

SS/HSW (%) and FIL/HSW (%) were both significantly greater in the beef steers than 

DS (P = 0.02 and P = 0.001 respectively) as was the conformation score (P < 0.001). 

Within the Charolais genotypes, CH had significantly higher fatness scores than steers 

(CS) and showed significantly greater yields of SS/HSW (%) (P = 0.005). No 

significant difference in FIL/HSW (%) (P = 0.95) were detected between CH and CS.  

 

The inconsistent relationship between EUROP classification and SMY% in the current 

results may have several causes; including over fat carcases (Purchas and Wilkin 1995), 

or may be due to an inconsistent relationship between muscularity and M:B, particularly 

in the case of heifers, where the M:B may be higher than that of bulls and steers 

(Purchas et al. 2002b). The inconsistencies between genders within genotypes are not 

surprising, given that a meta-analysis on 903 carcases in 11 experiments failed to find a 

significant relationship between carcase conformation class and muscle proportion 

(Keane et al. 2000). On the other hand, Keane et al. (2000) reported fat class was 

negatively associated with both muscle and bone proportions in seven of the 11 

experiments. The inconsistency between carcase shape and SMY% has also been found 

in lambs where prediction of lean meat yield based on carcase shape, will be 

underestimated in females and overestimated in males (Johnson et al. 2005). Upon 

further investigation in the current analysis, CH did have a higher M:B ratio than CS but 

the differences were not statistically significant (P = 0.24). More importantly, the 

differences in M:B may be biased if carcase shape is used as a predictor of M:B 

(Purchas et al. 2002b) and ultimately SMY%. Further investigation into the relationship 
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between carcase conformation and fatness and SMY% is possible by comparing the 

correlations between the traits. Table 3.4 shows correlations (adjusted for batch only, as 

well as adjusted for batch and genotype-gender effects) between HCW, carcase 

classification and SS/HSW (%), FIL/HSW (%) and M:B ratio.  

 

After adjusting for batch effects, MLCFuk was positively correlated to HCW (r = 0.2), 

and carcase conformation was positively correlated to HCW in all cases (r = 0.47-0.55) 

(Table 3.4). Both fatness and conformation were moderately positively correlated to 

SS/HSW (%). Conformation classes had the closest positive correlations to SS/HSW 

(%) in the first instance (r = 0.49-0.52) with little difference between VIA (UK and 15-

point scale) and MLCCuk, but after adjusting for the genotype-gender effects, the 

correlation was greatly reduced (r = 0.28-0.31). This is especially evident in the 

FIL/HSW (%) where conformation and fatness were not correlated to FIL/HSW (%) 

after the genotype-gender effects were removed. M:B was positively correlated to 

HCW, but as expected M:B and fatness were not correlated after adjustment for 

genotype-gender effects which is probably due to the lower M:B in the DB genotype-

gender group (Table 3.3). Conformation correlated to M:B but large improvements were 

seen when no adjustments were made for genotype-gender effects (Table 3.4). This is 

most likely because M:B varies by gender and genotype. 

 

In a previous experiment (Kempster and Harrington 1980), the correlation between 

carcase conformation and the percentage of high-priced cuts (as a percentage of total 

saleable meat weight rather than total side weight) was similarly low, although only six 

classification categories were used. The highest correlations between sirloin SMY% and 

composition in the current results were obtained between VIA operating on the 15 point 

scales, which suggests the scale is appropriate for the UK prime cattle population. The 

correlations between yield and classification should be interpreted with caution because 

a positive relationship between carcase fatness and SS/HSW (%) was observed in CH, 

and MLCFuk was positively correlated to SS/HSW (%) across all genotype-gender 

groups. Furthermore, it is also possible that the total carcase SMY% may not have the 

same relationship to conformation as was presented for the sirloin region in the current 

results. 

 



Chapter 3 - Prediction of beef sirloin yield 
 

74 

After adjusting for genotype-gender effects and batch, in the current analysis, there were 

no significant correlations between measures of conformation and fat class, which 

corroborates previous findings (Drennan et al. 2007; Drennan et al. 2008; Conroy et al. 

2009; Conroy et al. 2010a; Conroy et al. 2010b) who found fatness and conformation 

were not significantly correlated in the absence of genotype and gender effects. There is 

further agreement between the current results and those of Kempster and Harrington 

(1980) who concluded that breed generally provided a more precise prediction of 

carcase composition than carcase conformation in steers. 
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Carcase classification needs to be an accurate predictor of SMY% if it is to be an 

effective mode of carcase evaluation since saleable meat is recognized as the major 

value component of a carcase. Maximization of SMY% is perhaps more of a target for 

meat processors than producers at the present time because higher SMY% equates to 

less waste and greater plant efficiency. SMY% of a carcase will increase when M:B 

increases at any given FAT% or if FAT% decreases at a constant M:B (Purchas 2003). 

In order to maximize efficiency, the producer must be able to finish cattle to the target 

weight, conformation and fat class for the lowest possible cost. Assuming conformation 

class (carcase shape) relates to the M:B ratio, and fat class is a proxy estimation of total 

carcase FAT%, carcase classification should be indicative of SMY%, but the correlation 

between the two end points is variable and often not statistically significant (Keane et 

al. 2000). The poor association between carcase classification and SMY% is 

problematic both at a farm and at an industry level as it leads to a suboptimal use of 

resources and a higher level of waste.  

 

The correlation coefficients (r) between the VIA classification and the visual 

classification firstly adjusted for batch only and secondly for batch, genotype-gender 

effects and HCW (Tabl3 3.5) indicate that the same characteristic (fatness or 

conformation) assessed by the two systems were highly correlated. Furthermore, fatness 

and conformation scores were positively correlated with each other because carcases 

with higher conformation tend to be fatter. This is mostly due to gender, genotype and 

weight effects, because after adjusting for genotype-gender, batch and HCW effects, 

fatness was not correlated with conformation using either the visual or VIA system 

(Table 3.5). The correlation between VIAFuk and MLCFuk (r = 0.69, P < 0.001) was 

stronger than the correlation between VIACuk and MLCCuk (r = 0.49, P < 0.001). This 

suggests that the classifier and VIA are assessing different aspects of carcase shape. The 

correlations between the two VIA conformation (VIACuk and VIAC15) and fat class 

(VIAFuk, VIAF15) traits were high (r = 0.87 and 0.92, respectively). The loss in 

correlation is probably as a result of rounding the 15-point scale into the 8-point 

conformation and 7-point fatness categories employed for beef carcase classification in 

the UK. 

 

 



 

77 

3.3.3 Prediction of sirloin and fillet weights, yields, and sirloin M:B 

 

The accuracies (R2% and RSD) and significance of terms used in a range of models for 

predicting sirloin component weights and SMY% of beef carcases are shown in Table 

3.6. As expected, HCW explained the majority of the variation in weight traits (SS and 

FIL). Batch effects were significant for SS, XSF, BON, SS/HSW (%) and FIL/HSW 

(%) because differences in carcase processing techniques between days had a large 

impact on the level of fat trimming (data not shown). 

 

Addition of conformation and fatness predictors in the model offered small 

improvements in prediction accuracy of SS/HSW (%) and FIL/HSW (%) SMY% traits 

(models 3 and 4 vs. model 2 in Table 3.6). VIA15 (model 6) was able to predict 

SS/HSW (%) with the highest accuracy overall (R2 = 58.5%, RSD = 0.35). The 

difference in accuracy (R2 values) between VIA and visual carcase classification were 

small (< 2%). After accounting for genotype-gender, batch and HCW effects, carcase 

classification offered little in terms of additional accuracy (≤ 5%) for the prediction of 

FIL/HSW (%). Similarly, the direct prediction of SMY% from VIA (VIA-SMY%) was 

equally poor at predicting FIL/HSW (%) (Table 3.6).  

 

In terms of SS/HSW (%) prediction, the accuracy of VIA15 was marginally higher than 

MLCuk system. These results are in agreement with R2 = 57% for VIA and R2 = 51% for 

visual classification for predicting yield of cube roll, strip-loin and fillet (very high 

value cuts) reported by (Drennan et al. 2007). The present results are also in agreement 

with the R2 = 56% (RSD = 0.30%) for sirloin reported in a recent trial undertaken by the 

English Beef and Lamb Executive (EBLEX) (personal communication Kim Matthews, 

EBLEX). Prediction accuracies for M:B obtained from HCW and MLCuk completely 

explained the genotype-gender effects on M:B ratio (Table 3.6). The accuracies are 

quite low considering the high value of the sirloin joint relative to the rest of the 

carcase. The same predictors were also the most accurate at determining the joint 

composition (percentages of saleable meat, excess fat and bone) of the sirloin region 

(data not shown). 
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Table 3.6 Models used to compare manual classification and VIA parameters for predicting loin 
weight, SMY% and muscle-to-bone ratio on 137 carcases after adjusting for batch effects. The 
significance of various covariate effects and the main genotype-gender effects are reported. 
 Weight  Yield  
aModel/Trait SS (kg)j BON (kg)k XSF (kg)  SS/HSW(%)m FIL/HSW(%)n M:Bo 
Standard Deviation 1.87 0.56 0.40  0.51 0.19 0.46 
1. R2 (%) (RSD) 74.1 (0.71) 47.9 (0.41) 33.0 (0.33)  30.0 (0.43) 5.1 (0.19) 9.6 (0.45) 
HCWa < 0.001 < 0.001 < 0.001  0.30 0.60 0.002 
2. R2 (%) (RSD) 81.8 (0.61) 53.7 (0.40) 46.8 (0.30)  53.4 (0.36) 32.4 (0.16) 23.4 (0.42) 
HCWa < 0.001 < 0.001 < 0.001  0.23 0.09 0.02 
Genotype-genderb < 0.001 0.008 < 0.001  < 0.001 < 0.001 < 0.001 
3. R2 (%) (RSD) 82.5 (0.59) 55.7 (0.38) 51.6 (0.28)  55.0 (0.35) 30.1 (0.16) 24.9 (0.41) 
HCWa < 0.001 < 0.001 0.001  0.004 < 0.001 0.66 
MLCCuk

c < 0.001 < 0.001 0.41  < 0.001 < 0.001 < 0.001 
MLCFuk

d 0.02 0.17 < 0.001  0.005 0.60 0.14 
4. R2 (%) (RSD) 81.1 (0.61) 51.9 (0.38) 55.4 (0.27)  53.8 (0.36) 22.0 (0.17) 21.7 (0.41) 
HCWa < 0.001 < 0.001 < 0.001  0.02 0.01 0.18 
VIACuk

e < 0.001 0.009 0.80  < 0.001 < 0.001 0.003 
VIAFuk

f 0.02 0.09 < 0.001  0.008 0.06 0.06 
5. R2 (%) (RSD) 83.4 (0.58) 57.8 (0.38) 55.6 (0.28)  57.7 (0.35) 36.4 (0.16) 27.7 (0.41) 
HCWa < 0.001 < 0.001 0.04  0.68 0.05 0.30 
Genotype-genderb 0.28 0.28 0.05  0.15 0.03 0.43 
MLCCuk

c 0.002 0.002 0.69  0.002 0.03 0.009 
MLCFuk

d 0.26 0.27 < 0.001  0.16 0.05 0.70 
6. R2 (%) (RSD) 83.1 (0.60) 55.8 (0.38) 58.4 (0.27)  58.5 (0.35) 36.5 (0.16) 28.4 (0.41) 
HCWa < 0.001 < 0.001 0.01  0.45 0.04 0.43 
Genotype-genderb 0.33 0.30 0.50  0.23 < 0.001 0.33 
VIAC15

g < 0.001 < 0.001 0.37  < 0.001 0.17 0.002 
VIAF15

h 0.32 0.52 < 0.001  0.18 0.10 0.88 
7. R2 (%) (RSD) 82.3 (0.60) 53.7 (0.39) 57.1 (0.27)  57.1 (0.35) 35.5 (0.16) 25.1 (0.42) 
HCWa < 0.001 < 0.001 0.01  0.85 0.08 0.13 
Genotype-genderb 0.11 0.47 0.30  0.09 < 0.001 0.35 
VIACuk

e 0.01 0.02 0.33  0.003 0.50 0.05 
VIAFuk

f 0.93 0.48 < 0.001  0.81 0.12 0.98 
8. R2 (%) (RSD) 82.7 (0.59) 56.5 (0.37) 48.1 (0.30)  57.7 (0.35) 35.5 (0.16) 28.4 (0.41) 
HCWa < 0.001 < 0.001 0.02  0.60 0.02 0.38 
Genotype-genderb 0.004 0.17 < 0.001  < 0.001 < 0.001 0.09 
VIA-SMY%i 0.004 < 0.001 0.13  < 0.001 0.08 0.002 
Note: all models were corrected for batch (fixed effect, n = 6, data not shown). 
a HCW = Hot carcase weight (covariate effect). 
b Genotype-gender effect (fixed effect, n = 6). 
c MLCCuk= Meat and livestock commission conformation (operating on the UK scale, but expressed on 15-point scale) (covariate 
effect). 
d MLCFuk = Meat and livestock commission fatness (operating on the UK scale, but expressed on 15-point scale) (covariate effect). 
e VIACuk = Video image analysis conformation (operating on the UK scale, but expressed on 15-point scale) (covariate effect). 
f VIAFuk = Video image analysis fatness (operating on the UK scale, but expressed on 15-point scale) (covariate effect). 
g VIAC15 = Video image analysis conformation (15-pt scale) (covariate effect). 
h VIAF15 Video image analysis fatness operating on the 15-point scale (covariate effect). 
i VIA-SMY% = Video image analysis prediction of total carcase saleable meat yield (covariate effect). 
j SS = Weight of saleable sirloin. 
k BON = Weight of bone removed from the loin region. 
l XSF = Weight of excess fat trimmed from the saleable sirloin. 
m SS/HSW(%) = Yield of saleable sirloin meat (boneless with fat trimmed to 9 mm). 
n FIL/HSW(%) = Yield of fillet. 
o M:B = Muscle-to-bone ratio of the sirloin (excluding the fillet). 
 

The accuracies (R2 values) obtained here for the prediction of sirloin SMY% are low, 

but it is probable that the prediction accuracies would have been higher if the half 

carcase SMY% rather than just the sirloin region was available in the current analysis 

because carcase classification encompasses the whole carcase and is not solely focused 

on the sirloin region. Several previous experiments that have sought to predict both the 

whole side and the very-high value cuts have found that classification was considerably 
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more accurate at predicting the half carcase SMY% than very high value cut yields 

respectively: R2 = 68% vs. 51% for the visual and 75% vs. 57% for VIA classification 

(Drennan et al. 2007), R2 = 70% vs. 29% for visual classification (Drennan et al. 2008). 

Furthermore, the overall accuracy (R2) of the VBS 2000 across a number of previous 

experiments was 76% (Section 2.4.7). In the current experiment, carcase classification 

was not able to measure the SMY% of the sirloin region as accurately as the SMY% of 

the whole or half carcase reported in other experiments with R2 values ranging between 

60% and 74% (Drennan et al. 2007; Drennan et al. 2008; Conroy et al. 2009; Conroy et 

al. 2010a; Conroy et al. 2010b) and even up to 82% (RSD = 1.31%) in a recent trial 

undertaken by EBLEX (personal communication Kim Matthews, EBLEX). 

 

Total carcase value and the price consumers pay for a package of meat are highly 

weight-dependent, so there is a case for predicting cut weight. Variation in cut weights 

is largely explained by HCW, but evaluation based on HCW alone would not account 

for variations in cattle types (where large differences exist in the proportions of meat, 

fat and bone). After adjustment for batch effects in the current results, HCW explained 

74%, 48% and 33% of the variation in the weights of SS, BON, and XSF in the 

complete sirloin (CSL) (Table 3.6, components are described in Figure 3.1). This is in 

agreement with the results of Pabiou et al. (2011b) who determined that cold carcase 

weight could explain 74% (RSD = 2.28 kg) of the variation in very high value cut (rib-

roast, strip-loin and fillet) weights. From the current results, it can be seen that HCW 

does not account for all (or indeed much) of the variation in sirloin XSF or BON 

weights. Improvements on the weight prediction accuracy were made with the addition 

of genotype-gender effects (R2 = 82%) or carcase classification information (R2 = 83%). 

Conformation was not a significant predictor for any of the XSF weight models, but 

EUROP fatness score did account for additional variation over and above genotype-

gender effects and HCW (Table 3.6). Carcase classification (fatness score only) did 

account for an additional 10% of the variation in XSF and BON with VIA15 being 

slightly more accurate than the visual classification (models 6 and 7 vs. model 5, where 

the R2 value was 2-3 percentage points higher). VIA-SMY (%) showed similar 

accuracies for SS R2 = 83% (RSD = 0.59 kg) and XSF, but accuracies for BON were 

lower than with carcase classification values. 
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3.3.4 Supplementing prediction equations with weights of sirloin bone and excess fat 

 

Because FAT% at a constant M:B ratio (and vice versa) determine SMY%, the weights 

of bone and excess fat removed during the sirloin trimming were tested as additional 

covariates along with MLCuk, VIAuk and VIA15 conformation and fat classes. The 

purpose was to determine if any additional improvements in SMY% prediction accuracy 

could be achieved using the extra information. It was found that inclusion of XSF and 

BON weight as covariates in the current analysis offered very small improvements in 

prediction accuracy for SS/HSW (%) and FIL/HSW (%) (R2 increase of 4.5-6.8 

percentage points for BON and < 2.5 percentage points for XSF) (data not shown). An 

early model of whole-side VIA, the BCC-1 (Sørensen et al. 1988) had a probe for 

determining fat depth, yet none of the current whole-side beef VIA-systems have a back 

fat depth probe, presumably because a measure of fat depth did not increase prediction 

accuracy. Furthermore, the distribution of fat throughout the carcase varies by genotype, 

gender, maturity and diet (McPhee et al. 2009) making the use of a back fat probe futile 

unless all (or at least some) of the other factors are taken into account. 

 

3.3.5 Future challenges for beef VIA  

 

A high prediction accuracy for SMY% at a constant muscle-to-bone ratio is dependant 

on accurate measures of fat percentage (Purchas et al. 2002b). Because the VBS 2000 

VIA system captures images from the exterior of the half carcase, only subcutaneous fat 

is visible. Therefore, all predictions of carcase composition are based on the assumption 

that fat distribution throughout the carcase is consistent, in reality this is not the case, as 

fat distribution differs between beef and dairy genotypes (Fisher and Bayntun 1984; 

McPhee et al. 2009). Further research is needed to address the differences in fat 

distribution and how this affects the accuracy with which VIA can predict SMY%. 

  

Most analyses using VIA information from the VBS 2000 system have used predicted 

EUROP classification variables. Further research is needed to establish whether using 

raw VIA data (such as primal yield predictions and carcase dimensions) directly, rather 

than VIA-predicted the EUROP offer improvements in accuracy. Two recent reports 

have investigated the relationships between various carcase dimensions and yield traits 



 

81 

and presented encouraging findings (Oliver et al. 2010; Pabiou et al. 2011b), but 

information in this area is still lacking. 

 

Rather than weighing cuts of beef under abattoir conditions, a non-destructive method 

of determining carcase composition based on computed tomography (CT) scanning of 

vacuum packaged primal cuts has been developed (Prieto et al. 2009c; Navajas et al. 

2010a). If CT scanning of primal cuts is performed before any trimming, a more 

accurate reference measure of carcase composition can be obtained that is unaffected by 

trimming specifications and transferable between abattoirs. The relationship between 

carcase composition and SMY% would need to be determined for a range of trimming 

specifications. A reference system based on CT would also be useful for developing 

new prediction equations for primal cut yield including some cuts such as the fillet that 

was poorly predicted using the current EUROP system. 

 

3.4 Summary and conclusions 

 

1. Both VIA and visual classification systems predicted sirloin region weights, 
yields and M:B with similar accuracies for beef carcases of different genotype 
and gender, but on balance, the VIA operating on the 15 point scale had slightly 
higher accuracies. 

 
2. According to previous findings, it is likely that the accuracies obtained in the 

current experiment would have been higher for both visual and VIA 
classification systems if the SMY% of the whole or half carcase was available. 
This is because carcase classification is performed on the whole side of beef, not 
just the sirloin region.  

 
3. Irrespective of this, both VIA and visual systems were relatively poor at 

predicting the yield of fillet as there was no statistically significant correlation 
between fillet yield and carcase classification categories.  

 
4. No substantial improvements in prediction accuracy were gained by including 

the weight of excess fat trim from the sirloin as a covariate in the current 
analysis; but the use of sirloin bone weight as an additional covariate did offer 
promising improvements in prediction of fillet SMY%.  
 

5. Accurate prediction of the carcase sirloin region SMY% is hugely important if 
the beef industry wishes to adopt a value-based marketing approach to carcase 
evaluation - especially if meat eating quality parameters are to be included. 
Further refinement to current carcase evaluation systems is required to address 
this point. 
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4 Investigations into relationships between visible-near 
infrared (NIR) spectra and instrumental meat quality 

parameters of beef M. longissimus thoracis 
 

 
Presentations based on the results reported in this chapter: 

Craigie CR, Ross DW, Maltin C, Purchas RW, Morris ST, Roehe R (2010) The 
relationship between beef quality and carcass quality attributes measured under 
commercial conditions. Proceedings of the British Society of Animal Science annual 
conference, Belfast Abstract 129. 

Craigie C, Purchas R, Maltin C, Bunger L, Hoskin S, Ross D, Morris S, Roehe R (2010) 
Video image analysis and near infrared spectroscopy applied to beef carcass evaluation. 
Institute of Veterinary, Animal and Biomedical Sciences Research Colloquium, 
Palmerston North, 25th November 2010. 

Ren J, Marshall S, Craigie C, Maltin C (2012) Quantitative assessment of beef quality 
with hyperspectral imaging using machine learning techniques. Proceedings of the 3rd 
Annual Hyperspectral Imaging Conference, Rome Italy. 
 

Abstract 

Eating quality of meat is known to be a driver for repeat purchases; yet meat of poorer 

eating quality often reaches consumers because production and processing factors have 

a considerable impact on meat quality. The ability to identify carcases that are likely to 

have poorer eating quality would enable processors to improve product consistency and 

potentially offer a quality guarantee, which could also be included as part of the carcase 

evaluation process. This experiment aimed to characterize the effects of gender and 

genotype on instrumental quality of beef M. longissimus thoracis (LT) and to evaluate 

the ability of visible-near infrared (NIR) spectroscopy to predict instrumental measures 

of beef LT meat quality. Using a sample of LT from 234 cattle of mixed genders and 

genotypes, it was found that slice shear force values were 31 N higher in bulls than 

steers (P < 0.001), this difference was greater (38.8 N) after adjusting for ultimate pH 

(pHult). The colour of steer LT differed significantly to that of bulls and the cooking loss 

was higher in bulls (P = 0.03). The ability of NIR to predict shear force was low, a 

coefficient of determination (R2
pred = 8%, SEpred = 32.08) was obtained. NIR was more 

successful at predicting LT lightness (R2
pred = 82%, SEpred = 1.18), redness (R2

pred = 

68%, SEpred = 1.55) and yellowness (R2
pred = 48%, SEpred = 1.49), pHult (R2

pred = 59%, 

SEpred = 0.15) and the percentage of moisture lost during cooking (R2
pred = 20%, SEpred = 
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2.75). NIR showed some promise for predicting some instrumental meat quality 

parameters in beef LT. 

 

4.1 Introduction 

 

The eating quality of meat is an important intrinsic quality cue which partly determines 

the likelihood of a consumer repeating their initial purchase. Grunert et al. (2005) 

proposed the total food quality model which links consumer expectation (formed at the 

point of purchase) to the perceived eating quality experience (formed during 

consumption). According to this model, in a situation where perceived eating quality 

meets or exceeds expected eating quality, the consumer will be satisfied and is more 

likely to repeat their purchase. The inherent problem is that the actual eating quality is 

difficult to infer at the point of purchase. For a number of years, both industry and 

researchers have long since recognized the need for eating quality information at the 

point of purchase to aid the consumer purchase decision (Cross and Whittaker 1992).  

 

A number of animal production factors such as growth path (Purchas et al. 2002a), 

genotype (Shackelford et al. 1995; Maltin et al. 2001; Prieto et al. 2011) and gender 

(Purchas and Aungsupakorn 1993; Sinclair et al. 1998) can affect meat quality. 

Arguably, meat processing techniques have even larger effects on meat quality where a 

number of interventions such as electrical stimulation (Davey et al. 1976; Hwang and 

Thompson 2001; Hwang et al. 2003), chilling rate (Aalhus et al. 2001) and aging time 

(Farouk et al. 2009) play an important role in ensuring optimal beef meat quality. 

Farouk et al. (2012) showed how aging disrupts meat structure leading to the 

improvement of water holding capacity through the “sponge effect”. The breakdown of 

microtubules prohibits water from exiting the meat and there is a corresponding increase 

in water viscosity due to increased concentrations of peptides from the post mortem 

proteolysis (Farouk et al. 2012). Aging also resulted in an improvement in tenderness 

due to the breakdown of meat structure (Koohmaraie 1996). Moreover, aging resulted in 

less variation in shear force values (Prieto et al. 2009b; Rosenvold et al. 2009) so an 

increased aging time would lead to greater product consistency.  

 

In an industry full of variation at almost every level of the value chain, variation in 

eating quality of beef offered to consumers is to be expected. A method of sorting or 
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grading meat in terms of a predicted eating quality is needed to improve the consistency 

of beef at the retail level in order to improve customer satisfaction. There are two main 

drivers for this, firstly, consumers are willing to pay for improved meat eating quality 

(Lyford et al. 2010; Craigie 2011) and, secondly, a growth in demand can be expected 

through an increase in repeat purchases (Grunert 2005). 

 

The ultimate arbiters of meat eating quality are the consumers, but for reasons of cost 

and practicality, a number of technological methods are used to assess meat quality, 

such as slice shear force as a proxy for tenderness (Shackelford et al. 1999b), and 

measures of meat colour, ultimate pH (pHult) and cooking loss. Slice shear force, and 

cooking loss require destruction of the sample. Measurements of pH and colour are time 

consuming and labour intensive. Therefore, these techniques are not ideal for measuring 

meat quality under abattoir conditions and are unlikely to play a direct role in carcase 

evaluation. 

 

The slice shear force (SSF) test was developed Shackelford et al. (1999b) as an 

alternative to the Warner-Bratzler shear force protocol (Bratzler 1949) which was too 

time consuming for a real-time appraisal of meat quality. There has been a limited 

uptake of other shear force tests such as the MIRINZ tenderometer (Macfarlane and 

Marer 1966) or the Volodkevich shear force test (Volodkevich 1938). In comparison, to 

the Warner-Bratzler method, the slice shear method is relatively new, consequently 

there are very few reports where beef slice shear force has been predicted by NIR 

spectroscopy (Shackelford et al. 2005; Prieto et al. 2008; Shackelford et al. 2012b). 

Correlations between slice shear force and Warner-Bratzler shear force in beef M. 

longissimus thoracis (LT) range from r = 0.66 (P < 0.001) (Lorenzen et al. 2010) to r = 

0.80, P < 0.001) (Shackelford et al. 1999a) but this correlation may depend on the 

sampling location within the muscle (Lorenzen et al. 2010). 

 

One of the more common factors affecting meat colour is the condition of dark cutting. 

Meat is described as dry, firm and dark (DFD) when the colour is noticeably darker than 

normal due to high pHult. Dark cutting is usually as a result of ante-mortem stress 

depleting cellular glycogen reserves (Kreikemeier et al. 1998). Beef that has a 

intermediate pH (pHult between 8.50 and 6.20) is darker in colour and also tends to be 

tougher due to a curvilinear relationship between pHult and shear force (Purchas and 
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Aungsupakorn 1993). Meat that has a high pHult (> 6.20) is less visually acceptable to 

consumers than normal coloured meat although differences in terms of tenderness, 

juiciness and flavour appear minimal (Viljoen et al. 2002; Bass et al. 2008). The shelf-

life of dark cutting meat is significantly reduced compared to normal pHult meat because 

there is insufficient acidity to prohibit microbial growth and spoilage (Rousset and 

Renerre 1991). 

 

Visible-near infrared (NIR) spectroscopy is a safe, non-destructive, fast, and 

informative technology that has shown some promise for predicting meat quality 

parameters from a surface scan as reviewed by Prevolnik et al. (2004), Prieto et al. 

(2009a) and Weeranantanaphan et al. (2011). Certain chemical moieties present in the 

sample absorb electro-magnetic radiation at certain wavelengths; the NIR spectrometer 

can detect the presence of chemical compounds based on the absorbance of radiation 

(Osborne et al. 1993). Further explanation of the theory behind NIR is provided in 

Section 2.7. Many researchers have applied NIR to predict sensory and technological 

parameters of meat quality with varying degrees of success (Prevolnik et al. 2004; 

Andrés et al. 2007; Prieto et al. 2009b; Shackelford et al. 2012b). A summary of 

previous research where NIR has been applied to predict instrumental meat quality is 

provided in Table 2.15, Table 2.16 and Table 2.17. 

 

Furthermore, there have been several attempts to develop NIR prediction equations to 

predict pHult in beef LT (Cozzolino and Murray 2002; Andrés et al. 2008; Prieto et al. 

2008; Lomiwes 2008; Rosenvold et al. 2009; Yang et al. 2010). In terms of 

instrumental measures of meat quality, the ability of NIR spectroscopy has been 

variable and researchers have typically not externally validated their calibration 

equations on new samples, which has been cited as a possible reason for the lack of 

uptake by the meat industry (Prevolnik et al. 2004). NIR is still an emerging technology 

in the meat industry, particularly in beef, where few reports have applied NIR to whole 

meat samples under abattoir conditions for the prediction of instrumental eating quality 

parameters. 
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The aims of the current experiment were to: 

 

 Characterize the effects of gender and genotype on instrumental measures of 
beef quality in the M. longissimus thoracis. 
 

 Evaluate the effectiveness with which NIR spectroscopy used under abattoir 
conditions predicted instrumental measures of beef quality in the M. longissimus 
thoracis. 

 

4.2 Materials and methods 

 

4.2.1 Animals 

 

Between March and May 2009, 234 cattle below 30 months of age were selected for 

inclusion in the experiment at the point of inspection and classification in a commercial 

abattoir located in central Scotland. Each week during a 10 week period, based on 

passport breed codes, the following carcases selected for inclusion in the experiment: 4 

steers and 4 heifers from the Charolais and Limousin breeds and 4 bulls and 4 steers 

from the Dairy breeds. After 10 weeks the data set comprised 37 Charolais heifers (CH), 

39 Charolais steers (CS), 38 Limousin heifers (LH), 39 Limousin steers (LS), 40 Dairy 

steers (DS) and 41 Dairy bulls (DB). Abbreviations are also shown with corresponding 

group in Table 3.1. Differences in numbers in each group were due to a lack of 

availability of certain genotypes and genders being processed on trial days. Breed codes 

are entered on the passports by the producer and are derived from the sire breed (Todd 

et al. 2011). All Charolais and Limousin in the current dataset were crossbreds. Of the 

82 Dairy animals, 65, 5, 7 and 4 were Holstein-Friesians, Holstein Friesian crosses, 

Holsteins and British Friesians respectively, according to the breed code descriptions 

outlined by Todd et al. (2011). Cattle were stunned using a captive bolt, exsanguinated, 

and subjected to electrical stimulation (90 volts for 30 seconds at 10 minutes post 

mortem) during hide removal. Carcases were dressed to UK specification as described 

in the beef authentication manual published by Meat and Livestock Commercial 

Services Limited (www.mlcsl.co.uk). Visual carcase classification for conformation and 

fatness and was performed by a trained meat and livestock commercial (MLC) services 

human assessor. Hot carcase weight (HCW) was recorded at the same point as carcase 

classification.  
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4.2.2 Carcase cutting and NIR spectra collection 

 

All 234 carcases were quartered between the 10th and 11th ribs at 48 hours post mortem 

into hind (pistola) and forequarters. A 2.54 cm section of steak containing the LT, 

associated muscles and subcutaneous fat, was removed from the 11th rib section of each 

carcase at quartering. Ten replicate NIR spectra (350-1800 nm at 1 nm intervals) were 

collected using an ASD Qualityspec Pro (ASD Inc., Boulder Colorado) NIR 

spectrometer fitted with a 63.5 mm active area scanning head by moving and rotating 

the scanning head on the LT surface as outlined by Prieto et al. (2009b). Spectra were 

collected after allowing the steak to bloom for two minutes (Shackelford et al. 2005). 

The NIR spectrometer was operated using a laptop computer running the Indico Pro 

program (ASD Inc.). Ultimate pH (pHult) of LT was recorded 48 hours post mortem at 

ambient temperature using a temperature compensating Testo 205 pH meter (Testo AG, 

Lenzkirch, Germany) after calibrating in pH4 and pH7 buffer solutions. The surface of 

LL exposed at quartering was allowed to bloom for 45 minutes at room temperature 

before colour measurements (L*, a* and b*) were recorded using a Minolta CR-410, 

D65 illuminant, 2° standard observer) calibrated against a white tile. 

 

4.2.3 Meat quality assessment 

 

Steaks were placed in sealed plastic bags, transported in cool boxes at 4°C back to SAC 

Edinburgh and stored overnight at 3°C. The following day (3d post mortem), the LT 

was trimmed from associated muscles and subcutaneous fat. The LT steaks were 

weighed and cooked in a clamshell grill (George Forman) to an internal temperature of 

71ºC determined with a stainless steel temperature probe (Hanna HI-98509 Checktemp 

1) positioned in the geometric centre of the steak. After cooking, the steaks were re-

weighed and the cooking loss (CL) was determined by subtracting the cooked weight 

from the raw weight and expressing the difference as a percentage of the raw weight (n 

= 166, CL not recorded on weeks 1, 2 or 3). For SSF test, a 50 x 10 mm slice of LT was 

sheared orthogonal to the muscle fiber axis using a Lloyd TA-plus texture analyser 

fitted with a flat blunt-end blade as described by Shackelford et al. (1999a). The peak 

slice shear force (SSF) was extracted from the force deformation curve. 
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4.2.4 Statistical analysis  

 

Descriptive statistics (Table 4.1) were produced using the MEANS procedure of SAS 

(SAS Inst. Inc., Cary, NC). For each instrumental meat quality trait, least-squares (L-S) 

means were generated for each genotype-gender group (CH, CS, LH, LS, DS and DB) 

using a general liner model (GLM) in SAS after adjusting for slaughter day effects as a 

fixed effect (n = 10) (results not shown). The HCW was fitted as a covariate for all traits 

and SSF was log transformed (logn) prior to analysis to ensure a normal distribution. L-

S means for SSF were back-transformed to the original scale for ease of interpretation. 

In order to determine the effect of pHult on meat quality traits, a second version of the 

models including pHult as both a linear and quadratic covariate were fitted. L-S means 

for the pHult-adjusted meat quality traits are shown in Table 4.2 for comparison. Three 

non-orthogonal contrasts were employed to make comparisons between genotypes and 

genders using “estimate” statements in SAS. The first comparison estimated differences 

between beef and dairy genotypes within steers, the second comparison estimated 

differences between steers and young bulls within the dairy genotype and the third 

comparison estimated differences between steers and heifers within the beef genotypes 

(Charolais cross and Limousin cross). Highly skewed pHult data are statistically difficult 

to analyse because transformations such as a log transformation are insufficient to 

achieve a normal distribution (Navajas et al. 2002). Due to the fact that pHult data were 

highly skewed in the current dataset, the genotype-gender effect could not be 

determined with the same reliability as other meat quality traits, a box-plot (Tukey 

1977) was generated in SAS to show the distribution of pHult data by gender-genotype 

group (Figure 4.5). 

 

4.2.5 Pre-processing of NIR spectra 

 

Spectra were recorded as absorbance log (1/Reflectance). Plotting all spectra revealed 

that regions at the extremes of the range (350-1800 nm) contained excessive noise 

(Figure 4.1). Removing these sections resulted in 495-1600 nm as the working spectra 

(Figure 4.2). 
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Figure 4.1 A plot of 10 replicate spectra (350-1800 nm) collected from the M. longissimus thoracis of 
one animal showing the noise at the extremes of the spectra. 

 

 
Figure 4.2 A plot of 10 replicate spectra collected from the M. longissimus thoracis of one animal 
after removal of the extreme spectral regions resulting in working spectra of 495-1690 nm. 

 

The ten replicate working spectra for each sample were subject to an initial principal 

component analysis to detect outliers. A Hotelling T2 ellipse with the critical test value 

of α = 0.25 was fitted to the principal components scores plot between PC 1 and PC 2 

using the Unscrambler (version 10.1) multivariate analysis software (Camo Software 

AS. Oslo, Norway) (Figure 4.3). Replicates lying outside the Hotelling T2 ellipse were 

deemed to be outliers (Krizsan et al. 2007). The outlying spectra can be seen in Figure 

4.3 and Figure 4.2 as the heavier red line. This approach was taken to simulate a method 

of determining whether a poor scan could be detected under on-line conditions. Further 

details of the Hotelling T2 test are given in Section 4.2.7. 
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Figure 4.3 A Hotelling T2 ellipse (α = 0.25) superimposed over the 10 replicates for sample animal 
ID 581889600705. The first replicate was outside the ellipse, the median spectra for the remaining 9 
replicates formed the final spectra for each animal. 
 

On average, approximately 1 out of 10 replicate spectra were sufficiently different from 

the remaining 9 to be deemed outliers. After removal of outliers, the median value for 

the remaining replicate spectra was calculated to form the final spectral reading for each 

meat sample. Scatter effects resulting from interactions between light and structural 

properties of the sample (such as particles or droplets) (Osborne et al. 1993) were 

visualized by plotting each individual spectra against the average of all spectra (Geladi 

et al. 1985) (Figure 4.4). 

 

Additive effects are seen as different y-axis offsets for different spectra while 

multiplicative scatter effects are seen as peak intensity dependant spread between 

different spectra (Esbensen et al. 2009). Some scatter effects were present in the spectra, 

in order to resolve the scatter effects, several spectral pre-treatments were applied 

including; standard normal variate (SNV), multiplicative scatter correction (MSC) and a 

second derivative (Table 4.3). Details of the methods are given in Esbensen et al. 

(2009). 
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Figure 4.4 A plot showing all individual spectra in a calibration dataset plotted against the average 
of all spectra in the calibration dataset. The stacking effect is indicative of additive scatter effects 
and the slight fanning effect is indicative of multiplicative scatter effects. 
 

Plotting each spectra against the average of all spectra (Geladi et al. 1985) revealed the 

SNV and MSC and second derivative transformations had removed the scatter effects 

and improved the signal to noise ratio for pHult, SSF and CL, but no pre-treatments were 

deemed necessary for colour parameters. 

 

4.2.6 Analysis of NIR data 

 

The samples were sorted in ascending order separately for each parameter and every 

fourth sample was assigned to the prediction dataset, with the intervening three samples 

being allocated to the calibration dataset as recommended by Williams (2001). The 

prediction dataset is only used for testing the model as recommended by Naes et al. 

(2002). The calibration model was then subject to full leave-one-out cross-validation 

where each samples is removed, predicted, and replaced in a sequential manner (Naes et 

al. 2002). Partial least squares regression type 1 was used for predicting instrumental 

measures of meat quality traits using NIR spectra (495-1600 nm) as explanatory 

variables. 

 

4.2.7 Detection of outliers 

 

Outliers result in poor model performance and can be attributed either to the reference 

meat quality measure or to anomalous spectra (Naes et al. 2002). Westerhaus et al. 

(2004) describe a strategy for handling outliers. Following this strategy, outliers for the 

reference meat quality parameter were identified when the calibration, cross-validation 
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or prediction performance was poor, but samples were only removed if there was a 

known error with the sample value or where measurements were > 3 SD from the mean 

of the dataset. Potential outlier spectra were first identified in the same way, through 

poor calibration, cross validation or prediction performances. The Hotelling T² statistic 

is a generalization of the Student’s t-test for multivariate analysis (Hotelling 1931). 

Further investigation of samples was performed using the Hotelling T2 ellipse 

superimposed over a principal component plot (or as a threshold value on a line plot in 

the prediction dataset) in order to identify samples with high leverage resulting from 

anomalous spectra. The Hotelling T2 statistic has a linear relationship to the leverage for 

a given sample, if upon further investigation, the spectra of the sample was significantly 

different (P < 0.01) from the mean spectra of the sample population based on the F-test 

(i.e. if a sample falls outside the Hotelling T2 ellipse (α = 0.01)) for any pair of principal 

components used in the model), the sample was removed. This method is equivalent to 

the Mahalanobis distance approach used to identify anomalous spectra by Prieto et al. 

(2009b). On the calibration dataset, this step was only undertaken once, as a step-wise 

approach would also influence the HotellingT2 ellipse due to changes in the average 

spectra of the population as outliers are removed. 

 

4.3 Results and discussion 

 

4.3.1 Descriptive statistics 

 

Descriptive statistics for hot carcase weight and meat quality traits are shown in Table 

4.1. The mean hot carcase weight (332.6 kg) is similar to the average carcase weight of 

steers, heifers and young bulls slaughtered in the UK in 2011 which was 342.6 kg 

(Anon 2012a). Due to highly skewed data the genotype-gender effects on pHult could 

not be validly analysed in the same way as other parameters because the normal 

distribution assumption could not be met. To give an indication of the genotype-gender 

effects, box-plot of the pHult data is provided for each group (Figure 4.5). It can be seen 

that there was a higher incidence of high pHult in the dairy bull group, and the three steer 

groups also contained multiple high pHult samples which is similar to previous reports 

(Brown et al. 1990). 
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Table 4.1 Descriptive statistics including hot carcase weight, and instrumental measures of meat 
quality for samples used to assess the effects of sex and genotype on meat quality of beef M. 
longissimus thoracis. 
Trait n Mean SD CV (%) Range 
Hot carcase weight (HCW) (kg) 234 332.64 56.01 16.84 185.50-550.00 
Slice shear force (SSF) (N) 234 123.43 42.95 34.80 69.83-329.39 
Lightness (L*) 234 37.36 2.60 6.96 27.65-45.39 
Redness (a*) 234 24.53 2.47 10.07 14.88-32.05 
Yellowness (b*) 234 9.04 1.98 21.93 2.74-13.99 
Ultimate pH (pHult) 234 5.52 0.23 4.13 5.18-6.74 
Cooking loss (CL) (%) 166 18.66 2.89 15.49 9.63-27.47 
 

4.3.2 Gender-genotype effects on meat quality 

 

4.3.2.1 Beef vs. dairy steers 

 

The first contrast compared beef and dairy genotypes within steers (Table 4.2). The 

HCW (± the standard error) of beef steers was 59.14 ± 8.61 kg greater than the HCW of 

dairy steers. The cooking loss was 1.88 ± 0.67% greater in beef steers (P = 0.006) and 

was still present after adjustment for pHult. Lightness in the LT from DS tended to be 

0.86 ± 0.46 units greater than in the LT from beef steers after adjustment for pHult (P = 

0.06). There were no further differences between beef and dairy steers in terms of other 

instrumental meat quality. 

 
Figure 4.5 Box and Whisker plot of pHult in the M. longissimus lumborum between 
genotype-gender groups. The length of the box represents the inter-quartile range 
(IQR), the + sign in the box represents the group mean, the actual mean value is also 
shown, the horizontal line in the box represents the group median, whiskers represent 
the maximum and minimum values within the 1.5 x the IQR from the 25th and 75th 
percentiles * = observations greater than 1.5 x IQR from the 25th or 75th percentile. 
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4.3.2.2 Dairy steers vs. dairy bulls 

 

The second contrast in Table 4.2 compared steers and bulls within the dairy genotype; 

there was no statistically significant difference between the bulls and steers for HCW. 

SSF values were 31 N higher in LT from bulls (P < 0.001), the LT of steers was 

significantly lighter (1.88 ± 0.53 units, P < 0.001), redder (1.39 ± 0.46 units, P = 0.003) 

and more yellow (1.29 ± 0.37 units, P < 0.001) than LT from bulls. Furthermore the 

cooking loss was 1.51 ± 0.68% higher in LT from bulls (P = 0.03). Ultimate pH was 

significantly higher in LT from bulls (0.16 ± 0.05 pH units, P < 0.001), so this value 

should be interpret with caution because the data are highly skewed (Figure 4.5). After 

adjustment for pHult, the difference in SSF between bulls and steers was greater with LT 

shear force of bulls being on average 38.8 N higher than steers (P < 0.001). The 

superior tenderness of steers relative to bulls has been reported previously (Reagan et al. 

1971; Purchas and Aungsupakorn 1993; Purchas and Grant 1995; Purchas et al. 2002a). 

After adjustment for maturity, castration affects the beef muscle fibre composition, 

enzyme activity and lipid concentration (Schreurs et al. 2008a). Differences in some or 

all of these parameters may offer some explanation for the differences in SSF, meat 

colour, and cooking loss observed between bulls and steers in the current results.  

 

Unfortunately it was not possible to determine the effect of aging (i.e. maturation of 

meat) on this difference in the present study, but extended aging is likely to reduce this 

difference (Sinclair et al. 1998). The pH-adjusted model accounted for more variation in 

SSF and reduced the RSD, and the difference in SSF between the bulls and steers 

increased indicating that pHult has a masking effect on the gender effect on SSF. The 

five highest pHult observations overall (pHult ≥ 6.20) were in the DB group and there 

was a weak curvilinear relationship observed between pHult and SSF in the bulls only: 

SSF = –91.318 (pHult
2) + 1032.9 (pHult) – 2755.4), R2 = 17.35, RSD = 51.40. Within the 

DB group, LT shear force peaked around pHult = 5.75, with SSF values decreasing as 

pHult increased beyond that point (Figure 4.6). 
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Figure 4.6 The estimated quadratic regression curve (solid line) for the 
relationship between ultimate pH and the slice shear force values of the 
M. longissimus lumborum in dairy bulls, together with the 95% 
confidence intervals (dotted and dashed lines). The equation for the 
relationship is presented in the text. 

 
The fact that SSF actually decreases above about 5.75 pH units, suggests that failing to 

adjust for pHult effects could mask the genotype-gender effect on tenderness, 

particularly when bulls are in the analysis. A curvilinear relationship between shear 

force and pHult has been reported in beef (Purchas and Aungsupakorn 1993), lamb 

(Johnson et al. 2005) and venison (Stevenson-Barry et al. 1999a). After adjusting for 

pHult, the difference in redness and yellowness between DS and DB was no longer 

statistically significant but the difference in cooking loss between bulls and steers was 

larger, with LT from bulls having a 2.05 ± 0.64% greater cooking loss than steers (P = 

0.001). This is in agreement with reports where LT from bulls had a greater cooking 

loss than steers (Purchas and Aungsupakorn 1993; Purchas et al. 2002a). Further 

agreement is also seen in Chapter 5 where the M. longissimus lumborum (LL) from ram 

lambs had a greater cooking loss than ewe lambs (Table 5.1) and in Chapter 7 where LL 

from stags had a greater cooking loss than hinds (Table 7.3). 
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4.3.2.3 Beef steers vs. beef heifers 

 

The third contrast in Table 4.2, which compared steers and heifers within the beef 

genotypes (Charolais cross and Limousin cross), showed that the HCW of beef steers 

was 67.66 ± 7.22 kg heavier than the HCW of beef heifers (P < 0.001) (Table 4.2). 

There were no statistically significant differences in meat quality traits between steers 

and heifers in the Charolais and Limousin cross genotypes either before or after 

adjustment for pHult. 
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4.3.3 Calibration and prediction datasets for NIR analysis 

 

Descriptive statistics for the calibration and prediction datasets are shown in Table 4.3. 

Arranging the dataset in ascending order for each trait prior to selecting every fourth 

sample for the prediction dataset resulted in both datasets having a very similar mean 

and standard deviation (SD). Table 4.1 contains the descriptive statistics for the two 

datasets combined. 

 
Table 4.3 Descriptive statistics for calibration and prediction datasets used to assess the ability of 
NIR spectroscopy to predict instrumental meat quality parameters on beef M. longissimus thoracis. 

 Calibration  Prediction 
Parameter n Mean SD Range  n Mean SD Range 
Slice shear force (SSF) (N) 175 123.37 42.46 72.77-329.39  59 123.61 44.75 69.83-312.00 
Lightness (L*) 175 37.38 2.54 30.64-45.39  59 37.30 2.78 27.65-44.32 
Redness (a*) 175 24.55 2.41 18.06-32.05  59 24.46 2.67 14.88-31.40 
Yellowness (b*) 175 9.05 1.96 3.70-13.99  59 9.01 2.06 2.74-13.95 
Ultimate pH (pHult) 175 5.52 0.23 5.20-6.74  59 5.51 0.23 5.18-6.49 
Cooking loss (CL) (%) 124 18.69 2.83 12.57-27.47  42 18.50 3.07 9.63-25.00 

 

In order to test the ability of NIR spectroscopy to predict meat quality traits, models 

were developed and fully cross validated on the calibration set and the prediction 

dataset was used as the test set (Table 4.4). No spectral pre-treatment was deemed 

necessary for the meat colour traits which was also the case in the analysis of Prieto et 

al. (2009b) who also analysed whole meat colour with NIR using the same ASD 

spectrometer. Most published analyses report either the R2 for the calibration (R2
cal) or 

cross-validation (R2
cv) and the standard error of the cross validation (SEcv) as the final 

indicator of predictive ability, but very few report the R2 for prediction (R2
pred) or 

standard error of prediction (SEpred) so comparison on the basis of actual prediction 

performance is difficult. Because prediction ability is dependant on the variation in the 

raw data of the trait to be predicted, the ratio of performance deviation (RPD) which is 

the standard deviation of the Y variable in the calibration dataset divided by SEcv 

(RPDcv) or preferably the standard deviation of the Y variable in the prediction dataset 

divided by the SEpred (RPDpred) (Cozzolino et al. 2000; Williams 2001; Prieto et al. 

2009a; Agelet and Hurburgh 2010). An RPD above 8 indicates the model is excellent 

and can be used with confidence because the standard error of prediction is less than or 

equal to 1/8th the standard deviation in the prediction dataset. RPD values below 2.3 

indicate a very poor model and application is not recommended. If the SEpred/cv is 
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similar to the SD of the reference data (RPD ≈ 1.00), the instrument is not predicting the 

reference data. (Williams 2001). 

 

4.3.4 Prediction of meat colour with NIR spectroscopy 

 

The R2 and RPDpred values for the prediction of colour parameters undertaken on 59 

samples in the current analysis (Table 4.4) were similar to the results of Andrés et al. 

(2008) who obtained R2
cv = 75% (SEcv = 1.36, RPDcv = 2.07) for L*, R2

cv = 29% (SEcv 

= 1.28, RPDcv = 0.90) for redness and R2
cv = 46% (SEcv = 0.99, RPDcv = 1.37) for 

yellowness for 30 M. longissimus thoracis (LT) samples from bulls after allowing the 

meat to bloom for 60 minutes. 

 
Table 4.4 Performance of NIR calibration equations showing the coefficient of determination (R2) 
and standard error (SE) for calibration, cross-validation and prediction phases for predicting 
instrumental meat quality in beef M. longissimus thoracis. 

   Calibration Cross-validation  Prediction 
Traita Pre-treatmentb PCc nd R2 (%) RMSEe R2 (%) SE RPDf  ng R2 (%) SE RPDh 
SSF (N) MSC 3 175 14.9 39.05 8.8 40.78 1.04  57 8.2 32.08 1.04 
L* none 3 175 72.0 1.34 70.6 1.39 1.84  59 81.9 1.18 2.35 
a* none 5 175 40.5 1.85 34.0 1.96 1.23  59 67.6 1.55 1.72 
b* none 2 175 53.6 1.33 48.4 1.42 1.38  59 47.6 1.49 1.38 
pHult SNV, 2nd D 7 175 88.4 0.08 59.5 0.14 1.57  58 59.3 0.15 1.54 
CL (%) MSC 7 120 40.2 2.08 19.00 2.46 1.15  42 20.0 2.75 1.12 

a SSF = Slice shear force, L* = Lightness, a* = Redness, b* = Yellowness, pHult = Ultimate pH, CL = Cooking loss. 
b Pre-treatments applied to the spectra prior to PLS regression analysis and prediction, SNV = standard normal variate, 2nd D = 
second derivative (gap-segment: gap-size = 5, segment size = 1), MSC = multiplicative scatter correction. 
c PC = number or principal components used in the regression. 
d n = number of samples included in the calibration and cross-validation phases. 
e RMSE = root mean square error. 
f RPD = ratio performance deviation is the SD of the Y variable in the calibration dataset (after removal of outliers) divided by the 
SEcv. 
g n = number of samples included in the prediction phase. 
h RPD = ratio performance deviation is the SD of the Y variable in the prediction dataset (after removal of outliers) divided by the 
SEpred. 

 

Prieto et al. (2009b) obtained R2
cv = 83% (SEcv = 0.96, RPDcv = 2.47) for L*, R2

cv = 

76% (SEcv = 0.95, RPDcv = 2.02) for a* and R2
cv = 69% (SEcv = 0.84, RPDcv = 2.48) for 

b* for beef LT samples after allowing the meat to bloom 45 minutes. The RPDpred for 

L* in the current analysis (2.35) was similar to the RPDcv of 2.47 reported by Prieto et 

al. (2009b), but performance for predicting a* and b* were not as strong as the results 

of Prieto et al. (2009b). The fact that NIR spectra are collected almost immediately after 

exposing the meat surface to air, whereas colour traits are measured after blooming for 

around 45 minutes is a likely reason for the less than perfect correlation between spectra 

and the reference measures of L*, a* and b*. An example of the blooming effect can be 

seen as the difference between exposure times t0 minutes and t60 minutes in the results 
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of Andrés et al. (2008) where the largest changes occurred in redness and yellowness 

while lightness only marginally increased with blooming time. Moss et al. (2010) also 

showed that blooming time had significant effects on NIR spectra below 1350 nm, 

particularly in the visible region. The spectra collected after at least one hour blooming 

had slightly better ability to predict Warner-Bratzler shear force on beef aged for 14 and 

21 days (Moss et al. 2009). The variation between the current results and those of Prieto 

et al. (2009b) may be due to the fact that data were collected from different processing 

plants or different criteria for the exclusion of data, although predictive performance 

varies considerably between experiments where NIR has been used to predict colour 

parameters on intact meat (Prieto et al. 2009a). 

 

4.3.5 Prediction of ultimate pH with NIR spectroscopy 

 

One sample (Sample 155) was removed from the prediction dataset as it was an outlier 

with high deviation (Figure 4.7). Plotting the spectra for sample 155 against the average 

for all samples in the pHult prediction dataset shows that the spectra become 

increasingly different as the wavelength increases (Figure 4.8). 

 

 
Figure 4.7 The prediction of M. longissimus thoracis pHult showing the predicted value as the 
horizontal red line, Sample number 155 is marked with diagonal lines. Boxes around the predicted 
value indicate the deviation which is estimated as a function of the global model error, the sample 
leverage and the sample residual X variance. A large deviation indicates that the sample is not 
similar to the samples used to make the calibration model and consequently can be considered a 
prediction outlier. 
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Figure 4.8 A plot of the spectra from Sample 155 along with the average spectra of the 59 samples 
in the calibration dataset for ultimate pH. The spectra from Sample 155 diverges further from the 
average spectra as the wavelength increases. 

 

Retaining sample 155 reduced the R2
pred associated with the prediction of pHult to 50.9% 

(SEpred = 0.16, RPDpred = 1.38). The R2
cal for pHult obtained in the present analysis 

(Table 4.4, Figure 4.9) is lower than the R2
cal of 97% (SEcv = 0.10, RPDcv = 3.17) 

reported by Andrés et al. (2008) on a sample of 30 bulls. The distribution of 

observations in Figure 4.9 indicates that the young bulls are largely responsible for the 

correlation obtained in for pHult. The R2
cal obtained in the current analysis is slightly 

higher than the R2
cal values of 81% (SEcv = 0.18) obtained on 100 beef samples reported 

by Cozzolino and Murray (2002) and 85% (SEcv = 0.20) obtained on 26 Hereford steers 

(Rosenvold et al. 2009). Prieto et al. (2008) reported an R2
cal of 41%, SEcv = 0.06, 

RPDcv = 1.12 for pHult on 53 steers and Lomiwes (2008) reported an R2
cv of 20%, (SEcv 

= 0.13) for pHult on 85 cattle, but NIR spectra were collected on pre-rigor beef in the 

latter experiment. Predictive ability for pHult in these two reports was much lower than 

the R2
cal obtained in the current calibration (Table 4.4).  

 

The current analysis contains a much larger number of animals of various breeds and 

genders than any previous report on NIR to predict pHult in beef. Rosenvold et al. 

(2009) did split their dataset into calibration and validation datasets but the validation 

dataset comprised of multiple measurements on 14 Hereford steers. Considering the 

ability of NIR to segregate samples with high pHult values which may be dark cutting, 

NIR was able to correctly identify all five samples in the prediction dataset that had 

pHult values > 5.80, a threshold that has previously been useful for identifying toughness 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

480 680 880 1080 1280 1480

A
bs

or
ba

nc
e 

lo
g 

(1
/R

ef
le

ct
an

ce
) 

Wavelength (nm) 

Sample 155

Average



Chapter 4 - Prediction of beef meat quality 
 

103 

in beef (Jeremiah et al. 1991). Furthermore, only one sample with a reference pHult 

value below 5.80 was classified as having a pHult value equal to 5.80 which was 

therefore misclassified (Figure 4.10). 

 

 
Figure 4.9 Calibration (blue) and cross-validation (red) for M. longissimus 
thoracis pHult also showing the gender of the samples, H = heifer, S = steer 
and YB = young bull. The distribution of observations shows that the high 
pHult meat is entirely from the young bulls. 
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Figure 4.10 Prediction of M. longissimus thoracis 
pHult from NIR spectra on 59 samples showing that 
the model could correctly identify the five samples ≥ 
pHult = 5.80. 

 

4.3.6 Prediction of cooking loss with NIR spectroscopy 

 

After removing three outlier samples from the calibration dataset, the ability of NIR to 

predict cooking loss was poor in the current results (R2
pred = 20%, SEpred = 2.75, RPDpred 

= 1.12) (Table 4.4). All outliers were spectral outliers (P < 0.01) and retaining these 

observations resulted in total failure of the model, but in terms of performance, the 

RPDpred (1.12) was similar to previous reports (Leroy et al. 2004; Prieto et al. 2009b). 

Leroy et al. (2004) reported an R2
cal of 25% (SEcv = 2.31%, RPDcv = 1.13) using 101 

cow and 88 bull LT samples aged for two days prior to cooking. Andrés et al. (2008) 

reported an R2
cal of 20% (SEcv = 0.08%, RPDcv = 1.01) using LT samples from 30 bulls. 

Prieto et al. (2008) reported an R2
cal of 14% (SEcv = 1.61%, RPDcv = 1.04) based on LT 

samples aged seven days from 53 steers and R2
cal of 0.001% (SEcv = 2.45%, RPDcv = 

0.97) using LT aged for three days from young cattle, although the NIR spectra were 

collected on homogenised meat samples as opposed to the intact LT muscle, Prieto et 

al. (2009b) reported an R2
cv of 23% (SEcv = 2.35%, RPDcv = 1.14) based on 130 LT 

samples aged 14d. It is possible that the poor prediction ability of NIR for cooking loss 

is a result of heterogeneity in the samples, possibly due to fat forming a barrier to 

cooking loss (Hornstein et al. 1960), or the fact that smaller carcases yield smaller 
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samples of LT at a constant thickness which have a higher surface area to volume ratio 

resulting in greater cooking loss. This is likely to be of importance when the entire slice 

of LT is cooked without any standardization of dimensions which was the case in the 

current analysis. 

 

4.3.7 Prediction of slice shear force with NIR spectroscopy 

 

As was mentioned previously, there are few reports where the ability of NIR to predict 

SSF of beef has been examined. Two extremely high SSF values were removed from 

the prediction dataset because they were > 3 SD from the mean. In the first instance, 

results obtained in the current analysis (R2
pred = 8.2%, SEpred = 32.08) (Table 4.4) appear 

much poorer than the R2
cal = 54%, SEcv = 46.49) reported previously by Prieto et al. 

(2009b) on 194 Aberdeen Angus - Limousin crossbred steers (n = 128) and heifers (n = 

66), despite using the same NIR spectrometer and methodology as used by Prieto et al. 

(2009b). Although samples came from different abattoirs, the coefficient of variation 

(34.7%) published by Prieto et al. (2009b) was similar to that from the current dataset 

(34.4%), but the mean SSF value was much lower (123.37 N, SD = 42.46) in the current 

dataset than the 192.45 N (SD = 69.77) in the experiment of Prieto et al. (2009b). Even 

if the variation in the current prediction dataset is taken into account using the RPD 

statistic, the prediction performance for shear force was still poorer (RPDpred = 1.04) 

than reported by Prieto et al. (2009b) where the RPDcv values for 3d SSF was 1.25 and 

14d SSF was 1.14. This illustrates how the SD affects the RPD value; higher SD values 

result in higher RPD values. Prieto et al. (2009b) excluded 18 samples from their 

analysis either where the Mahalanobis distance was ≥ 3.0 or where the predicted value 

in the cross-validation was ≥ 2.5 times the standard error of the estimate. Exclusion 

based on the latter could lead to an upward bias of the R2
cal and downward bias of the 

SEcv because removing too many samples with high residuals makes the model look 

better (Westerhaus et al. 2004). Applying the later criteria on the current dataset did not 

improve the model performance because samples could not be justified as outliers (data 

not shown). On a prediction dataset of 30 steaks from different animals, Moss et al. 

(2009) reported and R2
pred values of 5.6% (SEpred = 0.23) and 20.7% (SEpred = 0.54) for 

Warner-Bratzler shear force on 14d and 21d aged beef respectively, but they did not 

report the standard deviations of the prediction dataset so the RPDpred could not be 

calculated. Shackelford et al. (2005) recorded NIR spectra and slice shear force on 292 
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carcases from two plants, the dataset was split in half into calibration and validation 

datasets. The breed and sex information for the carcases was not given so it is difficult 

to draw a comparison on that basis, but the coefficient of variation for SSF was similar 

(36.31%) to the current dataset. Shackelford et al. (2005) obtained an R2
cal of 38% and 

R2
pred of 22% for 14d SSF but they did not report the standard errors of prediction so 

comparison based on the RPDpred is not possible. The model was re-validated in terms 

of the ability to segregate samples into two SSF tenderness categories above and below 

the median shear force value (Shackelford et al. 2012b). The mean predicted SSF of the 

two categories is then tested for a significant difference, the “predicted tender” (≤ the 

median shear force) category has a lower mean tenderness value than the “not predicted 

tender” group (Shackelford et al. 2012a). 

 

In terms of model development, Prieto et al. (2008) used partial least squares regression 

and Shackelford et al. (2005) used a form of multiple regression to determine a 10 

variable prediction equation. Partial least squares regression was also the method used 

in the current analysis for the prediction of SSF, but predictive ability was poor which 

was partly due to the dataset as evidenced by the RPDpred value. Despite the fact that 

there are few reports using the SSF method as used in the current analysis and in the 

analysis of Prieto et al. (2009b), 12 studies have used NIR to predict Warner-Bratzler 

shear force (the details of these is given in Table 2.15, Table 2.16 and Table 2.17). The 

average RPDcv values reported for these 12 studies for LT Warner-Bratzler shear force 

is 1.20 (RPDcv ranging from 1.05 to 1.46), the results of Park et al. (1998) were 

excluded because carcases were selected based on Warner-Bratzler shear force values to 

maximize variation. The average RPDcv is similar to the RPDcv = 1.25 and 1.14 for 3d 

and 14d SSF reported by Prieto et al. (2009b) and higher than the RPDpred = 1.04 

obtained for 3d SSF in the current analysis.  

 

NIR was unable to identify the toughest samples in the dataset (data not shown) which 

was expected given that the R2
pred was so low. There are a number of possible 

explanations for this, firstly the standard deviation of the reference shear force data was 

very low compared to previous experiments, and thus there was little variation to 

predict. Another possible explanation was the skewed distribution of shear force values. 

The reference shear force data had high frequency of samples with low shear force 

values and a low frequency of samples high shear force values. As a result there were 
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insufficient samples with high shear force values to build a stable prediction equation, 

because the cluster of lower shear force values dominated the model. 

 

4.3.8 Future directions for NIR analysis on beef 

 

A possible approach to improving the stability of NIR prediction equations could be to 

flatten the distribution of reference samples so that calibration could be performed on an 

even distribution of samples across the range of shear force variables (Williams 2001). 

For this to be possible, a larger number of NIR scans and reference shear force values 

would be needed, validation should be performed externally on a dataset with the 

typical skewed distribution encountered in a commercial environment. Some very 

recent analysis on the current dataset using a novel machine learning approach with 

principal components followed by support vector machine regression has shown more 

promise (Ren et al. 2012). They described the method and reported a correlation of 0.53 

(validated by cross-validation) between slice shear force and NIR spectra (Ren et al. 

2012). More work is needed to determine how the method performs on a prediction 

dataset. 
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4.4 Summary and conclusions 

 

1. The pHult data were highly skewed and transformations were ineffective for 
obtaining a normal distribution thus the results from the analysis of pHult data 
using a general linear model need to be interpreted with care. These results 
indicated that LT from bulls had significantly higher pHult values than steers. 

 
2. Cooking loss was significantly greater in beef steers than dairy crossbred steers. 

 
3. Despite having similar carcase weights, the LT from bulls had a higher shear 

force, and higher cooking loss than LT from steers. The LT from bulls was also 
darker, less red and less yellow than that from steers. 

 
4. The relationship between pHult and LT shear force for bull samples was found to 

be curvilinear with shear force decreasing above 5.75 pH units.  
 

5. Failing to account for pHult effects could mask genotype-gender effects for 
tenderness, colour and cooking loss. 

 
6. There were no statistically significant differences in the analysis of meat quality 

between beef steers and beef heifers. 
 

7. The sample size of the current analysis is considerably larger and more 
heterogeneous than the datasets of most previous reports where NIR has been 
applied to predict meat quality parameters. 

 
8. NIR spectroscopy could predict L* (R2

pred of 82%, RPDpred = 2.35), a* (R2
pred of 

68%, RPDpred = 1.72), and b* (R2
pred of 48%, RPDpred = 1.38). 

 
9. The model for predicting pHult with NIR spectroscopy was much stronger in the 

calibration (R2
cal = 88%) than in the cross-validation and prediction phases 

(R2
pred = 59%). The model was able to correctly identify the 5 samples in the 

prediction dataset with pHult values higher than normal (≥ 5.80), although one 
normal pH sample was misclassified as having a high pHult. 

 
10. The ability of NIR to predict slice shear force was low compared to values 

reported in previous analyses, this is partly due to the low SD of the reference 
data. 

 
11. The ability of NIR to predict cooking loss was similar to previous reports.  

 

12. An alternative method of data analysis for slice shear force based on support 
vector machine regression has shown promising improvements over the partial 
least squares regression approach which was used in the present study.
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5 Effect of sex and TM-QTL genotype on some carcase 
and meat quality traits in Texel ewe and ram lambs 

 

 

Presentations and publications based on the results reported in this chapter: 

Craigie CR, Lambe NR, Richardson RI, Haresign W, Maltin CA, Rehfeldt C, Roehe R, 
Morris ST, Bunger L (2012) The effect of sex on some carcass and meat quality traits in 
Texel ewe and ram lambs. Animal Production Science 52, 601-607. 
 
Craigie CR, Lambe NR, Macfarlane JM, Maltin C, Morris ST, Roehe R, Bunger L 
(2011) Effect of the Texel muscling quantitative trait locus (TM-QTL) and sex on meat 
quality parameters of the semimembranosus muscle of purebred Texel lambs. 
Proceedings of the British Society of Animal Science annual conference, Nottingham, 
UK. Abstract 067. 
 

Abstract 

 

Much of the past research into gender effects on lamb meat quality has focused on 

comparing ram lambs with castrated males, but more recent comparisons between ram 

and ewe lambs have yielded variable results. The first objective of the current research 

was to compare instrumental meat quality parameters of M. longissimus lumborum 

(LL), and M. semimembranosus (SM) from pasture-fed Texel ram (n = 94) and ewe (n = 

114) lambs slaughtered at an average age of 144 days in a commercial abattoir. The 

second objective was to characterize the effects of the Texel-Muscling quantitative trait 

locus (TM-QTL) on SM quality on a subset of lambs (n = 143) with known TM-QTL 

genotypes. After aging carcases for between seven and nine days, LL and SM were 

significantly tougher (higher shear force values) for ram compared to ewe lambs (P < 

0.001). LL from rams had significantly lower intramuscular fat percentage (IMF%), and 

higher moisture content (Moist%) than LL from ewes. Differences in LL IMF%, 

Moist% or ultimate pH (pHult) did not explain the sex effect on LL shear force when 

tested individually or together as additional covariates in the model. Ram SM was 

lighter in colour (higher L*) and had a higher cooking loss than that of ewes (P < 

0.001). There was no evidence of a TM-QTL genotype effect on instrumental meat 

quality parameters of SM and no evidence of any sex by genotype interactions. The 

correlations between some of the traits within and between muscles clearly differed 

between the sexes. Finishing ram lambs to the specifications used in this experiment 
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resulted in meat with relatively minor, but statistically significant differences in quality 

relative to that from ewe lambs. 

 

5.1 Introduction 

 

Research has shown that tenderness is highly correlated to overall liking in cooked lamb 

meat (Thompson et al. 2005). The supply of consistently tender lamb should meet 

consumer expectations and result in repeated purchases of lamb meat (Grunert 2005). 

Given that lamb gender can affect retail acceptability (Jeremiah et al. 1993) and meat 

eating quality (Dransfield et al. 1990), extensive research has investigated the 

differences in the quality of meat from ewe lambs and castrated male lambs, but there is 

considerably less research focusing on the differences between entire ram lambs and 

ewe lambs in terms of meat quality. Ram lambs have a higher growth rate, heavier 

carcases at a set age and are less fat than ewe lambs (Dransfield et al. 1990; Lee et al. 

1990). Nonetheless, many producers castrate male lambs to reduce unwanted 

pregnancies, aggressive behaviour, and to improve marketability (Stafford and Mellor 

2010). The resulting castrates are intermediary to ewes and rams in terms of production 

efficiency and eating quality (Dransfield et al. 1990; Okeudo and Moss 2008). Despite 

this, the financial gains achieved by castrating ram lambs are highly variable (Fisher et 

al. 2010) and there are concerns for animal welfare with castration and especially with 

some castration methods (Stafford and Mellor 2010).  

 

Recent research into the sex effects on lamb meat quality, Lambe et al. (2010b) found 

no significant differences in M. longissimus lumborum (LL) or M. vastus lateralis shear 

force between pasture-fed ram and ewe lambs for meat aged for seven days. Navajas et 

al. (2008) reported that there were no differences between ram and ewe LL and M. 

semimembranosus (SM) in sensory toughness, although consumers preferred ewe LL to 

ram LL, there was no difference between sexes for overall liking of SM. In contrast, 

Johnson et al. (2005) found LL and SM shear force values were higher in Texel-cross 

ram lambs than ewe lambs raised and slaughtered under the same conditions, but the 

differences were relatively small. Lind et al. (2011) found that lamb sex affected a 

variety of LL sensory parameters (including tenderness) in five month old Norwegian 

White sheep with meat from ram lambs being significantly tougher than ewe lambs 
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when finished on rye-grass pasture for 24 days pre-slaughter, but not after 44 days 

grazing on rye-grass pasture (Lind et al. 2011). 

 

A single copy of the Texel muscling quantitative trait locus (TM-QTL) located on ovine 

chromosome 18 increases loin muscle depths (assessed by ultrasound) by 1.2-2.0 mm 

(mean depth of 28.7 mm) which equates to a 4-8% increase in loin muscle area (Walling 

et al. 2004; Lambe et al. 2010b). Macfarlane et al. (2009) reported that a single copy of 

the TM-QTL resulted in a 4% increase in loin muscle depth at the third lumbar position 

which resulted in a 7% increase in the loin muscle weight of crossbred lambs, with no 

apparent effects on other cuts or the saleable meat yield of the carcase. Macfarlane et al. 

(2010) reported that carriers of TM-QTL in pure-bred Texel lambs had between 4 and 

11% greater M. longissimus muscle areas and that the inheritance mode of the allele was 

polar over-dominant meaning that the effect of the TM-QTL was apparent only when a 

single copy was inherited from the sire. Macfarlane et al. (2012) also reported that 

lambs carrying two copies of the TM-QTL had between 7 and 15% greater live weights 

over a range of ages compared to non-carriers and that the carcases of lambs carrying 

two copies of TM-QTL were 9% higher than the non-carriers. Overall, the loin weights 

are between 4 and 14% higher in lambs carrying at least one copy of the TM-QTL in 

purebred and crossbred Texel lambs (Walling et al. 2004; Macfarlane et al. 2009; 

Macfarlane et al. 2010) but other muscles seem to be unaffected (Macfarlane et al. 

2009).  

 

A more extreme form of muscular hypertrophy observed in lambs carrying the 

Callipyge mutation has been associated with increased shear force in LL, and to a lesser 

extent in the SM (Duckett et al. 1998; 2000). In terms of the effects of TM-QTL on 

meat quality, Lambe et al. (2010b) reported a significant sex-by-genotype interaction 

where LL from crossbred rams with one copy of the TM-QTL allele had significantly 

higher shear force values than other genotypes, but the effect disappeared after 7d aging 

(Lambe et al. 2010a). Furthermore, there were no such effects on M. vastus lateralis in 

that study. Lambe et al. (2011) reported that TM-QTL genotype had no significant 

effects on instrumental meat quality parameters of LL and M. vastus lateralis of 

purebred Texel lambs. The contrasting effects of TM-QTL genotype on LL shear force 

between the cross-bred Texels and the pure-bred Texels may possibly be due to any 

number of factors, as the experiments were in different years. An epistatic interaction 
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with the genetic background of the lambs used in the respective experiments is another 

possible explanation. An example of an epistatic interaction between a muscling 

genotype and genetic background can be seen when comparing South Devon and 

Belgian Blue cattle, both breeds share the same mutation in the myostatin gene, but only 

the Belgian Blue cattle show a double-muscled phenotype (Wiener et al. 2002). The 

effect of the TM-QTL genotype on instrumental meat quality parameters of SM has not 

been investigated, so before the TM-QTL can be recommended to be used in the 

industry as a means of increasing LL yield, effects of TM-QTL genotype on SM meat 

quality should be investigated. 

 

The aims of the current experiment were to: 

 Evaluate sex effects on lamb meat quality parameters of M. longissimus 
lumborum and M. semimembranosus in Texel ram and ewe lambs. 
 

 Characterize the effect of the TM-QTL on meat quality parameters of M. 
semimembranosus. 

 

5.2 Materials and methods 

 

5.2.1 Animals 

 

In 2009 Texel dams (n = 181) on two farms were mated to seven Texel sires that carried 

at least one copy of the TM-QTL allele. Three of the sires were used on both farms in 

accordance with the objectives of a larger experiment investigating the effects of the 

TM-QTL on lamb performance and eating quality (Macfarlane et al. 2010; Lambe et al. 

2011). Meat samples were available from ewe (n = 114) and entire ram lambs (n = 94) 

that were finished together on pasture (farm one in Scotland; n = 136 comprising of 74 

ewes and 62 rams, and farm two in Wales; n = 72 comprising of 40 ewes and 32 rams). 

Twelve lambs were hand-reared, but the majority were reared as singletons (n = 139) or 

twins (n = 57). Of the 208 lambs, 143 had known TM-QTL genotypes: 40 (14 rams and 

26 ewes) were non-carriers (+S/+D), 17 (8 rams and 9 ewes) inherited a copy of the 

allele (TM) from their dam (+S/TMD), 53 (23 rams and 30 ewes) inherited a copy from 

their sire (TMS/+D) and 33 (14 rams and 19 ewes) inherited a copy from both their sire 

and dam (TMS/TMD). TM-QTL genotype was determined using four microsatellite 

markers on ovine chromosome 18 by Pfizer Genetics, New Zealand, as described by 
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Macfarlane et al. (2009). Growth rate for each lamb was calculated from birth weight 

and pre-slaughter weight (un-fasted) recorded on-farm. Procedures involving animals 

were approved by the SAC animal ethics committee and were performed under UK 

Home Office licence, following the regulations of the Animals (Scientific Procedures) 

Act 1986. 

 

5.2.2 Abattoir and processing protocol 

 

Lambs were slaughtered at a mean age of 144 days (range 126 to 155 days) and mean 

hot carcase weight (HCW) of 15.1 kg (range 8 to 25 kg, unadjusted for rearing rank and 

sire effects) on a single day in a commercial abattoir and were subjected to electrical 

stimulation (825 volts, 14 Hertz for 20 seconds) at approximately 40 minutes post 

mortem. Dressing-out percentage (DO%) was the HCW as a percentage of pre-slaughter 

weight (un-fasted). For logistical reasons carcases were chilled for seven (41 ewes and 

28 rams), eight (42 ewes and 39 rams), or nine (31 ewes and 27 rams) days before 

butchering into joints. On the day of butchering, LL and SM were removed from the 

right hand side of the carcase, ultimate pH (pHult) was recorded at ambient temperature 

on all SM (n = 208) samples and on a subset of LL samples (n = 132, from days eight 

and nine only). The subset of samples where LL pHult was measured came from the left 

hand side of the carcase. A temperature compensated Testo 205 pH meter (Testo AG, 

Lenzkirch, Germany) was used after calibrating in pH4 and pH7 buffer solutions at 

ambient temperature. The right LL samples were vacuum packaged, frozen at –30°C 

and sent to Bristol University for meat quality assessment. A freshly exposed surface of 

SM was allowed to bloom for 45 minutes at ambient temperature before colour 

measurements (L*, a* and b*) were recorded using a Minolta CR-410, D65 illuminant, 

2° standard observer calibrated with a CR-A44 white calibration plate. Following the 

colour measurement, all SM samples were frozen at –30°C in sealed plastic bags for 

subsequent analyses at SAC, Edinburgh. 

 

5.2.3 Meat quality assessment of M. longissimus lumborum  

 

For the textural measures, samples were cooked from frozen in 14 batches (eight to 24 

per batch, balanced for sex) to an internal temperature of 78°C in a water bath pre-

heated to 80°C, before being cooled rapidly on ice and held overnight at 4°C (Taylor et 
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al. 1995). A Stable Micro systems texture analyser (TA.XT2, Blackdown Rural 

Industries, Surrey, UK) fitted with Volodkevitch-type jaws was used to assess the 

toughness (Vincent and Lillford 1991). Ten 10 x 10 x 20mm cores were prepared from 

each LL sample so the muscle fibres ran longitudinally, enabling a bite-like test to be 

performed perpendicular to the fibre direction. The mean peak force (PF) from the ten 

sub-samples formed the final measures of toughness LL PF. For each sample the 

percentage moisture content in the right LL (Moist%) was determined by freeze-drying 

a small sample for 72 hours, followed by vacuum oven drying at 80°C for four hours 

and re-weighing. This freeze-dried sample was then used for determination of 

intramuscular fat percentage (IMF%) using petroleum ether (B.P. 40-60°C) as the 

solvent in a modified Soxhlet extraction (Cameron et al. 1999).  

 

5.2.4 Meat quality assessment of M. semimembranosus  

 

Samples of SM were later defrosted in 17 batches balanced for sex (ranging between 10 

and 16 samples per batch) for 24 hours at 3°C. A sample of SM (average weight = 165 

g, range = 64-292 g) was weighed prior to cooking in a polythene bag for 90 minutes in 

a water bath pre-heated to 70°C. After cooking, fluid was drained off and samples 

stored overnight at 3°C. Cooking loss (CL%) was calculated as the weight loss during 

cooking (after dabbing dry with a paper towel) as a percentage of the raw weight. 

Twelve shears (2/core), perpendicular to the fibre axis were performed on six cores with 

a 13 x 13 mm cross section using a square Warner-Bratzler blade (Purchas and 

Aungsupakorn 1993) fitted to a Lloyd texture analyser (Lloyd Instruments, UK) with a 

cross head speed of 230mm/min. The mean peak shear force (WBSF) was calculated 

from the 12 sub-samples. 

 

5.2.5 Statistical methods 

 

Variance components were estimated with the restricted maximum likelihood (REML) 

method using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC). For each 

response variable, observations > 3 SD from the mean were excluded from the analysis 

on the basis that they were possible outliers; the number of observations included for 

each trait is listed in Table 5.1. Terms included in the linear mixed models used to 

determine the effects of sex on each trait are listed in Table 5.1. SM pHult was tested for 
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significance as both a linear and quadratic covariate in the models for SM traits and was 

retained in L*, a* and b* (P < 0.05) (not shown in Table 5.1). A cooking batch effect 

was also tested for SM WBSF and LL PF, but was not statistically significant. Apart 

from the sex effect, all other effects with a statistical significance of P > 0.09 were 

excluded from the models (Table 5.1). LL pHult was tested as both a linear and quadratic 

covariate on LL PF and Moist%, but was excluded because it was not statistically 

significant. No statistically significant (P < 0.05) interactions were found between any 

terms (including HCW) and interactions were consequently excluded from the models. 

Pre-cooked weight was tested as an additional covariate on SM WBSF and CL% and 

was retained for CL% only where there was a significant effect (P < 0.001). Age at 

slaughter was also tested and excluded from all models on the basis that it was not 

statistically significant. Coefficients of determination (R2) and residual standard 

deviations (RSD) were generated by regressing the predicted values obtained from the 

mixed models against the observed values for each trait using the REG procedure of 

SAS. LL PF and SM WBSF values were log transformed (logn) to ensure a normal 

distribution prior to analysis in the mixed models; so least-squares (L-S) means were 

back transformed to the original scale to simplify interpretation. To analyse the effects 

of TM-QTL on instrumental meat quality traits of SM, analysis was restricted to the 143 

lambs with known TM-QTL genotype. A sex by genotype interaction was included in 

the model to test whether genotype effects differed between sexes. Terms included in 

the model for each trait are given in Table 5.2. Pair-wise comparisons of L-S means of 

MQ traits for the four TM-QTL genotypes and two sexes were estimated using t-tests 

(Bonferroni-adjusted for multiple comparisons). Pearson correlation coefficients (un-

adjusted for any other terms in the mixed model) were derived between pairs of traits, 

using the CORR procedure of SAS. The Fisher’s Z test was used to test pairs of 

correlation coefficients for statistically significant differences between the sexes (Kenny 

1987). 

 

5.3 Results and discussion 

 

5.3.1 Lamb performance traits 

 

Ram lambs had 5% higher growth rates (P < 0.05) and 4% higher pre-slaughter weights 

(P < 0.05) than ewe lambs (Table 5.1). Ewe lambs had a 3.2% higher DO% than rams 
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(P < 0.001) possibly due to increased carcase fatness (data not shown), but there was no 

significant sex effect on HCW or age at slaughter (Table 5.1). The higher growth rates 

(P < 0.05) and lower DO% (P < 0.01) observed in ram lambs are in agreement with 

previous findings (Lee et al. 1990; Dransfield et al. 1990; Johnson et al. 2005; Okeudo 

and Moss 2008). 

 

5.3.2 Meat quality of M. longissimus lumborum 

 

The LL of ram lambs had a 13.3% higher shear force values than ewe lambs in terms of 

PF (P < 0.001) (Table 5.1). This finding corroborates the findings of Johnson et al. 

(2005) who reported that LL from pasture-fed Texel-cross ram lambs of a similar HCW 

to those in the current study was 14.5% tougher than that from ewe lambs using a 

modified Warner-Bratzler shear force instrument. The current results are also in 

agreement with those of Wojtysiak et al. (2010) who reported that ram LL had a higher 

shear force than ewe LL. There is further agreement between the current results and 

results of Lind et al. (2011) who assessed the sensory parameters of six-day aged LL 

from ram and ewe lambs finished on pasture for 24 days prior to slaughter. Lind et al. 

(2011) found that sensory tenderness in six day aged LL from ewe lambs was 

significantly more acceptable to consumers than the ram lamb samples, but lambs in 

that experiment were slaughtered at a higher live weight (> 40 kg) than lambs in the 

current analysis. The difference between sexes in terms of LL shear force in the current 

results is contrary to the results of Lambe et al. (2010b) who reported no significant sex 

effect on LL shear force using the same lab and the same method (Volodkevitch-type). 

Navajas et al. (2008) investigated the sex effect on LL sensory parameters from pasture-

fed lambs of two different breeds slaughtered at an average age of 139 days. Panellists 

awarded higher overall liking scores to LL from ewe lambs, but made no distinction 

between the sexes for LL toughness (Navajas et al. 2008). 

 

Placing the sex effects on LL shear force into a consumer context is difficult because 

consumer sensory appraisals are subjective and encompass a range of other sensory 

parameters including juiciness and flavour (Thompson 2004). Furthermore, there are 

few experiments that have correlated Volodkevitch shear force to consumer sensory 

panel scores for lamb meat. A subset (n = 40) of left LL muscles from lambs used in the 
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current analysis were subjected to a consumer taste test by Lambe et al. (2011). A low, 

but significant negative correlation between LL shear force and panel texture score (r = 

–0.39) was reported, although the taste panel consisted of very few panellists and 20% 

of the loins were only evaluated by a single assessor (Lambe et al. 2011). The 

relationship between different shear force instruments may not be linear across the 

entire range of toughness encountered in lamb meat (Hopkins et al. 2011). Therefore 

inferring consumer tenderness thresholds based on one shear force instrument may not 

be fully applicable to other shear force tests. Lambe et al. (2010b), (2011) opted for a 

threshold value of 5.5 kgF, above which they speculated there may be some adverse 

consumer reaction to lamb toughness. Other researchers have proposed that a toughness 

range 5.0-7.9 kgF may be appropriate for the MIRINZ bite test (Bickerstaffe et al. 

2001) or lower thresholds of 49 N (5.0 kgF), 40 N (4.1 kgF) or 27 N (2.75 kgF) which 

may be appropriate for the Warner-Bratzler test (Shorthose et al. 1986; Hopkins et al. 

2006). The L-S means for LL shear force presented here (2.94 kgF for ewes and 3.39 

kgF for rams) are towards the lower end of this range which suggests that the sex effect 

is not likely to pose a major problem for LL toughness where meat has been electrically 

stimulated and sufficiently aged. Considering the absolute LL shear force values in the 

current analysis, 15 lambs had shear force values above 5.5 kgF, of which four were 

ewes and 11 were rams. The average HCW of lambs slaughtered in UK abattoirs 

between December 2008 and December 2011 was 18.9 kg (Anon 2012b). Lambs used 

in the current experiment were slaughtered at an average HCW of 15.1 kg so were 

somewhat lighter than lambs finished under normal commercial practice. Previous 

research has shown gender effects on lamb meat toughness appear to be minimal before 

rams become sexually mature (Young et al. 2006), although their longitudinal 

experiment focused on rams and castrated males rather than females. 

 

The level of LL IMF% found in the Texel lambs was similar to the 1.33% reported for 

purebred Texels by Navajas et al. (2008) and 1.60% reported by Lambe et al. (2009a). 

The levels of IMF% in the Texel breed is relatively low compared to other breeds 

(Fisher et al. 2000; Hopkins et al. 2006; Warner et al. 2010). In the UK, the average 

IMF% of M. longissimus in lamb chops purchased at supermarkets was 3.20% (Angood 

et al. 2008), but it is of note that these lambs are mostly crossbred lambs and not 

purebred Texels. Hopkins et al. (2006) proposed that in order for lamb meat eating 

quality to be ‘better than every day’ in Australia, a minimum of 5.0% IMF is required, 
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although IMF% only explained 3% of the overall liking in that experiment. Whether 

UK consumers require 5.0% IMF for ‘better than every day” lamb quality is not known 

and country differences in perception are not unusual.  

 

The contribution of IMF% to lamb toughness is not fully understood, but the findings of 

Warner et al. (2010) supported a hypothesis that IMF% affects lamb toughness by 

altering meat structure rather than through influencing the meat ageing process. In the 

current results LL moisture content was significantly higher and IMF% significantly 

lower in ram lambs (P < 0.001). Testing IMF% or moisture content individually as 

additional covariates in the LL shear force model explained a small amount of 

additional variation in shear force (R2% = 38, RSD = 1.3 and R2% = 37, RSD = 1.3 

respectively for IMF% (P = 0.002) and moisture content (P = 0.02) respectively). The 

sex effect on LL shear force was reduced, but remained significant (P = 0.02) after 

inclusion of these covariates, which rejects the hypothesis that the sex effect on LL 

shear force is solely due to lower IMF% or higher moisture content in ram LL. 

 

Due to the fact that the LL shear force values were low in the current results, it seems 

likely that other factors such as the lower levels of insoluble collagen associated with a 

growth rate > 250 grams per day (Sylvestre et al. 2002) may compensate for the low 

levels of IMF% in some instances. Unfortunately the solubility of collagen was not 

measured in the current analysis and the growth rate of the lambs was much less than 

250 grams per day (Table 5.1). For the subset of LL where pHult was available, ewes 

had a higher pHult than ram lambs (P = 0.01), which is in contrast to Johnson et al. 

(2005) who found LL from ram lambs to have significantly higher pHult than ewe LL 

and that a curvilinear relationship existed between LL shear values and pHult. Similarly, 

Bain et al. (2009) reported pHult from ram lambs was significantly higher than that of 

ewe lambs, although the authors concluded that the amount of variation accounted for 

by sex in that experiment was very low. In the current results, one LL pHult value from a 

ewe lamb was higher than pH = 6.0 and no evidence was found for a curvilinear 

relationship between pHult and LL shear force. Furthermore, pHult was not a significant 

predictor of LL shear force or moisture content. Lambe et al. (2009b) reported that pHult 

was not significantly correlated with sensory scores of Texel lamb LL toughness, 

juiciness or flavour. Hopkins et al. (2006) also found that pHult was not a significant 

predictor of LL sensory traits. 
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5.3.3 Meat quality of M. semimembranosus 

 

There are relatively few reports comparing SM meat quality between ram and ewe 

lambs (Pommier et al. 1989; Johnson et al. 2005; Navajas et al. 2008). In this study, SM 

samples from ewe lambs had lower shear force values compared to ram SM samples (P 

< 0.001), and a lower CL% (P < 0.001), lower L* values (P < 0.001) and lower b* 

values (P = 0.02), but a* and pHult were similar (Table 5.1). The finding that SM shear 

force was 8.6% higher in rams is in agreement with the results of Johnson et al. (2005) 

who reported 11.7% higher shear force values in rams using the same Warner-Bratzler 

protocol (but on a different instrument). Johnson et al. (2005) and Hopkins et al. (2007) 

obtained much higher SM shear force values than those in the current experiment 

probably because their samples were only aged for one day before freezing and 

subsequent shear force assessment. Pommier et al. (1989) did not find any difference in 

SM shear force between 48 Romanov ewe and ram lambs and Navajas et al. (2008) 

reported that there were no significant differences between the sexes in the sensory 

attributes of SM from Texel lambs. In contrast to Johnson et al. (2005), there were no 

significant differences in pHult between ewes and rams, and there was no evidence to 

support a curvilinear relationship between shear force and pHult or CL% and pHult in the 

current results. Of the six observations deemed possible outliers for pHult, all were 

females, five were above pHult = 5.77 and the lowest reading was pHult = 5.35. Including 

outliers did not result in a sex effect on pHult or a curvilinear relationship between SM 

pHult, shear force or CL% (not shown). When investigating SM colour parameters there 

was evidence of a weak curvilinear relationship between pHult and lightness, redness 

and yellowness, corroborating the previous findings reported by Johnson et al. (2005). 

The colour values of SM muscle in the current experiment were higher than those 

reported by Johnson et al. (2005), which could be due to any number of production, 

processing or sampling factors or may be due to differences between Minolta Chroma 

meters (Kerr and Hopkins 2010). The predicted means for L* and a* observed in the 

current results using an open-type Minolta fitting suggest that approximately 95% of 

Australian consumers would find the colour of SM acceptable (Khliji et al. 2010). The 

correspondence of this threshold to UK consumer preferences is not known. 
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5.3.4 Effects of TM-QTL genotype on M. semimembranosus quality 

 

The magnitude of effects in the restricted dataset (Table 5.2) was similar to the overall 

dataset (Table 5.1) although there was no evidence of a curvilinear relationship between 

CL, a* or b* and pHult in the full dataset (Table 5.1). There were no statistically 

significant TM-QTL genotype effects on instrumental meat quality parameters of SM 

within sexes, and there were no significant genotype by sex interactions (Table 5.2). 

The lack of an effect in SM is consistent with the findings of Lambe et al. (2011) who 

reported that TM-QTL genotype had no statistically significant effects on instrumental 

meat quality parameters of LL and M. vastus lateralis of the same pure-bred Texel 

lambs used in the current analysis. There is further consistency in that the TM-QTL 

growth effects were restricted to the LL (Macfarlane et al. 2009). 
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5.3.5 Correlations between traits 

 

Selected correlations between HCW and meat quality traits and correlations between 

traits within each muscle are presented in Table 5.3. It is of note that different 

measurement methods for meat quality were applied to different muscles. As a result, 

correlations between muscles are confounded with the methods and are therefore 

invalid. There was a low negative correlation between HCW and SM CL% which may 

be due to smaller carcases yielding smaller samples of SM which would have a higher 

surface area to volume ratio resulting in greater cooking loss. There was a low negative 

correlation between HCW and SM L*, which is in agreement with previous findings 

(Caneque et al. 2001; Wojtysiak et al. 2010). There was a positive but low correlation 

between HCW and SM a* possibly because myoglobin concentration increases with 

lamb age (Hopkins et al. 2007; Kim et al. 2012) although the range of ages in the 

current analysis was low by comparison to those of Hopkins et al. (2007) and Kim et al. 

(2012).  

 
Table 5.3 Pair-wise phenotypic correlation coefficients for hot carcase weight and lamb meat 
quality traits of M. semimembranosus (SM) and M. longissimus lumborum (LL) based on raw data 
for 84 entire ram and 100 ewe lambs after removal of records > 3 SD from the mean. 
M. semimembranosus 
Traita HCW WBSF L* a* b* pHult 
WBSF –0.05      
L* –0.33 0.18     
a* 0.42 0.00 –0.15    
b* 0.11 0.11 0.39 0.73   
pHult 0.10 0.02 0.05 –0.12 –0.23  
CL% –0.40 0.21 0.54 –0.14 0.15 0.11 
M. longissimus lumborum   
Traita HCW PF Moist% IMF%   
PF –0.22      
Moist% –0.25 0.30     
IMF% 0.57 –0.36 –0.58    
pHult

b –0.15 0.10 0.20 –0.13   
Correlation coefficients in bold are significantly different from zero (P < 0.05). 
a HCW = Hot carcase weight (kg), Within M. semimembranosus: WBSF = Warner-Bratzler peak shear force, L* = lightness, a* = 
redness, b* = yellowness, pHult = ultimate pH, CL% = cooking loss. Within M. longissimus lumborum: PF = peak force, Moist% = 
moisture content, IMF% = intramuscular fat percentage, pHult = ultimate pH. b Correlation based on n = 57 rams n = 58 ewes for LL 
pHult. 
 

The correlation between HCW and IMF% in LL was moderately positive, but 

correlations were significantly higher (P < 0.001) in ram lambs (r = 0.72) than ewe 

lambs (r = 0.38) (results not shown). The positive correlation between HCW and IMF% 

is consistent with previous reports (Pethick et al. 2005; Hopkins et al. 2007). There was 

little if any correlation between LL pHult and SM pHult after excluding outliers (n = 6). 
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5.3.6 Future directions for lamb meat quality analysis 

 

Further research is needed to determine whether the effects of gender and genotype 

would alter if meat was aged for a shorter period of time or if lambs were slaughtered at 

a heavier live weight. More research is also required to determine the relationship 

between instrumental meat quality and sensory evaluation of lamb meat eating quality. 

Existing relationships between instrumental meat eating quality and sensory scores are 

highly variable and not directly transferable between experiments because assessment 

methods vary and eating quality preferences differ between countries (Sañudo et al. 

2007). 

 

5.4 Summary and conclusions 

 

1. The shear force of LL and SM was significantly higher in ram lambs, although 
shear values were relatively low overall, possibly because carcases were aged 
for between seven and nine days.  

 
2. The presence of one or two copies of the TM-QTL allele appeared to have no 

statistically significant effects on lamb meat quality.  
 

3. An acceptability threshold for instrumentally derived toughness for lamb does 
not currently exist for UK consumers so toughness acceptability thresholds are 
somewhat speculative. 

 
4. Some correlations differed by sex, so correlations, when calculated over sexes 

should be interpreted with caution.  
 

5. Finishing ram lambs to the specifications used in this experiment resulted in 
meat with relatively minor although statistically significant differences in meat 
quality relative to that from ewe lambs.  

 
6. To further characterise effects of sex on lamb meat eating quality a sensory 

analysis is required on meat from lambs finished to average commercial 
specifications where the average HCW for the UK would be 18.9 kg. 
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6 Investigations into relationships between visible-near 
infrared (NIR) spectra and instrumental meat quality 

parameters in lamb M. longissimus lumborum, M. 
semimembranosus and M. vastus lateralis 

 
 

Abstract 

 

Current lamb carcase evaluation systems approximate saleable meat yield but there is no 

provision for meat eating quality. A carcase evaluation system that encourages 

producers to maximize saleable meat yield without monitoring the effects on meat 

quality may lead to poorer meat quality over time. Current methods for assessing lamb 

meat quality are expensive, time consuming, labour intensive and destructive rendering 

them unsuitable for carcase evaluation purposes. The aim of this experiment was to 

determine the ability of visible-near infrared (NIR) spectroscopy data collected on fresh 

(never-frozen) lamb M. longissimus lumborum (LL) to predict instrumental meat quality 

parameters of LL, M. semimembranosus (SM) and M. vastus lateralis (VL). NIR 

spectra collected under experimental conditions on the LL had a limited ability to 

predict Volodkevich shear force (R2
pred = 29.1, SEpred = 1.05 kgF) and models were 

unable to correctly identify all samples with shear force values > 5.5 kgF. Shear force of 

SM or VL could not be predicted with NIR spectra collected on LL, but promising 

results were obtained for SM lightness (R2
pred = 60%, SEpred = 1.34) and redness (R2

pred 

= 54%, SEpred = 0.92). The processing rate and variety of genders and genotypes 

encountered at a commercial lamb slaughter plants is likely to present significant 

challenges for the technology. Future efforts should investigate the relationship between 

NIR spectra and meat quality parameters taking these factors into account. 
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6.1 Introduction 

 

The total value of a lamb carcase is determined by the yield of saleable meat and the 

eating quality of the meat. Lamb carcase evaluation systems based either on video 

image analysis or a visual assessment system aim to quantify the saleable meat yield, 

but they do not directly predict meat eating quality (Stanford et al. 1998; Rius-Vilarrasa 

et al. 2009). In order to maximize profits using the current carcase evaluation systems, 

lamb producers are encouraged to maximize saleable meat yield without considering the 

possible impacts of this on the eating quality of the meat. Producers may maximize 

saleable meat yield by either reducing the total carcase fat percentage or increasing the 

carcase muscle-to-bone ratio (Purchas et al. 2002b; Johnson et al. 2005). Both aims 

may be achieved through selective breeding for traits and possibly using additional 

molecular genetic information on certain markers and genetic polymorphisms such as 

the Texel muscling quantitative trait locus (TM-QTL) (Walling et al. 2004; Macfarlane 

et al. 2009). Detailed discussion on the effects of the TM-QTL on carcase and 

instrumental meat quality parameters was presented in Sections 5.1 and 5.3.4. 

Encouraging farmers to select for saleable meat yield may have detrimental effects on 

meat tenderness. For example, selecting for very lean pig carcases had profound effects 

on the muscle fibre composition of the pork, reducing the percentage of slow oxidative 

fibres and increasing the percentage fast glycolytic fibres which are associated with 

increased toughness in pork (Maltin et al. 2003). Indeed, slow oxidative fibres have also 

been associated with tenderness in lamb (Wojtysiak et al. 2010) and the percentage of 

slow fibres is lower in the M. longissimus lumborum (LL) in Texel lambs than in the 

Scottish Blackface lambs which are, regarding carcase quality, a less-improved breed 

(Bunger et al. 2009). Furthermore, selecting for leanness in lambs using lean terminal 

sire breeds might lead to a reduction in intramuscular fat percentage (IMF%) (Mortimer 

et al. 2010; Hopkins et al. 2011a). Hopkins et al. (2006) propose that 5% IMF is a target 

for ‘good everyday’ eating quality in lamb. The IMF% in purebred Texel lambs is low, 

ranging from 1.33% to 1.60% (Navajas et al. 2008; Lambe et al. 2009a; Lambe et al. 

2011). Using a carcase evaluation system focused entirely on yield characteristics 

without any measure of meat quality parameters encourages producers to increase yield 

but this may come at the expense of meat eating quality. 
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Lamb meat eating quality has traditionally been determined either by using sensory 

panels (Vipond et al. 1995; Sañudo et al. 2000; Goodson et al. 2001; Safari et al. 2001) 

or instrumentally, using shear force as a proxy for tenderness or other measures of 

product quality such as ultimate pH, meat colour and cooking loss (Shorthose et al. 

1986; Shackelford et al. 1997; Hopkins and Fogarty 1998; Shackelford et al. 2004; 

Hopkins et al. 2011b). All of these methods are time consuming and labour intensive 

and not adequate for integrated measurements in the slaughter-line, furthermore both 

sensory assessment and shear force tests result in destruction of the meat, and thus it is 

unlikely that they will be adopted for routine carcase evaluation. 

 

Visible-near infrared (NIR) spectroscopy in combination with multivariate calibration 

and prediction phases has been identified as a suitable technology to predict meat 

quality parameters in a fast, non-destructive, safe and cost-effective manner (Osborne et 

al. 1993). These properties make NIR appealing for routine carcase evaluation; but there 

is still a lack of evidence regarding the performance of the technology for predicting 

lamb meat quality. The theory and performance of NIR to measure meat quality 

parameters is discussed in Section 2.7, and is the subject of three excellent reviews 

(Prevolnik et al. 2004; Prieto et al. 2009a; Weeranantanaphan et al. 2011). 

 

In contrast to beef, where there are at least 20 published experiments on attempts to 

apply NIR to predict instrumental measures of meat quality (Table 2.15, Table 2.16 and 

Table 2.17), there are only two published experiments where NIR has been used to 

predict instrumental meat quality parameters in lamb (McGlone et al. 2005; Andrés et 

al. 2007). Thus while the determination of instrumental meat quality in beef and lamb 

has many similarities, there is little evidence to support the performance of NIR for 

predicting instrumental quality parameters in lamb. 

 

Using NIR spectra collected on the LL, McGlone et al. (2005) developed calibration 

equations for predicting MIRINZ shear force values over a range of aging times (0, 8, 

24 and 72 hours). McGlone et al. (2005) reported a coefficient of determination for the 

prediction (R2
pred) values of 85% within 65 lambs of known background, but using this 

model on another 12 lambs of unknown background the R2
pred reduced to 44% 

suggesting that the model was not robust. Andrés et al. (2007) reported the predictive 

ability (by cross validation as opposed to prediction on new samples) of NIR spectra 
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collected on samples of lamb LL that had been frozen and thawed to predict sensory 

parameters of lamb meat quality on a scale of 1-8. The coefficient of determination for 

the cross-validation (R2
cv) that study was R2

cv = 12.5% (SEcv = 0.85) for texture, R2
cv = 

29.5 (SEcv = 0.44) for juiciness, R2
cv = 27.1 (SEcv = 0.47) for flavour, R2

cv = 4.8% (SEcv 

= 0.44) for abnormal flavour and R2
cv = 24.3, (SEcv = 0.48) for overall liking. 

Furthermore, IMF% could be predicted with an R2
cv = 79.4% (SEcv = 0.41) and R2

cv = 

18.8 (SEcv = 0.16) for pH at 24 hours post mortem.  

 

Freezing and thawing is known to alter the NIR spectra of beef (Downey and 

Beauchêne 1997), it is possible that spectra from frozen lamb would also differ to 

spectra of fresh lamb. Furthermore, if NIR was to be used for carcase evaluation 

purposes, the models would need to predict meat quality from fresh lamb. Neither 

McGlone et al. (2005) nor Andrés et al. (2007) investigated the ability of NIR to predict 

the quality of additional muscles, so it is not known whether NIR collected on the LL 

can be used to predict the tenderness of other muscles. Lambe et al. (2010b), (2011) 

reported low correlations between LL and M. vastus lateralis for Volodkevitch shear 

force on 166 lambs (r = 0.12) and 208 lambs (r = 0.22). As a consequence, it cannot be 

assumed that LL shear force is indicative of the shear force in other muscles in the lamb 

carcase. 

 

The aim of the current experiment was to: 

 Determine the ability of NIR spectroscopy data collected on fresh (never-frozen) 
lamb LL to predict instrumental meat quality parameters of M. longissimus 
lumborum, M. semimembranosus and M. vastus lateralis. 
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6.2 Materials and methods 

 

6.2.1 Animals and meat quality measurements 

 

Details of the 208 lambs used in the analysis are given in Section 5.2.1. The abattoir and 

processing protocol is given in Section 5.2.2. Meat quality assessment of LL is given in 

Section 5.2.3. The protocol for measuring Volodkevitch shear force for M. vastus 

lateralis (VL) was identical to that of LL. Meat quality assessment of M. 

semimembranosus (SM) is outlined in Section 5.2.4. The left LL was obtained from a 

subset (n = 169) of the lambs as outlined by (Lambe et al. 2011) for MIRINZ 

tenderometer assessment (Macfarlane and Marer 1966). Briefly, samples were 

suspended in polythene bags and cooked to an internal temperature of 75°C in a water 

bath pre-heated to 100°C. Samples were held at 2°C for 48hrs before ten shears 

perpendicular to the fibre axis were performed on separate 10mm by 10mm by 25mm 

cores (Bickerstaffe et al. 2001). In addition to the lightness (L*), redness (a*) and 

yellowness (b*) colour parameters recorded on the SM, hue angle (brownness) and 

chroma (saturation) were calculated using the formulas given in Hunt et al. (1991). 

 

6.2.2 NIR spectra collection 

 

After the LL was removed from the carcase at 7, 8 or 9 days post mortem, a 15 mm 

slice was taken from the anterior end of the muscle for NIR spectra collection. The 

freshly cut surface was allowed to bloom for two minutes (Shackelford et al. 2005). An 

ASD Labspec 5000 (ASD Inc., Boulder Colorado) NIR spectrometer fitted with a high-

intensity contact probe (Figure 6.1) with a 10 mm spot size was operated using a laptop 

computer running the Indico Pro program (ASD Inc.). Ten replicate NIR spectra (350-

2500 nm at 1 nm intervals) were collected by removing and replacing the scanning head 

on the meat surface between scans. 
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Figure 6.1 The ASD Labspec 5000 NIR spectrometer (left), the high intensity contact probe (centre) 
and application to a slice of lamb LL (right). 
 

6.2.3 Pre-processing of NIR spectra 

 

Spectra were recorded as absorbance log (1/Reflectance). Plotting all spectra revealed 

that regions at the extremes of the range (350-2500 nm) contained excessive noise 

(Figure 6.2). Removing these sections (350 to 499 nm and 1801-2500 nm) resulted in 

500-1800 nm as the working spectra (Figure 6.3). 

 

 
Figure 6.2 Ten replicate scans from one sample (C003) over the full range (350-2500 nm), excessive 
noise can be seen at the ends of the spectral region. 
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Figure 6.3 Working spectral range (500-1800 nm) after removing excessive noise at the upper and 
lower extremes. 
 

The ten replicate working spectra (hereafter referred to as “spectra”) for each sample 

were subject to an initial principal component analysis to detect outliers. A Hotelling T2 

ellipse with the critical test value of α = 0.25 was fitted to the principal components 

scores plot between PC 1 and PC 2 using the Unscrambler (version 10.1) multivariate 

analysis software (Camo Software AS. Oslo, Norway) (Figure 6.4). Replicate spectra 

lying outside the Hotelling T2 ellipse were deemed to be outliers (Krizsan et al. 2007). 

Such an approach could be used to determine the need to re-scan in an on-line 

application. On average, approximately 1 out of 10 replicate working spectra were 

sufficiently different from the remaining 9 to be deemed outliers. From Figure 6.4, it 

can be seen that C003_2 in this example was deemed an outlier, by looking at Figure 

6.2 and Figure 6.3, it can be seen that the spectra of C003_2 (heavier red line) is 

noticeably different from the other 9 replicates. After removal of outliers, the median 

value at each wavelength for the remaining replicate spectra was calculated to form the 

final spectral reading for each meat sample. 

 

Scatter effects resulting from interactions between light and structural properties of the 

sample (such as particles or droplets) (Osborne et al. 1993) were visualized by plotting 

each individual spectra against the average of all spectra (Geladi et al. 1985). Additive 

effects are seen as different y-axis offsets for different spectra while multiplicative 

scatter effects are seen as peak intensity dependant spread between different spectra 

(Esbensen et al. 2009). Mostly additive scatter effects were present in the median 

spectra (Figure 6.5), in order to resolve the scatter effects, several spectral pre-

treatments were applied including; multiplicative scatter correction (MSC), baseline 
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correction and standard normal variate (SNV) transformation. The spectral 

transformations used for each parameter are listed in Table 6.2. 

 

 
Figure 6.4 A Hotelling T2 ellipse (α = 0.25) superimposed over the 
principal component analysis of the 10 replicate spectra. It can be seen 
that C003_2 is deemed an outlier using this criteria. 

 

 
Figure 6.5 A plot of individual spectra against the average of all spectra, some additive scatter 
effects are present as can be seen by the apparent stacking of the spectra. 
 

Details of the methods for each transformation are given in Esbensen et al. (2009). 

Plotting each spectra against the average of all spectra (Geladi et al. 1985) revealed the 

MSC, Baseline correction and SNV transformations had removed the scatter effects and 

improved the signal to noise ratio for Yellowness, Chroma, Hue, Cooking loss, shear 

force traits and pHult, but no pre-treatments were deemed necessary for lightness or 

redness. 
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6.2.4 Analysis of NIR data 

 

In order to split samples into a calibration and prediction datasets, the samples were 

sorted in ascending order separately for each parameter and every fourth sample was 

assigned to the prediction dataset, with the intervening three samples being allocated to 

the calibration dataset as recommended by Williams (2001). As a result, the samples 

assigned to each dataset are dependant on the trait of interest, thus the prediction dataset 

is representative of the calibration dataset with a similar mean, standard deviations and 

range to the calibration dataset. The prediction dataset is only used for testing the model 

as recommended by Naes et al. (2002). The calibration model was then subject to full 

leave-one-out cross-validation where each sample is removed, predicted, and replaced 

in a sequential manner (Naes et al. 2002). Partial least squares regression type 1 was 

used for predicting instrumental meat quality traits on the three muscles using median 

NIR spectra (500-1800 nm) from the replicates that had not been rejected as outliers as 

explanatory variables. Outliers were handled as described in Section 4.2.7 on page 92. 

 

6.3 Results and discussion 

 

Descriptive statistics for the calibration and prediction dataset are shown in Table 6.1. 

The means are similar between the datasets yet there are some differences in the 

standard deviations (SD) between the data sets. 

 
Table 6.1 Descriptive statistics for the calibration and prediction datasets. 
 Calibration dataset  Prediction dataset 
Parameter n Mean SD Range  n Mean SD Range 
M. Longissimus lumborum          
Volodkevich shear force (kgF) 156 3.11 1.39 1.67-9.83  52 3.02 1.23 1.93-7.86 
MIRINZ shear force (kgF) 126 3.73 1.47 2.00-9.44  43 3.81 1.60 1.84-10.68 
Intramuscular fat (%) 153 1.36 0.68 0.37-6.17  51 1.31 0.56 0.37-2.78 
Moisture content (%) 154 75.09 1.00 71.16-78.57  51 75.05 0.96 72.22-77.17 
Ultimate pH (pHult) 99 5.58 0.12 5.42-6.34  33 5.57 0.10 5.33-5.83 
M. Semimembranosus          
Warner-Bratzler shear force (N) 156 45.61 11.36 24.28-110.29  51 45.18 9.34 30.65-79.73 
Lightness (L*) 156 43.69 2.16 39.83-52.48  52 43.56 2.11 38.87-50.73 
Redness (a*) 156 23.88 1.30 19.64-26.81  52 23.80 1.35 19.54-26.38 
Yellowness (b*) 156 9.88 1.15 6.07-12.10  52 9.80 1.23 5.62-11.79 
Chroma (C*) 156 25.85 1.51 21.82-29.16  52 25.76 1.60 20.62-28.93 
Hue (H*) 156 22.43 1.94 15.59-28.82  52 22.28 2.04 14.79-27.20 
Ultimate pH (pHult) 156 5.56 0.07 5.42-5.93  51 5.56 0.06 5.45-5.81 
Cooking loss (%) 154 31.57 2.61 25.29-40.63  51 31.47 2.55 25.65-37.96 
M. vastus lateralis          
Volodkevich shear force (kgF) 156 2.91 0.56 1.77-4.95  52 2.88 0.54 1.77-4.70 
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6.3.1 Prediction of M. longissimus lumborum traits 

 

The ability of NIR spectra collected on the LL surface to predict instrumental meat 

quality parameters on the same muscle is presented in Table 6.2. Due to the additive 

nature of the scatter effects (Figure 6.5), baseline correction and multiplicative scatter 

correction were the most effective transformations of the median spectra prior to the 

calibration and prediction phases as they reduced the amount of stacking and fanning 

respectively seen in Figure 6.5 (the scatter effects of the transformed spectra are not 

shown). Most published analyses report either the R2 for the calibration (R2
cal) or cross-

validation (R2
cv) and the standard error of the cross validation (SEcv) as the final 

indicator of predictive ability, but very few report the R2 for prediction (R2
pred) or 

standard error of prediction (SEpred) so comparison with previous reports on the basis of 

actual prediction performance is difficult. Because prediction ability is dependant on the 

variation in the raw data of the trait to be predicted, one method of comparison is to use 

the ratio of performance deviation (RPD) which is the standard deviation of the Y 

variable in the calibration dataset divided by SEcv (RPDcv) or preferably the standard 

deviation of the Y variable in the prediction dataset divided by the SEpred (RPDpred) 

(Cozzolino et al. 2000; Williams 2001; Prieto et al. 2009a; Agelet and Hurburgh 2010). 

An RPDcv/pred above 8 indicates the model is excellent and can be used with confidence 

where as RPDcv/pred values below 2.3 indicate a very poor model and application is not 

recommended, if the SEpred is similar to the SD of the reference data (RPD ≈ 1.00), the 

instrument is not predicting the reference data. (Williams 2001). 

 

The R2
cal for Volodkevich shear force (R2

cal = 25%) and MIRINZ shear force (R2
cal = 

25%) were identical (Table 6.2), and as expected, performance dropped in the cross-

validation phase where the R2
cv values were similar for Volodkevitch (R2

cv = 21%, SEcv 

= 1.06 kgF, RPDcv = 1.31) and MIRINZ shear force (R2
cv = 19%, SEcv = 1.34 kgF, 

RPDcv = 1.10). The calibration and cross-validation results MIRINZ shear force are 

shown in Figure 6.6. Two samples were removed from the prediction dataset for 

Volodkevich shear force, as the reference values were 9.16 and 9.83 kgF, which were 

>4 SD from the mean and could be justified as outliers in the Volodkevich shear force 

reference measure, if these sample was retained, the R2
cal for Volodkevich shear force 

was 23%, SEpred = 1.21 kgF). 
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Figure 6.6 Calibration and cross-validation performance for MIRINZ shear force. 

 

 
Figure 6.7 Prediction of MIRINZ shear force with NIR spectroscopy, R2

pred and SEpred are given in 
Table 6.2. Y Reference = actual MIRINZ shear force measurements of the prediction dataset, 
Predicted Y = predicted MIRINZ shear force values using NIR spectra. 
 

Unexpectedly, the models performed better on the prediction dataset for both 

Volodkevitch shear force (R2
pred = 29.1%, SEpred = 1.05 kgF, RPDpred = 1.17) and 

MIRINZ shear force (R2
pred = 44%, SEpred = 1.04, RPDpred = 1.33) (Figure 6.7). After 

the exclusion of an extreme value (10.68 kgF) in the MIRINZ prediction dataset, the 

R2
pred was the same as the R2

pred = 44% reported by McGlone et al. (2005) who applied 

their model to predict MIRINZ shear force on an independent dataset of 12 lambs with 

unknown backgrounds. Retaining the outlier reduced the R2
pred to 36%, SEpred = 1.38 
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(data not shown). In the prediction dataset for Volodkevitch shear force, there were 

three samples that had shear force values > 5.5 kgF which has been identified as a 

toughness threshold above which there may be adverse consumer reaction (Lambe et al. 

2011). The model was unable to identify these samples as having a shear force value > 

5.5 kgF (results not shown). In the MIRINZ prediction dataset, four samples that had 

MIRINZ shear force values > 5.5 kgF, despite the encouraging performance, the model 

only correctly predicted one out of four samples that had a MIRINZ shear force value > 

5.5 kgF, although of the remaining 38 samples with reference MIRINZ shear force 

values < 5.5 kgF, none were predicted above this value (results not shown). McGlone et 

al. (2005) reported much greater predictive ability of NIR spectra collected on intact LL 

from 65 lambs to predict MIRINZ shear force (R2
pred = 85%, SEpred = 12.2 N) within 

lambs of a known background, but they collected multiple spectra from the same meat 

at four different aging times post slaughter (0, 8, 24 and 72 hours post mortem) and the 

lamb was not aged beyond these aging times prior to MIRINZ assessment. McGlone et 

al. (2005) did not provide the standard deviation of the MIRINZ shear force for their 

prediction dataset so a comparison based on RPD could not be made. In the current 

experiment, spectra were collected at 7, 8 or 9 d post mortem, after which a greater 

amount of post-mortem proteolysis is likely to have occurred (Koohmaraie et al. 1991).  

 

After removal of two outliers, a high R2
cal was obtained for intramuscular fat percentage 

(IMF%) (R2
cal = 69%, SEcv = 0.36%), and the prediction performance was similar (R2

pred 

= 65%, SEpred = 0.33, RPDpred = 1.68). Cozzolino et al. (2000) predicted IMF from 

spectra collected on intact LL samples with R2
cal = 34.1% (SEcal = 6.9 g/kg) and R2

cv = 

18.5% (SEcv = 8.1 g/kg, RPD = 1.74cv), they found that spectra collected on minced 

samples had a much higher predictive ability (R2
cv = 70.6%, SEcv = 4.7 g/kg, RPDcv = 

3.00). The same authors also reported the ability of NIR to predict IMF on minced 

samples from M. infraspinatus (R2
cv = 19.6%, SEcv = 12.30 g/kg, RPDcv = 1.05), M. 

supraspinatus (R2
cv = 54.7%, SEcv = 7.41 g/kg, RPDcv = 2.00), SM (R2

cv = 45.0%, SEcv 

= 5.13 g/kg, RPDcv = 1.68), M. semitendinosus (R2
cv = 51.6%, SEcv = 7.08 g/kg, RPDcv 

= 1.82) and M. rectus femoris (R2
cv = 49.4%, SEcv = 7.28 g/kg, RPDcv = 2.12). Andrés 

et al. (2007) used NIR spectra collected on intact lamb LL to predict IMF% with an R2
cv 

= 79% (SEcv = 0.41%, RPDcv = 2.19), but the pure-bred Texel lambs in the current 

analysis had lower levels of IMF than those in the analysis of McGlone et al. (2005) or 
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Andrés et al. (2007). Andrés et al. (2007) did not apply their models to an independent 

dataset so the true predictive ability of the model is not known.  

 

Two samples (1 and 154) were excluded form the analysis for moisture content on the 

basis that they were outliers based on the fact that they were the two extremes of the 

calibration dataset and because their spectra were also significantly different (Figure 

6.8). From Figure 6.8, it can be seen that sample 34 also appears to be an outlier, yet 

excluding this sample from the analysis did not offer any increase in R2
cal or reduction 

in SEcv (not shown). This also shows that removing samples based on the Hotelling T2 

ellipse alone is sub-optimal because not all spectra outside the ellipse are outliers. In 

fact when the Hotelling T2 ellipse is set with α = 0.05, 5% of the samples are expected 

to fall outside the boundaries of the Hotelling T2 ellipse. 

 

 
Figure 6.8 Calibration and cross-validation for moisture content (left) and the principal component 
analysis (right) with a Hotelling T2 ellipse (α = 0.05) superimposed showing that samples numbers 1 
and 154 (circled) were deemed to be outliers and were removed from the analysis. The percentage 
values in brackets indicate the percentage of variation explained in the X variables (the spectra) 
and the percentage of variation explained in the Y variable (moisture content) respectively. 

 

The R2
cal for measuring the moisture in lamb LL was 38% (SEcal = 0.71%), R2

cv = 

32.6% (SEcv = 0.75%, RPDcv = 1.33) and R2
pred = 8.7% (SEpred = 0.91%, RPDpred = 

1.06). Cozzolino et al. (2000) reported an R2
cal = 56% (SEcal = 12.9 g/kg) and R2

cv = 

36% (SEcv = 15.5 g/kg, RPDcv = 1.25) for the moisture content of lamb LL. Andrés et 

al. (2007) reported and R2
cv = 59% with a SEcv = 0.69% (RPDcv = 1.57) which is higher 

than the R2
cv = 32.6%, SEcv = 0.75% and RPDcv = 1.33 reported in the current analysis.  
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There was a marked decline in performance for predicting LL pHult between the 

calibration, cross validation and prediction phases in the current results, three samples 

were deemed to be outliers, one value was exceptionally high, (pHult = 6.34) and the 

other values were spectral outliers (P = 0.05). After removing three the outliers in the 

calibration phase, the model failed to account for any of the variation in the prediction 

set (Table 6.2) which illustrates that cross-validation is not necessarily a good indicator 

of future predictive ability. The calibration and cross validation performance for LL 

pHult (R2
cal = 32% and R2

cv = 13% (SEcv = 0.09, RPDcv = 1.33) was better than the R2
cal 

of 26% and R2
cv = 7% (SEcv = 0.17, RPDcv = 1.00) reported by Andrés et al. (2007). 

Similar performance for predicting pHult in beef using NIR has also been observed 

(RPDcv = 1.12 to 1.26) (Prieto et al. 2008). 

 

6.3.2 Prediction of meat quality in leg muscles 

 

Almost all reports of NIR performance for the prediction of meat quality are taken on 

the LL, because it is a high-value muscle and is relatively easy to recover and test. 

Much less research effort has focused on characterizing the relationships between 

muscles within the carcase; so it is not known whether NIR spectra collected on the LL 

can be used to predict the meat quality characteristics of another muscle. In the current 

experiment, the ability of NIR spectra from LL to predict a range of instrumental meat 

quality parameters on the SM and VL was investigated. NIR was poor at predicting the 

shear force traits of both the SM and VL (Table 6.2) which was expected given that 

Volodkevitch shear force was found to be poorly correlated between the LL and the VL 

in these lambs (Lambe et al. 2011). A correlation between LL and SM could not be 

established because two different shear force tests were used. NIR did show some 

promise for predicting the chroma of lamb SM, R2
pred = 57% (SEpred = 1.03, RPDpred = 

1.55), but the performance was not as good for predicting the hue angle (RPDpred = 

1.19). RPDpred values of 1.57 for L*, 1.47 for a* and 1.26 for b* were obtained when 

predicting SM colour from NIR spectra collected on the LL. Interestingly, NIR was able 

to predict the colour parameters of SM with comparable, if not better accuracy than 

reports on beef where spectra and meat colour were both recorded on the LL. Andrés et 

al. (2008) reported RPDcv values of 2.07 for L*, 0.90 for a* and 1.37 for b* and Prieto 

et al. (2008) who reported RPDcv values of 1.12 for L*, 1.24 for a* and 0.98 for b* but 
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in a different experiment, Prieto et al. (2009b) reported RPDcv values of 2.47 for L*, 

2.02 for a* and 2.48 for b* on 194 beef samples.  

 

There were no previous reports of NIR being used to predict cooking loss in lamb so a 

comparison on a like-for-like basis was not possible. The calibration, cross-validation 

and prediction performance for SM cooking loss (RPDpred = 1.21, Table 6.2) was 

comparable to previous reports on beef; Leroy et al. (2004) reported R2
cv = 25% (SEcv = 

2.31%, RPDcv = 1.13) on a 189 beef samples, De Marchi et al. (2007) reported R2
cv = 

10, SEcv = 1.27% (RPDcv = 2.80) for predicting cooking loss on 148 beef samples, 

Prieto et al. (2008) reported an R2
cal of 14% (SEcv = 1.61%, RPDcv = 1.03) on beef M. 

longissimus thoracis from 53 steers and were unable to calibrate models to predict 

cooking loss on another dataset of 67 young beef animal samples. Furthermore, 

Cecchinato et al. (2011) reported an R2
cal = 4% (SEcal = 3.55%) for the prediction of 

cooking loss in bull beef but they did not report the standard errors of the cross 

validation. 

 

6.3.3 Future directions for NIR analysis on lamb 

 

In this experiment, NIR spectra were collected after the lamb was aged for between 7 

and 9 days under experimental conditions. In order for NIR to play a role in lamb 

carcase evaluation, further experimental work is needed to assess whether the models 

developed here are applicable to un-aged lamb in an abattoir environment. The current 

analysis was based on a median of 10 replicate spectra per lamb, each taking 

approximately1-2 seconds to collect. Lamb slaughter plants typically operate at a much 

higher rate (≈10 lambs per minute) than beef plants, meaning the time budget for NIR 

scanning is smaller, so collecting replicate spectra per lamb may not be possible. It is 

not known whether a single NIR scan is sufficient for predicting meat quality, further 

analysis is needed to determine if a single NIR scan can be used to predict lamb meat 

quality. 

 

Besides collecting NIR spectra under commercial operating conditions, future 

experiments should assess NIR performance on a wider range of genotypes typical of 

the slaughter population. One difference between the lambs in this experiment 
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compared to the normal slaughter population relates to the IMF%, the levels of IMF% 

in the Texel breed are low compared to other breeds (Fisher et al. 2000; Hopkins et al. 

2006; Warner et al. 2010). In the UK, the average IMF% of M. longissimus in lamb 

chops (mostly from crossbred lambs) purchased at supermarkets was 3.20% (Angood et 

al. 2008). 

 

6.4 Summary and conclusions 

 

1. NIR spectra collected on the LL had a limited ability to predict Volodkevich 
shear force (RPDpred = 1.17) or MIRINZ shear force (RPDpred = 1.33). Models 
were unable to correctly identify all samples with shear force values > 5.5 kgF. 
There are few reports of NIR predicting shear force of lamb in the published 
literature so a comparison is difficult.  

 
2. Prediction of IMF% was comparable to previous reports R2

pred = 65% (SEpred = 
0.33%, RPDpred = 1.68). 
 

3. Prediction of meat moisture content was poor, R2
pred = 8.7% (SEpred = 0.91%, 

RPDpred = 1.06) which was similar to previous reports on lamb. 
 

4. There are no previous reports where NIR spectra collected on one muscle have 
been used to predict meat quality parameters of another muscle; but NIR spectra 
collected on the LL showed some promise to predict colour traits on SM.  

 
5. Shear force traits in SM and VL could not be predicted by NIR spectra collected 

on the LL. 
 

6. NIR was unable to predict pHult of LL or SM. 
 

7. These results were obtained on experimental lambs under controlled 
experimental conditions; future experiments should investigate NIR performance 
under commercial operating conditions. 
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7 Meat quality characteristics of the M. longissimus 
lumborum from farmed deer as affected by genotype 
(red vs. wapiti-red crossbred), sex, sampling location 

and chilled aging 
 

 

Presentations based on the results reported in this chapter: 

Craigie, C. R., Purchas, R. W., Maltin, C. A., Roehe, R., & Morris, S. T. (2011). The 
superior tenderness of the posterior part of Longissimus lumborum from farmed deer 
was no longer evident after aging. 57th International congress of Meat Science and 
Technology, Ghent, Belgium, P063. 
 
 
Abstract 

 

The effects of sex, genotype, chilled aging and location within venison M. Longissimus 

lumborum, (LL) on meat quality were assessed. Venison short-loins recovered from the 

left side of 12-14 month old pasture-fed deer (n = 79), including red (18 hinds and 20 

stags) and wapiti-red crossbreds (20 hinds and 21 stags) 24h post mortem were divided 

into anterior and posterior halves that were allocated alternately to either a 3d or a 42d 

aging period at 1 ± 1°C. Meat quality parameters included Warner-Bratzler shear force, 

ultimate pH (pHult), purge, water-holding capacity, cooking loss, sarcomere length, and 

L*a*b* colour parameters. Stags had significantly tougher LL than hinds although the 

effect was largely due the curvilinear relationship between pHult and textural traits. 

Although confounded with farm, and slaughter day effects, genotype had a significant 

effect on several carcase and meat quality traits with the red deer group having lighter 

carcases, higher pHult, lower expressed juice values, shorter sarcomeres, and darker-

coloured meat (all P < 0.01). Aging affected all meat quality traits except sarcomere 

length and cooking loss. LL samples from the anterior section of the short-loin had 

significantly higher shear force (P < 0.001), but this difference was not significant after 

the additional 39d aging. 
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7.1 Introduction 

 

Tenderness is an important factor contributing to a positive eating quality experience in 

red meat (Huffman et al. 1996). In the case of venison, a low fat content and high iron 

content add to its perception as a high-value product in many markets (Drew and Seman 

1987; Purchas et al. 2010). New Zealand exported just over 14.2 million kg of venison 

in 2010 according to Deer Industry New Zealand (www.dinz.org). The majority of 

farmed venison produced in New Zealand is destined for EU or USA markets (Hoffman 

and Wiklund 2006). Vacuum-packaged venison is shipped to the EU in either a chilled 

or frozen form via sea freight which takes up to 6 weeks, but the effect of this process 

on product quality, particularly the relationship between shear force measures (which 

are indicative of tenderness) and ultimate pH (pHult) is not well characterized.  

 

Approximately 75% of lean meat is made up of water and the retention of water is 

important for maintaining saleable weight of lean meat and to ensure sufficient juiciness 

when consumed (Offer and Trinick 1983; Huff-Lonergan and Lonergan 2005). The 

venison industry (producers and processors) see water loss during chilling, packaging 

and cooking as especially important because succulence and juiciness (which are 

influenced by both water and intramuscular fat [IMF]) contribute to a positive eating 

experience. Cooking methods such as the final internal temperature probably have the 

largest effect on meat eating quality (Mathoniere et al. 2000; Purchas et al. 2010), but 

are beyond the control of the meat value chain. The IMF levels found in venison M. 

longissimus lumborum (LL) are relatively low (< 1-2%) (Kay et al. 1981; Stevenson et 

al. 1992; Purchas et al. 2010) compared to beef, lamb and pork (Kempster et al. 1986) 

and appear to be lower in M. semimembranosus (< 1%) than LL (Stevenson-Barry et al. 

1999b). The juiciness of M. semimembranosus (as assessed by a trained sensory panel) 

was also found to be lower than LL (Pollard et al. 2002) suggesting a link between the 

two parameters. With such low levels of IMF, minimizing the water loss during 

processing, storage and cooking of venison will help to optimize juiciness.  

 

Despite the importance of IMF, pHult arguably plays a greater role in the capacity of 

cooked venison to retain water and also affects appearance of the vacuum packaged 

meat product (Wiklund et al. 2009). Furthermore, a curvilinear relationship between 

pHult and venison LL has been reported where meat with intermediate pHult (5.8-6.2) 
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was tougher than LL with normal (5.50 – 5.70) or high pHult (> 6.20) (Stevenson-Barry 

et al. 1999a). 

 

A rapid drop in muscle temperature before sufficient pH decline post mortem can result 

in an early onset of rigor and “cold shortening” which is linked to toughness in meat 

(Dransfield and Rhodes 1976). Prime venison carcases may be predisposed to cold 

shortening due to their low level of subcutaneous fat (which provides insulation against 

cold ambient temperatures while the muscle pH is still in decline). This phenomenon 

has been reported in lean veal calves (Williams et al. 1987) and lean lambs (Davey and 

Garnett 1980). As a means of preventing cold shortening, electrical stimulation is 

applied to all deer slaughtered in New Zealand abattoirs (Wiklund et al. 2010b). Besides 

preventing cold shortening, electrical stimulation is known to accelerate proteolysis and 

tenderization due to an earlier onset of rigor at higher carcase temperatures in the early 

post mortem period (Chrystall and Devine 1983; Wiklund et al. 2001). In the absence of 

cold shortening, effects of electrical stimulation on venison quality appear to be 

minimal where chilled aging exceeds three weeks (Wiklund et al. 2001).  

 

Several other processing factors have been shown to influence venison eating quality. 

Increased chilled aging time (in a vacuum package) reduced venison shear force but the 

amount of water loss increased with time (Wiklund et al. 2001; Farouk et al. 2009). The 

ability of venison LL to retain water was also improved by chilled aging for 1-2 weeks 

at –1.5°C prior to freezing for eight weeks (Farouk et al. 2009). Consumers determined 

that the venison from this treatment had a higher overall liking than alternative 

treatments (no aging, aged for three weeks and frozen for six weeks) but was less tender 

and was as juicy as samples that were chilled for nine weeks and never frozen (Farouk 

et al. 2009). Interestingly, the shear force of venison M. biceps femoris with 

intermediate pHult aged for up to 42d and frozen was significantly more tender than the 

chilled aged (never frozen) product (Stevenson-Barry et al. 1999a). Other processing 

factors such as the method of carcase suspension (pelvic or Achilles tendon) during 

conditioning also affects consumer perceptions of venison juiciness, tenderness and 

overall liking, with significant improvements attained in all three parameters in M. 

gluteus medius using the pelvic method (Hutchison et al. 2010). The application of a 

fine water mist during chilling (known as spray chilling) appeared to reduce the water 

loss of venison flap and shoulder meat but had no effect on the moisture content or 
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eating quality parameters of LL in the study of Wiklund et al. (2010b). Besides 

processing effects, production factors such as sex, slaughter age, stress and diet have all 

been found to affect venison quality parameters. As has been seen in other species, LL 

from males (stags) has been reported to be significantly tougher with lower levels of 

IMF than that from females (hinds) (Purchas et al. 2010). One report has also shown 

that shear force of stag venison increases with increasing age at slaughter (Stevenson-

Barry et al. 1999b). A comparison of paddock-shot and deer-slaughter-plant 

handling/slaughter procedures showed that stress from handling had minor effects on 

meat quality (Pollard et al. 2002) although the number of deer in the experiment was 

small. Finishing diet can also affect venison quality. Grass-based pasture or pellet-based 

feed have been shown to affect venison fatty acid profile but diet was reported to have 

little impact on venison sensory parameters (Wiklund et al. 2003). 

 

Genotype (such as red vs. wapiti-red crossbreds) affects growth rates in farmed deer 

(Hoskin et al. 1999) and may also affect venison quality parameters. A general lack of 

evidence surrounds possible effects of the wapiti-red crossbred genotype on venison 

eating quality. Similarly, there is little information regarding the effects of 

intramuscular sampling location on venison eating quality parameters, despite muscle 

location effects having been reported in other species (Hansen et al. 2004; Shackelford 

et al. 2004; Wheeler et al. 2007).  

 

There are relatively few reports on venison meat quality from farmed red or wapiti-red 

crossbred deer and previous studies have typically involved relatively low numbers of 

animals (≤ 20 per group) (Stevenson et al. 1992; Stevenson-Barry et al. 1999a; 

Stevenson-Barry et al. 1999b; Wiklund et al. 2001; Wiklund et al. 2003; Farouk et al. 

2009; Purchas et al. 2010) and may not always be representative of the typical age (12-

14 months old) or genotype profile of farmed deer currently produced and processed in 

New Zealand (Asher et al. 2011). 

 

The aim of this experiment was to:  

 Investigate the effects of sex, genotype, sampling location and chilled aging on 
meat quality parameters of venison short-loin produced, processed, and aged 
under commercial conditions.  
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7.2 Materials and methods 

 

7.2.1 Animals 

 

The 79 deer (Cervus elaphus) for the experiment were processed under commercial 

conditions in two batches. The first batch was slaughtered on Monday the 14th of 

December 2009 and consisted of 18 red hinds and 20 red stags, and the second batch 

was slaughtered on Wednesday the 16th of December 2009 and consisted of 20 wapiti-

red crossbred hinds and 21 wapiti-red crossbred stags. The two batches came from two 

different farms, but deer within each batch were run together up to slaughter. 

 

7.2.2 Abattoir protocol 

 

Deer were immobilized by a captive bolt pistol. Low voltage electrical stimulation was 

applied (72 volts for 62 seconds with 7.5 millisecond stimulations at intervals of 70 

milliseconds). Carcases were exsanguinated immediately after stunning and dressed 

according to normal commercial practice. The dressing and subsequent weighing (hot 

carcase weight, HCW), grading (soft tissue depth over the 12th rib vertically down from 

the hip bone (tuber coxae) and inspection process before entry to the chiller took 

approximately 16 minutes. Carcases were chilled overnight at 1 ± 1°C. Cold carcase 

weight was recorded as carcases entered the boning room at approximately 24 hours 

post mortem. M. Longissimus lumborum (LL) short-loin samples from the left side of 

the carcase were recovered from between the last rib and the pelvic bone. Each short-

loin sample was halved and the two halves were weighed, vacuum-packaged and the 

anterior and posterior halves were allocated alternatively to a 3 day (3d) or 42 day (42d) 

aging period. Samples of short-loin were aged at 1 ± 1°C under commercial conditions 

for the designated aging time prior to freezing at –30°C for at least 1 week. 

 

7.2.3 Meat quality assessment 

 

LL samples were defrosted in batches of 8 at 1 ± 1°C for 22 hours, removed from 

vacuum packs, and blotted dry using paper towels before the thawed weight was 

recorded. A total of 78 samples were included in the meat quality analysis due to the 

misallocation of two half short-loins to 3d day and 42d aging treatments which resulted 
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in a missing data point at each aging time. Purge was calculated by subtracting the 

weight of the LL sample upon opening from the weight at packing and expressing the 

difference as a percentage of the packing weight. A 25 mm steak removed from the 

middle of the short-loin was cooked for 90 minutes at 70°C within plastic bags that 

were suspended in a water bath (Purchas and Aungsupakorn 1993). Following cooking, 

samples were stored overnight at 1 ± 1°C, and then five 13 x 13 mm-cross-sectioned 

cores were prepared in such a way that muscle fibres ran longitudinally in the core. 

Measurements were made with a Warner-Bratzler device (crosshead speed of 230 

mm•min–1; G-R Electric Mfg. Co., Manhattan, KS) fitted with a square blade and a 30-

kg load cell (Purchas and Aungsupakorn 1993). Two shears perpendicular to the muscle 

fibre axis were made per core. Parameters recorded for each shear were the average 

initial yield force (IYF), the peak shear force (WBSF), and the average shear force 

through the duration of the shear as an index of the work done (WD) (Purchas and 

Aungsupakorn 1993). The difference between the peak shear force and the initial yield 

has been linked to the connective tissue component of meat toughness (Beilken et al. 

1986) so this difference was also calculated (WBSF – IYF). For each shear force trait, 

the average of the 10 replicate shears was taken as the final reading.  

 

The remaining anterior section of the short-loin sample was used for measuring 

sarcomere length, pHult and colour. The anterior portion was halved laterally; one half 

was frozen at –30°C for subsequent colour analysis and the other half retained on ice for 

pH and sarcomere length measures. The sections for colour analyses, which included 

the half where the epimysium was thinnest, were defrosted for 12 hours at 1 ± 1°C, then 

cut across the fibres and allowed to bloom for 20 minutes at room temperature. 

Preliminary trials indicated that 20 minutes was sufficient bloom time for venison. Two 

measures of L*, a* and b* were made using a Minolta Chroma meter (CR-200, 8 mm 

measured area diameter, standard illuminant C, calibrated with a CM-101W white tile; 

Ramsey, NJ) and the average calculated. Ultimate pH (pHult) was assessed on a 

homogenate prepared from 2.0 to 2.5 g of meat in 10 mL of distilled water using a 

combination pH electrode (Jenway 3020 pH meter with automatic temperature 

compensation). Sarcomere length (SL) was assessed by laser diffraction (Boulton et al. 

1973). The average distance between 1st order diffraction patterns was calculated for 12 

patterns (Cross et al. 1981). 
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Expressed juice (EJ) as an indicator of water-holding capacity was evaluated using a 

filter paper press method based on that described by (Hamm 1986). A 500 ± 10 mg 

sample of thawed LL was removed from the centre of the short-loin sample, placed on a 

sheet of Whatman No. 1 filter paper. The paper and sample were placed between two 

perspex plates and a force of 10 kg applied for 5 minutes. After removal from the plates, 

the outline of the meat was marked on the underside of the filter paper. Samples were 

set aside to dry before the area of the juice-stained region was measured using a digital 

planimeter (Placom KP-90N). Expressed juice (EJ) was calculated by dividing the area 

by the sample weight yielding a value in cm2g–1. Three samples were excluded from the 

analysis because damp filter paper accentuated the juice staining. 

 

7.2.4 Statistical analysis 

 

Descriptive statistics (Table 7.1) were produced using the MEANS procedure of SAS 

(SAS Inst. Inc., Cary, NC). Variance components were estimated with the restricted 

maximum likelihood (REML) method using the MIXED procedure of SAS. Models for 

carcase traits included sex (hinds, n = 38 and stags, n = 41) and genotype (wapiti-red 

crossbreds, n = 38 and reds, n = 41), short-loin weight and chill loss were adjusted for 

HCW (Table 7.2). Least-squares (L-S) means for each sex and genotype level and the 

standard error of the difference (SED) between the means in each group were generated 

using the L-S means option in SAS. For analysing the meat quality traits, aging time (3 

or 42d) and sampling location (anterior and posterior) were combined to form a new 

class variable with four levels (anterior 3d, posterior 3d, anterior 42d and posterior 42d). 

Along with sex and genotype, the new class variable was included as a fixed effect, and 

animal was fitted as a random effect in the mixed model. The effects of aging time (3 or 

42d) and sampling location (anterior and posterior) were calculated using two estimate 

statements in SAS. The first estimate statement was used to test the aging effect on meat 

quality traits and gives the difference between the two aging times (3d value – 42d 

value). The second estimate statement was used to determine the sampling location 

effect on meat quality and gives the difference between sampling locations (posterior 

value – anterior value). For all meat quality traits, L-S means, are presented with and 

without adjustment for pHult as linear and quadratic covariates. The REG procedure of 

SAS was used to characterise the curvilinear relationship and 95% confidence intervals 

between pHult and WBSF (Figure 7.1). Multiple pair-wise comparisons were made for 
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peak shear force at each age-location combination after Bonferroni adjustment (Figure 

7.2). HCW was tested as a covariate for meat quality traits but was not statistically 

significant, and no statistically significant interactions between sex and genotype were 

found for any traits. 

 

7.3 Results and discussion 

 

Descriptive statistics including the number of observations for each trait, mean, standard 

deviation, coefficient of variation (CV), and range are shown in Table 7.1. 

 

7.3.1 Effects of sex on carcase traits 

 

The effects of sex on carcase traits are presented in Table 7.2; there was no significant 

difference in HCW between hinds and stags, possibly because heavier stags had been 

slaughtered in an earlier draft. Stags are usually heavier than hinds when finished on 

pasture (Hoskin et al. 1999; Purchas et al. 2010). There were no significant sex effects 

on the soft tissue depth (GR) or the weight or yield (2.24% of HCW for both sexes) of 

the short-loin muscle. The chill loss (%) was highly variable CV of 54.12% (Table 7.1). 

Chill loss was significantly greater in stags than hinds when adjusted for HCW effects 

(P = 0.007). There are few reports detailing the effect of sex on chill loss on deer 

carcases so comparison is difficult. In a recent experiment involving Iberian x Duroc 

pigs, no differences in chill loss were found between intact females, castrated females or 

castrated males (Serrano et al. 2009). 

 

There was no significant effect of pHult recorded in the short-loin on carcase chill loss 

(data not shown). GR also had a significant effect on chill loss when included as a 

second covariate (0.11 percentage point increase in chill loss per millimetre increase in 

GR, P = 0.03) but estimations of sex effects were very similar (data not shown). Hinds 

tend to be fatter than stags at a the same carcase weight (Stevenson-Barry et al. 1999b) 

but there was no difference between the sexes in the current analysis, a lower fat cover 

may have explained the greater chill loss observed in stags. 
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7.3.2 Effects of genotype on carcase traits 

 

Effects of genotype on carcase traits are shown in Table 7.2. Despite the fact that 

genotype (red or wapiti-red crossbred) was confounded with farm and slaughter day 

effects, both farmers were members of a high-welfare producer group and followed a 

very similar finishing model. The processing protocol was the same on both days. Both 

farmers finished stags and hinds of similar ages together on pasture up to the day of 

slaughter. In light of this, it is assumed that differences between the animals are due to 

genotype rather than environmental factors. Wapiti-red crossbred deer had heavier 

carcase weights, greater soft tissue depths, greater short-loin weights (P < 0.001). By 

adjusting the short-loin weight for HCW, it can be seen that short-loin was 54 g heavier 

in the crossbred deer. In contrast to sex, genotype had no significant effect on chill loss, 

although chill loss tended to be higher in red deer (P = 0.08). 
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7.3.3 Effects of HCW on carcase traits 

 

For every kilogram increase in HCW, there was an 11 g increase in short-loin weight (P 

< 0.001); similarly there was a 0.03 percentage point increase in chill loss per kg (data 

not shown). GR was not significantly affected by HCW in the current analysis, probably 

because the relationship between GR and HCW in stags appears at higher carcase 

weights (linear trend) and in hinds where carcases are excessively fat (exponential 

trend) (Stevenson-Barry et al. 1999b). 

 

7.3.4 Effects of sex and genotype on meat quality traits 

 

7.3.4.1 Ultimate pH 

 

There were no significant differences in pHult between hinds and stags, but reds had 

significantly higher pHult values than crossbreds (Table 7.3). A curvilinear relationship 

between ultimate pH and shear force has previously been suggested for venison in an 

experiment with a small number of deer (n = 18) and no sex effects were accounted for 

in that analysis (Stevenson-Barry et al. 1999a). In light of this, pHult was tested 

simultaneously as both a linear and quadratic covariate in models for meat quality traits 

in order to determine whether the sex and, in particular, the genotype effects were due 

to differences in LL pHult (Table 7.3). There was evidence in the current results to 

support the previous findings of Stevenson-Barry et al. (1999a) who reported a 

curvilinear relationship between peak shear force and pHult (Table 7.5). Furthermore, 

there was evidence of a curvilinear relationship between pHult and cooking loss (Table 

7.3), IYF, WBSF – IYF and WD (Table 7.5). A curvilinear relationship between pHult 

and Warner-Bratzler peak shear force has been reported in beef (Purchas 1990; Purchas 

and Aungsupakorn 1993; Jeleníková et al. 2008) and lamb (Devine et al. 1993). In order 

to further investigate this observation, 3d and 42d shear force values were plotted 

against the averaged pHult from the two aging times (3 and 42d) as well as the fitted 

value, and 95% confidence intervals for the average WBSF of 3d and 42d values 

(Figure 7.1). A curvilinear relationship was observed and characterized by the following 

equations: WBSF 3d (kg) = –15.868 (pHult
2) + 188.87 (pHult) – 551.94 (R2 = 30%, RSD 

= 1.53), WBSF 42d (kg) = –12.896 (pHult
2) + 154.38 (pHult) – 451.77 (R2 = 39%, RSD = 

1.00). By analysing the relationship between shear force determined using MIRINZ 
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tenderometer (Macfarlane and Marer 1966) and pHult data from abattoir records of deer 

of unknown background slaughtered at the same plant between 2000 and 2009 (n = 

120), a similar curvilinear relationship was observed: MIRINZ PF (kg) = –

15.397(pHult
2) + 177.35(pHult) – 506.39 (R2 = 20%, RSD = 1.28) (data not shown). 

 

 

 
Figure 7.1 The curve for the quadratic regression equation (solid line) for the relationship 
between ultimate pH and the average of the 3d and 42d Warner-Bratzler peak shear force 
(WBSF) values for venison M. longissimus lumborum, together with the 95% confidence 
intervals (dotted and dashed lines). Individual data points for the 3d and 42d WBSF values 
are shown. Equation: Average WBSF (kgF) = –14.525(pHult

2) + 172.74 pHult – 505.05, (R2 = 
40%, RSD = 1.10). Separate equations for the 3d and 42d data are given in the text. 

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3

W
ar

ne
r-

B
ra

tz
le

r 
pe

ak
  s

he
ar

 fo
rc

e 
(k

gF
) 

Ultimate pH 

3 day WBSF

42 day WBSF



  T
ab

le
 7

.3
 L

ea
st

-s
qu

ar
es

 m
ea

ns
 s

ho
w

in
g 

th
e 

ef
fe

ct
s 

of
 s

ex
 (h

in
ds

 a
nd

 s
ta

gs
), 

ge
no

ty
pe

 (
w

ap
iti

-r
ed

 c
ro

ss
br

ed
 a

nd
 r

ed
), 

ag
in

g 
(3

 –
 4

2d
 v

al
ue

) 
an

d 
sa

m
pl

in
g 

lo
ca

tio
n 

(p
os

te
ri

or
 –

 a
nt

er
io

r 
va

lu
e)

 o
n 

ve
ni

so
n 

sh
or

t-
lo

in
 q

ua
lit

y 
tr

ai
ts

 a
s w

el
l a

s t
he

 li
ne

ar
 a

nd
 q

ua
dr

at
ic

 e
ff

ec
ts

 o
f u

lti
m

at
e 

pH
. 

Tr
ai

ta  
Se

x 
 

G
en

ot
yp

e 
 

C
ov

ar
ia

te
d  

 
O

th
er

 e
ff

ec
ts

e  
st

ag
s 

hi
nd

s 
SE

D
b  

Pc  
 

C
ro

ss
br

ed
 

R
ed

 
SE

D
b  

Pc  
 

pH
ul

t, 
pH

ul
t2  

 
A

ge
 

P 
Lo

c 
P 

pH
ul

t 
5.

62
 

5.
57

 
0.

04
 

0.
18

 
 

5.
53

 
5.

65
 

0.
03

 
0.

00
1 

 
-, 

- 
 

–0
.0

2 
< 

0.
00

1 
–0

.0
1 

0.
03

 
Pu

rg
e 

(%
) 

3.
77

 
4.

16
 

0.
21

 
0.

07
 

 
4.

20
 

3.
74

 
0.

21
 

0.
03

 
 

-, 
- 

 
–1

.9
3 

< 
0.

00
1 

0.
70

 
< 

0.
00

1 
EJ

 (c
m

2 g–1
) 

29
.8

3 
29

.0
6 

0.
46

 
0.

10
 

 
30

.7
2 

28
.1

7 
0.

46
 

< 
0.

00
1 

 
-, 

- 
 

4.
64

 
< 

0.
00

1 
0.

26
 

0.
50

 
C

L 
(%

) 
28

.4
8 

27
.6

3 
0.

39
 

0.
03

 
 

27
.9

9 
28

.1
2 

0.
38

 
0.

74
 

 
-, 

- 
 

0.
38

 
0.

10
 

–0
.3

6 
0.

12
 

SL
 (μ

m
) 

1.
56

 
1.

59
 

0.
02

 
0.

08
 

 
1.

60
 

1.
54

 
0.

02
 

0.
00

1 
 

-, 
- 

 
0.

02
 

0.
02

 
0.

00
 

0.
61

 
Ad

ju
ste

d 
fo

r p
H

ul
t 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Pu

rg
e 

(%
) 

3.
80

 
4.

12
 

0.
21

 
0.

13
 

 
4.

11
 

3.
81

 
0.

22
 

0.
19

 
 

0.
46

, 0
.4

2 
 

1.
95

 
< 

0.
00

1 
0.

68
 

< 
0.

00
1 

EJ
 (c

m
2 g–1

) 
29

.8
8 

28
.9

6 
0.

45
 

0.
05

 
 

30
.4

7 
28

.3
7 

0.
46

 
< 

0.
00

1 
 

0.
30

, 0
.2

7 
 

4.
61

 
< 

0.
00

1 
0.

19
 

0.
61

 
C

L 
(%

) 
28

.5
5 

27
.5

2 
0.

31
 

0.
00

1 
 

27
.6

6 
28

.4
2 

0.
32

 
0.

02
 

 
0.

01
, 0

.0
1 

 
0.

36
 

0.
13

 
–0

.3
9 

0.
10

 
SL

 (μ
m

) 
1.

56
 

1.
58

 
0.

01
 

0.
39

 
 

1.
58

 
1.

56
 

0.
01

 
0.

17
 

 
0.

09
, 0

.1
2 

 
0.

01
 

0.
18

 
–0

.0
1 

0.
24

 
a 
pH

ul
t =

 u
lti

m
at

e 
pH

, P
ur

ge
 =

 fl
ui

d 
ex

ud
ed

 in
 v

ac
uu

m
 p

ac
ka

ge
 a

fte
r f

re
ez

in
g 

an
d 

th
aw

in
g,

 E
J =

 e
xp

re
ss

ed
 ju

ic
e,

 C
L 

= 
co

ok
in

g 
lo

ss
, S

L 
= 

sa
rc

om
er

e 
le

ng
th

. 
b 
SE

D
 =

 S
ta

nd
ar

d 
er

ro
r o

f t
he

 d
iff

er
en

ce
 b

et
w

ee
n 

pr
ed

ic
te

d 
m

ea
ns

. 
c 
Ef

fe
ct

 (P
 v

al
ue

) o
f s

ex
 a

nd
 g

en
ot

yp
e 

on
 v

en
is

on
 lo

in
 m

ea
t q

ua
lit

y.
 

d 
Ef

fe
ct

 (P
 v

al
ue

) o
f p

H
ul

t i
nc

lu
de

d 
as

 li
ne

ar
 a

nd
 q

ua
dr

at
ic

 c
ov

ar
ia

te
s. 

e 
O

th
er

 e
ffe

ct
s 

in
cl

ud
e 

th
e 

di
ffe

re
nc

es
 b

et
w

ee
n 

ag
in

g 
tim

e 
(A

ge
; 3

d 
– 

42
d 

va
lu

e)
 a

nd
 s

am
pl

in
g 

lo
ca

tio
n 

(L
oc

; p
os

te
rio

r –
 a

nt
er

io
r v

al
ue

) a
s 

w
el

l a
s 

th
e 

si
gn

ifi
ca

nc
e 

(P
 v

al
ue

s)
 o

f t
he

 e
ffe

ct
s 

on
 v

en
is

on
 s

ho
rt-

lo
in

 m
ea

t 
qu

al
ity

. 
 

156 



Chapter 7 - Production and processing effects on venison meat quality 
 

157 

7.3.4.2 Purge 

 

Purge was highly variable in the current study with coefficients of variation > 30% at 

both aging periods (Table 7.1). The percentage of purge in stag short-loin was 3.77% 

(Table 7.3) which is similar to the ~4% purge at 2d aging and the 3.5% purge at 42d 

reported for eight stags by Farouk et al. (2009). The amount of purge tended to be 

higher in LL from stags (P = 0.07) but there was no significant difference after 

adjustment for pHult (P = 0.13). LL from the crossbred genotype had a greater amount 

of purge than reds (P = 0.03) but the difference was no longer statistically significant 

after adjusting for pHult (P = 0.19) (Table 7.3). This may be because the higher pHult for 

reds allowed more calpastatin activity which inhibits the calpain enzymes responsible 

for proteolysis thus resulting in less proteolysis and less purge (Wiklund et al. 2010a). 

 

7.3.4.3 Expressed juice (water holding capacity) 

 

There was no significant difference in EJ between the sexes, but after adjustment for 

pHult, LL from hinds had a greater propensity to retain water than LL from stags (P = 

0.05). This finding is in contrast to the results of Farouk et al. (2009) who found no 

effect of pH on water holding capacity in venison short-loin using the Honikel bag 

method (Honikel 1998). The current results are consistent with the findings of Purchas 

et al. (2010) who reported no differences in EJ between stags and hinds after 7d aging, 

although the effect of pHult on EJ was not considered in that experiment. In the present 

experiment, venison short-loin from reds had significantly less EJ than crossbreds both 

before and after adjustment for pHult (P < 0.001) (Table 7.3). The genotype effect on EJ 

remained significant after inclusion of pHult covariates, so appears to be independent of 

pHult in this case. 

 

7.3.4.4 Cooking loss 

 

Short-loin from stags had a greater cooking loss than hinds (P = 0.03) (Table 7.3). The 

magnitude and significance of the sex effect increased after adjustment for pHult. No 

statistically significant genotype effects on cooking loss were initially observed, but 

after inclusion of pHult, LL from reds had significantly higher cooking loss than 

crossbreds (P = 0.02). 
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7.3.4.5 Sarcomere length 

 

Sarcomere lengths were similar to values reported by Purchas et al. (2010) on short-loin 

recovered from the same abattoir using the same laser diffraction methodology, but less 

than values reported by Wiklund et al. (2001) who used the phase electron microscopy 

method. In the present study, no statistically significant differences in sarcomere length 

were noted between the sexes, although stags tended to have shorter sarcomeres than 

hinds (P = 0.08). In terms of the genotype effect, crossbreds had longer sarcomeres than 

reds (P < 0.001). Inclusion of pHult nullified the genotype effect on sarcomere length 

(Table 7.3) which suggests the LL from red deer may have entered rigor at a higher 

temperature, although the relationship between sarcomere length and rigor temperature 

is not well understood (Bekhit et al. 2007). 

 

7.3.4.6 Meat colour 

 

LL from stags was significantly more yellow than LL from hinds (P = 0.03) (Table 7.4) 

although this difference was no longer statistically significant after adjusting for pHult (P 

= 0.14). No differences in colour were observed between the sexes for lightness or 

redness (Table 7.4). LL from crossbreds was significantly lighter (P = 0.005) and more 

yellow (P = 0.04) than LL from reds but the differences in LL colour were no longer 

statistically significant after adjusting for pHult (Table 7.4). 

 

7.3.4.7 Shear force 

 

A similar level of variation was present for all shear force traits (CV ranging from 22-

24%, Table 7.1). As expected, WBSF – IYF had approximately twice as much variation 

(CV = 55%), due to the fact that it is derived from the peak shear force and IYF. 

Variability in WBSF – IYF reflects the variability in the shape of the force deformation 

curve. 
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Significant sex effects on LL were present for WBSF (P = 0.01), IYF (P = 0.01) and 

WD (P = 0.002) (Table 7.5). Purchas et al. (2010) reported significantly higher shear 

force values in LL from stags (8.94 ± 0.20 kg) than hinds (6.20 ± 0.57 kg) after 7d 

aging, although no adjustment was made for pHult. After adjustment for pHult in the 

present analysis (which was statistically significant for all traits); the sex effect was less 

pronounced for all traits with stag LL tending to have a higher WBSF and IYF than 

hind LL (P = 0.06), WD remained significant (P = 0.01) but WBSF – IYF was no 

longer significantly different between the sexes (P = 0.79) (Table 7.4). The meat from 

males of several species has been found to be tougher than females (or castrates), for 

example; sheep (Johnson et al. 2005), pigs (Gullett et al. 1993), goats (Johnson et al. 

1995) and cattle (Purchas et al. 2002a). In terms of the genotype effects on shear force 

traits, WBSF – IYF was significantly higher in LL from reds (P = 0.01) (Table 7.5). 

After adjustment for pHult, WBSF and WD tended to be higher in crossbreds (P = 0.06) 

while the effect on WBSF – IYF was no longer present, although LL from crossbreds 

did have a higher IYF than reds (P = 0.04). 

 

7.3.5 Effect of aging on venison quality 

 

Aging venison short-loin for an additional 39d had significant effects on most measured 

traits (Table 7.3, Table 7.4 and Table 7.5). LL pHult increased marginally with aging (P 

< 0.001), purge increased and expressed juice decreased with aging (P < 0.001). 

Sarcomere length increased slightly with aging, although the effect was no longer 

significant after adjustment for pHult. Cooking loss in venison LL was unaffected by 

aging time (Table 7.3). Aging effects on LL colour were present both before and after 

adjusting for pHult; LL became lighter, redder and more yellow after the additional 39d 

aging (Table 7.4). As expected, the shear force of venison LL decreased with aging 

(Table 7.5). WBSF, IYF and WD were all significantly lower after the additional 39d 

aging; (P < 0.001) and WBSF – IYF tended to decrease (P = 0.07). After adjustment for 

ultimate pH, all shear force traits were significantly reduced after the additional aging 

(P < 0.01) (Table 7.5). 
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7.3.6 Effects of sampling location (posterior and anterior) on short-loin quality 

 

The sampling location within the LL had significant effects on most meat quality traits 

(Table 7.3, Table 7.4 and Table 7.5). The pHult was significantly lower (P = 0.03) and 

purge significantly higher (P < 0.001) in the posterior section of LL, although the 

location effect on purge remained significant (P < 0.001) after adjustment for pHult 

(Table 7.3). There were no significant location effects on EJ, CL or sarcomere length 

(Table 7.3). 

 

The posterior section of LL was significantly lighter (P = 0.05), more red (P = 0.002) 

and more yellow (P < 0.001) than the anterior section, although the differences in 

lightness were no longer statistically significant after adjustment for pHult (Table 7.3). In 

terms of the location effect on shear force traits, WBSF, IYF and WD were significantly 

higher at the anterior end of LL (P < 0.001) and WBSF – IYF did not differ 

significantly between locations (Table 7.5). Inclusion of pHult had little effect on shear 

force; although the difference was smaller suggesting the differences in shear force can 

be partly attributed to differences in pHult along the muscle (Table 7.5). There was an 

interaction of sampling location and aging time for shear force traits, indicating that the 

aging effect on peak shear force was greater in the anterior section of the short-loin after 

accounting for sex, genotype and pHult effects (Figure 7.2), so that the location effect 

was no longer significant after 42d aging. 
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Figure 7.2 Least-squares means and standard error bars for Warner-Bratzler 
peak shear force of venison M. longissimus lumborum showing the aging effect 
after adjustment for sex, genotype and ultimate pH as both a linear and quadratic 
covariate. Bars sharing a common letter are not statistically different from each 
other (P > 0.05). 

 

Longitudinal variation in M. Longissimus thoracis et lumborum shear force has been 

previously reported in pork (Hansen et al. 2004), beef (Wheeler et al. 2007) and lamb 

(Shackelford et al. 2004). In pork, the shear force increased towards the posterior end of 

the muscle. In beef, the anterior and posterior ends of the muscle were significantly 

tougher than the middle portion, and in lamb; the muscle was significantly tougher in 

the anterior section after 14d aging. Intramuscular shear force variation has also been 

identified in beef M. adductor femoris, M. biceps femoris, M. semimembranosus and M. 

semitendinosus (Senaratne et al. 2011). 

 

7.3.7 Future directions for venison meat quality research 

 

As was mentioned previously, genotype was confounded with farm and slaughter day 

effects in the analysis, further research is needed to verify the apparent gender effects on 

venison meat quality by finishing both genotypes together on the same farm and 

slaughtering them on the same day. Further research is needed to establish whether 

current results are applicable to other muscles in the venison carcase besides the LL. 

More research is needed to determine the relationship between instrumental measures of 

venison quality and sensory evaluation of venison eating quality to aid interpretation of 

results with regard to the likely implications of production and processing decisions. 
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7.4 Summary and conclusions 

 

1. Stag carcases had a higher chill loss than hinds, and LL from stags had less 
vacuum packaging purge, lower water holding capacity and a higher cooking 
loss than LL from hinds. 
 

2. Stags LL had a higher shear force than hinds, although the difference was partly 
attributable to the higher pHult in LL from stags. 

 
3. Crossbred deer had higher carcase weights, higher yields of short-loin and a 

greater soft tissue depth (GR) than red deer, and they also tended to suffer less 
chill-loss than red deer. 

 
4. LL from red deer had a significantly higher pHult than crossbreds, after adjusting 

for pHult effects; LL from crossbreds had a lower ability to retain water under 
pressure and a lower cooking loss than LL from reds. 

 
5. After adjusting shear force traits for pHult, LL from crossbreds tended to have 

higher shear force values than LL from reds.  
 

6. Several quality LL venison quality traits were affected by aging and sampling 
location: The additional 39d aging resulted in an increased level of vacuum 
package purge and an increase in the ability of LL to retain water. The extra 
aging also increased the lightness, redness and yellowness of LL. 

 
7. As expected, the additional aging resulted in a reduction in all shear force 

parameters. 
 

8. The anterior section of the short-loin had a higher pHult and a lower purge than 
the posterior section. 

 
9. The posterior was more red and yellow than the anterior and had a lower shear 

force values than the anterior section. 
 

10. In terms of shear force traits, the anterior section of LL also showed a greater 
response to the additional 39d of aging. 

 
11. The relationship between shear force and pHult was found to be curvilinear with a 

maximum peak force at about pHult of 6.0. 
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8 Investigations into relationships between visible-near 
infrared (NIR) spectra and instrumental meat quality 

parameters in aged and un-aged venison M. longissimus 
lumborum 

 
 

Abstract 

 

Visible-near infrared (NIR) spectroscopy has shown promise for predicting meat quality 

in beef and lamb, but it is not known whether it can be used to predict venison meat 

quality. A non-destructive method for determining venison meat quality parameters 

would enable venison processors to identify and isolate meat of inferior quality which 

could improve the average quality of product delivered to specific markets. The aim of 

this experiment was to determine whether NIR spectra can be used to predict 

instrumental meat quality parameters of venison short-loin (M. longissimus lumborum). 

The short-loin from 79 red (18 hinds and 20 stags) and wapiti-red crossbred (20 hinds 

and 21 stags) deer between the ages of 12 and 14 months at slaughter was subject to 

either 3d or 42d aging treatment at 1 ± 1°C prior to freezing. After thawing, the 

sarcomere length, ultimate pH (pHult), water holding capacity, colour and Warner-

Bratzler shear force parameters were measured. NIR spectra were collected after meat 

had been frozen and thawed a second time. Reference meat quality measures and 

spectra from both aging times were combined and split into calibration (75%) and 

validation (25%) datasets to evaluate NIR predictive ability using type 1 partial least 

squares regression. NIR was able to predict pHult with enough accuracy (R2
pred = 66%, 

SEpred = 0.10) to identify samples where pHult ≥ 5.80, and to identify 5 out of 7 samples 

where peak shear force was ≥ 8.00 kgF. R2
pred for Warner-Bratzler peak force was low 

(27%, SEpred = 1.55 kgF). Inconsistent performance between cross-validation and 

prediction for several traits suggests that cross-validation is not necessarily indicative of 

future predictive ability. Further work is needed to determine whether NIR spectra from 

fresh (never frozen, un-aged) venison collected under abattoir conditions can be used to 

predict venison meat quality parameters. 
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8.1 Introduction 

 

For meat consumers, a positive meat eating quality experience increases the likelihood 

of repeat purchases (Grunert 2005). Venison has a low fat content and high iron content 

(Drew and Seman 1987; Elliot 1993; Purchas et al. 2010) which adds to its perception 

as a high-value meat in many markets (Hoffman and Wiklund 2006). A survey of 276 

venison consumers undertaken in the UK found that the 63% of the respondents cited 

taste and flavour as their main reason for consuming venison, while 35% of respondents 

stated the main reason they consume venison was its low fat content (Davies 2009). The 

saleable meat yield and the quality of the meat are important determinants of the deer 

carcase value. Despite this, meat quality is not currently part of the carcase evaluation 

system for venison. The ultimate arbiters of meat eating quality are the consumers, but 

for reasons of cost and practicality, a number of technological methods are used to 

assess meat quality, such as slice shear force as a proxy for tenderness (Shackelford et 

al. 1999b), and measures of meat colour, ultimate pH (pHult) and cooking loss. 

Measurements such as slice shear force, and cooking loss require destruction of the 

sample. Measurements of pH and colour are time consuming and labour intensive. So 

like sensory analysis, current instrumental methods are not ideal for measuring meat 

quality under abattoir conditions and are unlikely to play a direct role in venison carcase 

evaluation. 

 

Deer are known to be susceptible to pre-slaughter stress (Jago et al. 1993; Pollard et al. 

2002; Pollard et al. 2003). Pre-slaughter stress leads to depletion in cellular glycogen 

reserves, the meat from deer slaughtered in this state will enter rigor before the pH has 

dropped below 5.8 (Stevenson-Barry et al. 1999a). Venison that has a high pHult is dry, 

firm and dark (DFD), and has a poorer shelf life (Wiklund et al. 2004). Venison with 

ultimate pHult between 5.80 and 6.20 is also likely to be tougher than meat with a 

normal pHult due to a curvilinear relationship between shear force and pHult (Stevenson-

Barry et al. 1999a) (also see Figure 7.1). The incidence of high pHult in venison can be 

high, one report on 3856 deer carcases slaughtered at a New Zealand slaughter plant 

over a 40 day period, found that 18.5% of carcases had shoulder muscles with pHult > 

5.80, 10.6% loin muscles with pHult > 5.80 and 5.6% with leg pHult > 5.80 (Pollard et al. 

1999). 
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Visible-near infrared (NIR) spectroscopy in combination with multivariate calibration 

and prediction phases has been identified as a suitable technology to predict meat 

quality parameters in a fast, non-destructive, safe and cost-effective manner (Osborne et 

al. 1993). These properties make NIR appealing for routine carcase evaluation and 

determination of meat quality. The mechanics, theory and analysis of NIR spectra are 

discussed in Section 2.7. Many researchers have applied NIR to predict sensory and 

technological parameters of meat quality with varying degrees of success (Prevolnik et 

al. 2004; Andrés et al. 2007; Prieto et al. 2009b; Shackelford et al. 2012b). A summary 

of previous research where NIR has been applied to predict instrumental meat quality in 

beef and lamb is provided in Table 2.15, Table 2.16 and Table 2.17, but there are no 

published reports detailing the performance of NIR when applied to predict instrumental 

meat quality parameters of venison. 

 

The aim of the current experiment was to: 

 Determine whether NIR spectra can be used to predict instrumental meat quality 
parameters of venison M. longissimus lumborum. 

 

8.2 Materials and methods 

 

8.2.1 Animals, abattoir and meat quality assessment 

 

Details of the 79 deer used in this experiment are given in Section 7.2.1. The abattoir 

protocol and the recovery of M. longissimus lumborum (LL) short-loin samples are 

described in Section 7.2.2. The short-loin was halved laterally, vacuum packaged, and 

each half assigned either to a 3d or 42d aging treatment at 1 ± 1°C. Meat quality data 

were available on 78 animals at two aging times resulting in a total of 156 records. 

Purge was calculated by subtracting the weight of the LL sample upon opening from the 

weight at packing and expressing the difference as a percentage of the packing weight. 

Meat quality assessment is outlined in Section 7.2.3. For Warner-Bratzler shear force, a 

25 mm steak from the middle of the shortloin was cooked for 90 minutes at 70°C within 

plastic bags that were suspended in a water bath (Purchas and Aungsupakorn 1993). 

Ten replicate shears were performed per sample, parameters recorded for each shear 

were the average initial yield force (IYF), the average Warner-Bratzler peak shear force 

(WBSF), and the average shear force through the duration of the shear as an index of 
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the work done (WD) (Purchas and Aungsupakorn 1993). WBSF – IYF was also 

calculated as the difference between the peak shear force and the initial yield has been 

linked to the connective tissue component of meat toughness (Beilken et al. 1986). A 

~15 mm steak from the posterior end of the short-loin was retained for NIR 

spectroscopy and re-frozen in sealed plastic bags at –30°C for at least one week. The 

remaining anterior section of the short-loin was used for pHult, sarcomere length (SL) 

and colour measurements, Lightness (L*) redness (a*) and yellowness (b*) as described 

in Section 7.2.3. 

 

8.2.2 NIR spectra collection 

 

The posterior part of the short-loin was transported in a frozen state to AgResearch-

MIRINZ, Ruakura for the NIR analysis. Two samples were missing, so 154 samples 

were defrosted for 8 hours at ambient temperature. Samples were “butterflied” to 

expose one large surface for NIR scanning (Figure 8.1) and allowed to bloom for 2 

minutes before scanning as recommended by Shackelford et al. (2005). Four replicate 

spectra (350-1830nm) were collected using a QualitySpec BT (ASD Inc., Boulder 

Colorado) NIR spectrometer after rotating the sample 90 degrees between scans. The 

QualitySpec BT is designed for on-line scanning of beef carcases so a polystyrene 

pedestal was used to mount the venison sample for scanning (Figure 8.1). 

 

 
Figure 8.1 A sample of venison short-loin being “butterflied” (left) the venison sample on a 
polystyrene pedestal for scanning (centre and right). The sample was rotated 90 degrees between 
four replicate scans. 
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8.2.3 Pre-processing of NIR spectra 

 

Spectra were recorded as absorbance log (1/Reflectance). Some preliminary analysis 

determined that taking the average or median value at each wavelength resulted in 

similar predictive ability (results not shown), the median was used here as it is less 

susceptible to extremes. The median value at each wavelength was calculated from the 

four replicates, and was used to form the final spectral reading for each meat sample. 

Plotting median spectra revealed that regions at the extremes of the range (350-1830 

nm) contained excessive noise (Figure 8.2). Removing these sections (350 to 559 nm 

and 1601-1830 nm) resulted in 560-1600 nm as the working spectra (Figure 8.3). 

 

 
Figure 8.2 Median spectra for 12 samples over the full range (350-1830 nm), excessive noise is 
visible at the lower end of the spectral range; noise is also present at the upper end of the spectral 
region but is not visible at this resolution. 
 

 
Figure 8.3 The working spectral range (500-1600 nm) for median spectra after removing excessive 
noise. 
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Scatter effects resulting from interactions between light and structural properties of the 

sample (such as particles or droplets) (Osborne et al. 1993) were visualized by plotting 

each individual spectra against the average of all spectra (Geladi et al. 1985). Additive 

effects are seen as different y-axis offsets for different spectra while multiplicative 

scatter effects are seen as peak intensity dependant spread between different spectra 

(Esbensen et al. 2009). Mostly multiplicative scatter effects were present in the median 

spectra from venison (Figure 8.4) so multiplicative scatter correction (MSC) was 

identified as a suitable pre-treatment (Figure 8.5). The details of the MSC 

transformation procedure are given in Esbensen et al. (2009). 

 

8.2.4 Analysis of NIR data 

 

The reference meat quality data and the NIR spectra from both 3d and 42d aged samples 

were combined in to one dataset to in order to create a large enough dataset to split into 

calibration and prediction phases. It is important to note that the characteristics 

responsible for variation in a meat quality parameter may be different at each aging 

time. For example, the contribution of myofibrils to toughness will be greater at the 3d 

aging period compared to the 42d aging period (Koohmaraie et al. 1991). 

 

 
Figure 8.4 A plot of individual median spectra against the average of all spectra, the apparent 
fanning of the spectra indicates there are multiplicative scatter effects. 
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Figure 8.5 MSC-transformed median spectra plotted against the average of all spectra. The plot 
shows that the MSC pre-treatment has removed the multiplicative scatter effects. 
 

Partial least squares regression type 1 was used for calibrating and predicting 

instrumental meat quality traits on venison LL using median NIR spectra (560-1600 

nm) collected on each sample as explanatory variables. All analysis was performed 

using Unscrambler (version 10.1) multivariate analysis software (Camo Software AS. 

Oslo, Norway). Due to the fact that that the variation in a meat quality parameter may 

be different at each aging time, a calibration and cross-validation analysis was 

undertaken for each venison quality parameter within each aging time as well as 

between both aging times. The descriptive statistics (Table 13.1) and performance based 

on calibration and cross-validation (Table 13.2) within and between each aging time are 

included in the Appendix (Chapter 13), but will not be considered further in this 

analysis. It was decided that combining the data from both aging times would facilitate 

the development of models that are applicable to both aged and un-aged venison 

samples and would create a dataset large enough to be split into calibration and 

prediction parts. In order to split samples into calibration and prediction datasets, the 

samples were sorted in ascending order separately for each parameter and every fourth 

sample was assigned to the prediction dataset, with the intervening three samples being 

allocated to the calibration dataset as recommended by Williams (2001). As a result, the 

samples assigned to each dataset are dependant on the trait of interest, thus the 

prediction dataset is representative of the calibration dataset with a similar mean, 

standard deviation and range to the calibration dataset. The prediction dataset is only 

used for testing the model as recommended by Naes et al. (2002). The calibration model 

was then subject to full leave-one-out cross-validation where each sample is removed, 

predicted, and replaced in a sequential manner (Naes et al. 2002). Performance is 

gauged with the coefficient of determination and standard error for the calibration (R2
cal, 
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SEcal), cross validation (R2
cv, SEcv) and prediction R2

pred, SEpred).The method for the 

detection of outliers is described in Section 4.2.7 on page 92. 

 

Because prediction ability is dependant on the variation in the raw data of the trait to be 

predicted, the ratio of performance deviation (RPD) which is the standard deviation of 

the Y variable in the calibration dataset divided by SEcv (RPDcv) or, preferably, the 

standard deviation of the Y variable in the prediction dataset divided by the SEpred 

(RPDpred) (Cozzolino et al. 2000; Williams 2001; Prieto et al. 2009a; Agelet and 

Hurburgh 2010). A higher SD would result in a higher RPD. An RPD above 8 indicates 

the model is excellent and can be used with confidence whereas RPD values below 2.3 

indicate a very poor model and application is not recommended. If the SEpred/cv is 

similar to the SD of the reference data (RPD ≈ 1.00), the instrument is not predicting the 

reference data. (Williams 2001). 

 

8.3 Results and discussion 

 

Descriptive statistics for the calibration and prediction dataset are shown in Table 8.1. 

The means are similar between the datasets although there are some differences in the 

standard deviations (SD) between the two data sets. 

 
Table 8.1 Descriptive statistics for the calibration and prediction datasets for venison. 

a WBSF = Warner-Bratzler peak shear force. 
 
 
 
 
 
 
 

 Calibration  Prediction 
Parameter n Mean SD Range  n Mean SD Range 
Ultimate pH (pHult) 116 5.60 0.17 5.41-6.31  38 5.59 0.16 5.42-6.2 
Purge (%) 116 3.92 1.61 0.00-8.85  38 3.87 1.52 0.76-7.32 
Expressed juice (EJ) (cm2g−1) 114 29.38 3.71 21.51-39.10  37 29.33 3.45 22.48-36.46 
Cooking loss (CL) (%) 116 28.09 2.03 21.76-32.19  38 28.06 1.95 22.34-31.12 
Sarcomere length (SL) (μm) 116 1.57 0.10 1.23-2.00  38 1.57 0.08 1.30-1.71 
Lightness (L*) 116 36.34 2.37 29.66-41.12  38 36.30 2.29 30.25-39.87 
Redness (a*) 116 12.01 1.55 6.87-14.86  38 12.00 1.47 8.59-14.60 
Yellowness (b*) 116 3.11 0.80 0.92-4.75  38 3.10 0.78 1.32-4.58 
WBSFa (kgF) 116 6.43 2.04 3.13-13.07  38 6.35 1.90 3.31-10.61 
Initial yield force (IYF) (kgF) 116 5.54 1.84 2.64-11.57  38 5.48 1.74 2.77-9.63 
WBSF – IYF (kg) 116 0.88 0.50 0.15-2.58  38 0.87 0.47 0.19-2.10 
Work done (WD) 116 1.99 0.56 1.00-3.48  38 1.98 0.54 1.02-3.27 
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8.3.1 Prediction of ultimate pH 

 

The R2
cal = 79% (SEcv = 0.10) (Table 8.2) is lower than the R2

cal of 97% (SEcv = 0.10) 

reported by Andrés et al. (2008) on M. longissimus thoracis (LT) from 30 bulls, and 

similar to R2
cal = 88%, SEcv = 0.14) obtained in Section 4.3.5 on beef, where the high 

correlation was largely due to bulls having a higher pHult than steers and heifers. There 

is further similarity between the current results and the R2
cal values of 81% (SEcv = 0.18) 

obtained on 100 beef LT samples reported by Cozzolino and Murray (2002) and 85% 

(SEcv = 0.20) obtained on LT from 26 Hereford steers (Rosenvold et al. 2009). Prieto et 

al. (2008) reported an R2
cal of 41%, SEcv = 0.06, RPDcv = 1.12 for LT pHult on 53 steers 

and Lomiwes (2008) reported an R2
cv of 20%, (SEcv = 0.13) for pHult on 85 beef 

carcases, but NIR spectra were collected on pre-rigor beef in the latter study. In the 

current study, NIR spectra were able to predict pHult with an R2
pred = 66% (SEpred = 0.10, 

RPD = 1.63). The model was able to correctly identify the three samples in the 

calibration dataset with pHult values > 5.80, but misclassified one sample with a normal 

pHult as having a pHult > 5.80 (Figure 8.6). 

 

 

 
Figure 8.6 Prediction of pHult from NIR spectra on 38 M. 
longissimus lumborum samples showing that the model could 
correctly identify the three samples with pHult ≥ 5.80. 
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8.3.2 Purge, expressed juice and cooking loss 

 

In order to develop a calibration equation for purge using NIR spectral data, the 

minimum and maximum values were removed, the minimum value was 0% purge and 

was likely to be an error, the maximum value (8.86%) was > 3 SD from the mean and 

could be justified as an outlier. Two further samples with spectra that were significantly 

different from the mean spectra of the population (P < 0.01) were also removed from 

the analysis due to poor performance in the calibration phase. One sample was also 

removed from the prediction dataset based on poor spectra (P < 0.01). Retaining this 

sample in the prediction reduced the R2
pred to 24%, SEpred = 1.31). There are no reports 

where NIR has been applied to predict vacuum package purge as reported here where 

R2
pred = 30%, SEpred = 1.30, RPDpred = 1.18), (Table 8.2. Leroy et al. (2004) analysed 

purge in a plastic bag on LT samples from 88 bulls and reported R2
cv = 51% (SEcv = 

0.51%, RPDcv = 1.40) for 2d-aged samples and R2
cv = 54% (SEcv = 0.82%, RPDcv = 

1.46) for 8d-aged samples. Prieto et al. (2008) reported R2
cal = 26% (SEcv = 0.36, RPD 

= 1.04) for drip loss using the Honikel bag method (Honikel 1998) on LT samples from 

53 steers and R2
cal = 20% (SEcv = 0.55, RPDcv = 1.02) on 67 young cattle. 

 

Expressed Juice is a measure of water holding capacity using the filter paper press 

method based on that of Hamm (1986). EJ could be predicted with an R2
pred = 34.5%, 

SEpred = 2.67 cm2g−1, RPDpred = 1.23 (Table 8.2). One sample was removed from the 

prediction dataset due to having anomalous spectra (P < 0.001). Retaining this sample 

reduced the R2
pred to 23% (SEpred = 3.07). Prieto et al. (2008) reported an R2

cal of 48% 

(SEcv = 2.08, RPDcv = 1.11) for prediction of EJ on 53 steers and R2
cal = 58% (SEcv = 

2.51, RPDcv = 1.30) on the LT of 67 young cattle. Ripoll et al. (2008) obtained a R2
pred 

of 89.2 (SEpred = 1.34%, RPD = 1.76) for EJ on LT from 190 bulls using calibrations 

equations developed on 75% of the samples and applied to the remaining 25% of the 

samples. In a different study involving LT from 40 Hereford steers, Rosenvold et al. 

(2009) reported R2
pred = 67% (SEpred = 2.8 cm2g−1) for EJ. The NIR spectra in the 

studies of Prieto et al. (2008) and Ripoll et al. (2008) were collected on homogenised 

samples, but Rosenvold et al. (2009) collected spectra and EJ reference measures on 

intact meat over a range of aging times so is the most similar to the current analysis. 

Despite being able to develop and cross-validate a prediction equation to predict 
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cooking loss, the model completely failed to predict cooking loss in the prediction 

dataset. It can be seen that cross-validation is not indicative of prediction on new 

samples in this case. Leroy et al. (2004) reported an R2
cal of 25% (SEcv = 2.31%, RPDcv 

= 1.13) on 101 cow and 88 bull LT samples aged for two days prior to cooking. Andrés 

et al. (2008) reported an R2
cal of 20% (SEcv = 0.08%, RPDcv = 1.01) on LT samples 

from 30 bulls. Prieto et al. (2008) reported an R2
cal of 14% (SEcv = 1.61%, RPDcv = 

1.03) on LT samples aged seven days from 53 oxen and R2
cal of 0.001% (SEcv = 2.45%, 

RPDcv = 0.97) on LT aged for three days from young cattle, although the NIR spectra 

were collected on homogenised meat samples as opposed to the intact LT muscle, Prieto 

et al. (2009b) reported an R2
cal of 35% (SEcv = 2.35%, RPDcv = 1.14) on 130 LT 

samples aged 14d, but 64 samples were excluded from the analysis so this value may be 

optimistic if the whole dataset were used. It is possible that the poor prediction ability of 

NIR for cooking loss is a result of heterogeneity in the samples, possibly due to fat 

forming a barrier to cooking loss (Hornstein et al. 1960), or the fact that smaller 

carcases yield smaller muscle samples at a constant thickness which have a higher 

surface area to volume ratio resulting in greater cooking loss. This is likely to be of 

importance when the entire slice of LL is cooked without any standardization of 

dimensions which was the case in the current analysis. 

 

8.3.3 Prediction of sarcomere length (SL) 

 

After removal of one sample (where the reference measure of SL was > 4 SD from the 

mean) from the calibration dataset, a prediction equation was developed that performed 

better in the prediction phase (R2
pred = 36.7%, SEpred = 0.06 μm, RPDpred = 1.28) than 

the cross-validation (R2
cv = 11.4%, SEcv = 0.08 μm, RPDcv = 1.15) (Table 8.2). 

Removing scatter effects reduced performance (data not shown) which suggests that 

variation in sarcomere length may be responsible for some of the scatter effects in the 

sample (Cozzolino and Murray 2002). Rødbotten et al. (2001) found that the 

absorbance spectra differed between samples with long (> 2.0 μm) and short (< 1.6 μm) 

sarcomeres in the spectral region below about 1150 nm, shorter sarcomeres had a higher 

absorption than long sarcomeres in LT samples from 12 young bull carcases. Rødbotten 

et al. (2001) reported a highly a significant correlation between Warner-Bratzler shear 

force and sarcomere length (r = –0.67, P < 0.001) and postulated that the differing 

absorption patterns associated with shortened sarcomeres may underpin the prediction 
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of Warner-Bratzler shear force, but they did not attempt to predict sarcomere length 

directly. In the current analysis, the correlation between Warner-Bratzler peak shear 

force and sarcomere length was –0.35, (P = 0.002) for 3d aged samples and –0.48 (P < 

0.001) for 42d aged samples (data not shown). There are few reports where NIR spectra 

have been applied to predict sarcomere length, Andrés et al. (2008) reported a R2
cal = 

16% (SEcal = 0.08 μm) and R2
cv = 2% (SEcv = 0.10 μm, RPDcv = 0.84) for LT SL on a 

sample of 30 young Maronesa bulls. Shackelford et al. (2012a) reported that the mean 

sarcomere length was significantly shorter in LT classified “not tender” compared to LT 

classified tender, although they did not predict or classify samples based on sarcomere 

length per se. Shackelford et al. (2012a) postulated that the biochemical basis for 

classifying LT into tenderness classes is sarcomere length and post-mortem proteolysis 

based on the percentage of desmin degradation, If this is the case, prediction of 

sarcomere length and the levels of desmin directly using NIR spectral data would help 

to verify this. 

 

8.3.4 Prediction of venison colour 

 

No spectral pre-treatments were deemed necessary for prediction of colour traits which 

is in agreement with the analysis on beef (Section 4.3.4) and with the prediction of 

lightness (L*) and redness (a*) of lamb (Section 6.3.2). Prieto et al. (2009b) also found 

that no pre-treatments were necessary for prediction of beef colour. This consistency 

suggests that the scatter effects are informative for the prediction of meat colour, 

removing scatter effects reduced model performance (results not shown). Prediction of 

redness (R2
pred = 62.3, SEpred = 0.92, RPDpred = 1.60) and yellowness R2

pred = 40.4, 

SEpred = 0.598, RPDpred = 1.31) (Table 8.2) was much better than lightness R2
pred = 8.3, 

SEpred = 2.42, RPDpred = 0.94). The poor performance for prediction of lightness was 

surprising given that calibration and cross-validation phases were much stronger (RPDcv 

= 1.21). The descriptive statistics for lightness were similar for both the calibration and 

prediction datasets, so prediction performance should have been similar to the cross 

validation performance. The reduction in performance was not due to spectral or 

reference outliers in the prediction dataset, removing suspect samples did not offer any 

large improvements in accuracy (results not shown). One possible explanation is that 

the cut-off of 559 nm used to eliminate excessive noise from the lower end of the 

spectra removed informative wavelengths for predicting lightness, but reducing the 
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threshold to 399 nm did not improve performance (results not shown). Andrés et al. 

(2008) reported an R2
cv = 75% (SEcv = 1.36, RPDcv = 2.07) for L*, R2

cv = 29% (SEcv = 

1.28, RPDcv = 0.90) for redness and R2
cv = 46% (SEcv = 0.99, RPDcv = 1.37) for 

yellowness for 30 bull LT samples after allowing the meat to bloom for 60 minutes. 

Prieto et al. (2009b) obtained R2
cv = 83% (SEcv = 0.96, RPDcv = 2.47) for L*, R2

cv = 

76% (SEcv = 0.95, RPDcv = 2.02) for a* and R2
cv = 69% (SEcv = 0.84, RPDcv = 2.48) for 

b* for beef LT samples after allowing the meat to bloom 45 minutes. An R2
pred = 82%, 

SEpred = 1.18, RPDpred = 2.35 was obtained for lightness on 59 beef LT samples in 

Section 4.3.4. 
 

8.3.5 Prediction of venison shear force parameters 

 

After removal of two samples, one due to anomalous spectra (P < 0.005) and the 

maximum record (13.07 kgF) which was > 3 SD from the mean peak shear force value. 

Strong calibration (R2
cal = 54.5), and cross-validation (R2

cv = 51.6, SEcv = 1.37) 

performance for WBSF did not translate into such strong prediction performance (R2
pred 

= 27%, SEpred = 1.55 kgF, RPDpred = 1.20) (Table 8.2). The reason for the reduction in 

performance could not be determined, as removal of outliers failed to improve 

predictive ability, yet this result shows that cross-validation is not always a good 

indicator of future prediction performance. Twelve studies on beef have used NIR 

spectra to predict Warner-Bratzler peak shear force (for details see Table 2.15, Table 

2.16 and Table 2.17). The average RPDcv values reported for these 12 studies for LL 

WBSF is 1.20 (RPDcv ranging from 1.05 to 1.46), the results of Park et al. (1998) were 

excluded because carcases were selected based on WBSF values to maximize variation. 

This average RPDcv value is lower than the RPDcv = 1.49 but the same as the RPDpred = 

1.20 obtained in the current analysis for WBSF in venison. In contrast, the prediction 

for initial yield force was much stronger than the cross validation performance (Table 

8.2). Six outliers from the calibration dataset and two samples from the prediction 

dataset were removed, retaining outliers reduced the R2
cv to 25% (SEcv = 1.60) and 

R2
pred to 26.0% (SEpred = 1.52) (data not shown). For the both the calibration and the full 

datasets, the correlation between WBSF and IYF is very high (r = 0.97, P < 0.001), 

which is in agreement with the r = 0.98, P < 0.001) reported by Peachey et al. (2002) in 

beef. It is not clear why the prediction performance was stronger for IYF than for 

WBSF. Performance was also stronger in the prediction phase for WBSF – IYF and 
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WD. WBSF – IYF has previously been associated with the collagen component of meat 

(Beilken et al. 1986). In some early work on NIR applied to lamb meat, Young et al. 

(1996) reported that NIR spectra from intact samples of lamb M. semimembranosus 

were correlated to the percentage of soluble collagen with a correlation (r) of 0.88, SEcv 

= 1.19%, but Downey and Hildrum (2004) state that NIR spectrum of collagen is very 

similar to that of myofibrillar proteins, which are present in 10 times higher 

concentrations than collagen in meat. Collagen cross-linking increases with animal age 

and results in reduced collagen solubility causing increasing toughness (Young and 

Braggins 1993). The percentage of soluble collagen may be the biological mechanism 

underpinning this relationship, but the age range of the deer used in this experiment was 

very low (12-14 months), so it is unlikely that there would be much variation in 

collagen solubility.  

 

Four outliers were removed from the calibration phase for WD, but no samples were 

removed from the prediction phase. Because WD was highly correlated (r = 0.95, P < 

0.001) to WBSF, the samples that have a high WBSF also have a high WD (Figure 8.7). 

Bickerstaffe et al. (2001) used ≥ 8.00 kgF as a threshold for classifying lamb samples as 

tough based on the MIRINZ shear force test. Davies et al. (2009) also used ≥ 8.00 kgF 

as a threshold for classifying venison samples as “very tough” using the Volodkevitch 

shear force test. It should be noted that the relationship between different shear force 

instruments may not be linear across the entire range of toughness encountered in lamb 

meat (Hopkins et al. 2011b). Therefore inferring consumer tenderness thresholds based 

on one shear force instrument may not be fully applicable to other shear force tests, but 

Peachey et al. (2002) reported a correlation of 0.93 (P < 0.001) between WBSF and 

MIRINZ peak shear force so the high correlation suggests that this threshold could 

reasonably be applied to WBSF as used in the current analysis. In that experiment, a 

MIRINZ peak shear force of 8.00 kgF was equivalent to a WBSF ≈ 12.00 kgF, so the 

threshold of 8.00 kgF is conservative. For both WBSF – IYF and WD, prediction 

performance was better than calibration / cross-validation performance (Table 8.2). The 

WD of a sample is easier to determine than IYF from a Warner-Bratzler force 

deformation curve, so using the model for WD, it was possible to identify 5 out of 7 

samples where WD exceeded 2.50 (Figure 8.8) which also correctly identified 5 out of 7 

samples where WBSF was ≥ 8.00 kgF (Figure 8.7 and Figure 8.8). Interestingly, all 7 

samples where WD ≥ 2.50 came from stags, and in the current analysis, LL from stags 
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had a higher WD than hinds (Table 7.5), which is consistent with the results reported by 

Purchas et al. (2010) who reported that LL from stags had a higher WD than that from 

hinds. 

 

 
 
 
 

 

 

8.3.6 Future directions for using NIR to predict venison meat quality 

 

NIR spectra were collected on venison samples that had been aged for either 3 or 42d 

and that had been frozen prior to scanning. If NIR spectra were to be used to predict 

meat quality in the processing plant, scanning would need to be performed on fresh (un-

aged and never frozen) meat. Freezing and thawing is known to alter the NIR spectra of 

beef (Downey and Beauchêne 1997; Thyholt and Isaksson 1997). It is possible that 

spectra from frozen then thawed venison would also differ from spectra of fresh 

venison; so further research is needed to establish the relationship between NIR spectra 

recorded on fresh venison and venison meat quality. 
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Figure 8.8 A plot showing WD predicted 
from NIR spectra against the reference WD 
for the prediction dataset. A threshold of 
2.50 can be used to identify samples where 
WBSF is ≥ 8.00 kgF. 

Figure 8.7 A plot showing the correlation (r = 
0.95, P < 0.001) between Warner-Bratzler 
peak shear force and work done (the average 
force throughout the shear) for the 
prediction dataset. Samples where WD is ≥ 
2.50 also have a WBSF ≥ 8.00 kgF. 
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8.4 Summary and conclusions 

 

1. Although the characteristics responsible for variation in a meat quality parameter 
may be different at each aging time, models were developed to predict venison 
quality parameters that were applicable to both aged and un-aged venison.  
 

2. There were no previous reports detailing the relationship between NIR spectra and 
venison meat quality so comparisons have been made with reports on beef and 
lamb. 
 

3. NIR was particularly strong for predicting pHult of venison, samples with a high 
pHult can be identified using NIR. 

 
4. Prediction of purge (RPDpred = 1.18) and expressed juice using NIR spectra resulted 

in RPDpred values of a similar magnitude to those reported in beef (Mean RPDcv = 
1.23 (range 1.02-1.46).  

 
5. Cooking loss could not be predicted despite showing some predictive ability in the 

cross-validation phase. This may be because reference measures of cooking loss are 
likely to be affected by higher surface area to volume ratios in samples from 
smaller carcases. 

 
6. Prediction of sarcomere length (RPDpred = 1.28) was better than expected given the 

poor performance obtained in the cross-validation phase. 
 

7. Prediction of lightness was poor (RPDpred = 0.94) considering that performance was 
much better in the calibration and cross-validation phases. 

 
8. Prediction of peak shear force (RPDpred = 1.20) was poorer than expected from 

cross-validation performance, but prediction of IYF (RPDpred = 1.50), WBSF–IYF 
(RPDpred = 1.47) and WD (RPDpred = 1.35) was stronger than expected. 

 
9. The inconsistent performance between cross-validation and prediction for several 

parameters indicates that cross-validation is not necessarily indicative of future 
predictive performance and that a separate prediction group should be included in 
any NIR evaluation. 

 
10. Due to a high correlation between WBSF and WD, the WD model could be used to 

identify venison samples where the WBSF was ≥ 8.00 kgF, a threshold that has 
been used previously to identify tough samples. 

 
11. Future research is needed to determine whether these models would be applicable 

to spectra obtained under abattoir conditions from fresh (never frozen) venison. 
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9 General discussion 
 

9.1 Introduction 

 

Overall, the value-chains of beef, lamb and venison from farm to fork are broadly 

similar. Farmers produce animals to sell to meat processors who add value to the 

carcase by de-constructing the carcase, conditioning parts of it, de-boning and preparing 

the meat into consumer-ready packs. The processors then sell meat to retailers where 

consumers purchase it for consumption.  

 

There are a series of transactions that take place between members of the value chain. 

The first is the sale of finished animals to the meat processor and is based around an 

accepted mode of carcase evaluation. Depending on the country and species, carcase 

evaluation varies but it is supposed to be consistant across the EU. Evaluation systems 

generally endeavour to determine the value per unit weight of the carcase, but usually 

do not directly incorporate meat quality parameters so there is no direct flow of 

information to the producer relating to meat quality. The second transaction occurs 

between the processor and the retailer where the value per unit weight, ceteris paribus, 

is determined by the specification of the product (mainly the type of cut, but branded 

products and aging times may also play a role). There is more likely to be a flow of 

consumer information here because customer complaints can result in feedback to 

processors, but because the traceability of meat to a carcase is generally not possible 

when carcases are broken down into cuts, it becomes difficult to identify what processes 

in the value chain, or what aspects of the raw material are resulting in poor product 

consistency and a loss in repeat purchases.  

 

Given that there are at least two transactions taking place before the consumer 

purchases a meat product, there are at least two opportunities in the value chain to 

identify and remove carcases/meat of inferior quality in order to prevent inferior product 

reaching the end user. The relationship between carcase quality and meat quality is not 

simple; a higher yield of saleable meat does not necessarily result in a higher quality 

meat product. Through a series of experiments, the aim of this thesis has been to 

investigate the relationships between video image analysis (VIA) variables and saleable 

meat yield (SMY%) of high-value cuts in beef carcases and to investigate the 
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relationships between visible-near infrared (NIR) spectra and instrumental meat quality 

parameters in beef, lamb and venison of various genders and genotypes. It should be 

noted that the emphasis on NIR was driven by its potential as a means of identifying 

carcases with inferior meat quality so as to improve meat product consistency from a 

consumer perspective.  

 

Considering eating quality and its consistency from the producer end of the value chain 

is more difficult and relies on the notion that meat quality can be directly incorporated 

into carcase evaluation systems and that a member of the value chain is prepared to take 

responsibility for inferior meat quality. Unless the value chain is fully integrated, it is 

more likely that measurement of meat quality, with the explicit purpose of removing 

outliers and improving consistency of table cuts, will be of more value to the meat 

industry than will any sort of quality-based payment to producers on a carcase basis. 

Having said that, if eating quality information was routinely recorded and fed back to 

producers, over time it would be possible for processors to identify which farmers are 

producing superior quality meat and reward them accordingly. 

 

NIR spectra with  multivariate calibration equations can be used for the quantitative 

prediction of chemical constituents in meat (Weeranantanaphan et al. 2011). The 

predictions are based on the absorbance of electromagnetic radiation at certain 

wavelengths by CH, NH and OH chemical bonds in the fats and proteins that constitute 

meat (Osborne et al. 1993). The research undertaken in this thesis did not strive to 

elucidate the biological mechanisms underpinning the relationship between NIR spectra 

and meat quality.  It is expected that biological variation will always be present in the 

populations and VIA and NIR needs to take account of this. The emphasis here was to 

evaluate the ability of NIR and VIA technologies to quantify quality differences, rather 

than to characterize the biochemical basis of variation in carcase and meat quality. 

 

A range of genders, genotypes, aging times and muscles of the three species were 

investigated primarily to represent the conditions typically encountered in a commercial 

setting where VIA and NIR technologies may contribute to the carcase/meat evaluation 

process, but the datasets also enabled the magnitude of these effects to be investigated.  

Given the fact that three different species were investigated in the experimental 

chapters, it is tempting make comparisons between them. Such comparisons are difficult 
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in the context of this thesis because the experiments were very different in nature, thus it 

is really only possible to make a few general observations linking the three species. In 

terms of gender and genotype effects on beef (Chapter 4), lamb (Chapter 5) and venison 

(Chapter 7) results showed that in general, gender had larger effects on meat quality 

than genotype, which may be because extreme breed-types were not compared in these 

experiments. VIA was only investigated in beef (Chapter 3), but the performance of 

NIR for measuring meat quality was investigated in beef (Chapter 4), lamb (Chapter 6) 

and venison (Chapter 8) and merits some comparison. Because meat toughness is likely 

to result in customer complaints, the ability of NIR to identify tough meat is of great 

interest to industry. NIR showed some promise for predicting shear force in venison, but 

little promise in beef or lamb. The NIR absorbance profiles looked similar across the 

three species; but the correlation between shear force and absorbance values at each 

wavelength in the NIR spectrum was inconsistent between species. The true reason for 

this cannot be determined from these experiments because different methods were used 

to measure shear force across the species.  

 

Although the shear force predictions were a little disappointing, the utility of the shear 

force tests also needs consideration, firstly because the correlation between the various 

shear force tests and tenderness as assessed by un-trained consumers is not particularly 

strong, and secondly because toughness is perhaps less of a problem in venison and 

lamb than in beef, due to the fact that lambs are slaughtered at a lower maturity, and 

potentially because post mortem proteolysis is known to be more rapid in venison than 

in beef (Barnier et al. 1999; Farouk et al. 2007). Furthermore, venison exporters are 

primarily concerned with water holding capacity and shelf-life attributes of venison as 

opposed to toughness, which tends not to be a major problem.  

 

9.2 What can VIA and/or NIR currently offer? 

 

Based on the experiment where the ability to predict the SMY% of the sirloin region 

was assessed (Chapter 3), VIA appears to have lower accuracy for the prediction of 

SMY% at the cut level (Table 3.6) than at the total carcase level as assessed from the 

published literature (Table 2.8). VIA could be used to evaluate carcases on the basis of 

SMY%, but the accuracy would be very low as the distribution of SMY% throughout 

the carcase is not currently predicted (except indirectly via the EUROP grid). It is worth 
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noting that VIA has been operating for beef on an industrial scale for a number of years 

and is at a more advanced state of development in comparison to the use of NIR spectra 

for predicting meat quality. In terms of predicting meat quality, NIR can identify LL 

samples with high pHult, and IMF% (Prieto et al. 2011) plus some colour parameters. 

Models developed in Chapter 4 were not accurate enough to be used for identifying beef 

LT with high shear force values, but previous research showed that extremely tough 

samples could be identified in beef (Prieto et al. 2009b). Models developed in Chapter 8 

showed that it is possible to identify venison samples with high shear force values, but 

performance was poorer in lamb where models were ineffective in identifying high 

shear force samples.  

 

The ability to identify extremes (and particularly extremes at the undesirable end of the 

scale) is a first step to value-based marketing. Cross and Whittaker (1992) defined 

value-based marketing as a system that sends clear and accurate economic signals from 

the consumer backward through the value chain. In order for a value-based marketing 

system to function, a means of identifying the value of individual carcases is essential 

(Cross and Whittaker 1992). In their present forms, VIA and NIR are not sufficiently 

well developed to provide the full solution for a value-based marketing system. But, 

VIA offers greater consistency of classification within and between meat processors and 

is a useful source of information for livestock breeders (Pabiou et al. 2012). The ability 

to identify extremes in some characteristics (Chapters 4, 6 and 8) shows that already, 

NIR spectroscopy has the potential to improve product consistency. Over time, 

identification and removal of extremes at the poor end of the scale should result in a 

greater number of repeat purchases (Grunert et al. 2004).  

 

Measures of the success of programs involving the integration of VIA and NIR to 

identify differences in overall value between individual carcases based on both SMY% 

and meat quality are awaited with interest, as are the results of the integrated meat 

eating quality (IMEQ) project currently being undertaken by Quality Meat Scotland and 

the Scottish Government. The aim of the IMEQ project is to develop an automatic or 

semi automatic system for estimating pH /temperature, carcase conformation, fat class 

and subcutaneous fat at commercial processing plant line speed, and to integrate it with 

the output of imaging technologies (such as NIR) used to estimate meat colour and 

eating quality (Maltin et al. 2012). 
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9.3 Industry challenges 

 

The research reported in this thesis has assessed the accuracy with which VIA and NIR 

spectroscopy can be used to predict SMY% and meat quality characteristics, 

respectively, rather than being concerned with the application of SMY% and meat 

quality information to a carcase evaluation system per se. Some important questions 

arise when considering the paradigm of value-based carcase evaluation at the processing 

level and at an industry-wide level. These questions include: 

 

1. How is quality defined? Is the definition consumer focused, retailer focused, or 
processor focussed? Does quality consider both carcase and eating quality? 
 

2. What constitutes an “inferior” carcase in terms of specific characteristics, and 
what/who should be considered responsible for its low value, (e.g. production 
effects, pre-slaughter handling effects or processing effects)? 
 

3. Who takes responsibility for the low value and the associated increased costs or 
reduced returns? 

 
4. What should meat processors do with “inferior” carcases? 

 
5. Assuming value-based marketing is transparent, how should value be divided 

throughout the value chain (producer, processor, and retailer)? 
 

6. How should the cost of any new technology be borne? 
 

7. Is there a need for value-based marketing in times of short product supply? 
 

8. Would producers risk being penalized for “inferior” meat quality when they 
have a low-risk alternative at another processing plant? 
 

9. What is an acceptable level of robustness for the prediction of meat quality? 
 

10. Who owns the information on each carcase and how would the information be 
disseminated up and down the value chain? 

 
A discussion surrounding the possible answers to these questions is beyond the scope of 

this thesis, but they are questions that the industry should be considering and discussing 

ahead of future developments in quality-based carcase evaluation. 
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10 Summary and conclusions 
 

After reviewing the literature on VIA and NIR (Chapter 2) it was concluded that the 

ability of VIA to predict the saleable meat yield of the high-value loin region containing 

the sirloin and fillet cuts required further investigation. It was also concluded that the 

relationship between NIR spectra and beef meat quality required further investigation 

on a larger, more heterogeneous range of genders and genotypes. Furthermore, a lack of 

information in the published literature pertaining to the relationship between NIR 

spectra and meat quality in lamb and venison was identified. 

 

Results obtained in Chapter 3 on 141 carcases from 6 breed-gender groups (steers, 

heifers and young bull crossbreds of the Charolais, Limousin and predominantly 

crossbred dairy breeds) showed that VIA and visual carcase classification systems 

operating on the EUROP grid had a similar ability to predict the yield of saleable sirloin 

as a percentage of hot carcase weight. Both classification systems were poor at 

predicting the yield of fillet. Results also showed that the weight of excess fat trimmed 

during preparation of the sirloin did not account for any further variation in saleable 

meat yield of either the sirloin or fillet yield, but the weight of bone removed did 

account for some additional variation in fillet yield. It was concluded that the 

relationship between VIA variables and the carcase composition require further 

investigation. 

 

Results obtained in Chapter 4 on 234 samples of M. longissimus thoracis from 6 

genotype-gender groups (steers, heifers and young bull crossbreds of the Charolais, 

Limousin and dairy genotypes) showed that the genotype had minimal effects on meat 

quality but M. longissimus thoracis from young bulls was of poorer quality than that of 

steers. In addition, the relationship between NIR spectra and beef quality showed that 

ultimate pH and meat colour could be predicted with the highest levels of accuracy, but 

shear force was poorly predicted. It was concluded that further analysis is required on 

shear force using a novel support vector machine regression approach. 

 

In an experiment involving 208 Texel lambs (Chapter 5), the effects of sex on the meat 

quality of lamb M. longissimus lumborum and M. semimembranosus meat quality was 
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investigated. Results showed that sex had some small but significant effects on lamb 

meat quality after aging meat for between 7 and 9 days. In addition, the Texel muscling 

quantitative trait locus (TM-QTL) was found to have no significant effects on the meat 

quality of M. semimembranosus. It was concluded that finishing ram lambs to the 

specifications used in the experiment would result in minor differences in meat quality 

between ewes and rams. Further investigation is needed to determine whether the 

effects of TM-QTL and sex would alter if lambs were finished to higher weights or if 

carcases were aged for a shorter time.  

 

In an experiment involving the 208 lambs from Chapter 5, results (Chapter 6) showed 

that NIR spectra collected on the lamb from M. longissimus lumborum aged for between 

7 and 9 days could be used to predict the percentage of intramuscular fat in that muscle 

and showed some promise for predicting the colour traits in M. semimembranosus. 

Results showed that ultimate pH and shear force of M. longissimus lumborum and M. 

semimembranosus was poorly characterized by NIR spectra collected on the M. 

longissimus lumborum. It was concluded that further investigation is needed to 

determine the relationship between NIR spectra and the quality of meat aged for a 

shorter time from lambs more typical of the UK slaughter population. 

 

Results obtained from an experiment involving the M. longissimus lumborum from 79 

deer (Chapter 7) showed that sex, genotype (red or wapiti-red crossbreds), sampling 

location within the M. longissimus lumborum and chilled aging time affected venison 

meat quality. Meat from stags was tougher (higher shear force values) than that of hinds 

and meat from wapiti-red crossbreds was tougher than that of red deer. Results also 

showed that the anterior part of the muscle was tougher than the posterior after 3d aging 

but such effects were present after an additional 39d chilled aging. Genotype was 

confounded with farm and slaughter day effects so it was concluded that further 

research is needed to verify the apparent genotype effects on venison M. longissimus 

lumborum meat quality. 

 

 

The relationship between NIR spectra and meat quality of frozen then thawed aged and 

un-aged and venison from the 79 deer in Chapter 7 was characterized in Chapter 8. 

Results showed that NIR spectra could be used to identify samples with high ultimate 
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pH and shear force values. NIR spectra were collected on meat samples that had been 

frozen and thawed twice, so it was concluded that further research would be needed to 

establish whether the models could be applied to predict meat quality of fresh (un-aged 

and never frozen) venison under abattoir conditions.  

 

The general discussion (Chapter 9) considered the current utility of VIA and NIR for 

carcase evaluation based on the findings of the experimental chapters (Chapters 3-8) 

and the published literature reviewed in Chapter 2. It was proposed that VIA could be 

used to determine conformation and fat class with greater consistency within and 

between abattoirs and predict whole carcase saleable meat yield, but further refinement 

is needed to improve prediction of saleable meat yield to the cut level. Based on the 

results of the experimental chapters, NIR could be used to identify M. longissimus 

thoracis et lumborum (LTL) with extremely high ultimate pH, shear force and 

intramuscular fat values. In addition, several questions that need consideration by the 

meat industry were identified. Further research is required to investigate the utility of 

alternative VIA outputs and to develop new calibration equations for saleable meat yield 

prediction. The relationship between LTL quality parameters and other muscles also 

requires further research before a meat quality-based carcase payment system based on 

an NIR scan of the LTL can be advocated. 

 

10.1 Final conclusion 

 

Research undertaken in the course of this project has contributed to the body of 

knowledge surrounding the effects of breed and gender on beef carcase quality and the 

ability of VIA to predict the yield of high-value cuts in beef carcases. Results of the 

current research have also provided further insights into genotype and gender effects on 

beef, lamb and venison meat quality, and have further characterized the relationships 

between NIR spectra and meat quality parameters for these three types of meat. Results 

of this research showed that NIR could be used to identify loin samples with extreme 

values for pHult (for beef and venison), IMF% (for lamb) and shear force (for venison, 

with some evidence for beef using a novel analysis method). It is still not clear whether 

measurements on loin are related to meat quality throughout the carcase. Further 

refinement to both VIA and NIR procedures are needed and should be driven by the 

requirements of the meat industry. There is a need to verify what the technologies can 
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realistically offer in terms of accuracy and precision before further consideration can be 

given to the use of VIA and NIR in commercial quality-based carcase evaluation 

systems. 
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11 Implications for industry 
 

 

 VIA is able to classify carcases according to the EUROP grid in an automated 
manner but has scope for further refinement to predict cut yield. It is considered 
that the full potential of VIA has not yet been realized. 

 
 The estimation of total carcase fat content continues to be a challenge, especially 

when assessment is largely based on subcutaneous fat cover. This will continue 
to hamper efforts to accurately determine saleable meat yield using VIA in its 
current form. 

 
 Saleable meat yield prediction at the individual muscle or cut level is not yet 

possible at an acceptable level of accuracy, value-based marketing requires 
further developments in VIA to predict both yield and distribution of saleable 
meat in a carcase. 

 
 Within the dairy crossbreds, M. longissimus thoracis from bulls was of poorer 

quality than steers and this effect was not due entirely to high ultimate pH in 
bulls. Due to a shortage of supply currently gripping the UK, bull beef may be 
utilized by markets generally accustomed to heifer or steer beef, this may have 
an impact on beef product consistency. 

 
 Based on the current results and previously published research, NIR in its 

present form could be useful for identifying M. longissimus thoracis et 
lumborum with high ultimate pH, and extreme levels of toughness and could be 
used to improve the consistency of the product on offer to consumers. 

 
 Industry needs to prescribe the requirements of a carcase evaluation system 

based on quality and address some of the challenges that will arise as outlined in 
Section 9.3. 
 

 Identification of the issues surrounding the responsibility for “inferior” carcases 
and the consequences of this will help to determine the level of precision and 
accuracy required to move toward a value-based marketing system. 
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11.1 Next steps for research into prediction of meat quality 

 

Research on meat quality encompasses a broad range of disciplines, ranging from 

muscle physiology to consumer psychology and microbiology to macroeconomics 

hence defining the next steps for meat quality research is difficult. Meat quality research 

is especially complex because there is a need to understand and quantify biological 

variation in meat animals, meat products and an equally important need to understand 

and quantify the variation in meat consumers. This is necessary in order to elucidate 

some of the causative factors affecting the meat quality as experienced by consumers 

and will enable the value chain to improve their processes.  Whilst there is much work 

to be done in all these areas, industry in collaboration with meat science researchers 

should aim to better understand the interaction between consumers and meat products 

and determine how preference information can be relayed back along the value-chain.  

 

11.2 The next steps for VIA and NIR research 

 

The experiments and analyses undertaken in this thesis addressed several key areas 

several of which require more investigation. For VIA to be informative for carcase 

evaluation and breeding purposes and to play a role in a value-based marketing system, 

further development and analyses are required to: 

 

 Develop robust prediction equations that can be applied at an industry level to 
identify carcases that have a higher yield of quality meat rather than to simply 
classify carcases according to the EUROP grid. 
 

 Refine the prediction of SMY% to a level of resolution that is affordable and of 
significant value to the industry, preferably at the individual cut level.  

 
 Determine the true potential of VIA with new prediction equations based on a 

gold standard such as CT scanning. 
 

In terms of the prediction of meat quality, NIR has shown some promise for the loin, 

but further research is needed to: 

 

 Establish whether measurements taken (or calibrations developed) on the loin 
can be used to determine quality of the other muscles.  
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 Develop calibration equations to predict meat quality across a wider range of 
genders and genotypes. 
 

 Validate such equations on independent datasets. 
 

 Evaluate new analysis techniques such as support vector machine regression, 
neural networks and genetic algorithms. 

 
 Characterize the effects of different abattoirs and determine the capability of 

NIR (and other technologies such as hyperspectral imaging) to predict meat 
quality within and between abattoirs.  

 
 Elucidate the biological systems underpinning the relationship between NIR 

spectra and meat quality attributes to identify causes and effects. 
 

 Refine calibration equations according to the underlying biology and enable the 
use of more targeted and cost-effective instrumentation. 
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13 Appendix 
 

Table 13.1 Descriptive statistics for instrumental meat quality parameters of venison short-loin 
aged for 3 and 42 days as well as the combined (3d and 42d) dataset. 
Parameter dataset n Mean SD Range 
Ultimate pH (pHult) 3d 78 5.59 0.17 5.42-6.31 
 43d 76 5.60 0.17 5.41-6.25 
 all 154 5.60 0.17 5.41-6.31 
Purge (%) 3d 78 2.96 1.05 0.00-5.53 
 43d 76 4.87 1.46 2.00-8.85 
 all 154 3.90 1.59 0.00-8.85 
Expressed juice (EJ) (cm2g−1) 3d 75 31.63 2.98 22.48-39.10 
 43d 76 27.14 2.75 21.51-32.87 
 all 151 29.37 3.64 21.51-39.10 
Cooking loss (CL) (%) 3d 78 28.28 2.32 2.18-32.19 
 43d 76 27.88 1.61 22.55-30.96 
 all 154 28.08 2.01 21.76-32.19 
Sarcomere length (SL) (μm) 3d 78 1.58 0.10 1.23-2.00 
 43d 76 1.56 0.08 1.23-1.71 
 all 154 1.57 0.09 1.23-2.00 
Lightness (L*) 3d 78 35.31 2.37 29.66-41.12 
 43d 76 37.38 1.79 30.73-40.09 
 all 154 36.33 2.34 29.66-41.12 
Redness (a*) 3d 78 11.71 1.60 6.86-14.86 
 43d 76 12.31 1.39 7.7-14.81 
 all 154 12.01 1.52 6.87-14.86 
Yellowness (b*) 3d 78 2.95 0.84 0.92-4.75 
 43d 76 3.27 0.71 1.39-4.58 
 all 154 3.10 0.79 0.92-4.75 
Warner-Bratzler peak shear force (WBSF) 
(kgF) 

3d 78 7.64 1.81 3.90-13.07 
43d 76 5.14 1.27 3.13-9.52 

 all 154 6.41 2.00 3.13-13.07 
Initial yield force (IYF) (kgF) 3d 78 6.71 1.60 3.26-11.57 
 43d 76 4.31 1.05 2.64-7.74 
 all 154 5.53 1.81 2.64-11.57 
PF – IYF (kg) 3d 78 0.93 0.49 0.15-2.58 
 43d 76 0.83 0.48 0.15-2.36 
 all 154 0.88 0.49 0.15-2.58 
Work done (WD) 3d 78 2.30 0.51 1.06-3.48 
 43d 76 1.67 0.39 0.99-2.93 
 all 154 1.99 0.55 1.00-3.48 
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Table 13.2 Performance of NIR calibration equations showing the coefficient of determination (R2) 
and standard error (SE) for calibration and full leave-one-out cross-validation for predicting 
instrumental meat quality parameters on venison short-loin within the 3d, 42d and the combined 
(3d and 42d) dataset. 

a dataset refers to samples aged for 3d or 42d before analysis, all is the combined dataset (3d and 42d aged samples). 
b Pre-treatment indicates whether Multiplicative scatter correction (MSC) has been applied to the spectra prior to analysis. 
c PC = number or principal components used in the regression. 
d n = number of samples included in calibration and cross-validation phases. 
e RPD = Ratio performance deviation (SD of the Y variable in the calibration dataset divided by the SEcv). 
f na = not available due to model failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Calibration  Cross-validation 
Parameter Dataseta Pre-

Treatmentb 
PCc nd R2 SE  R2 SE RPDe 

Ultimate pH (pHult) 3d MSC 4 78 62.0 0.11  55.6 0.12 1.42 
 42d MSC 4 76 78.7 0.08  73.2 0.09 1.89 
 all MSC 10 154 77.7 0.08  70.6 0.09 1.89 
Purge (%) 3d MSC 1 76 15.3 0.88  10.4 0.91 1.15 
 42d MSC 0 76 naf naf  naf naf naf 
 all none 2 149 17.9 1.41  13.9 1.46 1.09 
Expressed juice (EJ) (cm2g−1) 3d MSC 1 75 9.8 2.18  4.8 2.93 1.02 
 42d MSC 3 76 15.5 2.51  9.9 2.63 1.05 
 all MSC 0 154 naf naf  naf naf naf 
Cooking loss (CL) (%) 3d MSC 4 77 23.9 2.02  13.9 2.17 1.07 
 42d MSC 6 75 45.5 1.19  21.0 1.45 1.11 
 all MSC 11 154 44.1 1.50  21.5 1.78 1.13 
Sarcomere length (SL) (μm) 3d none 2 78 38.4 0.09  20.1 0.09 1.11 
 42d none 2 76 35.4 0.06  26.7 0.07 1.14 
 all none 2 154 21.4 0.08  17.3 0.08 1.13 
Lightness (L*) 3d MSC 1 78 19.2 2.12  15.3 2.20 1.06 
 42d none 2 76 25.2 1.54  17.7 1.63 1.10 
 all none 5 154 35.4 1.87  30.2 1.96 1.19 
Redness (a*) 3d none 5 77 46.1 1.10  33.8 1.24 1.29 
 42d none 2 76 46.9 1.00  37.6 1.10 1.26 
 all none 4 154 46.5 1.11  42.0 1.16 1.31 
Yellowness (b*) 3d none 3 77 49.9 0.59  43.2 0.59 1.42 
 42d MSC 2 76 49.9 0.50  45.5 0.53 1.34 
 all none 3 154 49.0 0.56  45.7 0.59 1.34 
Warner-Bratzler peak shear 
force (WBSF) (kgF) 

3d MSC 3 76 48.5 1.19  43.7 1.26 1.44 
42d MSC 1 73 36.1 1.02  30.8 1.07 1.19 

 all none 6 152 47.4 1.39  39.6 1.50 1.33 
Initial yield force (IYF) (kgF) 3d MSC 2 76 35.5 1.17  28.4 1.25 1.28 
 42d none 0 76 naf naf  naf naf naf 
 all none 6 151 46.6 1.26  40.3 1.34 1.35 
WBSF – IYF (kg) 3d none 3 78 42.1 0.37  36.2 0.40 1.23 
 42d MSC 2 76 60.7 0.30  57.2 0.32 1.50 
 all MSC 2 154 46.7 0.36  44.1 0.37 1.32 
Work done (WD) 3d none 4 76 50.3 0.34  43.8 0.36 1.42 
 42d none 3 75 32.0 0.32  25.2 0.34 1.15 
 all none 6 150 55.8 0.36  51.0 0.38 1.45 
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