Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A STUDY OF SOME ASPECTS OF THE METABOLIC PROFILE OF GRAZING DAIRY CATTLE

IN NEW ZEALAND

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN VETERINARY SCIENCE AT MASSEY UNIVERSITY

MAX MERRALL

B.V.Sc.

JUNE 1982

60631,22

ABSTRACT

Groups of cattle on three dairy units at Massey University were sampled on a monthly basis for a period of twelve months to collect data on 11 blood parameters that would provide the basis for a metabolic profile for grazing dairy cattle in New Zealand. The parameters selected were those initially in the 'Compton Profile' i.e. haematocrit, haemoglobin, total protein, albumin, urea nitrogen, glucose, sodium, potassium, magnesium, calcium and inorganic phosphate.

Comparison between the Massey and the U.K. results revealed that haematocrit and haemoglobin values were lower and serum total protein, urea nitrogen and glucose values higher than the comparable figures for the U.K. and almost all parameters for the New Zealand data were more variable. Possible reasons for differences were discussed.

The design of the investigation permitted the estimation of a number of sources of variation, namely season, lactation and age. To obtain additional information a further herd was sampled for another year and in another location. Seasonal variation occurred with most parameters although this was minimal with sodium and potassium. The seasonal variation in haematocrit and haemoglobin followed a consistent pattern with high values in winter and summer and low values in autumn and spring. Urea nitrogen values showed marked changes which followed the variation in pasture protein content but which were apparently modified by the amount of feed offered. In the case of other parameters seasonal change appeared to be minor and/or inconsistent; nevertheless it could at times be important, e.g. low serum magnesium in the spring in one herd only.

Stage of lactation appeared to have little influence on the values recorded except at times of peak lactation when nutritional insufficiency was also present. Inorganic phosphate and calcium showed a decrease with age and globulin showed an increase; the extent of these changes was relatively small. Age had minimal influence on all other parameters measured.

In an attempt to define other factors contributing to the variation observed an additional two investigations were carried out: the first where sets of identical twin cows were sampled daily for three consecutive days each month for thirteen months; the second where two hourly samples were collected for a 12 day period from cattle which were housed, and fed and milked on a rotation which allowed the effects of diurnal variation (if any) and the influence of these two variables to be separated.

Monthly changes in the values of the parameters, which represent the combined effects of season and lactation, was an important source of variation in all cases but daily variation was found to be relatively unimportant. Significant genetic effects were observed with haematocrit and haemoglobin, to a lesser extent with urea nitrogen, total protein and albumin, and to a minor extent with glucose, potassium, calcium and inorganic phosphate.

Significant diurnal rhythms were observed with sodium, calcium and inorganic phosphate, with the latter two tending to move together. Time since milking was relatively unimportant as a source of variation.

Time since feed was first offered was an important source of variation in the case of haematocrit, haemoglobin and inorganic phosphate while the amount of feed consumed was important with haematocrit, haemoglobin, total protein, albumin and calcium.

Despite the efforts that were made to standardise procedures throughout the entire investigation, and to partition the total variance to a number of likely sources, the residual variation remained high. Further investigations are warranted to define further the factors that contribute to this residual variation before the potential of the 'metabolic profile' as a diagnostic tool can be properly exploited.

v

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisors, Prof. E.D. Fielden, Prof. R.E. Munford and Dr R.M. Greenway for their interest, advice, guidance and encouragement during the entire course of this study.

For the work with the animals, Alan Lowe, manager of the Identical Twin Research and Development Unit was a major source of help; also instrumental in the supply of stock were Maurice Newth, manager No. 1 Dairy Unit and Brian Johnson, manager No 3. Dairy Unit. During the trial when the animals were in the barn, Alan Lockyear of the Animal Physiology Unit helped prepare and maintain the facilities and Jim Thompson of the Department of Veterinary Clinical Sciences was responsible for milking the cows and cleaning the barn.

Mr D.C. Anderson, Senior Veterinarian, Rangitaiki Plains Veterinary Club was responsible for sampling the animals in the Awaroa herd and Mr C. Blackshaw was responsible for performing the haematocrit estimations and preparing the samples for freezing and despatch to Massey - to both I extend my thanks.

During the course of this project I have been assisted by a number of other technical staff and my thanks go also to them; they include Gail Bowman, Julia Chrisfield, Rose Law, Lynn Bell and Carol Black. Besides the sterling work of Mrs V. Fieldsend who has typed the major portion of the draft and virtually all the final copy, typing help has been given by Elizabeth Ellis, Hazel Boudreau, Sue Shirriffs, Joy Pearce and Alison Cleaver.

I am also grateful to Mr I.J. Steffert and other academic staff of the Veterinary Faculty for their support and tolerance during the project and for the many discussions, including those with members of the Dairy Husbandry Department, that have helped me formulate my ideas and conclusions concerning this investigation.

I would like to thank my late parents, especially my father. Both gave me much encouragement and my father's desire to help was so great I asked him to prepare the flow chart diagrams in Appendix B - a task he successfully completed before his death in 1977.

Finally my thanks deservedly go to my long suffering wife and family who for years listened to me talk of my work and 'my thesis' and who with me are sharing my excitement now. Without their support and encouragement the task would have been much less the pleasure and absorbing interest it has been.

TABLE OF CONTENTS

ABSTRACT		iii
ACKNOWLEDGEMENTS		
LIST OF TABLES		
LIST OF FIGURES		xii
CHAPTER I	INTRODUCTION	1
CUADTED II	DEVITELL OF I TWEDATIDE	1.
CHAPIER II	REVIEW OF LITERATORE	4
	A. Development and use of metabolic profile tests in cattle	4
	B. Selected literature concerning the	
	parameters studied	11
	Haematocrit (PCV)	12
	Haemoglobin	14
Total serum protein and albumin		26
Urea nitrogen		36
Glucose		44
	Sodium	58
κ. κ	Potassium	67
	Magnesium	74
	Calcium	91
	Inorganic phosphate	108
CHAPTER III	MATERIAL AND METHODS	122
	Part A (Massey Dairy Units)	122
	Part B (Awaroa Herd)	128
	Part C (Identical Twin Trial)	129
	Part D (Indoor Housing Trial)	130
	The Analytical Procedures	133
	Statistical Analysis	144

		Page
CHAPTER IV	RESULTS AND DISCUSSION - PART A	148
	Key to Graphs Chapter IV Facing	159
	Haematocrit and haemoglobin	148
	Total protein and albumin	169
	Urea nitrogen	185
	Glucose	194
	Sodium and potassium	203
	Magnesium	219
	Calcium	227
	Inorganic phosphate	235
CHAPTER V	RESULTS AND DISCUSSIONS - PART B	243
	Key to Graphs Chapter V Facing	246
	Haematocrit	243
	Total protein and albumin	249
	Urea nitrogen	252
	Glucose	254
	Sodium and potassium	254
	Magnesium	257
	Calcium	261
	Inorganic phosphate	264
CHAPTER VI	RESULTS AND DISCUSSIONS - PART C	267
	Haematocrit and haemoglobin	268
	Total protein and albumin	268
	Urea nitrogen	273
	Glucose	273
	Sodium and potassium	275
	Magnesium	279
	Calcium	279
	Inorganic phosphate	282
CHAPTER VII	RESULTS AND DISCUSSIONS - PART D	285
	Haematocrit and haemoglobin	287
	Serum total protein and albumin	290
	Urea nitrogen	290

		Page
	Glucose	290
	Sodium	290
	Potassium	291
	Magnesium	291
	Calcium	292
	Inorganic phosphate	292
CHAPTER VIII	SUMMARY AND CONCLUSIONS	295
	Mean values for the parameters measured	297
	Genetic influences	298
	Age effects	299
	Seasonal effects	299
	Stage of lactation	301
	Monthly variation	301
	Daily variation	302
	Diurnal variation	302
	Amount of feed consumed	302
	Time since feeding	302
	Time since milking	302
	Application of metabolic profiles to dairy herds	303
DIDI TOODADUN		205
BIBLIOGRAPHY	Addendum to Bibliography	305
APPENDICES	A. Chemicals used in the methodology	i
	B. Auto-analyzer manifold flow charts	ix
	C. 1. Means of parameters derived from Part C of the Study	xiv
	2. Summary of the procedure used to estimate the components of variance	xv
	35. Correlations between haematocrit and haemoglobin and the other variables	xvi
	D. Analyses of variance for the parameters for amount of feed consumed, time since feeding, time since milking and time of day.	xix
	E. Copy of a paper "A Metabolic Profile of Grazing Dairy Cattle for a One Year Period" Presented at the 9th Internatio Congress on Diseases of Cattle. Paris 19	xxx nal 76.

х

LIST OF TABLES

Table		Page
II: 1	CHANGES IN BLOOD GLUCOSE IN RESPONSE TO FEEDING	51
IV: 1	MEANS (± sd) FOR BLOOD PARAMETERS FROM MASSEY DATA AND UNITED KINGDOM DATA	149
IV: 2	PERCENTAGE OF VARIATION EXPLAINED (R ²) - MASSEY UNITS	150
V: 1	MEANS AND STANDARD DEVIATIONS FOR THE AWAROA HERD TOGETHER WITH THE CALCULATED MEANS FOR THE THREE MASSEY UNITS AND A COMBINED MASSEY-AWAROA MEAN	244
V: 2	PERCENTAGE OF VARIATION EXPLAINED(R ²) - AWAROA HERD	245
VI: 1	ANALYSIS OF VARIANCE, HAEMATOCRIT	269
VI: 2	ANALYSIS OF VARIANCE, HAEMOGLOBIN	270
VI: 3	ANALYSIS OF VARIANCE, TOTAL PROTEIN	271
VI: 4	ANALYSIS OF VARIANCE, ALBUMIN	272
VI: 5	ANALYSIS OF VARIANCE, UREA NITROGEN	274
VI: 6	ANALYSIS OF VARIANCE, GLUCOSE	276
VI: 7	ANALYSIS OF VARIANCE, SODIUM	277
VI: 8	ANALYSIS OF VARIANCE, POTASSIUM	278
VI: 9	ANALYSIS OF VARIANCE, MAGNESIUM	280
VI:10	ANALYSIS OF VARIANCE, CALCIUM	281
VI:11	ANALYSIS OF VARIANCE, INORGANIC PHOSPHATE	283
VI:12	SUMMARY OF THE COMPONENTS OF VARIANCE FOR THE ELEVEN PARAMETERS EXPRESSED AS PERCENTAGE OF THE TOTAL VARIANCE FOR EACH PARAMETER	284
VII: 1	CORRELATION BETWEEN THE INDEPENDENT VARIABLES	286
VII: 2	THE EXTENT OF VARIATION IN BLOOD MEASUREMENTS ASSOCIATED WITH THE AMOUNT OF FOOD EATEN, TIME SINCE FEEDING, TIME SINCE MILKING AND TIME OF DAY	288

LIST OF FIGURES

Figur	2	×	Page
II:	1	Pathways of energy metabolism in the bovine	46
IV:	1	Unit 1, haematocrit, time in 4 wk intervals	159
IV:	2	Unit 2, haematocrit, time in 4 wk intervals	159
IV:	3	Unit 3, haematocrit, time in 4 wk intervals	159
IV:	4	All 3 Massey units, haematocrit, simultaneous plot	159
IV:	5	Unit 1, haematocrit, wks in milk	160
IV:	6	Unit 2, haematocrit, wks in milk	160
IV:	7	Unit 3, haematocrit, wks in milk	160
IV:	8	All 3 Massey units, haematocrit, wks in milk	160
IV:	9	Unit 1, autumn calving group, haematocrit, time in 4 wk intervals	161
IV:	10	Unit 1, spring calving group, haematocrit, time in 4 wk intervals	161
IV:	11	Unit 1, autumn and spring calving groups, haematocrit, simultaneous plot	161
IV:	12	Unit 1, autumn calving group, haematocrit, wks in milk	162
IV:	13	Unit 1, spring calving group, haematocrit, wks in milk	162
IV:	14	Unit 1, autumn and spring calving groups, haematocrit, wks in milk	162
IV:	15	Unit 1, haematocrit, age	163
IV:	16	Unit 2, haematocrit, age	163
IV:	17	Unit 3, haematocrit, age	163
IV:	18	All 3 Massey units, haematocrit, age	163
IV:	19	Unit 1, haemoglobin, time in 4 wk intervals	164
IV:	20	Unit 2, haemoglobin, time in 4 wk intervals	164
IV:	21	Unit 3, haemoglobin, time in 4 wk intervals	164

IV:	22	All 3 Massey units, haemoglobin, simultaneous plot	164
IV:	23	Unit 1, haemoglobin, wks in milk	165
IV:	24	Unit 2, haemoglobin, wks in milk	165
IV:	25	Unit 3, haemoglobin, wks in milk	165
IV:	26	All 3 Massey units, haemoglobin, wks in milk	165
IV:	27	Unit 1, autumn calving group, haemoglobin time in 4 wk intervals	166
IV:	28	Unit 1, spring calving group, haemoglobin time in 4 wk intervals	166
IV:	29	Unit 1, autumn and spring calving groups, haemoglobin, simultaneous plot	166
IV:	30	Unit 1, autumn calving group, haemoglobin, wks in milk	167
IV:	31	Unit 1, spring calving group, haemoglobin, wks in milk	167
IV:	32	Unit 1, autumn and spring calving groups, haemoglobin, wks in milk	167
IV:	33	Unit 1, haemoglobin, age	168
IV:	34	Unit 2, haemoglobin, age	168
IV:	35	Unit 3, haemoglob o, age	168
IV:	36	All 3 Massey units, haemoglobin, age	168
IV:	37	Unit 1, total protein, time in 4 wk intervals	175
IV:	38	Unit 2, total protein, time in 4 wk intervals	175
IV:	39	Unit 3, total protein, time in 4 wk intervals	175
IV:	40	All 3 Massey units, total protein, simultaneous plot	175
IV:	41	Unit 1, total protein, wks in milk	176
IV:	42	Unit 2, total protein, wks in milk	176
IV:	43	Unit 3, total protein, wks in milk	176
IV:	44	All 3 Massey units, total protein, wks in milk	176

IV:	45	Unit 1, autumn calving group, total protein, time in 4 wk intervals	177
IV:	46	Unit 1, spring calving group, total protein, time in 4 wk intervals	177
IV:	47	Unit 1, autumn and spring calving groups, total protein, simultaneous plot	177
IV:	48	Unit 1, autumn calving group, total protein, wks in milk	178
IV:	49	Unit 1, spring calving group, total protein, wks in milk	178
IV:	50	Unit l, autumn and spring calving groups, total protein, wks in milk	178
IV:	51	Unit 1, total protein, age	179
IV:	52	Unit 2, total protein, age	179
IV:	53	Unit 3, total protein, age	179
IV:	54	All 3 Massey units, total protein, age	179
IV:	55	Unit 1, albumin, time in 4 wk intervals	180
IV:	56	Unit 2, albumin, time in 4 wk intervals	180
IV:	57	Unit 3, albumin, time in 4 wk intervals	180
IV:	58	All 3 Massey units, albumin, simultaneous plot	180
IV:	59	Unit 1, albumin, wks in milk	181
IV:	60	Unit 2, albumin, wks in milk	181
IV:	61	Unit 3, albumin, wks in milk	181
IV:	62	All 3 Massey units, albumin, wks in milk	181
IV:	63	Unit 1, autumn calving group, albumin, time in 4 wk intervals	182
IV:	64	Unit 1, spring calving group, albumin, time in 4 wk intervals	182
IV:	65	Unit 1, autumn and spring calving groups, albumin, simultaneous plot	182
IV:	66	Unit 1, autumn calving group, albumin, wks in milk	183

IV:	67	Unit 1, spring calving group, albumin, wks in milk	183
IV:	68	Unit 1, autumn and spring calving groups, albumin, wks in milk	183
IV:	69	Unit 1, albumin, age	184
IV:	70	Unit 2, albumin, age	184
IV:	71	Unit 3, albumin, age	184
IV:	72	All 3 Massey units, albumin, age	184
IV:	73	Unit 1, urea nitrogen, time in 4 wk intervals	188
IV:	74	Unit 2, urea nitrogen, time in 4 wk intervals	188
IV:	75	Unit 3, urea nitrogen, time in 4 wk intervals	188
IV:	76	All 3 Massey units, urea nitrogen, simultaneous plot	188
IV:	77	Unit 1, urea nitrogen, wks in milk	189
IV:	78	Unit 2, urea nitrogen, wks in milk	189
IV:	79	Unit 3, urea nitrogen, wks in milk	189
IV:	80	All 3 Massey units, urea nitrogen, wks in milk	189
IV:	81	Unit 1, autumn calving group, urea nitrogen, time in 4 wk intervals	190
IV:	82	Unit 1, spring calving group, urea nitrogen, time in 4 wk intervals	190
IV:	83	Unit 1, autumn and spring calving groups, urea nitrogen, simultaneous plot	190
IV:	84	Unit 1, autumn calving group, urea nitrogen, wks in milk	191
IV:	85	Unit 1, spring calving group, urea nitrogen, wks in milk	191
IV:	86	Unit 1, autumn and spring calving groups, urea nitrogen, wks in milk	191
IV:	87	Unit 1, urea nitrogen, age	192
IV:	88	Unit 2, urea nitrogen, age	192
IV:	89	Unit 3, urea nitrogen, age	192

IV: 90	All 3 Massey units, urea nitrogen, age	192
IV: 91	Variation in pasture nitrogen with time of year	193
IV: 92	Unit 1, glucose, time in 4 wk intervals	198
IV: 93	Unit 2, glucose, time in 4 wk intervals	198
IV: 94	Unit 3, glucose, time in 4 wk intervals	198
IV: 95	All 3 Massey units, glucose, simultaneous plot	198
IV: 96	Unit 1, glucose, wks in milk	199
IV: 97	Unit 2, glucose, wks in milk	199
IV: 98	Unit 3, glucose, wks in milk	199
IV: 99	All 3 Massey units, glucose, wks in milk	199
IV:100	Unit 1, autumn calving group, glucose, time in 4wk intervals	200
IV:101	Unit 1, spring calving group, glucose, time in 4 wk intervals	200
IV:102	Unit 1, autumn and spring calving groups, glucose, simultaneous plot	200
IV:103	Unit 1, autumn calving group, glucose, wks in milk	201
IV:104	Unit 1, spring calving group, glucose, wks in milk	_201
IV:105	Unit 1, autumn and spring calving groups, glucose, wks in milk	201
IV:106	Unit 1, glucose, age	202
IV:107	Unit 2, glucose, age	202
IV:108	Unit 3, glucose, age	202
IV:109	All 3 Massey units, glucose, age	202
IV:110	Unit 1, sodium, time in 4 wk intervals	209
IV:111	Unit 2, sodium, time in 4 wk intervals	209
IV:112	Unit 3, sodium, time in 4 wk intervals	209

IV:113 All 3 Massey units, sodium, simultaneous plot 209

IV:114	Unit 1, sodium, wks in milk	210
IV:115	Unit 2, sodium, wks in milk	210
IV:116	Unit 3, sodium, wks in milk	210
IV:117	All 3 Massey units, sodium, wks in milk	210
IV:118	Unit 1, autumn calving group, sodium, time in 4 wk intervals	211
IV:119	Unit 1, spring calving group, sodium, time in 4 wk intervals	211
IV:120	Unit 1, autumn and spring calving groups, sodium, simultaneous plot	211
IV:121	Unit 1, autumn calving group, sodium, wks in milk	212
IV:122	Unit 1, spring calving group, sodium, wks in milk	212
IV:123	Unit 1, autumn and spring calving groups, sodium, wks in milk	212
IV:124	Unit 1, sodium, age	213
IV:125	Unit 2, sodium, age	213
IV:126	Unit 3, sodium, age	213
IV:127	All 3 Massey units, sodium, age	213
IV:128	Unit 1, potassium, time in 4 wk intervals	214
IV:129	Unit 2, potassium, time in 4 wk intervals	214
IV:130	Unit 3, potassium, time in 4 wk intervals	214
IV:131	All 3 Massey units, potassium, simultaneous plot	214
IV:132	Unit 1, potassium, wks in milk	215
IV:133	Unit 2, potassium, wks in milk	215
IV:134	Unit 3, potassium, wks in milk	215
IV:135	All 3 Massey units, potassium, wks in milk	215
IV:136	Unit 1, autumn calving group, potassium, time in 4 wk intervals	216

-	•			
- H'	п.	011	r	0
	*	Au	÷.	5

IV:137	Unit 1, spring calving group, potassium, time in 4 wk intervals	216
IV:138	Unit 1, autumn and spring calving groups, potassium, simultaneous plot	216
IV:139	Unit 1, autumn calving group, potassium, wks in milk	217
IV:140	Unit 1, spring calving group, potassium, wks in milk	217
IV:141	Unit 1, autumn and spring calving groups, potassium, wks in milk	217
IV:142	Unit 1, potassium, age	218
IV:143	Unit 2, potassium, age	218
IV:144	Unit 3, potassium, age	218
IV:145	All 3 Massey units, potassium, age	218
IV:146	Unit 1, magnesium, time in 4 wk intervals	222
IV:147	Unit 2, magnesium, time in 4 wk intervals	222
IV:148	Unit 3, magnesium, time in 4 wk intervals	222
IV:149	All 3 Massey units, magnesium, simultaneous plot	222
IV:150	Unit 1, magnesium, wks in milk	223
IV:151	Unit 2, magnesium, wks in milk	223
IV:152	Unit 3, magnesium, wks in milk	223
IV:153	All 3 Massey units, magnesium, wks in milk	223
IV:154	Unit 1, autumn calving group, magnesium, time in 4 wk intervals	224
IV:155	Unit 1, spring calving group, magnesium, time in 4 wk intervals	224
IV:156	Unit 1, autumn and spring calving groups, magnesium, simultaneous plot	224
IV:157	Unit 1, autumn calving group, magnesium, wks in milk	225
IV:158	Unit 1, spring calving group, magnesium, wks in milk	225

igure		Page
IV:159	Unit 1, autumn and spring calving groups, magnesium, wks in milk	225
IV:160	Unit 1, magnesium, age	226
IV:161	Unit 2, magnesium, age	226
IV:162	Unit 3, magnesium, age	226
IV:163	All 3 Massey units, magnesium, age	226
IV:164	Unit 1, calcium, time in 4 wk intervals	230
IV:165	Unit 2, calcium, time in 4 wk intervals	230
IV:166	Unit 3, calcium, time in 4 wk intervals	230
IV:167	All 3 Massey units, calcium, simultaneous plot	230
IV:168	Unit 1, calcium, wks in milk	231
IV:169	Unit 2, calcium, wks in milk	231
IV:170	Unit 3, calcium, wks in milk	231
IV:171	All 3 Massey units, calcium, wks in milk	231
IV:172	Unit 1, autumn calving group, calcium, time in 4 wk intervals	232
IV:173	Unit 1, spring calving group, calcium, time in 4 wk intervals	232
IV:174	Unit 1, autumn and spring calving groups, calcium, simultaneous plot	232
IV:175	Unit 1, autumn calving group, calcium, wks in milk	233
IV:176	Unit 1, spring calving group, calcium weeks in milk	233
IV:177	Unit 1, autumn and spring calving groups, calcium, wks in milk	233
IV:178	Unit 1, calcium, age	234
IV:179	Unit 2, calcium, age	234
IV:180	Unit 3, calcium, age	234
IV:181	All 3 Massey units, calcium, age	234
IV:182	Unit 1, inorganic phosphate, time in 4 wk intervals	238

xix

Figure

-	iguie		rage
	IV:183	Unit 2, inorganic phosphate, time in 4 wk intervals	238
	IV:184	Unit 3, inorganic phosphate, time in 4 wk intervals	238
	IV:185	All 3 Massey units, inorganic phosphate, simultaneous plot	238
	IV:186	Unit 1, inorganic phosphate, wks in milk	239
	IV:187	Unit 2, inorganic phosphate, wks in milk	239
	IV:188	Unit 3, inorganic phosphate, wks in milk	239
	IV:189	All 3 Massey units, inorganic phosphate, wks in milk	239
	IV:190	Unit 1, autumn calving group, inorganic phosphate, time in 4 wk intervals	240
	IV:191	Unit 1, spring calving group, inorganic phosphate, time in 4 wk intervals	240
	IV:192	Unit 1, autumn and spring calving groups, inorganic phosphate, simultaneous plot.	240
	IV:193	Unit l, autumn calving group, inorganic phosphate, wks in milk	241
	IV:194	Unit 1, spring calving group, inorganic phosphate, wks in milk	241
	IV:195	Unit 1, autumn and spring calving groups, inorganic phosphate, wks in milk	241
	IV:196	Unit 1, inorganic phosphate, age	242
	IV:197	Unit 2, inorganic phosphate, age	242
	IV:198	Unit 3, inorganic phosphate, age	242
	IV:199	All 3 Massey units, inorganic phosphate, age	242
	V: 1	Awaroa herd, haematocrit, time in 4 wk intervals	246
	V: 2	Awaroa herd and all 3 Massey units, haematocrit, simultaneous plot	246
	V: 3	Awaroa herd, haematocrit, wks in milk	246

Figure

\$7.	1	America hard and all 2 Magazar units	
v:	4	haematocrit, wks in milk	246
v :	5	Awaroa herd, haematocrit, age	247
V:	6	Awaroa herd and all 3 Massey herds, haematocrit, age	247
۷:	7	Awaroa herd, total protein, time in 4 wk intervals	247
۷:	8	Awaroa herd and all 3 Massey units, total protein, simultaneous plot	247
۷:	9	Awaroa herd, total protein wks in milk	248
V:	10	Awaroa herd and all 3 Massey units, total protein, wks in milk	248
V:	11	Awaroa herd, total protein, age	248
V:	12	Awaroa herd and all 3 Massey units, total protein, age	248
V:	13	Awaroa herd, albumin, time in 4 wk intervals	250
V:	14	Awaroa herd and all 3 Massey units, albumin, simultaneous plot	250
V:	15	Awaroa herd, albumin, wks in milk	250
۷:	16	Awaroa herd and all 3 Massey units, albumin, wks in milk	250
V:	17	Awaroa herd, albumin, age	251
V:	18	Awaroa herd and all 3 Massey units, albumin, age	251
۷:	19	Awaroa herd, urea nitrogen, time in 4 wk intervals	251
۷:	20	Awaroa herd and all 3 Massey units, urea nitrogen, simultaneous plot	251
V:	21	Awaroa herd, urea nitrogen, wks in milk	253
۷:	22	Awaroa herd and all 3 Massey units, urea nitrogen, wks in milk	253
v:	23	Awaroa herd, urea nitrogen, age	253
۷:	24	Awaroa herd and all 3 Massey units, urea nitrogen, age	253
V:	25	Awaroa herd, glucose, time in 4 wk intervals	255

xxi

	•	
vv	1	п.
~~	*	*

۷:	26	Awaroa herd and all 3 Massey units,	255
Π.	27	Average hard alwages the in milk	255
v:	27	Awaroa nerd, glucose, wks in mirk	255
V:	28	Awaroa herd and all 3 Massey units, glucose, wks in milk	255
۷:	29	Awaroa herd, glucose, age	256
V:	30	Awaroa herd and all 3 Massey units, glucose, age	256
۷:	31	Awaroa herd, sodium, time in 4 wk intervals	256
V:	32	Awaroa herd and all 3 Massey units, sodium, simultaneous plot	256
V:	33	Awaroa herd, sodium, wks in milk	258
V:	34	Awaroa herd and all 3 Massey units, sodium, wks in milk	258
V:	35	Awaroa herd, sodium, age	258
V:	36	Awaroa herd and all 3 Massey units, sodium, age	258
V:	37	Awaroa herd, potassium, time in 4 wk intervals	259
۷:	38	Awaroa herd and all 3 Massey units, potassium, simultaneous plot	259
V:	39	Awaroa herd, potassium, wks in milk	259
۷:	40	Awaroa herd and all 3 Massey units, potassium, wks in milk	259
V:	41	Awaroa herd, potassium, age	260
۷:	42	Awaroa herd and all 3 Massey units, potassium, age	260
V:	43	Awaroa herd, magnesium, time in 4 wk intervals	260
V:	44	Awaroa herd and all 3 Massey units, magnesium, simultaneous plot	260
V:	45	Awaroa herd, magnesium, wks in milk	262
۷:	46	Awaroa herd and all 3 Massey units, magnesium, wks in milk	262
۷:	47	Awaroaherd, magnesium, age	262
V:	48	Awaroa herd and all 3 Massey units, magnesium, age	262

		•	•	•	
х	х	1	1	1	

T			
r	1	gure	

V:	49	Awaroa herd, calcium, time in 4 wk intervals	263
V:	50	Awaroa herd and all 3 Massey units, calcium, simultaneous plot	263
V:	51	Awaroa herd, calcium, wks in milk	263
V:	52	Awaroa herd and all 3 Massey units, calcium, wks in milk	265
V:	53	Awaroa herd, calcium, age	265
V:	54	Awaroa herd and all 3 Massey units, calcium, age	265
V:	55	Awaroa herd, inorganic phosphate, time in 4 wk intervals	265
V:	56	Awaroa herd and all 3 Massey units, inorganic phosphate, simultaneous plot	265
V:	57	Awaroa herd, inorganic phosphate, wks in milk	266
V:	58	Awaroa herd and all 3 Massey units, inorganic phosphate, wks in milk	266
V:	59	Awaroa herd, inorganic phosphate, age	266
V:	60	Awaroa herd and all 3 Massey units, inorganic phosphate, age	266
VII:	1	Haematocrit, time since feeding	289
VII:	2	Haemoglobin, time since feeding	289
VII:	3	Sodium, time of day	289
VII:	4	Magnesium, time since feeding	293
VII:	5	Calcium, time of day	293
VII:	6	Calcium, time since feeding	293
VII:	7	Inorganic phosphate, time of day	294
VII:	8	Inorganic phosphate, time since feeding	294