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ABSTRACT 

since the abolition of government support policies for both 
agricultural and financial industries during the early 1980s, 
participants have had to take direct responsibility for the 
management of the risks involved in their business activity. 
As a prerequisite to the development of practical risk 
management strategies and techniques, quantification of risk is 
considered by this thesis. 

A quantification risk index that incorporates both the third 
and fourth moments of a distribution, thus adding to variance 
and monotonic transformations, the traditional surrogate risk 
measures, was developed and applied to sheep and beef farming. 

The risk index is developed using logit analysis, where risk is 
directly estimated. Logit analysis was used because it suited 
the thesis definition of risk. In this thesis, risk is defined 
as the probability of incurring loss or harm, where loss or 
harm is defined, in the context of sheep and beef farming, as 
zero or less than zero 'net cash returns'. Net cash returns 
are defined as all cash revenues generated by farm production 
less all farm and farmer expenditures. The index, or 
probability, is directly estimated given forecast average 
market prices, effective farm area, total farmer forecast 
expenditures and island location (North or South). 

The risk index has been developed for banker application to 
farm budgets submitted for the purposes of seasonal finance 
approval. The banker is warned by the index that the proposed 
farm plan has a high probability of ending in farm insolvency 
and an inability of the farmer to service all lending in the 
forthcoming year, solely from farm production. 

As a consequence of applying the measure to sheep and beef 
farming, the thesis found that in terms of risk to net cash 
returns, effective farm area in conjunction with total farmer 
expenditure is significantly ranked higher than fluctuating 
market product prices, and that risk trade-offs exist between 
farm area and expenditures. In a situation of small farm size 
with relatively high expenditures, optimistic product prices 
are insufficient to offset the high probability of incurring 
negative net cash returns. 
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Chapt;er one 

INTRODUCTION 

1.1 THE AGRICULTURAL SECTOR AND RISK 

1.1.1 BACKGROUND 

New Zealand agriculture has undergone considerable change in 

direction over the past thirty years. After the relative 

stability but slow general economic growth of the 1960s, the 

1970s saw the evolution of a combination of government policies 

designed to initially stimulate economic growth and later, 

after an OPEC driven redistribution of the world's income in 

its favour, protect export agricultural production from the 

sudden consequential market contraction of industrialised and 

oil importing countries, and the associated long term price 

decline in the international commodity market (Hawke 1987). 

Reaction to depressed international prices for agricultural 

commodities included the supplementation of dwindling producer 

incomes, a policy that was in addition to a growing list of 

regulatory and interventionist measures designed to compensate 

agriculture for the costs of import protection and of 

maintaining an over-valued exchange rate (Hawke 1987). 
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By 1984 the interventions in place consisted of direct input 

subsidies (fertiliser, irrigation, interest), production 

subsidies (supplementary minimum prices), development schemes 

(livestock incentive scheme, land development encouragement 

loan), the provision of research and farm services, producer 

board subsidies, taxation exemptions, industry controls and 

producer board legislation, as well as state ownership of the 

rural banking and finance corporation. The 1984 total fiscal 

cost of these interventions were estimated to be 3.2 percent of 

gross domestic product (GDP), or $1,087 million. (Raynor 1987). 

Under this 'protectionist' environment, producers and agri­

service industries protected from the business risks associated 

with international trade had little incentive to adapt to a 

changing international commodity market, let alone implement 

systems of business risk management at the micro level. The 

early 1980s saw the recognition that the international downturn 

was not short term, resource utilisation inefficiencies had 

developed within the economy, overseas borrowing was not 

sustainable and those in agri-business at all levels had to 

directly confront the realities of the international 

marketplace if they were to quickly adjust to the international 

environment (Hawke 1987). 

As a consequence, protectionist policies were removed by the 

new Labour government elected in 1984. The result has been the 

removal of those many anomalies that encouraged inefficient use 

of resources (Pryde,Bain 1985). Since that period the majority 



3 

of businesses involved in agricultural activity have had to 

directly face the undisguised risks associated with their 

involvement. Given that risk is a predominant feature of all 

agricultural activity, and agri-business must now take direct 

responsibility for risk, there is now demand for practical 

systems of risk evaluation and management. 

1.1.2 AGRICULTURAL RISK 

Within portfolio theory, risk is seen as being comprised of 

both systematic and nonsystematic elements, i.e. , 

nondiversifiable and diversifiable. This concept tries to 

divide risk into those risk components that are inherent in all 

agricultural activity (systematic), and those Fisk elements 

that are able to be eliminated through diversification into 

other investment options. Turvey and Driver (1986) in a study 

designed to determine the extent of systematic and 

nonsystematic risk within United States agriculture, concluded 

that there is in fact a great deal of systematic risk in 

agriculture and the proportion of local and specific risk that 

can be diversified away is small, relative to the total risk of 

the farm sector portfolio. 

Opportunities for diversification from one generic type of 

agriculture into a better alternative are limited by the 

constraints imposed by all manner of resource factors. For 

instance, a change from Merino sheep farming to intensive 
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horticulture may not be feasible due to the absence of those 

basic physical resources, required by horticulture, such as 

soil type or appropriate climate. 

Given the range of physical resources that are available to any 

specific farmer, the product option range within generic types 

of agriculture is also limited by their comparative suitability 

to those resources. For example Romney sheep would be less 

suited to South Island high country conditions than Merino 

sheep. 

Once a farmer is committed to a production decision, his 

options diminish as he draws nearer to harvest. For instance, 

an arable crop farmer may harvest peas in either their green 

state, as fresh peas, or in their dry seed state. Once the 

time has passed for green pea harvest, the farmer is committed 

to the dry pea market. 

Agricultural risk and uncertainty can be further divided into 

business or financial risk, where business risk can be further 

categorised according to three sources (Just 1975). First, 

risk can be associated with environmental factors such as 

climate, disease, pest infestation and technological 

obsolescence. Second, risk can arise from market factors such 

as supply and demand disequilibrium within both input and 

output markets, and competitive elements associated with market 

structure. Third, risk can occur from government policy and 

programs, such as support levels and regulations, as well as 
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government priorities with regard to economic objectives. 

During the season of production, from investment to harvest, a 

farmer must not only endure the risks and uncertainties 

associated with any probable change in, or occurrence of, any 

of the above risk sources, but also the risks associated with 

their resulting impact or outcome. 

The risk incurred as a consequence of a change in any of the 

above risk elements within the three source categories can vary 

across the national agricultural economy. Each risk source has 

a regional qualification. For example, the probability, or 

risk, of drought on the East Coast is greater than on the West; 

the risk associated with local price fluctuations for market 

garden produce are less in the Auckland region than in the 

Invercargil region. 

Risk can also vary according to the 'additive' or cumulative 

combination of separate risk sources within regions. For 

example, the perceived risk to, or impact on, cashflows as a 

consequence of the 1984 SMP removal phase of government policy 

would have been greater in the Canterbury region than in the 

West Coast region because Canterbury is much more prone to 

prolonged drought, meaning that cashflows were already at risk 

prior to SMP removal. The implication is that the level of 

risk associated with the occurrence of any specific stimuli on 

any generic agricultural activity in any particular region 

differs from other regions according to the combined 
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probability of risk stimuli occurring concurrently at any point 

in time. 

The level of risk might be determined by the impact of any 

stimuli rather than the probable occurrence of stimuli. More 

specifically, the concept of risk might be more appropriately 

associated with the probable impact of say a large price 

decrease rather than the occurrence of such a decrease. Total 

risk within a farm unit describes the combined probable impact 

upon the security of the farm unit, of the occurrence of any 

combination of stimuli. 

Amongst those industries that service agricultural production, 

banking is the industry that is an important prerequisite agri­

service input common to all agricultural and aquacultural 

production and associated activities. This fact makes 

agricultural production dependent on the security and risk 

exposure perceptions that a bank may have with regard to 

agricultural finance involvement. A bank is in a position to 

determine the productive longevity of any individual producer, 

using its ability to either invest or disinvest in its farmer 

client. 

As a consequence, a feature of agricultural risk, from a 

producer's point of view, is the financier's reaction to the 

impact upon the producer of any adverse change in any risky 

factor. This form of risk can be categorised as financial 

risk, and is best described by the following scenario. 
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Assume that during October a sheep farmer has entered an 

unexpected drought period. Further, his June negotiated 

seasonal overdraft facility requires that he receives better 

than average prices for his produce and his expenditure be at 

a controlled minimum level. The farmer's overdraft includes a 

drought allowance that facilitates the purchase of a small 

quantity of stock feed should it be required. overall this 

farmer's debt equity ratio is dangerously large but his current 

account deficit not unusually large for this time of the year. 

He is classified by the bank as being a 'security borderline' 

client. 

As the drought progresses into January, it becomes apparent 

that the stock feed allowance will need to be spent, and an 

'insufficient' quantity of feed barley is purchased due to the 

unit price paid being beyond budget expectation as a 

consequence of the high regional demand for feed barley, 

generated by the drought. Further, he sells a large proportion 

of his prime lambs earlier than expected, to ease the immediate 

stock demand for pasture, at prices less than budget 

expectations. 

The farmer believes he has reacted sensibly to h~s situation, 

in that he is implementing decisions designed to protect his 

future production from the impact of the drought, thus 

minimising his long-term loss. His concern centres around 

controlling the weight loss of his ewes prior to mating and 
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shearing, as well as maintaining a small weight gain in his 

replacement ewe lambs. He is also concerned with reducing his 

short term loss by selling lambs before the market further 

worsens. 

As a consequence of his early sale of lambs and delayed 

purchase of stock feed, his overdraft facility is now certain 

of being exceeded. At this point he visits his bank manager 

with an application to extend his current account overdraft 

facility. He believes that he was justified in selling his 

lambs early, as they would not have reached budget target 

1 i veweights and grades under the circumstances, and pr ices 

offered by the meat companies were worsening as a consequence 

of the unusually high regional supply of lambs from farmers 

concurrently wishing to sell lambs early. 

Although it is certain that the farmer will sustain an 

accounting loss and show a consequential deterioration in his 

equity position, if the bank is prepared to accommodate the 

overdraft extension then, from the farmer's point of view, the 

impact of the drought will not be so bad. The farmer has no 

idea how the bank will react to his application, and considers 

a possible adverse bank reaction to his plight as an additional 

risk component within the total risk of drought and its final 

impact. Should the bank not accept his reasoning and 'harden' 

their position, then the final impact of the drought on this 

farmer would be particularly harmful. 
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The above scenario serves to illustrate two points. First it 

conveys the concept that risk in agriculture is not only 

related to the impact on cash outcomes of various 

uncontrollable stimuli, whatever they may be, but also that the 

severity, or level of risk again differs according to the 

impact that the resulting cash outcome may have on the 

attitudes and business decisions of those financing 

agriculture, and their consequential influence on the ability 

of the farmer to continue farming. Second, financiers of 

agricultural production, once committed to a level of financial 

involvement, either run the risk of inadvertently underwriting 

those components of agricultural business risk they feel 

uncomfortable with, or be requested to do so, thus placing them 

in the unenviable position of having to decide whether or not 

to exert great pressure on their client. 

Agricultural risk is multi-dimensional in terms of its wide 

range of source stimuli, and the variability across farmers and 

regions of the impact that those stimuli may have on the farm 

unit. Although sources of risk can be categorised and the 

probability of those source stimuli occurring are known, the 

quantifiable level of risk itself, or the impact of those 

stimuli, is not known. Risk can only be described according to 

the consequential harmful impact of the occurrence of any 

uncontrollable agricultural characteristic. 
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1.2 THE FINANCIAL SECTOR AND RISK 

1.2.1 BACKGROUND 

At the time the Labour party came to government office during 

1984, New Zealand's financial sector was the most regulated in 

the Western world. Since 1984, the financial sector has been 

completely overhauled. The removal of blanket regulations 

controlling lending and deposit rates and the abolition of the 

penal marginal ratios to financial institutions preceded the 

revocation of both the 30 day rule, which had prevented the 

trading and savings banks from entering the short end of the 

money market, and the 3 percent interest rate restriction on 

the ordinary accounts of savings banks. The removal of credit 

growth guidelines, foreign exchange controls and the 

liberalisation of bank registration were also introduced to 

increase competition and efficiency in the financial system. 

With the ability to borrow or lend offshore, and substantial 

changes to the system of tendering for Treasury·bills, banks 

are now in a position to openly compete for custom (Russell 

1985) . 

Deregulation has seen an increase in the number of banks from 

the major four in 1984 to over 20 in 1990. A growing trend is 

the number of mergers into large supermarket type banks 

offering a wide range of financial services. Smaller banks are 

emerging as niche banks, filling the gaps left by major 



12 

1.2.2 THE ROLE OF THE TRADING BANK 

Whilst it is difficult to be precise in defining a 'bank' or 

banking business, a financial institution is part of the 

banking system if its main functions include the acceptance of 

demand deposits, the operation of money transfer, and the 

creation of demand deposits through the making of loans and 

provision of overdraft credit (Deane 1982). 

It is the ability of trading and commercial banks to create 

money in the form of demand deposits by making loans and 

extending credit, that distinguishes them from other financial 

institutions. The creation of deposits can continue so long as 

banks hold sufficient currency and reserves to meet regulatory 

requirements and to redeem whatever amounts the holders of 

deposits want to convert to currency (Crosse 1979). The money 

a bank can lend or invest, at any point in time, is its excess 

of cash and bank balances over required reserves and minimum 

cash requirements, according to its daily balance sheet. The 

bank must stand ready to pay out the deposits it creates when 

it makes new loans or extends overdraft facilities. 

The creation of demand deposits through overdraft extension is 

particularly suited to the characteristics of • agricultural 

production. By supplying liquidity to producers, through their 

ability to lend and invest, they are able to provide money, at 

a cost, in consideration of assets or effort that have a future 

money value. 
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Given that the creation of deposits through lending is directly 

related to their depository function, i.e., the demand deposits 

that constitute the major portion of the money.supply, then 

their ability to create deposits is constrained by not only the 

willingness of customers to deposit funds, but also by the 

total pool of funds available for deposit. 

Where the pool of funds available for deposit is itself 

constrained and a major proportion of those deposits is 

transacted for consumption, i.e. , they are short duration 

deposits, then the bank has the essential role of apportioning 

or rationing the available long term deposits, as credit, to 

what it perceives as being the most efficient users of that 

credit. 

1.2.3 RISK IN BANKING 

Risk within the banking industry can be categorised according 

to four basic sources. First, market risk broadly consists of 

elements such as the general state of the economy and 

competition within the banking industry. Second, political 

risk includes that risk inherent in changes of government 

policy as well as the internal management politics often found 

within large corporations and their boards of directors. Both 

of these categories can be included within the broad category 

of business risk. 
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The third category, deposit risk, identifies the risks 

associated with the liability side of a bank's balance sheet. 

Demand deposits present risk according to both the term and 

size of the deposit. On call deposits present the greatest 

risk within this category. Deposit risk is included within 

financial risk, along with the fourth category, credit or 

default risk, which describes those risks associated with the 

asset side of a bank's balance sheet. The non-payment of 

either a loan principal at maturity or interest at any stage 

during the term of a loan are the main sources of this type of 

risk. 

Default risk is the main emphasis of this thesis and, as the 

title suggests, concentrates on the short term seasonal 

provision of working capital to agricultural producers. 

Risk is a banker's preoccupation. If loans are not repaid then 

the banker in turn will not be able to meet his commitments. 

In this way both deposit and default risk are linked. Risk is 

inherent in the choice of borrower; risk is implicit in the 

industry being financed; risk by the business to which the 

banker may grant too much or too little credit; risk which 

involves the whole economy; a gambler's risk with weather, 

geography, technology and politics (Camu 1977). 

In making innumerable loans to thousands of undertakings of all 

sizes, large banks are able to protect themselves against at 
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least the consequences of risk, if not against risk itself. 

The banker covers himself against risk by guarantees and 

securities with solid legal backing (Camu 1977). 

A bank manager faced with a request for loan or overdraft 

facility is generally concerned with the answers to four basic 

questions: 

(i) How much does the customer want to borrow? 

(ii) What does he want it for? 

(iii) How long does he want it for? 

(iv) How is it to be repaid? 

The four questions are all related to the security aspects of 

minimising default risk. Although security is not often 

directly questioned, it underlies the reason for asking these 

questions in the first place (Cox 1979). 

The 'how much' question establishes not only the ability of the 

bank to feasibly provide such amount according to its current 

balance of excess demand deposits, but also to ascertain the 

ratio between what the customer himself is providing against 

what the bank is being asked to provide. Bank policy generally 

determines a maximum provision ratio according to the 

realisable value of the asset being financed, and ensures some 

equity to the borrower thus guaranteeing a collateral for the 

loan (Cox 1979). 
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For short term finance, as well as long term finance, the 'how 

much' question relates to the 'what for' question. This 

question is related to the credit use issue where the manager 

is attempting to establish the security parameters of his 

involvement. Is the activity high risk, i.e., is it 

speculative? Will the activity generate a sustainable interest 

yield? Will the amount requested hinder the ability of the 

operation to preform to expectation in terms of loan servicing? 

Are the characteristics of the operation such that it is 

vulnerable to a whole range of uncontrollable influences? Is 

the customer sufficiently knowledgable of the operation? 

This question also begins to address the security question 

directly. What assets will be used as collateral for the loan? 

Do these assets have a realisable value, and how easy are these 

assets 'cashed in'? For seasonal finance, future production is 

sufficient collateral if the value of future production exceeds 

the value of the seasonal finance (Cox 1979). 

Because the bank's current liability constitutes short term 

notice of demand deposit payment, it makes good sense to have 

loans out on a short term basis. The 'how long' question 

relates the term and type of loan to the nature of its intended 

use. 

The 'how is it to be repaid' question is related to how the 

loan will provide for future operation earnings. Will the 

nature of the operation provide sufficient future profit from 
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which the loan can be repaid? Will repayments be such that 

they ensure regular cash flow to the bank, i.e., will payments 

be monthly etc.? Will the loan realise a regular yield, or 

will the return from the loan occur at some future date? (Cox 

1979) . 

Apart from answers to the above questions, other factors play 

a vital part in linking together the answers to the four basic 

questions when evaluating the loan application. One highly 

variable factor is the customer. A bank manager must get to 

know his customer's health, age, activity and the value of 

connected family and business accounts held at the branch. 

This is vital information to the manager (Cox 1979). It serves 

to not only indicate to the bank manager any possible sources 

of default risk, but also the extent of possible guarantees and 

securities that are at his disposal. His objective is to 

increase bank assets by lending to earn interest revenue and in 

so doing, help the customer by providing a loan with such 

security that the risks are minimised for both parties (Cox 

1979) . 
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1.3 THE THESIS DEFINITION OF RISK 

1.3.1 RISK DEFINED 

Risk is not an observable entity - it is a concept verbally 

defined by Websters dictionary as 'the chance of injury, damage 

or loss' . Al though the verbal definition is intuitively 

appealing, it would not appear to lend itself well to 

measurement and analysis. It is therefore desirable to develop 

a surrogate for the dictionary definition of risk that is 

amenable to quantification. For it to be intuitively pleasing 

it must measure, either directly or indirectly 'the chance of 

injury, damage or loss, so that it may be used synonymously 

with the word risk (Francis 1986). 

More generally in analysis, risk is defined as being described 

by a known probability distribution of a particular event 

occurring, in contrast to uncertainty where the probabilities 

are unknown, with the surrogate measure of risk involving the 

variability, or some monotonic transformation, of that 

distribution. The greater the variation of that distribution 

then the greater is the risk of that particular event not 

occurring (Van Horne 1981). 

Although risk and uncertainty are frequently used 

interchangeably, no distinction is made between the two in this 

research. They are conceptually seen as describing the same 
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The elements of doubtfulness, 

fickleness or changeability that characterise uncertainty can 

be described just as much by a subjective probability 

distribution as can risk by an objective probability 

distribution (Francis 1986). As such, uncertainty is not 

recognised as being distinctly different from · risk in the 

context of this thesis. 

There needs to be a clear distinction between the risk of a 

source stimuli as an event occurring, and the risk of an 

adverse or harmful result occurring as a consequence of that 

source event. For instance, we can refer to 'the chance, 

probability or risk' of an event such as a drought or price 

crash occurring, or we can refer to 'the chance, probability or 

risk' that the occurrence of a drought or price crash will be 

harmful, where harm itself is considered the event. 

Two aspects of the verbal definition for risk require 

clarification and definition. First 'chance' and second 

'damage, loss or harm'. Chance is easily interchangeable with 

probability. In the context of the risk definition, chance, 

possibility, probability and odds are synonymous. Therefore 

the definition can be altered to 'the probability of damage, 

loss or harm', where probability is indeed either objectively 

or subjectively quantifiable. 

In order to define 'harm' as an event, in the context of the 

thesis definition for risk, one must pull to_gether those 
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aspects of both agricultural and banking risk, discussed 

earlier, that are identifiably common to both. 

It has been indicated earlier that the level of agricultural 

risk inherent in the occurrence of a source stimuli varied 

according to the impact that resulted. Regardless of the 

source of that risk, the final impact of any source component 

of agricultural business risk is ultimately reflected in either 

a change in farm revenues or a change in farm expenditures, or 

both. An adverse impact would obviously consist of either a 

decrease in farm revenue or an increase in farm expenditures. 

More precisely, an adverse impact would be reflected in a 

decrease in farm profit, the magnitude of which essentially 

determines the magnitude of the financial risk inherent in that 

specific agricultural activity, through the effect that the 

decrease in profits has on farmer equity. Therefore the 

ultimate impact of any combination of business risk stimuli is 

itself a source of financial risk. 

However a small decrease in farm profits, or equity, is not 

harmful if 'sufficient' profit and equity remain after the 

impact, but is harmful if little equity existed beforehand, and 

a financial loss resulted rather than a profit, thus causing 

negative equity. In this situation the financial loss would 

not only increase the default risk the bank first undertook in 

financing the operation, in terms of interest default on both 

long and short term loans and repayment of seasonal loans, but 

would also threaten the security underlying the total financing 
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If the situation were such that default did in 

fact occur then the situation would also constitute harm to the 

bank. 

The commonality between agricultural and banking risk is 

therefore identified within one financial risk component of 

both entities, i.e., the profit component of farmer equity 

within the financial risk inherent in the farm operation and 

the default risk component of the financial risks inherent in 

banking. Joint, or common 'harm' can therefore be defined as 

'zero or negative farm profit'. 

The thesis definition of risk, which is also tantamount to a 

definition for default risk, within the context of short term 

seasonal financing of agricultural production, then becomes 

'the probability of zero or negative farm profit', where zero 

or negative farm profit is assumed to be a jointly harmful 

event. 

One more component of the thesis definition argument needs to 

be examined before a true link between farm financial risk and 

bank default risk can be established. It is contained within 

the definition of 'farm profit', and the implications 

associated with the accounting definition of farm profit. 
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1.3.2 FARM PROFIT AND THE CURRENT ACCOUNT 

By far the largest proportion of trading bank gross operating 

revenue consists of interest income. The Bank of New Zealand 

group reported in its 1990 consolidated profit and loss 

statement that it received eighty percent of its gross revenue 

through interest earnings, and fifty percent of its total 

operating income from net interest income, net of interest 

payments (Bank of New Zealand 1990). Bank profit is therefore 

determined by the relative interest magnitudes of both assets, 

in the form of advances, investments and securities, and 

liability deposits. 

Two characteristics of interest revenue are important in the 

context of risk. First, interest is essentially a cash revenue 

sourced as cash payments made by the lender from revenues 

derived by the activities the bank is financing. Second, the 

duration of that interest revenue is related to both the 

solvency of the lender, or his ability to continue servicing 

the loan, and the security underlying the loan in relation to 

its term. 

From a bank revenue point of view, solvency would seem to be a 

more important component of minimising total default risk than 

would security. If the activity being financed is strong 

enough to provide, or guarantee, the ongoing servicing 

requirements of the loan, but has poor financial security in 

terms of that loan, then so long as that security improves over 
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time as a consequence of the activity's strength, it would seem 

rational for the bank to continue its involvement. 

Assuming that lender solvency is a dominant characteristic of 

continued bank involvement, and security is a dominant 

characteristic, or pre-condition, for initial loan provision, 

and both solvency and security are related via the financial 

strength of the activity, then it follows that from both the 

bank and farmer point of view, cash flow, or cash solvency, is 

the dominant criteria upon which default risk should be 

evaluated. 

In terms of monitoring and measuring the default risk of bank 

involvement, then 

effective way of 

monitoring the current account is the only 

gaining information regarding the cash 

strength or solvency of the borrower. Current account is 

defined as the sum of all accounts, bank or otherwise, through 

which all cash transactions are made. For this reason, and 

because solvency is related to cash, the normal reporting 

format of farm accounting needs to be adapted to accommodate 

the thesis definition of risk. 

The recommended format for farm accounting, as outlined by the 

New Zealand Society of Accountants 1985, is diagrammatically 

abbreviated in Figure 1.1. 

With the emphasis on cash flow, the need for re-defining 'farm 

profit• becomes apparent when one notices the combination of 
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PRODUCE ACCOUNTS FARM WORKING ACCOUNT SCHEDULE OF EXPENSES 
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;> RETAINED INCOME 

Figure 1.1 Farm Accounts 

tangible objective cash items with comparatively intangible 

subjective values throughout these accounts. Cash surplus from 

farming is a true cash definition which is adjusted according 

to changes in livestock values and depreciation to derive net 

farming profit. 

The cash flow statement, although a true cash definition, 

incorporates injections of loan capital or advances, which 

confuses the issue of cash solvency in terms of interest 

payments derived from the 'strength of the enterprise'. Cash 

injections of borrowed capital, if used to repay seasonal debt, 

also confuses the issue of seasonal finance secured by future 

farm production. The use of cash injections, whilst 

constituting a cash flow transaction through a current account, 

also increases both the liabilities and assets of the balance 
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sheet (depending on whether or not capital is purchased with 

the injection) therefore directly influencing the equity 

security issue within default risk. 

By separating out all intangible subjective components of the 

farm accounts, as well as removing external cash injections 

other than earned revenue, we are left with a net cash position 

that is related more to the capacity of the individual and his 

farm to earn sufficient revenue such that he can be defined as 

being 'productively sol vent and secure' . As • such we are 

attempting to separate out those cash components of the farm 

operation that directly relate to 'farm solvency' and 

distinguish between lending to achieve solvency and earning to 

achieve solvency. 

The relationship between solvency and security is identified 

diagrammatically in Figure 1. 2. Assuming that security is 

defined as percentage equity, where equity represents the 

proportion of the capital account to total assets, then one can 

clearly see from the diagram how important a positive cash flow 

is in relation to equity and security. 

The diagram is not meant to show the relative magnitudes of the 

effect of changes in any of the accounting components, nor does 

it show the off-sets with regard to changes in 'below the 

dashed line' intangible components caused by changes in the 

'above the dashed line' tangible components. It merely tries 

to establish the relationship between tangible cash components 
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© 

© © 
Figure 1.2 Cash balance 

and equity. The diagram also indicates the sensitive balance 

between asset values, and adjustments, farm cash flow and cash 

profit, and the balance sheet components. 

In the context of the thesis definition for risk, we define 

risk inherent in the provision of seasonal finance to 

agriculture as being ' the probability of incurring zero or 

negative net cash returns' where net cash returns are defined 

as being 'the sum of all revenues earned by the farmer on the 

farm less all cash expenses and payments made by the farmer'. 

The risk so described refers to the risk of insolvency and the 

inability of a farmer to service the sum total of all 

borrowing. This definition links together the two common 

financial risk components of agriculture and banking. 
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1.4 SEASONAL CREDIT AND THE NEED FOR RISK QUANTIFICATION 

1.4.1 THE EQUITY PROBLEM 

Amongst the many repercussions on the rural sector of the 

removal of agricultural support policies during the early 

1980s, was a general 'across the board' loss of farmer equity. 

With government support and protection having been capitalised 

into land values prior to 1984, their removal almost 

immediately decreased land values and, as a consequence, farmer 

equity levels (Pryde 1987). Compounded by decreased product 

prices, many farmers found themselves sustaining and servicing 

debt levels with little or no underlying security. 
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Figure 1.3 Canterbury farmer equity Source: Pryde 1987. 
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Evidence supporting a general loss of equity can be found in 

Pryde' s 1987 analysis of the equity levels for a sample of 

Canterbury farmers. Figure 1.3 shows that during 

the period 1984 to 1986 inclusive, the sample distributions of 

farm equity changed from left skewed exponential to bimodal. 

The interesting feature of his analysis is that although all 

farm equity levels had dropped, by 1986 the distribution showed 

that no farmer in the survey had an equity of between 10% and 

20%, and 11% of farmers had equity levels of less than 0 ~ 0. 

Pryde' s analysis also shows that in the period 1983/84 to 

1985/86 the percentage of Canterbury farmers with 50% or less 

equity had grown from 13% to 35%. 

Pryde's analysis is also supported by the 1984/85 to 1988/89 

equity distributions, displayed in Figure 1.4, of a national 

sample of sheep and beef farmers taken annually by the New 

Zealand Meat and Wool Board's Economic service. 

This distribution illustration also indicates a sudden 1986 

increase in the percentage of sheep and beef farmers with zero 

or negative equity levels. For the 1984/85 season only 0.2% of 

sheep and beef farmers were in this category. By the end of 

the 1985/86 season, the percentage of farmers in the negative 

equity category had increased to 3.7% of the sample, inferring 

that some 800 sheep and beef farmers, among approximately 

22,000 sheep and beef farmers at that time, had absolutely no 

financial equity security, and the percentage of sheep and beef 

farmers with 50% or less equity had grown from 7.9% to 20.8%. 
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Figure 1.4 Sheep and beef Farmer Equity Source: M.W.B.E.S 
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By the end of the 1988/89 season the percentage of negative 

equity farmers had improved to 2%. 

In discussions with numerous financial advisors, Pryde found 

that in assessing the financial situation of farmers, they now 

paid no attention to averages, and less attention to equity. 

Farmers are categorised into 'boxes' that depict distinct 

situations (Pryde 1987). In a typical cross-section of 

Canterbury farmers, 6% were in deep financial trouble, and had 

been for at least ten years, 21% were in trouble but probably 

could recover under favourable conditions, 49% were described 

as struggling, having been caught by their level of borrowing, 

and 24% were described as 'very sound'. 

If we consider just the first 'box', 6% in serious trouble, in 
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just Canterbury alone, there were between 300 - 400 farmers in 

this predicament (Pryde 1987). Over the country this may 

conservatively be estimated at between 4000 - 5000 farmers. 

Further, the total agricultural debt at 1987 was estimated to 

be about $8 billion. With an average indebtedness of 

approximately $150,000, this equates to a total of between $600 

million and $750 million of at risk farm debt, and this is for 

only 6% of the total farmer population. It is unlikely that by 

1991 the situation is much improved, despite the improvement 

noted in Figure 1.4. Note that the distributions also infer 

that banks must indeed be currently financing at least 1.5% of 

farmers with no equity security. 

Although Pryde's research describes only the Canterbury 

experience, it seems probable, according to figure 1.4, that 

similar equity situations occurred throughout New Zealand. 

Pryde' s 1987 survey of financial advisors and · institutions 

revealed a profile of the type of farmer affected by financial 

difficulties. His list of characteristics, abbreviated below, 

would appear to be generally applicable. 

Characteristics of farmers in financial difficulty: 

1. The standard of resource management is generally poor. 

2. Working expenses exceed a certain proportion of income. 

3. A lack of economies of size and scale. 

4. Excessive levels of personal drawings. 
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1.5 CHAPTER SUMMARY 

The current environment within which both farmers and bankers 

conduct their business demands a more direct responsibility for 

the management of risk. Given the unique business risks 

inherent in agricultural activity, plus a need for bankers to 

avoid involvement in farm plans that increase the risk of loan 

servicing and repayment default and the adverse consequences of 

default occurring, specific agricultural risk needs to be 

measured before risk management strategies can be developed and 

implemented. 

The specific agricultural risk to be measured is defined as 

'the probability of a farmer client incurring zero or negative 

net cash returns ' . A client that conducts a farm activity 

which results in a negative cash position after one season of 

operation, is deemed to be unable to totally service existing 

debt. A pre-condition of servicing is that funds available for 

servicing must be sourced from earned activity and not 

borrowed. 

Net cash returns are defined as consisting of all earned gross 

cash revenues less all farm and personal cash expenditures. 

The proposed cash transactions, or farm budget, conducted 

through the farmer's current account, excluding injections of 

borrowed capital, will be utilised in the quantification of 

default risk. 



33 

Measuring the probable inability for an activity to service 

debt constitutes a warning mechanism with regard to lending 

secured by farmer equity. Avoidance of the repercussions, on 

both banker and farmer, of loan interest and repayment default 

underlie the objectives of such a measurement. 

1.6 THESIS OBJECTIVES 

The first objective of this thesis is to quantify the default 

risk of seasonally financing agricultural production according 

to the definition 'the probability of zero or negative net cash 

returns'. It is intended that the probability be directly 

estimated utilising the probability modelling technique of 

logit analysis, and applied to the dominant components of sheep 

and beef farming. 

The second objective is to concurrently develop a method for 

combining multiple farming activities such that the resulting 

risk measure refers to an individual farmer client involved in 

any combination of those activities. 

1.7 THESIS ORGANISATION 

Chapter One has described the background and associated need 

for the measurement of a specific type of risk common to both 

farmers and bankers, and has identified and defined that risk. 
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Chapter Two evaluates traditional risk measurement techniques 

for their general suitability as a risk measure. Chapter Three 

presents and describes probability modelling techniques. 

Chapter Four describes and defines the variables used in the 

modelling process, as well as describes the data used in the 

construction of the variables. Chapters Five through Seven 

specify the legit model and report the results of model 

building and testing. 

The thesis concludes with Chapter Eight, which discusses the 

results, strengths and weaknesses of the model, as well as a 

framework within which the model could be utilised. 

Limitations and problems encountered in this inalysis will 

indicate areas for further research. 
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Chapter Two 

RISK QUANTIFICATION METHODS 

2.1 TRADITIONAL METHODS OF RISK MEASUREMENT 

It has long been accepted that measurement of the risk involved 

within any investment consists of the objective or subjective 

variability about expected investment outcomes. First and 

second moment analysis about an expectation, including 

variations such as standard deviation, semi-variance and 

covariance, form the basis of the majority of recognised risk 

evaluation techniques and models. Since the 1952 Markowitz 

publication 'Portfolio Selection', and the birth of portfolio 

theory, researchers have generally concentrated on methods of 

selecting investment or activity options with risk, having 

first of all accepted variability as a surrogate measurement of 

risk. 

With the objective of minimising risk concurrently with the 

maximisation of returns, methods of activity selection 

logically centred on the tangency between either a utility or 

objective function, and what is commonly known as an E-V 

frontier or opportunity curve. The E-V frontier plots the 

various returns (outputs) of all options on the Y axis against 
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the variance about those returns on the X axis. Tangency with 

a preference/utility/objective function indicates the optimal 

trade-off between returns and risk, and identifies the most 

'suitable' option of those plotted. 

Interest evolved into the structure of the investor's utility 

curve and the nature of selection behaviour under risk. Much 

literature on risk analysis concentrates on either the 

behavioral aspects of decision makers to identify their level 

of risk aversion, or assumes a level of risk aversion or 

utility curve and identifies the optimal activity selection 

under either a linear or quadratic programming framework 

(Bardsley, Borch, Lambert, Scott, Robison, Taylor, Pope). All 

have in common, with some exceptions, variability or 

covariability as their quantification of risk. 

Those that recognised the limitations of variability and the E­

V frontier utilised a Bayesian or Bernoullian probability 

framework for their analysis (Rae 1971). The associated 

development of decision trees and the selection of activities 

based on an individual's appraisal of outcomes can ignore an 

objective risk measure by relying on the individual to utilise 

a 'black box utility function' in selecting his/her activity on 

the basis of maximising the subjective probability of an 

expectation actually occurring. The subjective probabilities 

utilised in such an analysis are themselves surrogate risk 

measures. 
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Various mixtures of sensitivity or variability of subjective or 

objective probability distributions as risk measures are found 

in models such as CAPM, MOTAD, APT, and MONTE CARLO, which are 

outlined in this chapter. Very few models utilise the third 

and fourth moments of a distribution. Most make the assumption 

of normally distributed returns and normally distributed risk 

variables. This chapter will examine the various methods of 

risk quantification for their suitability to agricultural risk 

evaluation. 

2.2 INCOME VARIATION, SENSITIVITY AND THE E-V FRAMEWORK 

2.2.1 VARIANCE 

Variance, and monotonic transformations such as standard 

deviation, standard error, absolute deviation, coefficient of 

variation etc, are generally utilised as surrogates for 

measuring risk. Generally used within a portfolio selection 

framework, variance about an expected outcome attempts to 

convey the strength of uncertainty one should feel toward the 

expectation. The greater the variance, or dispersion, the more 

unlikely is the expected outcome to eventuate. 

Given a farm firm that produces i products, then the farms 

expected net returns will be: 
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i 

(2 .1) 
E(r) = L qnxn = %X1 + %X2 + ..••• qixi 

n=l 

where q represents net returns per unit of x produced. 

Alternatively, expected net returns may be the sum of the 

products of the various one-period net returns times their 

probabilities, where xn denotes the nth net return from the 

probability distribution, qn is the probability that the nth 

net return occurs, and there are i possible net returns 

(Francis, 1986). 

Variance is then calculated according to whether (a) the 

expected returns represent the sum of individual activity 

returns within one-period, or (b) the expected return is the 

various total farm returns times their probabilities of 

occurring. 

In the case of (a), we calculate the total variance function 

assuming that the qn' s are random variables with means, qn, 

n=l ... i, variances and covariances anm' n=l .... i, m=l ... i (when 

n=m, anm = an2 ) i.e. the net returns from each activity have an 

expected value or mean, variance about the mean, and covariance 

with the returns from other activities within the total 

expected returns equation. 

The variance of the total farm net returns V (r) can be 

expressed as a quadratic function of the xn's and the variances 

and covariances of the qns (Stovall 1966): 
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i i 
( 2. 2) V(r) = LL anm xnxm 

n=l m=l 

The first and second partial derivative of (r) with respect to 

xn can be used to determine the marginal contribution of the 

nth activity to total net return variance. That is, a variance 

risk measure can be assigned to each individual farm production 

activity. 

(2.3) 

(2.4) 
a2 V(r) 

ax2 
n 

= 2<J2 n 

since the second derivative is always positive, the sign of the 

first derivative determines how incremental changes in the 

level of the nth activity affect total return variance. With 

the addition of an activity, or an increase in any existing 

activity, the sign of the first derivative shows whether the 

addition of a unit of the new activity will result in a higher 
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or lower income variance. With Xn = o, the last term in the 

first derivative vanishes, reducing to; 

i-1 
( 2. 5) 2 L ani Xn 

n=l 

i.e., twice the sum of the covariance of the income from the 

additional activity with the incomes from each existing 

activity weighted by the respective activity levels. If the 

above equation is negative, incremental increases in Xn will 

reduce total income variance. 

In the case of (b), variance is calculated directly from the 

probability distribution of likely net returns. ie: 

( 2. 6) 

i 
cr2 = L qn [xn - E(r)] 2 

n-1 

= % [x1 - E(r)] 2 + q 2 [x2 - E(r)] 2 + ... qi [xi - E(r)] 2 

The resulting variance of a farm firm's expected returns, 

calculated according to the probabilities of different return 

levels, attempts to measure the risks inherent in such 

distributions, subjective or otherwise (probabilities utilised 

may be based on actual past returns). 
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2.2.2 SEMI-VARIANCE 

Variations on the variance theme include conversion to standard 

deviations, standard errors, mean absolute deviations and semi­

variance or other monotonic transformations of variance. Use 

of a semi-variance measure at least acknowledges the fact that 

distributions of net returns are unlikely to be normal. 

If risk is defined as the probability of loss or harm, it seems 

more logical to measure risk by the area in the probability 

distribution that is below its expected return. Tsiang 

indicates that if the third and fourth moments of a 

distribution are not significant, then second moment analysis 

is sufficient. This merely states the obvious in that if a 

distribution is normal, i.e., insignificant skew and kurtosis, 

then variance and use of the empirical law are sufficient to 

make statements and give an indication of risk. It is not 

important whether variability of returns (risk) is measured on 

one or both sides of the expected return (Francis 1986). 

Semi-variance, which measures variance below the expectation, 

is calculated 

i 
(2.7) SV(r} = L qn [ kn - E(r) ] 2 

n-1 

Where kn is the nth below average return of the distribution. 
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The question therefore seems to be: are net returns, or the 

variables that construct net returns, normally distributed or 

skewed? If returns are skewed, then variance or any monotonic 

transformation cannot accurately reflect risk. 

2.2.3 SINGLE-INDEX COEFFICIENT VARIANCE 

A useful variation on the variance theme can be found in the 

single-index model of risk (Sharpe 1963,1970) adapted for use 

within a quadratic programming framework by Collins and Barry 

(1986). Their objective was to develop a single-index risk 

measure, based on single-index parameters and computational 

simple methods for farm risk planning. 

The single-index model provides for the measurement of 

individual activities within a multiproduct farm. But again it 

contains no more than a variance-covariance matrix. The model 

is based on the assumption that each activity's return (ri) is 

linearly related to some common factor (rm) and to random 

elements ei. 

(2.8) 
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The rm variable should be any factor thought to be the most 

important single influence on returns (Sharpe 1970). In 

finance, GNP or stock market indices can be used. Within 

agriculture, climate indices or land area might be appropriate. 

The beta coefficient represents the single-index measure of 

risk. Collins assumes a region of homogenous land has N crop 

production activities with expected returns ri (i=l, ... N) to 

risk, management, and capital. Further, he assumes that 

variable rm is a generalised measure of the region's income. 

Its values would depend upon the region growing conditions and 

prices for resources and products. 

Accordingly, beta coefficients measure the systematic 

volatility of the respective crop returns. A crop with beta= 

1 would on average experience the same systematic volatility as 

the average of all crops in the region, and would 'follow the 

market' . A crop with beta = 2 would have double the systematic 

volatility of the average of all crops, and so on. 

Ordinary Least Squares the variance of ri is 

(2.9) 

Using 

The variance of an activity therefore consists of two parts. 

One part (Biam2 ) measures the variability common to all 

activities, and the second part (aei2 ) measures an activity's 
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unique variability, i.e., the nondiversifiable (systematic) and 

diversifiable (nonsystematic) risk respectively. 

The farm business that produces M crops (M <= N) where Xi is 

the proportion of land in the ith crop will have expected 

returns of 

( 2. 10) 

and variance 

(2.11) 

M M 

rP = L xiri 
i=l 

where L xi = l 
i=l 

M 2 M 

a! = [L XJ3) I: 
i=l i=l 

where the variance of a single crop activity, and thus its risk 

measure is 

( 2. 12) 

which reduces to 

( 2. 13) 

if the activity is produced by a well diversified farm. 
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Thus the set of single-index beta coefficients approximates the 

variance-covariance matrix and serves as a measure of risk in 

agricultural portfolio analysis. 

choice of rm is not critical. 

Collins believes that the 

2.2.4 VARIATION, THE BETA COEFFICIENT AND CAPM 

In agriculture, the traditional portfolio choice problem is 

based on the total variance of the farm plan relative to 

expected returns. The contribution that each farm activity 

makes to the total variance of the farm plan has received 

relatively little attention (Turvey, Driver 1987). As has been 

outlined in the single-index beta model (Sharpe), the farm 

sector portfolio reflects only that risk that is common to all 

activities, i.e., nondiversifiable risk. For individual 

activities, there are also two types of risk - nondiversifiable 

because of the correlation with the total farm plan, and the 

diversifiable, or non-correlated element of the activity. 

Generally, a large diversified portfolio of investments is 

considered to be free of any diversifiable risk, i.e., all the 

risk is systematic. But within the individual investments i, 

each have the two component risk elements. Therefore the 

degree to which i's risk is systematic relates to the degree of 

correlation that exists between i and the total portfolio over 

the same time horizon. The relationship is captured by what is 
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known as the characteristic line; 

(2.14) 

where Bi is the beta coefficient for investment i, Rit is the 

return on i, ~tis the total return of the portfolio, over 

time horizon t. 

Bis then the relative measure of i's systematic risk. Since 

it is a measure of the correlation between Rit and ~t' it is 

the predicted response of Ri to changes in~-

( 2. 15) 
Cov(Ri,Rm) 

= 
Var (Rm) 

where ri,m = the correlation between Rit and ~t. The 

systematic component of i is defined as ri,mai and the 

nonsystematic component (1 (Levy, Sarnat 

1982) (Turvey) . When the market is in equilibrium, the expected 

return on i is directly related to the systematic risk of i. 

This relationship is captured by what is known as the market 

security line 

( 2. 16) 
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where~ is the return on a risk free asset, I\n the mean return 

of the portfolio, (I\n - ~) the risk premium, where Bi(Rui - ~) 

establishes the premium above~ required to hold security i, 

which has as its beta risk measure Bi (Turvey, Driver 1987). 

Using the equations for both systematic and nonsystematic risk, 

each component can then be calculated on a cash basis, and 

choice of activity made according to deviation away from the 

market security line. Figure 2.1 represents a hypothetical 

market security line for a range of agricultural activities. 

EXPECTED 

RETURNS 
($/ Ha) 

y 
E 

···············································-·································································· 

A B 
·················•• .. ···············•• .. ··························/ ·················································· 

z 
TOTAL RISK ( $) 

X 

FIG 2.1 Portfolio Risk 

C 

Assuming that point E represents one activity with a total risk 

in dollar terms of X, all of which is assumed to be systematic, 

then one would expect to receive $Y per hectare. However, 
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using the equations for systematic and nonsystematic risk 

abc\ve, one finds that systematic risk is only $Z, ie. AB is 

syt :tematic risk, while $ZX (BC) is nonsystematic or 

di'.tersifiable. Point B then represents an expected dollar 

re"l hrn $A, for accepting $Z per hectare worth of systematic 

ri~.k. Therefore the actual $ risk measure for activity i 

eq1:.rals $BC. 

This method identifies a beta risk measure for activity i as 

well as identifying a dollar risk value. Turvey and Driver 

conclude that using this method, Beta and a CAPM framework can 

be used to identify the specific activity systematic and 

nonsystematic risk. Further they content that this method also 

identifies whether or not farmers are actually compensated for 

the level of systematic risk they accept. 

Those within investment management have found that the beta 

coefficients generated have tended to be poor, i..e., low R2 or 

poor fits. Brealey (1984) and Gooding (1978) believe 

investment risk to be a multidimensional concept. They found 

also that although returns correlated significantly with beta, 

they did not correlate with total portfolio risk. Further, the 

perceived beta measure and perceived financial leverage were 

also uncorrelated. 

An application of CAPM to New Zealand agriculture was attempted 

by Narayan and Martin (1990). They concluded that generally 

the choice of a market portfolio is crucial to the outcome of 
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the model, and although useful to decision-makers, is therefore 

extremely sensitive and should be used with caution (Narayan, 

Martin 1990). 

2.2.s ARBITRAGE PRICING THEORY 

APT or arbitrage pricing theory (Ross 1976), is a model that 

differs from CAPM in that it skips the step of how investors 

can construct efficient portfolios, and assumes that each 

stock's return depends on several independent influences or 

factors. 

(2.17) 

is the general form of what is a single asset, time-series 

return-generating model, where r it is the one-period return 

from the ith asset in time period t, ai the expected return for 

an asset if all risk factors have a value of zero, Fjt the jth 

risk factor that impacts upon the assets return, j = 1,2 ... k 

different risk factors with expectation of zero, ie E(Fjt) = o, 

Bij a sensitivity indicator or factor loading that measures the 

responsiveness of the asset to Fjt' and eit the residual return 

unexplained, [ E(eit) = O ]. All factors must be independent 

(orthogonal) with respect to all assets, i.e., E[ei {Fj 

E(Fj)}]=O for all i and j. 
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The betas in this example are again proxy risk measures similar 

to the single-index model and CAPM. The APT model however goes 

one step further; it establishes a risk premium that would 

induce investors to assume a one-unit increase in beta risk. 

i.e. 

( 2 • 18) 

The Aj coefficients thus measure the market price of risk for 

whatever risk is measured by Bij• Ao represents the return on 

a riskless asset, if such an asset exists. Subtracting the 

intercept term from E(ri) indicates the risk premium form for 

that portfolio. 

If either beta in a two factor model equals zero, and the other 

equals 1, then the APT equations reduce to the CAPM equation. 

( 2. 19) 

E(r) - A0 = A1 P ii 

E(ri) =lo+ A1Pi1 

with A0 = R 

This interpretation shows that CAPM is merely a special case of 
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APT. Or, APT is a logical extension of CAPM. In either case 

the risk measure is beta, but risk can be conveyed conceptually 

better, within APT, by expressing it as a dollar premium. 

Investors might possibly relate better to a dollar 'risk price' 

than simply a beta risk measure. 

2.2.6 BETA AS A MEASURE OF RISK 

Relatively little dispute appears in the literature regarding 

the suitability of beta coefficients as measures of risk, 

although their accuracy and usefulness would appear to depend 

on the exogenous variable or variables used in their 

approximation. APT at least identifies a need to use those 

factors directly contributing to the risks of any stock or 

activity within a portfolio. Still, the methods employed by 

CAPM and APT rely on variance as a proxy measure, by deriving 

a coefficient that is in effect a measure of the variance and 

correlation of the stocks variability in relation to either the 

'market' or other chosen factors. 

Estimates of correlation coefficients are obtained from betas 

by noting that 

(2.20) 
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All of the beta methods assume that the only correlation that 

exists between securities arises because of common correlation 

with the market. This is a simplified assumption in that it 

ignores additional sources of correlation present, such as that 

which might arise from specific industry conditions. It has 

been shown that ignoring these industry specific correlations 

leads to a downward bias in the correlation estimates (Elton, 

Gruber Urich 1978). Further, they conclude in their study that 

overall mean is a preferred method of forecasting correlation 

coefficients, and therefore betas, in comparison to the best of 

the time series beta techniques. Their results show that a 

naive average of correlation dominates all other techniques at 

a statistically significant level for all periods sampled. 

Their conclusions basically invalidate betas as surrogate risk 

measures, due to the large errors in their estimation and the 

simplicity of their underlying assumptions concerning 

covariance and correlation with the market. 

It seems that any exogenous market index variable on its own is 

not sufficient to explain the variation of individual 

securities. APT attempts to correct for this by including 

several variables, but again their selection may itself be a 

major task given the requirement that all factors used must be 

independent, if total variation of a single security is to be 

explained. 
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2.2.7 ABSOLUTE DEVIATION - MOTAD 

A transformation of the variance theme is found in what is 

generally known as the MOTAD model. MOTAD minimises total 

absolute deviation rather than variance, or minimises the sum 

of the absolute values of the negative deviations using a 

linear programming algorithm (Hazell, 1971). The objective of 

the model is to develop risk efficient farm plans, much in the 

same way that EV/utility analysis attempts. to do, by 

parameterising an income constraint from zero to its maximum 

value, thus tracing out the EV frontier. 

A typical formulation of the MOTAD model may look like 

Maximise 

Subject to 

(2.22) 

Ld 

AX~B 

DX+ Id ~O 

c'x = 1 

X, d, A ~ 0 

where X, A, B, and C represent activity labels, resource 

requirements, resource availabilities, and gross margin 

expectations, respectively (Mapp, Hardin, Walker, Persaud 

1979). The gross margin expectation is the mean of the series. 
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Element D represents a matrix of deviations between the 

observed gross margin and the gross margin expectation. The 

vector d represents yearly total negative deviations summed 

over all risky activities. Ld represents the summed total 

negative deviations over all years. A is a scalar used to 

represent the income constraint. The efficiency frontier is 

traced out by parameterising this scalar, and the solution set 

indicates the optimal activity levels under different risk 

scenarios, specified as input data for the model, and tests the 

feasibility of certain farm plans, under risk conditions. 

The model does not implicitly derive risk measures as such, but 

instead assumes risk is described by absolute deviation between 

observed and expected gross margins, and minimises the 

deviation. 

2.2.s SIMULATION AND SENSITIVITY - MONTE CARLO 

Simulation and sensitivity analysis is generally useful for 

'what if' questions relating to the impact upon cash flows and 

net returns of changes in various variables re~ponsible for 

producing the net return. The Monte Carlo method of analysis 

utilises both probability distributions and sensitivity 

analysis, to construct a final net returns distribution from 

which variance and deviation can be estimated. The method 

overcomes the complicated procedure of mathematically combining 

independent distributions to derive the four moments of the 
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resulting distribution. 

For example, consider a farm production unit that produces n 

cash crop products i = 1 .... n. 

function may look like 

Its net cashflow return 

(2.23} 
n 

E(r) = L [ Ai ( YiPi - V)] - TC 
i=l 

where Ai represents the area of crop i, Yi the per hectare 

yield of crop i, Pi the per unit (yield) price received for 

crop i, Vi the per hectare variable costs of crop i, ((YiPi -

Vi) would represent the per hectare gross margin of crop i) and 

TC representing the total fixed costs of the unit. 

Each variable is independent, a constraining requirement of 

Monte Carlo analysis, but Yi and Vi are correlated. In 

addition, each variable has a probability density function, 

either objectively derived from historical information, or 

subjectively estimated using a triangular distribution or some 

other method. Further, the distributions for Ai, Pi, Vi, TC 

and Yi are finite, i.e., o >Ai<= 100 (the total area of the 

farm), and o >Yi<= xi (xi representing the maximum possible 

yield for crop i). Prices and costs can neither be less than 

zero nor greater than some predetermined level. 
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Monte Carlo then randomly samples point estimates from each 

variable distribution and completes the net return function 

using the selected estimates. After completing a predetermined 

number of iterations, the method has constructed a random 

distribution of possible returns. One then has the choice of 

using either the mode or the mean of the resulting distribution 

as an expectation of net returns, and appropriate statistics 

calculated from the distribution. However, other than a 

potentially more accurate distribution of returns, the decision 

maker is still confronted with variance and the like as 

measures of risk even if the variance in this case is likely to 

be a better reflection of the combination of all underlying 

variances (Brealey,Myers 1984). 

Although the procedure would appear to be straightforward, 

problems arise in identification of the appropriate 

distribution functions from which samples are drawn, and 

specification problems arise in terms of identifying the 

appropriate final distribution. The Monte Carlo method can 

only accept moment measures of the underlying distributions. 

In combining these various distributions, parameter estimation 

problems and stochastic dominance problems arise, in attempting 

to measure the moments of the final distribution. Distribution 

forms and appropriate distribution functions need to be 

identified before estimation procedures can begin. Pope and 

Ziemer (1984) considered normal, log-normal, and gamma 

distributions in their search for stochastic efficiency using 

various estimation techniques, i.e., the mean-variance rule, 
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maximum likelihood method, the empirical distribution function 

and appropriate ML methods for nonnormal cases. They conclude 

that for most risk efficiency analysis in agriculture, the 

empirical distribution function preforms better than other 

techniques, and that the popular mean-variance rule does not 

have general applicability since it is not robust toward 

nonnormality (Pope,Ziemer 1984). 

2.2.9 VARIANCE AS A RISK MEASURE 

Since the development of portfolio theory, based on the EV 

frontier and the separation theorem, discussion has centred not 

on the suitability of mean-variance as a surrogate risk 

measure, but as a method for identifying efficient choice, 

under risk conditions, relative to maximising utility. 

Under a quadratic framework, the EV set derived is·additionally 

constrained by activities needing to be di visible, nonnegative, 

and linear, i.e., outputs are linear combinations of the inputs 

(Robison, Brake 1979). Additionally, portfolio theory in most 

cases only considers price risk. Portfolio theory has been 

condemned as a consequence of the apparently restrictive 

assumptions. Samuelson (1970) and later Tsiang (1972) defended 

the use of portfolio theory and the mean-variance framework, 

once Tobin, one of the initial pioneers of EV analysis, 

admitted that mean-variance could only be used under special 

circumstances of known normal distributions and second order 
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polynomial utility functions. 

Tobin was forced to concede the weaknesses of EV through 

criticism from Barch and Feldstein, who contended that any 

system of upward sloping mean-standard deviation indifference 

curves can be shown to be inconsistent with the basic axiom of 

choice under uncertainty (Tsiang 1972). Barch believed that by 

the dominance axiom, any point on the curve could be preferred 

if its distribution and probability of gain was-greater than 

any other, which contradicts the meaning of indifference curve. 

Feldstein used a log utility function to show that an ES curve 

for a risk averter need not be convex downwards, though upward 

sloping, suggesting that risk aversion might decrease as risk 

itself is increased beyond a certain extent. 

Tsiang' s response was to qualify the usefulness of EV by 

declaring that, with regard to utility, any utility curve that 

could be transformed into a polynomial through a Taylor 

expansion, and converged quickly enough, such that moments 

higher than two became insignificant, could pe therefore 

represented by the quadratic utility function. He further 

asserts that mean-variance are suitable proxies for risk if the 

level of risk a decision maker faces is small, i.e., what is 

necessary for the E-V analysis to be a good approximation is 

merely that risk should remain small relative to the total 

wealth of the decision maker. 

Further, this level of risk ought not exceed 10% of the 
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Indeed if risk is normally very small, 

then for a fair approximation for many problems, we may safely 

neglect terms higher than the second moment. Yet Alderfer and 

Bierman (1982) conclude in a study examining the importance of 

the third moment in the investor's decision process that the 

third moment, and possibly the fourth, are also relevant. 

Their experiments show that investors clearly use more 

information than just the first two moments. In addition, 

factors beyond the third and fourth moments were required to 

explain the choices made in their experiments. Probability of 

loss, certainty of payoff, and the maximum possible loss are 

also likely to influence choice. 

Apart from the normality issue, Tsiang raises an important 

issue. To know how small the risk level is before we can 

safely use the E-V framework requires us to measure it. Does 

this mean that we can only use EV if the variances of activity 

options are small, and how small should they be? With regard 

to the normality issue, Tsiang himself admits that the 

assumption of normal distributions for all outcomes of risky 

investments or activities is patently not realistic; for it 

would rule out all asymmetry or skewness in th~ probability 

distributions of returns. 

Two questions then: are agricultural returns normally 

distributed, and are the risks within agriculture relatively 

small enough to make E-V analysis a reasonable proxy for risk 

analysis and activity selection? 
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Richard Day (1965), in a statistical analysis of field crop 

yields concludes that normality and lognormality-appear to be 

the exception rather than the rule. He noted the relationship 

between skewness, kurtosis and nitrogen application rates, 

suggesting extreme departures from normality across different 

crops. Further, he concludes that as a consequence, mode or 

median estimates of yield may be preferred to mean estimates 

both for forecasting and prescription purposes. 

Steven Buccola (1987) showed positive correlation between 

skewness and kurtosis reduces the likelihood of associated 

decision errors from false imputation of normality. He cites 

the work done by Pope and Ziemer who show thqt use of EV 

methods in conjunction with nonnormal distributions leads to a 

relatively high rate of incorrect rankings among risky choices. 

By using Pearson's Skew and Kurtosis measures, Buccola shows 

the level of skewness and kurtosis for alfalfa and dryland 

wheat indicating nonnormality once series for prices, yields 

and costs had been whitened. 

Thus the E-V framework as a decision method for agricultural 

production choice and bank lending policy, may be a risky 

method for agricultural finance application evaluation. 
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2.3 DISCRIMINANT FUNCTION ANALYSIS - CREDIT CLASSIFICATION 

As was outlined in chapter one, risk to a banker can be 

categorised in terms of the risk of default due to a borrowers 

insolvency and bankruptcy, interest rate risk in terms of 

Government fiscal and financial policy, and market risk due to 

competition within the banking industry and the convertibility 

of deposit investments (Crosse, Cox). Given a farmer client, 

the bank is exposed primarily to default risk because of the 

unique risk nature of agriculture impacting directly on cash 

flows. Therefore, any agricultural risk directly measures the 

default risk faced by the bank, and from the bank's point of 

view, can and should be used as some form of credit 

measurement. Risk and credit are directly related. 

The APT model gives a clue as to how a bank might measure risk 

and so derive a credit ranking. A multitude of factors 

influence the credit worthiness of any prospective client. 

These include not only the risks that underlie the specific 

activities the client is proposing, but also perhaps other 

physical or personal circumstances that might threaten the 

ability of the client to carry out those activities. Examples 

might be marital problems, disability or even death. In 

addition, personality characteristics such as extreme extrovert 

behaviour and a propensity to gamble, or conversely an 

introvert character with personality problems that may result 

in excessive drinking, can impact severely on the ability of 

the client to fulfil a financial bank contract. 
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It is not possible to identify every risk component and then 

measure each component within each prospective client, as well 

as the risk components of the activity the client is seeking to 

finance, such that a risk free credit decision can be made. 

However it is possible to identify some . factors or 

characteristics that might act as indicators of the potential 

risks behind a credit decision. Alternatively, identifying and 

measuring only those objective risk components related to the 

proposed activity and then adjusting those measurements 

according to some subjective criteria in the formulation of a 

credit index might result in a more sound credit decision. 

Discriminant function analysis attempts to do either of the 

above, in much the same way that the APT measures risk 

according to those factors thought to contribute to risk. The 

objective is to classify individual cases into predetermined 

categories according to independent factors thought to 

influence that classification (Peirson, Bird, Brown 1986). 

Assume that there are three categories of credit with which to 

assign any prospective client; good, doubtful and bad. 

Historical client data has classified known clients into the 

three categories according to loan performance. For each case 

within each category, data has been collated on three factors, 

X1 , x2 and x3 , which might be actual net income, area of farm 

and rainfall respectively. On the basis of historical 

information, the bank wishes to predict membership into one of 

the three classifications based on the three predictor factors. 
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Because there are three classification groups, we need to 

estimate two discriminant functions; the first has the largest 

ratio of between-groups to within-groups sums of squares, the 

second, uncorrelated with the first, has the next largest 

ratio. In general if there are k groups, k - 1 functions can 

be calculated, in an attempt to explain as much variation as is 

possible. Generally the functions would take the form 

(2.24) 

A case's values on both discriminant functions must be 

considered simultaneously for classification. D represents the 

standardised discriminant score for case i. Like APT, this 

score could represent the risk score or index. The mean of 

each discriminant function over all cases is zero and the 

standard deviation for Di is 1. Just as Di can pe calculated 

for each case, a mean value of Di can be calculated from each 

classification category. Membership into either group is then 

determined by whether or not the case's D score falls within a 

standard deviation of the group mean. Group means are known as 

centroids in reduced space, the spacing having been reduced 

from that of the k predictors to a single dimension, or 

discriminant function. 

To assign cases into the three groups, either the two 
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discriminant functions are used, or three classification 

equations are developed. In is simplest form, the basic 

classification equation for the jth group (j = 1,2 .... k) is 

(2.25) 

Testing of either classification equations rest on their 

ability to classify known cases from the sample, i.e., the 

proportion of cases classified correctly. If the 

classification rate is unsatisfactory, then either the 

estimation procedures are incorrect or the predictor variables 

inadequate · for classification purposes, i.e., insufficient 

variance is explained by the independent variables. 

One of the major advantages of classification indices, based on 

probability of membership, is their robustness to the violation 

of variable normality if violation is caused by skewness rather 

than outliers (Tabachnic, Fidell 1989). A major disadvantage 

of discriminant analysis is its assumption of linearity among 

all pairs of predictor factors. 

Given that classification of cases is dependent on predictor 

factors, it then becomes important that the 'correct' variables 

are selected in constructing the discriminant functions. An 

advantage of this form of evaluation is the ability to 

construct composite variables of like factors through use of 

multifactor or principle components analysis. This procedure 
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can ensure that independent variables are truly independent. 

Many banks require the answers to standard personal 

questionnaires presented to applicants for credit. The results 

of these questions can be combined with other known physical 

factors related to the activity intended by the applicant. A 

study by Krause and Williams ( 1986) developed a behavioral 

model of farm families that included factors such as 

motivation, ability, and biographic variables. Their study 

suggested that personality variables, of both husbands and 

wives, were important in developing systems for use in 

evaluation of farm credit applications. 

Variables used in the study included risk aversion (m), 

scientific orientation (m), manifest anxiety (m), anxiety score 

(w), authoritism (m), vocational interest (w), adaptability (m) 

scientific knowledge (w), aggressive conservatism (m) and 

unresolved rebellion (w), where (m) indicates for men and (w) 

indicates for women. All variables were significant. The 

diversity of potential variables used in a discriminant 

function analysis designed to construct 'discriminant risk 

scores' would appear to be unlimited. This supports the view 

that risk, and its various components, is a very complex 

multifactorial concept. Any attempt to quantify risk must take 

into account this fact. 
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2.4 RISK QUANTIFICATION 

The underlying theme of all traditional methods of risk 

quantification is the acceptance of variance as the basic 

measure of risk and uncertainty. Much of the work done has 

centred on the decision process under conditions of risk and 

uncertainty, usually from a 'choice of alternatives' point of 

view. Using the EV framework in conjunction with either a 

linear or quadratic programming algorithm, to either maximise 

utility or minimise variance, concentrates solely on the 

decision problem. It takes variance for granted, as do beta 

models, as the quantification yardstick for risk. 

As noted in previous sections, researchers have q~estioned the 

validity of variance as the primary surrogate measure of risk. 

Given the complexity of deriving higher moments from 

combinatorial distributions, and the difficulty of identifying 

and empirically estimating the parameters of individual 

distributions, researchers have sought to overcome the issue of 

risk quantification by ignoring it in favour of assuming that 

it forms part of the 'black box' behaviour of individual 

utility or preference functions, and that measuring utility 

therefore indirectly measures risk. This implies that risk is 

a qualitative concept based on personal belief, rather than a 

measurable quantitative concept (Anderson, Hardaker 1973). 

Where the EV criteria method for activity selection has been 

refuted as a decision framework, it has been replaced by 
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methods that rely on stochastic dominance or efficiency. SD 

relies on knowing the relevant cumulative density functions of 

payoffs and selecting that payoff, for example, whose CDF lies 

to the right of all others, i.e., first degree stochastic 

dominance (Hadar, Russell, 1969). The problem with this method 

is that the relevant CDFs need to be measured, and the analysis 

is still concerned with individual choice and preference. One 

danger with SD is its propensity to eliminate from 

consideration low variance portfolios, even though these 

portfolios also had low returns (Porter, Gaumnitz, 1972). 

A danger with stochastic dominance as a decision criteria for 

farm activity selection is that it could support the kind of 

heuristics that people use under conditions of uncertainty. SD 

supports subjective income probability distributions very well 

and outperforms EV given a subjective probability ~istribution, 

but performs poorly in comparison to EV given an objective 

income probability distribution (Lee, Brown, Lovejoy, 1985). 

Given the results from this study, a banker might be more 

inclined to accept the more objective framework of EV rather 

than SD, since bankers have often been at the mercy of 

heuristic farmer forecasts of future income. 

The issue addressed in this chapter is whether or not variance, 

in whatever form it is used, is a good surrogate risk measure. 

The decision problem is solved on the basis of risk, once risk 

is quantified. Utility and preference functions become usable 

according to the risks inherent in any activity. Given 
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variance as a measure, the decision maker cannot make a 

decision unless he/she has a comparison. 

What is required is a yardstick measure that all can 

simultaneously relate too, in terms of whether or not an 

activity or investment is risky or not risky, and know from the 

measure exactly how risky that activity is. An individual's 

preference ordering and risk aversion then applies in his 

decision in terms of how much risk he is prepared to accept, 

and he either accepts or rejects the investment on the basis of 

that risk measure. 

Defining risk as the probability of loss or the probability of 

not achieving an expected outcome, rather than the expected 

dispersion or fluctuation about an expected outcome, 

immediately takes us away from any analysis of the X axis of 

any probability density distribution regardless of whether or 

not the distribution is subjective or objective. If 

probability is measured by relative frequency, objective or 

subjective, i.e., the Y axis of the distribution, then given a 

distribution, we are logically interested in the kurtosis and 

mode of that distribution relative to our expectation. If 

kurtosis is correlated with skewness then we are also 

interested in skewness. 
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Chapter Three 

LINEAR PROBABILITY MODELLING 

3.1 AN ALTERNATIVE APPROACH TO RISK MEASUREMENT 

If risk is multifactorial and defined as the probability of 

loss or harm, and if variance analysis of the X axis of a net 

returns distribution is inappropriate as a risk measurement, 

then the Y axis or probability measurement is the only 

alternative. If an expected return has been identified, then an 

expected loss, or risk in not achieving that expectation, is 

that area to the left of the expectation under the 

distribution. The probability of the actual outcome falling 

below the expectation is the cumulative probability up to the 

expectation. 

Given those factors that might influence the level of risk, or 

probability of loss, it is possible to estimate directly that 

level of risk, i.e., directly estimate the probability of an 

outcome being less than expected. If a minimum expected level 

of outcome is defined for any activity, below which loss is 

incurred, then the estimate of the probability of that defined 

outcome can be made, based on known historical outcomes. The 

resulting probability of a defined limit occurring will then 

constitute a measure of risk. 
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3.2 A LINEAR PROBABILITY MODEL - THE LOGIT MODEL 

3. 2 • 1 ORDINARY LEAST SQUARES AND THE LINEAR PROBABILITY MODEL 

The 'logit' model, or loglinear analysis, is an extension of 

the multiway frequency analysis of the relationship between 

several categorical, or qualitative, and discrete variables. 

It has become an accepted framework for the analysis of a wide 

range of social, medical and economic issues (Berkson 1951, 

McFadden 1974). Alternatively known as regression on a 

dichotomous dummy dependent variable, the method utilises a 

weighted linear sum to predict the classification of cases into 

categories crosstabulated according to independent explanatory 

variables. 

Assuming that a predetermined minimum threshold outcome for any 

activity or portfolio, below which loss or harm will occur, is 

defined as~, consider the following simple model: 

( 3 .1) 

Where x1 i ••••• Xni = n independent factors influencing risk 

and where Yi= 1 if i <= ¢ (the threshold outcome level) 

Yi= O if i > ¢ (otherwise) 
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The above model is a linear probability model since E(Yi l 

Xni), the conditional expectation of Yi= 1 given the Xis, can 

be interpreted as the conditional probability that the event 

will occur given Xnir i.e., Pr (Yi= 1 l Xni). 

Assuming E(ui) = O (to obtain unbiased estimators), 

( 3. 2) 

Letting Pi equal the probability that Yi= 1 (the threshold 

occurs) and 1 - Pi the probability that Yi= O (the threshold 

does not occur), the variable Yi has the distribution 

0 

1 

Probability 

1 

Therefore by the definition of mathematical expe?tation, 

(3.3) 
E ( Y) = 0 ( 1 - P) + 1 ( P) = Pi 

and can equate to obtain 

(3.4) 
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The conditional expectation of Yi can be interpreted as the 

conditional probability of Yi (Gujarati 1988). 

Since the probability Pi must lie between O and 1, the 

constraint that O <= E(YilX0 i) => 1, i.e., the conditional 

probability, must lie between O and 1. 

It would appear that the above model could now be estimated by 

the standard OLS method. Unfortunately, even though OLS 

assumes the disturbances (uis) to be normally distributed, the 

assumption is no longer tenable because like Yi, ui takes on 

only two values. 

( 3. 5) 

ui = Yi - O:a - PliXli - . - Pnixni 

when Yi = 1 ui = 1 - O:a - Plixli - . . - Pnixni 

when Yi = 0 ui = -ao - PliXli - . . - Pnixni 

Ui follows a binomial distribution, and cannot be assumed 

normally distributed (Gujarati 1988). 

In addition, even if E(ui) = o and E(uiuj) = O for i not equal 

to j, i.e., no serial correlation, the disturbance terms are 

heteroscedastic. To see this, following from the previous 

distribution, the uis have the probability distribution 



Probability 

1 

By definition 

( 3. 6) Var ( u.) = E [ u. - E ( u.) ] 2 
i i i 

= E(u]) 

for E(uJ = 0 by assumption 

and using the probability distribution of ui, we obtain 

(3.7) 

with 
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The variance of ui is heteroscedastic because it depends on the 

conditional expectation of Y, which depends on the values taken 

by the Xis. Thus ultimately the variance of ui depends on the 

Xis and is thus not homoscedastic (Gujarati 1988). Therefore, 

under heteroscedasticity, OLS estimators will not be efficient, 
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heteroscedasticity problem. 

variables would ·handle 
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the 

A further problem is that there is no guarantee that Yi, the 

estimators of E(YiiXi) will lie between 0 and 1. This can be 

achieved by resorting to restricted least squares or 

mathematical programming techniques, but these are complicated 

procedures. 

The most basic problem with OLS and linear probability 

modelling is the fact that LPM does not appear logically 

attractive. It assumes that Pi = E (Yi = 11 Xni) increases 

linearly with Xni' i.e., the marginal or incremental effect of 

the Xni s remains constant. What is therefore needed is a 

probability model that has two features: (a) As Xni 

increases, Pi= E(Y = llXni) increases but never steps outside 

the Oto 1 interval, and (b) the relationship between Pi and 

the Xnis is nonlinear, where the approach to zero is slower and 

slower as Xni becomes small, and approaches 1 at slower and 

slower rates as Xni becomes large. 

In effect, such a model would reflect the decreasing risk of an 

individual activity, decreasing until negligibl~ as expected 

net returns for that activity grow larger and larger. Should 

the historical nature of an agricultural enterprise indicate a 

'safe bet' with regard to relatively high net returns, then 

intuitively the risks associated with that activity should be 

small, i.e., the probability of that activity's actual outcome 
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occurring at the predetermined threshold of loss should be 

extremely low. 

3.2.2 THE LOGISTIC FUNCTION AND LOGIT MODELLING 

The cumulative distribution function, which describes the 

probability of any expected outcome, is sigmoid shaped. Its 

slope at any point is determined by the kurtosis and skewness 

of its underlying probability density function. Kurtosis 

regulates the rate at which the CDF ascends from o to 1, and 

skewness determines the rate of convergence with either O or 1 

probability, at either tail. 

1 

0.8 

Probability 

0.5 

x Outcome 

Figure 3.1 cumulative Distribution function 



Figure 3.1 indicates such a sigmoid function. 
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All variable 

distributions have their associated CDF, and although all CDFs 

are sigmoid, every CDF is empirically unique according to the 

kurtosis and skewness of its underlying distribution. This 

raises the practical problem of which CDF model to use in an 

analysis. Historically, the CDF forms commonly chosen to 

describe dichotomous qualitative response models are the 

logistic and normal CDF, the former giving rise to the 'legit' 

and the latter the 'probit' or 'normit' model (Gujarati 1988). 

With an underlying normal, or lognormal distribution, zero on 

the X axis will always equate to 0.5 on the probability scale. 

This is because zero will be the mean, and mode, of the 

distribution, given that the data is positively and negatively 

symmetrical about zero. In general, the mean of a distribution 

will always equate to 0.5 on the probability scale of its CDF. 

This basic fact is important in the context of a decision rule 

that uses CDF probability risk measures (Gujarati 1988). 

The general form of the logistic function is 

(3.8) 
1 

where e is the base of the natural logarithm, and zi represents 

the linear sum of the independent variables times their 
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coefficients, i.e.; 

( 3. 9) 

Thus the full logit model takes the form 

(3.10) 
1 

As zi ranges from negative infinity to positive infinity, Pi 

ranges between O and 1, and Pi is nonlinearly related to zi. 

But although these two preconditions are satisfied, an 

estimation problem exists in that Pi is not only nonlinear in 

Xni but in the Bni s as well, therefore necessitating the 

transformation of the model, as follows. 

If Pi is the probability of the threshold¢ occur~ing, then the 

probability of it not occurring is 

(3.11) 
1 
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and therefore we can write 

( 3. 12) = 

Where Pi/ (1 - Pi) is now the 'odds ratio' in favour of the 

threshold being met, ie., the ratio of the probability of the 

actual outcome equalling¢ to the probability that¢ will not 

actually occur. Taking the natural logarithm of the above 

equation linearises the relationship between dependent and 

independent variables. 

( 3 • 13) 

L.1. = ln ( Pi ) = z - N + n X + + A. X + u i - ""o 1-' 1i li · • · · 1-' ni ni i 1 - pi 

Where Li is the log of the odds ratio, and is in fact the 

'logit'. As P goes from o to 1, the logit L goes from negative 

to positive infinity. The logi ts are not bounded between o and 

1, and although Lis linear in X, the probabilities are not 

(Gujarati 1988). 

The coefficients of the model indicate the change in L for a 

unit change in X, i.e., the effect a unit increase of X has on 

the log-odds of our actual outcome being equal to ¢. To derive 

the probability Pi of the actual outcome=¢ (the· threshold of 
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loss incurred) , and obtaining the 'risk index' or 'credit 

rating', we need simply solve the logistic function 

(3.14) 
1 

3.2.3 ESTIMATION OF THE LOGIT COEFFICIENTS 

Given the model 

( 3. 15) L.l. -- ln ( Pi . ) -- A X ao + .., i i + ui 
1 - P1. 

and putting the values 1 and o, according to whether or not our 

observed outcomes fall above or below ¢, directly into the 

logit Li, we obtain: Li= ln(l/0) if our observation is less 

than or equal to¢, and Li= ln(0/1) if our observation is 

greater than¢. These expressions are meaningless and enforce 

use of the maximum-likelihood method to estimate the 

parameters, particularly if data is at the micro or individual 

level (Gujarati 1988). 

Logit analysis transforms the observed individual data into the 

relative frequency of individual cases falling into either 

category 1 or o, according to the independent factors. If Xi 
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represents farm area for example, Ni the number of observations 

in each frequency class of Xi, and ni the number of 

observations that fall into category 1 (less than or equal to 

¢) at each class level of Xi, i.e., corresponding to each level 

of area Xi, there are Ni farmers, ni among whom are classified 

into category 1, then if Ni is large, the relative frequency 

ni/N i can be used as an estimate of the true Pi. Fitting 

according to the logit equation will estimate the true logit Li 

well if Ni is large (Gujarati 1988). 

As with LPM, the disturbance terms in logit analysis are also 

heteroscedastic. It can be shown that if Ni is fairly large 

and if each observation in a given Xi class is distributed 

independently as a binomial variable, then ui follows a normal 

distribution with zero mean but variance equal to 1/[NiPi(l-

( 3. 16) 
1 

( 1 - Pi) ] 

This makes necessary the use of weighted maximum likelihood 

estimators, where the standard deviation of ui is used as the 

weight, i.e., 

(3.17) a2 = 1 
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since Pi= ni/Ni, Li can alternatively be expressed as 

Li= ln ni/(Ni - ni). To avoid Pi taking the value o or 1, in 

practice Li is measured as: 

( 3. 18) 

1 (n. + -) 
J. 2 

£, = ln-------
i ( Ni - n i + __! ) 

2 

3.2.4 INTERACTION EFFECTS 

(Pi· + ..!N,) 2 J. 

= ln-------
(1 - Pi· + ..!N.) 2 J. 

As well as continuous variables, dichotomous variables are also 

valuable as independent variables in the logistic function. 

They can be used as dummy variables, in the same way that they 

are used in multiple regression, for sorting out the effect on 

the logit of different categories of exogenous .factors. In 

fact it is possible to have the entire logit function 

dichotomous or trichotomous in both dependent and independent 

variables (Goodman 1972). 

Consider the following model: 

(3.19) 
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Where x1 and x2 are any exogenous factors. D1 and D2 are dummy 

variables, both dichotomous yes or no (1 or 0). A fully 

saturated model, totally predicting classification into Yi= 1 

or o, could contain not only main effects but also two, three 

and four way effects, ie., 

Main effects 

Two way 

Three way 

Four way 

Each interaction variable coefficient describes the impact on 

Li of the specific qualitative characteristics described by the 

dummy variable. For example, if D1 represents a provincial 

region in New Zealand, and D2 a topographical class of farm, 

say Northland for D1 , D1 = 1 if yes, o if no, and North Island 

Hill country for D2 , D2 = 1 if yes, O if no, then the 

interaction coefficient describes the adjustment -effect on Li, 

of hill country farming in Northland, i.e., there exist unique 

risks in that type of farm in that region. 
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3.3 THE DECISION FRAMEWORK WITHIN LOGIT ANALYSIS 

Given that the logit model 

(3.20) 
1 

derives the probability Pi of Yi= 1 given zi, where Yi= 1 if 

i <= ¢, then changes in z i shift the logistic function 

according to Pi. 

1 -- ·················•·····································•····· ································::;;····=···--························ 

.9 ·-

.8-­

P1 --_7,..-_-_~--------t 

Probability 

.6 -­

.5__ 

.4 ·-

.3 --

.2--

v-1 0 

P1 

Figure 3.2 Relative CDF Probability 

P2 

v-o 
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Figure 3.2 displays two cumulative density functions Pl and P2, 

which could be described as representing either two individuals 

with various mixes of activity or product, or two individual 

activities. The logit function has derived probabilities for 

both, i.e., Pl and P2 (0. 73 and 0.13 respectively), 

representing the probabilities of each activity being equal to 

or less than¢, a threshold level of risk, i.e., where Yi= 1. 

According to the probability measures, one would pref er to 

select P2, given that its measure of risk is less than that of 

Pl. By utilising the risk measurement, one is immediately 

distinguishing among distributions and making selections 

according to the underlying distributions of each option. 

Let Pl represent G(x) and P2 represent F(x), both CDFs for the 

distributions f(x) and g(x). The question is whether or not 

F (x) would be preferred over G (x) by all decision makers 

regardless of their preference functions. The answer 

determines the generality of acceptance of Pi as a measurement 

of risk for a yes/no decision on an independent activity or 

choosing between two or more options. Will all decision 

makers, regardless of their preference functions, select F(x) 

over G(x), and will all decision makers, with a predefined risk 

threshold level, accept Pi if Pi exceeds their threshold of 

acceptance? 

The stochastic dominance problem of finding necessary and 

sufficient conditions on cumulative distributions G (x) and 

-
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F(x), such that F(x) will be preferred or indifferent to G(x) 

by all agents in a particular group of agents, has been solved 

by Hadar and Russell (1969), Hanoch and Levy (1969), Meyer 

(1975,1976), and others. 

Assuming all preferences of a decision maker are represented by 

an expected utility function u(x) which is increasing and twice 

differentiable, groups are then described in terms of the 

properties of their utility functions. Meyer (1975) does not 

find this method of defining groups very convenient, because 

u(x) is not a unique representation of a given set of 

preferences. To restrict the group of agents under 

consideration by restricting u(x), the restrictions used on 

u(x) must also be met by all positive linear transformations of 

u(x) because any positive linear transformation of u(x) also 

represents those same preferences (Meyer 1975). Generally, 

stochastic dominance places restrictions on u(x) by specifying 

the signs of the second and third derivatives of u(x). Because 

many possible restrictions on u (x) do not define groups of 

decision makers, since membership of a group depends on the 

particular representation of preferences being used, Meyer 

prefers to place restrictions on r(x), where r(x) is defined as 

(3.21) r(x) = 
-ul I (x) 

u 1 (x) 



87 

i.e., r(x) represents decision maker's preferences uniquely 

(Pratt 1964) . Restrictions on r (x) correspond directly to 

restrictions on preferences, by describing groups of decision 

makers with U (r1 (x) , r 2 (x)) being the set of decision makers 

with preferences r(x) satisfying 

(3.22) 

r 1 (x) s:r(x) s:r2 (x) 

or alternatively 

(3.23) 

u-ull(x) 
r 1 (x) s; ---- s; r 2 (x) 

u 1 (x) 

Vx 

Vx 

for given functions r 1 (x) and r 2 (x). Pratt and Arrow interpret 

r(x) as a measure of a decision maker's absolute aversion to 

risk. Thus restrictions on r(x) can be viewed as an upper and 

lower bound on the degree of risk aversion for the decision 

makers in the set under consideration (Meyer 1975). 

The expected utility assumption states that F(x) is preferred 

or indifferent to G(x) by an agent with utility u(x) if and 

only if 

1 1 
(3.24) f u (x) dF(x) ~ f u (x) dG(x) 

0 0 
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or equivalently 

1 

(3.25) f [G(x) - F(x)] ul(x)dx: 2-; o 
0 

For any two functions r 1 (x) and r 2 (x) the necessary and 

sufficient conditions on F(x) and G(x), for F(x) to be 

preferred or indifferent to G(x) by all decision makers in the 

1. F(x) is preferred to G(x) by decision makers in the set 

U( - oo, + oo) if 

(3.26) [G(x) - F(x)] 2-; 0 V x c (0, 1] 

2. F(x) is preferred to G(x) by decision makers in the set 

U(O, + oo) if 

(3.27) 
y 

f [G(x) - F(x)] dx 2-: 0 Vx c [O, 1) 
0 
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The above two conditions on F(x) and G(x) are defined 

respectively as first and second-degree stochastic dominance of 

F(x) over G(x), where set 1 places no restrictions on 

preferences other than assuming u(x) is increasing and twice 

differentiable. The group in set 2 is important because it 

contains the set of all risk averse decision makers. 

defines the risk threshold level below which decision makers 

are not prepared to accept risk. 

Where the level of risk averseness can be defined by a 

function, i.e., r 1 (x) is any function, then given 

(3.28) r 1 (x) 
- ull (x) 

= 
u 1 (x) 

3. F(x) is preferred to G(x) by agents in the set 

U(r1 (x) , + oo) if 

(3.29) 
y 

J [G(x) - F(x)] uf (x) dx 2:0 \/xc[0,1] 
0 

i.e., the condition that applies when only a lower bound on the 

risk aversion of a group of decision makers is specified. 
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Where only an upper bound on the risk aversion of a group is 

specified, ie., where r 2 is any function, then 

4. F(x) is preferred to G(x) by agents in the set 

U( -oo, r 2 (x) ) if 

(3.30) 
1 

J [G(x) - F(x)] uf (x) dx :?: o 'r/x c [O, l] 
y 

The situation where both r 1 and r 2 are specified lower and 

upper bound functions, is much more difficult to solve. Meyer 

suggests that since r(x) represents a given set of preferences 

the problem is solved for a given F(x), G(x), r 1 (x) and r 2 (x) 

by checking if the expected utility from F(x) is greater than 

G(x). His solution failed to display a closed form solution, 

and is in the form of a rule for calculating the solution in an 

applied way. 

Maximising 

1 

(3.31) 
-J [G(x) - F(x)] ul (x) dx 

0 

subject on 

-uf (x) J 
r 1 (x) ~ [---- ~ r 2 (x) ut (x) 

with u 1 ( 0) = 1 
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which is given by 

(3.32) 

1 

r 1 (x) if f [G(y) - F(y)] U6 (y) dy < 0 
X 

-uf (x) 
I = 

U6 (x) 

I 
1 

r 2 (x) if f [G(y) - F (y) ] U6 (y) dy :?: 0 
X 

In general, theory would indicate that F(x) will be preferred 

to G(x) by all agents in the set U(r1 (x),r2 (x)). Therefore Pi 

as a measure of risk will generally be identified as 

discriminating between a high or a low risk option. Where risk 

aversion can be identified in terms of a Pi level for r 1 (x), 

i.e., a Pi lower bound, then any Pi greater than r 1 (x) will be 

accepted as possible options. Those options wit~ Pi less than 

r 1 (x) will not be possible options, according to stochastic 

dominance conditions. 
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3.4 LOGITS OR PROBITS? 

In comparing the relative merits of utilising either the 

logistic function or integrated normal function for deriving 

Pi, a quick look at the functional forms of both will indicate 

that the functional simplicity of the logistic function is 

appealing. 

The logistic function can be specified as: 

(3.33} 

y= 1 
1 + e- (a: + ~X) 

logi t (y) = ln Y = a + Px 
1-y 

The integrated normal function can be specified as: 

(3.34} 

1 y= 
../2rt 

a: + ~x - s f e<-t2>12 dt 

pr obit (y) = normal deviate + 5 = o: + px 
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The logistic curve is distinctly easier to fit than the 

integrated normal curve, and is particularly suited to 

binomially distributed variates (Berkson 1951). This arises 

from the fact that if the variate pis logistic, the first 

derivative is pq. Since the weight in fitting procedures is 

reciprocal to the binomial variance pq, these will frequently 

cancel. Thus the normal equations for MLE of the logistic 

function are: 

Ln(p-1?) =O 

(3.35) 
L n ( px - px ) = o 

It is seen that the coefficients are dependent only on n, the 

sample size. 

The coefficients of the normal equations for the integrated 

normal curve contain not only z, the ordinate of the normal 

curve, but pq, the values to be estimated. 

(3.36) 

'°' nz( p-p) =O 
LJ pq 

L §~ (px - px ) = O 
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The relative precision of both minimum x2 and maximum 

likelihood estimates of regression coefficients, appear to give 

the logistic function a definite advantage over the integrated 

normal curve as a statistical instrument (Berkson 1951). In 

addition the logistic estimates - both the x2 and likelihood 

estimates - besides being asymptotically efficient are also 

statistically sufficient, while the estimates of the parameters 

of the integrated normal curve are not sufficient (Berkson 

1951) . 

Pictorially both the logistic and integrated normal curves are 

strikingly similar, so much so that they are practically 

superposable, but their respective equations make one easier to 

handle than the other when solving for Pi, the probability risk 

measure, in terms of Li, the logit, within the logistic 

function. 

Given the assumption of non-linear relationships, and the 

estimation ease and generality of the logistic curve, it will 

is used in this study as the basic sigmoid curve representing 

the cumulative distribution of net cash returns for individual 

farm production units, from which probability measures of risk 

will be estimated. Using this technique assumes that the 

combinatorial cumulative density function representing all 

agricultural net cash returns, is logistically sigmoid shaped. 
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Chapter Four 

DATA DESCRIPTION 

4.1 SURVEY SAMPLE 

Data utilised in the construction of the logi t model was 

provided by the New Zealand Meat and Wool Boards' Economic 

Service, from annual sheep and beef farm survey data gathered 

for the years 1984/85 to 1988/89 inclusive. Their survey uses 

actual farm account information for revenues, expenditures and 

balance sheet data, and is historical in nature. Physical data 

are collected separately for each farm in the survey and data 

is compiled on a per farm basis, regardless of ownership 

structure. 

The annual sample units are selected randomly and the sample 

made large enough to avoid bias from unit abnormality. Each 

and every qualifying farm unit has had equal chance of 

selection. Qualifying is defined as having wintered at least 

750 sheep or their equivalent sheep plus cattle stock units, 

must be privately operated as an independent ordinary 

commercial farm unit, and at least 80 per cent of the farm 

revenue derived from sheep or sheep plus beef cattle (except in 

the case of mixed finishing farms located in Canterbury) (NZ 

Sheep & Beef Farm survey 1988-89). 
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The population consists of a comprehensive list of sheep and 

beef farm owners from which a random sample is drawn and 

divided or stratified according to geographical area, flock 

size and farm class. In addition, use of variable sampling 

fractions is made to reduce random sampling error.. This means 

that the population is divided into homogeneous groups of 

strata from which a random sample is taken. This ensures that 

groups within the population are adequately represented. 

Stratification has the objective of spreading the total annual 

sample of approximately 530 farms over the main sheep and beef 

farming districts, and flock sizes within regions using random 

selection proportionate to the regional and flock size 

distributions of sheep and beef farms. 

All Crown properties and farms with less than 750 stock units 

are excluded before sampling. This excludes aboµt 7 per cent 

of sheep and beef farms, reducing the population by over twelve 

thousand flocks. The annual sample of 530 represents a 

qualifying population of 21,300 sheep and beef farms, or 2.5 

percent of the population. 
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4.2 SAMPLE UTILISATION 

Given that the objective of this thesis is to discover the 

probability of relationships between nominal net farm cash 

incomes and factors likely to influence net cash incomes, 

including nominal prices received for farm products, it was 

decided that the five independent annual farm surveys be 

combined into one sample representing the five year time frame. 

The nature of legit model and coefficient estimation need not 

include time adjustment parameters, as the process involves the 

prediction of the probability of membership of cases to the 

categories of a dichotomous dependent variable according to the 

crosstabulation of that dependent variable with other discrete 

independent variables. This is not a regression exercise 

involving the exact prediction of a dependent outcome, nor the 

direct relationship between dependent and independent 

variables. 

Table 4.1 displays the annual sample sizes for each accounting 

year where an accounting year varies according to the 

individual farms' balance date in any year. A physical 

production year, measuring stock transactions, is always June 

ending. The sample percentage of farm population for the years 

84/85 to 87/88 inclusive are based on a population of 22,000 

farms, and for 88/89 on a population of 21,300. The final 

combined sample size percentage of 11.73 is based on 22,000 

farms. 
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Table 4.1 ANNUAL SAMPLE SIZES 

ACCOUNTING SAMPLE % OF 

YEAR SIZE POP. 

1984/85 520 2.36 

1985/86 510 2.32 

1986/87 503 2.27 

1987/88 513 2.33 

1988/89 535 2.51 

TOTAL SAMPLE 2581 11.73 

4.3 VARIABLE DEFINITIONS 

Appendix I presents the list of variables requested from the NZ 

Meat & Wool Boards' Economic Service. Variables selected for 

and utilised in the modelling process were either constructed 

from the Appendix I list, or used directly. The following 

variables were selected for model testing according to their 

possible influence on net farm returns and their likely impact 

on the probability of a farm incurring negative returns after 

a years ' trading. Names in brackets are the actual model 

variable names used in the analysis. 
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CLASS (CLASS) 

The topographical farm class classifications, as used by both 

the NZ statistics Department and Meat & Wool Boards Economic 

Service, includes classifications 1 through 8. 

1. SOUTH ISLAND HIGH COUNTRY: 

properties carrying fine wool 

Extensive high country run 

sheep with wool as the 

predominant source of income. Situated mainly in Marlborough, 

Canterbury and otago. 

2. SOUTH ISLAND HILL COUNTRY: Rolling to steep hill country 

with mainly finer wooled sheep and carrying about three stock 

units per hectare. Wool and stock sales the main source of 

revenue. Situated mainly in Canterbury. 

3. NORTH ISLAND HARD HILL COUNTRY: Steep hill country with 

about eight stock units per hectare and a ratio of 12 sheep per 

cattle beast and approximately 75 percent of income from sheep 

production. Situated mainly on the East and West coasts and 

the central plateau of the North Island. 

4. NORTH ISLAND HILL COUNTRY: Easier rolling hill country 

with mainly crossbred wool type sheep averaging lb stock units 

per hectare and a ratio of 11 sheep per cattle beast. Revenue 

mainly from forward and prime sale stock. These properties are 

situated throughout the North Island. 
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5. NORTH ISLAND INTENSIVE FINISHING FARMS: High production 

grassland farms located on either flat or flat/rolling hill 

country carrying 12 stock units per hectare with a ratio of 11 

sheep per cattle beast. Situated mainly in South Auckland, 

Taranaki, King Country, Hawkes Bay and Wellington. 

6. SOUTH ISLAND FINISHING/BREEDING FARMS: Extensive type of 

easy country finishing farms breeding own replacements 

accompanied by moderate levels of cash and fodder cropping. 

Mainly found around Canterbury, otago and parts of Southland. 

7. SOUTH ISLAND INTENSIVE FINISHING FARMS: High production 

flat grassland farms carrying 12 stock units per hectare on 

average, with some cash cropping. Found mainly in Southland 

and parts of Otago. 

8. SOUTH ISLAND MIXED FINISHING FARMS: Mainly found on 

intensive Canterbury farms with a high proportion of income 

from seed and cash crop production, as well as finishing stock. 

REGION (LOC.) 

The regional location of farms is specified according to the 

counties and districts as they were during 1986. Figure 4.1 

indicates the major regions, and Appendix II the counties and 

districts within each region. There are no farms .from the West 

Coast region of the South Island in the sample, and is due to 

the limited number of qualifying properties found there. 
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REGIONS 

Figure 4.1 Geographical Regions 

AREA (AREA) 
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This is effective area in hectares, of productive land. 

Excludes bush reserves, buildings and raceways or retired land. 

NET INCOME (NTINC) 

Net Income is defined as the CASH returns net of all cash 

expenditures, according to the definition outlined in chapter 

one. Total income comprises all cash revenues from the sale of 

all production minus all stock purchases. No allowance is made 
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for changes in livestock values, as these are intangible value 

adjustments. Similarly, total cash expenses comprises all farm 

working expenses, capital purchases, personal drawings, 

taxation payments and all mortgage payments. Depreciation is 

considered an intangible non cash entity and is not included as 

an expense. A negative net income in the context of this 

thesis, indicates an inability to service all private and farm 

expenses, as well as lending, from actual on farm production. 

WOOL PRICE (WOOL) 

This is the average price at auction of all wool type sales, 

i.e. , the total gross wool revenue divided by the total 

kilograms of wool sold, and is defined as the average gross per 

kilogram dollar price of wool at auction. 

LAMB PRICE (LAMB) 

This is the average per head price received for all types of 

lamb sales, i.e., the sum of prime, store and live whether, 

ram, ewe and cryptoid lamb sale incomes divided by the sum of 

prime, store and live sale numbers. 

EWE PRICE (EWE) 

The average per head price received for all types of mutton, 

store, cast for age and two tooth ewe. As above, the sum of 

all cash returns divided by the total numbers sold. 
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BEEF PRICE (BEEF) 

The average per head average price received for all ages of 

steer cattle sales. Constructed as all prime and all age store 

sales divided by total numbers sold. 

HEIFER PRICE (HEIF) 

As above, the per head average price received for all ages of 

heifer cattle sales. Constructed as above. 

TOTAL EXPENSES (TTEXP) 

Defined as the total cash expenses of net cash incomes. It is 

the sum of all farm and personal cash expenditures, including 

capital purchases and excluding depreciation expenses. 

EQUITY PERCENT (EQ %) 

Defined as the percentage of farmer balance sheet equity of 

total asset values. Land, buildings and livestock are valued 

at market value. Plant is shown at book value. This equity 

includes investments and off-farm assets valued at cost. 
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FERTILISER (FT/HA) 

The tonne per effective hectare of all fertiliser applications, 

including nitrogenous fertilisers. 

STOCK UNITS (SU/HA) 

Defined as the per effective hectare stock unit ewe 

equivalents, present at the 30th June, of only those livestock 

classes used in this analysis. Excluded from total stock uni ts 

are; wethers, weaner bulls, unmated cows and heifers, deer and 

goats. Total stock units were calculated using the following 

conversion ratios: 

Ewes 1 SU 

2t Ewes 1 SU 

Hoggets 0.7 SU 

Rams 1.1 SU 

Mated Cows and Heifers 6 SU 

Yearling Cattle 4 SU 

2 year Cattle 4.5 SU 

3 year cattle 5 SU 

Bull Beef 6.5 SU 

Breeding bulls 5.5 SU 
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LAMB SALE PERCENT (LB%) 

Defined as the lambing percentage net of lamb deaths as at 30th 

June. Calculated as the sum of all lamb sales as a percentage 

of the open breeding numbers of ewes on hand at 30th June. 

Although not a lambing percentage figure because it includes 

the sale of lambs purchased, this method appealed because it 

included allowance for the deaths of lambs prior to balance 

date. 

WOOL PRODUCTION (WL/HA) 

Defined as the total kilograms of wool sold per effective 

hectare per year. 
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4.4 VARIABLE DESCRIPTIONS 

Table 4.2 reports the basic statistics of the variables 

utilised in the building of the model. 

Table 4.2 STATISTICAL DESCRIPTIONS 

MEAN MODE STD SKEW KURT RANGE MIS 

NTINC -17521 -44480 51256 -1.24 9.746 752899 0 

WOOL 4.23 2.381 1.163 5.223 40.591 15.697 1 

LAMB 17.10 12.00 5.095 0.695 3.496 59.974 61 

EWE 12.12 6.00 5.490 2.593 17.623 66.891 50 

BEEF 490.63 350.00 139.7 0.360 0.251 1012 850 

HEIF 364.79 450.00 99.29 1.586 10.916 1345 880 

TTEXP 153487 72855 109215 2.326 8.238 942134 0 

FT/HA 0.195 0.250 0.172 1.181 1.995 1.187 557 

SU/HA 9.620 9.489 3.790 -.480 0.225 22.826 0 

LB% 97.251 100 31.30 2.013 22.045 179 9 

WL/HA 38.80 12.786 20.71 0.548 0.345 112.74 0 

AREA 967.15 245 2631 6.414 50.818 30113 0 

EQ % 72.7 100.00 24.53 -1.64 4.051 200.6 0 

CLASS NA NA NA NA NA NA 0 

LOC. NA NA NA NA NA NA 0 
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MEAN= sample Mean, MODE= Sample mode, 

STD= Sample standard deviation, calculated as 

n 

( 4 .1) L (Yi - Y) 2 

i=l 

N-l 

SKEW= Sample distribution skewness, calculated as 

(4.2} 

KURT = Sample distribution kurtosis, calculated as 

(4.3) 

RANGE = Sample data range, calculated as maximum minus minimum. 

MIS= Number of missing observations. 

All distributions are skewed with the exception of stock units 

per hectare, where both the mean and mode are similar. Sample 

distributions of all variables above are reported in Appendix 

III. Because logit analysis is performed on case number 

observations within crosstabulation cells, distributions are 

displayed in Appendix III as sample number observations rather 

than percentages. This information is useful for constructing 

the category ranges within the logit model independent 

variables, where quantitative variables need to be transformed 

into qualitative variables. 
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NTINC (Net Income), TTEXP (Total cash Expenses) are expressed 

in dollar nominal values, WOOL, LAMB, EWE, BEEF & HEIF are the 

average per head prices received in dollar amounts, FT/HA 

(fertiliser applications per hectare is expressed in tonnes per 

hectare and AREA in hectares. 

Table 4. 3 reports the sample distribution across both farm 

class categories and regions. All basic statistics refer to 

the combined annual surveys, i.e. , means are the mean five year 

price. 

Table 4.3 CLASS & REGION STRATA 

CLASS NO. REGION NO. REGION NO. 

1 142 1 86 9 603 

2 206 2 422 10 136 

3 371 3 147 11 193 

4 772 4 456 

5 429 5 141 

6 362 6 320 

7 187 7 0 

8 112 8 77 

TOTAL 2581 2581 
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4.5 VARIABLE SELECTION 

As was stated earlier in this chapter, variables were selected 

on the basis of their possible influence on net cash incomes. 

More importantly, in the context of this study, variables were 

also selected according to whether or not they were considered 

to be 'risky'. This was a qualitative assessment based not 

only on their unpredictable fluctuating nature but also on 

whether or not they constituted a resource constraint that 

hinders the ability of the farmer to react to unforeseen 

circumstances. 

Product prices are a significant 'risky' component of farm 

production. From both the financiers and farmers points of 

view, a price forecast upon which facility for seasonal finance 

has been granted does indeed constitute risk, as a large 

proportion of production investment is made, or expenditure 

incurred, well before the actual price is realised. The 

potential actual end of year net cash income is determined by 

the control or management of farm expenses prior to harvest and 

sale of product, but the realised actual end of year net cash 

income is determined by the relative uncontrollable nature of 

actual product prices received. For this reason both product 

prices and total farmer expenses should be selected for 

modelling, regardless of the historical statistical 

relationships between net incomes, expenses and pr·oduct prices. 

As part of a preliminary investigation into the nature of the 
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variables under consideration for the logit model building 

process, a correlation matrix of all variables was developed. 

This matrix, Table 4.4, serves as a forewarning of any possible 

interaction effects to be considered in the model. Because 

NTINC is not a true regression type dependent variable, in the 

sense that a statistical relationship with independent factors 

is not being used to estimate actual NTINC, correlations should 

not be interpreted as a variable selection criteria. 

Table 4.4 indicates the potential interaction terms that will 

require testing in the modelling process. 

Table 4.4 VARIABLE CORRELATIONS 

NTINC WOOL LAMB EWE BEEF HEIF 

NTINC 1 

WOOL .09 ** 1 

LAMB .12 ** .13 ** 1 

EWE .10 ** .39 ** .36 ** 1 

BEEF .07 * -.12 ** .31 ** .13 ** 1 

HEIF .03 -.17 ** .33 ** .12 ** .60 ** 1 

TTEXP -.32 ** .36 ** .12 ** .25 ** .03 -.02 

EQ % .26 ** .06 .17 ** .11 ** .10 ** .08 * 

FT/HA .02 -.15 ** .21 ** .02 .25 ** .20 ** 
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SU/HA .06 ** -.43 ** .03 -.21 ** .16 ** .19 ** 

LB % .02 .14 ** -.07 * -.04 -.07 * -.08 ** 

WL/HA .06 -.34 ** .05 -.11 ** .18 ** .27 ** 

AREA -.02 .49 ** .05 .28 ** -.12 ** -.19 ** 

LOC. -.05 .29 ** .004 .10 ** -.04 -.01 

CLASS -.01 -.34 ** .09 ** -.16 ** .18 ** .25 ** 

TTEXP EQ 9.:-
0 FT/HA SU/HA LB 9.:-0 WL/HA 

NTINC 

WOOL 

LAMB 

EWE 

BEEF 

HEIF 

TTEXP 1 

EQ % -.10** 1 

FT/HA .007 .14** 1 

SU/HA -.39** .07 ** .42 ** 1 

LB% .10 ** .03 -.04 -.29** 1 

WL/HA -.26** -.002 .36 ** .77 ** -.12** 1 

AREA .53 ** .05 -.21** -.61** .17 ** -.48** 



LOC. .27 ** -.09** -.25** -.59** 

CLASS -.28** -.09** .32 ** . 62 ** 

SU/HA LB 9-,, 
0 WL/HA AREA 

NTINC 

WOOL 

LAMB 

EWE 

BEEF 

REIF 

TTEXP 

EQ 9-,, 
0 

FT/HA 

SU/HA 1 

LB 9-,, 
0 -.29** 1 

WL/HA .77 ** -.12** 1 

AREA -.61** .17 ** -.48** 1 

LOC. -.59** .26 ** -.28** .38 ** 

CLASS .62 ** -.20** .58 ** -.51** 

* indicates significance at .01 level 

** indicates significance at .001 level 
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. 26 . ** -.28** 

-.20** .58 ** 

LOC. CLASS 

1 

-.10** 1 
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Examination of the correlations between independent variables 

reveals interesting relationships that indicate the need for 

possible interaction effects within the logit model. 

Expected correlations exist between WOOL, EWE and LAMB that 

indicates the correct sign, i.e., 

increases so too does the other. 

as the price for either 

Note the high correlation 

between the beef (steer) price (BEEF) and the heifer price 

(HEIF). Interaction is expected between product prices in the 

logit model at this stage. 

Potential interaction also exists between area (AREA) and total 

expenses (TTEXP), stocking rate (SU/HA) and wool production 

(WL/HA), stocking rate and area, stocking rate and fertiliser 

application (FT/HA) and wool production and area. 

The correlation analysis supports a qualitative assessment, or 

"conventional wisdoms" of some of the two-way inter­

relationships found in sheep and beef farming, that may need to 

be included in the logit model. 
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Chap~er Five 

LOGIT MODEL SPECIFICATION 

5.1 MODEL OBJECTIVES 

Design of the logit model should be influenced by_ the proposed 

end use of the model. Given that the basic objective of this 

thesis is to develop a method for risk quantification, rather 

than examine or explore the 'risk' relationships between chosen 

variables and net cash incomes, which occurs as a consequence 

of this analysis anyway, then the following conditions of model 

building should apply. 

1. The model should be as simple as possible, without 

detracting from the accuracy or general applicability of 

the final end user model. Simplicity will increase use of 

the model. 

2. The model should be constructed such that model extension 

or expansion into other modes of agricultural production 

systems is possible without requiring alteration of any 

previous product type model. In other words, this model 

constitutes a 'micro' model for sheep and beef farming 

which can be incorporated into a future 'macro' model of 

all agricultural and aquacultural production systems. As 
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the first 'micro' model design must allow for extension 

into other forms of agricultural production systems. This 

would allow for the future computation of a risk index for 

any combination of agricultural enterprises within a 

production unit. 

A legit modelling analysis was selected because it can operate 

within the thesis definition of risk and it suits the above 

conditions. The legit can be formulated using any dichotomous 

dependent variable model form. Implanting the legit into the 

logistic function and solving transforms the mqdel into the 

'risk index' measure by converting the expected legit, or log 

odds ratio, into the zero to one range, giving a direct 

probability measure estimate according to an assumed logistic 

distribution and the underlying third and fourth moments of 

that distribution. 

To illustrate 

( 5. 1) 
1 

is the logistic function with Pi the risk index and where Li= 

Xn) is the 'logi t' and is that portion of the 

logistic function to be estimated before solving for Pi. 
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5.2 CONSTRAINTS INVOLVED IN THE MODELLING PROCESS 

5.2.1 LOGIT ANALYSIS CONSTRAINTS 

Although the above conditions could be considered as 

constraints to the modelling process, more constraining factors 

influence the modelling process. These constraints include the 

software utilised, and the availability and form of the 

historical data used to build the model. The analytical 

framework also imposes technical constraints in terms of what 

is statistically correct and feasible. 

The design of logit analysis is governed to a large extent by 

sample data size. Because the process utilises a 

crosstabulation of transformed data from which it constructs 

the dependent variable and 

variables, the relationship 

identifies the independent 

between the size of the 

crosstabulation and the 'spread' of the sample data across the 

crosstabulation greatly influences the computability of the 

model. As a general rule of thumb, the average per crosstab 

cell size should exceed five observations, and there should be 

as few zero cells as is possible (Tabachnic, Fidell 1989). 

Cell size is governed by not only the size of the sample data, 

but also by the number of variables included in the analysis 

and the number of qualitative classifications within each 

variable. The number of continuous variables, or logit 

covariates which are no more than normal regression variables, 
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also influences the computability of the model through their 

interaction with the qualitative variables in the process. 

Where continuous variables are transformed int~ qualitative 

classifications through a recoding process, then the number of 

classifications is governed by the division of the continuous 

variable into categories. The division or recoding of 

continuous variables is the 'weak' component of logit analysis 

because the divisions can be as arbitrary as one likes. In 

attempting to recode, which is a preliminary step in logit 

analysis, one wishes to apply some prior knowledge or 

subjective belief as to what constitutes a proper division of 

the continuous variable in question (McFadden 1974). 

For example, consider a variable that measures the average 

price of an agricultural product. If the variance and range of 

the data is large, and as a consequence the resulting covariate 

coefficient derived through use of maximum likelihood within 

the logit modelling process is insignificant or zero, then one 

should convert the variable into a qualitative categorical 

variable if the variable must be included in the analysis. 

Assume the range of the price variable in question extends from 

$1.00 to $30.00. Knowing the relationship between the number 

of categories within the variable and the computability of the 

model, how many categories should there be, and where in the 

continuum of the data should the divisions be made? One 

could settle on three categories: good, indifferent and bad, 
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where $1.00 to $10.00 may be considered 'bad', $10.01 to $20.00 

'indifferent' and $20.01 to $30.00 'good'. The problem is that 

the entire legit process rests on such decisions, and the 

acceptability of the model may rely on what some may see as 

questionable decisions. Commentators might be inclined to 

question whether or not $10.01 to $20.00 is indeed an 

indifferent price range, or they might debate that three 

categories is insufficient to explain the 'steps' within the 

data range. There are no 'rules of thumb' to guide this 

decision process. 

To reduce the arbitrary nature of this decision process, 

derivation, and the significance of the legit coefficients 

derived can be tied to this categorisation process, with the 

only arbitrary or subjective decision to be made being the 

number of qualitative categories in each independent variable. 

A computer macro was developed and used to identify more 

objectively the appropriate ranges within each category. Using 

the above price variable example, the procedure was performed 

as follows: 

1. Decide the number of categories that might best qualify the 

continuous variable to be transformed. In this example 

three categories, good, indifferent and bad, were decided 

upon. 

2. Using a histogram of the distribution of cases in that 
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variable, select as a starting point three ranges that 

divide the sample cases reasonably evenly across the three 

categories. In this example $0.00 to $10.00, $10.01 to 

$20.00 and $20.01 or greater, achieved an even spread. 

Note that the minimum $0.00 cannot be decreased to a 

negative value and remains fixed because a negative gross 

price received is not possible as zero implies a 'non­

sale'. Also note that 'greater than' implies positive 

infinity and therefore also remains fixed. Adjustment to 

the ranges within each category can only occur by altering 

either the $10.00 or $20.00 limits. 

3. Systematically run logit models beginning with the ranges 

$0 to $9, $9.01 to $20 and $20.01 or greater, and after 

each model increase the lower category limit by an 

increment of $0.10. Monitor the standard error of the 

coefficient for the first category and select the range 

limit with minimum coefficient standard error. (Ideally the 

standard error should be smaller in absolute terms than the 

coefficient). 

4. Once the 'correct' range limit for the first category has 

been identified, repeat the process keeping that first 

category upper limit fixed, and incrementally change the 

upper limit of the second category until the coefficient 

standard error for the second category is at a minimum. 

Occasionally the standard error and coefficient for the 

first category will change as a consequence of changing the 



120 

range for the second category. In this case select both 

category limits where both standard errors are jointly a 

minimum. 

Settle at a range combination for all three categories where 

all standard errors for all three coefficients are, if not at 

a minimum, then at least smaller in size than the coefficient 

they relate too. 

For the sake of example, assume that the final ranges for the 

example price variable were found to be $0.00 to $10.20, $10.21 

to $21. 40 and $21. 41 or greater respectively. What has 

essentially happened is that crosstabulation cell observations 

have been systematically re-distributed across the categories 

according to the 'best' maximum likelihood coefficient 

estimates for all three categories, where 'best' is defined as 

the coefficient with minimum standard error. This procedure is 

appealing because it applies elements of objectivity to the 

selection of range sizes. The data itself appears to indicate 

the 'correct' category ranges. 
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5.2.2 SOFTWARE CONSTRAINTS 

Choice of software for the development of the legit model was 

governed to some extent by knowledge of software use. However, 

comparison of SPSSPC or SPSSX, SAS, BMDP4F, SYSTAT and SHAZAM, 

based on control of the modelling process and range of output 

reveals BMDP4F to be the most comprehensive for interaction 

models of association, and SPSSx to be a more general package 

containing both log linear and hi log linear components 

(Tabachnick, Fidel, 1989). 

SPSSPC and SPSSX were utilised for the model building process, 

primarily because their use and output is user·friendly and 

their 'scratch pad' command format is conducive to the command 

macro procedure outlined in the preceding section. SPSS does 

not provide an inferential test of model components but 

parameter estimates and their z tests are available for any 

specified model, along with their 95% confidence intervals. In 

addition, parameter estimates are reported by single degrees of 

freedom, so that a factor with more than two categories has no 

omnibus significance test reported for either its main effect 

or its association with other effects. Identification of an 

appropriate model with a large number of factors can be 

tedious. 

Both SPSSPC and SPSSX will not accept more than ten variables, 

including the dependent variable. In addition, the processor 

memory of SPSSPC is constrained to 650K and will not allow 
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expanded processor memory in any hardware system to be 

utilised. The memory requirements for the computation of any 

specified model is steeply exponentially related to the number 

of variables, and categories within variables. Memory 

requirements jump extraordinarily high with the inclusion of 

additional variables and categories. For example, up to 17mb of 

processing memory may be required for a simple saturated 

loglinear, or hiloglinear logit model consisting of ten 

variables, nine of which contain four categories and the 

dependent variable consisting of two categories (SPSSx Advanced 

Statistics Guide). 

Specifically designed unsaturated log linear models require 

relatively little processor memory. The design specifications 

must however incorporate all known interactton factors, 

previously identified using the hiloglinear system. Often a 

hierarchical stepping approach is required to identify the 

interactions prior to modelling, because of the variable 

constraints imposed and or the memory limitations of the 

hardware system used for the analysis. 
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5.3 MODEL DESIGN 

5.3.1 CONSTRAINT CONSEQUENCES ON MODEL DESIGN 

With 16 variables to analyse, it becomes obvious that with the 

constraints imposed by SPSSx, some will have to be eliminated 

early in the model building process. In order to ensure that 

all variables have a chance of being included within the model, 

the strategy employed in this thesis involved splitting the 

model into 'micro models', each micro model within the macro 

model identified or differentiated according to agricultural 

product, and then developing a method for combining micro 

models into a 'grand model'. 

This strategy meets the condition of model expandability, where 

any future micro model can be added to a 'grand model' . 

Conceptually, independent linear combinations of functions 

summed across 'product types' to formulate the logit prior to 

transformation via the logistic function appealed from both the 

simplicity aspect as well as the expansion into other 

agricultural production systems. 

Therefore the model consists of five 'micro models': wool, 

lamb, ewe, beef and heifer, where each represents the expected 

price variable of each product regardless of how or of what 

quality each is sold. For instance, wool can be sold as full 

fleece, second shear, fine or crossbred, differen~iated only by 
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price from a cash flow point of view. Similarly, lamb can be 

sold at different grades and weights, prime, store or live. 

Ewes, steers and heifer are also sold similarly. The model 

allows the farmer choice over the product mix. The model 

allows the farmer to choose to produce and sell only wool or 

lamb or ewes etc, by organising his production unit 

accordingly. 

From the list of variables the five models to be tested 

initially consisted of the independent variables: 

1 2 3 4 5 

WOOL LAMB EWE BEEF HEIFER (prices) 

TTEXP TTEXP TTEXP TTEXP TTEXP 

FT/HA FT/HA FT/HA FT/HA FT/HA 

SU/HA SU/HA SU/HA SU/HA SU/HA 

LB% LB% LB% LB% LB% 

WL/HA WL/HA WL/HA WL/HA WL/HA 

AREA AREA AREA AREA AREA 

LOC. LOC. LOC. LOC. LOC. 

CLASS CLASS CLASS CLASS CLASS 

with NTINC (net cash income) being the dichotomous dependent 

variable for each micro model. These variables were initially 

selected according to prior belief regarding their reflection 

of the components of agricultural business risk outlined in 
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Prices and expenses essentially reflect market 

risk, fertiliser use, or rather the lack of it, stocking rate, 

lamb sale percentage and wool quantities sold all reflect 

elements of production risk, and area, location and topography 

reflect the risk underlying physical resource constraints. 

This however still leaves 10 variables per model, including 

NTINC, closely exceeding the software limit. Note that the 

above paragraph implies that the variables can be sub-divided 

into financial, production and physical groupings. In order to 

avoid the constraints of the software, a hierarchical forward 

selection procedure for each group was employed. That is an 

un-saturated logit model, with only main effects, for each 

group of variables was used to initially identify and eliminate 

'redundant' variables. Variables were eliminated on the basis 

of their nil effect on the test statistic {Chi square) with 

their inclusion, prior to modelling fully saturated models that 

tested for interaction effects. Therefore no variable is 

included in the model unless it has a main effect on the 

probability estimate. 



5.3.2 GENERAL MODEL SPECIFICATION 

The model then is 

(5.2) 

R, = 
l. 

where 

1 
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Where Riis the risk index and where the Logit Li is the log 

odds ratio of Yi= 1 where 1 represents zero or less net cash 

income. Recall from chapter three that 

(5.3) 
1 

where Yi= an individual's expected net cash income given x1 

= those independent variables upon which L, 
J.. is 

estimated, then a micro logit model is specified as 

(5.4) 

( pi ) 
= ln (l _ p.) = 

l. 

where Pitj' TTEXPij ..... CLASSij' and Xij are the independent 

variables, 
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and where Lit = the logit for case i product price t, t = 

1 ... n. 

Pitj = the expected price for case i, product t, 

category j, j = 1 •.. n. 

TTEXPij = the expected total cash expenses for case i, 

category j j = 1 ... n. 

Similarly for CLASSij plus other independent variables 

found to be significant. 

Xij = any interaction term for case i category j. 

Note that where a variable is a covariate, j does not apply, 

i.e., there are no categories. 

A micro logit model that contains only one categorical variable 

with three categories, say WOOL, (Wool price) and one 

continuous variable, say TTEXP, may look like 

(5.5) 

where wl, w2, w3 are really dummy independent variables 1 or o, 

and TTEXP a continuous regression variable, and u the error 

term. 

Combination of the 'micro models' into the 'macro' sheep and 

beef model consists of weighting each micro model by the total 

income proportion of each product, and summing all weighted 

legits prior to solving for Ri in the logistic function. Where 
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a farmer produces wool, lambs, ewes, and buys and sells steers, 

then the proportion of each in his total revenue will 

constitute the weights. For example, if a farmer's revenue 

comprises 57% wool, 22% lambs, 8% ewes and 13% steer sales then 

the weights on each of the five models respectively will be 

0.57, 0.22, 0.08, 0.13 and 0. All weights must sum to one. 

In addition, the sum of the weighted micro legits must be 

multiplied by two. To see this, consider a legit model with a 

dichotomous dependent variable. All coefficients across all 

categories within variables must sum to zero. Fo~ a dependent 

variable with two categories, say less than O and greater than 

o, the values of the parameters are equal in absolute value but 

opposite in sign. Thus 

(5.6) 
ln F = N + Al + AA + AlA 11 "' .., .., .., 

which is the log of the number of those cases with zero or less 

than zero net cash income ( = 1), 

as well as 

ln F = N + A2 + AA + A2A 
12 "' I-' I-' I-' 

(5.7) 

which is the log of the number of those cases with net cash 

incomes greater than zero ( = 2), where A in both equations is 

some independent category of an independent variable. The log 

of the ratio of the two frequencies for categories 1 and 2, is 
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the 'legit', where the log of the ratio is 

(5.8) 
ln ( F11 ) l F l F = n 11 - n 12 

F12 

and the legit is computed for a function with only the 

independent variable A as 

(5.9) 

with 

pi = -p2 as well as p1A = -P2A 
(5.10) 

Then 

Therefore the specification for the macro sheep and beef model, 

conditional on the variables and type of variables within each 

micro model, will be 



(5.11) 
1 

Ri = 
1 + e-Z1 

where 

n 

(5.12) zi = 2 [L a itLit] 
t=l 

and where 

n n n 

(5.13) Lit = ait + L Pitjv + L Pitiv + L PityX"ity 
j=l j=l y=l 

conditional upon 

n 

(5.14) L 0 it = 1 
t=l 

and where R, = the risk index for farmer i 
1. 

Zi = the macro logit for farmer i 

ait = the proportion weights for product t 

Lit= the micro logit for product t 

ait = the constant for the product t logit model 

Bitjv = the coefficients for the j th category of 

variable v within the t th product model 

Bitjiv = the coefficients for the j th category of 

interaction variable Iv within the t th 

product model 

Biyxiy = the coefficient times covariate y within 

the t th product model. 

130 
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5.3.3 THE MICRO LOGIT WEIGHTS 

Combination of the micro logi t models is a necessary pre­

condition in the process of developing a systematic method for 

expanding the macro or 'grand model'. Further examination of 

the addition of weighted micro legits is warranted before the 

individual micro models are specified. Two issues need 

clarification. First, is the method statistically valid, and 

second, why should the weights consist of product proportions? 

Addressing the second question, given that net cash incomes are 

explained as much by total revenues as by total cash expenses, 

and given that within revenues both yields and price per unit 

sold are common stochastic independent factors across all types 

of agricultural production, then it makes sense t~ incorporate 

in the model a direct linkage between revenues and either the 

prices or yields for each product group within revenues. The 

linkage should consist of the proportion of total farm revenues 

that each product revenue contributes, where product revenue 

consists of the product of price times yield for that 

contributory product. 

In addition, the product enterprises found within independent 

farm units, can be readily differentiated and identified 

according to various prices, and therefore, markets within 

which each farmer operates. The link therefore, between total 

revenue and product revenues also establishes a linkage between 

revenue, market price and farm yield for that product, and the 
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combined risks inherent in both market prices and yields are 

incorporated in the model. 

If each micro legit model represents an individual generic 

product group risk measure within an independent production 

unit, then sensibly where more than one generic product 

enterprise exists, the macro legit for the unit must consist of 

the sum of the proportional micro legits of each product the 

farmer is involved in. 

More precisely, a legit model for lambs quantifies all the risk 

involved in lamb production. Should a farmer be only involved 

in lamb production, and nothing else, then his total farm 

business risk is only the business risk of lamb production. If 

he is also involved in wool production, and 50% of his total 

farm revenue is from wool sales, then his total farm business 

risk should be 50% of the total risk inherent in wool 

production and 50% of the risk inherent in lamb production. 

The assumption is that total risk varies according to the level 

of diversification found on the farm, and this method 

incorporates that aspect. 

With regard to the first question, and referring to the above 

model specification, Ri, the risk index, is an estimate of 

P(Y=liZi), a conditional binomial probability. That is, Riis 

an estimate of the probability that an event (Y=l) will occur 

conditional upon Zi having already occurred. Since zi is 

actually the 'grand' legit, the legit can be considered an 
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'event' that has already occurred. P (Y=l} depends upon zi, the 

log-odds ratio, which can be a linear combination of mutually 

exclusive 'micro events' or micro legits. To see this, 

consider A (event that Y=l) and B (event Zi). Then 

(5.15) 

n 

P( LJ BJ 
i=l 

(5.16) 

= P(Ai n Bi) 

P(BJ 

where 

n 

= L P(BJ 
i=l 

if 

for i * j 

Event B can be a sum of individual events if and'only if each 

micro event is mutually exclusive. Therefore, in this thesis 

it is assumed that every micro logit added to the grand logit 

represents an independent or mutually exclusive activity. 

Because a micro logit or log-odds ratio, ln(Pi/(1-Pi) is 

linearly related to whatever independent variable, or event, we 

chose to utilise, then the grand logit is merely a sum of 

weighted linear functions, or events, where the weights must 

sum to one. 

Event B could consist of any number or type of mutually 

exclusive events so long as they constitute conditions upon 

which event A relies. This is the beauty of logit analysis. 

One could isolate just one event or condition if one so chose, 

and use that condition to predict the probability of an event 
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A occurring. Naturally the more B type events we use as 

conditions, the better our probability prediction of the 

occurrence of event A. 

To see the mechanics of the proposed five micro legit models 

and the use of the proportion weights, expansion of the model 

specification formulae is necessary. Each micro legit will be 

numbered 1 to 5, representing wool, lamb, ewe, beef and heifer. 

(5.17) 

(5.18) 

5 

zi = 2 (L o itLit) 
t=l 

ln(~) 
l-Pi 

2 

where oit :?: O 
5 

L oit = l 
t=l 

Expanding further and dropping i for visual ease, and assuming 

that each micro legit function is identified by Pt the price 

for product t, t=l,2 ... 5, and within each Pt model At and Et 

variables where each variable including Pt is qualitative with 

two categories 1 and 2, then 
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(5.19} 

All independent variables, being all qualitative, are either 1 

or O, yes or no dummy variables. Only one category can be 

selected, i.e., either P11 or P12 , A11 or A12 , E1 i or E12 • 

One can see that regression on the weighted variables directly 

would take the qualitative nature of the variables away. In 

logit analysis, multiplying the actual data case weights to the 

assigned categories would destroy the construction of the 

crosstabulation from which the estimated dependent odds ratio 

is derived. 

To summarise the above expansion, we can see that 

(5.20) 

5 5 

= L 0 t [ L ( at + Ptjpti + PtiAtj + PtjEti ) J 
t=l t=l 

where j = 1,2. 
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if 

5 

(5.21) L 0 t = l 
t=l 

then 

(5.22) 

which is the basic logit functional form. 

The assumption that the five micro logit models represent five 

mutually exclusive activities is plausible given that it is 

feasible to choose to conduct each activity - woo_l, lamb, ewe, 

beef and heifer - separately and exclusively from the others. 

One can choose to run either sheep or cattle exclusively. If 

one chooses to run cattle then one can choose to either buy and 

sell only steers or heifers exclusively. If one chooses to run 

only sheep, then one can choose to buy only wethers and clip 

their wool and even exclude their sale if one chooses to retain 

them until death. One could also decide to only buy and sell 

ewes, not clipping their wool or mating them, or similarly only 

buying shorn lambs and selling them as prime full-wooled lambs. 

The price received for such an animal would include the value 

of on-the-back wool, but this is taken into account because the 

lamb price variable consists of a per head price received which 

includes slipe wool. 
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Accepting that the five 'sale' activities are mutually 

exclusive, the question remains as to whether or not the five 

weighted independently derived legit functions when summed, 

would be equal to one estimated function that included all five 

weighted price variables. 

For example, would 

0 1Li1 = ln( pil ) = 0 1 ( a1 + P11X1 + P31X3 ) 
(5.23) 1 - pil 

plus 

(5.24) 0 2Li2 = ln( 
1 

pi2 ) = 0 2 ( a2 + P12X2 + P32X3 
- Pi2 

be equal to 

(5.25) 

where a 1 and a 2 are the respective proportions (weights) that 

x1 and x2 contribute to total revenue,~ ai = 1, x1 and x2 are 

gross price revenue variables for products 1 and 2, and x3 is 

some other variable common to both summed functions. 
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More specifically 

(5.26) 

Therefore 

(5.27) 

An estimated equation containing all weighted variables would 

need to look like 

where the unknown parameters are unbiased maximum likelihood 

estimates, identical to OLS estimates, but where the MLE of the 

a2 s are biased and differs from the unbiased OLS s2 s by the 

factor (n-k)/n (Johnston 1987). 



That is, taking the natural log of the likelihood function 

P(y) 1 1 (y - PX) / (y - PX) ] = exp [--
(5.29) n 2a2 

(21to2) 2 

then 

(5.30) 

lnL = n ln(21t) - E1n ( a 2 ) - - 1- (y - px) 1 (y - px) 
2 2 202 

and differentiating partially with respect to Band a2 

(5.31) 

(5.32) 

a(lnL) = 

ao2 

1 
+ -

1
- (y - Px> 1 (y - Px> = o 

26 2 264 

simultaneous solution of these k+l equations gives 

p = (X1X) -1 X 1y 

(5.33) 

which is identical to the OLS estimate, and 

(5.34) 

I ,.. 2 e e 
a = -­

n 

which differs from the OLS estimate 

(5.35) 
s2 = 

by the factor (n - k)/n. 

139 
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Parameter estimates for one combined function would therefore 

'decompose' to arrive at the separate micro logit model 

parameter estimates. Knowing the proportional weights would 

make this a simple exercise. Summing the qualifying 

coefficients from a combined function to arrive at a grand 

logit would be equal to the summed separate weighted micro 

logits. 

In the case of a grand logit equation containing all variables, 

with each independent variable consisting of three qualitative 

categories, the equation would look like 

(5.36) 

Li= (0 1 a 1 + 0 2 a 2 ) + 0 1 P12X12 + 0 2 P22X22 + 0 1 P312X32 + 0 2 P322X32 

f313X13 f323X23 13313 X33 · 13323 X 33 

Here the Xkjs are either 1 or o and where Li can qualify in 

only one category j or not at all. 

For example a case i which does not qualify for k=2 and 

qualifies in category 1 (j=l) for all variables, would have 

logit 

(5.37) 
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and a case i which qualifies for all k and category 1 (j=l) 

would have logit 

(5.38) 

which is the sum of the independently weighted micro logi t 

functions. 
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Chapter Six 

MODEL BUILDING RESULTS 

6.1 RESULTS INTRODUCTION 

6.1.1 TEST STATISTICS 

Test statistics reported for each model include the sample size 

used in the construction of each model, the MLE convergence 

criteria, which was set at the SPSSPC default (eps) o. 001 

unless otherwise noted, the number of iterations for 

convergence, Pearson Chi square and its associated probability, 

(for saturated models Chi and its probability will always be o 

and 1 respectively), measures of entropy and concentration, and 

finally degrees of freedom. All important models with their 

associated coefficient standard errors, Z values and 95% 

confidence intervals are reproduced in Appendices IV, VI and 

VIII, along with saturated interaction effects in Appendices V 

and VII. The reporting sequence of the models follows the 

model building sequence employed in identifying the 'best' 

model. Crosstabulations are only reported for the final model. 

Measures of entropy and concentration, or analysis of 
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dispersion, indicate the spread about the dependent variable. 

Shannon's entropy measure is 

(6.1) 

and Gini's measure of concentration is 

(6.2) 
C = 1 - L pJ 

where Pi is the observed probability of case i occurring in 

NTINC Y=l. Using either of these measures it is possible to 

subdivide the total dispersion of the dependent variable into 

that explained by the model and the residual, or unexplained, 

variance. Entropy and concentration indicate the ratio of the 

dispersion 'explained' by the model to the total dispersion, 

and can be interpreted as measures of association. Although it 

is tempting to interpret the magnitudes of these measures 

similarly to R2 in regression, this may be misleading since the 

coefficients, or measures, may be small even when the variables 

are strongly related (Haberman 1982). They should therefore be 

used within a comparative framework. 

Degrees of freedom are calculated as the number of non-zero 

fitted cells minus the number of parameters estimated, for each 

model. Where empty categories, or cells, are foupd within the 

crosstabulation, the degrees of freedom of the Chi-square test 



may not be accurate. 

144 

Therefore, given the size of the 

crosstabulations involved in these models, there exists a very 

high probability of encountering a number of empty cells for 

each model. Degrees of freedom measures should therefore be 

cautiously considered. 

Where a ' . ' occurs within the model reports, they .indicate that 

SPSSPC has not, or cannot, calculate the relevant statistic. 

Often this occurs as a default for some models. All 

coefficients are reported however, even where coefficients are 

estimated to be zero. 

All models were constructed utilising 

package, where saturated models were 

SPSSPC's 

used to 

log linear 

identify 

significant variables and interactions. Where categorisation 

of independent variables became necessary, recodes were 

initially formulated according to percentile distribution of 

the cases, for the testing of significant variables, and when 

found to significant, altered according to the previously 

outlined (chapter five) command macro, to establish the best 

mix of coefficients for each category. 

Coefficient signs are interpreted as either the positive or 

negative effect on the log-odds ratio of a unit increase in the 

independent variable. Coefficients can be ranked according to 

sign, where negative coefficients indicate association with 

NTINC (2) or low or no risk, i.e., an indication of 'negative 

risk'. Positive signs are associated with risk, i.e., the 
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higher the positive coefficient the greater the risk, or effect 

on the log-odds of belonging to NTINC (Y=l). 

6.1.2 THE DEPENDENT VARIABLE 

The categorisation, or recoding of net cash incomes, henceforth 

NTINC, once established remains unchanged for the entire model 

building process. NTINC is coded as; 1 = <= $0.00, and 2 = > 

$0.00, 1 and 2 having been selected instead of 0 and 1 for 

convenience. Coefficients reported by SPSSPC are reported for 

low to high codes. Therefore all coefficients reported in the 

appendices refer to NTINC category 1, and indicate the effect 

of each variable category on the log-odds of NTINC (1), the 

probability of actual net incomes being less than or equal to 

zero. 

All crosstabulations reported include both NTINC (Y=l) and 

(Y=2), where the sum of the two categories, over all 

independent variables is equal to the sample size used in each 

model. The sample data used in this research is divided into 

NTINC 

Number 

Percent 

(1) 

1699 

65.8% 

(2) 

882 

34.2% 

Total 

2581 

100% 
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showing that there exists a high proportion of sample cases 

having shown an actual cash deficit over the five year period. 

This could be an indication that sheep and beef farming does 

indeed contain a high natural risk of realising negative cash 

returns. 

Coefficients relating to NTINC (1) must sum to zero throughout 

all categories within each independent variable. Coefficients 

relating to the effect on the log-odds ratio for NTINC (Y=2) 

contain the opposite sign to those relating to NTINC (Y=l). 

Although SPSSPC does not report the final category coefficient 

for any variable, its calculation is simply determined by the 

opposite sign of the sum of those coefficients derived for all 

other categories within variables. Model reports of parameter 

estimates will include these derived coefficients. 
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6.2 COVARIATE MODEL RESULTS 

The first set of models developed for testing comprise those 

models of the form 

(6.3) 

( pi ) Ln --- = 
1 - pi 

where 

a = the model constant 

B1 jcj = coefficient CLASS category j 

B2 jLj = coefficient LOC. cat. j 

B3 jCjLj = interaction coefficient CLASS*LOC.cat. j*j 

B4X4 BnXn = the covariate continuous variables remaining 

ei = the error term. 

Various combinations and covariate transformations, along with 

constant and no constant models were attempted. Results of two 

such models are reported in Appendix IV. Model two consists of 

no constant and the base 10 logarithmic transformation of all 

independent covariates. Table 6.1 reports the statistics for 

each model. 



148 

Table 6.1 Models 1 & 2 statistics 

No. Conver. Iter. x2 p DF ENT CONC 

1 2581 .0000 20 .ooo 1.0 1 .011 .014 

2 1194 .0000 25 .000 1.0 1 .016 .020 

Note model two eliminates all cases that do not contain 

measures on all variables. Models containing all cases, i.e., 

zero indicates non-qualification in terms of producing either 

wool, lamb, ewe, beef or heifer, show similar results. Both 

models are saturated as indicated by the Chi square and its 

probability. 

All models of this type tested contained the two qualitative 

variables farm class (CLASS) and regional locati~n (LOC.). To 

keep the number of categories small, so avoiding too many zero 

cells, the codings are as follows; 

CLASS 1 High or hard hill country 

2 Easier hill country 

3 Flat and intensive country 

LOC. 1 Western & Central North Island 

2 Eastern North Island 

3 South Island excluding Southland 

4 Southland 
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Interaction between class and location (CL) reflects the 

regional aspects of topography. For example, C1L3 indicates 

South Island high country. These codings remain throughout the 

model building process. The rationale for coding LOC. is based 

on dividing the country into the more drought prone eastern 

regions from western regions, of both islands. It might be 

possible, on that basis, to include Westland in category 4 if 

indeed LOC. is found to be significant, although Westland is 

not represented in the data. 

Model one (Appendix IV) displays what appear to be ludicrous 

results. First, none of the covariates can be utilised in the 

model, eliminating all of the price variables as well as total 

expenses. Second, according to the results, Southland would 

appear to be the most 'risky' area to farm sheep and beef in. 

In fact the results suggest that of all possible risk 

variables, a Southland location has the most risk. Clearly not 

acceptable results. Among the interaction terms, high country 

located in Southland (should it exist) has the most risk and 

intensive flat land the least risk, a more probable result, but 

not of the magnitude suggested by the model. 

Transformation of the covariates and, expenses as well as area 

expressed in thousands and hundreds respectively, plus removal 

of the constant term improved the results somewhat, but again 

other valuable variables were not shown to hold any 

'predictive' power with regard to estimating the log-odds of 

negative cash returns. Note the very high coefficient 
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displayed for log base 10 WOOL, indicating that as LWOOL 

increases, the log-odds ratio, and therefore risk increases. 

Clearly not a consistent result. Similarly high or hard hill 

country is shown to be least risky after the interaction 

category hard hill or high country in Southland. Easier hill 

country located in Southland would seem to be the riskiest 

category to belong in according to model two. 

Other combinations and specifications were tried in an attempt 

to derive a more 'correct' model. Different transformations 

across different covariates provided equally inaccurate 

results. Based on the initial results of this set of models, 

reverting to the five micro model design outlined in the 

previous chapter, using the same specification as above, 

resulted in equally poor results. 
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6.3 QUALITATIVE PRODUCTION VARIABLES MODEL 

Examination of all variables to be tested reveals that the 

variables can be divided into three types: those that are of 

dollar values, i.e., prices and expenses, those that are of a 

physical nature, i.e., location, topographical class and farm 

area, and those that are descriptions of farm production, i.e., 

wool produced per hectare, lambing percentage, stocking rate, 

and to some extent fertiliser application rates. 

This section deals with those variables that can be described 

as production variables. Their testing for significance in 

determining the log-odds ratio takes place within the five 

micro model structure, where WOOL is selected as an initial 

'test micro model' incorporating all production variables and 

their interactions along with the average wool price variable, 

total cash expenses and area as continuous covariates, and the 

two qualitative variables, already coded, CLASS and LOC. 

Models of this type will take the form 

(6.4) 

ln (_!:.i:_) = 
l-Pi 
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where 

a= the constant term 

B1jLlj = Coefficient for LOC. category j j=l ••. n 

B2jC2j = CLASS category j j=l. .• n 

B3jW/H3j = WL/HA category j j=l. •• n 

B4jL%4j = LB 9.:-0 category j j=l. .. n 

BsjS/Hsj = SU/HA category j j=l. .• n 

B6jF /H6j = FT/HA category j j=l •.• n 

B
7

, ,X,, = interaction i i=l. .. n category j j=l. .• n l.J l.J 

B8W = WOOL 

B9 E = TTEXP 

B10A = AREA 

ui = error term. 

CLASS and LOC. are naturally qualitative, and therefore will be 

tested along with those production type qualitative variables. 

In transforming the production variables into. qualitative 

variables the following codes were assigned: 

NTINC 1 = <= $0 2 = > $0 

CLASS 1 = High and hard hill country. 

2 = Easier hill country 

3 = Flat and intensive properties 



LOC. 1 = Western and Northern North Island 

2 = Eastern drought prone North Island 

3 = Eastern drought prone South Island 

4 = Western and Southern South Island 

FT/HA 1 = Nil fertiliser application 

2 = > o kg/ha up to 200 kg/ha 

3 = > 200 kg/ha 
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where 2 is considered average application based on the sample 

distribution of application rates, and 3 considered above 

average. 

SU/HA 1 = <= 9.6 su/ha 

2 = > 9.6 su/ha 

where 1 is considered below average and 2 above average. 

LB% 1 = <= 95% lambing net of all deaths at end of trading 

2 = > 95% 

where 95% is considered a national average. 

WL/HA 1 = <= 38 kg/ha 

2 = > 38 kg/ha 

where 38 kilograms per hectare is considered a national 
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average, based on the sample distribution of wool production. 

WOOL, TTEXP and AREA remain in their sample form, i.e. , 

untransformed. Qualification of the above variables took into 

account the relationship between the number of variables and 

categories within variables to be tested, and the processing 

memory limitations imposed by SPSSPC. Inclusion of one more 

category within any of the above variables immediately exceeded 

those memory constraints. Generally the production variables 

are qualified according to either 'good' or 'bad' production 

characteristics, with the exception of FT/HA, where 'nil', 'up 

to average' or 'above average' seems a reasonable division. 

Initial screening for all possible interaction effects between 

all qualitative variables was undertaken using SPSSPC 

Hi log linear. Appendix V reports those findings. Based on 

those findings, design of the legit models included only those 

main and interaction effects shown to be significant. 

Examination of all interactions reveals that no interaction 

above three way interactions are significant, with the 

exception of NTINC*CLASS*FT/HA*SU/HA which was ignored because 

it included the dependent variable NTINC. All of the 

significant interactions are according to expectations and are 

explainable. The interesting points to note are found within 

the nonsignif icant interactions; Notably LOC. *CLASS*LB % , 

LOC.*FT/HA*LB %, and all other three way interactions that do 

not contain NTINC, and more surprisingly; FT/HA*SU/HA and 
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SU/HA*LB %. 

In addition note that WL/HA (wool production) is a 

nonsignificant main effect. As a consequence of this finding, 

WL/HA will be eliminated from the analysis as not being 

significantly related to the log-odds of NTINC being<= $0.00. 

Inclusion of WL/HA supported the interaction findings of 

nonsignificance, and will no longer appear in any model. 

Three models (3,4 & 5) are reported in Appendix VI, and their 

statistics appear in table 6.2. All models are unsaturated. 

Table 6.2 Models 3,4 & 5 statistics 

No. Conver. Iter. x2 p DF ENT. CONC. 

3 2572 .0000 27 15.35 .951 26 .036 .041 

4 2580 .0000 8 4.65 .590 6 .019 .022 

5 2580 .0000 8 10.46 .314 9 .020 .024 

Model 3 incorporates all those main and interaction effects 

identified as significant by the hiloglinear analysis. 

Although the 'goodness of fit' statistic for model 3 is high, 

(.951) examination of the statistics relating to the estimated 

coefficients indicate that crosstabulation problems exist due 

to the large number of empty cells. The relationship between 

P and the number of cells or categories within variables, and 

the number of variables, is such that the greater the number of 
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observed empty cells, the greater the number of expected zeros 

within cells and therefore as a consequence the higher the 

goodness of fit statistic, which is misleading to say the 

least. 

Insignificant qualitative production variables are identified 

from model 3. They are identified as a consequence of their 

very high standard errors, and or, their confidence intervals 

incorporating the probability of the parameter in fact being 

zero. Where main effects are removed from the modelling 

process, it has been decided that in fulfilling the objective 

of model simplicity their associated interactions with any 

other variable will also be removed. 

Model 4 is the result of removing those main and interaction 

effects identified as nonsignificant within the model 3 

construct. Goodness of fit is immediately lost as a 

consequence, indicating that the modelling process is still far 

from finished. Standard errors for coefficients of model 4 are 

either generally lower or similar than for the same 

coefficients within model 3. One interaction effect (LOC. * 

SU/HA) is found to be nonsignificant on the basis that its 95% 

confidence interval for all coefficients incorporates zero, and 

is removed from model 5. 

One can see that as those variables that identify themselves to 

be nonsignificant, and are removed, them those that remain come 

under closer scrutiny with regard to confidence intervals and 



157 

standard errors. Model 5, although providing a poor fit with 

the observed data, nevertheless indicates that the 'correct' 

variables so far are remaining with the process. 

Taking each variable from model 5 in turn, and noting that the 

constant term has also been removed, then; LOC. (location) 

indicates that attention needs to be paid to the coding or 

classification of this variable as a consequence ~f the problem 

associated with categories 2 and possibly 4. Category 2 

displays a relatively high standard error, with a 95% CI 

incorporating zero and the signs of the coefficients indicating 

that the drought prone areas of the South Island are very low 

risk (ie. negative sign), and Southland is very high risk 

(positive sign). 

FT/HA (fertiliser application) shows some encouraging 

indication that it will remain with the process, except for the 

fact that it too displays the incorrect signs in terms of what 

is expected. The indication is that nil fertiliser application 

is a low risk strategy with regard to NTINC (Y=l), suggesting 

that the association is not toward production in terms of a 

greater revenue earning potential as a consequence of 

fertiliser application, but rather that the association is 

toward expenses and the risks associated with adding to total 

farm expenses as a consequence of fertiliser purchase. 

The converse however applies to SU/HA (stock carrying capacity) 

where the signs are indeed correct, the standard error 
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relatively low and a 95% CI not containing zero. The positive 

coefficient for a low stocking rate indicates risk in terms of 

NTINC (Y=l) and low risk for high stocking rates. 

The interaction between LOC. and FT/HA still contains problems 

probably because of the problems associated with LOC •. 

Although it indicates that nil fertiliser application in the 

Western and Northern regions of the North Island (1,1) is a 

high risk strategy, it also indicates that nil fertiliser in 

the drought prone areas of the South Island (3,1) _is a very low 

risk strategy, with a coefficient of -1.90245. In addition the 

log-odds ratio of NTINC (Y=l) increase for average fertiliser 

application in the drought prone areas of the South Island 

(3,2) at 1.15986, indicating high risk would appear to be 

related to the association of FT/HA with total farm expenses. 

The next stage in the process will sort this anomaly out. 

The covariates WOOL (average wool price), TTEXP (total farm 

cash expenses) and AREA (effective farm size) show coefficient 

estimates that indicate problems. First WOOL shows the 

incorrect sign, indicating that with every dollar increase in 

the average wool price received the log-odds of NTINC (Y=l) 

increases by 4.18089 which is clearly incorrect in terms of 

what one would expect. The coefficient for TTEXP is very low 

but with a correct sign, so too is the coefficient for AREA. 

This might indicate that the scale of the data for both TTEXP 

and AREA needs to be altered. This was attempted by changing 

TTEXP to thousands of dollars and AREA to hundreds of hectares 
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without much improvement to the size of the coefficients. 

overall model 5 still has a very poor fit, (.314) indicating a 

poor predictive power and still problems with the high 

residuals and number of zero cells within the crosstabulation. 

Variables are still not correctly identified, nor are coding 

ranges within variables. 
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6.4 ALL VARIABLES QUALITATIVE 

Models of this type take the form 

(6.5) 

where 

a= the constant term 

B1 .w. = WOOL category j j = 1,2,3. 
J J 

B2jsj = SU/HA category j j = 1,2. 

B
3

,L, = LOC. category j j = 1,2. 
J J 

B4 jAj = AREA category j j = 1,2,3. 

B
5

,E. = TTEXP category j j = 1,2,3. 
J J 

B6tjxtj = any interaction category j j = 1 ... n. 

Transformation of the remaining continuous variables WOOL, AREA 

and TTEXP into categorical variables, plus a recoding of LOC. 

into North (1) and South (2) Islands took place prior to 

interaction tests. WOOL was initially coded as 1 = $0 to 

$3.00, 2 = $3.01 to $5.00 and 3 = greater than $5.00, AREA code 

as 1 =Oto 300 ha 2 = 300.01 to 900 ha and 3 = greater than 

900 ha, and TTEXP coded as 1 = $0.00 to $120,000, 2 = 

$120,000.01 to $220,000 and 3 = greater than $220,000. These 

recodings, although based to some extent on the distributions 

and statistics of each variable, are quite arbitrary. Codings 
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will alter under closer scrutiny of the coefficients once 

significant and nonsignificant main and interaction effects are 

identified. 

Interaction results are reported in Appendix VII. As expected 

the more obvious interactions are shown to be significant. No 

interaction above three way proved to be significant. Of note 

are the interactions between FT/HA and WOOL, FT/HA and SU/HA 

and FT/HA and TTEXP. Fertiliser is suspected at this stage of 

being more related to expenditure than revenue. Remember WOOL 

is not wool production, but the wool price. One could suspect 

that greater levels of fertiliser application could influence 

the quality of the wool clip so attracting a better price. 

Of greater note are the nonsignificant interactions. These 

will be removed from the first model of this series, and 

consist of all three way interactions, i.e. , . all two way 

interactions need to be tested in the first loglinear 

unsaturated model. This model, along with an example of a 

subsequent model, are reported as models 6 and 7 respectively, 

in Appendix VIII. Table 6.3 reports the statistics of these 

two models. 

Table 6.3 Models 6 & 7 statistics 

No. Conver. Iter. x2 p DF ENT. CONC. 

6 2580 .0000 22 4.715 .994 15 0.086 0.099 

7 2580 .0000 18 34.652 .485 35 0.077 0.088 
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The initial model, model 6, shows a very good fit at 0.994. 

However, examination of the crosstabulation shows that a large 

number of zero cells is effecting this statistic, as is usually 

the case. Problems in the coding of nearly all the variables 

is also indicated by the coefficient standard errors and 

confidence intervals for all main effects other than SU/HA. At 

this stage the size of the coefficients also become concerning 

as they determine the positioning on the logistic cumulative 

function. High coefficients across all categories and 

variables force the resulting probability estimate range to be 

located at the bottom tail of the function. 

Model 7 displays the results of all interaction terms deemed to 

be suspect and removed, with the exception of the two way 

interaction between AREA and TTEXP. In addition, FT/HA was 

proven to be associated with TTEXP in earlier model runs, and 

as a main effect lost significance when included in a model 

that contains TTEXP. It was removed from the analysis. 

Model 7's poor fit again indicates both a large number of zero 

cells but this time combined with very high residuals, 

indicating that codings are incorrect. Recoding any continuous 

variable drastically alters the crosstabulation cell sizes. 

The final process is to identify what seems to be a comfortable 

compromise between 'fit', cell zero number, the size of 

residuals, the size of the coefficients and their standard 

errors, and a confidence interval not incorporating zero. 

Alteration of the codes, or inclusion/exclusion of categories 
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and variables greatly alters the relationship between the above 

measures. 

Of concern are the large coefficients for the constant term and 

WOOL. In addition, the CI for LOC. incorporates zero and its 

standard error is almost as big as the coefficient. LOC. is a 

'pure' qualitative variable. It can not be altered through a 

recode. It seems tempting at this stage to remove LOC. from 

the analysis, under the same criteria as previous variables 

were removed. However, because of the nature of the variable, 

it is decided to persevere with it. 

The confidence interval of the interaction term between TTEXP 

and AREA indicates a high probability of coefficients actually 

being zero. All CI' s incorporate zero. This term will however 

be retained in light of the obvious relationship between farm 

size and fixed/variable farm expenses. Recoding of both main 

effects will alter the interaction coefficients. If the 

coefficient statistics do not change for the better, this 

interaction term will be removed, leaving a model with only 

main effects - a desirable outcome in the interests of 

simplicity. 
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6.5 THE FINAL MODEL 

After identification of an acceptable WOOL micro model, all 

main and interaction effects for SU/HA, LOC., TTEXP and AREA 

will retain the same codings throughout all five micro models. 

Each 'price' variable will have its independent category number 

and coding range. By taking each WOOL model variable 

separately, reasonable coding ranges were identified through 

altering the coding ranges and re-running the loglinear 

program, and moni taring the relationship between all 

statistical output and the crosstabulation construct. Residual 

analysis also became an important feature in identifying a 

'correct' crosstabulation. 

It became apparent early in this process that alteration of the 

crosstab for the WOOL micro model required removal of one more 

variable. The sample size was not sufficiently large enough to 

accommodate all 'proven' variables and at the same time 

construct a crosstabulation that gave reasonable logit model 

results. Two variables came under close scrutiny. LOC. and 

SU/HA were obvious selections in that they both contained only 

two categories. LOC. codings could not be altered, but SU/HA 

could. Altering the codes for SU/HA indicated that it was easy 

to adjust the significance of the coefficients for that 

variable. In addition, it seemed rigorous to penalise high 

country South Island sheep and beef farms because of naturally 

much lower stocking rates in comparison to other parts of the 

country. SU/HA was removed as a result, and LOC. retained. 
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The final WOOL micro model, upon which the other four were 

based, takes the form 

(6.6) 

where 

o: = the constant 

B1 jWOOLj = Average wool price, category j j = 1,2,3. 

B2 jLOC.j = Island location, category j j = 1,2. 

B3jTTEXPj = Total farm cash expenses, category j j = 1,2,3. 

B4jAREAj = Effective farm area, category j j = 1,2,3. 

ui = the error term. 

and where the categories j represent; 

LOC. 1 = North Island 

2 = South Island 

TTEXP 

AREA 

1 = $0.00 to $100,000.00 

2 = $100,000.01 to $150,000.00 

3 = greater than $150,000.00 

1 = O ha to 400 ha 

2 = 400.001 ha to 700 ha 

3 = greater than 700 ha. 



WOOL 1 = $0.00 to $3.60 per Kg. 

2 = $3.61 to $4.70 

3 = greater than $4.70 
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for the other four micro models, B1 jWOOLj is replaced by the 

following; 

LAMB 1 = $0.00 to $15.00 

2 = $15.01 to $22.00 

per head. 

3 = greater than $22.00 

EWE 1 = $0.00 to $13.00 per head. 

2 = greater than $13.00 

BEEF 1 = $0.00 to $450.00 per head. 

2 = $450.01 to $600.00 

3 = greater than $600.00 

HEIFER 1 = $0.00 to $300.00 per head. 

2 = greater than $300.00 

The statistics for each micro model are reported in table 6.4. 

They indicate that all models are a 'good fit' in terms of x2 

and the number of zero cells found within each micro model 

crosstabulation is low. Crosstabulations are reported in 

Appendix IX and reasonable normality of adjusted residuals is 

displayed by the residual normality plots for each micro model 



reported in Appendix X. 

final set of micro models. 
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Tables 6. 5 through 6 . 9 report the 

Cases that did not participate with regard to either wool, 

lamb, ewe, beef or heifer prices, i.e., they did not produce 

either and were deemed to be missing, were removed from the 

analysis in determining each micro model. 

Table 6.4 Micro model statistics 

No. Conver Iter. x2 p DF ENT. CONC. 

WOOL 2580 .0000 5 29.73 .951 44 .074 .089 

LAMB 2520 .0000 5 28.09 .962 43 .088 .106 

EWE 2531 .0000 5 19.59 .879 28 .074 .090 

BEEF 1731 .00002 5 37.71 .737 44 .081 .101 

HEIF 1701 .0000 5 21.15 .819 28 .067 .083 

All micro legit models are 'good fit' with low x2 and 

significance levels high. A good fit model is one that 

displays no significant difference between observed cell 

contents and expected cell contents. Measures of association 

tell little of the strength of the models, except that much of 

the 'variance' explained is found within the residuals rather 

than in the models. It is difficult to know whether or not 

this is important, given that the models are used to predict 

membership to one of two categories rather than explain total 
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variance. All models in this process displayed low entropy and 

concentration. But texts on SPSSPC logit analysis indicate 

that little attention should be given to these statistics 

(Tabachnic, Fidell 1989). 

Table 6.5 WOOL MICRO MODEL 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST. 0.21031 0.02900 7.253 0.1535 0.2671 

WOOL 1 0.14085 0.03847 3.661 0.0654 0.2163 

2 -0.06269 0.03128 -2.004 -0.1240 -0.0014 

3 -0.07816 . . . . 

AREA 1 0.42718 0.04012 10.647 0.3485 0.5058 

2 -0.14409 0.03991 -3.611 -0.2223 -0.0659 

3 -0.28309 . . . . 

TTEXP 1 -0.47951 0.03735 -12.838 -0.5527 -0.4063 

2 0.04569 0.03316 1. 378 -0.0193 0.1107 

3 0.43381 . . . . 

LOC. 1 -0.08434 0.02426 -3.477 -0.1319 -0.0368 

2 0.08434 . . . . 
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Table 6.6 LAMB MICRO MODEL 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 0.14123 0.02886 4.893 0.0845 0.1978 

LAMB 1 0.24781 0.03289 7.535 0.1834 0.3112 

2 -0.0547 0.03049 -1.793 -0.1144 0.0051 

3 -0.19313 . . . . 

AREA 1 0.48557 0.04162 11.666 0.4040 0.5672 

2 -0.15755 0.04045 -3.895 -0.2368 -0.0783 

3 -0.32803 . . . . 

TTEXP 1 -0.50106 0.03865 -12.964 -0.5768 -0.4253 

2 0.02595 0.03377 0.769 -0.0402 0.0921 

3 0.47511 . . . . 

LOC. 1 -0.10172 0.02420 -4. 2 04 -0.1492 -0.0543 

2 0.10172 . . . . 
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Table 6.7 EWE MICRO MODEL 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 0.16188 0.02719 5.954 0.1086 0.2152 

EWE 1 0.81586 0.02298 3.551 0.0366 0.1266 

2 -0.81586 . . . . 

AREA 1 0.43502 0.04007 10.857 0.3565 0.5136 

2 -0.14599 0.04012 -3.638 -0.2246 -0.0674 

3 -0.28903 . . . . 

TTEXP 1 -0.48305 0.03769 -12.817 -0.5569 -0.4092 

2 0.04028 0.03327 1.211 -0.025 0.1055 

3 0.44277 . . . . 

LOC. 1 -0.08558 0.02396 -3.572 -0.1325 -0.0386 

2 0.08558 . . . . 
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Table 6.8 BEEF (STEER) MICRO MODEL 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST. 0.12463 0.03382 3.685 0.0583 0.1909 

BEEF 1 0.14934 0.03714 4.021 0.0766 0.2221 

2 -0.07802 0.03650 -2.137 -0.1496 -0.0065 

3 -0.07802 . . . . 

AREA 1 0.47366 0.04960 9.550 0.3765 0.5709 

2 -0.16131 0.04517 -3.572 -0.2498 -0.0728 

3 -0.31235 . . . . 

TTEXP 1 -0.50543 0.04960 -10.778 -0.5974 -0.4135 

2 -0.00531 0.03895 -0.136 -0.0816 0.0710 

3 0.51074 . . . . 

LOC. 1 -0.09664 0.03267 -2.958 -0.1607 -0.0326 

2 0.09664 . . . . 
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Table 6.9 HEIFER MICRO MODEL 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 0.19441 0.03503 5.550 0.1258 0.2631 

HEIF 1 0.08114 0.03038 2.670 0.0216 0.0141 

2 -0.08114 . . . . 

AREA 1 0.43163 0.04983 8.662 0.3340 0.5293 

2 -0.12302 0.04593 -2.679 -0.2130 -0.0330 

3 -0.30861 . . . . 

TTEXP 1 -0.46902 0.04746 -9.883 -0.5620 -0.3760 

2 -0.00153 0.03962 -0.039 -0.0792 0.0761 

3 0.47055 . . . . 

LOC. 1 -0.08975 0.03213 -2.794 -0.1527 -0.0268 

2 0.08975 . . . . 
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The models generally show a middle range of 'non risk' price 

and expenses factors. For example, in all five models category 

2, the range of expenditure from $100,000 to $150,000, 

indicates a relative non adjustment to the log-odds ratio. A 

similar null range is found within the LAMB price, where 

category 2 ($15.01 to $22.00) also incorporates zero within its 

coefficient confidence interval. In other price models, where 

a middle range exists, the coefficient is generally low. 

Ranking of coefficients indicates that in all cases both a low 

effective area or a high level of farm cash expenses, on their 

own, are substantially higher risk factors than any other. 

Further, if combined then the result is one of extreme risk of 

incurring negative cash net returns. 

Generally the five micro models fulfil the conditions set out 

in chapter five. Independently they are simple, meet the 'fit' 

criteria, have smaller coefficient standard errors in size 

compared to the coefficients and coefficient 95% confidence 

intervals generally not encompassing zero except where null 

ranges have been identified. 
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Chapter Seven 

MODEL TESTING 

7.1 MODEL MECHANICS 

Substituting the summed proportionate logits from each micro 

model into the logistic equation and solving yields the risk 

index for the individual producer under scrutiny. Prices and 

all expenditures are forecasts relating to th~ forthcoming 

production year. Submitted in budget form, the details are 

categorised according to the ranges within each micro model. 

Also involved are the farm area and island location, and their 

coefficients belonging to the selected categories. The sum of 

the coefficients within each micro model are multiplied to the 

proportionate weights, which are obtained from either the 

previous years financial results or the proposed budget, summed 

and inserted into the logistic function. 

The following is an example of how the risk index would be 

constructed for a hypothetical producer. Assume a farmer 

produces sheep and beef. The following products are sold: 
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Second shear crossbred wool; 

The majority of his lambs as store; 

The majority of his cull ewes through the saleyards; 

Steers are sold prime to the works; 

Cull heifers sold as 18 month stores. 

Assume the hypothetical average price forecasts for the 

following year, i.e., the year in which seasonal finance is 

requested, are: 

Wool = $ 3.28 

Lamb = $ 13.48 

Ewes = $ 10.20 

steers = $ 584.00 

Heifers = $ 280.00 

Price forecasts may be formulated using any method deemed 

appropriate, and may be made by either the producer or the bank 

or both. 

Assume that this producer is located in the South Island, and 

the effective area upon which he produces is 485 hectares. 

Assume that total expenses, i.e., all cash expenses including 

personal expenses, or all those expenditures likely to be 

transacted through current account, are expected or forecast to 

be $ 138,794. These expenditures reflect a specific 

production and activity plan. 
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The product income proportions displayed in the producers 

previous accounts, and the production mix that he proposes for 

the following year are unchanged, and are: Wool 47%, Lambs 

23%, Ewes 6%, Steers 17%, and Heifers 7%. Together these sum 

to 100%, regardless of how the products are sold. 

Tables 7.1 and 7.2 display the calculation of the micro logits, 

and then the grand logit, for this example farmer. 

Coefficients, taken from tables 6.5 through 6.9, are selected 

according to the categories that the farmer qualifies in, where 

each category represents a range within which each of the 

specific price, location, area and expenses occur. 

Table 7.1 Example preliminary logit calculation 

WOOL LAMB EWE BEEF HEIFER 

PRICE Val. $3.28 $13.48 $10.20 $584 $280 

Cat. 1 1 1 2 1 

Coef. .1409 .2478 .0816 -.0713 .0811 

ISLAN Val. South South South South South 

Cat. 2 2 2 2 2 

Coef. .0843 .1017 .0856 .0966 .0897 

AREA Val. 485 485 485 485 485 

Cat. 2 2 2 2 2 

Coef. .1836 .1640 .1695 .1757 .1543 



177 

EXP. Val. 138794 138794 138794 138794 138794 

Cat. 3 3 3 3 3 

Coef. .0457 .0259 .0403 -.0053 -.0015 

CONS. .2103 .1412 .1619 .1246 .1944 

SUM .6648 .6807 .5389 .3203 .5181 

* 2 

TOTAL 1.3297 1. 3614 1.0778 0. 6407" 1.0362 

Val.= Value Cat. = category Coef. = Coefficient 

Cons= Constant coefficient 

Total represents the sum of the coefficients multiplied by two. 

At this stage the proportional weights have not been applied. 

Table 7.2 completes the process. 

Table 7.2 Example grand legit calculation 

TOTAL WEIGHT MICRO LOGIT 

WOOL 1. 329682 0.47 . 0. 6249505 

LAMB 1. 361438 0.23 0.3131307 

EWE 1. 077716 0.06 0.0646629 

BEEF 0.640664 0.17 0.1089128 

HIEFER 1. 036148 0.07 0.0725303 

GRAND LOGIT 1.1841873 
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substituting the grand logit into the logistic function 

( 7. 1) 
1 

where Li is the grand logit, then 

Ri 
1 = 

1 + e -1.1041073 

(7.2) 

Ri 
1 = 

1.305995 

Ri = 0. 7656997 

That is there is a 76.57 percent probability that this farmer 

will actually incur a negative net cash result at the end of 

his financial year, given his proposed budget. 
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7.2 MODEL SENSITIVITY 

Completing the risk index computation for every possible 

category combination possible for each micro model, i.e., 51 

possible combinations, where each micro model is treated as 

independent, i.e., all proportionate weights are one, for all 

micro models, results in the possible 'spread' of risk over all 

risk category combinations. Results of this process are 

reported in Appendix XI. 

Table 7.3 reports the minimum and maximum risk index for each 

micro model. 

Table 7.3 Micro model risk ranges 

MICRO MODEL P,I,A,E MINIMUM P,I,A,E MAXIMUM 

WOOL 3 1 3 1 0.194 1 2 1 3 0.930 

LAMB 3 1 3 1 0.123 1 2 1 3 0.947 

EWE 2 1 2 1 0.219 1 2 1 3 0.918 

BEEF 3 1 3 1 0.149 1 2 1 3 0.938 

HEIFER 1 1 3 1 0.234 1 2 1 3 0.927 

P,I,A,E represent price, island, area and expenses 

respectively. For example, the wool micro model categories, 3 

1 3 1 relates to price category 3 ( $4.70 and greater), island 

category 1 ( North Island), area category 3 ( 700 hectares and 
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greater ) and expenses category 1 ( $0.00 to $100,000.00 ). 

All combinations are reported in the above order (PIAE). 

Minimum is defined as the best possible scenario, i.e., a high 

price forecast, (except in the HEIF model) located in the North 

Island, categorisation into greater than 700 ha, and into less 

than $100,000 of total cash expenses, thus resulting in the 

lowest possible probability of sustaining negative cash net 

returns. Similarly maximum is defined as the worst price 

forecast, located in the South Island, farming less than 400 

hectares, and forecast spending in excess of $150,000. 

The risk ranges indicate that even when the scenario is good, 

there is always a probability of loss, and when bad, a 

probability of not sustaining loss. At 93% probability of 

loss, there is still a 7% probability of not sustaining loss, 

and equally at 20% probability of loss, there exists an 80% 

probability of not sustaining loss. 

Appendix XI ranks each combination according to the risk index. 

Generally the order of risk combinations do not change greatly 

as risk indices proceed from lowest through highest. Of note 

are those combinations that display identical risk measures. 

Within the WOOL micro model, which assumes 100% production of 

wool, i.e., no other activity takes place, one sees that the 

PIAE categories 1232 and 3133 have identical indices. (The 

order 1232 is identical to the order of variables in the micro 

models, i.e., Price P, Location I, area A, and Expenses E. All 
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combinations are reported in this order). Similarly 2233 and 

1211, 2223 and 3112, 1212 and 3113, all have identical indices. 

The sensitivity risk range function for the WOOL micro model is 

displayed in figure 7 .1. The remaining risk functions are 

reported in Appendix XII. Figure 7.2 indicates the range when 

various proportionate legit weights are incorporated. That is, 

3 0 percent and 7 0 percent ( 0. 3 0 and 0. 7 0) are included to 

indicate that the overall slope of the step function changes 

according to the weight used and rotates around 0.50. 

0.9 

0.8 

0.7 

prob o.s 

0.5 

0.4 

0.3 

0.2 

0.1 

WOOL RISK 

o~------------------------

best risk mix worst 
Figure 7.1 Micro wool model range 
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When the separate micro models are added after weighting, the 

risk measures can never exceed the maximum index for any 

individual micro model because all weights must equal one. 

The resulting 'risk' function is shown to be a step function, 

where the steps alter slope at each significant change in 

categorisation. If the area to the right of the function is 

the area of risk, then the area to the left is the area of no 

risk. 

Wool - weighted logits 
100% 

0.9 

0.8 70% 
0.7 

0.6 

prob 

0.3 

0.2 

0.1 

0 

best category combination worst 

Figure 7.2 Micro wool model proportions 

One can see that where a producer only produces wool, the risk 

of sustaining negative cash net returns is greater than the 

risk of not, because the majority of possible category 
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combinations result in risk indices that exceed 0.50. 

Figure 7.3 compares the risk functions for each micro model. 

A confusing aspect of this graph is that both the EWE and HEIF 

models contain only two price categories. As a consequence, 

the range of possible combinations is fewer than for the other 

three micro models. 

category combinations. 

EWE and HEIF models can have only 33 

prob. Sheep & Beef Risk Functions 
100% prop. 

Risk combinations best to worst 

Legend 

-WOOL 

---- LAMB 

······· BEEF 

--- EWE 

·--- HEIFER 

Figure 7.3 Sheep and Beef micro model risk functions 

Generally the functions are nearly identical. If both EWE and 

HEIF are graphed on the same axis, where category price 2 is 

treated the same as category 3 for WOOL, LAMB and BEEF, then 

all functions fit along a similar area, except the steps in 
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both EWE and HEIF are more pronounced as a consequence of 

having only two price categories. 

The reference to risk for wool production being high is 

illustrated for sheep and beef farming generally when all micro 

models are combined. Figure 7.4 indicates the steep nature of 

the stepped risk function, and shows that generally the risks 

of sustaining negative net cash returns is high due to the high 

number of risk combinations with resulting risk indices 

exceeding 0.50. This function can therefore be considered a 

'sheep and beef risk function'. The shaded area under the 

function indicates the region in which any individual farmer's 

risk index can occur according to his specific combination of 

categories and proportional weights. 

Sheep & Beef Risk Frontier 
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Figure 7.4 Sheep and Beef risk function 
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7.3 MODEL TESTING USING SAMPLE DATA 

Given that the model does not predict actual cash return 

outcome but predicts the probability of a cash outcome, testing 

for 'correctness' is tantamount to testing the odds of a 

racehorse winning against whether or not the horse does win. 

If the odds of a horse winning are high, and the horse actually 

loses, are the odds at fault or is the horse? Because there 

always exists a probability of a favourable outcome, even when 

the probability of an unfavourable outcome is high, an actual 

outcome that reflects the probability of that outcome 'most of 

the time' could be an indication of the soundness of the 

probability estimate. 

A random selection of 175 cases drawn from the data utilised in 

this study was utilised for model testing. Of the 175 cases, 

113 displayed<= $0.00 net cash return, and 62 > $0.00. The 

risk probability measure was constructed for each of the 

selected cases and compared to the actual net cash return 

outcome of that case. 

Figure 7.5 reports the distribution of the risk indices across 

the test sample. One notes that generally the indices are 

centred around the 0.48 to 0.63 area, indicating that a flip of 

a coin might be as good as the model. A 50 percent probability 

of less than zero returns could be considered no better than a 

flip of a coin, and measures distributed closely around 0.50 

give a similar indication as to the likelihood of an outcome. 
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Selecting the 111 cases that displayed negative net cash 

returns and plotting the risk distribution alongside the risk 

index distribution for those cases displaying positive net cash 

returns, as in Figure 7. 6, indicate that even though the 

majority of risk indices give little indication as to the 

strength of belief one may have toward the occurrence of an 

outcome, the result indicates that a good proportion of the 

test sample that in fact had negative returns would have been 

predicted. 

Separate risk index distributions are reported in Appendix 

XIII. 
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Figure 7.6 Relative risk index distribution 
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Those cases in the negative return category are generally 

distributed among the higher risk indices, as one would hope. 

However note the quite large overlap of both return categories 

across the 0.45 to 0.59 index range. This fact becomes an 

important feature when one is confronted with the problem of 

utilising the index for a yes/no decision regarding the 

provision of seasonal finance, a point that will be covered in 

a later chapter. 

Assuming that a risk index greater than 50 percent would 

indicate a weighting or bias toward a correct probability of an 

unfavourable outcome, then it would be useful to see if the 
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number of 'correct' probability indices is reflected in their 

ability to predict an actual unfavourable outcome. Table 7.4 

indicates these results given that 50 percent is the selected 

threshold 'acceptance' or 'gamble' level. 

Table 7.4 Probable outcome against actual 

pi <= $0 NEGATIVE POSITIVE TOTAL PERCENT 

> 0.40 112 60 172 65% 

<= 0.40 1 2 3 66% 

TOTAL 113 62 175 

> 0.50 98 46 144 68% 

<= 0.50 15 16 31 52% 

113 62 175 

> 0.60 48 12 60 80% 

<= 0.60 65 50 115 43% 

113 62 175 

The encouraging aspect of the above result is that the model 

probability estimate, where the index was greater than 0.50, 

selection was right 68 percent of the time, i.e., where 0.50 

had been used as a reject or accept criteria, the model results 

would have been right to reject 68 percent of the time. 

However where the index is low, i.e. , less than o .·50, where one 



189 

would expect an outcome greater than zero net returns, the 

model results were right only 52 percent of the time. 

If cases with a less than 0.50 index were accepted, then the 

model results would have accepted 31 cases, 15 of which would 

have turned out to be incorrect decisions (48 percent). 

Similarly if 144 cases were rejected the model results would 

have rejected 46 (28 percent) cases that would have turned out 

to be good clients. 

Given that the intention is to use the index as an 

accept/reject measure, then one can obviously see that the 

'correctness' of the decision rests on the threshold index one 

is going to use as a criteria. Should one establish 60 percent 

(0.60) as a threshold then fewer 'correct' acceptances would 

have occurred, (43 percent) but the number of 'correct' 

rejections would have increased, (80 percent), 20 percent of 

rejections constituting an opportunity loss. There appears 

then to be an index range within which other more substantial 

criteria would need to apply in the decision process involved 

with accepting or rejecting an application for seasonal 

finance. That index range appears to be around the 45 percent 

to 55 percent index area. 

Plotting the risk indices with the actual net cash returns 

supports the contention that a 'null' range exists in the risk 

index. Figure 7.7 displays such a plot. The positioning of 

the scatter across the scattergram indicates the 'correctness' 
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of a possible accept/reject decision. 
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Figure 7.7 Plot of risk vs returns 

One can clearly see the 'null' index range around the 50 

percent level. 'Correctness' of the probability measure occurs 

between 0.45 and 0.55 where one would consider an 'incorrect' 

decision based on the index being the acceptance of a farm 

finance application, and in fact the outcome shown to be 

substantial losses. 

The lower left hand quadrant indicates that no such 'mistake' 

occurred in the test sample. However, in the upper right hand 

quadrant, several 'mistakes' did occur, particularly where the 

index was greater than O. 6 and the final outcome indicates 
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large cash surpluses, i.e., greater than $30,000. 

These 'mistakes' would constitute an opportunity ~nterest cost 

as a consequence of declination, but one could argue that an 

opportunity loss is better than an actual loss. Had mistakes 

of this magnitude been shown in the lower left hand quadrant, 

then the model's value would be in serious doubt. 
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7.4 MODEL TESTING USING ACTUAL DATA 

Eight actual sheep and beef farmer bank clients were selected 

for risk measurement. Due to the fact that submitted budgets 

for the previous years trading are not usually retained, it was 

not possible to compare a measured risk index against an actual 

end of year balance. Therefore only those budgets pertaining 

to this year, ending June 1992, could be used. Unfortunately 

actual end of year balances will not be known until that time. 

Comparisons between the risk index and actual end of year 

outcomes could not therefore be made. 

Nevertheless, measurements were taken on current budgets, and 

knowledge of opening balances used to ascertain whether or not 

forecast returns were in fact feasible. Budgets included price 

forecasts for sale produce which were made by the farmer 

client. In practise the risk index would utilises price 

forecasts that would normally be made by bank officials and not 

the farmer client, unless agreement existed between the bank 

and client as to the 'accuracy' of those forecasts. In this 

exercise, the index is derived using independent forecasts of 

price, thus eliminating a possible optimism in the farmer 

budget. 

This exercise will indicate some of the reason and relationship 

between the risk index and budget forecast. Table 7.5 reports 

the results of risk measurement for these eight clients 

currently near the beginning of their production· season. 
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Table 7.5 Actual case risk measures 

CASE F.NTINC OPEN.BAL. A.NTINC AREA F.EXP. RISK 

1 8002 -29690 21570 364 132648 65.68 

2 5890 -2725 - 277 69310 51.91 

3 -9276 12669 - 512 222461 60.09 

4 3625 -8899 - 305 59884 52.04 

5 -210 1986 - 382 78251 52.46 

6 102480 -145000 - 638 276320 57.59 

7 -2389 -1870 - 219 70184 51.85 

8 14965 -5838 - 373 175640 72.38 

Price forecast categories used in the index measure include: 

Wool $ 0 to $ 3.60 = 1 

Lambs $ 15.01 to $ 22.00 = 2 

Ewes $ 0 to $ 13.00 = 1 

Beef $ 450.01 to $ 600 = 2 

Heifers $ 0 to $ 400 =1 

All farms are located in the North Island. 

One can see the 'null' risk index range again displayed. Those 

measures around the 50 percent, up to possibly 65 percent, give 
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little strong evidence to suspect that submitted budgets are 

strongly at risk of being incorrect. Two cases stand alone; 

case 1 was one exception in not being able to obtain past data. 

Its measure is based on the fact that farm expenditure is high 

in relation to the size of the farm. The property forecast a 

net return (cash) of$ 8,002 and in fact achieved a return of 

$21,570. With an index measure of 65.68, and reasonable farmer 

forecasts for product prices, the index is explained by the 

'small' size of the property, indicating that caution needs to 

apply in evaluating the property's ability to. guarantee a 

positive return. 

Case 8 indicates high risk. 

and high farm expenses, 

An index of 72.38, small farm size 

plus a lack of farm income 

diversification (not displayed, but 85 percent of income 

derived from bull beef) with extreme farmer expectations 

regarding the price to be received from bulls (between $880 and 

$1000 per head explaining the positive expected net income) all 

add up to a case that would need to undergo review of farm 

expenditure, as a consequence of the risk index. 

Figure 7. 8 plots the index against the 'forecast net cash 

returns'. The graph indicates those forecasts that are suspect 

in terms of actual outcomes. One can see that outside the null 

index range, two cases require examination. 

both of which have been discussed. 

Cases 1 and 8 , 
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As a test of the 'accuracy' of the risk index, the above 

exercise is of no help due to the 'forecast' nature of net 

returns. However given the result of the test against data 

sample cases, one suspects that the index at the very least 

identifies those cases that could be potential problem clients. 

When used against budget forecasts of net returns, the index 

again indicates cases that will require a more vigorous 

appraisal prior to the agreement of the provision of seasonal 

working capital. 
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Chapter Eight 

CONCLUSION 

8.1 RESULTS DISCUSSION 

The results of the modelling exercise conclusively identify and 

rank the most important risk variables found within sheep and 

beef farming. Factors such as drought, flood, policy and 

market instability are included implicitly within the model. 

These factors are displayed according to the effect that each 

has on those variables within the model. Drought and several 

peculiarities of the market are incorporated within the risk 

differential between North and south Islands, al though the 

differential is not great. More important is the effect that 

drought, government policy and market fluctuation may have on 

the expenditure and price expectations of the farm plan. 

Drought is a factor that more often than not is included within 

the farms expenditure plan. The drought's effect is felt 

initially on farm expenditure as farmers try to protect 

production from the effects of the drought. 

The strategy utilised in the building of the risk assessment 

model resulted in a straightforward model structure. Future 

additional micro models can be attached to the macro model. 
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These additional micro models need not only include main 

interaction effects, as did the micro models developed so far. 

The resulting four variable main effect logit model was 

considered to be the most suitable representation of the 

stepped risk function for sheep and beef farming.· Interaction 

effects were eliminated from the sheep and beef micro model 

only because their removal did not greatly affect goodness of 

fit. Goodness of fit statistics for all sheep and beef micro 

models were acceptable as were the confidence intervals for all 

coefficients. 

The coefficients of the interaction term between TTEXP and AREA 

were small and confidence intervals indicated that for most 

categories zero was a highly probable coefficient. In 

addition, removal of SU/HA was based on the argument that codes 

could alter the significance of the coefficients, and 

penalising profitable but low stocked high country properties 

was not desirable. 

Examination of the ranking of model coefficients reveals that 

within all micro models, expenditure and land size are 'greater 

risk' factors than average product prices. In addition, 400 

hectares seems to be the threshold farm size 'step' where 

thereafter risks are greatly reduced. Any property engaged in 

sheep and beef production with an area less than 400 hectares 

is deemed to be high risk in the context of the model, unless 

the farm expenditure is less than$ 100,000, where the risk is 



198 

almost totally offset. If the property is both less than 400 

hectares and is prone to spending in excess of$ 150,000, then 

the risks are nearly doubled. If wool, lamb, ewe, beef or 

heifer prices are forecast to be low, then sheep and beef 

farmers within this farm size and expenditure category are very 

vulnerable to incurring negative cash returns. 

This study suggests that economies of size, in .terms of the 

relationship between expenditure and area, is the single most 

important risk component. The level of flexibility in being 

able to react to inadvertent market factors and government 

policy, as a result of the combination of higher than average 

farm expenses and limited farm size, is a key factor in 

establishing the 'soundness' of any application for seasonal 

working capital. 

In addition to effective farm area, this thesis also ranks farm 

expenditure above average product prices in terms of impact on, 

or risk to net cash returns. Therefore the components of farm 

expenditure are more important than the components of farm 

revenue. Any element that greatly influences farm 

expenditures, whether they be physically or market sourced, 

seen or unforseen, must be of greater concern to the suppliers 

of seasonal finance than fluctuating product prices. 

High price forecasts have little offsetting effect on the 

inherent risks underlying resource constraints such as farm 

size and farm expenditure limits. More often than not, 
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favourable price forecasts will not compensate for inefficient 

farm expenditure, particularly within properties of less than 

400 hectares, unless a major proportion of cash income is 

sourced outside of the sheep and beef production unit. 

Large fluctuations or variation, as well as unreliability of 

sheep and beef product prices and costs, because of their 

stochastic nature, are implicitly considered the biggest risk 

factor within sheep and beef farming as a consequence of a 

general emphasis on the link between product. prices, the 

factors that affect prices and farm profitability. The work in 

this thesis suggests that within reasonable price variation 

limits, other factors such as farm size and farm resource 

utilisation, have a greater bearing on the ability of a sheep 

and beef farmer to consequentially achieve a positive cash 

return. 

Major farm expenditure components as well as effective farm 

area and the 'trade-off' between both factors are considered by 

this thesis to be the most important risk variables. The less 

is the offset to the risks inherent in small farm size by low 

farm expenditure, then the greater are the risks to both farmer 

and financial institution of farmer insolvency, keeping in mind 

that high product price outcomes may not be sufficient to 

totally offset those risks associated with joint high 

expenditure and small farm size. 

Last but certainly by no means least, is the lowest ranking 
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island variable differential. The island differential alters 

the micro legit according to what must be an inherent 

difference, of price, size and expenditure, and factors that 

affect those variables, between the two Islands. Although the 

'logit' size for LOC (location) on its own is not great it has 

a substantial influence on the index when incorporated in the 

logistic function. A legit of O. 08 equates to a probability of 

o. 54, in comparison to -o. 08 which equals o. 4 6, giving a 

difference of 0.08 or an 8 percent increase in the probability 

of incurring negative cash returns purely as a consequence of 

farming sheep and beef in the South Island. 

By providing compounding levels of seasonal finance to sheep 

and beef farmers within the small farm size category without a 

low expenditure offset, regardless of which island the farmer 

is located, banks are in fact placing themselves at greater 

risk of sustaining a probable 'loan default' client. 

I dent if ication of likely clients in this category is now 

possible with this risk index. 

Constructive reaction in the form of supported diversification 

more suited to small farm size, or support in the purchase of 

additional land, given that the results of such a reaction are 

likely to be favourable, would seem to be a more sensible 

alternative to just providing ongoing seasonal overdraft 

facility to a property with little chance of avoiding the risks 

involved in producing sheep and beef on small and expensive 

properties. 
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The primary objective of this thesis was to develop a 

specifically agricultural risk quantification method resulting 

in a single index measure. This objective has been met, and a 

model presented indicating the process, structure, utilisation 

and problems of the method. Logit analysis, or the direct 

estimation of a risk index that defines risk as the probability 

of loss or harm, is a suitable replacement of the more 

traditional variance and monotonic transformations of variance. 

The index is intuitively appealing, easily understood, and 

apart from some probable refinement easy to construct and 

utilise. 
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8.2 MODEL STRENGTHS AND WEAKNESSES 

8.2.1 LOGIT ANALYSIS TECHNIQUE 

Two issues are combined in this thesis - probabil'ity as a risk 

measure and logit analysis as a probability estimation method. 

Logi t analysis has been shown to be a valuable method for 

evaluating a 'probability' measure by directly estimating the 

probability of an expected outcome given independent factors. 

The thesis has argued that variance is not a good proxy for 

risk, and suggests that probability itself, because of its 

intuitive appeal and its implicit representation of the third 

and fourth moments of a distribution, is a better objective 

'measure' of risk. 

The main assumption that validates the method is the assumption 

that the cumulative distribution function, or logistic 

function, is representative of the CDF for the distribution 

that would result from the combination of multiple 

distributions representing the different risk factors and 

variables within farm cash flows. By-passing the 

identification of each risk factor, measuring their 

distributions and then deriving the moments of the combination, 

whether summed or multiplied, has enabled a direct estimation 

of implicit moments that already represent all known and 

unknown risk variables. One need not know how and why various 

factors are distributed, only that they all generally follow a 

similar distribution, whether normal or not. 
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The sample data distributions displayed in Appendix III 

generally indicate a skewed positive or negative log-normal 

distribution. Therefore use of the logistic function and the 

assumptions behind its use do not appear to be a gross 

violation. In addition, the relationships between dependent 

and independent variables used in the model are not linear, but 

generally either logarithmic or quadratic. Legit analysis 

assumes logarithmic relationships between variables and, apart 

from being convenient for estimation purposes, seems to be a 

reasonable method based on reasonable assumptions. 

It is a conclusion of this study that, apart from some minor 

nuances, legit analysis is a sound technique for probability 

estimation of outcomes within agriculture. In addition, the 

ability to combine independent 'micro legits' of mutually 

exclusive activities into a 'macro legit' is convenient. 
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8.2.2 THE LOGIT MODEL 

This risk index was never intended to represent an actual 

outcome, only the likelihood of that outcome. In the same way 

that variance is used to indicate the range of probable 

fluctuation within which an expectation will occur, that is the 

first and second moments of a 'net cash returns' distribution, 

this risk index attempts to add third and fourth moments to the 

information regarding an investment proposal. 

Two features of legit analysis are of concern. First the 

relationship between both the number of categories within each 

variable and range of observational points within each 

category, and the significance or standard error of the 

estimated coefficient for each category within each variable. 

Second, the size differentials between category coefficients 

within each variable. 

Previous discussion on the number of categories and ranges 

within categories indicated that apart from common sense and 

the sample size of data at ones disposal for such an analysis, 

there exist no general rules of thumb regulating the 

qualification of quantitative variables. The strategy 

attempting to identify the 'correct' range constituting each 

category seemed to work adequately if one accepts the criteria 

upon which the 'correctness' is judged. However, apart from 

monitoring the resulting crosstabulation once the number of 

categories within each variable was decided upon, and relating 
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the number of categories to the number of zero cells within the 

crosstabulation as well as attempting to produce cell sizes 

greater than five observations, as is suggested in the 

literature, there is no firm rule or method for identifying the 

appropriate number of categories. 

As can be seen from the results of the final model, the average 

prices variables WOOL, LAMB and BEEF have three categories, 

while EWE and HEIFER contain two categories. Trial and error 

identified the suitability of the number of categories for 

these variables. The result seemed to be determined by both 

the total range of average prices for the variables and the 

number of observations falling within each categorical 

component of the total range. A weakness then exists in that 

the classifications and number of categories could be deemed to 

be arbitrarily determined. 

The size differential between category coefficients within 

variables was also of concern. The indication was that the 

'steps' within the risk functions were large. With regard to 

AREA, after identification of 400 hectares as a threshold step, 

a farmer has a risk logit of 0.48 if he farms 398 pectares, but 

-0.14 if he farms 411 hectares. It seems unreasonable to 

suddenly penalise a farmer, or attach what amounts to be an 

additional 15 percent risk for the sake of one hectare about 

the threshold 400 hectares. Within a decision framework, two 

hectares could effectively lead to problems of obtaining 

seasonal finance if the bank adheres rigidly to an 
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accept/decline risk threshold level. 

For example, if the bank refuses to accept any application with 

a measured index beyond say o. 65, and a farmer with 399 

hectares has an index of say 0 . 7 5 then, depending on the 

proportionate weights, two hectares more would decrease the 

index to 0. 60 and the application would be accepted. This 

example would appear to be harsh in the extreme, and indicates 

that use of the index should only contribute to the information 

regarding the application, and should not be used as an 

independent criteria. 

Interpolation for coefficient estimates between those estimated 

by legit analysis would seem to be an appropriate strategy for 

lessening the severity of the steps. Notice from the risk 

functions plotted for every possible combination, (weights= 1) 

that the steps in the function merely alter the slope of the 

function at each step. The slope is never either 1 or 0. 

Further, given that there can never exist a price of<= $0, 

then for a three category variable such as AREA or TTEXP, the 

first and second categories are defined points and the third 

category, representing a price greater than that at the second 

category step, defines a price that can theoretically go to 

infinity. 

Figure 8.1 plots the coefficients for the categories within 

AREA of the WOOL micro model. The first category was coded 

lowest through 400 hectares, second 401 through 700 hectares, 
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and third 701 through to highest area, (of the sample). Within 

the sample the minimum area was 53 hectares and the highest 

30116 hectares. Therefore one could say that from 53 to 400 

hectares the coefficient is .43, from 401 to 700 is -.15, and 

from 701 to 30116 ha is -.28 . 
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Figure 8.1 Interpolation between categories 

Keeping in mind that all coefficients must sum to zero, 

appropriate coefficients between categories 1 and 2, and 2 and 

3 could be derived mathematically using quadratic 

interpolation. The result would help to minimise the severity 

of the legit steps within the derivation of the risk index, 

al though it is unlikely that the interpolated coefficients 

would be exact. 
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8.3 MODEL (INDEX) UTILISATION 

As was previously alluded, the index is not intended to serve 

as a stand-alone criteria for determining the 'acceptability' 

of an individual farm application for seasonal finance. The 

information however, that is required to develop the index for 

an individual, must come from a budget forecast representing a 

specific plan of production intended for the following year, a 

plan which requires working capital, or a short-term seasonal 

overdraft facility from the bank. 

The difference between cash on hand at the beginning and end of 

a year's trading is the best basis upon which to ascertain the 

likely solvency of a farmer. The index establishes a direct 

link and relationship between the farmer plan, his opening cash 

position, his proposed expenditure, and the probability of that 

farmer not being in a position at the end of the forthcoming 

years trading to service and repay the overdraft. Continued 

negative net cash returns, or compounding seasonal overdraft 

facilities, or the continued conversion of overdraft into term 

loan or hardcore debt, ultimately leads to a position of 

insolvency and bankruptcy, unless the 'probability' of this 

occurrence is identified at an early stage. 

The index has the purpose of signalling to both farmer and bank 

that continued support of an ongoing long-term production plan 

is fraught with the risk of insolvency. A farm plan that 
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measures high risk can then be evaluated from the perspective 

of both identifying those areas in the plan that are either 

susceptible to optimism or grossly inefficient, and or those 

areas in the plan that may indicate more pronounced deep seated 

problems regarding the resources available for such a 

production unit. The index may cause examination of the 

production unit such that conclusions regarding some form of 

diversification are reached, where measurement of a 

diversification plan reveals much less risk and greater 

guarantee of profits, and is therefore actively supported by 

the financier. The index can serve to provide confidence to 

both farmer and banker as to the likely outcome of any proposed 

venture. 

An important component of the index is product price forecasts. 

The index does not require accurate forecasts to be applicable. 

It merely requires an estimate of whether or not prices are 

likely to be within those ranges that constitute each category. 

So long as one is sure that the likely price outcome will not 

exceed those limits imposed by the model, then one can be sure 

that the index will be representative of the proposed plan. 

Where suspicions 

forecast being 

are generated with regard to 

inaccurate in terms of 

a previous 

categorical 

classification, then a re-evaluation of the index will indicate 

the ability of the plan to sustain such change. 

Once a proposed farm budget plan has been risk indexed, and 

appropriate sensitivity analysis formed on the cash flow budget 
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to identify the maximum likely level of overdraft finance 

requirement, then the bank is in a position to determine, 

according to its portfolio objectives, the acceptability of 

such a proposal. Its choices are to totally decline 

involvement, to accept the plan unamended, to request revision 

of the plan, or to seek some external evaluation of the farm 

unit and proposed budget. 

Many options are available to the bank in terms of how the 

index is utilised within a risk management framework. The 

index lends itself to utilisation within some form of 

Expectation-Variance (risk) decision framework, where the index 

replaces variance in the analysis. So long as the limits of 

the index are understood, i.e., that the index represents a 

probability estimate, and not an actual guaranteed positive or 

negative outcome, there is little danger that decision making 

will be any the worse as a consequence of it. 
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8.4 FURTHER RESEARCH 

This research identifies two main areas where further research 

would be of value to this study. First, the constraints 

imposed by legit analysis must be lessened, thus allowing for 

a fine tuning of the model reported in this thesis. Second, 

identification of appropriate strategies, within a decision 

framework, for utilisation of this risk index. 

The most exasperating feature of legit model building is 

grappling with the relationship among the size of the sample 

data, the number of inclusive variables and their structure, 

the number of categories for those quantitative variables that 

prove to require qualification, the range of quantitative data 

within each category, and the 'correctness' of· the maximum 

likelihood coefficient estimates for every variable and 

category. If 'rules' can be established that ease the strategy 

of legit model building, then legit analysis could well become 

more useful than it currently is. 

Throughout the model building process, the constraints imposed 

by legit analysis appeared to cause decisions to be made for no 

reason other than to make the modelling process viable. 

Information that has empirically proven to be 'risky', such as 

stocking rates and the effect of climate and resource 

utilisation on stocking rates, fertiliser use, the effect of 

international and national policy on product prices and farm 

expenditure, plus a host of other equally important features, 
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were only indirectly considered in this analysis. 

Use of historical data in this research assumes that all manner 

of factors caused fluctuation within all reported incomes and 

expenditures. A risk index reflecting the probability of 

negative cash returns is itself useful, but would be enhanced 

with probability estimates of the occurrence of those factors 

that greatly influence farm profits. A composite risk index, 

specifically incorporating the combined probabilities of each 

and every identifiable risk factor effecting farm net cash 

returns and solvency, could truly be called a quantification of 

agricultural risk. 

Indices reflecting the probability of drought, increasing 

inflation, sudden downturns in market demand, and even the 

direct probability of farmer default itself, could be 

constructed using legit analysis. Without knowing for sure how 

'correct' these probability measures are, because there seems 

little one can do to test the accuracy of an objective 

probability estimate, one is reluctant to place too much 

emphasis on their strength as decision criteria. Therefore 

further research into the legit process must incorporate sound 

testing methods for the identification and selection of 

'correct' legit model specifications and results. 

In addition to further research requirements regarding legit 

analysis, methods for identifying the appropriate index 

management techniques becomes paramount. Identification of the 
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decision process relating to the use of the index within a 

banking environment is the next step in utilising a measurement 

of risk. 

Chapter one attempted to indicate the natural bias within the 

relationship between bank and farmer and contended that the 

bank's reaction via its influence on the investment 

capabilities of the farmer are of at least as gr~at a risk to 

the farmer than are the risks of drought or inadvertent market 

forces. Risk sharing strategies must first identify the risk 

limits that each participant is willing to accept. Because an 

individual farmer is more dependent on the bank's service than 

the bank is on an individual farmer's custom, the farmer has no 

choice but to operate within the risk limits imposed by the 

bank. 

Those limits may become extended and more suitable to farmers 

if banks are better able to understand, measure and monitor 

risk, thus gaining greater confidence in agricultural 

investment through management of the unique risks associated 

with agricultural production. Quantification of agricultural 

risk is seen as a first step in the process of risk sharing 

strategies. 
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APPENDIX I. 

DATA VARIABLE FIELDS. 

1. Farm Class 

2. Survey Year 

3. Wool Sales$ 

4. Wool Sold Kg 

5. Prime Lamb Sales$ 

6. Prime Lambs Sold 

7. Prime Mutton Sales$ 

8. Prime Mutton Sold 

9. Prime Steer Sales$ 

10. Prime steers Sold 

11. Prime Heifer Sales$ 

12. Prime Heifers Sold 

13. Store Whether/Ram/Cry. Lamb Sales$ 

14. Store Whether/Ram/Cry. Lambs Sold 

15. Store Ewe Lamb Sales$ 

16. Store Ewe lambs Sold 

17. Live Ram/Ewe Lamb Sales$ 

18. Live Ram/Ewe Lambs Sold 

19. Store CFA Ewe Sales$ 

20. Store CFA Ewes Sold 

21. Store 2T Ewe Sales$ 

22. Store 2T Ewes Sold 

23. Store 2yr Steer Sales$ 

24. Store 2yr Steers Sold 

25. Store lyr steer sales$ 



26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

Store 

Store 

Store 

Store 

Store 

Weaner 

Weaner 

Weaner 

Weaner 

lyr Steers Sold 

2yr Heifer sales 

2yr Heifers Sold 

lyr Heifer Sales 

lyr Heifers Sold 

Steer sales $ 

Steers Sold 

Heifer sales $ 

heifers Sold 

35. Total Cash Income 

36. Total Working Expenses 

37. Capital Purchases 

38. Personal Drawings 

39. Interest Payments 

40. Fertiliser Expenses 

41. Taxation payments 

42. Mortgage Payments 

43. Cash Equity 

44. Total Asset values 

$ 

$ 

45. Phosphate Fertiliser Applied tonnes 

46. Nitrogenous Fertiliser Applied tonnes 

47. Effective farm Area 

48. Regional location 

49. Ewe Numbers 

50. 2T Ewe Numbers 

51. Ewe Hogget Numbers 

52. Whether/Ram Hogget Numbers 

53. Ram Numbers 
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54. Mated Cow/Heifer Numbers 

55. Yearling heifer Numbers 

56. Yearling steer Numbers 

57. 2yr Steer Numbers 

58. 3yr Steer Numbers 

59. Bull Beef Numbers 

60. Breeding Bull numbers 



APPENDIX II. 

COUNTIES AND DISTRICTS WITHIN GEOGRAPHICAL REGIONS 

REGION 1. NORTHLAND 

Mangonui 

Whangaroa 

Hokianga 

Bay of Islands 

Whangarei 

Hobson 

Otamatea 

Rodney 

Waiheke 

REGION 2. WAIKATO /BOP /CENTRAL PLATEAU /COROMANDEL 

Great Barrier Island 

Franklin 

Raglan 

Waikato 

Waipa 

Otorohanga 

Waitomo 

Taumaranui 

Thames - Coromandel 

Hauraki 

Ohinemuri 
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REGION 3. EAST CAPE 

REGION 4. HAWKES BAY 

REGION 5. WAIRARAPA 

Piako 

Matamata 

Tauranga 

Rotorua 

Taupo 

Whakatane 

Opotiki 

Waimarino 

Waiapu 

Waikohu 

Cook 

Wairoa 

Hawke's Bay 

Waipawa 

Waipukurau 

Dannevirke 

Woodville 

Pahiatua 

Eketahuna 

Masterton 

Wairarapa 

Featherston 
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REGION 6. TARANAKI /MANAWATU /WELLINGTON 

REGION 7. WESTCOAST 

Clifton 

North Taranaki 

Inglewood 

Stratford 

Egmont 

Eltham 

Waimate West 

Hawera 

Patea 

Waitotara 

Wanganui 

Rangitikei 

Kiwitea 

Pohangina 

Oroua 

Manawatu 

Kairanga 

Horowhenua 

Hutt 

Golden Bay 

Waimea 

Buller 

Inangahua 
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REGION 8. MARLBOROUGH 

REGION 9. CANTERBURY 

Grey 

Westland 

Marlborough 

Kaikoura 

Arouri 

Cheviot 

Hurunui 

Rangiora 

Eyre 

Oxford 

Malvern 

Paparau 

Waimairi 

Heathcote 

Mount Herbert 

Akaroa 

Chathams 

Wairewa 

Ellesmere 

Ashburton 

Strathallan 

Mackenzie 

Waimate 

Waitaki 

Waihemo 
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REGION 10. OTAGO 

REGION 11. SOUTHLAND 

Silverpeaks 

Bruce 

Clutha 

Tuapeka 

Maniototo 

Vincent 

Queenstown 

Southland 

Wallace 

Stewart Island 
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APPENDIX III. 

VARIABLE DISTRIBUTIONS 

NET INCOME 
1400 

1300 
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100 ~ N ., "' "' 
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-337 -333 ·288 -244 -200 ·155 -111 -67 -23 21 65 109 154 198>220 

midpoint (lhousands) Dollars 

WOOL PRICE 
2000 
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0 

1600 1n 

1400 

Cases 1200 

1000 

800 

600 

400 

200 
N 

lQ ~ ~ ~ ,t ~ 
0 

2 3 4 5 6 7 8 9 10 11 > 11.5 

midpoint Dollars 
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LAMB PRICE 
1000 

900 

800 "' ;::: 
700 

Cases 
600 

500 

400 

300 

200 

100 

"' 0 
6 10 14 18 22 26 30 >32 

midpoint Dollars 

EWE PRICE 
1100 

1000 

900 ~ 
800 

700 

Cases 600 

500 

400 

300 

200 

100 

0 
2 6 10 14 18 22 26 >28 

midpoint Dollars 
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BEEF PRICE 
400 

350 

300 
~ 

! ~ 

250 "' 
cases ,;; 

200 
!ti 

! 
~ 

150 ~ 
100 co 

122 182 242 302 362 422 482 542 602 662 722 782 842 902>930 
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HEIFER PRICE 
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450 
Cases 400 
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300 
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200 
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100 

50 
O> <D 

0 
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TOTAL EXPENSES 
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:;; 
900 
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APPENDIX IV 

COVARIATE MODEL RESULTS 

MODEL 1 

VAR. CODE COEFF S.E z L 95% H 95% 

CONST 2.43577 0.05452 44.677 2.3289 2.5426 

CLASS 1 1.82789 0.06513 28.066 1.7002 1.9556 

2 0.23525 0.05992 3.926 0.1178 0.3527 

3 -2.06314 . . . . 
LOC. 1 -2.11256 0.06226 -33.929 -2.2346 -1.9905 

2 -2.23914 0.05886 -38.039 -2.3545 -2.1238 

3 -2.06829 0.05108 -40.492 -2.1684 -1.9682 

4 6.41999 . . . . 
C*L 1,1 -1.83017 0.09164 -19.971 -2.0098 -1.6506 

1,2 -1.91793 0.08522 -22.507 -2.0850 -1.7510 

1,3 -1.95120 . . . . 
1,4 5.69930 . . . . 
2,1 -0.22775 0.07798 - 2.921 -0.3806 -0.0749 

2,2 -0.17111 0.07836 - 2.184 -0.3247 -0.0175 

2,3 -0.27838 . . . . 
2,4 0.67724 . . . . 
3,1 2.05792 . . . . 
3,2 2.08904 . . . . 
3,3 2.22958 . . . . 
3,4 -6.37654 . . . . 

WOOL 0.00000 . . . . 
LAMB 0.00000 . . . . 
EWE 0.00000 . . . . 
BEEF 0.00000 . . . . 
HEIF 0.00000 . . . . 
TTEXP 0.00000 . . . . 
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FT/HA 0.00000 . . . . 
SU/HA 0.00000 . . . . 
LB 9.:-0 0.00000 . . . . 
WL/HA 0.00000 . . . . 
AREA 0.00000 . . . . 

MODEL 2 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 0.00000 

CLASS 1 -1.84822 0.10073 -18.348 -2.0457 -1.6508 

2 1.35359 0.07706 17.565 1.2026 1.5046 

3 0.49463 . . . . 
LOC. 1 0.23797 0.05529 4.304 0.0130 0.3464 

2 0.14461 0.05911 2.447 0.0288 0.2605 

3 0.59726 0.05715 10.451 0.4853 0.7093 

4 -0.97984 . . . . 
C*L 1,1 1.93597 0.12446 15.555 1.6920 2.1799 

1,2 1.82725 0.11318 16.145 1. 6054 2.0491 

1,3 2.13512 0.09546 22.366 1.9480 2.3222 

1,4 -5.89834 . . . . 
2,1 -1. 31078 0.10220 -12.825 -1.5111 -1.1105 

2,2 -1.40223 0.10678 -13.132 -1.6115 -1.1929 

2,3 -1.66981 . . . . 
2,4 4.38282 . . . . 
3,1 -0.62519 . . . . 
3,2 -0.42502 . . . . 
3,3 -0.46531 . . . . 
3,4 1.51552 . . . . 

LWOOL 18.24312 . . . . 
LLAMB 0.00000 . . . . 
LEWE 0.00000 . . . . 
LBEEF 0.78932 . . . . 
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LHEIF 0.41361 . . . . 
LTTEXP 0.00000 . . . . 
LFT/HA 0.00000 . . . . 
LSU/HA 0.00000 . . . . 
LLB ~ 

0 0.00000 . . . . 
LWL/HA 0.00000 . . . . 
LAREA 0.00000 . . . . 

LWOOL indicates basel0 log of WOOL etc. 



242 

APPENDIX V 

QUALITATIVE PRODUCTION VARIABLES 

SIGNIFICANT INTERACTIONS 

INTERACTIONS D.F PARTIAL X? p ITER. 

NTINC*CLASS*FT/HA*SU/HA 4 9.448 .0508 9 

LOC. * CLASS * FT/HA 12 64.151 .0000 13 

LOC. * CLASS * SU/HA 6 29.032 .0001 13 

LOC. *FT/HA* SU/HA 6 17.859 .0066 14 

CLASS *FT/HA* SU/HA 4 7.821 .0983 13 

NTINC * LOC. *LB% 3 6.784 .0791 13 

NTINC * CLASS * LB ~ 
0 2 12.085 .0024 12 

NTINC *FT/HA* LB ~ 0 2 17.058 .0002 13 

CLASS* FT/HA *LB% 4 10.886 .0279 12 

LOC. * CLASS * WL/HA 6 79.469 .0000 11 

FT/HA* LB% * WL/HA 2 6.825 .0330 13 

NTINC * LOC. 3 9.870 .0197 17 

NTINC * CLASS 2 13.062 .0015 17 

LOC. * CLASS 6 631.322 .0000 9 

NTINC * FT/HA 2 7.207 .0272 17 

LOC. * FT/HA 6 273.989 .0000 17 

CLASS * FT/HA 4 81.324 .0000 16 

NTINC * SU/HA 1 7.386 .0066 17 

LOC. * SU/HA 3 527.354 .0000 10 

CLASS * SU/HA 2 196.467 .0000 10 

CLASS *LB% 2 24.174 .ooqo 17 

LOC. * WL/HA 3 55.607 .0000 17 

CLASS * WL/HA 2 103.690 .0000 18 

FT/HA * WL/HA 2 9.840 .0073 17 

SU/HA * WL/HA 1 374.549 .0000 19 

LOC. * LB ~ 0 3 8.453 .0375 17 



243 

NTINC 1 265.283 .0000 2 

LOC. 3 538.430 .0000 2 

CLASS 2 239.848 .0000 2 

FT/HA 2 990.569 .0000 2 

SU/HA 1 29.023 .0000 2 

LB 9.:-
0 1 3258.087 .0000 2 

NONSIGNIFICANT INTERACTIONS 

INTERACTIONS D.F PARTIAL X? p ITER. 

NTINC * LOC. * CLASS 6 7.267 .2968 14 

NTINC * LOC. * FT/HA 6 5.665 .4617 13 

NTINC *CLASS* FT/HA 4 2.104 .7166 14 

NTINC * LOC. * SU/HA 3 3.932 .2689 12 

NTINC * CLASS * SU/HA 2 .062 .9694 13 

NTINC *FT/HA* SU/HA 2 .336 .8453 13 

LOC. * CLASS * LB 9.:-0 6 5.472 .484;9 13 

LOC. *FT/HA* LB 9.:-0 6 4.410 .6214 12 

NTINC *SU/HA* LB% 1 .020 .8875 14 

LOC. *SU/HA* LB% 3 .461 .9274 13 

CLASS *SU/HA* LB 9.:-0 2 .179 .9144 14 

FT/HA* SU/HA* LB 9.:-
0 2 .252 .8815 14 

NTINC * LOC. * WL/HA 3 5.500 .1387 10 

NTINC * CLASS * WL/HA 2 2.414 .2991 10 

NTINC * FT/HA * WL/HA 2 1.203 .5480 13 

LOC. *FT/HA* WL/HA 6 10.112 .1200 13 

CLASS *FT/HA* WL/HA 4 1.293 .8626 13 

NTINC * SU/HA * WL/HA 1 .054 .8165 13 

LOC. *SU/HA* WL/HA 3 2.790 .4252 13 

CLASS* SU/HA* WL/HA 2 3.005 .2226 13 

FT/HA* SU/HA * WL/HA 2 .000 1.000 14 

NTINC *LB%* WL/HA 1 2.143 .1432 13 

LOC. *LB%* WL/HA 3 3.268 .3521 13 
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SU/HA* LB% * WL/HA 1 1.530 .2161 13 

FT/HA* SU/HA 2 .533 .7662 17 

NTINC * LB 9.,-
0 1 .273 .6014 17 

FT/HA* LB 9.,-
0 2 .911 .6341 17 

SU/HA* LB 9.,-
0 1 2.621 .1054 17 

NTINC * WL/HA 1 .148 .7004 17 

LB%* WL/HA 1 1.041 .3075 17 

WL/HA 1 1.352 .2450 2 
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APPENDIX VI 

QUALITATIVE PRODUCTION VARIABLES MODELS 

MODEL 3 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 1. 63810 426.381 .004 -834.07 837.34 

LOC. 1 .76292 330.465 .002 -646.94 648.47 

2 -4.08252 455.856 -0.009 -897.56 889.39 

3 -0.23281 0.109 -2.134 -0.45 -0.02 

4 3.55241 . . . . 
CLASS 1 3.52373 269.434 0.013 -524.56 531. 62 

2 -4.50829 330.465 -0.014 -652.22 643.20 

3 0.98456 . . . . 
SU/HA 1 2.54520 0.105 24.237 2.34 2.75 

2 -2.54520 . . . . 
LB 9.:-0 1 -1.56688 269.432 -0.006 -529.65 526.52 

2 1.56688 . . . . 
L*C 1,1 -0.90088 0.920 -0.098 -1.89 1.71 

1,2 1.12157 330.465 0.003 -646.59 648.83 

1,3 -0.22069 . . . . 
2,1 -0.13752 0.879 -0.157 -1.86 1.59 

2,2 1. 06773 330.465 0.003 -646.64 648.78 

2,3 -0.93021 . . . . 
3,1 -0.49546 . . . . 
3,2 -0.17391 . . . . 
3,3 0.66937 . . . . 
4,1 1. 53386 . . . . 
4,2 -2.01539 . . . . 
4,3 0.48153 . . . . 

FT/HA 1 0.98701 0.117 8.441 0.76 1.22 

2 -0.64346 0.070 -9.192 -0.78 -0.51 

3 -0.34355 . . . . 
L*F 1,1 -0.89579 0.141 -6.361 -1.17 -0.62 
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1,2 0.57927 0.082 7.071 0.42 0.74 

1,3 0.31652 . . . . 
2,1 -0.85272 0.130 -6.565 -1.11 -0.60 

2,2 0.51425 0.078 6.569 0.36 0.67 

2,3 0.33847 . . . . 
3,1 0.71227 0.152 4.693 0.42 1.01 

3,2 -0.38149 0.110 -3.461 -0.60 -0.17 

3,3 -0.33078 . . . . 
4,1 1. 03624 . . . . 
4,2 -0.71203 . . . . 
4,3 -0.32421 . . . . 

C*F 1,1 -9.6145 261. 641 -0.037 -522.43 503.20 

1,2 2.05540 0.087 23.777 1. 89 2.23 

1,3 7.5591 . . . . 
2,1 8.33497 0.067 123.923 8.20 8.47 

2,2 -0.21827 0.063 -3.440 -0.34 -0.09 

2,3 -8.1167 . . . . 
3,1 1.27953 . . . . 
3,2 -1. 83713 . . . . 
3,3 0.5576 . . . . 

L*S 1,1 -2.4392 0.113 -21. 595 -2.66 -2.22 

1,2 2.4392 . . . . 
2,1 -2.49904 0.116 -21. 533 -2.73 -2.27 

2,2 2.49904 . 0 . . 
3,1 -1.00346 330.464 -0.003 -648.71 646.71 

3,2 1. 00346 . . . . 
4,1 5.9417 . . . . 
4,2 -5.9417 . . . . 

C*S 1,1 2.20422 0.096 22.869 2.02 2.39 

1,2 -2.20422 . . . . 
2,1 0.23333 0.084 2.788 0.07 0.40 

2,2 -0.23333 . . . . 
3,1 -2.43755 . . . . 
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3,2 2.43755 . . . . 
L*L% 1,1 -0.34963 0.408 -0.856 -1.15 0.45 

1,2 0.34963 . . . . 
2,1 4.47387 314.002 0.014 -610.97 619.92 

2,2 -4.47387 . . . . 
3,1 0.06424 . . . . 
3,2 -0.06424 . . . . 
4,1 -4.18848 . . . . 
4,2 4.18848 . . . . 

C*L% 1,1 -3.41436 269.432 -0.013 -531. 50 524.67 

1,2 3.41436 . . . . 
2,1 3.42192 . . . . 
2,2 -3.42192 . . . . 
3,1 -0.00756 . . . . 
3,2 0.00756 . . . . 

L*C*S 1,1,1 -2.17592 0.107 -20.321 -2.39 -1.97 

1,1,2 2.17592 . . . . 
1,2,1 -0.21776 0.101 -2.152 -0.42 -0.02 

1,2,2 0.21776 . . . . 
1,3,1 2.39368 . . . . 
1,3,2 -2.39368 . . . . 
2,1,1 -2.41481 . . . . 
2,1,2 2.41481 . . . . 
2,2,1 -0.10868 . . . . 
2,2,2 0.10868 . . . . 
2,3,1 2.52349 . . . . 
2,3,2 -2.52349 . . . . 
3,1,1 0.00923 . . .. . 
3,1,2 -0.00923 . . . . 
3,2,1 0.06261 330.460 0.0002 -647.65 647.77 

3,2,2 -0.06261 . . . . 
3,3,1 -0.07184 . . . . 
3,3,2 0.07184 . . . . 
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4,1,1 4.5815 . . . . 
4,1,2 -4.5815 . . . . 
4,2,1 0.26383 . . . . 
4,2,2 -0.26383 . . . . 
4,3,1 -4.84533 . . . . 
4,3,2 4.84533 . . . . 

L*F*S 1,1,1 0.01893 0.089 0.212 -0.16 0.19 

1,1,2 -0.01893 . . . . 
1,2,1 -0.00731 0.065 -0.113 -0.13 0.12 

1,2,2 0.00731 . . .. . 
1,3,1 -0.01162 . . . . 
1,3,2 0.01162 . . . . 
2,1,1 0.10366 0.079 1.310 -0.05 0.26 

2,1,2 -0.10366 . . . . 
2,2,1 0.06796 0.075 0.906 -0.08 0.22 

2,2,2 -0.06796 . . . . 
2,3,1 -0.17162 . . . . 
2,3,2 0.17162 . . . . 
3,1,1 -2.1161 0.187 -11. 313 -2.48 -1.75 

3,1,2 2.1161 . . . . 
3,2,1 1.01879 . . . . 
3,2,2 -1.01879 . . . . 
3,3,1 1.09731 . . . . 
3,3,2 -1. 09731 . . . . 
4,1,1 1.99351 . . . . 
4,1,2 -1.99351 . . . . 
4,2,1 -1.07944 . . . . 
4,2,2 1.07944 . . . . 
4,3,1 -0.91407 . . . . 
4,3,2 0.91407 . . . . 

C*F*L 1,1,1 9.65299 261. 641 0.037 -503.16 522.47 

1,1,2 -9.65299 . . . . 
1,2,1 -2.23884 . . . . 
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1,2,2 2.23884 . . . . 
1,3,1 -7.41415 . . . . 
1,3,2 7.41415 . . . . 
2,1,1 -8.31619 . . . . 
2,1,2 8.31619 . . . . 
2,2,1 0.27737 . . . . 
2,2,2 -0.27737 . . . . 
2,3,1 8.03882 . . . . 
2,3,2 -8.03882 . . . . 
3,1,1 -1.3368 . . . . 
3,1,2 1. 3368 . . . . 
3,2,1 1. 96147 . . . . 
3,2,2 -1.96147 . . . . 
3,3,1 -0.62467 . . . . 
3,3,2 0.62467 . . . . 

WOOL 1.49774 0.703 2.132 0.12 2.88 

TTEXP -.000002 0.000 -0.538 -.00001 .00001 

AREA 0.00281 0.001 2.266 0.0004 0.005 

MODEL 4 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 0.00000 

LOC. 1 0.24755 0.05159 4.7989 0.1465 0.3487 

2 -0.01694 0.05836 -0.2903 -0.1313 0.0974 

3 -0.62086 0.19323 -3.2130 -0.9996 -0.2421 

4 0.39025 . . . . 
FT/HA 1 -0.65636 0.14957 -4.3884 -0.9495 -0.3632 

2 0.20582 0.06593 3.1220 0.0766 0.3350 

3 0.45054 . . . . 
SU/HA 1 0.27416 0.09291 2.9509 0.0921 0.4563 

2 -0.27416 . . . . 
L*F 1,1 0.70885 0.15505 4.5718 0.4050 1.0127 
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1,2 -0.34634 0.10383 -3.3357 -0.5498 -0.1428 

1,3 -0.36251 . . . . 
2,1 0.78800 0.14010 5.6245 0.5134 1.0626 

2,2 -0.34582 0.10551 -3.2778 -0.5526 -0.1390 

2,3 -0.44218 . . . . 
3,1 -2.13280 0.46203 -4.6161 -3.0384 -1.2272 

3,2 1.45998 0.37734 3.8692 0.7204 2.1996 

3,3 0.67282 . . . . 
4,1 0.63595 . . . . 
4,2 -0.76780 . . . . 
4,3 0.13185 . . . . 

L*S 1,1 0.03182 0.06296 0.5054 -0.0916 0.1552 

1,2 -0.03182 . . . . 
2,1 -0.02050 0.06099 -0.3361 -0.1400 0.0990 

2,2 0.02050 . . . . 
3,1 0.22435 0.11689 1. 9194 -0.0048 0.4534 

3,2 -0.22435 . . . . 
4,1 -0.23567 . . . . 
4,2 0.23567 . . . . 

WOOL 4.79321 1. 28347 3.7346 2.2776 7.3088 

TTEXP 0.00002 0.00000 6.3663 .00002 .00003 

AREA -0.00063 0.00056 -1.1190 -0.0017 0.0005 

MODEL 5 

VAR. CODE COEFF. S.E z L 95% H 95% 

LOC. 1 0.19131 0.04359 4.3891 0.1059 0.2767 

2 -0.06806 0.05194 -1. 3104 -0.1699 0.0337 

3 -0.61172 0.16209 -3.7739 -0.9294 -0.2940 

4 0.48847 . . . . 
FT/HA 1 -0.58701 0.12265 -4.7858 -0.8274 -0.3466 

2 0.16094 0.04344 3.7052 0.0758 0.2461 

3 0.42607 . . . . 
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SU/HA 1 0.25264 0.05452 4.6339 0.1458 0.3595 

2 -0.25264 . . . . 
L*F 1,1 0.64828 0.13611 4.7631 0.3815 0.9151 

1,2 -0.28674 0.08363 -3.4285 -0.4507 -0.1228 

1,3 -0.36154 . . . . 
2,1 0.71656 0.11059 6.4796 0.4998 0.9333 

2,2 -0.26559 0.08043 -3.3022 -0.4232 -0.1079 

2,3 -0.45097 . . . . 
3,1 -1.90245 0.37706 -5.0454 -2.6415 -1.1634 

3,2 1. 15986 0.28901 4.0132 0.5934 1. 7263 

3,3 0.74259 . . . . 
4,1 0.53761 . . . . 
4,2 -0.60753 . . . . 
4,3 0.06992 . . . . 

WOOL 4.18089 1.09462 3.8195 2.0354 6.3263 

TTEXP 0.00002 0.00000 7.7679 0.00002 0.00003 

AREA -0.00120 0.00042 -2.9096 -0.0020 -0.0004 
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APPENDIX VII 

ALL VARIABLES QUALITATIVE INTERACTIONS 

SIGNIFICANT INTERACTIONS 

INTERACTIONS DF x, p ITER. 

LOC. *SU/HA* FT/HA 2 7.570 0.0227 12 

LOC. *SU/HA* WOOL 2 11. 548 0.0031 12 

LOC. *FT/HA* TTEXP 4 26.165 0.0000 12 

FT/HA* SU/HA* TTEXP 4 9.317 0.0537 11 

NTINC * FT/HA * AREA 4 16.423 0.0025 9 

LOC. *FT/HA* AREA 4 13.211 0.0103 12 

LOC. * SU/HA * AREA 2 5.638 0.0597 12 

FT/HA* SU/HA * AREA 4 18.641 0.0009 12 

NTINC * TTEXP * AREA 4 12.927 0.0116 13 

LOC. * TTEXP * AREA 4 21. 760 0.0002 13 

SU/HA* TTEXP * AREA 4 12.093 0.0167 12 

NTINC * LOC. 1 3.854 0.0496 15 

NTINC * FT/HA 2 20.397 0.0000 15 

LOC. * FT/HA 2 163.273 0.0000 15 

NTINC * SU/HA 1 15.631 0.0001 15 

LOC. * SU/HA 1 181. 573 0.0000 14 

FT/HA* SU/HA 2 9.710 0.0078 15 

NTINC * WOOL 2 4.887 0.0869 15 

LOC. * WOOL 2 129.013 0.0000 14 

FT/HA * WOOL 4 13.405 0.0095 16 

SU/HA * WOOL 2 12.559 0.0019 16 

NTINC * TTEXP 2 202.842 0.0000 13 

LOC. * TTEXP 2 27.708 0.0000 14 

FT/HA* TTEXP 4 130.454 0.0000 15 

SU/HA * TTEXP 2 17.846 0.0001 13 

WOOL* TTEXP 4 7.817 0.0985 15 
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NTINC * AREA 2 140.229 0.0000 13 

LOC. * AREA 2 93.473 0.0000 14 

FT/HA * AREA 4 136.757 0.0000 14 

SU/HA * AREA 2 328.801 0.0000 12 

WOOL* AREA 4 114.015 0.0000 15 

TTEXP * AREA 4 839.848 0.0000 9 

NTINC 1 262.567 0.0000 2 

LOC. 1 123.405 0.0000 2 

FT/HA 2 999.767 0.0000 2 

SU/HA 1 27.060 0.0000 2 

WOOL 2 4248.446 0.000Q 2 

TTEXP 2 366.247 0.0000 2 

AREA 2 534.998 0.0000 2 

NONSIGNIFICANT INTERACTIONS 

INTERACTIONS DF x? p ITER. 

NTINC * LOC. * FT/HA 2 1.170 0.5571 12 

NTINC * LOC. * SU/HA 1 0.053 0.8177 12 

NTINC *FT/HA* SU/HA 2 0.817 0.6648 12 

NTINC * LOC. * WOOL 2 0.002 0.9991 12 

NTINC *FT/HA* WOOL 4 1. 031 0.9050 12 

LOC. *FT/HA* WOOL 4 0.783 0.9407 12 

NTINC *SU/HA* WOOL 2 1.888 0.3891 12 

FT/HA* SU/HA * WOOL 4 2.477 0.6487 12 

NTINC * LOC. * TTEXP 2 0.692 0.7075 12 

NTINC *FT/HA* TTEXP 4 6.398 0.1713 9 

NTINC *SU/HA* TTEXP 2 2.856 0.2397 12 

LOC. *SU/HA* TTEXP 2 1.186 0.5526 12 

NTINC *WOOL* TTEXP 4 1.411 0.8423 12 
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LOC. *WOOL* TTEXP 4 2.971 0.5627 12 

FT/HA *WOOL* TTEXP 8 3.399 0.9069 12 

SU/HA *WOOL* TTEXP 4 3.150 0.5331 12 

NTINC * LOC. * AREA 2 1. 968 0.3738 12 

NTINC *SU/HA* AREA 2 0.340 0.8437 11 

NTINC *WOOL* AREA 4 0.261 0.9922 12 

LOC. *WOOL* AREA 4 0.000 1.0000 12 

FT/HA * WOOL * AREA 8 2.434 0.9647 12 

SU/HA * WOOL * AREA 4 0.037 0.9998 12 

FT/HA* TTEXP * AREA 8 4.016 0.8557 13 

WOOL* TTEXP * AREA 8 4.619 0.7974 12 
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APPENDIX VIII 

MODEL 6 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST. 4.23983 0.131 32.327 3.98 4.50 

AREA 1 2.02887 266.647 0.008 -520.60 524.66 

2 -1. 40424 0.130 -10.786 -1.66 -1.15 

3 -0.62463 . . . . 
TTEXP 1 -1.89607 0.122 -15.587 -2.14 -1.66 

2 0.04207 0.095 0.442 -0.15 0.23 

3 1.85400 . . . . 
WOOL 1 5.27831 0.253 20.870 4.78 5.77 

2 -2.51405 . . . . 
3 -2.76426 . . . . 

SU/HA 1 -1.32939 0.123 -10.854 -1. 57 -1.09 

2 1.32939 . . . . 
LOC. 1 -0.12735 0.097 -1.320 -0.32 0.06 

2 0.12735 . . . . 
E*A 1,1 -1.40036 0.189 -7.421 -1.77 -1.03 

1,2 1.53460 0.121 12.686 1. 30 1.77 

1,3 -0.13424 . . . . 
2,1 -2.82256 0.160 -17.628 -3.14 -2.51 

2,2 -0.14805 0.111 -1.338 -0.37 0.07 

2,3 2.97061 . . . . 
3,1 -1.57025 . . . . 
3,2 -1.38655 . . . . 
3,3 -2.83637 . . . . 

W*A 1,1 -0.28446 533.295 -0.001 -1045.5 1044.9 

1,2 0.10433 0.216 0.482 -0.32 0.53 

1,3 0.18013 . . . . 
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2,1 0.01805 266.647 0.00007 -522.61 522.65 

2,2 -0.00041 . . . . 
2,3 -0.01764 . . . . 
3,1 0.26641 . . . . 
3,2 -0.10392 . . . . 
3,3 -0.16249 . . . . 

S*A 1,1 0.02190 0.089 0.247 -0.15 0.19 

1,2 0.07328 0.086 0.856 -0.09 0.24 

1,3 -0.09518 . . . . 
2,1 0.16249 . . . . 
2,2 -0.02190 . . . . 
2,3 0.09518 . . . . 

W*E 1,1 0.27060 0.208 1. 301 -0.14 0.68 

1,2 -0.06041 0.157 -0.384 -0.37 0.25 

1,3 -0.21019 . . . . 
2,1 -0.16543 . . . . 
2,2 0.16341 . . . . 
2,3 0.00202 . . . . 
3,1 -0.10517 . . 0 . 
3,2 -0.10300 . . . . 
3,3 0.20817 . . . . 

S*E 1,1 0.04114 0.057 0.722 -0.07 0.15 

1,2 -0.00416 0.052 -0.080 -0.11 0.10 

1,3 -0.03698 . . . . 
2,1 -0.04114 . . .. . 
2,2 0.00416 . . . . 
2,3 0.03698 . . . . 

L*E 1,1 -1. 43948 0.080 -18.015 -1.60 -1.28 

1,2 0.02401 0.062 0.389 -0.10 0.14 

1,3 1.41547 . . . . 
2,1 1. 43948 . . . . 
2,2 -0.02401 . . . . 
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2,3 -1.41547 . . . . 
S*W 1,1 -0.43709 0.382 -1.145 -1.19 0.31 

1,2 -0.00375 . . . . 
1,3 0.44084 . . . . 
2,1 0.43709 . . . . 
2,2 0.00375 . . . . 
2,3 -0.44084 . . . . 

L*W 1,1 -0.05773 0.409 -0.141 -0.86 0.74 

1,2 -0.02032 . . . . 
1,3 0.07805 . . . . 
2,1 0.05773 . . . . 
2,2 0.02032 . . . . 
2,3 -0.07805 . . . . 

L*S 1,1 -0.08559 0.049 -1. 748 -0.18 0.01 

1,2 0.08559 . . . . 
2,1 0.08559 . . . . 
2,2 -0.08559 . . . . 

S*E*A 1,1,1 1.41491 0.160 8.834 1.10 1.73 

1,1,2 0.08592 . . . . 
1,1,3 -1.50083 . . . . 
1,2,1 1.47018 . . . . 
1,2,2 0.00592 . . . . 
1,2,3 -1.47610 . . . . 
1,3,1 -2.88509 . . . . 
1,3,2 -0.09184 . . . . 
1,3,3 2.97693 . . . . 
2,1,1 -1.41491 . . . . 
2,1,2 -0.08592 . . . . 
2,1,3 1.50083 . . . . 
2,2,1 -1.47018 . . . . 
2,2,2 -0.00592 . . . . 
2,2,3 1. 4 7610 . . . . 
2,3,1 2.88509 . . .. . 
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2,3,2 0.09184 . . . . 
2,3,3 -2.97693 . . . . 

L*E*A 1,1,1 0.10313 0.130 0.792 -0.15 0.36 

1,1,2 1. 62237 0.086 18.930 1.45 1.79 

1,1,3 -1.72550 . . . . 
1,2,1 -1.29959 . . . . 
1,2,2 -0.05599 . . . . 
1,2,3 1. 35558 . . . . 
1,3,1 1.19646 . . . . 
1,3,2 -1.56638 . . . . 
1,3,3 0.36992 . . . . 
2,1,1 -0.10313 . . . . 
2,1,2 -1. 62237 . . . . 
2,1,3 1. 72550 . . . . 
2,2,1 1.29959 . . . . 
2,2,2 0.05599 . . . . 
2,2,3 -1. 35558 . . . . 
2,3,1 -1.19646 . . . . 
2,3,2 1.56638 . . . . 
2,3,3 -0.36992 . . . . 

L*S*A 1,1,1 0.08928 0.065 1. 377 -0.04 0.22 

1,1,2 -0.04514 . . . . 
1,1,3 -0.04414 . . . . 
1,2,1 -0.08928 . . . . 
1,2,2 0.04514 . . . . 
1,2,3 0.04414 . . . . 
2,1,1 -0.08928 . . . . 
2,1,2 0.04514 . . . . 
2,1,3 0.04414 . . . . 
2,2,1 0.08928 . . . . 
2,2,2 -0.04514 . . . . 
2,2,3 -0.04414 . . . . 

L*S*W 1,1,1 -0.01269 . . . . 
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1,1,2 0.04502 . . . . 
1,1,3 -0.03233 . . . . 
1,2,1 0.01269 . . . . 
1,2,2 -0.04502 . . . . 
1,2,3 0.03233 . . . . 
2,1,1 0.01269 . . . . 
2,1,2 -0.04502 . . . . 
2,1,3 0.03233 . . . . 
2,2,1 -0.01269 . . . . 
2,2,2 0.04502 . . . . 
2,2,3 -0.03233 . . . . 

MODEL 7 

VAR. CODE COEFF. S.E z L 95% H 95% 

CONST 3.08473 0.06566 46.978 2.956 3.213 

LOC. 1 -0.03782 0.02575 -1.469 -0.088 0.013 

2 0.03782 . . . . 
SU/HA 1 0.11128 0.02652 4.196 0.059 0.163 

2 -0.11128 . . . . 
WOOL 1 5.19743 0.09848 52.774 5.004 5.390 

2 -2.63156 . . . . 
3 -2.56587 . . . . 

TTEXP 1 -0.57121 0.07610 -7.506 -0.720 -0.422 

2 0.06073 0.06999 0.868 -0.076 0.198 

3 0.51048 . . . . 
AREA 1 0.66329 0.11962 5.545 0.429 0.898 

2 -0.11171 0.06959 -1.605 -0.248 0.025 

3 -0.55158 . . . . 
T*A 1,1 -0.24432 0.12571 -1.943 -0.491 0.002 

1,2 0.14109 0.08184 1. 724 -0.019 0.302 

1,3 0.10323 . . . . 
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2,1 -0.05055 0.12520 -0.404 -0.296 0.195 

2,2 -0.04596 0.07550 -0.609 -0.194 0.102 

2,3 0.09651 . . . . 
3,1 0.29487 . . . . 
3,2 -0.09513 . . . . 
3,3 -0.19974 . . . . 



261 

APPENDIX IX 

MICRO MODEL CROSSTABULATION 

WOOL MODEL CROSSTABULATION 

NTINC l 

AREA l LOC 2 SAMP 

WOOL l 2 3 l 2 3 TOT TOT 

TTEXP l 120 209 12 49 71 14 475 848 

l 2 4 3 1 2 3 0 13 45 

3 0 0 0 1 3 1 5 18 

TOT 124 212 13 52 77 15 493 911 

l 53 167 21 39 87 8 375 485 

2 2 20 33 5 6 15 6 85 162 

3 3 5 0 6 17 15 46 86 

TOT 76 205 26 51 119 29 506 733 

l 19 102 18 44 80 12 275 306 

3 2 23 70 15 13 39 9 169 238 

3 26 57 5 15 56 97 256 392 

TOT 68 229 38 72 175 118 700 936 

TOTAL 268 646 77 175 371 162 1699 2580 



262 

NTINC 2 

AREA 1 LOC 2 SAMP 

WOOL 1 2 3 1 2 3 TOT TOT 

TTEXP 1 80 182 12 22 62 15 373 848 

1 2 6 15 0 3 6 2 32 45 

3 0 1 0 1 6 5 13 18 

TOT 86 198 12 26 74 22 418 911 

1 17 55 9 7 21 1 110 485 

2 2 13 47 3 1 9 4 77 162 

3 5 5 2 1 16 11 40 86 

TOT 35 107 14 9 46 16 227 733 

1 1 10 2 4 13 1 31 306 

3 2 7 36 10 3 9 4 69 238 

3 11 46 5 4 27 43 136 392 

TOT 19 91 17 11 49 48 236 936 

TOTAL 140 397 43 46 169 86 881 2580 
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LAMB MODEL CROSSTABULATION 

NTINC 1 

AREA 1 LOC. 2 SAMP 

LAMB 1 2 3 1 2 3 TOT TOT 

TTEXP 1 173 116 41 53 59 22 464 826 

1 2 5 3 0 4 1 0 13 45 

3 0 0 0 2 2 0 4 14 

TOT 178 119 41 59 62 22 481 885 

1 93 97 41 42 57 35 365 473 

2 2 32 19 2 15 10 2 80 157 

3 6 2 0 24 13 0 45 83 

TOT 131 118 43 81 80 37 490 713 

1 41 72 25 32 68 36 274 305 

3 2 49 40 19 14 29 18 169 238 

3 36 40 12 71 67 22 248 379 

TOT 126 152 56 117 164 76 691 922 

TOTAL 435 389 140 257 306 135 1662 2520 
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NTINC 2 

AREA l LOC. 2 SAMP 

LAMB l 2 3 l 2 3 'TOT TOT 

TTEXP l 91 136 41 24 49 21 362 826 

l 2 10 8 3 5 6 0 32 45 

3 0 0 1 2 6 1 10 14 

TOT 101 144 45 31 61 22 404 885 

l 18 36 25 5 16 8 108 473 

2 2 22 30 11 7 6 1 77 157 

3 7 4 1 15 10 1 38 83 

TOT 47 70 37 27 32 10 223 713 

l 1 7 5 1 10 7 31 305 

3 2 18 22 13 4 7 5 69 238 

3 22 24 16 22 30 17 131 379 

TOT 41 53 34 27 47 29 231 922 

TOTAL 189 267 116 85 140 61 -858 2520 
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EWE MODEL CROSSTABULATION 

NTINC 1 

AREA 1 LOC. 2 SAMP 

EWE 1 2 1 2 TOT TOT 

TTEXP 1 235 90 96 34 455 822 

1 2 5 2 4 1 12 43 

3 0 0 4 1 5 18 

TOT 240 92 104 36 472 883 

1 146 91 82 49 368 478 

2 2 43 15 20 6 84 161 

3 7 1 28 9 45 85 

TOT 196 107 130 64 497 724 

1 80 59 76 58 273 304 

3 2 68 40 34 26 168 237 

3 59 29 72 89 249 383 

TOT 207 128 182 173 690 924 

TOTAL 643 327 416 273 1659 2531 
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NTINC 2 

AREA 1 LOC. 2 SAMP 

EWE 1 2 1 2 TOT TOT 

TTEXP 1 190 81 61 35 367 822 

1 2 13 7 4 7 31 43 

3 0 1 5 7 13 18 

TOT 203 89 70 49 411 883 

1 46 35 16 13 110 478 

2 2 45 18 10 4 77 161 

3 7 5 14 14 40 85 

TOT 98 58 40 31 227 724 

1 5 8 10 8 31 304 

3 2 31 22 7 9 69 237 

3 34 28 25 47 134 383 

TOT 70 58 42 64 234 924 

TOTAL 371 205 152 144 872 2531 
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BEEF MODEL CROSSTABULATION 

NTINC 1 

AREA 1 LOC. 2 SAMP 

BEEF 1 2 3 1 2 3 TOT TOT 

TTEXP 1 108 72 45 13 11 8 257 494 

1 2 5 0 1 1 1 1 9 34 

3 0 0 0 1 1 0 2 10 

TOT 113 72 46 15 13 9 268 538 

1 83 59 47 15 23 4 231 313 

2 2 25 13 6 4 10 2 60 132 

3 6 1 1 14 10 2 34 70 

TOT 114 73 54 33 43 8 325 515 

1 45 40 31 13 18 9 156 173 

3 2 33 35 23 7 20 10 128 183 

3 39 35 11 57 50 20 ,212 322 

TOT 117 110 65 77 88 39 496 678 

TOTAL 344 255 165 125 144 56 1089 1731 
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NTINC 2 

AREA 1 LOC. 2 SAMP 

BEEF 1 2 3 1 2 3 TOT TOT 

TTEXP 1 77 87 41 9 17 6 237 494 

1 2 14 3 0 1 3 4 25 34 

3 0 0 1 3 2 2 8 10 

TOT 91 90 42 13 22 12 270 538 

1 19 30 17 4 8 4 82 313 

2 2 24 29 9 3 6 1 72 132 

3 5 6 1 11 11 2 36 70 

TOT 48 65 27 18 25 7 190 515 

1 2 3 7 2 2 1 17 173 

3 2 16 13 19 1 6 0 55 183 

3 23 25 12 18 21 11 110 322 

TOT 41 41 38 21 29 12 182 678 

TOTAL 180 196 107 52 76 31 '642 1731 
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HEIFER MODEL CROSSTABULATION 

NTINC 1 

AREA 1 LOC. 2 SAMP 

HEIFER 1 2 1 2 TOT TOT 

TTEXP 1 74 151 7 35 267 501 

1 2 1 3 1 1 6 29 

3 0 0 1 2 3 13 

TOT 75 154 9 38 276 543 

1 47 113 8 29 197 271 

2 2 16 29 4 15 64 128 

3 6 2 6 22 36 75 

TOT 69 144 18 66 297 474 

1 22 85 5 28 140 158 

3 2 17 76 2 33 128 180 

3 26 60 50 91 227 346 

TOT 65 221 57 152 495 684 

TOTAL 209 519 84 256 1068 1701 
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NTINC 2 

AREA 1 LOC. 2 SAMP 

HEIFER 1 2 1 2 TOT TOT 

TTEXP 1 49 155 5 25 234 

1 2 7 11 2 3 23 29 

3 0 1 5 4 10 13 

TOT 56 167 12 32 267 543 

1 11 48 4 11 74 271 

2 2 15 42 1 6 64 128 

3 5 7 4 23 39 75 

TOT 31 97 9 40 177 474 

1 1 10 1 6 18 158 

3 2 8 35 0 9 52 180 

3 10 48 23 38 119 346 

TOT 19 93 24 53 189 684 

TOTAL 106 357 45 125 633 1701 
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APPENDIX X 

MODEL RESIDUAL PLOTS 
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LAMB MODEL 

Observed counts VS Adjusted residuals 
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EWE MODEL 

Observed counts VS Adjusted residuals 
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BEEF MODEL 

Observed counts VS Adjusted residuals 
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APPENDIX XI 

MICRO MODEL RISK COMBINATIONS 

WOOL LAMB EWE BEEF HEIF 

PIAE RISK PIAE RISK PIAE RISK PIAE RISK PIAE RISK 

3131 .194 3131 .123 2121 .219 3131 .149 1131 .234 

3121 .240 3121 .165 1131 .226 2121 .171 2231 .241 

2121 .246 3231 .174 2231 .229 3121 .193 2121 .243 

3231 .251 2121 .206 1121 .280 3231 .206 1231 .305 

2231 .257 2231 .217 2221 .284 2231 .208 1121 .307 

1131 .271 3221 .228 1231 .292 1131 .217 2221 .315 

3221 .307 1131 .253 1221 .354 3221 .260 1221 .389 

2221 .314 2221 .281 2122 .445 2221 .262 1132 .438 

1121 .329 3132 .287 1132 .455 1121 .273 2232 .447 

1231 .342 1121 .322 2232 .459 1231 .290 2122 .450 

3132 .406 1231 .337 2111 .473 3132 .324 2111 .493 

1221 .407 3122 .361 1122 .526 1221 .356 1232 .527 

3122 .475 3232 .376 2222 .530 3122 .393 1122 .531 

2122 .482 3111 .416 1232 .540 2122 .397 2222 .539 

3232 .489 1221 .417 1111 .555 3232 .414 1111 .574 

2232 .497 2122 .427 2211 .559 2232 .417 2211 .582 

3111 .498 2232 .443 1222 .610 1132 .430 1222 .618 

2111 .506 3222 .459 1211 .637 3111 .459 1211 .658 

1132 .515 2111 .485 2123 .642 2111 .463 1133 .667 

3222 .559 1132 .493 1133 .651 3222 .488 2233 .675 

2222 .566 3133 .497 2233 .655 2222 .492 2123 .677 

3211 .581 3211 .517 1123 .713 1122 .505 2112 • 712 

1122 .583 2222 .528 2223 .716 1232 .526 1233 .742 

2211 .589 1122 .577 2112 .719 3211 .556 1123 .744 

1232 .598 3123 .581 1233 .724 2211 .559 2223 .751 

3133 .598 2211 .586 1223 .778 1111 .57:;! 1112 .774 
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1111 .606 1232 .593 1112 .780 3133 .574 2212 .780 

1222 .662 3233 .597 2212 .783 1222 .601 1223 .806 

3123 .663 1111 .633 1212 .833 3123 .645 1212 .831 

2123 .669 2123 .647 2113 .851 2123 .648 2113 .864 

3233 .676 2233 .662 1113 .888 1211 .663 1113 .898 

2233 .683 1222 .672 2213 .890 3233 .665 2213 .901 

1211 .683 3112 .672 1213 .918 2233 .667 1213 .927 

1133 .697 3223 .676 1133 .679 

3223 .734 1133 .704 3112 .698 

2223 .739 1211 .721 2112 .701 

3112 .739 2112 .730 3223 .728 

2112 .745 2223 .733 2223 .731 

1123 .753 3212 .755 1123 .741 

1233 .764 1123 .770 1233 .757 

3212 .799 1233 .782 3212 .773 

2212 .804 2212 .802 2212 .775 

1223 .810 1112 .832 1112 .784 

1112 .815 1223 .834 1223 .808 

1212 .860 3113 .834 1212 .843 

3113 .860 2113 .869 3113 .866 

2113 .864 1212 .881 2113 .868 

3213 .896 3213 .883 3213 .905 

2213 .899 2213 .909 2213 .906 

1113 .905 1113 .924 1113 .911 

1213 .930 1213 .947 1213 .938 

PI A E refers to the price, island, area and expenses category 
combinations respectively. 
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APPENDIX XII 

MICRO MODEL RISK FUNCTIONS 
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APPENDIX XIII. 
TEST SAMPLE RISK INDEX DISTRIBUTION~ 
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