
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

GateOS: A minimalist
Windowing Environment and
Operating System for FPGAs

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Engineering

In

Computer Systems Engineering

At Massey University, Palmerston North,

New Zealand

Andreas Buhler

2007

i

ABSTRACT

In order to debug and tune stand-alone FPGA image processing configurations,

it is necessary for a developer to also create the required debug tools and to

implement them on the FPGA. This process takes both time and effort that

could be better spent on improving the image processing algorithms. The Gate

Array Terminal Operating System (GateOS) is proposed to relieve the

developer of the need to construct many of these debugging tools. In GateOS

we separate the image processing algorithms from the rest of the operating

system. GateOS is presented to the developer as a Handel-C library, which can

be customised at compile-time, to facilitate the creation of windows and

widgets. Several types of widgets are described that can manipulate the

parameters of image processing algorithms and enable the end-user to

dynamically rearrange the position of a window on the VDU. An end user is

able to interact with GateOS with both a keyboard and a mouse.

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Associate Professor Donald Bailey, for all

the guidance given to me over the previous year. Without his sound advice,

GateOS would not be what it is today. I thank him for being brutally honest

with me whenever I became sidetracked and deviated from dealing with the

core issues of GateOS. I am also grateful for the considerable amount of time

and patience expended on his behalf proofreading this thesis. Personally, I am

astounded at how he was able to do this on his very tight schedule. I am

thankful to Donald and Massey University for allowing me to use and take

home various FPGA development boards. I have appreciated all the advice

given to me by Chris Johnston and Kim Gribbon during the year. Their ideas

for GateOS, recorded in a conference paper (Bailey et al, 2006) have proved

invaluable in formulating the requirements of GateOS and to some extent, its

design. I would like to thank Massey University for allowing me to complete

the research for my thesis using their equipment in the computer labs.

I also acknowledge the role of Xilinx in providing me with licences to the ISE

suite of software tools, which were required for the implementation of GateOS.

Finally, I would like to thank Roger Gook of Celoxica who has provided me

with licences for the DK suite of software, so that I was able to use Handel-C to

implement GateOS. He has also been very helpful by providing me with the

source code for various board level drivers.

iii

TABLE OF CONTENTS

ABSTRACT...i

ACKNOWLEDGEMENTS..ii

TABLE OF CONTENTS .. iii

LIST OF FIGURES.. vi

LIST OF TABLES .. viii

CHAPTER One INTRODUCTION & LITERATURE REVIEW...............................1

CHAPTER Two REQUIREMENTS ANALYSIS & HIGH LEVEL DESIGN7

2.1 Introduction..7

2.2 Proposal ..8

2.3 Hardware Environment ...9

2.4 System Overview...11

2.5 Non-Volatile Storage Manager..14

CHAPTER Three WINDOW MANAGEMENT...15

3.1 Introduction..15

3.2 Representing a window’s size and location ..16

3.2.1 Virtual Coordinate Space ..17

3.2.2 Window extent ...18

3.3 Overlap of windows..19

3.4 Window States ...20

3.5 Window Regions ...21

3.6 Managing and displaying windows...23

3.6.1 Parallel Incidence Test ...23

3.6.2 Window Transition Method ...26

3.7 Discussion...34

CHAPTER Four WIDGET MANAGEMENT...36

4.1 Introduction..36

4.2 Widget Display Layers ...37

4.3 Widget Details..38

4.3.1 Label Widget ...38

iv

4.3.2 Button Widget...39

4.3.3 Text Edit Widget...40

4.3.4 Slider Widget ..43

4.3.5 Imaging Widgets ..46

4.4 Data-Structures and Interactions...50

4.4.1 Imaging widgets...52

4.5 Scheduling and Display of Widgets ...53

4.5.1 Image Layer...53

4.5.2 Algorithm Control Layer ..53

4.5.3 Window Control Layer ...56

4.6 Discussion...56

CHAPTER Five MANAGEMENT & DISPLAY OF TEXT58

5.1 Introduction..58

5.2 Requirements and Intended Usage...59

5.2.1 Window Labels...59

5.2.2 Widget Annotations...60

5.2.3 Output Text Box ...61

5.2.4 Image annotations..61

5.2.5 Text editing ...61

5.3 Analysis and Design ...62

5.3.1 Image-Table Lookup Method...63

5.3.2 Font Table Lookup Method ..66

5.4 Implementation..71

5.5 Discussion...73

CHAPTER Six INPUT MANAGEMENT..75

6.1 Introduction..75

6.2 Cursor Layer...76

6.3 Keyboard Input..79

6.4 Mouse Input ...79

6.5 Discussion...81

CHAPTER Seven DISCUSSION & CONCLUSIONS..82

v

REFERENCES ...87

vi

LIST OF FIGURES

Figure 2-1 Timing Regions within a video frame, active, H-blanking and V-blanking .10

Figure 2-2 GateOS IP Core and its relationship to the rest of GateOS...........................12

Figure 3-1 Windowing System architectural overview ..16

Figure 3-2 Choices of origin within virtual coordinate space...17

Figure 3-3 Virtual coordinate space based on the two encoding schemes......................19

Figure 3-4 Changing the z-index of a window..20

Figure 3-5 Final layer with a grip for resizing windows...22

Figure 3-6 Detecting whether a window is present at a screen coordinate.....................24

Figure 3-7 Updated window identification that uses less hardware per window25

Figure 3-8 Selecting the window with the highest z-index...25

Figure 3-9 How WLL entries for each scan-line are related to window positions28

Figure 3-10 Worst case scenario with each windows vertical edges displayed..............28

Figure 3-11 Edge list lookup-table..30

Figure 4-1 Content window layer split into three widget sub-layers37

Figure 4-2 A simple Label Widget ...38

Figure 4-3 The background of a Button Widget can be one of two possible colors.......40

Figure 4-4 An Edit Widget displaying the string “The brown fox jumped”...................41

Figure 4-5 Vertical and horizontal slider widgets...43

Figure 4-6 The offset of a horizontal Slider Bar from the left border.............................44

Figure 4-7 Two zoom buttons, one in and the other out ...46

Figure 4-8 Slider widget is used to manipulate denominator of zoom fraction..............47

Figure 4-9 Sample Histogram Content ...48

Figure 4-10 B_VALUE and I_VALUE data structures..51

Figure 4-11 The data structures necessary for each widget type51

Figure 4-12 Aligning common properties between widgets ...52

Figure 4-13 Valid and invalid widget layouts...54

Figure 4-14 Order of widget data structures is determined by row then column55

Figure 5-1 A simple textual label displayed on a window..60

Figure 5-2 String annotations on label and button widgets...60

Figure 5-3 The construction of the String LUT at compile-time....................................64

Figure 5-4 The use of an external utility to construct Image Table65

vii

Figure 5-5 Possible implementation strategies ...66

Figure 5-6 Using bitmaps for individual characters..67

Figure 5-7 The string id and how it relates to the string, offset, and length tables.........69

Figure 5-8 The Text Manager design..70

Figure 5-9 GUI Utility that manipulates the String Table ..72

viii

LIST OF TABLES

Table 4-1 Cursor movements ..42

Table 4-2 Available numeric string conversions ..43

Table 7-1 Slices used on a Xilinx ML402 (Virtex 4) for 8, 16, 32 and 64 windows......84

Table 7-2 Breakdown of resources required, as estimated by the Celoxica build tools .85

1

CHAPTER ONE

INTRODUCTION & LITERATURE REVIEW

Chapter Outline

This chapter introduces GateOS, a windowing environment for FPGAs. It

outlines how image processing algorithms implemented on an FPGA can be

debugged using either a hosted or stand-alone development model, and in

addition, it describes the advantages and disadvantages of each model. Prior

research on the application of the hosted development model is reviewed. Very

little of existing research relates directly to the stand-alone development model,

and it is this disparity that GateOS attempts to remedy.

Recently, there has been significant research into the applications of Field

Programmable Gate Arrays (FPGAs), for example: (Chan et al., 2007; Hemmert

& Underwood, 2007; Tahoori, 2006; Tessier et al., 2007; Yiannacouras et al.,

2007). This increased interest is largely sparked by innovations in

semiconductor manufacturing, thus resulting in a reduction in IC die sizes and

an increased gate count. As a result, FPGAs are now more powerful and less

expensive than they were previously. Consequently, new medium level

hardware description languages (HDLs) such as JHDL, Handel-C and SAP have

evolved to program these newer generations of FPGAs. Companies such as

Xilinx, Altera and Lattice Semiconductor lead the field when it comes to the

design and manufacture of FPGAs. Celoxica is a good example of a company

that provides the software to program these FPGA such as Handel-C and

System-C.

2

A common application of FPGAs is in the field of image processing (Benitez,

2002; Yano et al., 1999; Crookes et al., 1998; Gribbon et al, 2006; Hsiao et al.,

2005; Johnston et al, 2005; Uzun & Bouridane, 2003) due to the high levels of

parallelism that are available to the developer. The hardware programming

language Handel-C is commonly used by such developers for the task of

implementing image processing algorithms on FPGAs (McCurry et al., 2001;

Ramdas et al., 2004; Vitabile et al., 2004).

The focus of my research is to develop tools that can be used to debug image

processing algorithms that are implemented on an FPGA. For the development

and subsequent debugging of an FPGA solution, a developer may adopt one of

two possible development models; the hosted or standalone. The hosted model

describes the situation where a host computer or device directly controls a

hardware program running on a slave FPGA. The FPGA is effectively acting as

a co-processor to the host system, thus accelerating the computational tasks

assigned to it. This model is by far the most popular with developers, because

the development and testing of the software running on the host computer is

easier and is more user-friendly since the host system provides the tools for

interactive debugging of the algorithms. The stand-alone model is where the

complete system, including control and debug logic, is implemented directly on

the FPGA itself. Developing the control and debug logic onboard the FPGA

requires more time and effort on behalf of the developer, since it is necessary to

first create the visual environment before constructing the debug tools. This fact

has resulted in a preference for the hosted model.

Very little has been written on debugging applications using the hosted

development model. One paper (Tomko & Tiwari, 2000) describes the use of the

read-back capabilities of FPGAs (involves the serial transmission through the

JTAG1 interface of check bits available on each CLB2) to debug applications

1 Joint Test Action Group
2 Configurable Logic Block

3

targeted towards reconfigurable computing. Such an approach may be

beneficial in some situations, but due to the large volume of data involved in

image processing, it is unsuitable for debugging these types of algorithms.

ChipScope Pro3 is a commercial product by Xilinx that offers low-level

debugging of FPGA software (using test vectors). Test vectors are used to

validate the outputs of a system with regards to a series of known inputs. A

large number of test vectors are commonly used to thoroughly test all aspects of

an FPGA design, both in simulation and in the implementation. A significant

number of test vectors would be required for image processing algorithms and

may require some time to construct, which has the add-on effect of increasing

the overall complexity of the task. Transmitting such a large number of test

vectors between the FPGA and the host PC would require considerable

bandwidth (which is limited). Because of this, the use of test vectors is perhaps

less appropriate for the debugging of image processing algorithms on FPGAs.

For these reasons, in image processing, it can get difficult to completely test

each aspect of an algorithm. However, if the image processing algorithm is first

developed and tested on a standard software platform, all that really needs to

be debugged is the correctness of the individual operations, which is a simpler

task.

For most types of application, the hosted development model is the most

suitable choice. However, for debugging image processing applications, this

model imposes several restrictions that are not apparent when using the stand-

alone development model. The first major issue is the latency of the test and

debug signals (when transmitting complete images or test vectors) between the

host PC and the client FPGA, and the second is the limited bandwidth with

which to transmit the intermediate images which are the output of the

intermediate stages of an image processing algorithm. This problem can be

partially overcome by using memory that is shared between the host system

3 http://www.xilinx.com/ise/optional_prod/cspro.htm

4

and the FPGA for transferring images. The stand-alone development model

suffers from none of these restrictions; however, to implement the debugging

tools directly on the FPGA requires significantly more hardware resources and

will increase the complexity of the FPGA design.

From an image processing perspective, it is important to be able to view images

at different stages of the algorithm, and also to see the effects of adjusting

various algorithm tuning parameters on those images. In tailor making a

solution for a single application, the images and controls can be displayed at

fixed locations on an output display. However, a more flexible arrangement

would be to provide a windowing environment that also manages all end-user

interactions (keyboard and mouse). Currently, the developer must also

construct all the necessary debugging and tuning tools for each image

processing design. Thus, we propose a windowing operating system to

facilitate the tuning and debugging of image processing (IP) algorithms directly

on an FPGA.

An FPGA does not have any operating system to speak of. All peripheral board

drivers must either be developed by the user or be provided in libraries by

board vendors. There is no task scheduling (as compared to scheduling

software processes in other operating systems) or memory management except

that which occurs at compile time. Access to restricted hardware resources can

be controlled with hardware semaphores and such like.

Several attempts have been made to construct low-level hardware operating

systems such as (Tomko & Tiwari, 2000) and (Wigley & Kearney, 2001), but

these are targeted towards reconfigurable computing and deal primarily with

the run-time scheduling of hardware processes rather than direct user

interaction.

5

At present, no such generic tool exists that caters for the stand-alone hosted

model. The Gate Array Terminal Operating System (GateOS) described in this

thesis is the first step towards addressing this need.

CHAPTER Two describes what is required of the GateOS windowing

environment. We give an overview of the FPGA hardware environment that

will host GateOS and the image processing algorithms. Also discussed is the

need for a form of window management and display system, as well as a

widget management and display system. A text management system is also

necessary to display textual annotations. An overview is given on how an end-

user might expect to be able to use GateOS to tune and debug resident image

processing algorithms.

CHAPTER Three describes the window management subsystem of GateOS.

We discuss its purpose and the context within which it is used. The need for a

virtual coordinate system is discussed and how it is used to position and

display windows on a visual display unit (VDU). We also describe a layered

approach to effectively manage and display each window’s content.

CHAPTER Four discusses the need for a widget management subsystem in

GateOS. We describe a number of different widgets and what they can be used

for. Also, we demonstrate the benefits of using a layered approach for the

management and display of widgets. We also discuss how widgets can be used

to control various aspects of GateOS in addition to facilitating the tuning and

debugging of image processing algorithms.

CHAPTER Five describes the text management subsystem and the context in

which it is used. We discuss several alternative designs that implement this

functionality on the FPGA. Also discussed are the interactions between this

subsystem and the rest of GateOS.

6

CHAPTER Six describes how an end-user can use either a keyboard or a mouse

to interact with both windows and widgets in GateOS. We reveal the design

challenges involved with displaying both keyboard and mouse cursors. Also

discussed is how GateOS is able to manage each device type and the

relationships between them.

CHAPTER Seven is a reflection on the work completed on GateOS. We outline

the benefits of using GateOS to tune and debug image processing algorithms on

FPGAs. We describe the limitations of this approach and discuss where future

research on GateOS could be advantageous.

7

CHAPTER TWO

REQUIREMENTS ANALYSIS
&

HIGH LEVEL DESIGN

Chapter Outline

This chapter describes the various requirements of GateOS. We discuss why a

windowing approach is appropriate for the tuning and debugging of image

processing algorithms. We give an overview of the hardware environment

within which GateOS is to be developed and discuss how the image processing

algorithms can be managed and kept separate from the rest of GateOS. We also

cover the requirements for the windowing, widget and control subsystems in

GateOS.

2.1 Introduction

For some time now, the hosted development model has allowed end-users to

debug and control sections of time-critical FPGA hardware from a host PC. The

developer is able to choose which aspects of an algorithm are implemented on

an FPGA and which are implemented on the PC. This type of flexibility is

suitable for applications that require less real-time interactive debugging and

where the relatively high latency of test signals between the FPGA and the host

PC is not vital.

In order to debug image processing algorithms, it would be beneficial if the

developer was able to view the outputs of the algorithm on the VDU in real-

8

time. Since the output images are updated continuously (otherwise there is no

point in implementing the IP algorithm on the FPGA), the hosted development

model is somewhat less attractive (the bandwidth between the host PC and the

FPGA is a bottleneck). The alternative is to operate the FPGA in standalone

mode with all the debug and tuning tools located on the FPGA along with the

IP algorithms. The standalone development model is also more portable than

the hosted development model as the host PC is not required (one can

configure the FPGA from flash or other local non-volatile memory).

Very little research has been conducted on tuning and debugging image

processing algorithms using the standalone development model. Currently, it is

necessary for a developer to construct the necessary tools to facilitate

debugging on the FPGA for each IP algorithm developed. Such tools may use

onboard LEDs, multi-line character displays, or a VDU to display debugging

information. End-users can tune the IP algorithms via onboard DIP switches,

push-button switches, a keyboard or a mouse (if a VDU is used). The

construction of each debugging and tuning facility requires a certain amount of

development time and hardware resources on the FPGA.

2.2 Proposal

Constructing a hardware operating system could resolve many of the

aforementioned problems by providing resources for an end-user to

interactively debug and tune IP algorithms when using the standalone

development model. A developer should be able to focus on the development

of IP algorithms and not on the underlying tuning and debugging framework.

An end-user should be able to visualise the results of IP algorithms in real-time

on a VDU.

Essentially, the proposed GateOS is a restricted form of windowing operating

system. It would be responsible for the provision and management of GUI tools

9

that facilitate the real-time debugging and configuration of algorithms on the

FPGA. The requirements of these GUI tools are discussed in subsequent

sections of this chapter. The restrictions on the scope and functionality of

GateOS are required to cope with the limited resources available on a FPGA.

Where possible, it is desired that GateOS be independent of a particular FPGA

or FPGA family, and should also be independent of the resources available on

the particular development board used (apart from the provision of video

output and mouse input).

A successful development of GateOS, may be gauged by the provision of source

codes that compose GateOS. These source-codes should be able to be compiled

without altercation so as to provide a live demonstration of GateOS. This would

constitute a proof of concept. Time-willing, user evaluation of GateOS would

also be useful, although, this isn't essential to fulfil the goals of this thesis.

2.3 Hardware Environment

Use of the Handel-C programming language has become more popular in

recent years for the development and implementation of image processing

algorithms on FPGAs. As its name implies, Handel-C has a similar syntax to the

C language but with various extensions that cater specifically for the

construction of hardware4. When compared with lower level languages such as

VHDL or VERILOG, Handel-C is the preferred option for developing GateOS,

due to its ability to incorporate both low-level and medium-level constructs.

This simplifies the development process by allowing most of GateOS to be

developed at a relatively high level, while still allowing lower level design

where necessary. The Handel-C language is not in itself an object-oriented

language, but the object oriented paradigm can still be useful in the design of

the various systems and data-structures within GateOS.

4 http://www.celoxica.com/products/dk/default.asp

10

Since much of GateOS is concerned with the GUI, it is very much dependent on

the underlying technique that is used to generate and display content on a

VDU. In a standard VGA video output frame there are three main regions of

interest in terms of timing: the active region, the horizontal blanking region,

and the vertical blanking region. The blanking regions (see Figure 2-1) are

necessary for CRT displays to rescan the internal electron beam to the start or

the top of the display respectively. Modern TFT displays still support these

blanking regions; however, this is merely for backward compatibility reasons.

The video driver only needs to output display pixels in the active region, as

pixels generated in either blanking region are ignored.

Figure 2-1 Timing Regions within a video frame, active, H-blanking and V-blanking

GateOS must therefore generate output pixels in synchronization with the

video clock. There are two main techniques for providing this steady stream of

pixels: a frame-buffer approach and generating pixels on-the-fly. The frame-

buffer approach stores the pixels to be displayed in memory (the frame buffer),

which is then read sequentially as each pixel is required for the display. It

requires a large block of memory dedicated to the frame-buffer. This effectively

decouples output generation from the display process. The problem with this

approach is the limited bandwidth of the frame-buffer. Unless it is dual-ported,

only a single read or write can be performed on the frame buffer memory per

clock cycle; which becomes a problem when it is necessary to display live video

feeds.

11

The alternative is to use the on-the-fly approach to provide the stream of pixels

for display. The pixel situated at each display coordinate is generated on-

demand when it needs to be displayed. No frame-buffer memory is required for

this approach and the bandwidth problems experienced when using live video

feeds are for the most part resolved.

For GateOS, we have elected to adopt an on-the-fly approach. This choice does

however come at the cost of increased complexity of the window manager in

GateOS. Since timing is critical, major design challenges (pipelining display

pixels as a part of video scheduling) are introduced with the on-the-fly

approach that is not present when using a frame-buffer. These issues form a

significant part of the discussions in this thesis.

2.4 System Overview

GateOS should be able to interface with the IP algorithms as well as providing

an interactive user interface. From an engineering perspective, decoupling the

IP algorithms from GateOS will almost always result in a simpler design.

GateOS should be independent of a particular IP algorithm – the algorithm

should be developed within the context of an OS, not the other way around. A

modular design allows only the features necessary in a particular application to

be incorporated. Keeping this in mind, the architecture of GateOS might look

similar to that shown in Figure 2-2. All the user algorithms must be decoupled

from GateOS and thus are located within an IP core container and communicate

with GateOS through a well-defined set of interfaces.

12

Figure 2-2 GateOS IP Core and its relationship to the rest of GateOS

Figure 2-2 is an attempt to identify the various sub-systems within GateOS and

give some indication as to their relationship with one another. The IP Core (and

its constituent algorithms) shown in Figure 2-2, is managed entirely by the

various subsystems in GateOS, clearly qualifying it as an Operating System,

albeit a cut-down one. The inclusion of a non-volatile storage manager,

discussed briefly in Section 2.5, further reinforces this principle.

One of the major considerations in the design of the OS will be managing the

timing constraints imposed by the run-time environment of the FPGA. Since we

are using on-the-fly pixel generation, it will almost certainly be necessary to

pipeline areas of GateOS to ensure that pixels at particular display coordinates

are generated on time. While it is true that modern FPGAs have more resources

and higher clock speeds than was available previously, a desirable feature of

GateOS will be to support operation on small and low cost FPGAs if possible.

GateOS should be presented to a developer as a set of libraries. Developers can

then interface with these libraries when it becomes necessary to tune or debug

their IP algorithms. The behaviour of GateOS is, therefore, customized by the

developer to fit the particular application by constructing the required

windows, widgets and so forth. In this way, only the hardware needed for a

13

particular application is built. For instance, if a mouse button is never used in a

project, then the hardware for it will not be included in the final configuration.

Since GateOS will use a windowing environment, it will require some form of

window manager. Each window in GateOS is just a visual container, which can

be used to display content such as images, histograms and widgets. The

window manager is responsible for maintaining any window data-structures,

as well as scheduling the display content of each window at the appropriate

location on the VDU. A key reason for having a windowing based OS is that the

user can hide, restore, reposition and resize individual windows on the VDU.

This can typically be done with the use of particular mouse gestures. In

addition, the user could also wish to clone or destroy particular windows.

Widgets form an important part of any windowing environment and because of

this, GateOS should also incorporate a widget management subsystem. Widgets

are useful for displaying and manipulating Boolean (buttons) and integer

(sliders) variables, as well as displaying textual annotations (labels). Widgets

are only ever displayed within the content area of a window, so the widget

manager requires constant communication with the window manager. Support

for the following widget types should be incorporated into GateOS: labels

(textual annotations), text edit areas, sliders (horizontal and vertical) and

buttons (both momentary action and toggle buttons). The widget manager is

responsible for managing all the widget data-structures and displaying each

widget within of its associated window. A special class of widgets is required

for scheduling the display of image/video data and statistical information (such

as histograms) within windows.

In terms of user interaction, we need to be able to tune and debug IP

algorithms. This tuning may involve the manipulation of buttons, sliders and

text edit widgets that are linked to the IP algorithm. Using a keyboard and a

mouse to do this manipulation is appropriate in this situation and is familiar to

14

users. Using a mouse and keyboard necessitates the building low-level drivers

on the FPGA to communicate with each device. Also, as a part of the display,

there are keyboard and mouse cursors that may be visible. An additional input

management system interprets the inputs and input gestures and passes the

corresponding information to the appropriate widget or window. As the widget

and window parameters are adjusted, this affects a window’s appearance or

position on the display, as well as control variables that may be used by the IP

algorithm.

An essential component of any interactive operating system (windowing or

command-line based) is the management and display of textual annotations. A

textual annotation is a string of characters displayed somewhere on the VDU.

A text manager is necessary to manage and display strings of characters on

widgets and windows in GateOS. The text manger may also be required to

annotate areas of interest on an image at run-time. The text manager is thus

tightly integrated with the window and widget managers as well as the IP core,

since it can be called upon by any of these to display an annotation.

2.5 Non-Volatile Storage Manager

A developer may need to store data in non-volatile RAM (i.e. flash RAM). The

most obvious approach for fixed size data is to use preset addresses for each

data item. For variable sized data, a more flexible approach would be better,

such as modelling the nv-RAM as a flat file system (no directory structure).

There are several different types of file system that could be used (such as FAT,

EXTFS, UDF...). Incorporating such a file system into GateOS would allow the

developer to specify a filename or id as the unique handle for an item of data

and then read or write data to this file via the storage manager. One would

need to consider if the extra hardware needed to implement such a manager is

worthwhile.

15

CHAPTER THREE

WINDOW MANAGEMENT

Chapter Outline

This chapter discusses how windows are represented and implemented in

GateOS. We discuss how a window is represented on a screen in terms of

dimensions, logical position and status. Mechanisms for managing and

displaying overlapping windows are described using ‘on-the-fly’ pixel

generation.

3.1 Introduction

From the user’s point of view, a window is a container for content displayed on

the screen. The content may be images, user-interface controls or debugging

information, and it is usually more convenient to group related components

within a single window. Usually, there is more information available than can

conveniently (or aesthetically) fit onto a single display. A common approach to

handling this problem is to separate the content into windows and to allow the

user to control which windows are visible and which are not. For convenience,

the user can rearrange the window positions and where they overlap, and can

determine which window is visible.

From a designer’s perspective, we define a window to be a rectangular

container displayed on a VDU that can be moved, resized, overlapped, created,

and destroyed. A user should be able to distinguish a window from all others in

16

the windowing environment. A developer should be able to specify the content

that is displayed within the window, either at compile-time or in the case of

dynamic data, at run-time through the image processing core.

Figure 3-1 Windowing System architectural overview

A window manager determines which window (if any) is visible at a particular

screen location, and routes the window’s content to the display driver as shown

in Figure 3-1.

3.2 Representing a window’s size and
location

It is common knowledge that a window’s position and size on screen can be

characterized with four properties; x position, y position, width and height.

However, there are design questions that may be raised that must be resolved.

The first issue concerns the location of the origin and the second is concerned

with how to represent a window's extent on screen.

It is assumed that the system has only a single VDU. This simplifies

considerably the logic and scheduling compared to managing multiple

windows across several VDUs. A constraint imposed on windows is that their

size (width and height) must be less than that of the VDU. This ensures that the

content of each window can always be displayed in its entirety on the VDU.

Also, the implementation of the window manager in Handel-C can be

17

simplified somewhat if a designer can assume that these constraints are

enforced. There are several ways in which the four window parameters can be

represented and interpreted in GateOS, which leads to the use of a virtual

coordinate space.

3.2.1 Virtual Coordinate Space

If windows were restricted in their movements, such that each window must

reside fully within the bounds of the VDU, some end-users would find this both

frustrating and counter-productive. To allow window's to extend past the edge

of the display, a virtual coordinate space can be defined.

Figure 3-2 Choices of origin within virtual coordinate space

The constraints described earlier mean that the virtual coordinate space only

needs to be triple that of the display resolution of the output VDU, with the

VDU occupying the central region. The origin in the virtual coordinate space

can be located at either the top-left corner of the VDU or the top-left corner of

the virtual coordinate space, as shown in Figure 3-2. The first choice would

entail the use of signed variables to represent a windows position on the VDU.

18

Since the output video driver defines the origin of the VDU to be the same as

that used in the virtual coordinate space, mapping a window's position relative

to the VDU requires no conversion (except signed to unsigned).

The second choice would use only unsigned variables. However, a

disadvantage of this approach is that display coordinates from the video driver

must be translated to obtain the virtual coordinates that the window manager

can use in provide the correct output pixel.

3.2.2 Window extent

With regards to representing the extent of a window within the virtual

coordinate space, the position and size parameters of a window can be encoded

in several different ways. Two potential encoding schemes have been identified

that could be used in GateOS, as shown in Figure 3-3. The first scheme uses size

and position coding, while the second scheme uses point coding.

The coordinate space for this coding schema uses unsigned numbers to

represent its width and height dimensions. To find a window’s end-point

(required in the implementation for calculating particular offsets), one has to

perform two separate additions (x + width, y + height). If this end-point value is

frequently used by GateOS on multiple occasions from different locations in the

window manager design, additional hardware may be necessary to multiplex

the different hardware requests for the endpoint value.

The alternative is to represent a window’s extent on the VDU is to use a point

based coding schema. Rather than representing a window by its width and

height, it explicitly encodes the start and end points of the window.

19

Figure 3-3 Virtual coordinate space based on the two encoding schemes

The end-point (xe, ye) defines the location of the bottom-right corner of the

window. The width of the window can be obtained at run-time with a

subtraction (xe - xs) as can its height (ye - ys).

This approach could be beneficial in situations where the start or end points of a

window are required more often by GateOS than the width or height. This is

the primary motivation for the use of this schema in the current implementation

of GateOS.

3.3 Overlap of windows

Overlapping occurs when a window is positioned such that its bounding

rectangle intersects the bounding rectangle of one or more other windows. In

the intersection, the window manager must be able to identify which window is

visible on screen and which window(s) are obscured or occluded. One can think

of the window's as being stacked one behind the other in layers. A window’s

position in this stack determines whether it is in front of, or behind another

window. This depth adds a third dimension, z with a windows z-index

effectively identifying the priority with which it is displayed as shown in Figure

3-4.

20

Figure 3-4 Changing the z-index of a window

A left mouse click within a window can be used to bring that window to the

front. This is achieved by setting the z-index of that window to the z value of

the current front window and decrementing the z-indices of the windows in-

between to move them back a layer. A generic sorting algorithm can be used to

perform this task. To enable the window manager to identify the id of a

window in a single clock cycle - given its z-index - it is necessary to maintain an

inverse z-table; which is a list of windows sorted by z-index.

3.4 Window States

A window in GateOS can be in one of four possible states; null, hidden, inactive

or active. The null state is used if one or more of the window’s core properties

are incomplete. This will be the case if a window has been defined, but is not

currently in use by GateOS. A null window should be concealed from view.

The active window is situated in front of all other windows and can receive

both keyboard and mouse input. Inactive windows may be occluded and can

receive no input from a keyboard. The only mouse input accepted by an

21

inactive window is the gesture associated with making the window active. As

the name implies, the hidden state is used for a window whose properties are

valid, yet the window and its contents are fully hidden from view. The status of

a window may be toggled between the hidden and visible states by clicking an

associated button on the window activation bar. The window activation bar is a

special widget window that provides a set of buttons reflecting the visibility of

each window in GateOS. The window activation bar must always remain in the

visible state, thus no mechanism is provided to change it (there is no button

reflecting its visibility). The buttons within the window activation bar can be

aligned vertically or horizontally. A window is created in the visible state when

its properties have been initialized. In the visible state, a window and its

contents are viewable on the VDU (unless it is occluded). The window with the

highest z-index is considered to be the active window; otherwise it is inactive.

3.5 Window Regions

Each window consists of three overlapping layers: a background layer, a

content layer and a border layer.

The background layer is split vertically into two separate regions; the title-bar

and the content area background. The title-bar stretches the full width across

the top of the window and has a height of 16 pixels. The value of 16 pixels is

chosen because it is aesthetically pleasing (to me), and due to the fact that offset

calculations are somewhat simplified (if the four LSBs of the row relative to the

top of the window are dropped, the remaining value is zero within the title-bar,

otherwise it’s within the content area). The text management system, as

detailed in CHAPTER Five, is used to add a textual label (as a part of the

background layer) for the window. The label is aligned to the left side of the

title-bar.

22

The colour of the title-bar is used to indicate whether or not a window is active;

with pale-blue used for the active window and dark blue used for inactive

windows. The background colour of the content area can be customized for

each window.

The second (content) layer is where the window’s content resides. Widgets that

control a window‘s behaviour (see CHAPTER Four) are right-aligned within

the title-bar. It is within this content layer of the main part of the window that

image and video data are displayed, along with any widgets (see CHAPTER

Four) used to tune algorithm parameters and display debugging information.

The content layer of a window has its own local virtual coordinate space with

the default origin located in the top left corner of the content area. If the

window content (e.g. a large image) is larger than the available display area of

the window, then the window’s contents can be scrolled by offsetting the local

origin of the window’s virtual coordinate space; either horizontally or

vertically.

Figure 3-5 Final layer with a grip for resizing windows

The third layer is used to display a window’s internal and external bounding

borders. The external borders are two pixels deep and are situated on all four

23

sides of a window, while the internal border vertically separates the title-bar

from the content area with a horizontal line on the bottom two rows of the title

bar. These borders are present on all windows in GateOS without exception. If a

window can be resized, then a resize grip is also displayed in the bottom-right

corner of the external window border, as shown in Figure 3-5.

3.6 Managing and displaying windows

In CHAPTER Two, we specified that on-the-fly pixel generation should be used

in GateOS. This requires the window manager to be able to identify at any

given clock cycle, the foremost visible window at the output display coordinate

(px, py) as provided by the video driver. This task is simplified somewhat by

the fact the pixels are required in a scan order; so adjacent pixels are likely to

come from the same window. Two potential techniques are to simultaneously

test all windows in parallel with a priority encoder to select the front-most

window, or to determine the locations of the transitions from one window to

the next along each raster.

3.6.1 Parallel Incidence Test

The start and end points of each window are compared with the VDU display

coordinates (provided by the video driver) to identify which windows are

present for the current output pixel. From these, the window with the highest z

value is selected for display.

For a screen coordinate (xp, yp) to be within a window, it must satisfy three

conditions. The pixel must be between the left and right sides of a window

(eps xxx <≤). It must also be between the top and bottom of the window

24

(eps yyy <≤). The window must also be visible (status = active or inactive).

Refer to Figure 3-6.

Figure 3-6 Detecting whether a window is present at a screen coordinate

To determine this for every window in a single clock cycle requires separate

hardware for each window, and that the window parameters to be stored in

registers (rather than memory) because they must all be accessible every clock

cycle. The primary weakness of this approach is that it requires a significant

amount of hardware for each window in GateOS.

We can optimize this design by eliminating some of this hardware. This is

possible because the pixels must be produced as a series of left to right scan-

lines. The horizontal blanking also provides an opportunity for the window

manger to perform a limited amount of processing before each line is displayed.

The visibility status of each window is active or inactive. Since the row number

is constant for a scan-line, the condition (eps yyy <≤ +1) only needs to be

evaluated once per line, and this can be performed during the horizontal

blanking period. Similarly the visibility status of a window can be evaluated

once per line. The combined result of these evaluations can be can be stored in a

single binary register per window (see valid in Figure 3-7). Since the timing is

25

less critical during the blanking period, these evaluations may be performed

sequentially. Concurrent access to the status or the ys and ye components are no

longer required, thus allowing these three properties to be stored in a RAM and

be indexed by window id. During horizontal blanking, a serial process can then

iterate through the windows and evaluate the validity condition.

Figure 3-7 Updated window identification that uses less hardware per window

The real-time hardware, therefore, only needs to check the horizontal extent of

each window (eps xxx <≤) and ensure that the window is valid on the current

scan-line as shown in Figure 3-7. This can be further optimised by replacing the

comparison tests with equality tests (which use less hardware), this is because

pixels are scanned sequentially (i.e. set a flip-flop when xs=xp, and clear it when

xs=xe).

Figure 3-8 Selecting the window with the highest z-index

26

At a given screen coordinate there may be several windows present, but only

the window with the highest z-index is selected for display. The present signal

of each window is routed to an input of the priority encoder based on the z-

index of the window, as shown in Figure 3-8. The priority encoder then

identifies the index of the highest set bit, which is looked up in an inverse z-

index table. The resulting value is the id of the window to be displayed at the

particular screen coordinate.

This input sorting based on the z-index is, in fact, a crossbar multiplexor, which

is very expensive (in terms of hardware resources) to implement. The RMO

macro (returns the offset of the rightmost set bit in an expression), which is

provided by the Handel-C standard library (see the Handel-C PDK Reference

Manual5), can be used to implement the priority encoder.

3.6.2 Window Transition Method

Previously, we have discussed how a display frame is output to the VDU as

progressive scan-lines and how a horizontal-blanking period is situated at the

end of each scan-line. In section 3.6.1, we were able to exploit this horizontal

blanking period to make the real-time window selection process independent of

the subsequent scan-line. This can be similarly exploited by a memory-based

technique.

This technique uses the horizontal blanking period for each scan-line to

construct a look-ahead table that lists windows in the order (left to right) that

they are to be displayed on the current scan-line. When the VDU is in the active

region, a selector iterates through this list of windows, displaying each in turn

until the last entry is reached. The look-ahead table must then be rewritten for

each scan-line as the order of the windows can change.

5 http://www.celoxica.com/support/view_article.asp?ArticleID=578

27

This approach makes it possible to store all the core properties that determine

the window's position, dimensions and z-order to be stored in fabric-RAM. This

is preferred because fabric-RAM requires fewer hardware resources than

register banks to store the same amount of data. However, the use of fabric-

RAM restricts the number of concurrent accesses to one (or two if the RAM is

dual-port). The fabric-RAM bandwidth limitations mean that only a single

window’s properties can be accessed in a particular clock cycle, thus

necessitating the search for an alternate approach, such as the the use of look-

ahead tables. These tables are populated in advance and are used to assist in the

real time selection process. Whilst there may be other solutions to this problem,

the requirements of this thesis are such, that only a minimal amount of FPGA

resources should be used whenever possible. Using look-ahead tables satisfies

these requirements.

The horizontal blanking period (approx 20 percent of total horizontal scan time)

of each scan-line can be used to perform a limited amount of processing,

whereas the longer vertical blanking period (several scan-lines) can be used for

more time-intensive processing. The existence of these two timing intervals can

also be exploited to populate the look-ahead tables.

3.6.2.1 Window List Look-ahead table (WLL)

The WLL lists the windows in the order that they are displayed on a particular

scan-line. Each entry is a window id (integer) that the window manger can use

as the index for accessing those core window properties that are stored in

fabric-RAM. The table partitions the active portion of a scan-line into discrete

line segments, such that each segment represents an unbroken stream of pixels

belonging to an individual window. Each window entry must be displayed on

the current scan-line for at least one clock-cycle, as shown in Figure 3-9.

28

Figure 3-9 How WLL entries for each scan-line are related to window positions

The size of the WLL is determined by the maximum number of window

transitions that can occur on a scan-line, as shown in Figure 3-10.

Figure 3-10 Worst case scenario with each windows vertical edges displayed

Each window has two vertical edges. If both edges of N windows are visible in

a scan-line, then there are a maximum of 2N transitions (or 2N+1 counting the

29

special background window). The WLL can be stored as an array in fabric-

RAM.

3.6.2.2 The real-time window selection process

For each entry in WLL, the window selector must establish how many clock

cycles the current window is displayed for, before transitioning to the next

window. If the current window has the higher z-index (it is in front of the next

window), the transition occurs when the current window’s right edge is

encountered (pcurrente xx =,). Otherwise, the next window is in front and is

displayed when its left edge is encountered (pnexts xx =,). In a worst-case

scenario, the above technique should be able to switch the display window with

every clock-cycle, requiring the properties of the current window to be cached.

To implement this process, relatively few hardware resources are required.

Registers can be used to store the id of the current window, its z-index, the

transition coordinate (either currentex , or nextsx ,) and the WLL iterator. Additional

information can be retrieved on demand from fabric-RAM using the window's

id as an index.

3.6.2.3 Building the window-list look ahead table
(WLL)

The WLL table is potentially different for every scan-line, so must be rebuilt for

every line that is displayed. Since WLL is stored in RAM, the only time it can

be accessed to construct the table is during the horizontal-blanking. For a

640x480 screen resolution, the horizontal-blanking period lasts approximately

120 clock cycles. The maximum number of windows that GateOS can manage is

30

directly dependent on how fast we can generate entries for the WLL. Since we

can only write to WLL once every clock cycle and each window has 2 edges;

GateOS can manage at most 60 windows at VGA resolution (more than

enough).

It is clear that serial search techniques cannot be used to create the WLL. To

assist in this process, an additional table, the edge-list lookup (ELL) table is

required. This lists the vertical window edges of all visible windows, sorted in

order from left to right. For each entry in this list, we store the windows id and

the polarity of referenced edge (left or right) as shown in Figure 3-11. If the

edges of two or more windows coincide, the windows are ordered by z-index

with the highest z-index placed first. This data-structure can also be placed in

fabric-RAM.

Figure 3-11 Edge list lookup-table

31

The first and last entries in ELL always refer to the special desktop window as it

covers the entire virtual coordinate space and is always visible on the VDU,

albeit with the lowest z-order.

When the right edge of a window is reached, a priority register (Rs) is used by

this algorithm to select the next topmost window. Each bit in Rs is associated

with a z-index. A priority encoder (the RMO macro in Handel-C) and inverse-z

lookup is used to identify the topmost window.

The algorithm starts out clearing Rs to zero. The window id from the first entry

in ELL (the desktop window) is copied to the WLL and is set as the ‘current’

window. The window id of the next entry in ELL is read, and denoted as the

‘next’ window (only if the scanline is within the window). Depending on the z-

indexes of both ‘current’ and ‘next’ windows and the polarity of the ‘next’

windows edge (left or right), one of three actions is performed.

1) If the next window is a left edge, the znextth bit in Rs is set (the start of a

window), otherwise it is cleared (the end of the window).

2) If the left edge has a higher z-index than the current window, it replaces

the current window and is added to the WLL.

3) If the right edge of the current window is encountered, the highest

priority window in Rs is found, and it replaces the current window and

is added to the WLL.

This process is repeated for each entry in the ELL data-structure. A moderate

amount of FPGA hardware resources are required to implement this algorithm.

Since several conditions need to be evaluated in a single clock cycle and actions

are performed based on these results, the combinatorial delay could be quite

long, adversely influence the maximum clock speed of the FPGA design. The

current window id, its z-index, Rs, the WLL and the ELL iterators need to be

stored as registers.

32

3.6.2.4 Building the Edge-list look ahead table (ELL)

The contents of this data-structure will not change unless an end-user

repositions, resizes, hides, clones or destroys a window. Furthermore, since

keyboard and mouse input is processed serially during vertical blanking; only a

single window in ELL will be affected at any given time. This fact simplifies any

required updates to ELL into two separate tasks: insertion and removal. The

removal process completely removes from ELL any references to a particular

window and the insertion process subsequently reinserts the two edges. In the

current design of GateOS, the status of a window is considered to be null if it is

not represented in the ELL data-structure (eliminates the need to have a

separate data structure to indicate if a window has been constructed or not).

An independent variable is used to maintain a running total of all visible

windows in GateOS.

Clks Source

1 // prepare the ELL iterator register
i = 1;

1
// we need to remove references to the left and right window
// edges from the ELL (two references)
step = 0;

1

// iterate forwards through ELL until these two references have
// been removed
do {
 // Extract the current window index
 window_index = ELL[i];

1

// compare the ids of the two windows
 if(window_index\\1 == window_id)
 step++;
 else
 ELL[i - (0@step)] = window_index

1
// compare the ELL iterator register
i++;

}while(i != (WINDOW_COUNT_VISIBLE << 1));

1 // there is one less valid window in GateOS
WINDOW_COUNT_VISIBLE--; //running window total

Listing 3-1 Removal routine

As shown in Listing 3-1, this Handle-C routine performs a forward scan

through ELL, removing each invalid window reference as it progresses. After

the first removal, successive entries are shifted down by one place to occupy the

vacated space. Similarly, after the second removal, successive entries are shifted

33

down by two places. Upon completion, the variable holding the current visible

window count is decremented.

Clks Source

1 // we only need to do this twice
step = 2;

1 // get the z-index of the window we need to insert
compare_z = Window_Z[window_id];

1 // get the right edge value of the window we need to insert
compare_x = Window_XE[window_id];

1 // prepare the iterator
i = (WINDOW_COUNT_ACTIVE << 1) - 1;

1

// Perform a reverse search through the ELL table, and insert the
// proper entries representing both left and right edges of the
// window
do {
 //by default we decrement the ELL iterator register
 perform_dec = 1;

1 // Extract the indexed window id
 window_index = ELL[i];

1 // extract the indexed windows z-index
 current_z = Window_Z[window_index\\1];

1

// extract the indexed windows right or left edge (the 0th bit
// of the windows index determineds the edge)

 current_x = (window_index[0]) ? Window_XE[window_index\\1]
:Window_XS[window_index\\1];

3
or
1

//Should an edge (left or right) of the window we want to insert
//be stored at this location in the ELL
if(compare_x > current_x || (compare_x == current_x &&
 compare_z > current_z))
 {
 //prepare the new window index (append the 1-bit flag

//that represents the edge
 window_index = window_id@step[1];
 //we only need this one
 compare_x = Window_XS[window_id];
 //don't decement the iterator this time
 perform_dec = 0;
 }else delay; //otherwise just wait

1 //insert the new or old entry
ELL[i + (0@step)] = window_index;

1

//perform the decrement operation
if(perform_dec)
 i--;
 else
 step--;

1
}while(step != 0);
// an extra window has been inserted, therefore increment the
// total number of valid windows in the system
WINDOW_COUNT_ACTIVE++;

Listing 3-2 Insertion routine

The insertion routine as shown in Listing 3-2 is slightly more complicated than

the previous removal procedure, as we need to insert the two new window

34

references in into ELL. To do this, we scan backwards through ELL. Until the

first insert location is found, the entries of ELL are shifted up by two places (to

make room for the new window entries). On encountering the location where

the right edge of the window belongs, the window id is inserted and flagged as

a right edge. From this point, entries are shifted up one place until we reach the

location of the left window edge. The current visible window count is

subsequently incremented.

3.7 Discussion

For the implementation of GateOS, the designer is able to choose which coding

scheme is used to represent a windows position and dimensions. In using a

virtual coordinate space, we have simplified the process of mapping a

window's coordinates to those used when generating pixels on the VDU.

The register technique used to schedule window's for display is functional but

not very scalable. The hardware resources required to represent each additional

window in GateOS is directly related to the number of bits needed to represent

each window’s ID. This means there is virtually no resource penalty (except for

RAM storage space) incurred with changing the number of windows from 5 to

8; however, a small increment in resources is required to increase the number of

windows from 8 to 9 and so on. The crossbar switch required for priority

encoding is the main reason for these increases. The alternative technique,

which assumes that core windowing properties are stored in fabric-RAM,

attempts to resolve many of these issues with a considerable amount of success.

For this memory-based technique, the hardware resources required for each

additional window are relatively fewer than those required for the register-

based technique.

In the future, it would be useful to construct techniques that would make it

possible to clone particular types of windows (Image, Video) at runtime as well

35

as destroy them (revert to a null state). This could be used to clone an image

window associated with a particular IP algorithm. A widget window could

then tune an IP property associated with this cloned window and compare the

resulting image with the original. The implementation of this could be the focus

of much future research.

36

CHAPTER FOUR

WIDGET MANAGEMENT

Chapter Outline

This chapter describes the properties of the various widgets used within

GateOS. An in-depth discussion on the data-structures required for retaining

each widget’s properties is also provided. It covers the three widget display

layers (window boarder, content and background) and the required processing

attributed to each of them, in order that widgets can be managed and displayed

within a host window on the VDU.

4.1 Introduction

The term ‘widget,’ as used in GateOS, describes a single graphical control

located within a window. In this chapter, we define several different types of

widgets - the most important of which have been implemented in the current

version of GateOS while others remain as potential designs.

The types of the widgets detailed within this chapter include; label, button, edit

box, slider, histogram display, image display and video display. The last three

may be grouped into a separate category called the image processing (IP)

widgets, as they rely directly on the IP core for their display content.

In terms of GateOS, widgets are useful for graphically tuning and debugging

image processing algorithms in addition to controlling the behaviour of

37

GateOS. More specifically, interactive widgets are able to manipulate Boolean

or integer variables while the image processing widgets display useful

debugging information in a graphical form.

4.2 Widget Display Layers

Three sub-layers (within the window’s content layer) are used to display

widgets. These sub-layers (see Figure 4-1) are used for the display of image

content, algorithm control and window control.

Figure 4-1 Content window layer split into three widget sub-layers

The first ‘image’ layer occupies the complete window’s content area. Since the

content region uses its own coordinate space, this ‘image’ layer may be scrolled

both horizontally and vertically so that all of its content is accessible. Only a

single IP widget (histogram, image or video) may be displayed in any window.

If there is no IP widget associated with the host window, then this image layer

is transparent and the underlying window background layer is displayed.

The second ‘algorithm control’ layer is also positioned within the window

content area. This layer shares its vertical and horizontal offsets with the image

layer, so scrolling the window will move these controls with the image. Several

widgets can be positioned within a window, with the underlying image layer

38

visible where there are no widgets. Widgets within this layer are used to tune

algorithms in the IP core and display debugging information.

The third ‘window control’ layer contains the widgets responsible for

manipulating the various properties and behaviours of a window and its layers.

The location of widgets in this layer is fixed relative to the window at compile-

time as these conceptually form part of the window rather than the contents.

Buttons on the title-bar are all 16 pixels in size (requires less hardware

resources) as are the sliders (except for the length which is variable and

depends on the window size). Again, this layer is transparent; if no widget is

present at a particular point, then the underlying layers are displayed in order

of priority (window control layer, then image layer).

4.3 Widget Details

4.3.1 Label Widget

The purpose of a label widget (see Figure 4-2) is to provide a textual annotation

within a window. An example would be to identify areas of interest within an

image.

Figure 4-2 A simple Label Widget

39

A label widget is stateless and has no mouse or keyboard interaction. Each label

widget has a transparent background. The only purpose of a label widget is to

display a textual annotation; therefore, a single string is displayed within each

label. This string is aligned with the top-left corner of the widget and any text

that extends past the bottom and right boundaries of the widget is truncated.

As detailed in CHAPTER Five, the actual text string is stored in a string table

and referenced by its id.

4.3.2 Button Widget

If a button widget is situated within the algorithm control layer, then it can be

used to manipulate a Boolean parameter of an algorithm. Alternatively, if this

widget is used within the window control layer, then it may be used for a

variety of window management tasks. Such tasks may include hiding/restoring

a window from view, creating clone windows and destroying them, or

pausing/resuming a live video feed.

A button widget has a border displayed on each of its four sides (top, bottom,

left and right), so that it is clearly visible. This border is one pixel deep and is

dark-grey in colour (common to all buttons in GateOS).

A button widget has two valid states, ON and OFF, as shown in Figure 4-3. The

state reflects the state of a Boolean parameter within the system, and the button

can be used to manipulate that state. Two visual aids are used to denote the

current state of a button and its purpose; a text string and the background

colour. Each button widget has associated two strings, one for each state of the

button. A user should be able to establish the purpose of each button, if not its

state, simply by reading its label string. The string is aligned to the top-left

corner of the widget and has a black foreground colour.

40

The background colour of the button also reflects the button state, with the ON

and OFF colours defined globally.

Figure 4-3 The background of a Button Widget can be one of two possible colors

A keyboard or mouse can be used to interact with a button widget. Each button

can be assigned a character, such that when this character is input from the

keyboard, GateOS can set, reset or toggle the button’s state. If the key is held

down, no further state changes occur until that key is released (see CHAPTER

Six for further details on managing keyboard input).

When using a mouse to interact with a button widget, only left or right mouse

button clicks are accepted. A left click on the button widget will toggle the

button’s state. Alternatively, a click by the right mouse button will toggle the

button’s state only temporarily (until it is read and reset by the IP core), thus

exhibiting a push-button like behaviour.

4.3.3 Text Edit Widget

The purpose of a text edit widget is to allow the user to enter a string. What the

programmer does with the string is independent of the widget.

41

A text string needs to be displayed within an edit widget. Like the label and

button widgets, this string is aligned to the top-left corner of the widget.

Characters in the string that extend past the bottom or right boundaries will not

be displayed. The widget must also be able to provide access to all the

characters within its text string. This is enabled by scrolling the string on a

character-by-character basis, with an integer variable to store the offset of the

first character displayed. The colour of the text in each text edit widget is black.

Figure 4-4 An Edit Widget displaying the string “The brown fox jumped”

A text edit widget has a 1 pixel dark-grey border on all four sides to clearly

delineate its bounding rectangle, as shown in Figure 4-4. The background

colour of the text edit widget is white to distinguish it from other widget types.

Only a single text edit widget can be accepting input (active) at a time, so one is

also able to distinguish between active (where the text cursor is) and inactive

text edit widgets (no text cursor).

A simple graphical cursor is used to indicate the current insertion point. The

cursor is a black vertical line that is 1 pixel wide and 16 pixels high, and is

always situated between two characters in the text string. Either a left or right

click on an edit widget is used to select the widget and set the initial cursor

position. Once attached to an edit widget, the text cursor can be manipulated

using the arrow keys on the keyboard (see Table 4-1). If a keyboard cursor is

42

moved to either the left or right borders of the widget, then the text string is

scrolled by one character to keep the cursor in view.

Key Cursor Action

Right Arrow Move to next character

Left Arrow Move to previous character

End Move to last character

Home Move to first character

Table 4-1 Cursor movements

The ‘Backspace’ key removes the character directly to the left of the cursor.

Using any other keyboard key (excepting the backspace and the four cursor

control keys) will result in the insertion of the associated character into the text

string at the location of the cursor. Unprintable characters are replaced by

spaces.

To extend the usefulness we have added the automatic conversion of a numeric

text string into an integer. A 2-bit flag as shown in Table 4-2, is required to

designate whether the input is interpreted (takes place after each character is

entered) as binary, decimal, hexadecimal or plain text. Only characters in the

particular number based are allowed.

43

Flag Operation

0 plain text

1 binary

2 decimal

3 hexadecimal

Table 4-2 Available numeric string conversions

4.3.4 Slider Widget

A slider widget is similar in function to that of a scroll bar commonly used by

other operating systems. However, its primary purpose (as opposed to a scroll

bar) is to allow a user to manipulate one or more integer variables using a

variety of mouse gestures. The definition of a slider widget has been further

modified to fit the design goals of this thesis, namely the use of a minimal

amount of resources.

Each slider widget has a one pixel dark-grey border on each of the four sides to

delineate its bounding rectangle, as shown in Figure 4-5. In some applications it

may be useful to use the background of the slider to convey meaning about the

slider position (threshold for example). A flag is used to indicate whether a

standard or user-generated background is used.

Figure 4-5 Vertical and horizontal slider widgets

44

The slider indicates and controls an integer variable that can have a value

between zero and max_val inclusive. The minimum value is thus constant and

never negative. The position of the slider bar within the slider is therefore:

()
max_val

lengthwidgetvaluepositionline __ ×
=

The slider bar is one pixel thick and has a black colour.

Figure 4-6 The offset of a horizontal Slider Bar from the left border

Note that there may not be an exact representation of every possible value if

max_val is larger than the widget length. A slider widget may also be

configured to manipulate two separate variables by adding a second slide bar

with its own value and max_val variables.

The use of a single line to represent a slider’s value (see Figure 4-6)instead of

the rectangular block favoured by other operating systems has benefits as well

as some drawbacks. The principal benefit is that the position of the slide bar is

easier to manage and display. The calculations required to determine the left

and right boundaries of a rectangular slider are avoided. Conversely, using a

rectangular block for the slide bar can convey additional information, and the

concept of applying step sizes to slider movements may have more meaning

when using a rectangular block.

A mouse gesture is used to reposition individual slider bars within a slider

widget; we have considered two alternative methods of doing this. Both are

45

unconventional but functional and are designed to use a minimum amount of

resources.

The first method associates the left and right mouse buttons with the first and

second sliders respectively. When the mouse button is pressed within the slider,

the corresponding slider bar is repositioned directly under the mouse cursor.

The value associated with the slider widget is then updated as:

lengthwidget
max_valpositionlinevalue

_
_ ×

=

The slider bar will continue to move with the mouse cursor while the button is

pressed. If both left and right mouse buttons are depressed concurrently, then

both slider bars will follow the mouse cursor.

With the second method the mouse click does not immediately move the

cursor, but requires the user to drag the mouse past the slider bar (with the

button down) to select it (in a left-right or right-left sweep). After selection, that

slider bar will move with the mouse cursor as before. While the slider bar is

tracking the cursor, it must remain within the boundaries of the slider widget.

When the mouse button is released, the slider will stay in its last location.

Either of the two methods can be selected at compile time, although it must be

noted that the first is only able to manipulate up to two bars within the slider.

The slider bars are aligned along the widget and their movement constraints

(whether they can be dragged through each other) can be configured at compile

time. All three widget types, namely the button, text and slider widgets have

been implemented, but are yet to be subjected to user evaluation, due to time

constraints.

46

4.3.5 Imaging Widgets

Each window in GateOS may have a single histogram, image or video widget

displayed within its content layer. An IP widget always starts at (0,0) in the

virtual window coordinates. Its length and width properties are determined by

the IP core, but are also cached by GateOS.

Since the dimensions of an IP widget may be larger than the content area of a

window, a scrolling mechanism is provided. A vertical and horizontal slider is

added to the window control layer whenever the widget is too large for the

content area.

GateOS should allow a user to zoom the display area of IP widget both IN and

OUT. A rudimentary zoom capability would be to allow zoom sizes that are

only powers of 2 (… ¼, ½, 1, 2, 4, 8, 16 …). In this case, determining the correct

display data would be trivial. Two square button widgets situated on a

window’s title-bar could provide the necessary zoom interfaces as shown in

Figure 4-7. A mouse click on either button would adjust the zoom factor to the

next step in the corresponding direction.

Figure 4-7 Two zoom buttons, one in and the other out

The biggest limitation with power of 2 zooming is the constraint on the zoom

factor. A better approach would be to allow a user to specify the zoom factor as

a fractional value. The denominator of this fraction would be fixed by the IP

core with the numerator adjusted by the user. This approach would give good

zoom in but limited zoom out.

47

Figure 4-8 Slider widget is used to manipulate numerator of zoom fraction

The numerator could be manipulated with the help of a slider widget. One can

reuse the horizontal slider used for horizontal scrolling to also manipulate the

zoom factor, as shown in Figure 4-8. A button widget, located next to this slider

in the global layer, can select which parameter the slider would manipulate.

The alternative might be to have two slider bars on the same scroll widget; one

for horizontal panning and the other for controlling the zoom. Ideally, one

would want the natural zoom size (1:1) to be in the centre of the scroll bar.

Unfortunately, due to time limitations, I was unable to investigate the three IP

widgets in any great detail. Therefore, only a brief description of the widgets

and their possible implementation are provided in the following sections.

4.3.5.1 Histogram Widget

The purpose of this widget is to display a histogram or other similar graphical

data, as shown in Figure 4-9. Usually the dataset represents some statistic

derived from an image, and consists of an array of integers. Since display pixels

are generated ‘on-the-fly’ from this data, only a single element of the data-set

needs to be accessed per clock.

48

Figure 4-9 Sample Histogram Content

A user does not interact directly with the histogram, other than through

zooming and scrolling via the appropriate mouse gestures.

4.3.5.2 Image Widget

The purpose of an image widget is to display the images after various stages of

an image processing algorithm. The image widget refers to the source image by

an integer id. The IP core is responsible for indicating the correct display pixel

format, which is forwarded by GateOS to the display.

The latencies inherent within the IP algorithm may require GateOS to start

fetching pixels for particular images columns or even rows in advance. Dealing

with these latencies can be quite complex, especially when windows overlap.

The display of some image widgets may be starved of pixel data (unless some

form of buffering is used). This resolution for this issue is discussed further in

section 4.5.1.

An IP algorithm may on occasion wish to annotate an image with text, labelling

objects or regions of interest. To do this, a number of label widgets can be

reserved for that particular window. The IP core would be responsible for

generating the text strings and the locations within the window at which the

widgets should be positioned.

49

4.3.5.3 Video Widget

In terms of real-time applications, there is no difference between an image and a

video widget. In most algorithms, the image will be changing dynamically;

otherwise there is little need for the FPGA. From a user’s perspective, a video

widget is quite similar to an image widget, except that the displayed frame

content on the video widget is subject to change at the underlying rate. This rate

is specified by the developer at compile-time.

A user should be able to freeze the video widget, such that its source stream of

images is frozen and the most recent frame or image is continuously displayed.

This is implemented with a ‘pause-play’ button. Additionally, a user may wish

to review individual frames of the input video stream. This would require

capturing a limited number of frames when the video stream is frozen, thus

requiring significant memory resources to buffer the frames. A user may then

step forward or back through these frames. These frames would be discarded

when the user indicates that the video widget should resume displaying the

live video feed. Again two buttons can provide the necessary interface for a

user to step back or forward respectively.

GateOS does not directly manage the image or video frames used by the

algorithms within the IP core. The primary reason for this is that it is very hard

for GateOS to cope, in a generic fashion, with the demands of each IP algorithm

with respect to image data being input/output. This is best illustrated with an

example IP core that requires six separate video streams as input to various IP

algorithms. Depending on the quantity and types of memory available on the

FPGA board, the required frame management system may need to perform

bank interleaving, skip frames and other such tasks. Therefore, it is up to the

developer of the IP core to construct a suitable frame management system for

50

their application. However, we do require that the developer conform to all

interfaces between the IP Core and GateOS (defined in section 4.4).

4.4 Data-Structures and Interactions

Several data-structures are required to store the properties and configuration

information of all the widgets in GateOS, as shown in Figure 4-11. Properties

that are common between widgets are stored within the same data structures.

The x, y, width and height properties are common to all widgets. There are

several ways in which these four properties can be stored:

• 4 arrays, one for each of x, y, width, height

• 1 array but with separate entries for x, y, width and height

• 1 array of structures containing x, y, width and height.

The first approach is the preferred option as it is more flexible with regards to

accessing properties of different windows concurrently. In order to conserve

hardware resources, fabric-RAM instead of registers should be used to

implement the data-structures.

The x and y widget properties will never change (except for label widgets used

to annotate images). With the exception of the histogram, image and video

widgets, the height and width properties of all other widgets remain constant.

The height and width properties of the three IP widgets may on rare occasions

need to be refreshed as the IP core may change the dimensions of their content

at run-time.

An interactive widget (a button, text edit or slider) should be able to directly

configure the parameters of an IP algorithm managed by the IP core. A suitable

interface is required to link the values of button, text edit and slider widgets to

the corresponding algorithm parameters.

51

Figure 4-10 B_VALUE and I_VALUE data structures

A possible approach would be to use a set of value registers as the interface

between GateOS and the IP core. To simplify the management, these would be

separated into two arrays – one of Boolean values (B_VALUE), and one of

integer values (I_VALUE) as illustrated in Figure 4-10. Algorithms in the IP core

are able to read from and occasionally write (push buttons) to the B_VALUE

and I_VALUE arrays at run-time. The corresponding widget stores the index to

the parameter, and accesses the value indirectly.

Figure 4-11 The data structures necessary for each widget type

52

Figure 4-12 Aligning common properties between widget's

The remaining properties for each widget can be concatenated into a single

variable. To reduce the decoding logic required, the string id property and the

value properties are aligned within each widget variable (see Figure 4-12). The

complete variable that retains each widgets properties are stored as an array in

fabric-RAM, using the widget’s unique id as an index.

4.4.1 Imaging widgets

Further data structures may be required by the IP core to provide the source

data used by the histogram widget and to buffer image and video frames.

The histogram widget needs to have access to an array of integers in order to

display its content. The IP core may need to randomly read/write to each array

of integers as the IP algorithm is executed. Since only a single read access per

clock is required from these arrays, they should be stored as FabricRAM or

even BlockRAM instead of registers, thus saving a significant amount of

hardware resources.

53

4.5 Scheduling and Display of Widgets

4.5.1 Image Layer

Only a single IP widget may be displayed on the ‘image’ layer. We can

construct a table that associates the image source with the window.

Some IP algorithms may impose both horizontal and vertical latencies between

the input and output streams of pixels. Thus, for a scan-line the content of an IP

widget may need to be scheduled well in advance of the display of its

associated window. A large vertical latency may require the content to be

scheduled even though the window is not visible on a scan-line. The

complications arising from this mean that one cannot guarantee that the content

of each IP widget will be fully displayed, unless extensive buffering is used.

Since a window has a 2-pixel border and a 16-pixel title-bar, it would be

relatively easy to support IP algorithms with less than 2 clocks horizontal and

16 lines vertical latency respectively. In such environments, the IP window

content would be scheduled in step with the regular window scheduling

faculties. Longer horizontal latencies are more likely; however, this would

require modifying the existing window handler to provide trigger signals to the

IP core with the required latency.

4.5.2 Algorithm Control Layer

For this layer, we need to be able to schedule the display of widgets that are

located within each window for a particular scan-line. Since several window's

may contain multiple widgets and overlap of windows is allowed, this

scheduling is somewhat more complicated than that required for the display of

54

windows. This is further complicated by the fact that some widgets may be

partially or fully occluded from view due to being positioned elsewhere in the

windows virtual coordinate space (which can be vertically and horizontally

scrolled).

The scheduler also needs to be able to transition from displaying a particular

widget to another within a single clock-cycle (this can occur when a widgets left

edge is adjacent to the right edge of a another widget within the same window).

Without assistance of expensive look-ahead tables, this clock cycle is

insufficient for a scheduler to ascertain the next widget to display. A possible

solution is to restrict the positioning of widgets such that look-ahead tables are

unnecessary. Imposing these restrictions (see below) would then allow the

widget scheduler to iterate through a list of widgets that are organised in the

order in which they are displayed on the window.

The first restriction is that a widget cannot overlap with another widget located

within the same layer of any window. This is easy to arrange, except perhaps

with labels used to annotate an image.

Figure 4-13 Valid and invalid widget layouts

The other restriction is that widgets must be grouped in consecutive horizontal

strips that are subject to the following conditions:

• The horizontal strips are not overlapping.

55

• Widgets must fit completely within a strip.

• Horizontally, within a strip, only a single widget may occupy any given

x coordinate.

This is very restrictive, especially where label widgets are used to annotate

images. However, this approach is the only one that currently works, hence its

usage in the current implementation of GateOS.

Figure 4-14 Order of widget data structures is determined by row then column

Each entry in the four core widget data-structures (x, y, width and height)

should be ordered first by horizontal strip then by the x coordinate (see Figure

4-14). While the algorithm control layer is being displayed, the widget manager

scans through the four core widget data structures and compares each entry

with the current display coordinates. If a widget entry has already been

displayed, then the widget manager proceeds to the next entry. This process

continues until the last widget in the horizontal strip is encountered.

During h-blanking, we check whether all widgets in the current horizontal strip

have been displayed (current display row > bottom edge of bottommost widget

in horizontal strip). If so, the real-time part of the algorithm resumes with the

next widget entry (in the ordered data-structures), which is the first entry of the

next horizontal strip. This requires that the index of the current widget of each

window be stored in a data-structure. The same is also true for the location of

the first entry in the current row of each window. Conversely, if one or more

56

widgets in the current horizontal strip are yet to be fully displayed, the widget

manger proceeds to the first entry in the current row. This process continues

until the last widget has been displayed on the algorithm control layer of the

current window.

The hardware resources required to implement this approach are considerable,

especially when compared to the system used for window management (refer

to the preliminary results in CHAPTER Seven). The current implementation of

GateOS uses a system of bitmasks to assist in the real-time identification of the

last widget in a horizontal strip (using the RMO Handel-C macro) as well as the

bottommost. In the absence of a suitable alternative, this approach seems to

work well even though it is expensive (due to the large multiplexors required).

4.5.3 Window Control Layer

The position and size of each window control widget relative to the window is

predefined. The display routine need only check which region of the window is

being displayed to identify the correct control widget to display. Since a control

widget may be visible on some windows and not others, an array of 1-bit flags

is used for each window to indicate whether a particular widget is visible or

not. This means that there only needs to be a single instance of each window

control widget that is shared across all windows.

4.6 Discussion

In the future, additional types of widgets could be used to perform more

advanced tasks. A good example of this may be the capability to consolidate a

set of buttons into a group. A block-based slider could be useful to give a more

57

visual representation of step size. Improvements could also be made with the IP

widgets so that there are possibilities for more user interaction (interactive

histograms that have movable ranges, images that pan or zoom when mouse

gestures are performed directly on them).

Displaying widgets in real-time can be a complex process since we are required

to display widgets on multiple windows that frequently overlap. This means

that the display of a particular widget can be interrupted due to a portion of

that widget being occluded from view. Coping with the horizontal and vertical

latencies of IP algorithms is a complex task; worthy of future research.

An alternative algorithm would be desirable for the scheduling and display of

widgets within the algorithm control layer. It should allow widgets to be

positioned anywhere within the layer, and not just in tabular rows. It may be

possible to adapt the approach used to manage and position windows to do the

same for widgets. Again further research in this area could be very beneficial to

GateOS.

58

CHAPTER FIVE

MANAGEMENT & DISPLAY OF TEXT

Chapter Outline

This chapter discusses the need for a text manager in GateOS. We identify the

requirements for this text manager and the context it will be used within

GateOS. Several potential designs are proposed to fulfill these requirements,

which include an image table approach and an alternate approach that

incorporates the use of a font table.

5.1 Introduction

One of the primary design goals of GateOS is to provide an interactive user

environment that facilitates the real-time debugging of image processing

algorithms on FPGAs. Invariably, this requires a user environment to display

text as an essential part of the Graphical User Interface (GUI). Text has long

been a standard method of conveying useful information to an end user. In fact,

ever since the introduction of the text-based console, the display of text has

been the primary method of communication between the user and any

operating system. With the advent of the GUI, there has been a movement away

from pure text to the use of icons and other visual cues by an operating system.

In spite of this move, however, text is still an integral part of any

communication between the operating system and a user.

Given that the primary function of GateOS is to provide tools that simplify

debugging and algorithm tuning, a fully-fledged text manipulation system

59

(multiple fonts, underlining...) would be overkill. Therefore, within GateOS,

text management is defined to be the system responsible for the storage and

retrieval of strings of characters that may be displayed in real time on the VDU.

These strings of characters can be either static (characters cannot be modified at

runtime) or dynamic (limited modification of characters is possible at runtime).

5.2 Requirements and Intended Usage

Text can be used to annotate windows, so as to explain each window’s purpose

to the user. Also, text may be used to annotate widgets (button widgets, text

edit widgets and stand-alone labels) in order to visually describe its current

state or display other useful information. Textual labels situated on images can

be used to indicate regions of interest to the user. Text can also be input from a

keyboard device and displayed within a text edit widget. It therefore follows

that the text management system will be required to display strings of

characters at particular locations on the VDU. The start or end of the displayed

strings may have pixels truncated, for example if a widget or window border is

encountered.

5.2.1 Window Labels

It is necessary for the text manager to be able to manage and display individual

textual labels for each window in GateOS. This label would enable the easy

identification of a window and provide some indication as to its purpose. Such

a label should be positioned directly below the topmost border of a window,

and should also be left-aligned. Doing this simplifies display offset calculations

(when compared to text being right aligned) and offers a familiar look to the

user (see Figure 5-1). In most instances the window label is defined at compile-

time, although for dynamic windows it may also be useful to allow the label to

60

be modified at run-time. Since the label is a simple textual annotation, the use of

a fixed-pitch font with a limited palette of colours is considered enough to fulfil

the basic requirements of a window label in GateOS.

Figure 5-1 A simple textual label displayed on a window

5.2.2 Widget Annotations

The text manager is also required to be able to manage and display textual

labels for widgets. Such labels are similar to those used by windows in GateOS,

as shown in Figure 5-2. Generally, the content of each textual label is unique to

each widget (except window buttons).

Normally, the label associated with a widget is constant. Some widgets (e.g.

particular types of buttons) may require two or more strings in order to

properly represent the state. At runtime, it is necessary for the widget to use the

current state to identify the correct string to be displayed.

Figure 5-2 String annotations on label and button widgets

61

5.2.3 Output Text Box

Output text boxes positioned within windows can be used to convey static

(help and useful tips) or dynamic (during debugging) information to the end-

user. The text manager would be required to manage and display the text

within the content area of this widget type. It should also provide support for

the runtime modification of the string.

5.2.4 Image annotations

From time to time, the developer may wish to annotate regions of interest on an

image. Such annotation consists of a short string that can be dynamically

instantiated and positioned anywhere on the image. The maximum number of

annotations per image needs to be determined at compile-time by the

developer. Since they appear on the widget layer (annotations are just label

widgets), the widget manager is responsible for their display. The visibility of

each annotation is controlled by the developer’s algorithms in the IP core (using

a bitmask).

5.2.5 Text editing

The text manager is also used to display the text in a text input widget. The

content of the string is edited at runtime by the user via the keyboard. The text

manager will be required to modify, insert or remove stored characters in

response to this user input.

62

5.3 Analysis and Design

The three key functions of the text manager are to provide storage for strings

(both static and dynamic), facilitate editing of dynamic strings and display the

appropriate strings on the display as requested by windows and widgets.

At a minimum, the text management system needs to provide support for at

least one font in order to visually represent characters on screen. For the sake of

simplicity, a fixed pitch font is used with the width and height of each character

being 2m and 2n respectively. This makes it easier to calculate the character

offsets on the display. Without these restrictions it would be necessary to

involve either using multipliers (which can get expensive) or calculating the

positions of each character by adding the widths as each character is displayed.

Hence, the current implementation of GateOS uses a single fixed-pitch font that

is 8 pixels wide and 16 pixels high for each character. The justification for this is

that a width of 4 pixels is too narrow to effectively represent the characters,

while a width of 16 pixels is too wide for most applications. A character width

of 8 pixels on a 640 by 480 screen gives up to 80 characters per scanline. A

similar argument can be made for the height, giving 8 or 16 as suitable heights.

It is also less important for the height to be a power of two unless we have

contiguous blocks of text. Finally, a single font (and size) was considered

sufficient for the requirements of GateOS. Supporting multiple fonts or sizes

would considerably expand the resources required to implement the text

manager on the FPGA.

In order to display text on the VDU, we have developed two separate

techniques. The first technique (section 5.3.1) uses bitmaps of entire strings of

characters and can only be used for displaying static text, while the second (see

section 5.3.2) uses bitmaps of individual characters that can display static and

dynamic text.

63

5.3.1 Image-Table Lookup Method

The simplest design for displaying text in GateOS is to represent each string by

a separate bitmap. All of the character strings used in GateOS would be stored

in a lookup table as a series of bitmaps. At run-time, the text manager, once

properly scheduled, provides a continuous stream of pixels obtained from this

table onto the output display.

There are two possible techniques to produce the data content to populate this

lookup table. The first technique makes extensive use of Handel-C’s pre-

processor macro capability. The second technique requires the construction and

use of an external tool, which manages all the character strings in GateOS by

creating the bitmaps and representing them in the form of a lookup table that

can be loaded by or included into Handel-C.

5.3.1.1 Construction using Pre-processor Macros

In this method we define a pre-processor constant that contains the bitmap for

each character used in GateOS. The total number of bits needed per character is

m x n bits, where m is the width of the character and n is its height. The

individual character constants are then combined to construct the bitmap for

the complete string, as shown in Listing 5-1 and in Figure 5-3. It must be noted

that the following example, which uses a 4x5 font for the sake of simplicity in

this thesis, may in fact make addressing quite awkward.

#define _A 0,1,0,0,
 1,0,1,0,
 1,1,1,0,
 1,0,1,0,
 1,0,1,0
#define _B 1,1,1,0,
 1,0,1,0,
 1,1,0,0,
 1,0,1,0,
 1,1,1,0
#define _C 1,1,1,0,
 1,0,0,0,
 1,0,0,0,
 1,0,0,0,
 1,1,1,0
unsigned 1 LUT_Text [] = {_A , _C, _B, _B, _A, _B, _C, _B};

Listing 5-1 Compiling an image table using bitmaps for the characters A, B and C

64

Figure 5-3 The construction of the String LUT at compile-time

The addressing is simplified if the bitmaps are stored column-wise rather than

row-wise. The steps between successive bits on a row would be a constant (the

character width) which is fixed at compile-time. The construction of the lookup

table then involves the repeated use of the macro character definitions. It must

be stated that all the bitmaps representing each string are combined into a

single table. The text manager could then access the bitmap data for a particular

string by its offset in the table. While this approach allows the strings to be

constructed within Handel-C, representing a string by a sequence of individual

letters is both clumsy and unnatural (as Handel-C lacks the capability to

manipulate and scan strings at compile-time),

5.3.1.2 Building string bitmaps with an external
program

To make the manipulation and bitmap construction a little more natural, an

external program could be created that converts characters strings into bitmaps.

This program would allow the strings to be more easily manipulated and result

in the semi-automatic generation of data content for the look-up table (see

Figure 5-4). The developer would still need to perform the supplementary step

of copying the bitmap data into the Handel-C source file.

65

Figure 5-4 The use of an external utility to construct Image Table

Changing the font style and the dimensions of characters can now be done with

relative ease, depending, of course, on how well the external program is coded.

The overall time required of the user to manage strings using this method

would be less than using Handel-C macros; however, some applications may

require many strings resulting in a lot of copying and pasting.

5.3.1.3 Discussion of both methods

Use of bitmaps to represent entire strings is unlikely to be useful in GateOS

because it is incapable of supporting dynamic text. The need to construct the

bitmap data for each string also makes it quite clumsy. The advantage of using

string bitmaps, however, is that they can offer a reduced resource count if only

a few static characters are required. Conversely, the look-up table may be

inefficient when using a large number of characters. There are no resource

compensations for repeated characters and due to the real-time constraints

imposed by GateOS, advanced image compression of the source images in the

lookup-table is not a feasible option. Run-length compression cannot easily be

used because it may be necessary to begin displaying part way through the

string (if the left of the string is covered by another window for example).

66

Three parameters are required to schedule the display of a string on-screen: a

string’s starting display offset, and the string’s starting and finishing offsets

within the bitmap lookup-table. An extra level of indirection can be applied

when there are a large number of strings in a GateOS. This involves storing

both the string start and stop offsets in a table and referencing strings indirectly

with a unique id as shown in Figure 5-5.

Figure 5-5 Possible implementation strategies

As a final note, storing this look-up table in Block RAM would be preferable

where the size of the lookup table is sufficiently large (BlockRAM is more

efficient in such situations); however, this depends on the size and availability

of BlockRAM.

5.3.2 Font Table Lookup Method

An alternative to using bitmaps to represent whole strings is to use the bitmaps

to represent individual characters. This requires an extra level of indirection

with a table used to store the characters of each strings, and these characters are

then used to index the character bitmaps in the font table, as shown in Figure

5-6.

67

Figure 5-6 Using bitmaps for individual characters

A standard ASCII character code requires 7 bits, thus the font table would need

to contain the bitmaps for 128 unique entries. To reduce the address decoding

logic to access a particular bit in the bitmap, the width and height of the

characters should each be a power of two. This then allows an address of a bit

in the font table to be formed by concatenating the character code, the row, and

the column. A single read of the font table could either return a single bit or a

row of pixels, depending on how the table is configured. Reading a row of data

would incur an additional resource penalty to buffer the output and shift it out

as a pixel stream. However, power savings may be possible with fewer reads

from the font table. Currently, a data-width of 1-bit has been selected to

minimise the resource requirements.

5.3.2.1 Character Scheduling

To accurately display a string of characters on screen, the text-manager needs to

be informed on which character to display next. A crude but simple method of

doing this is to manually schedule a new character with the text manager every

8 clock cycles (assuming a fixed character width of 8 pixels). Thus, the Handel-

C code to display the character string “Hello World” may resemble that in

Listing 5-2.

68

Clks Source
macro proc DoDelay(t){seq(i=0;i<t;i++){delay;}}
par {

88

 seq {
 CharGen_newchar = ‘H’; DoDelay(7);
 CharGen_newchar = ‘e’; DoDelay(7);
 CharGen_newchar = ‘l’; DoDelay(7);
 CharGen_newchar = ‘l’; DoDelay(7);
 CharGen_newchar = ‘o’; DoDelay(7);
 CharGen_newchar = ‘ ’; DoDelay(7);
 CharGen_newchar = ‘W’; DoDelay(7);
 CharGen_newchar = ‘o’; DoDelay(7);
 CharGen_newchar = ‘r’; DoDelay(7);
 CharGen_newchar = ‘l’; DoDelay(7);
 CharGen_newchar = ‘d’; DoDelay(7);
 CharGen_newchar = 0;
 }

8

while(CharGen_newchar != 0){
 Load = 1; //signal that a new character to be displayed

Load = 0; //reset signal
DoDelay(6);//wait for six cycles

}
}

Listing 5-2 The code required to schedule characters for the simplest text manager design

Such an approach can be quite cumbersome to code. The use of a loop that

iterates through a table of characters would be easier to code and use fewer

hardware resources. The string table contains the sequence of ASCII character

codes that complete a string. The text manager is then provided with the indices

of both the first and final characters in the string as well as the row number. A

display offset is also required to specify the exact location at which the text

manger starts generating character pixels. The text manager then iterates

through each character in the string and feeds them to the character generator

until the final character is encountered. The revised Handel-C program to

schedule and display one line of pixels from the text ‘Hello World’ on the

screen is shown in Listing 5-3.

Clks Source
macro proc DoDelay(t){seq(i=0;i<t;i++){delay;}}
ram char StringTable[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘ ’,‘W’,‘o’,‘r’,‘l’,‘d’};
macro expr IDC_STRING_1_START = 0;
macro expr IDC_STRING_1_END = 10;

1

for(i = IDC_STRING_1_START;i < IDC_STRING_1_END;i++) par{ //execute concurrently
Index = i; //the current character width
Offset = 0; //the starting character column is always zero
DoDelay(7); //wait for 7 clock cycles (assuming a fixed char width of 7)

}
Listing 5-3 The use of a dedicated String Table

One can eliminate the need to specify the final index of a string with two

modifications. The first involves the definition of a terminating character token.

69

NULL (0x00) is typically used for this. The second adjustment involves the

creation of two additional tables. The start index of each string is stored in the

first table and the full length of each string is stored in the second as shown in

Figure 5-7. For the current implementation of GateOS, we need to establish this

length of a string in a single clock cycle, in order to perform certain boundary

checks so as to avoid display overflow (since strings are stored sequentially in

the string table separated by a single null character token).

Figure 5-7 The string id and how it relates to the string, offset, and length tables

Thus, to properly schedule the display of a string with the text manager, one

need only specify the unique id of the string and the character offset within the

string. The character offset is needed for displaying text in an edit widget and

for resuming the display of partially occluded text. The revised Handel-C code

to display the text “Hello World” is shown in Listing 5-2. The internal

architecture that incorporates these changes is shown in Figure 5-8.

Clks Source
ram char StringTable[]={‘H’,‘e’,‘l’,‘l’,‘o’,‘ ’,‘W’,‘o’,‘r’,‘l’,‘d’};
ram char StringOffsetTable [] = {0};
ram char StringSizeTable [] = {13};
macro expr IDC_STRING1 = 0;

1
par {
 Start = IDC_STRING1;
 Offset = 0;
}

Listing 5-4 Scheduling a string with its unique ID

70

Figure 5-8 The Text Manager design

71

The preceding design uses a minimalist approach where registers are used to

store the results for each particular computation. The reason for using a multi-

cycle approach is influenced by two main factors; block-RAM timing

considerations and the desire to reduce the control path latency.

When a string is scheduled to be displayed, the text manager retrieves the total

length of the string from the size table and performs a check to guarantee that

the display offset is valid (it is not past the end of the string). If the display

offset is invalid, the text manager will suspend the output of characters to the

VDU, preventing the next string in the string table from being displayed. If the

string is confirmed to be valid, the text manger will then iterate through each

character in the string until the NULL token is encountered; at which time it

will halt. To prematurely flush the output of the text manager, it can be

scheduled with an empty string (which contains only a NULL token). The row

of the output character is specified by an input.

This system has a latency of two clock cycles from when a string is scheduled

(its ID is provided) until the pixels for that string appear at the output. For this

implementation, both the string and font tables are stored in separate Block

RAMs. If there are a large number of strings, then it may be necessary to place

both the size and offset tables in Block RAM; otherwise distributed RAM

should be sufficient.

5.4 Implementation

I have constructed two external tools to manage the tables used by the text

manager. The purpose of the first tool is to convert a simple bitmap file

containing the font table into a Handel-C compatible declaration. This tool is a

command-line program that was written in Visual Basic .Net. The second tool is

also written in Visual Basic .Net, and offers a GUI to allow users to directly

72

manipulate the strings used in GateOS. A screenshot of this program is

provided in Figure 5-9.

Figure 5-9 GUI Utility that manipulates the String Table

The GUI automatically generates the string, offset, and size tables in addition to

generating all the necessary Handel-C macro expressions that represent the

various parameters required by the text manger.

GateOS is able to provide a limited support for dynamic strings. A NULL token

is used in the string table to separate strings of characters. An additional token,

EMPTY, can be used to pad strings. The use of this token allows for a string to

expand or contract at runtime. For display purposes, EMPTY is also treated as a

string terminator.

Externally, one is able to schedule a string by providing the text management

system with that string’s unique id (as well as the starting character offset and

the current row) two clock cycles before it is to be displayed. This id is stored as

a property in the data structure representing the corresponding object.

73

5.5 Discussion

Currently, there are several limitations with regards to the management and

display of textual annotations in GateOS. Only a single font size and type is

allowed in order to reduce the FPGA resources used. It is not possible to store

and display variable width characters in the current implementation. Also,

characters are not allowed to overlap on the VDU.

In addition, only a single line of text can be displayed for each individual

annotation. The total number of strings is constant (each string is referenced by

a unique id); however, it is possible to resize the length of strings at run-time

due to the added level of indirection (the start and stop offset of each string

within the string table is stored in a separate data-structure). The latency (two

clocks) between the scheduling of a string and its subsequent display is

managed through pipe-lining.

The final approach taken fully satisfies the basic set of requirements for a text

manager in GateOS. Externally, it allows a developer to display annotations on

windows, widgets and images. Support for dynamic (runtime generated) text

has been proposed within this chapter, but due to time constraints, has yet to be

implemented in GateOS.

We have described two different methods of displaying strings of characters on

a VDU. One of which is capable of displaying only static text, while the other

method can display both static and dynamic text. We have attempted to

minimise the resource requirements while ensuring that the design is as flexible

as possible. This paves the way for future updates and new features, which may

improve a user’s interaction with GateOS. Such features may include support

74

for additional fonts, variable character sizes, Unicode alphabets and dynamic

text. However, for the present time, these features are not considered crucial.

75

CHAPTER SIX

INPUT MANAGEMENT

Chapter Outline

This chapter focuses on describing how GateOS interacts with both keyboard

and mouse input hardware. We discuss how keyboard and mouse cursors

displayed on a VDU can be used to represent input from these devices. We

describe keyboard and mouse interactions as well as those between a particular

input device and the various windows or widgets featured in GateOS.

6.1 Introduction

Interaction with GateOS may involve the use of both mouse and keyboard

input devices. The keyboard can be used to input characters into text widgets

and manipulate the state of button widgets, while a mouse can interact with

button, slider and edit widgets in addition to repositioning and resizing a

window.

An FPGA development board may incorporate one or more PS/2 ports in order

to accommodate keyboard and mouse devices. Each port uses two lines, clock

and data, for communication with the device. The FPGA, as the host, controls

both these lines and the low bit-rate serial data communications through them.

A device driver is required to manage the communication and provide a

programming interface between the device and the user’s code on the FPGA. If

a keyboard is connected to the PS/2 port, the driver must receive the keyboard

76

scan-codes and convert them to their associated ASCII character codes. If a

mouse is connected then the driver buffers the mouse button status and

integrates the movement vectors to obtain the mouse’s current position. If the

development board vendor does not provide appropriate board level drivers or

libraries, these must be developed as part of GateOS. We used the Platform

Abstraction Layer (PAL) library provided by Celoxica6.

6.2 Cursor Layer

The cursor layer is used by GateOS to display both the mouse and keyboard

cursors. This layer covers the entire screen area and has the highest display

priority of all layers within the system. Within this layer, the mouse cursor is

given priority over the keyboard cursor.

The keyboard cursor is a vertical, 1 pixel wide line of the same height as the

character font used by GateOS. Since the cursor will only interact with an edit

widget, it is only displayed if the widget’s window is active. The keyboard

cursor in the widget is situated in one of three possible locations; between

characters, before the first character or after the last character.

The mouse cursor can be positioned anywhere on the input layer. While in

principle, the cursor shape could be anything; we have implemented a white

arrow with a black border (the border enables the cursor to be clearly

distinguished against a white background) using a small (16x16) bitmap. The

bitmap therefore requires 3 values: black, white, and transparent.

The location of the keyboard or mouse cursor is represented by the coordinates

(x, y) of the top left pixel of the cursor. The keyboard cursor’s location is set

when the mouse cursor attaches it to a text edit widget. The keyboard cursor is

6 http://www.celoxica.com/products/dk/default.asp

77

repositioned to the nearest gap between characters in that widget. If the cursor

has a height of h pixels then it is displayed when the following conditions are

met:

hScreenYrsorYKeyboardCuScreenY
rsorXKeyboardCuScreenX

+<≤
≡

A simple Handel-C implementation of the previous condition checks may look

like:

(ScreenX == KCursorX) && (ScreenY ≥ KCursorY) && (KCursorY < ScreenY + n)

There are at least three addition/subtraction operations required here; which in

most situations, have a longer critical path than equality comparisons. We can

avoid using these by rewriting the previous statement as:

Clks Source
1 //during v-blanking

Counter = 0; //reset counter for next frame

1

//during active region
if (KCursorX == ScreenX) par { //execute concurrently

if (KCursorY == ScreenY)
 Counter = h; //first pixel in vertical line

else if(counter != 0)
 Counter--; //subsequent pixels vertical line

else
delay; //wait for 1 clock cycle

Tflag = 1; //the cursor is diplayed the next clock
}
else par { //execute concurrently

Cursor = Tflag & (Counter != 0); //Should the cursor be displayed ?
Tflag = 0; //reset Cursor output

}

The preceding code now has only a single decrement operation, which should

result in slightly less hardware being constructed. This is in spite of an

additional register for the counter and a flip-flop for the flag. By pipelining the

control path, it has a significantly shorter critical path with regards to timing

To display the mouse cursor, we need to know, both the row(x) and the

column(y) of the current mouse cursor pixel being output on the VDU and

ensure that the following conditions are met:

78

yScreenYrYMouseCursoScreenY
xScreenXrXMouseCursoScreenX

+<≤
+<≤

Written in Handel-C, this check condition may look like:

(ScreenX ≥ MCursorX) && (MCursorX < ScreenX + m) &&
(ScreenY ≥ MCursorY) && (MCursorY < ScreenY + n)

From the above statement we can see that at least six addition/subtraction

operations are required. A similar process to that used to display the keyboard

cursors can then be applied for the mouse cursor like so:

Clks Source

2
//during v-blanking
BaseOffset = 0;
ShiftReg = 0;

3

// during h-blanking
if(ShiftReg[0]){
 BaseOffset += m; //this is to avoid doing a multiplication (see below)
 ShiftReg >>= 1; // while the 0th bit is set, the cursor is displayed

x_cntr = m; // reset this
}
else delay

1

//during active region
par {
 if (KCursorX == ScreenX) par{

if (KCursorY == ScreenY)
 ShiftReg = ~ (0); //start displaying the cursor

else
delay; //delay for a clock cycle

x_cntr = 0; //reset the column counter
}
else if (ShiftReg[0] && x_cntr != m) par{

Output = CursorBitmap[BaseOffset + x_cntr] //output correct pixel
x_cntr++; //increment column counter

}
else delay;

}

The preceding Handel-C code requires only two addition operations, although

this is at the expense of some extra hardware logic. Several further

optimisations can be applied, such as eliminating the need for a base offset by

restricting the width of a mouse cursor to powers of two, or reading all the

pixels required for the next scan-line of the mouse cursor during horizontal

blanking.

79

6.3 Keyboard Input

Characters from the keyboard must first be filtered to remove unprintable

characters before being stored in the string table (for text edit widgets) or

interpreted as a command (for button widgets). The relatively slow input rate

allows characters to be processed serially during the vertical blanking period of

the output display driver. This also avoids resource access conflicts with the

string table, which is potentially being used by the text management system

during the display periods.

If either the ‘control’ or ‘alt’ keys are depressed when a character is entered,

then that input is treated as a command. Otherwise, the current input is treated

as a stream of input characters to an edit widget.

Each button in GateOS may have a ‘hotkey’ associated with it. If the keyboard

cursor is not attached to a text edit widget, then when characters are entered,

they are first compared against each button widget’s hotkey (located in the

widget data-structures). If a match is found (globally, not just the active

window), then the button's state is toggled, otherwise the input character is

discarded.

The id of the currently active edit widget is stored (in a register), as well as the

offset of the keyboard cursor from the start of the string that is displayed within

the widget.

6.4 Mouse Input

When a mouse button is pressed, it is necessary to identify the window and any

associated widget at that screen location. The most obvious solution involves

iterating through each window in order of priority to determine the window,

80

and then iterating through each widget contained by that window to identify

the widget. This approach would involve significant hardware resources.

Since GateOS uses on-the-fly pixel generation, the display process must

determine which window and widget is associated with each pixel on the

display in order to display it (this was covered in CHAPTER Two). Therefore

the hardware already exists to locate a window and widget from a pixel

position. When the display driver is at the mouse cursor position, the window

and widget currently being displayed can simply be recorded.

A mouse button click within an inactive window will make that window active

(and move it to top priority in the display order). A window can be

repositioned anywhere on screen by dragging it with the left mouse button

within that window’s title-bar. During such a drag operation, when the mouse

is moved, the window position is updated to maintain the same position

relative to the mouse. When the mouse button is released, the window will no

longer be repositioned. A window can be resized by dragging the right-angled

resize grip located on the bottom right window border. The coordinates of the

window’s bottom right position are then be continuously updated to reflect the

mouse’s drag movements.

A mouse cursor may also interact with a button widget. A right click anywhere

within the button widget’s content area will toggle its state value. In some

applications a push-button behaviour may be required. To accomplish this, IP

core simply resets the button to the default state after reading the associated

flag.

The mouse can also be used to reposition the keyboard cursor, and to attach it

to an edit widget. A mouse cursor can also be used to reposition up to two

slider bars within a slider widget. The mouse gestures involved with these tasks

are detailed in CHAPTER Four.

81

6.5 Discussion

The preceding material only describes GateOS as supporting a single mouse

and keyboard. For debugging and tuning image processing algorithms, this is

sufficient, however in principle there is little stopping multiple mice or

keyboards from being used. Supporting extra input devices would require more

PS/2 ports and associated driver hardware. The user interactions with GateOS

would also be more complicated since multiple windows would be active

simultaneously. One would have to resolve which active windows are topmost

or (possibly) occluded, as well as handling scheduling and management issues

that occur when two mice interact with the same window or widget.

82

CHAPTER SEVEN

DISCUSSION & CONCLUSIONS

Chapter Outline

This chapter reflects on the research completed on GateOS. Some of the more

important problems and limitations apparent in the current implementation of

GateOS are briefly explained. We also highlight potential areas that can be

targeted by future research.

The current approach taken towards the design of GateOS is both functional

and effective and is targeted towards supporting as many small and medium

scale FPGAs as possible. We have attempted to use a minimal amount of

resources to meet all of the requirements of GateOS. In this regard we have

succeeded in reusing hardware (using a single block of hardware and

multiplexing it for multiple items) for windowing, widgets and the control of

image processing algorithms. Overall, this approach has contributed

substantially to using FPGAs in stand-alone mode, this by providing tools for

tuning and debugging IP algorithms.

In reflection, some of the goals mentioned at the start of the thesis, seem to have

been somewhat optimistic rather than realistic. As the design of GateOS has

evolved, may compromises were necessary in order to fulfil the core goals of

the thesis; namely those pertaining to the use of a minimal amount of resources

for the implementation of each sub-system. Towards the end of the thesis, when

time was running short, sub-systems such as the non-volatile storage manager

and the frame-manager had to be defered in favor of providing a working

83

demonstration as proof of concept for GateOS. In time, these sub-systems will

be incorporated into GateOS, thus fully qualifying it as proper Operating

System, instead of the cut-down hybrid it is now.

The string management system in GateOS could be improved to support the

display of variable pitch fonts. The current design of the text management

system is capable of displaying any ASCII-coded character on the VDU. The

window management and display system has been the primary focus of much

of my research. The resulting algorithms and techniques achieve their objective

of displaying windows when using on-the-fly pixel generation. The approaches

used have most of the core window’s structures stored in RAM instead of

registers, thus saving a significant amount of FPGA resources. The widget

system currently functions in a limited capacity (widgets can only be displayed

in rows) and could benefit from additional work, particularly with regard to

finding an algorithm that would enable widgets to be positioned anywhere in a

window instead of being subject to tabular layout restrictions.

The text edit widget has been designed, but has not been implemented at this

stage, as it is considered to be less important than the other widgets. More

advanced keyboard input and gestures (such as scroll wheels manipulating

slider bars, or multiple mice controlling different windows concurrently) could

be used to perform additional tasks to enhance end-user interactions. Character

input into the text widget could conceivably be used by a developer at runtime

to identify, and subsequently save, images as files (for example in flash RAM).

A proper file system for nv-RAM storage that uses either some form of file

allocation table (FAT), or node based structures (EXTFS), could provide more

flexible storage of images than a block based approach (a file is stored as a

continuous block from a start offset to an end offset) . File-system operations are

inherently serial in nature, thus the use of a serial processor may be more

efficient (in terms of hardware resources) for this.

84

In the requirements section (see CHAPTER Two), the possibility of using a

scripting language to configure the various aspects of GateOS at compile-time

was considered. This concept could be extended by constructing a GUI that

would let the developer graphically configure the properties and behaviours of

windows, user widgets and IP widgets in addition to specifying their

relationships with the IP core (i.e. associate button widget six to index 4 in IP

core Boolean register bank). The developer could then directly position a

widget within a control window using a mouse on the host PC. This GUI would

then automatically generate the necessary Handel-C code that would configure

the appropriate sections of GateOS at compile-time.

Currently, the developer needs to construct and manage any image storage

areas required by their image processing algorithms. It may be possible for

GateOS to manage the memory management for simpler IP algorithms.

The next step for GateOS is to support the display of live video feeds. GateOS

could benefit from being able to display multiple overlapping video feeds

concurrently on the same VDU; so as to provide a better end-user experience

with debugging multiple algorithms or steps in an algorithm. The number of

concurrent video feeds is limited only by the storage memory available for

buffering the input video frames before they are processed by the IP algorithms.

Additional research is needed to support other types of histograms. Supporting

the display of 2-D histograms could be quite useful for particular IP algorithms.

Slices Used (out of 15,360)
Configuration 8 16 32 64

Simple Configuration (no widgets) 1253 slices 1339 slices 1462 slices 1759 slices

Table 7-1 Slices used on a Xilinx ML402 (Virtex 4) for 8, 16, 32 and 64 windows

85

Since the implementation of the windowing system in GateOS has undergone

several revisions, it is relatively stable. Because of this, the number of slices

used by the windowing system in GateOS has also undergone some reductions.

From the preliminary results shown in Table 7-1, it is evident that a small

increment in FPGA slices is required to support an increased number of

windows in GateOS.

The hardware requirements to implement the windowing system are listed in

Table 7-1. Adding additional windows requires only modest extra hardware.

The window manager itself does not change. Therefore, this extra hardware is

that required to store the window parameters and the window list and edge list

tables. The size of each of these tables is proportional to the number of

windows, and as these are stored in FabricRAM, the requirements for each

additional window are modest. Note that as more windows are used, the

number of bits required to represent a window ID also increases.

The algorithms for displaying and manipulating widgets are still being refined,

and as such a relatively large number of slices are used (3,275 slices for 6

windows and 16 widgets).

Components LUT FF Mem Other
Windows + Widgets (6 Windows + 16 Widgets) 3807 1407 6032 1757
Strings (Character Tables) 18 0 18720 9
Graphics (Mouse cursors) 0 0 18432 0
Fonts (Font table for Character Generator) 0 0 16384 0
Math (multi-cycle multiplication and division macros) 251 91 0 99
Display (selects the correct layer and pixel to display) 165 168 0 32
Mouse (one mouse) 100 100 0 20
Character Generator (generates characters for display) 76 46 0 34
Core (where everything starts) 3 13 0 0
TOTAL 4420 1825 59568 1951
Table 7-2 Breakdown of resources required, as estimated by the Celoxica build tools

To summarize, we have created a reusable, configurable windowing

environment for FPGAs in the form of GateOS. Preliminary results (see Table

86

7-1 and Table 7-2) indicate that GateOS could be a viable solution for tuning

and debugging image processing algorithms when operating an FPGA in the

stand-alone model. This thesis demonstrates that a windowing operating

system can be practically built on an FPGA. Although it is quite basic, even

minimalistic in its current form, it has served its purpose and can already be

used for the configuration and graphical debugging of image processing

algorithms on an FPGA. The source code for the current version of GateOS is

included on the CD attached to this thesis.

87

REFERENCES

Bailey, D.G., Gribbon, K, Johnston, C (2006). GATOS: A Windowing Operating

System for FPGAs. Proceedings of the third IEEE International

Workshop on Electronic Design, Test, and Applications (Delta 2006),

Kuala Lumpur, Malaysia, (pp 405-409)

Benitez, D. (2002). Performance of remote FPGA-based coprocessors for image-

processing applications. IEEE Euromicro Symposium on Digital System

Design (pp. 268-275).

Chan, S. C., Tsui, K. M., Yeung, K. S., & Yuk, T. I. (2007). Design and

Complexity Optimization of a New Digital IF for Software Radio

Receivers With Prescribed Output Accuracy. IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications , 54 (2), (pp

351-366).

Crookes, D., Alotaibi, K., Bouridane, A., Donachy, P., & Benkrid, A. (1998). An

environment for generating FPGA architectures for image algebra-based

algorithms. IEEE International Conference on Image Processing. 3, (pp. 990-

994).

Gribbon, K.T., Johnston, C.T., Bailey, D.G. (2006). Formalizing Design Patterns

for Image Processing Algorithm Development on FPGAs, Proceedings of

the third IEEE International Workshop on Electronic Design, Test, and

Applications (Delta 2006), Kuala Lumpur, Malaysia, (pp 47-53)

Hemmert, K. S., & Underwood, K. D. (2007). Floating-Point Divider Design for

FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems ,

15 (1), (pp 115-118).

Hsiao, P.-Y., Li, L.-T., Chen, C.-H., Chen, S.-W., & Chen, S.-J. (2005). An FPGA

architecture design of parameter-adaptive real-time image processing

system for edge detection. IEEE Emerging Information Technology

Conference (p 3).

88

Johnston, C.T., Bailey, D.G., Gribbon, K.T.(2005). Optimisation of a color

segmentation and tracking for real-time FPGA implementation, Image

and Vision Computing New Zealand, Dunedin, New Zealand, (pp 422-427)

McCurry, P., Morgan, F., & Kilmartin, L. (2001). Xilinx FPGA implementation of

an image classifier for object detection applications. IEEE International

Conference on Image Processing. 3, (pp 346-349).

Ramdas, T., Ang, L.-m., & Egan, G. (2004). FPGA implementation of an integer

MIPS processor in Handel-C and its application to human face detection.

IEEE Region 10 Conference. 1, (pp 36-39).

Tahoori, M. B. (2006). Application-Dependent Testing of FPGAs. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems , 14 (9), (pp

1024-1033).

Tessier, R., Betz, V., Neto, D., Egier, A., & Gopalsamy, T. (2007). Power-Efficient

RAM Mapping Algorithms for FPGA Embedded Memory Blocks. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems ,

26 (2), (pp 278-290).

Tomko, K. A., & Tiwari, A. (2000). Hardware/software co-debugging for

reconfigurable computing. IEEE High-Level Design Validation and Test

Workshop. (pp. 59-63).

Uzun, I., & Bouridane, A. (2003). FPGA implementations of fast fourier

transforms for real-time signal and image processing. IEEE International

Conference on Field-Programmable Technology (FPT) (pp 102-109).

Vitabile, S., Gentile, A., Siniscalchi, S., & Sorbello, F. (2004). Efficient rapid

prototyping of image and video processing algorithms. IEEE Euromicro

Symposium on Digital System Design (pp 452-458).

Wigley, G., & Kearney, D. (2001). The First Real Operating System for

Reconfigurable Computers. IEEE Computer Systems Architecture

Conference Gold Coast, Qld., Australia (pp 130-137).

Yano, Y., Hashimiyama, T., & Okuma, S. (1999). On-line filter generation for

binary image processing using FPGA. IEEE International Conference on

Systems, Man, and Cybernetics. 5, (pp 565-570).

89

Yiannacouras, P., Steffan, J. G., & Rose, J. (2007). Exploration and Customization

of FPGA-Based Soft Processors. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems , 26 (2), (pp 266-277).

	Copyright statement.pdf
	GateOS - A Windowing Environment and Operating System for FP.pdf

