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ABSTRACT 

In order to debug and tune stand-alone FPGA image processing configurations, 

it is necessary for a developer to also create the required debug tools and to 

implement them on the FPGA. This process takes both time and effort that 

could be better spent on improving the image processing algorithms. The Gate 

Array Terminal Operating System (GateOS) is proposed to relieve the 

developer of the need to construct many of these debugging tools. In GateOS 

we separate the image processing algorithms from the rest of the operating 

system. GateOS is presented to the developer as a Handel-C library, which can 

be customised at compile-time, to facilitate the creation of windows and 

widgets. Several types of widgets are described that can manipulate the 

parameters of image processing algorithms and enable the end-user to 

dynamically rearrange the position of a window on the VDU. An end user is 

able to interact with GateOS with both a keyboard and a mouse.  
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CHAPTER ONE 
 

INTRODUCTION & LITERATURE REVIEW 
 

Chapter Outline 

This chapter introduces GateOS, a windowing environment for FPGAs. It 

outlines how image processing algorithms implemented on an FPGA can be 

debugged using either a hosted or stand-alone development model, and in 

addition, it describes the advantages and disadvantages of each model. Prior 

research on the application of the hosted development model is reviewed. Very 

little of existing research relates directly to the stand-alone development model, 

and it is this disparity that GateOS attempts to remedy. 

Recently, there has been significant research into the applications of Field 

Programmable Gate Arrays (FPGAs), for example: (Chan et al., 2007; Hemmert 

& Underwood, 2007; Tahoori, 2006; Tessier et al., 2007; Yiannacouras et al., 

2007). This increased interest is largely sparked by innovations in 

semiconductor manufacturing, thus resulting in a reduction in IC die sizes and 

an increased gate count. As a result, FPGAs are now more powerful and less 

expensive than they were previously. Consequently, new medium level 

hardware description languages (HDLs) such as JHDL, Handel-C and SAP have 

evolved to program these newer generations of FPGAs.  Companies such as 

Xilinx, Altera and Lattice Semiconductor lead the field when it comes to the 

design and manufacture of FPGAs. Celoxica is a good example of a company 

that provides the software to program these FPGA such as Handel-C and 

System-C.  
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A common application of FPGAs is in the field of image processing (Benitez, 

2002; Yano et al., 1999; Crookes et al., 1998; Gribbon et al, 2006; Hsiao et al., 

2005; Johnston et al, 2005; Uzun & Bouridane, 2003) due to the high levels of 

parallelism that are available to the developer. The hardware programming 

language Handel-C is commonly used by such developers for the task of 

implementing image processing algorithms on FPGAs (McCurry et al., 2001; 

Ramdas et al., 2004; Vitabile et al., 2004). 

 

The focus of my research is to develop tools that can be used to debug image 

processing algorithms that are implemented on an FPGA. For the development 

and subsequent debugging of an FPGA solution, a developer may adopt one of 

two possible development models; the hosted or standalone.  The hosted model 

describes the situation where a host computer or device directly controls a 

hardware program running on a slave FPGA.  The FPGA is effectively acting as 

a co-processor to the host system, thus accelerating the computational tasks 

assigned to it.  This model is by far the most popular with developers, because 

the development and testing of the software running on the host computer is 

easier and is more user-friendly since the host system provides the tools for 

interactive debugging of the algorithms. The stand-alone model is where the 

complete system, including control and debug logic, is implemented directly on 

the FPGA itself. Developing the control and debug logic onboard the FPGA 

requires more time and effort on  behalf of the developer, since it is necessary to 

first create the visual environment before constructing the debug tools. This fact 

has resulted in a preference for the hosted model.  

 

Very little has been written on debugging applications using the hosted 

development model. One paper (Tomko & Tiwari, 2000) describes the use of the 

read-back capabilities of FPGAs (involves the serial transmission through the 

JTAG1 interface of check bits available on each CLB2) to debug applications 

 
1 Joint Test Action Group 
2 Configurable Logic Block 
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targeted towards reconfigurable computing. Such an approach may be 

beneficial in some situations, but due to the large volume of data involved in 

image processing, it is unsuitable for debugging these types of algorithms.  

 

ChipScope Pro3 is a commercial product by Xilinx that offers low-level 

debugging of FPGA software (using test vectors). Test vectors are used to 

validate the outputs of a system with regards to a series of known inputs. A 

large number of test vectors are commonly used to thoroughly test all aspects of 

an FPGA design, both in simulation and in the implementation. A significant 

number of test vectors would be required for image processing algorithms and 

may require some time to construct, which has the add-on effect of increasing 

the overall complexity of the task. Transmitting such a large number of test 

vectors between the FPGA and the host PC would require considerable 

bandwidth (which is limited). Because of this, the use of test vectors is perhaps 

less appropriate for the debugging of image processing algorithms on FPGAs. 

For these reasons, in image processing, it can get difficult to completely test 

each aspect of an algorithm. However, if the image processing algorithm is first 

developed and tested on a standard software platform, all that really needs to 

be debugged is the correctness of the individual operations, which is a simpler 

task.   

 

For most types of application, the hosted development model is the most 

suitable choice. However, for debugging image processing applications, this 

model imposes several restrictions that are not apparent when using the stand-

alone development model. The first major issue is the latency of the test and 

debug signals (when transmitting complete images or test vectors) between the 

host PC and the client FPGA, and the second is the limited bandwidth with 

which to transmit the intermediate images which are the output of the 

intermediate stages of an image processing algorithm.  This problem can be 

partially overcome by using memory that is shared between the host system 

 
3 http://www.xilinx.com/ise/optional_prod/cspro.htm 
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and the FPGA for transferring images. The stand-alone development model 

suffers from none of these restrictions; however, to implement the debugging 

tools directly on the FPGA requires significantly more hardware resources and 

will increase the complexity of the FPGA design. 

 

From an image processing perspective, it is important to be able to view images 

at different stages of the algorithm, and also to see the effects of adjusting 

various algorithm tuning parameters on those images. In tailor making a 

solution for a single application, the images and controls can be displayed at 

fixed locations on an output display. However, a more flexible arrangement 

would be to provide a windowing environment that also manages all end-user 

interactions (keyboard and mouse). Currently, the developer must also 

construct all the necessary debugging and tuning tools for each image 

processing design. Thus, we propose a windowing operating system to 

facilitate the tuning and debugging of image processing (IP) algorithms directly 

on an FPGA.  

 

An FPGA does not have any operating system to speak of. All peripheral board 

drivers must either be developed by the user or be provided in libraries by 

board vendors. There is no task scheduling (as compared to scheduling 

software processes in other operating systems) or memory management except 

that which occurs at compile time. Access to restricted hardware resources can 

be controlled with hardware semaphores and such like.    

 

Several attempts have been made to construct low-level hardware operating 

systems such as (Tomko & Tiwari, 2000) and (Wigley & Kearney, 2001), but 

these are targeted towards reconfigurable computing and deal primarily with 

the run-time scheduling of hardware processes rather than direct user 

interaction.  
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At present, no such generic tool exists that caters for the stand-alone hosted 

model. The Gate Array Terminal Operating System (GateOS) described in this 

thesis is the first step towards addressing this need. 

 

CHAPTER Two describes what is required of the GateOS windowing 

environment. We give an overview of the FPGA hardware environment that 

will host GateOS and the image processing algorithms.  Also discussed is the 

need for a form of window management and display system, as well as a 

widget management and display system. A text management system is also 

necessary to display textual annotations. An overview is given on how an end-

user might expect to be able to use GateOS to tune and debug resident image 

processing algorithms.  

 

CHAPTER Three describes the window management subsystem of GateOS. 

We discuss its purpose and the context within which it is used. The need for a 

virtual coordinate system is discussed and how it is used to position and 

display windows on a visual display unit (VDU). We also describe a layered 

approach to effectively manage and display each window’s content.  

 

CHAPTER Four discusses the need for a widget management subsystem in 

GateOS. We describe a number of different widgets and what they can be used 

for. Also, we demonstrate the benefits of using a layered approach for the 

management and display of widgets. We also discuss how widgets can be used 

to control various aspects of GateOS in addition to facilitating the tuning and 

debugging of image processing algorithms.  

 

CHAPTER Five describes the text management subsystem and the context in 

which it is used. We discuss several alternative designs that implement this 

functionality on the FPGA. Also discussed are the interactions between this 

subsystem and the rest of GateOS.   

 



6

CHAPTER Six describes how an end-user can use either a keyboard or a mouse 

to interact with both windows and widgets in GateOS. We reveal the design 

challenges involved with displaying both keyboard and mouse cursors. Also 

discussed is how GateOS is able to manage each device type and the 

relationships between them.  

 

CHAPTER Seven is a reflection on the work completed on GateOS. We outline 

the benefits of using GateOS to tune and debug image processing algorithms on 

FPGAs. We describe the limitations of this approach and discuss where future 

research on GateOS could be advantageous.  
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CHAPTER TWO 
 

REQUIREMENTS ANALYSIS  
&

HIGH LEVEL DESIGN 

 
Chapter Outline 

This chapter describes the various requirements of GateOS. We discuss why a 

windowing approach is appropriate for the tuning and debugging of image 

processing algorithms.  We give an overview of the hardware environment 

within which GateOS is to be developed and discuss how the image processing 

algorithms can be managed and kept separate from the rest of GateOS. We also 

cover the requirements for the windowing, widget and control subsystems in 

GateOS.  

2.1 Introduction 
 
For some time now, the hosted development model has allowed end-users to 

debug and control sections of time-critical FPGA hardware from a host PC.  The 

developer is able to choose which aspects of an algorithm are implemented on 

an FPGA and which are implemented on the PC. This type of flexibility is 

suitable for applications that require less real-time interactive debugging and 

where the relatively high latency of test signals between the FPGA and the host 

PC is not vital.  

 

In order to debug image processing algorithms, it would be beneficial if the 

developer was able to view the outputs of the algorithm on the VDU in real-
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time. Since the output images are updated continuously (otherwise there is no 

point in implementing the IP algorithm on the FPGA), the hosted development 

model is somewhat less attractive (the bandwidth between the host PC and the 

FPGA is a bottleneck). The alternative is to operate the FPGA in standalone 

mode with all the debug and tuning tools located on the FPGA along with the 

IP algorithms. The standalone development model is also more portable than 

the hosted development model as the host PC is not required (one can 

configure the FPGA from flash or other local non-volatile memory).  

 

Very little research has been conducted on tuning and debugging image 

processing algorithms using the standalone development model. Currently, it is 

necessary for a developer to construct the necessary tools to facilitate 

debugging on the FPGA for each IP algorithm developed. Such tools may use 

onboard LEDs, multi-line character displays, or a VDU to display debugging 

information. End-users can tune the IP algorithms via onboard DIP switches, 

push-button switches, a keyboard or a mouse (if a VDU is used). The 

construction of each debugging and tuning facility requires a certain amount of 

development time and hardware resources on the FPGA. 

 

2.2 Proposal 
 
Constructing a hardware operating system could resolve many of the 

aforementioned problems by providing resources for an end-user to 

interactively debug and tune IP algorithms when using the standalone 

development model. A developer should be able to focus on the development 

of IP algorithms and not on the underlying tuning and debugging framework.  

An end-user should be able to visualise the results of IP algorithms in real-time 

on a VDU.  

 

Essentially, the proposed GateOS is a restricted form of windowing operating 

system. It would be responsible for the provision and management of GUI tools 
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that facilitate the real-time debugging and configuration of algorithms on the 

FPGA. The requirements of these GUI tools are discussed in subsequent 

sections of this chapter.  The restrictions on the scope and functionality of 

GateOS are required to cope with the limited resources available on a FPGA. 

Where possible, it is desired that GateOS be independent of a particular FPGA 

or FPGA family, and should also be independent of the resources available on 

the particular development board used (apart from the provision of video 

output and mouse input). 

 

A successful development of GateOS, may be gauged by the provision of source 

codes that compose GateOS.  These source-codes should be able to be compiled 

without altercation so as to provide a live demonstration of GateOS. This would 

constitute a proof of concept. Time-willing, user evaluation of GateOS would 

also be useful, although, this isn't essential to fulfil the goals of this thesis.  

 

2.3 Hardware Environment 
 
Use of the Handel-C programming language has become more popular in 

recent years for the development and implementation of image processing 

algorithms on FPGAs. As its name implies, Handel-C has a similar syntax to the 

C language but with various extensions that cater specifically for the 

construction of hardware4. When compared with lower level languages such as 

VHDL or VERILOG, Handel-C is the preferred option for developing GateOS, 

due to its ability to incorporate both low-level and medium-level constructs. 

This simplifies the development process by allowing most of GateOS to be 

developed at a relatively high level, while still allowing lower level design 

where necessary.  The Handel-C language is not in itself an object-oriented 

language, but the object oriented paradigm can still be useful in the design of 

the various systems and data-structures within GateOS.  

 

4 http://www.celoxica.com/products/dk/default.asp 
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Since much of GateOS is concerned with the GUI, it is very much dependent on 

the underlying technique that is used to generate and display content on a 

VDU. In a standard VGA video output frame there are three main regions of 

interest in terms of timing: the active region, the horizontal blanking region, 

and the vertical blanking region. The blanking regions (see Figure 2-1) are 

necessary for CRT displays to rescan the internal electron beam to the start or 

the top of the display respectively. Modern TFT displays still support these 

blanking regions; however, this is merely for backward compatibility reasons.  

The video driver only needs to output display pixels in the active region, as 

pixels generated in either blanking region are ignored. 

 

Figure 2-1 Timing Regions within a video frame, active, H-blanking and V-blanking 

 

GateOS must therefore generate output pixels in synchronization with the 

video clock. There are two main techniques for providing this steady stream of 

pixels: a frame-buffer approach and generating pixels on-the-fly. The frame-

buffer approach stores the pixels to be displayed in memory (the frame buffer), 

which is then read sequentially as each pixel is required for the display. It 

requires a large block of memory dedicated to the frame-buffer. This effectively 

decouples output generation from the display process.  The problem with this 

approach is the limited bandwidth of the frame-buffer. Unless it is dual-ported, 

only a single read or write can be performed on the frame buffer memory per 

clock cycle; which becomes a problem when it is necessary to display live video 

feeds.   
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The alternative is to use the on-the-fly approach to provide the stream of pixels 

for display. The pixel situated at each display coordinate is generated on-

demand when it needs to be displayed. No frame-buffer memory is required for 

this approach and the bandwidth problems experienced when using live video 

feeds are for the most part resolved.  

 

For GateOS, we have elected to adopt an on-the-fly approach. This choice does 

however come at the cost of increased complexity of the window manager in 

GateOS. Since timing is critical, major design challenges (pipelining display 

pixels as a part of video scheduling) are introduced with the on-the-fly 

approach that is not present when using a frame-buffer. These issues form a 

significant part of the discussions in this thesis.  

 

2.4 System Overview 
 

GateOS should be able to interface with the IP algorithms as well as providing 

an interactive user interface. From an engineering perspective, decoupling the 

IP algorithms from GateOS will almost always result in a simpler design. 

GateOS should be independent of a particular IP algorithm – the algorithm 

should be developed within the context of an OS, not the other way around. A 

modular design allows only the features necessary in a particular application to 

be incorporated. Keeping this in mind, the architecture of GateOS might look 

similar to that shown in Figure 2-2. All the user algorithms must be decoupled 

from GateOS and thus are located within an IP core container and communicate 

with GateOS through a well-defined set of interfaces.  
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Figure 2-2 GateOS IP Core and its relationship to the rest of GateOS 

 

Figure 2-2 is an attempt to identify the various sub-systems within GateOS and 

give some indication as to their relationship with one another. The IP Core (and 

its constituent algorithms) shown in Figure 2-2, is managed entirely by the 

various subsystems  in GateOS, clearly qualifying it as an Operating System, 

albeit  a cut-down one. The inclusion of a non-volatile storage manager, 

discussed briefly in Section 2.5, further reinforces this principle.  

 

One of the major considerations in the design of the OS will be managing the 

timing constraints imposed by the run-time environment of the FPGA. Since we 

are using on-the-fly pixel generation, it will almost certainly be necessary to 

pipeline areas of GateOS to ensure that pixels at particular display coordinates 

are generated on time.  While it is true that modern FPGAs have more resources 

and higher clock speeds than was available previously, a desirable feature of 

GateOS will be to support operation on small and low cost FPGAs if possible.  

 

GateOS should be presented to a developer as a set of libraries. Developers can 

then interface with these libraries when it becomes necessary to tune or debug 

their IP algorithms. The behaviour of GateOS is, therefore, customized by the 

developer to fit the particular application by constructing the required 

windows, widgets and so forth. In this way, only the hardware needed for a 
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particular application is built. For instance, if a mouse button is never used in a 

project, then the hardware for it will not be included in the final configuration.  

 

Since GateOS will use a windowing environment, it will require some form of 

window manager. Each window in GateOS is just a visual container, which can 

be used to display content such as images, histograms and widgets. The 

window manager is responsible for maintaining any window data-structures, 

as well as scheduling the display content of each window at the appropriate 

location on the VDU. A key reason for having a windowing based OS is that the 

user can hide, restore, reposition and resize individual windows on the VDU. 

This can typically be done with the use of particular mouse gestures. In 

addition, the user could also wish to clone or destroy particular windows.   

 

Widgets form an important part of any windowing environment and because of 

this, GateOS should also incorporate a widget management subsystem. Widgets 

are useful for displaying and manipulating Boolean (buttons) and integer 

(sliders) variables, as well as displaying textual annotations (labels).   Widgets 

are only ever displayed within the content area of a window, so the widget 

manager requires constant communication with the window manager. Support 

for the following widget types should be incorporated into GateOS: labels 

(textual annotations), text edit areas, sliders (horizontal and vertical) and 

buttons (both momentary action and toggle buttons). The widget manager is 

responsible for managing all the widget data-structures and displaying each 

widget within of its associated window. A special class of widgets is required 

for scheduling the display of image/video data and statistical information (such 

as histograms) within windows. 

 

In terms of user interaction, we need to be able to tune and debug IP 

algorithms. This tuning may involve the manipulation of buttons, sliders and 

text edit widgets that are linked to the IP algorithm. Using a keyboard and a 

mouse to do this manipulation is appropriate in this situation and is familiar to 
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users. Using a mouse and keyboard necessitates the building low-level drivers 

on the FPGA to communicate with each device. Also, as a part of the display, 

there are keyboard and mouse cursors that may be visible. An additional input 

management system interprets the inputs and input gestures and passes the 

corresponding information to the appropriate widget or window. As the widget 

and window parameters are adjusted, this affects a window’s appearance or 

position on the display, as well as control variables that may be used by the IP 

algorithm.  

 

An essential component of any interactive operating system (windowing or 

command-line  based) is the management and display of textual annotations. A 

textual annotation is a string of characters displayed somewhere on the VDU.  

A text manager is necessary to manage and display strings of characters on 

widgets and windows in GateOS. The text manger may also be required to 

annotate areas of interest on an image at run-time. The text manager is thus 

tightly integrated with the window and widget managers as well as the IP core, 

since it can be called upon by any of these to display an annotation.  

2.5 Non-Volatile Storage Manager 
 

A developer may need to store data in non-volatile RAM (i.e. flash RAM). The 

most obvious approach for fixed size data is to use preset addresses for each 

data item. For variable sized data, a more flexible approach would be better, 

such as modelling the nv-RAM as a flat file system (no directory structure). 

There are several different types of file system that could be used (such as FAT, 

EXTFS, UDF...). Incorporating such a file system into GateOS would allow the 

developer to specify a filename or id as the unique handle for an item of data 

and then read or write data to this file via the storage manager. One would 

need to consider if the extra hardware needed to implement such a manager is 

worthwhile.  
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CHAPTER THREE 
 

WINDOW MANAGEMENT 

 
Chapter Outline 

This chapter discusses how windows are represented and implemented in 

GateOS.  We discuss how a window is represented on a screen in terms of 

dimensions, logical position and status. Mechanisms for managing and 

displaying overlapping windows are described using ‘on-the-fly’ pixel 

generation. 

3.1 Introduction 
 

From the user’s point of view, a window is a container for content displayed on 

the screen. The content may be images, user-interface controls or debugging 

information, and it is usually more convenient to group related components 

within a single window.  Usually, there is more information available than can 

conveniently (or aesthetically) fit onto a single display. A common approach to 

handling this problem is to separate the content into windows and to allow the 

user to control which windows are visible and which are not. For convenience, 

the user can rearrange the window positions and where they overlap, and can 

determine which window is visible.  

 

From a designer’s perspective, we define a window to be a rectangular 

container displayed on a VDU that can be moved, resized, overlapped, created, 

and destroyed. A user should be able to distinguish a window from all others in 
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the windowing environment. A developer should be able to specify the content 

that is displayed within the window, either at compile-time or in the case of 

dynamic data, at run-time through the image processing core. 

 

Figure 3-1 Windowing System architectural overview 

 

A window manager determines which window (if any) is visible at a particular 

screen location, and routes the window’s content to the display driver as shown 

in Figure 3-1.  

 

3.2 Representing a window’s size and 
location 
 

It is common knowledge that a window’s position and size on screen can be 

characterized with four properties; x position, y position, width and height. 

However, there are design questions that may be raised that must be resolved. 

The first issue concerns the location of the origin and the second is concerned 

with how to represent a window's extent on screen.   

 

It is assumed that the system has only a single VDU. This simplifies 

considerably the logic and scheduling compared to managing multiple 

windows across several VDUs. A constraint imposed on windows is that their 

size (width and height) must be less than that of the VDU.  This ensures that the 

content of each window can always be displayed in its entirety on the VDU. 

Also, the implementation of the window manager in Handel-C can be 
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simplified somewhat if a designer can assume that these constraints are 

enforced.  There are several ways in which the four window parameters can be 

represented and interpreted in GateOS, which leads to the use of a virtual 

coordinate space.  

 

3.2.1 Virtual Coordinate Space 
 

If windows were restricted in their movements, such that each window must 

reside fully within the bounds of the VDU, some end-users would find this both 

frustrating and counter-productive. To allow window's to extend past the edge 

of the display, a virtual coordinate space can be defined.   

 

Figure 3-2 Choices of origin within virtual coordinate space  

The constraints described earlier mean that the virtual coordinate space only 

needs to be triple that of the display resolution of the output VDU, with the 

VDU occupying the central region.  The origin in the virtual coordinate space 

can be located at either the top-left corner of the VDU or the top-left corner of 

the virtual coordinate space, as shown in Figure 3-2. The first choice would 

entail the use of signed variables to represent a windows position on the VDU. 
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Since the output video driver defines the origin of the VDU to be the same as 

that used in the virtual coordinate space, mapping a window's position relative 

to the VDU requires no conversion (except signed to unsigned).   

 

The second choice would use only unsigned variables. However, a 

disadvantage of this approach is that display coordinates from the video driver 

must be translated to obtain the virtual coordinates that the window manager 

can use in provide the correct output pixel. 

 

3.2.2 Window extent 
 

With regards to representing the extent of a window within the virtual 

coordinate space, the position and size parameters of a window can be encoded 

in several different ways. Two potential encoding schemes have been identified 

that could be used in GateOS, as shown in Figure 3-3. The first scheme uses size 

and position coding, while the second scheme uses point coding. 

 

The coordinate space for this coding schema uses unsigned numbers to 

represent its width and height dimensions.  To find a window’s end-point 

(required in the implementation for calculating particular offsets), one has to 

perform two separate additions (x + width, y + height). If this end-point value is 

frequently used by GateOS on multiple occasions from different locations in the 

window manager design, additional hardware may be necessary to multiplex 

the different hardware requests for the endpoint value.  

 

The alternative is to represent a window’s extent on the VDU is to use a point 

based coding schema. Rather than representing a window by its width and 

height, it explicitly encodes the start and end points of the window.  
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Figure 3-3 Virtual coordinate space based on the two encoding schemes 

 

The end-point (xe, ye) defines the location of the bottom-right corner of the 

window. The width of the window can be obtained at run-time with a 

subtraction (xe - xs) as can its height (ye - ys).  

 

This approach could be beneficial in situations where the start or end points of a 

window are required more often by GateOS than the width or height. This is 

the primary motivation for the use of this schema in the current implementation 

of GateOS.   

 

3.3 Overlap of windows 
 

Overlapping occurs when a window is positioned such that its bounding 

rectangle intersects the bounding rectangle of one or more other windows.  In 

the intersection, the window manager must be able to identify which window is 

visible on screen and which window(s) are obscured or occluded. One can think 

of the window's as being stacked one behind the other in layers. A window’s 

position in this stack determines whether it is in front of, or behind another 

window. This depth adds a third dimension, z with a windows z-index 

effectively identifying the priority with which it is displayed as shown in Figure 

3-4. 
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Figure 3-4 Changing the z-index of a window 

 

A left mouse click within a window can be used to bring that window to the 

front. This is achieved by setting the z-index of that window to the z value of 

the current front window and decrementing the z-indices of the windows in-

between to move them back a layer. A generic sorting algorithm can be used to 

perform this task.  To enable the window manager to identify the id of a 

window in a single clock cycle - given its z-index - it is necessary to maintain an 

inverse z-table; which is a list of windows sorted by z-index. 

3.4 Window States 
 

A window in GateOS can be in one of four possible states; null, hidden, inactive 

or active. The null state is used if one or more of the window’s core properties 

are incomplete.  This will be the case if a window has been defined, but is not 

currently in use by GateOS. A null window should be concealed from view.  

 

The active window is situated in front of all other windows and can receive 

both keyboard and mouse input. Inactive windows may be occluded and can 

receive no input from a keyboard. The only mouse input accepted by an 
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inactive window is the gesture associated with making the window active. As 

the name implies, the hidden state is used for a window whose properties are 

valid, yet the window and its contents are fully hidden from view. The status of 

a window may be toggled between the hidden and visible states by clicking an 

associated button on the window activation bar. The window activation bar is a 

special widget window that provides a set of buttons reflecting the visibility of 

each window in GateOS. The window activation bar must always remain in the 

visible state, thus no mechanism is provided to change it (there is no button 

reflecting its visibility). The buttons within the window activation bar can be 

aligned vertically or horizontally.  A window is created in the visible state when 

its properties have been initialized. In the visible state, a window and its 

contents are viewable on the VDU (unless it is occluded).  The window with the 

highest z-index is considered to be the active window; otherwise it is inactive.  

 

3.5 Window Regions 
 

Each window consists of three overlapping layers: a background layer, a 

content layer and a border layer. 

 

The background layer is split vertically into two separate regions; the title-bar 

and the content area background. The title-bar stretches the full width across 

the top of the window and has a height of 16 pixels. The value of 16 pixels is 

chosen because it is aesthetically pleasing (to me), and due to the fact that offset 

calculations are somewhat simplified (if the four LSBs of the row relative to the 

top of the window are dropped, the remaining value is zero within the title-bar, 

otherwise it’s within the content area).  The text management system, as 

detailed in CHAPTER Five, is used to add a textual label (as a part of the 

background layer) for the window. The label is aligned to the left side of the 

title-bar.  
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The colour of the title-bar is used to indicate whether or not a window is active; 

with pale-blue used for the active window and dark blue used for inactive 

windows. The background colour of the content area can be customized for 

each window.  

 

The second (content) layer is where the window’s content resides.  Widgets that 

control a window‘s behaviour (see CHAPTER Four) are right-aligned within 

the title-bar. It is within this content layer of the main part of the window that 

image and video data are displayed, along with any widgets (see CHAPTER 

Four) used to tune algorithm parameters and display debugging information. 

The content layer of a window has its own local virtual coordinate space with 

the default origin located in the top left corner of the content area. If the 

window content (e.g. a large image) is larger than the available display area of 

the window, then the window’s contents can be scrolled by offsetting the local 

origin of the window’s virtual coordinate space; either horizontally or 

vertically. 

 

Figure 3-5 Final layer with a grip for resizing windows 

 

The third layer is used to display a window’s internal and external bounding 

borders. The external borders are two pixels deep and are situated on all four 
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sides of a window, while the internal border vertically separates the title-bar 

from the content area with a horizontal line on the bottom two rows of the title 

bar. These borders are present on all windows in GateOS without exception. If a 

window can be resized, then a resize grip is also displayed in the bottom-right 

corner of the external window border, as shown in Figure 3-5.  

 

3.6 Managing and displaying windows 
 

In CHAPTER Two, we specified that on-the-fly pixel generation should be used 

in GateOS. This requires the window manager to be able to identify at any 

given clock cycle, the foremost visible window at the output display coordinate 

(px, py) as provided by the video driver. This task is simplified somewhat by 

the fact the pixels are required in a scan order; so adjacent pixels are likely to 

come from the same window. Two potential techniques are to simultaneously 

test all windows in parallel with a priority encoder to select the front-most 

window, or to determine the locations of the transitions from one window to 

the next along each raster. 

 

3.6.1 Parallel Incidence Test 
 

The start and end points of each window are compared with the VDU display 

coordinates (provided by the video driver) to identify which windows are 

present for the current output pixel. From these, the window with the highest z 

value is selected for display.   

 

For a screen coordinate (xp, yp) to be within a window, it must satisfy three 

conditions. The pixel must be between the left and right sides of a window 

( eps xxx <≤ ). It must also be between the top and bottom of the window 
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( eps yyy <≤ ). The window must also be visible (status = active or inactive). 

Refer to Figure 3-6. 

 

Figure 3-6 Detecting whether a window is present at a screen coordinate 

 

To determine this for every window in a single clock cycle requires separate 

hardware for each window, and that the window parameters to be stored in 

registers (rather than memory) because they must all be accessible every clock 

cycle. The primary weakness of this approach is that it requires a significant 

amount of hardware for each window in GateOS.  

 

We can optimize this design by eliminating some of this hardware. This is 

possible because the pixels must be produced as a series of left to right scan-

lines. The horizontal blanking also provides an opportunity for the window 

manger to perform a limited amount of processing before each line is displayed. 

The visibility status of each window is active or inactive. Since the row number 

is constant for a scan-line, the condition ( eps yyy <≤ +1 ) only needs to be 

evaluated once per line, and this can be performed during the horizontal 

blanking period. Similarly the visibility status of a window can be evaluated 

once per line. The combined result of these evaluations can be can be stored in a 

single binary register per window (see valid in Figure 3-7). Since the timing is 
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less critical during the blanking period, these evaluations may be performed 

sequentially. Concurrent access to the status or the ys and ye components are no 

longer required, thus allowing these three properties to be stored in a RAM and 

be indexed by window id. During horizontal blanking, a serial process can then 

iterate through the windows and evaluate the validity condition.  

 

Figure 3-7 Updated window identification that uses less hardware per window 

 

The real-time hardware, therefore, only needs to check the horizontal extent of 

each window ( eps xxx <≤ ) and ensure that the window is valid on the current 

scan-line as shown in Figure 3-7. This can be further optimised by replacing the 

comparison tests with equality tests (which use less hardware), this is because 

pixels are scanned sequentially (i.e. set a flip-flop when xs=xp, and clear it when 

xs=xe).   

 

Figure 3-8 Selecting the window with the highest z-index 
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At a given screen coordinate there may be several windows present, but only 

the window with the highest z-index is selected for display. The present signal 

of each window is routed to an input of the priority encoder based on the z-

index of the window, as shown in Figure 3-8. The priority encoder then 

identifies the index of the highest set bit, which is looked up in an inverse z-

index table. The resulting value is the id of the window to be displayed at the 

particular screen coordinate.  

 

This input sorting based on the z-index is, in fact, a crossbar multiplexor, which 

is very expensive (in terms of hardware resources) to implement. The RMO 

macro (returns the offset of the rightmost set bit in an expression), which is 

provided by the Handel-C standard library (see the Handel-C PDK Reference 

Manual5), can be used to implement the priority encoder.  

 

3.6.2 Window Transition Method 
 

Previously, we have discussed how a display frame is output to the VDU as 

progressive scan-lines and how a horizontal-blanking period is situated at the 

end of each scan-line. In section 3.6.1, we were able to exploit this horizontal 

blanking period to make the real-time window selection process independent of 

the subsequent scan-line. This can be similarly exploited by a memory-based 

technique.  

 

This technique uses the horizontal blanking period for each scan-line to 

construct a look-ahead table that lists windows in the order (left to right) that 

they are to be displayed on the current scan-line. When the VDU is in the active 

region, a selector iterates through this list of windows, displaying each in turn 

until the last entry is reached. The look-ahead table must then be rewritten for 

each scan-line as the order of the windows can change.  

 
5 http://www.celoxica.com/support/view_article.asp?ArticleID=578 
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This approach makes it possible to store all the core properties that determine  

the window's position, dimensions and z-order to be stored in fabric-RAM. This 

is preferred because fabric-RAM requires fewer hardware resources than 

register banks to store the same amount of data. However, the use of fabric-

RAM restricts the number of concurrent accesses to one (or two if the RAM is 

dual-port). The fabric-RAM bandwidth limitations mean that only a single 

window’s properties can be accessed in a particular clock cycle, thus 

necessitating the search for an alternate approach, such as the the use of look-

ahead tables. These tables are populated in advance and are used to assist in the 

real time selection process. Whilst there may be other solutions to this problem, 

the requirements of this thesis are such, that only a minimal amount of FPGA 

resources should be used whenever possible. Using look-ahead tables satisfies 

these requirements.  

 

The horizontal blanking period (approx 20 percent of total horizontal scan time) 

of each scan-line can be used to perform a limited amount of processing, 

whereas the longer vertical blanking period (several scan-lines) can be used for 

more time-intensive processing. The existence of these two timing intervals can  

also be exploited to populate the look-ahead tables.  

 

3.6.2.1 Window List Look-ahead table (WLL) 
 

The WLL lists the windows in the order that they are displayed on a particular 

scan-line. Each entry is a window id (integer) that the window manger can use 

as the index for accessing those core window properties that are stored in 

fabric-RAM. The table partitions the active portion of a scan-line into discrete 

line segments, such that each segment represents an unbroken stream of pixels 

belonging to an individual window. Each window entry must be displayed on 

the current scan-line for at least one clock-cycle, as shown in Figure 3-9.  
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Figure 3-9 How WLL entries for each scan-line are related to window positions 

 

The size of the WLL is determined by the maximum number of window 

transitions that can occur on a scan-line, as shown in Figure 3-10. 

 

Figure 3-10 Worst case scenario with each windows vertical edges displayed 

 

Each window has two vertical edges. If both edges of N windows are visible in 

a scan-line, then there are a maximum of 2N transitions (or 2N+1 counting the 
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special background window).  The WLL can be stored as an array in fabric-

RAM.  

 

3.6.2.2 The real-time window selection process 
 

For each entry in WLL, the window selector must establish how many clock 

cycles the current window is displayed for, before transitioning to the next 

window. If the current window has the higher z-index (it is in front of the next 

window), the transition occurs when the current window’s right edge is 

encountered ( pcurrente xx =, ). Otherwise, the next window is in front and is 

displayed when its left edge is encountered ( pnexts xx =, ). In a worst-case 

scenario, the above technique should be able to switch the display window with 

every clock-cycle, requiring the properties of the current window to be cached.  

 

To implement this process, relatively few hardware resources are required. 

Registers can be used to store the id of the current window, its z-index, the 

transition coordinate (either currentex , or nextsx , ) and the WLL iterator. Additional 

information can be retrieved on demand from fabric-RAM using the window's 

id as an index.  

 

3.6.2.3 Building the window-list look ahead table 
(WLL) 
 

The WLL table is potentially different for every scan-line, so must be rebuilt for 

every line that is displayed.  Since WLL is stored in RAM, the only time it can 

be accessed to construct the table is during the horizontal-blanking. For a 

640x480 screen resolution, the horizontal-blanking period lasts approximately 

120 clock cycles. The maximum number of windows that GateOS can manage is 
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directly dependent on how fast we can generate entries for the WLL. Since we 

can only write to WLL once every clock cycle and each window has 2 edges; 

GateOS can manage at most 60 windows at VGA resolution (more than 

enough). 

 

It is clear that serial search techniques cannot be used to create the WLL. To 

assist in this process, an additional table, the edge-list lookup (ELL) table is 

required. This lists the vertical window edges of all visible windows, sorted in 

order from left to right. For each entry in this list, we store the windows id and 

the polarity of referenced edge (left or right) as shown in Figure 3-11. If the 

edges of two or more windows coincide, the windows are ordered by z-index 

with the highest z-index placed first. This data-structure can also be placed in 

fabric-RAM. 

 

Figure 3-11 Edge list lookup-table 
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The first and last entries in ELL always refer to the special desktop window as it 

covers the entire virtual coordinate space and is always visible on the VDU, 

albeit with the lowest z-order.  

 

When the right edge of a window is reached, a priority register (Rs) is used by 

this algorithm to select the next topmost window. Each bit in Rs is associated 

with a z-index. A priority encoder (the RMO macro in Handel-C) and inverse-z 

lookup is used to identify the topmost window.  

 

The algorithm starts out clearing Rs to zero. The window id from the first entry 

in ELL (the desktop window) is copied to the WLL and is set as the ‘current’ 

window.  The window id of the next entry in ELL is read, and denoted as the 

‘next’ window (only if the scanline is within the window). Depending on the z-

indexes of both ‘current’ and ‘next’ windows and the polarity of the ‘next’ 

windows edge (left or right), one of three actions is performed.  

 

1) If the next window is a left edge, the znextth bit in Rs is set (the start of a 

window), otherwise it is cleared (the end of the window). 

2) If the left edge has a higher z-index than the current window, it replaces 

the current window and is added to the WLL. 

3) If the right edge of the current window is encountered, the highest 

priority window in Rs is found, and it replaces the current window and 

is added to the WLL. 

 

This process is repeated for each entry in the ELL data-structure. A moderate 

amount of FPGA hardware resources are required to implement this algorithm. 

Since several conditions need to be evaluated in a single clock cycle and actions 

are performed based on these results, the combinatorial delay could be quite 

long, adversely influence the maximum clock speed of the FPGA design. The 

current window id, its z-index, Rs, the WLL and the ELL iterators need to be 

stored as registers.   
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3.6.2.4 Building the Edge-list look ahead table (ELL) 
 

The contents of this data-structure will not change unless an end-user 

repositions, resizes, hides, clones or destroys a window. Furthermore, since 

keyboard and mouse input is processed serially during vertical blanking; only a 

single window in ELL will be affected at any given time. This fact simplifies any 

required updates to ELL into two separate tasks: insertion and removal. The 

removal process completely removes from ELL any references to a particular 

window and the insertion process subsequently reinserts the two edges. In the 

current design of GateOS, the status of a window is considered to be null if it is 

not represented in the ELL data-structure (eliminates the need to have a 

separate data structure to indicate if a window has been constructed or not).  

An independent variable is used to maintain a running total of all visible 

windows in GateOS.  

Clks Source 

1 // prepare the ELL iterator register 
i = 1; 

1
// we need to remove references to the left and right window    
// edges from the ELL (two references) 
step = 0; 

1

// iterate forwards through ELL until these two references have 
// been removed 
do { 
 // Extract the current window index 
 window_index = ELL[i];  

1

// compare the ids of the two windows 
 if(window_index\\1 == window_id)  
 step++;  
 else 
 ELL[i - (0@step)] = window_index  

1
// compare the ELL iterator register 
i++; 

}while(i != (WINDOW_COUNT_VISIBLE << 1)); 

1 // there is one less valid window in GateOS 
WINDOW_COUNT_VISIBLE--; //running window total 

Listing 3-1 Removal routine 

 

As shown in Listing 3-1, this Handle-C routine performs a forward scan 

through ELL, removing each invalid window reference as it progresses. After 

the first removal, successive entries are shifted down by one place to occupy the 

vacated space. Similarly, after the second removal, successive entries are shifted 
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down by two places. Upon completion, the variable holding the current visible 

window count is decremented.  

Clks Source 

1 // we only need to do this twice 
step = 2; 

1 // get the z-index of the window we need to insert 
compare_z = Window_Z[window_id];  

1 // get the right edge value of the window we need to insert 
compare_x = Window_XE[window_id];  

1 // prepare the iterator 
i = (WINDOW_COUNT_ACTIVE << 1) - 1;  

1

// Perform a reverse search through the ELL table, and insert the 
// proper entries representing both left and right edges of the 
// window  
do { 
 //by default we decrement the ELL iterator register  
 perform_dec = 1; 

1 // Extract the indexed window id  
 window_index = ELL[i]; 

1 // extract the indexed windows z-index 
 current_z = Window_Z[window_index\\1]; 

1

// extract the indexed windows right or left edge (the 0th bit      
// of the windows index determineds the edge)      

 current_x = (window_index[0]) ? Window_XE[window_index\\1] 
:Window_XS[window_index\\1]; 
 

3
or 
1

//Should an edge (left or right) of the window we want to insert 
//be stored at this location in the ELL  
if(compare_x > current_x || (compare_x == current_x &&       
 compare_z > current_z)) 
 { 
 //prepare the new window index (append the 1-bit flag

//that represents the edge 
 window_index = window_id@step[1]; 
 //we only need this one 
 compare_x = Window_XS[window_id]; 
 //don't decement the iterator this time  
 perform_dec = 0; 
 }else delay; //otherwise just wait 

1 //insert the new or old entry 
ELL[i + (0@step)] = window_index; 

1

//perform the decrement operation 
if(perform_dec)  
 i--;  
 else  
 step--; 

1
}while(step != 0); 
// an extra window has been inserted, therefore increment the          
// total number of valid windows in the system 
WINDOW_COUNT_ACTIVE++;  

Listing 3-2 Insertion routine 

 

The insertion routine as shown in Listing 3-2 is slightly more complicated than 

the previous removal procedure, as we need to insert the two new window 
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references in into ELL. To do this, we scan backwards through ELL. Until the 

first insert location is found, the entries of ELL are shifted up by two places (to 

make room for the new window entries).  On encountering the location where 

the right edge of the window belongs, the window id is inserted and flagged as 

a right edge. From this point, entries are shifted up one place until we reach the 

location of the left window edge.  The current visible window count is 

subsequently incremented.   

3.7 Discussion 
 

For the implementation of GateOS, the designer is able to choose which coding 

scheme is used to represent a windows position and dimensions. In using a 

virtual coordinate space, we have simplified the process of mapping a 

window's coordinates to those used when generating pixels on the VDU.  

 

The register technique used to schedule window's for display is functional but 

not very scalable. The hardware resources required to represent each additional 

window in GateOS is directly related to the number of bits needed to represent 

each window’s ID. This means there is virtually no resource penalty (except for 

RAM storage space) incurred with changing the number of windows from 5 to 

8; however, a small increment in resources is required to increase the number of 

windows from 8 to 9 and so on. The crossbar switch required for priority 

encoding is the main reason for these increases. The alternative technique, 

which assumes that core windowing properties are stored in fabric-RAM, 

attempts to resolve many of these issues with a considerable amount of success. 

For this memory-based technique, the hardware resources required for each 

additional window are relatively fewer than those required for the register-

based technique.    

 

In the future, it would be useful to construct techniques that would make it 

possible to clone particular types of windows (Image, Video) at runtime as well 
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as destroy them (revert to a null state).  This could be used to clone an image 

window associated with a particular IP algorithm. A widget window could 

then tune an IP property associated with this cloned window and compare the 

resulting image with the original. The implementation of this could be the focus 

of much future research. 
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CHAPTER FOUR  
 

WIDGET MANAGEMENT 

 
Chapter Outline 

This chapter describes the properties of the various widgets used within 

GateOS. An in-depth discussion on the data-structures required for retaining 

each widget’s properties is also provided. It covers the three widget display 

layers (window boarder, content and background) and the required processing 

attributed to each of them, in order that widgets can be managed and displayed 

within a host window on the VDU.  

4.1 Introduction 
 

The term ‘widget,’ as used in GateOS, describes a single graphical control 

located within a window. In this chapter, we define several different types of 

widgets - the most important of which have been implemented in the current 

version of GateOS while others remain as potential designs. 

 

The types of the widgets detailed within this chapter include; label, button, edit 

box, slider, histogram display, image display and video display. The last three 

may be grouped into a separate category called the image processing (IP) 

widgets, as they rely directly on the IP core for their display content. 

 

In terms of GateOS, widgets are useful for graphically tuning and debugging 

image processing algorithms in addition to controlling the behaviour of 
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GateOS. More specifically, interactive widgets are able to manipulate Boolean 

or integer variables while the image processing widgets display useful 

debugging information in a graphical form.  

 

4.2 Widget Display Layers 
 

Three sub-layers (within the window’s content layer) are used to display 

widgets. These sub-layers (see Figure 4-1) are used for the display of image 

content, algorithm control and window control.  

 

Figure 4-1 Content window layer split into three widget sub-layers 

 

The first ‘image’ layer occupies the complete window’s content area. Since the 

content region uses its own coordinate space, this ‘image’ layer may be scrolled 

both horizontally and vertically so that all of its content is accessible. Only a 

single IP widget (histogram, image or video) may be displayed in any window. 

If there is no IP widget associated with the host window, then this image layer 

is transparent and the underlying window background layer is displayed.  

 

The second ‘algorithm control’ layer is also positioned within the window 

content area. This layer shares its vertical and horizontal offsets with the image 

layer, so scrolling the window will move these controls with the image. Several 

widgets can be positioned within a window, with the underlying image layer 
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visible where there are no widgets. Widgets within this layer are used to tune 

algorithms in the IP core and display debugging information. 

 

The third ‘window control’ layer contains the widgets responsible for 

manipulating the various properties and behaviours of a window and its layers. 

The location of widgets in this layer is fixed relative to the window at compile-

time as these conceptually form part of the window rather than the contents. 

Buttons on the title-bar are all 16 pixels in size (requires less hardware 

resources) as are the sliders (except for the length which is variable and 

depends on the window size). Again, this layer is transparent; if no widget is 

present at a particular point, then the underlying layers are displayed in order 

of priority (window control layer, then image layer). 

 

4.3 Widget Details 
 

4.3.1 Label Widget 
 

The purpose of a label widget (see Figure 4-2) is to provide a textual annotation 

within a window. An example would be to identify areas of interest within an 

image.  

 

Figure 4-2 A simple Label Widget 
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A label widget is stateless and has no mouse or keyboard interaction. Each label 

widget has a transparent background. The only purpose of a label widget is to 

display a textual annotation; therefore, a single string is displayed within each 

label. This string is aligned with the top-left corner of the widget and any text 

that extends past the bottom and right boundaries of the widget is truncated. 

As detailed in CHAPTER Five, the actual text string is stored in a string table 

and referenced by its id. 

 

4.3.2 Button Widget 
 

If a button widget is situated within the algorithm control layer, then it can be 

used to manipulate a Boolean parameter of an algorithm. Alternatively, if this 

widget is used within the window control layer, then it may be used for a 

variety of window management tasks. Such tasks may include hiding/restoring 

a window from view, creating clone windows and destroying them, or 

pausing/resuming a live video feed.  

 

A button widget has a border displayed on each of its four sides (top, bottom, 

left and right), so that it is clearly visible. This border is one pixel deep and is 

dark-grey in colour (common to all buttons in GateOS). 

 

A button widget has two valid states, ON and OFF, as shown in Figure 4-3. The 

state reflects the state of a Boolean parameter within the system, and the button 

can be used to manipulate that state. Two visual aids are used to denote the 

current state of a button and its purpose; a text string and the background 

colour. Each button widget has associated two strings, one for each state of the 

button. A user should be able to establish the purpose of each button, if not its 

state, simply by reading its label string.  The string is aligned to the top-left 

corner of the widget and has a black foreground colour.  
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The background colour of the button also reflects the button state, with the ON 

and OFF colours defined globally.  

 

Figure 4-3 The background of a Button Widget can be one of two possible colors 

 

A keyboard or mouse can be used to interact with a button widget. Each button 

can be assigned a character, such that when this character is input from the 

keyboard, GateOS can set, reset or toggle the button’s state. If the key is held 

down, no further state changes occur until that key is released (see CHAPTER 

Six for further details on managing keyboard input). 

 

When using a mouse to interact with a button widget, only left or right mouse 

button clicks are accepted. A left click on the button widget will toggle the 

button’s state. Alternatively, a click by the right mouse button will toggle the 

button’s state only temporarily (until it is read and reset by the IP core), thus 

exhibiting a push-button like behaviour. 

 

4.3.3 Text Edit Widget 
 

The purpose of a text edit widget is to allow the user to enter a string. What the 

programmer does with the string is independent of the widget.   
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A text string needs to be displayed within an edit widget. Like the label and 

button widgets, this string is aligned to the top-left corner of the widget. 

Characters in the string that extend past the bottom or right boundaries will not 

be displayed.  The widget must also be able to provide access to all the 

characters within its text string. This is enabled by scrolling the string on a 

character-by-character basis, with an integer variable to store the offset of the 

first character displayed. The colour of the text in each text edit widget is black. 

 

Figure 4-4 An Edit Widget displaying the string “The brown fox jumped” 

 

A text edit widget has a 1 pixel dark-grey border on all four sides to clearly 

delineate its bounding rectangle, as shown in Figure 4-4. The background 

colour of the text edit widget is white to distinguish it from other widget types. 

Only a single text edit widget can be accepting input (active) at a time, so one is 

also able to distinguish between active (where the text cursor is) and inactive 

text edit widgets (no text cursor).   

 

A simple graphical cursor is used to indicate the current insertion point.  The 

cursor is a black vertical line that is 1 pixel wide and 16 pixels high, and is 

always situated between two characters in the text string. Either a left or right 

click on an edit widget is used to select the widget and set the initial cursor 

position. Once attached to an edit widget, the text cursor can be manipulated 

using the arrow keys on the keyboard (see Table 4-1). If a keyboard cursor is 
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moved to either the left or right borders of the widget, then the text string is 

scrolled by one character to keep the cursor in view. 

 

Key Cursor Action 

Right Arrow  Move to next character 

Left Arrow  Move to previous character 

End Move to last character 

Home Move to first character 

Table 4-1 Cursor movements 

 

The ‘Backspace’ key removes the character directly to the left of the cursor. 

Using any other keyboard key (excepting the backspace and the four cursor 

control keys) will result in the insertion of the associated character into the text 

string at the location of the cursor. Unprintable characters are replaced by 

spaces.  

 

To extend the usefulness we have added the automatic conversion of a numeric 

text string into an integer. A 2-bit flag as shown in Table 4-2, is required to 

designate whether the input is interpreted (takes place after each character is 

entered) as binary, decimal, hexadecimal or plain text.  Only characters in the 

particular number based are allowed. 
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Flag Operation 

0 plain text 

1 binary 

2 decimal 

3 hexadecimal 

Table 4-2 Available numeric string conversions  

4.3.4 Slider Widget 
 

A slider widget is similar in function to that of a scroll bar commonly used by 

other operating systems. However, its primary purpose (as opposed to a scroll 

bar) is to allow a user to manipulate one or more integer variables using a 

variety of mouse gestures. The definition of a slider widget has been further 

modified to fit the design goals of this thesis, namely the use of a minimal 

amount of resources. 

 

Each slider widget has a one pixel dark-grey border on each of the four sides to 

delineate its bounding rectangle, as shown in Figure 4-5. In some applications it 

may be useful to use the background of the slider to convey meaning about the 

slider position (threshold for example). A flag is used to indicate whether a 

standard or user-generated background is used.  

 

Figure 4-5 Vertical and horizontal slider widgets 
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The slider indicates and controls an integer variable that can have a value 

between zero and max_val inclusive. The minimum value is thus constant and 

never negative. The position of the slider bar within the slider is therefore: 

( )
max_val

lengthwidgetvaluepositionline __ ×
=

The slider bar is one pixel thick and has a black colour. 

 

Figure 4-6 The offset of a horizontal Slider Bar from the left border 

 
Note that there may not be an exact representation of every possible value if 

max_val is larger than the widget length. A slider widget may also be 

configured to manipulate two separate variables by adding a second slide bar 

with its own value and max_val variables.  

 

The use of a single line to represent a slider’s value (see Figure 4-6)instead of 

the rectangular block favoured by other operating systems has benefits as well 

as some drawbacks. The principal benefit is that the position of the slide bar is 

easier to manage and display. The calculations required to determine the left 

and right boundaries of a rectangular slider are avoided. Conversely, using a 

rectangular block for the slide bar can convey additional information, and the 

concept of applying step sizes to slider movements may have more meaning 

when using a rectangular block. 

 

A mouse gesture is used to reposition individual slider bars within a slider 

widget; we have considered two alternative methods of doing this. Both are 
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unconventional but functional and are designed to use a minimum amount of 

resources.  

 

The first method associates the left and right mouse buttons with the first and 

second sliders respectively. When the mouse button is pressed within the slider, 

the corresponding slider bar is repositioned directly under the mouse cursor. 

The value associated with the slider widget is then updated as:  

 

lengthwidget
max_valpositionlinevalue

_
_ ×

=

The slider bar will continue to move with the mouse cursor while the button is 

pressed. If both left and right mouse buttons are depressed concurrently, then 

both slider bars will follow the mouse cursor. 

 

With the second method the mouse click does not immediately move the 

cursor, but requires the user to drag the mouse past the slider bar (with the 

button down) to select it (in a left-right or right-left sweep). After selection, that 

slider bar will move with the mouse cursor as before. While the slider bar is 

tracking the cursor, it must remain within the boundaries of the slider widget. 

When the mouse button is released, the slider will stay in its last location.  

 

Either of the two methods can be selected at compile time, although it must be 

noted that the first is only able to manipulate up to two bars within the slider.  

The slider bars are aligned along the widget and their movement constraints 

(whether they can be dragged through each other) can be configured at compile 

time. All three widget types, namely the button, text and slider widgets have 

been implemented, but are yet to be subjected to user evaluation, due to time 

constraints.  
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4.3.5 Imaging Widgets 
 

Each window in GateOS may have a single histogram, image or video widget 

displayed within its content layer. An IP widget always starts at (0,0) in the 

virtual window coordinates. Its length and width properties are determined by 

the IP core, but are also cached by GateOS.  

 

Since the dimensions of an IP widget may be larger than the content area of a 

window, a scrolling mechanism is provided. A vertical and horizontal slider is 

added to the window control layer whenever the widget is too large for the 

content area.  

 

GateOS should allow a user to zoom the display area of IP widget both IN and 

OUT. A rudimentary zoom capability would be to allow zoom sizes that are 

only powers of 2 (… ¼, ½, 1, 2, 4, 8, 16 …). In this case, determining the correct 

display data would be trivial. Two square button widgets situated on a 

window’s title-bar could provide the necessary zoom interfaces as shown in 

Figure 4-7. A mouse click on either button would adjust the zoom factor to the 

next step in the corresponding direction.  

 

Figure 4-7 Two zoom buttons, one in and the other out 

 

The biggest limitation with power of 2 zooming is the constraint on the zoom 

factor. A better approach would be to allow a user to specify the zoom factor as 

a fractional value. The denominator of this fraction would be fixed by the IP 

core with the numerator adjusted by the user. This approach would give good 

zoom in but limited zoom out. 
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Figure 4-8 Slider widget is used to manipulate numerator of zoom fraction 

 

The numerator could be manipulated with the help of a slider widget. One can 

reuse the horizontal slider used for horizontal scrolling to also manipulate the 

zoom factor, as shown in Figure 4-8. A button widget, located next to this slider 

in the global layer, can select which parameter the slider would manipulate.  

The alternative might be to have two slider bars on the same scroll widget; one 

for horizontal panning and the other for controlling the zoom. Ideally, one 

would want the natural zoom size (1:1) to be in the centre of the scroll bar.  

 

Unfortunately, due to time limitations, I was unable to investigate the three IP 

widgets in any great detail. Therefore, only a brief description of the widgets 

and their possible implementation are provided in the following sections.  

4.3.5.1 Histogram Widget 
 

The purpose of this widget is to display a histogram or other similar graphical 

data, as shown in Figure 4-9. Usually the dataset represents some statistic 

derived from an image, and consists of an array of integers. Since display pixels 

are generated ‘on-the-fly’ from this data, only a single element of the data-set 

needs to be accessed per clock.  
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Figure 4-9 Sample Histogram Content 

 

A user does not interact directly with the histogram, other than through 

zooming and scrolling via the appropriate mouse gestures.  

 

4.3.5.2 Image Widget 
 

The purpose of an image widget is to display the images after various stages of 

an image processing algorithm. The image widget refers to the source image by 

an integer id. The IP core is responsible for indicating the correct display pixel 

format, which is forwarded by GateOS to the display.  

 

The latencies inherent within the IP algorithm may require GateOS to start 

fetching pixels for particular images columns or even rows in advance. Dealing 

with these latencies can be quite complex, especially when windows overlap. 

The display of some image widgets may be starved of pixel data (unless some 

form of buffering is used). This resolution for this issue is discussed further in 

section 4.5.1.  

 

An IP algorithm may on occasion wish to annotate an image with text, labelling 

objects or regions of interest. To do this, a number of label widgets can be 

reserved for that particular window. The IP core would be responsible for 

generating the text strings and the locations within the window at which the 

widgets should be positioned.  
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4.3.5.3 Video Widget 
 

In terms of real-time applications, there is no difference between an image and a 

video widget. In most algorithms, the image will be changing dynamically; 

otherwise there is little need for the FPGA. From a user’s perspective, a video 

widget is quite similar to an image widget, except that the displayed frame 

content on the video widget is subject to change at the underlying rate. This rate 

is specified by the developer at compile-time.   

 

A user should be able to freeze the video widget, such that its source stream of 

images is frozen and the most recent frame or image is continuously displayed. 

This is implemented with a ‘pause-play’ button. Additionally, a user may wish 

to review individual frames of the input video stream. This would require 

capturing a limited number of frames when the video stream is frozen, thus 

requiring significant memory resources to buffer the frames. A user may then 

step forward or back through these frames. These frames would be discarded 

when the user indicates that the video widget should resume displaying the 

live video feed. Again two buttons can provide the necessary interface for a 

user to step back or forward respectively.  

 

GateOS does not directly manage the image or video frames used by the 

algorithms within the IP core. The primary reason for this is that it is very hard 

for GateOS to cope, in a generic fashion, with the demands of each IP algorithm 

with respect to image data being input/output. This is best illustrated with an 

example IP core that requires six separate video streams as input to various IP 

algorithms. Depending on the quantity and types of memory available on the 

FPGA board, the required frame management system may need to perform 

bank interleaving, skip frames and other such tasks. Therefore, it is up to the 

developer of the IP core to construct a suitable frame management system for 
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their application. However, we do require that the developer conform to all 

interfaces between the IP Core and GateOS (defined in section 4.4).  

 

4.4 Data-Structures and Interactions 
 

Several data-structures are required to store the properties and configuration 

information of all the widgets in GateOS, as shown in Figure 4-11. Properties 

that are common between widgets are stored within the same data structures. 

The x, y, width and height properties are common to all widgets. There are 

several ways in which these four properties can be stored: 

• 4 arrays, one for each of x, y, width, height 

• 1 array but with separate entries for x, y, width and height 

• 1 array of structures containing x, y, width and height.  

 

The first approach is the preferred option as it is more flexible with regards to 

accessing properties of different windows concurrently. In order to conserve 

hardware resources, fabric-RAM instead of registers should be used to 

implement the data-structures. 

 

The x and y widget properties will never change (except for label widgets used 

to annotate images). With the exception of the histogram, image and video 

widgets, the height and width properties of all other widgets remain constant. 

The height and width properties of the three IP widgets may on rare occasions 

need to be refreshed as the IP core may change the dimensions of their content 

at run-time.  

 

An interactive widget (a button, text edit or slider) should be able to directly 

configure the parameters of an IP algorithm managed by the IP core. A suitable 

interface is required to link the values of button, text edit and slider widgets to 

the corresponding algorithm parameters. 
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Figure 4-10 B_VALUE and I_VALUE data structures 

A possible approach would be to use a set of value registers as the interface 

between GateOS and the IP core. To simplify the management, these would be 

separated into two arrays – one of Boolean values (B_VALUE), and one of 

integer values (I_VALUE) as illustrated in Figure 4-10. Algorithms in the IP core 

are able to read from and occasionally write (push buttons) to the B_VALUE 

and I_VALUE arrays at run-time. The corresponding widget stores the index to 

the parameter, and accesses the value indirectly.   

Figure 4-11 The data structures necessary for each widget type 
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Figure 4-12 Aligning common properties between widget's 

The remaining properties for each widget can be concatenated into a single 

variable. To reduce the decoding logic required, the string id property and the 

value properties are aligned within each widget variable (see Figure 4-12). The 

complete variable that retains each widgets properties are stored as an array in 

fabric-RAM, using the widget’s unique id as an index.  

 

4.4.1 Imaging widgets 
 

Further data structures may be required by the IP core to provide the source 

data used by the histogram widget and to buffer image and video frames. 

 

The histogram widget needs to have access to an array of integers in order to 

display its content. The IP core may need to randomly read/write to each array 

of integers as the IP algorithm is executed. Since only a single read access per 

clock is required from these arrays, they should be stored as FabricRAM or 

even BlockRAM instead of registers, thus saving a significant amount of 

hardware resources.   
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4.5 Scheduling and Display of Widgets 
 

4.5.1 Image Layer 
 

Only a single IP widget may be displayed on the ‘image’ layer. We can 

construct a table that associates the image source with the window.  

 

Some IP algorithms may impose both horizontal and vertical latencies between 

the input and output streams of pixels. Thus, for a scan-line the content of an IP 

widget may need to be scheduled well in advance of the display of its 

associated window. A large vertical latency may require the content to be 

scheduled even though the window is not visible on a scan-line. The 

complications arising from this mean that one cannot guarantee that the content 

of each IP widget will be fully displayed, unless extensive buffering is used.  

 

Since a window has a 2-pixel border and a 16-pixel title-bar, it would be 

relatively easy to support IP algorithms with less than 2 clocks horizontal and 

16 lines vertical latency respectively. In such environments, the IP window 

content would be scheduled in step with the regular window scheduling 

faculties. Longer horizontal latencies are more likely; however, this would 

require modifying the existing window handler to provide trigger signals to the 

IP core with the required latency.  

 

4.5.2 Algorithm Control Layer 
 

For this layer, we need to be able to schedule the display of widgets that are 

located within each window for a particular scan-line.  Since several window's 

may contain multiple widgets and overlap of windows is allowed, this 

scheduling is somewhat more complicated than that required for the display of 
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windows. This is further complicated by the fact that some widgets may be 

partially or fully occluded from view due to being positioned elsewhere in the 

windows virtual coordinate space (which can be vertically and horizontally 

scrolled).  

 

The scheduler also needs to be able to transition from displaying a particular 

widget to another within a single clock-cycle (this can occur when a widgets left 

edge is adjacent to the right edge of a another widget within the same window). 

Without assistance of expensive look-ahead tables, this clock cycle is 

insufficient for a scheduler to ascertain the next widget to display. A possible 

solution is to restrict the positioning of widgets such that look-ahead tables are 

unnecessary. Imposing these restrictions (see below) would then allow the 

widget scheduler to iterate through a list of widgets that are organised in the 

order in which they are displayed on the window.     

 

The first restriction is that a widget cannot overlap with another widget located 

within the same layer of any window. This is easy to arrange, except perhaps 

with labels used to annotate an image. 

 

Figure 4-13 Valid and invalid widget layouts 

 

The other restriction is that widgets must be grouped in consecutive horizontal 

strips that are subject to the following conditions:  

• The horizontal strips are not overlapping.  
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• Widgets must fit completely within a strip. 

• Horizontally, within a strip, only a single widget may occupy any given 

x coordinate.  

This is very restrictive, especially where label widgets are used to annotate 

images. However, this approach is the only one that currently works, hence its 

usage in the current implementation of GateOS. 

 

Figure 4-14 Order of widget data structures is determined by row then column 

 

Each entry in the four core widget data-structures (x, y, width and height) 

should be ordered first by horizontal strip then by the x coordinate (see Figure 

4-14). While the algorithm control layer is being displayed, the widget manager 

scans through the four core widget data structures and compares each entry 

with the current display coordinates. If a widget entry has already been 

displayed, then the widget manager proceeds to the next entry. This process 

continues until the last widget in the horizontal strip is encountered. 

 

During h-blanking, we check whether all widgets in the current horizontal strip 

have been displayed (current display row > bottom edge of bottommost widget 

in horizontal strip). If so, the real-time part of the algorithm resumes with the 

next widget entry (in the ordered data-structures), which is the first entry of the 

next horizontal strip. This requires that the index of the current widget of each 

window be stored in a data-structure. The same is also true for the location of 

the first entry in the current row of each window.   Conversely, if one or more 
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widgets in the current horizontal strip are yet to be fully displayed, the widget 

manger proceeds to the first entry in the current row. This process continues 

until the last widget has been displayed on the algorithm control layer of the 

current window.   

 

The hardware resources required to implement this approach are considerable, 

especially when compared to the system used for window management (refer 

to the preliminary results in CHAPTER Seven).  The current implementation of 

GateOS uses a system of bitmasks to assist in the real-time identification of the 

last widget in a horizontal strip (using the RMO Handel-C macro) as well as the 

bottommost. In the absence of a suitable alternative, this approach seems to 

work well even though it is expensive (due to the large multiplexors required).  

 

4.5.3 Window Control Layer 
 

The position and size of each window control widget relative to the window is 

predefined. The display routine need only check which region of the window is 

being displayed to identify the correct control widget to display. Since a control 

widget may be visible on some windows and not others, an array of 1-bit flags 

is used for each window to indicate whether a particular widget is visible or 

not. This means that there only needs to be a single instance of each window 

control widget that is shared across all windows.  

 

4.6 Discussion 
 

In the future, additional types of widgets could be used to perform more 

advanced tasks. A good example of this may be the capability to consolidate a 

set of buttons into a group. A block-based slider could be useful to give a more 
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visual representation of step size. Improvements could also be made with the IP 

widgets so that there are possibilities for more user interaction (interactive 

histograms that have movable ranges, images that pan or zoom when mouse 

gestures are performed directly on them).  

 

Displaying widgets in real-time can be a complex process since we are required 

to display widgets on multiple windows that frequently overlap. This means 

that the display of a particular widget can be interrupted due to a portion of 

that widget being occluded from view.  Coping with the horizontal and vertical 

latencies of IP algorithms is a complex task; worthy of future research. 

 

An alternative algorithm would be desirable for the scheduling and display of 

widgets within the algorithm control layer. It should allow widgets to be 

positioned anywhere within the layer, and not just in tabular rows. It may be 

possible to adapt the approach used to manage and position windows to do the 

same for widgets.  Again further research in this area could be very beneficial to 

GateOS. 
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CHAPTER FIVE 
 

MANAGEMENT & DISPLAY OF TEXT 

 
Chapter Outline 

This chapter discusses the need for a text manager in GateOS.  We identify the 

requirements for this text manager and the context it will be used within 

GateOS. Several potential designs are proposed to fulfill these requirements, 

which include an image table approach and an alternate approach that 

incorporates the use of a font table. 

5.1 Introduction 
 
One of the primary design goals of GateOS is to provide an interactive user 

environment that facilitates the real-time debugging of image processing 

algorithms on FPGAs. Invariably, this requires a user environment to display 

text as an essential part of the Graphical User Interface (GUI). Text has long 

been a standard method of conveying useful information to an end user. In fact, 

ever since the introduction of the text-based console, the display of text has 

been the primary method of communication between the user and any 

operating system. With the advent of the GUI, there has been a movement away 

from pure text to the use of icons and other visual cues by an operating system. 

In spite of this move, however, text is still an integral part of any 

communication between the operating system and a user. 

 

Given that the primary function of GateOS is to provide tools that simplify 

debugging and algorithm tuning, a fully-fledged text manipulation system 
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(multiple fonts, underlining...) would be overkill. Therefore, within GateOS, 

text management is defined to be the system responsible for the storage and 

retrieval of strings of characters that may be displayed in real time on the VDU. 

These strings of characters can be either static (characters cannot be modified at 

runtime) or dynamic (limited modification of characters is possible at runtime).  

 

5.2 Requirements and Intended Usage 
 

Text can be used to annotate windows, so as to explain each window’s purpose 

to the user. Also, text may be used to annotate widgets (button widgets, text 

edit widgets and stand-alone labels) in order to visually describe its current 

state or display other useful information. Textual labels situated on images can 

be used to indicate regions of interest to the user. Text can also be input from a 

keyboard device and displayed within a text edit widget. It therefore follows 

that the text management system will be required to display strings of 

characters at particular locations on the VDU. The start or end of the displayed 

strings may have pixels truncated, for example if a widget or window border is 

encountered.  

 

5.2.1 Window Labels 
 

It is necessary for the text manager to be able to manage and display individual 

textual labels for each window in GateOS. This label would enable the easy 

identification of a window and provide some indication as to its purpose.  Such 

a label should be positioned directly below the topmost border of a window, 

and should also be left-aligned. Doing this simplifies display offset calculations 

(when compared to text being right aligned) and offers a familiar look to the 

user (see Figure 5-1). In most instances the window label is defined at compile-

time, although for dynamic windows it may also be useful to allow the label to 
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be modified at run-time. Since the label is a simple textual annotation, the use of 

a fixed-pitch font with a limited palette of colours is considered enough to fulfil 

the basic requirements of a window label in GateOS.  

 

Figure 5-1 A simple textual label displayed on a window 

 

5.2.2 Widget Annotations 
 
The text manager is also required to be able to manage and display textual 

labels for widgets. Such labels are similar to those used by windows in GateOS, 

as shown in Figure 5-2. Generally, the content of each textual label is unique to 

each widget (except window buttons).  

 

Normally, the label associated with a widget is constant. Some widgets (e.g. 

particular types of buttons) may require two or more strings in order to 

properly represent the state. At runtime, it is necessary for the widget to use the 

current state to identify the correct string to be displayed.  

 

Figure 5-2 String annotations on label and button widgets 
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5.2.3 Output Text Box 
 

Output text boxes positioned within windows can be used to convey static 

(help and useful tips) or dynamic (during debugging) information to the end-

user. The text manager would be required to manage and display the text 

within the content area of this widget type. It should also provide support for 

the runtime modification of the string.  

 

5.2.4 Image annotations 
 

From time to time, the developer may wish to annotate regions of interest on an 

image. Such annotation consists of a short string that can be dynamically 

instantiated and positioned anywhere on the image. The maximum number of 

annotations per image needs to be determined at compile-time by the 

developer.  Since they appear on the widget layer (annotations are just label 

widgets), the widget manager is responsible for their display. The visibility of 

each annotation is controlled by the developer’s algorithms in the IP core (using 

a bitmask).         

 

5.2.5 Text editing 

The text manager is also used to display the text in a text input widget. The 

content of the string is edited at runtime by the user via the keyboard. The text 

manager will be required to modify, insert or remove stored characters in 

response to this user input. 
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5.3 Analysis and Design 
 

The three key functions of the text manager are to provide storage for strings 

(both static and dynamic), facilitate editing of dynamic strings and display the 

appropriate strings on the display as requested by windows and widgets.  

 

At a minimum, the text management system needs to provide support for at 

least one font in order to visually represent characters on screen. For the sake of 

simplicity, a fixed pitch font is used with the width and height of each character 

being 2m and 2n respectively. This makes it easier to calculate the character 

offsets on the display. Without these restrictions it would be necessary to 

involve either using multipliers (which can get expensive) or calculating the 

positions of each character by adding the widths as each character is displayed. 

Hence, the current implementation of GateOS uses a single fixed-pitch font that 

is 8 pixels wide and 16 pixels high for each character. The justification for this is 

that a width of 4 pixels is too narrow to effectively represent the characters, 

while a width of 16 pixels is too wide for most applications. A character width 

of 8 pixels on a 640 by 480 screen gives up to 80 characters per scanline. A 

similar argument can be made for the height, giving 8 or 16 as suitable heights. 

It is also less important for the height to be a power of two unless we have 

contiguous blocks of text. Finally, a single font (and size) was considered 

sufficient for the requirements of GateOS. Supporting multiple fonts or sizes 

would considerably expand the resources required to implement the text 

manager on the FPGA. 

 

In order to display text on the VDU, we have developed two separate 

techniques. The first technique (section 5.3.1) uses bitmaps of entire strings of 

characters and can only be used for displaying static text, while the second (see 

section 5.3.2) uses bitmaps of individual characters that can display static and 

dynamic text.  
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5.3.1 Image-Table Lookup Method 
 

The simplest design for displaying text in GateOS is to represent each string by 

a separate bitmap. All of the character strings used in GateOS would be stored 

in a lookup table as a series of bitmaps. At run-time, the text manager, once 

properly scheduled, provides a continuous stream of pixels obtained from this 

table onto the output display.  

 

There are two possible techniques to produce the data content to populate this 

lookup table. The first technique makes extensive use of Handel-C’s pre-

processor macro capability. The second technique requires the construction and 

use of an external tool, which manages all the character strings in GateOS by 

creating the bitmaps and representing them in the form of a lookup table that 

can be loaded by or included into Handel-C.  

5.3.1.1 Construction using Pre-processor Macros  
 

In this method we define a pre-processor constant that contains the bitmap for 

each character used in GateOS. The total number of bits needed per character is 

m x n bits, where m is the width of the character and n is its height. The 

individual character constants are then combined to construct the bitmap for 

the complete string, as shown in Listing 5-1  and in Figure 5-3. It must be noted 

that the following example, which uses a 4x5 font for the sake of simplicity in 

this thesis, may in fact make addressing quite awkward.  

 

#define _A 0,1,0,0,  
 1,0,1,0,  
 1,1,1,0,  
 1,0,1,0,  
 1,0,1,0 
#define _B  1,1,1,0,  
 1,0,1,0,  
 1,1,0,0,  
 1,0,1,0,  
 1,1,1,0 
#define _C  1,1,1,0,  
 1,0,0,0,  
 1,0,0,0,  
 1,0,0,0,  
 1,1,1,0 
unsigned 1 LUT_Text [] = {_A , _C, _B, _B, _A, _B, _C, _B}; 

Listing 5-1 Compiling an image table using bitmaps for the characters A, B and C 
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Figure 5-3 The construction of the String LUT at compile-time 

 

The addressing is simplified if the bitmaps are stored column-wise rather than 

row-wise. The steps between successive bits on a row would be a constant (the 

character width) which is fixed at compile-time.  The construction of the lookup 

table then involves the repeated use of the macro character definitions. It must 

be stated that all the bitmaps representing each string are combined into a 

single table. The text manager could then access the bitmap data for a particular 

string by its offset in the table. While this approach allows the strings to be 

constructed within Handel-C, representing a string by a sequence of individual 

letters is both clumsy and unnatural (as Handel-C lacks the capability to 

manipulate and scan strings at compile-time), 

5.3.1.2 Building string bitmaps with an external 
program  
 
To make the manipulation and bitmap construction a little more natural, an 

external program could be created that converts characters strings into bitmaps. 

This program would allow the strings to be more easily manipulated and result 

in the semi-automatic generation of data content for the look-up table (see 

Figure 5-4). The developer would still need to perform the supplementary step 

of copying the bitmap data into the Handel-C source file.  
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Figure 5-4 The use of an external utility to construct Image Table 

 

Changing the font style and the dimensions of characters can now be done with 

relative ease, depending, of course, on how well the external program is coded. 

The overall time required of the user to manage strings using this method 

would be less than using Handel-C macros; however, some applications may 

require many strings resulting in a lot of copying and pasting.  

 

5.3.1.3 Discussion of both methods  
 

Use of bitmaps to represent entire strings is unlikely to be useful in GateOS 

because it is incapable of supporting dynamic text. The need to construct the 

bitmap data for each string also makes it quite clumsy. The advantage of using 

string bitmaps, however, is that they can offer a reduced resource count if only 

a few static characters are required. Conversely, the look-up table may be 

inefficient when using a large number of characters. There are no resource 

compensations for repeated characters and due to the real-time constraints 

imposed by GateOS, advanced image compression of the source images in the 

lookup-table is not a feasible option. Run-length compression cannot easily be 

used because it may be necessary to begin displaying part way through the 

string (if the left of the string is covered by another window for example).   
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Three parameters are required to schedule the display of a string on-screen: a 

string’s starting display offset, and the string’s starting and finishing offsets 

within the bitmap lookup-table. An extra level of indirection can be applied 

when there are a large number of strings in a GateOS. This involves storing 

both the string start and stop offsets in a table and referencing strings indirectly 

with a unique id as shown in Figure 5-5.   

 

Figure 5-5 Possible implementation strategies 

 

As a final note, storing this look-up table in Block RAM would be preferable 

where the size of the lookup table is sufficiently large (BlockRAM is more 

efficient in such situations); however, this depends on the size and availability 

of BlockRAM.  

 

5.3.2 Font Table Lookup Method 
 

An alternative to using bitmaps to represent whole strings is to use the bitmaps 

to represent individual characters. This requires an extra level of indirection 

with a table used to store the characters of each strings, and these characters are 

then used to index the character bitmaps in the font table, as shown in Figure 

5-6.  
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Figure 5-6 Using bitmaps for individual characters 

A standard ASCII character code requires 7 bits, thus the font table would need 

to contain the bitmaps for 128 unique entries. To reduce the address decoding 

logic to access a particular bit in the bitmap, the width and height of the 

characters should each be a power of two. This then allows an address of a bit 

in the font table to be formed by concatenating the character code, the row, and 

the column. A single read of the font table could either return a single bit or a 

row of pixels, depending on how the table is configured. Reading a row of data 

would incur an additional resource penalty to buffer the output and shift it out 

as a pixel stream. However, power savings may be possible with fewer reads 

from the font table. Currently, a data-width of 1-bit has been selected to 

minimise the resource requirements.  

 

5.3.2.1 Character Scheduling  
 

To accurately display a string of characters on screen, the text-manager needs to 

be informed on which character to display next. A crude but simple method of 

doing this is to manually schedule a new character with the text manager every 

8 clock cycles (assuming a fixed character width of 8 pixels). Thus, the Handel-

C code to display the character string “Hello World” may resemble that in 

Listing 5-2. 
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Clks Source 
macro proc DoDelay(t){seq(i=0;i<t;i++){delay;}} 
par { 

88 

 seq { 
 CharGen_newchar = ‘H’; DoDelay(7); 
 CharGen_newchar = ‘e’; DoDelay(7); 
 CharGen_newchar = ‘l’; DoDelay(7); 
 CharGen_newchar = ‘l’; DoDelay(7); 
 CharGen_newchar = ‘o’; DoDelay(7); 
 CharGen_newchar = ‘ ’; DoDelay(7); 
 CharGen_newchar = ‘W’; DoDelay(7); 
 CharGen_newchar = ‘o’; DoDelay(7); 
 CharGen_newchar = ‘r’; DoDelay(7); 
 CharGen_newchar = ‘l’; DoDelay(7); 
 CharGen_newchar = ‘d’; DoDelay(7); 
 CharGen_newchar = 0; 
 }

8

while(CharGen_newchar != 0){ 
 Load = 1;  //signal that a new character to be displayed 

Load = 0;  //reset signal 
DoDelay(6);//wait for six cycles 

}
}

Listing 5-2 The code required to schedule characters for the simplest text manager design 

 

Such an approach can be quite cumbersome to code. The use of a loop that 

iterates through a table of characters would be easier to code and use fewer 

hardware resources. The string table contains the sequence of ASCII character 

codes that complete a string. The text manager is then provided with the indices 

of both the first and final characters in the string as well as the row number. A 

display offset is also required to specify the exact location at which the text 

manger starts generating character pixels. The text manager then iterates 

through each character in the string and feeds them to the character generator 

until the final character is encountered. The revised Handel-C program to 

schedule and display one line of pixels from the text ‘Hello World’ on the 

screen is shown in Listing 5-3. 

Clks Source 
macro proc DoDelay(t){seq(i=0;i<t;i++){delay;}} 
ram char StringTable[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘ ’,‘W’,‘o’,‘r’,‘l’,‘d’}; 
macro expr IDC_STRING_1_START = 0; 
macro expr IDC_STRING_1_END = 10; 

1

for(i = IDC_STRING_1_START;i < IDC_STRING_1_END;i++) par{ //execute concurrently 
Index = i;  //the current character width 
Offset = 0; //the starting character column is always zero 
DoDelay(7); //wait for 7 clock cycles (assuming a fixed char width of 7) 

}
Listing 5-3 The use of a dedicated String Table  

 

One can eliminate the need to specify the final index of a string with two 

modifications. The first involves the definition of a terminating character token. 
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NULL (0x00) is typically used for this. The second adjustment involves the 

creation of two additional tables. The start index of each string is stored in the 

first table and the full length of each string is stored in the second as shown in 

Figure 5-7. For the current implementation of GateOS, we need to establish this 

length of a string in a single clock cycle, in order to perform certain boundary 

checks so as to avoid display overflow (since strings are stored sequentially in 

the string table separated by a single null character token).  

 

Figure 5-7 The string id and how it relates to the string, offset, and length tables 

 

Thus, to properly schedule the display of a string with the text manager, one 

need only specify the unique id of the string and the character offset within the 

string. The character offset is needed for displaying text in an edit widget and 

for resuming the display of partially occluded text. The revised Handel-C code 

to display the text “Hello World” is shown in Listing 5-2. The internal 

architecture that incorporates these changes is shown in Figure 5-8.  

Clks Source 
ram char StringTable[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘ ’,‘W’,‘o’,‘r’,‘l’,‘d’}; 
ram char StringOffsetTable [] = {0}; 
ram char StringSizeTable   [] = {13}; 
macro expr IDC_STRING1 = 0; 

1
par { 
 Start  = IDC_STRING1; 
 Offset = 0; 
}

Listing 5-4 Scheduling a string with its unique ID
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Figure 5-8 The Text Manager design 
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The preceding design uses a minimalist approach where registers are used to 

store the results for each particular computation. The reason for using a multi-

cycle approach is influenced by two main factors; block-RAM timing 

considerations and the desire to reduce the control path latency. 

 

When a string is scheduled to be displayed, the text manager retrieves the total 

length of the string from the size table and performs a check to guarantee that 

the display offset is valid (it is not past the end of the string). If the display 

offset is invalid, the text manager will suspend the output of characters to the 

VDU, preventing the next string in the string table from being displayed. If the 

string is confirmed to be valid, the text manger will then iterate through each 

character in the string until the NULL token is encountered; at which time it 

will halt. To prematurely flush the output of the text manager, it can be 

scheduled with an empty string (which contains only a NULL token).  The row 

of the output character is specified by an input.   

 

This system has a latency of two clock cycles from when a string is scheduled 

(its ID is provided) until the pixels for that string appear at the output. For this 

implementation, both the string and font tables are stored in separate Block 

RAMs. If there are a large number of strings, then it may be necessary to place 

both the size and offset tables in Block RAM; otherwise distributed RAM 

should be sufficient.  

 

5.4 Implementation 
 

I have constructed two external tools to manage the tables used by the text 

manager. The purpose of the first tool is to convert a simple bitmap file 

containing the font table into a Handel-C compatible declaration. This tool is a 

command-line program that was written in Visual Basic .Net. The second tool is 

also written in Visual Basic .Net, and offers a GUI to allow users to directly 
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manipulate the strings used in GateOS. A screenshot of this program is 

provided in Figure 5-9. 

 

Figure 5-9 GUI Utility that manipulates the String Table 

The GUI automatically generates the string, offset, and size tables in addition to 

generating all the necessary Handel-C macro expressions that represent the 

various parameters required by the text manger.  

 

GateOS is able to provide a limited support for dynamic strings. A NULL token 

is used in the string table to separate strings of characters. An additional token, 

EMPTY, can be used to pad strings. The use of this token allows for a string to 

expand or contract at runtime. For display purposes, EMPTY is also treated as a 

string terminator. 

 

Externally, one is able to schedule a string by providing the text management 

system with that string’s unique id (as well as the starting character offset and 

the current row) two clock cycles before it is to be displayed. This id is stored as 

a property in the data structure representing the corresponding object. 
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5.5 Discussion 
 

Currently, there are several limitations with regards to the management and 

display of textual annotations in GateOS. Only a single font size and type is 

allowed in order to reduce the FPGA resources used. It is not possible to store 

and display variable width characters in the current implementation. Also, 

characters are not allowed to overlap on the VDU.  

 

In addition, only a single line of text can be displayed for each individual 

annotation. The total number of strings is constant (each string is referenced by 

a unique id); however, it is possible to resize the length of strings at run-time 

due to the added level of indirection (the start and stop offset of each string 

within the string table is stored in a separate data-structure). The latency (two 

clocks) between the scheduling of a string and its subsequent display is 

managed through pipe-lining.  

 

The final approach taken fully satisfies the basic set of requirements for a text 

manager in GateOS. Externally, it allows a developer to display annotations on 

windows, widgets and images. Support for dynamic (runtime generated) text 

has been proposed within this chapter, but due to time constraints, has yet to be 

implemented in GateOS.   

 

We have described two different methods of displaying strings of characters on 

a VDU. One of which is capable of displaying only static text, while the other 

method can display both static and dynamic text. We have attempted to 

minimise the resource requirements while ensuring that the design is as flexible 

as possible. This paves the way for future updates and new features, which may 

improve a user’s interaction with GateOS. Such features may include support 
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for additional fonts, variable character sizes, Unicode alphabets and dynamic 

text. However, for the present time, these features are not considered crucial.   
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CHAPTER SIX 
 

INPUT MANAGEMENT 
 

Chapter Outline 

This chapter focuses on describing how GateOS interacts with both keyboard 

and mouse input hardware. We discuss how keyboard and mouse cursors 

displayed on a VDU can be used to represent input from these devices.  We 

describe keyboard and mouse interactions as well as those between a particular 

input device and the various windows or widgets featured in GateOS.  

6.1 Introduction 
 

Interaction with GateOS may involve the use of both mouse and keyboard 

input devices. The keyboard can be used to input characters into text widgets 

and manipulate the state of button widgets, while a mouse can interact with 

button, slider and edit widgets in addition to repositioning and resizing a 

window.   

 

An FPGA development board may incorporate one or more PS/2 ports in order 

to accommodate keyboard and mouse devices. Each port uses two lines, clock 

and data, for communication with the device. The FPGA, as the host, controls 

both these lines and the low bit-rate serial data communications through them.  

 

A device driver is required to manage the communication and provide a 

programming interface between the device and the user’s code on the FPGA. If 

a keyboard is connected to the PS/2 port,  the driver must receive the keyboard 
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scan-codes and convert them to their associated ASCII character codes. If a 

mouse is connected then the driver buffers the mouse button status and 

integrates the movement vectors to obtain the mouse’s current position. If the 

development board vendor does not provide appropriate board level drivers or 

libraries, these must be developed as part of GateOS. We used the Platform 

Abstraction Layer (PAL) library provided by Celoxica6.

6.2 Cursor Layer  
 

The cursor layer is used by GateOS to display both the mouse and keyboard 

cursors. This layer covers the entire screen area and has the highest display 

priority of all layers within the system. Within this layer, the mouse cursor is 

given priority over the keyboard cursor. 

 

The keyboard cursor is a vertical, 1 pixel wide line of the same height as the 

character font used by GateOS. Since the cursor will only interact with an edit 

widget, it is only displayed if the widget’s window is active. The keyboard 

cursor in the widget is situated in one of three possible locations; between 

characters, before the first character or after the last character. 

 

The mouse cursor can be positioned anywhere on the input layer. While in 

principle, the cursor shape could be anything; we have implemented a white 

arrow with a black border (the border enables the cursor to be clearly 

distinguished against a white background) using a small (16x16) bitmap. The 

bitmap therefore requires 3 values: black, white, and transparent. 

 

The location of the keyboard or mouse cursor is represented by the coordinates 

(x, y) of the top left pixel of the cursor. The keyboard cursor’s location is set 

when the mouse cursor attaches it to a text edit widget. The keyboard cursor is 

 
6 http://www.celoxica.com/products/dk/default.asp 
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repositioned to the nearest gap between characters in that widget. If the cursor 

has a height of h pixels then it is displayed when the following conditions are 

met: 

 

hScreenYrsorYKeyboardCuScreenY
rsorXKeyboardCuScreenX

+<≤
≡

A simple Handel-C implementation of the previous condition checks may look 

like: 

 
(ScreenX == KCursorX) && (ScreenY ≥ KCursorY) && (KCursorY < ScreenY + n) 

 

There are at least three addition/subtraction operations required here; which in 

most situations, have a longer critical path than equality comparisons. We can 

avoid using these by rewriting the previous statement as: 

 

Clks Source 
1 //during v-blanking  

Counter = 0;       //reset counter for next frame 

1

//during active region 
if (KCursorX == ScreenX) par {    //execute concurrently 

if (KCursorY == ScreenY) 
 Counter = h;     //first pixel in vertical line 

else if(counter != 0)   
 Counter--;     //subsequent pixels vertical line 

else 
delay;      //wait for 1 clock cycle 

Tflag = 1;      //the cursor is diplayed the next clock 
}
else par {       //execute concurrently 

Cursor = Tflag & (Counter != 0); //Should the cursor be displayed ? 
Tflag = 0;      //reset Cursor output 

}

The preceding code now has only a single decrement operation, which should 

result in slightly less hardware being constructed. This is in spite of an 

additional register for the counter and a flip-flop for the flag. By pipelining the 

control path, it has a significantly shorter critical path with regards to timing 

 

To display the mouse cursor, we need to know, both the row(x) and the 

column(y) of the current mouse cursor pixel being output on the VDU and 

ensure that the following conditions are met: 
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yScreenYrYMouseCursoScreenY
xScreenXrXMouseCursoScreenX

+<≤
+<≤

Written in Handel-C, this check condition may look like: 

 
(ScreenX ≥ MCursorX) && (MCursorX < ScreenX + m) &&  
(ScreenY ≥ MCursorY) && (MCursorY < ScreenY + n) 

 

From the above statement we can see that at least six addition/subtraction 

operations are required. A similar process to that used to display the keyboard 

cursors can then be applied for the mouse cursor like so: 

 

Clks Source 

2
//during v-blanking  
BaseOffset = 0; 
ShiftReg = 0; 

3

// during h-blanking  
if(ShiftReg[0]){ 
 BaseOffset += m;  //this is to avoid doing a multiplication (see below) 
 ShiftReg >>= 1;   // while the 0th bit is set, the cursor is displayed 

x_cntr = m;       // reset this 
}
else delay 

1

//during active region 
par { 
 if (KCursorX == ScreenX) par{

if (KCursorY == ScreenY) 
 ShiftReg = ~ (0); //start displaying the cursor 

else 
delay; //delay for a clock cycle 

x_cntr = 0;              //reset the column counter 
}
else if (ShiftReg[0] && x_cntr != m) par{

Output = CursorBitmap[BaseOffset + x_cntr] //output correct pixel 
x_cntr++; //increment column counter 

}
else delay; 

}

The preceding Handel-C code requires only two addition operations, although 

this is at the expense of some extra hardware logic. Several further 

optimisations can be applied, such as eliminating the need for a base offset by 

restricting the width of a mouse cursor to powers of two, or reading all the 

pixels required for the next scan-line of the mouse cursor during horizontal 

blanking.  
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6.3 Keyboard Input  
 

Characters from the keyboard must first be filtered to remove unprintable 

characters before being stored in the string table (for text edit widgets) or 

interpreted as a command (for button widgets). The relatively slow input rate 

allows characters to be processed serially during the vertical blanking period of 

the output display driver. This also avoids resource access conflicts with the 

string table, which is potentially being used by the text management system 

during the display periods.  

 

If either the ‘control’ or ‘alt’ keys are depressed when a character is entered, 

then that input is treated as a command. Otherwise, the current input is treated 

as a stream of input characters to an edit widget. 

 

Each button in GateOS may have a ‘hotkey’ associated with it. If the keyboard 

cursor is not attached to a text edit widget, then when characters are entered, 

they are first compared against each button widget’s hotkey (located in the 

widget data-structures). If a match is found (globally, not just the active 

window), then the button's state is toggled, otherwise the input character is 

discarded.  

 

The id of the currently active edit widget is stored (in a register), as well as the 

offset of the keyboard cursor from the start of the string that is displayed within 

the widget.  

 

6.4 Mouse Input  
 

When a mouse button is pressed, it is necessary to identify the window and any 

associated widget at that screen location.  The most obvious solution involves 

iterating through each window in order of priority to determine the window, 
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and then iterating through each widget contained by that window to identify 

the widget. This approach would involve significant hardware resources.  

 

Since GateOS uses on-the-fly pixel generation, the display process must 

determine which window and widget is associated with each pixel on the 

display in order to display it (this was covered in CHAPTER Two). Therefore 

the hardware already exists to locate a window and widget from a pixel 

position. When the display driver is at the mouse cursor position, the window 

and widget currently being displayed can simply be recorded. 

 

A mouse button click within an inactive window will make that window active 

(and move it to top priority in the display order). A window can be 

repositioned anywhere on screen by dragging it with the left mouse button 

within that window’s title-bar. During such a drag operation, when the mouse 

is moved, the window position is updated to maintain the same position 

relative to the mouse. When the mouse button is released, the window will no 

longer be repositioned. A window can be resized by dragging the right-angled 

resize grip located on the bottom right window border. The coordinates of the 

window’s bottom right position are then be continuously updated to reflect the 

mouse’s drag movements.  

 

A mouse cursor may also interact with a button widget. A right click anywhere 

within the button widget’s content area will toggle its state value. In some 

applications a push-button behaviour may be required. To accomplish this, IP 

core simply resets the button to the default state after reading the associated 

flag.  

 

The mouse can also be used to reposition the keyboard cursor, and to attach it 

to an edit widget. A mouse cursor can also be used to reposition up to two 

slider bars within a slider widget. The mouse gestures involved with these tasks 

are detailed in CHAPTER Four. 
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6.5 Discussion 
 

The preceding material only describes GateOS as supporting a single mouse 

and keyboard. For debugging and tuning image processing algorithms, this is 

sufficient, however in principle there is little stopping multiple mice or 

keyboards from being used. Supporting extra input devices would require more 

PS/2 ports and associated driver hardware. The user interactions with GateOS 

would also be more complicated since multiple windows would be active 

simultaneously. One would have to resolve which active windows are topmost 

or (possibly) occluded, as well as handling scheduling and management issues 

that occur when two mice interact with the same window or widget.  
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CHAPTER SEVEN 
 

DISCUSSION & CONCLUSIONS 

 
Chapter Outline 

This chapter reflects on the research completed on GateOS. Some of the more 

important problems and limitations apparent in the current implementation of 

GateOS are briefly explained. We also highlight potential areas that can be 

targeted by future research.  

The current approach taken towards the design of GateOS is both functional 

and effective and is targeted towards supporting as many small and medium 

scale FPGAs as possible. We have attempted to use a minimal amount of 

resources to meet all of the requirements of GateOS. In this regard we have 

succeeded in reusing hardware (using a single block of hardware and 

multiplexing it for multiple items) for windowing, widgets and the control of 

image processing algorithms. Overall, this approach has contributed 

substantially to using FPGAs in stand-alone mode, this by providing tools for 

tuning and debugging IP algorithms. 

 

In reflection, some of the goals mentioned at the start of the thesis, seem to have 

been somewhat optimistic rather than realistic.  As the design of GateOS has 

evolved, may compromises were necessary in order to fulfil the core goals of 

the thesis; namely those pertaining to the use of a minimal amount of resources 

for the implementation of each sub-system. Towards the end of the thesis, when 

time was running short, sub-systems such as the non-volatile storage manager 

and the frame-manager had to be defered in favor of providing a working 
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demonstration as proof of concept for GateOS. In time, these sub-systems will 

be incorporated into GateOS, thus fully qualifying it as proper Operating 

System, instead of the cut-down hybrid it is now.    

 

The string management system in GateOS could be improved to support the 

display of variable pitch fonts.  The current design of the text management 

system is capable of displaying any ASCII-coded character on the VDU. The 

window management and display system has been the primary focus of much 

of my research. The resulting algorithms and techniques achieve their objective 

of displaying windows when using on-the-fly pixel generation. The approaches 

used have most of the core window’s structures stored in RAM instead of 

registers, thus saving a significant amount of FPGA resources. The widget 

system currently functions in a limited capacity (widgets can only be displayed 

in rows) and could benefit from additional work, particularly with regard to 

finding an algorithm that would enable widgets to be positioned anywhere in a 

window instead of being subject to tabular layout restrictions.  

 

The text edit widget has been designed, but has not been implemented at this 

stage, as it is considered to be less important than the other widgets. More 

advanced keyboard input and gestures (such as scroll wheels manipulating 

slider bars, or multiple mice controlling different windows concurrently) could 

be used to perform additional tasks to enhance end-user interactions. Character 

input into the text widget could conceivably be used by a developer at runtime 

to identify, and subsequently save, images as files (for example in flash RAM).  

 

A proper file system for nv-RAM storage that uses either some form of file 

allocation table (FAT), or node based structures (EXTFS), could provide more 

flexible storage of images than a block based approach (a file is stored as a 

continuous block from a start offset to an end offset) . File-system operations are 

inherently serial in nature, thus the use of a serial processor may be more 

efficient (in terms of hardware resources) for this.   
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In the requirements section (see CHAPTER Two), the possibility of using a 

scripting language to configure the various aspects of GateOS at compile-time 

was considered. This concept could be extended by constructing a GUI that 

would let the developer graphically configure the properties and behaviours of 

windows, user widgets and IP widgets in addition to specifying their 

relationships with the IP core (i.e. associate button widget six to index 4 in IP 

core Boolean register bank). The developer could then directly position a 

widget within a control window using a mouse on the host PC. This GUI would 

then automatically generate the necessary Handel-C code that would configure 

the appropriate sections of GateOS at compile-time. 

 

Currently, the developer needs to construct and manage any image storage 

areas required by their image processing algorithms. It may be possible for 

GateOS to manage the memory management for simpler IP algorithms.  

 

The next step for GateOS is to support the display of live video feeds. GateOS 

could benefit from being able to display multiple overlapping video feeds 

concurrently on the same VDU; so as to provide a better end-user experience 

with debugging multiple algorithms or steps in an algorithm.   The number of 

concurrent video feeds is limited only by the storage memory available for 

buffering the input video frames before they are processed by the IP algorithms. 

Additional research is needed to support other types of histograms. Supporting 

the display of 2-D histograms could be quite useful for particular IP algorithms.  

 

Slices Used (out of 15,360)  
Configuration 8 16 32 64

Simple Configuration (no widgets) 1253 slices 1339 slices 1462 slices 1759 slices 

Table 7-1 Slices used on a Xilinx ML402 (Virtex 4) for 8, 16, 32 and 64 windows 
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Since the implementation of the windowing system in GateOS has undergone 

several revisions, it is relatively stable. Because of this, the number of slices 

used by the windowing system in GateOS has also undergone some reductions. 

From the preliminary results shown in Table 7-1, it is evident that a small 

increment in FPGA slices is required to support an increased number of 

windows in GateOS.   

 

The hardware requirements to implement the windowing system are listed in 

Table 7-1. Adding additional windows requires only modest extra hardware. 

The window manager itself does not change.  Therefore, this extra hardware is 

that required to store the window parameters and the window list and edge list 

tables. The size of each of these tables is proportional to the number of 

windows, and as these are stored in FabricRAM, the requirements for each 

additional window are modest. Note that as more windows are used, the 

number of bits required to represent a window ID also increases. 

 

The algorithms for displaying and manipulating widgets are still being refined, 

and as such a relatively large number of slices are used (3,275 slices for 6 

windows and 16 widgets).  

 
Components LUT FF Mem Other
Windows + Widgets (6 Windows + 16 Widgets) 3807 1407 6032 1757
Strings (Character Tables) 18 0 18720 9
Graphics (Mouse cursors) 0 0 18432 0
Fonts (Font table for Character Generator) 0 0 16384 0
Math (multi-cycle multiplication and division macros) 251 91 0 99
Display (selects the correct layer and pixel to display) 165 168 0 32
Mouse (one mouse) 100 100 0 20
Character Generator (generates characters for display) 76 46 0 34
Core (where everything starts) 3 13 0 0
TOTAL 4420 1825 59568 1951
Table 7-2 Breakdown of resources required, as estimated by the Celoxica build tools  

 

To summarize, we have created a reusable, configurable windowing 

environment for FPGAs in the form of GateOS.  Preliminary results (see Table 
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7-1 and Table 7-2) indicate that GateOS could be a viable solution for tuning 

and debugging image processing algorithms when operating an FPGA in the 

stand-alone model. This thesis demonstrates that a windowing operating 

system can be practically built on an FPGA. Although it is quite basic, even 

minimalistic in its current form, it has served its purpose and can already be 

used for the configuration and graphical debugging of image processing 

algorithms on an FPGA. The source code for the current version of GateOS is 

included on the CD attached to this thesis.  
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