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Abstract

Bread dough sheeting is an important operation in the bread making industry. The
process involves the passing of a mass of dough between two, or more, rotating rollers.
The function of sheeting can be: 1) to shape the dough, ii) to laminate layers of product

together or iii) to develop the gluten network, which gives dough many of its properties.

The model developed, in this thesis, describes the dough sheeting process using a
continuum mechanics approach, solved using a perturbation technique. The bread
dough rheology is described using the Criminale-Ericksen-Filbey (CEF) viscoelastic
constitutive equation. It was thought that this approach may model the process better
than the viscous models used elsewhere. The perturbation technique, used in solution,
meant that the model remained computationally swift. The CEF equation was used as it
is reasonably simple mathematically and measuring the required dough properties was
quite straightforward, although, as was discovered, reproducibly measuring the
properties of bread dough is never easy, not least because of the history dependent
nature of bread dough. Some important assumptions made, in this model, on the basis
of literature and preliminary experiments, were that: the process is two-dimensional; the
process is at steady state; the process is unaffected by inertia, temperature or gravity;
some parts of the process (conveyor belt speeds, for example) are unimportant; and that

the dough is incompressible.

It was found that such a model can be used to predict the exit height of the dough, the
forces and torques experienced by the rollers, and velocity and pressure profiles in the
dough. The predictions were qualitatively consistent with validation data gathered on a
pilot plant sheeter, but there were some large quantitative inaccuracies, particularly with
the exit height prediction (as there is with viscous models). The inaccuracies suggest
that such an approach to modelling bread dough sheeting misses some important facet
of the process, possibly the compressibility of the dough. That is, a viscoelastic
description of the process material will not, alone, lead to a complete model of the

dough sheeting process.
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List of Symbols Used

The following symbols and their units are used in this thesis. Definitions are also given
in the main text.

a, b,c,d constants -

@3 specific heat capacity kJ kg™ K
De Deborah number -
DS digital signal -
kJ kg™ or
E energy input during sheeting W hkg™
F force N
g acceleration due to gravity ms
G modulus of elasticity Pa
G* complex modulus of elasticity (= G’ +iG”’) Pa
h height of dough sheet m
H gap between viscometer plates m
i/ 2" moment of inertia m*
ij index variables -
K power-law consistency index Pas"
[ (j ij) elongation tensor (rate of elongation tensor) (section 4.2) s™h
m mass kg
m power law flow behaviour index (1% nommal stress coefficient) ~ —
n power law flow behaviour index -
p, P pressure Pa
R radius (roller) m
R Pearson correlation coefficient -
Re Reynolds number ~
s Laplace co-ordinate variable —
t time co-ordinate S
T, M torque Nm
U,v,w x,Y,zvelocity components ms™'
U, tangential velocity at roller surface ms™
W width of dough sheet m



Y, ¥,

Tj (ry‘ )

co-ordinate directions

Laplace transform of variable X

reduction ratio :E

angular velocity of parallel plate viscometer
1 and 2™ Normal Stress coefficient

angle

response coefficient for coded variable x
nip gap between the rollers

Kronecker delta

: o
eometry ratio | = [—
seomery o [ - [

strain tensor (rate of strain tensor)
viscosity

complex viscosity (=n’ +in’’)
time constant

friction coefficient

density

total stress tensor

deviatoric or shear stress tensor (rate of ...)

oscillatory strain frequency

rad s~

Pas™

kg m
Pa

Pa
Hz
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