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ABSTRACT 

The genomic clone hC3.11, isolated in 1989 in our laboratory encompasses the majority of the 

PSG-11 gene and contains 8.5 kb of upstream intergenic sequence. Nucleotide sequence from 

the initial 1.5 kb of the hC3.11 clone revealed the presence of a number of unique PSG-like C­

domains upstream of the PSG-11 gene. In this investigation, the sequencing of this region was 

completed resulting in 3.8 kb of contiguous sequence representing the area of interest. When 

compared to known PSG sequences the combined hC3.11 sequence was found to be similar to 

other PSG genes, but also contained several unique and previously unreported C-domain-like 

regions. 

Chromosome walking techniques were used to investigate the area upstream of the PSG-11 

gene. Two cosmid clones, #1 and #4, were isolated from a human genomic DNA library as 

potential candidates representing the a full length gene upstream of PSG-11 . These were 

characterised by restriction enzyme mapping, cos-mapping and hybridisation analysis. Analysis 

of the data of these cosmid clones indicate that one of the clones represents an allelic variant of 

the hC3.11 region, whereas the other clone appears to contain a genomic fragment from another 

PSG locus. 

Hybridisation analysis of the region stretching 9 kb upstream of the C-domain region of the 

hC3.11 clone failed to identify other PSG-related sequence. The absence of a PSG gene 

associated with the C-terminal domains, suggested that the hC3.11 C-domain region may be a 

remnant of evolutionary activity. It is proposed that the hC3 .11 C-domain cluster represents a 

free-standing C-domain 'cassette', which may be ubiquitous amongst PSG gene family 

members. 



ACKNOWLEDGEMENTS 

I would sincerely like to acknowledge and thank the many people who have supported and 

assisted me during the course of this degree. Firstly, many thanks to my supervisor, Dr Brian 

Mansfield for his much appreciated guidance, optimism and encouragement. A special thanks to 

Trish Mclenachan, for all the enthusiasm, advice and invaluable help during this trial. Thanks 

also to the staff and populace of the Micro and Genetics faculty for providing an interesting 

setting for this drama. 

To each of the members of Mansfield park who have passed through during my sentence, 

including Kyle, Ruth, Kay, Lester, Felix, Mike, Neville, and Sheralee, my thanks for all the help 

and many welcome hours of distraction. 

A special mention must be made of Merie, Paul, Shalome, Joseph, Geoff, Morgan, Sheree, 

Delwyn and David for the laughs and the company as we endured our thesis years. 

To my family for their unquestioning provision and support of my education, in particular to the 

memory of Amy Joe to whom this thesis is dedicated. 

Finally, but foremost I thank and credit the a & 0 for the Faith and Grace that began and finished 

this work. 

ii 



bp 

C-terminus 

CEA 

DNA 

EDTA 

IPTG 

kb 

N-terminus 

ON-R 

ON-L 

PSG 

RNA 

sos 
SSC 

u 

UV 

X-Gal 

ABBREVIATIONS 

Base pairs 

Carboxyl terminus 

Carcinoembryonic antigen 

Deoxyribonucleic acid 

Ethylenediaminetetraacetic acid 

lso-propyl ~-D thioglylactosidase 

Kilobase 

Amino terminus 

Right cosmid vector arm 

Left cosmid vector arm 

Pregnancy-Specific ~ 1-Glycoprotein 

Ribonucleic acid 

Sodium Dodecyl Sulphate 

Standard Saline Citrate 

Units 

Ultra-violet 

5-bromo-4-chloro-3-indolyl-~-D­

galactopyranosidase 

iii 



iv 

LIST OF FIGURES, TABLES, AND EQUATIONS· 

Figure 1 CEA The Prototype Domain Model. .......................................................... 9 

Figure 2 lmmunoglobulin Superfamily .........................•.......................................... 9 

Figure 3 Pregnancy Specific Glycoprotein ............................................................. 13 

Figure 4 Domain Organisation in PSG Proteins ..................................................... 13 

Figure 5 The Three PSG Subgroups ..................................................................... 15 

Figure 6 Evolution of the CEA Gene Family .......................................................... 20 

Figure 7 Subclones of Cosmid hC3.11 .................................................................. 42 

Figure 8 Titration of the Bal 31 Enzyme ................................................................ 44 

Figure 9 The Bal 31 Deletion Clones.................................................................... 46 

Figure 10 The Combined hC3.11 Sequence ............................................................ 47-48 

Figure 11 The Splice Consensus Sequence ............................................................ 49 

Figure 12 The Subgroup-1 Arrangement... .............................................................. 60 

Figure 13 The Subgroup-2 Arrangement.. ............................................................... 60 

Figure 14 The Subgroup-3 Arrangement... .............................................................. 60 

Figure 15 Cosmid Clones...................................................................................... 64 

Figure 16 Patterns of Hybridisation Clone #1 ........................................................... 66 

Figure 17 Patterns of hybridisation Clone #4 ........................................................... 67 

Figure 18 N-terminal Oligonucleotide Hybridisation .................................................. 69 

Figure 19 Hybridisation of Genomic DNA ................................................................ 71 

Figure 20 A Typical Cos-mapping Gel.................................................................... 73 

Figure 21 Maps for clones #1 and #4 .................................................................... 74 

Figure 22 Standardised Maps for Clone #1 ............................................................. 75 

Figure 23 Standardised Maps for Clone #4 ............................................................. 76 

Figure 24 Three Scenarios for Clone #4 .................................................................. 79 

Figure 25 Products of Cos-mapping Digests ............................................................ 84 



Equation 1 

Equation 2 

Equation 3 

Equation 4 

Equation 5 

Table 1 

Table 2 

Table 3 

Table 4 

V 

Efficiency of labelling (% Incorporation) .................................................... 37 

Calculation of Specific Activity ................................................................ 37 

Stringency, Calculation of Tm ................................................................. 39 

Calculation of Rate of Activity for Bal 31 enzyme ..................................... 43 

Fragment Length Standardisation Equation .............................................. 72 

Placental Protein Products..................................................................... 4 

PSG C-terminal Domain Variants ............................................................ 14 

The CEA Gene Family........................................................................... 18 

Standardised Nomenclature .................................................................... 19 



1 

INTRODUCTION 

A.1 : The Placenta 

One of the greatest immunological challenges occurring naturally in humans is presented by 

development of the feto-placental unit during pregnancy. The successful allogeneic grafting of the 

fetal to maternal tissue takes place, despite the existence of a complex maternal immune system, 

which would be expected to defeat fetal implantation. A major factor in the survival of the placental 

allograft is the specific lack of rejection by the mother toward the developing foetus {124}. Although 

the basis of this immunological tolerance is not completely understood, it is likely that the 

relationship between the mother and the developing foetus involves basic humoral responses. 

Experiments have shown that serum immunoglobulin concentrations increase during pregnancy, 

whereas cell-mediated responses decrease, suggesting that humoral response plays a predominant 

role in this tolerance. However, the multiplicity of molecules involved, some appearing at different 

times and in varying amounts, complicate the identification of the specific immunoglobulin 

subclasses involved {85}. 

The human placenta is an organ comprised of tissues of two different genotypes, providing an 

'interface' for exchange of gases and nutrients between the mother and the developing foetus, 

while still preserving the individuality of both systems {85,124}. 

Not only does the placenta temporarily serve as a fetal lung, kidney, liver and intestine, but it also 

acts as an active exocrine and endocrine gland. An array of complex endocrine functions are 

initiated and completed by the placenta, completely taking over functions of the maternal ovary and 

pituitary gland. A wide variety of hormones, enzymes, growth factors and other molecules essential 

for the survival and development of the human foetus are produced by the placenta 

{85,119,120,121}. 

A.2: Pregnancy Specific Glycoprotein 

Many pregnancy-specific proteins have been reported from gel electrophoretic and immunological 

studies of placental extracts and maternal sera. These are summarised in Table 1. 



The first in this group to be identified was the Pregnancy-specific ~1-glycoprotein (PSG), originally 

known as pregnancy associated plasma protein C (PAPP-C). 
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In 1970, Tatarinov and Masyukevich isolated PAPP-Casa new protein from the serum of pregnant 

women {1}. This was soon discovered to be immunologically identical to the placental protein SP-1 

(Schwangershafts protein-1) isolated by Bohn in 1971 {2}. 

Initial studies focused on the development of sensitive assays for the protein. It was found that 

during human pregnancy, the protein SP-1 was present at the highest levels of any placenta­

specific protein in maternal serum (350 µg/ml) {3}. 

Human PSG are primarily synthesized in the placental syncytiotrophoblast cells during pregnancy, 

and are subsequently secreted into the maternal serum {1,2,4,5}. The secretory nature of the PSG 

has been demonstrated in vitro both in primary culture of trophoblasts {6}, and by transfecting 

cloned PSG cDNA into cultured mammalian cells {7,8,9,10}. 

The PSG protein is first detectable in human serum 7 days post conception {11 }. The levels 

increasing exponentially during pregnancy with a doubling time of 2-3 days and a half-life of 30h, to 

reach term concentrations of 200-400 µg/ml maternal serum {1, 12}. 

As with the majority of placental products, expression of the PSG protein is not limited exclusively 

to the placenta {99}. Low levels of PSG protein have been detected in non-placental tissue as well 

as various cell lines {2,5}. Studies have demonstrated PSG gene expression in non-placental 

tissues {17}, human fibroblasts {35,36,37,38} and malignant tumor cells {39,40}. Isolation of PSG 

clones from cDNA libraries created from testis {24}, fetal liver {8,26}, salivary gland {27}, intestine 

{27,41} tissues, Hela {16} and myeloid cell lines {22,30} provided further evidence showing the 

expression of PSG in non-placental tissue. 

Biochemical studies demonstrated that the human PSG gene products are actually a 

heterogeneous group of proteins consisting of at least 3 distinct placental protein species with 

molecular weights of 72, 64, and 54 kDa {11, 14, 15, 16}. These immunologically similar proteins 

were found to have carbohydrate contents ranging from 28%-32% {14}. 

To study their function(s) and to develop specific reagents for the individual PSG, it was considered 

important to identify all the PSG genes. 
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Despite the previous biochemical analysis of several PSG species, the complexity of the family was 

not fully appreciated until the PSG genes were cloned {17,18}. Several PSG cDNA clones were 

independently isolated and characterised by Watanabe and Chou {14}, Streydio et al. {15} , Rooney 

et al. {11}, Chan et al. {16} in 1988. Additional PSG cDNA's {7,9, 10, 19-34} and genes 

{20,22,25,29,34} were subsequently reported. Examination of these genes revealed the conserved 

nature of the PSG family, capable of producing an array of highly related, yet unique gene products. 



I ABBREVIA- ANALOGUE IN MOL.Wt. 

PROTEIN I TION NON-PREGNANT ADULT (kDa) 

Human chorionic I Luteinising 45-50 

Gonadotrophin I hCG hormone 

I 
Human placental I Prolactin, 21-23 

Lactogen I hCS growth hormone 

I 
Human chorionic I Thyroid stimulat- 45 

Thyrotrophin I hCT ing hormone 

I 
Human chorionic I Adenocortico- 5 

corticotrophin I hCCT trophic steroid 

I 
Human chorionic I Gonadotrophin 1 

gonadotrophin I hC-LRH releasing 

releasing hormone I hormone 

I 
Scwangerschafts- I 
spezifisches p1 I SP-1 Unknown 90-110 

I glycoprotein I 
I I 
I Pregnancy specific I I 
I p1 glycoprotein I PSPG I 
I I I 
I Trophoblast specific I I 
I p1 globulin I TBG I 
I I I 
I Pregnancy associated I I 
I plasma protein C I PAPP-C I 
I I I 
I Pregnancy associated I I I 
I plasma protein A I PAPP-A I Unknown I 750 

I I I I 
I Pregnancy associated I I I 
I plasma protein B I PAPP-B I Unknown I 1000 

I I I I 
I Heat Stable Alkaline I I Alkaline I 
I Phosphatase I HSAP I Phosphotase I 
I I I I 
I Cysteine amino- I I I 
I peptidase I CAP I Aminopeptidases I 
I I I I 
I (oxytocinase) - I I I 
I I I I 
I Diamine oxidase I DO I Histaminase I 190 

I (Histaminase) I I I 
I I I I 
I Placental protein 5 I pp 5 I Unknown I 42 

Table 1: A list of some of the many protein products produced by 
the human placenta. Adapted from Klopper et al. {128}. 
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A,3: CLINICAL APPLICATIONS 

Soon after the fundamental studies of Bohn {46,47} several clinical groups explored the possibility 

that the PSG could be of prime importance in the evaluation of pregnancies. This interest centred 

on both early and late pregnancy, and also on the production of PSG by tumours. 

Bohn et al. demonstrated that PSG were essential for the maintainence of human pregnancy by 

showing that antibodies to PSG induced abortion in primates {48}. Another study using non­

pregnant monkeys actively immunised with PSG, resulted in a loss of fertility with subsequent 

pregnancies often ending in abortion {49}. Moreover, a correlation between low maternal serum 

PSG levels during pregnancy and threatened abortion, was observed emphasising the importance 

of PSG in the maintainence of healthy primate pregnancy {49}. 

The development of sensitive assays for PSG in maternal serum {50,51,52}, allowed several 

pregnancy related complications to be predicted, when used in conjunction with other tests and 

indicators. 

For example, low levels of PSG in maternal serum during pregnancy can be indicative of ectopic 

pregnancy {57,58}, and when used in conjunction with ultrasound and/or a human placental 

lactogen test, threatened abortion can be predicted with approximately 97% accuracy {59,60,61}. 

Such conditions as foetal intrauterine growth retardation and intrauterine foetal death are 

associated with low levels of PSG and are diagnosed in conjunction with ultrasound scans.{62}. 

The routine method of diagnosing Meckel's syndrome is by measuring the high concentrations of 

PSG in the amniotic fluid associated with this condition {63}. 

One of the placental gene products often used in diagnosis of pregnancy related conditions, in 

conjunction with PSG, is the well characterised hormone, human chorionic gonadotrophin (hCG). 

This hormone, hCG, first detected in the serum and urine of pregnant women by Aschheim and 

Zondek in 1927 {53}, was demonstrated to be produced by the syncytiotrophoblast {54}, and was 

subsequently established as the most reliable marker of a viable trophoblast. 

The pregnancy test of choice involves the measurement of human chorionic gonadotropin (hCG). 

PSG levels are used as an adjunct to the hCG test, and are also used to detect Gonadotrophin 

induced pregnancies {55}. 
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Babies afflicted with Down syndrome can be predicted with 72%-78% confidence when the 

concentration of PSG is measured in conjunction with human chorionic gonadotrophin (hCG), and 

a-fetoprotein and assessed along with maternal age {56}. 
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Human tumour cells have been found to produce immunoreactive PSG {64}, therefore, PSG have 

been used as a marker in the diagnosis of certain cancers and tumours. Since high levels of PSG 

have been associated with choriocarcinoma, hydatidiform mole and gestational trophoblastic 

disease, the concentration of PSG has been used both as an indicator, and as a prognosis index in 

the treatment of these conditions {5}. Searle et al. (1978) {66}, suggested that serum PSG 

concentrations alone are not of great value in the detection and monitoring of carcinoma in the 

breast, large bowel and ovary, since the increase in the concentration of PSG associated with these 

conditions, does not correlate with the extent of the disease. Therefore, as with pregnancy related 

conditions, the clinical measurement of PSG is usually performed in conjunction with other tests in 

the diagnosis of these tumours. 

Measurement of human chorionic gonadotrophin (hCG) in plasma or urine is widely used in the 

diagnosis and management of trophoblastic tumours. Since the concentration of hCG is related to 

the total cell mass of the tumour cells, the rate of cell growth and regression of the tumour cell 

population can be predicted {65}. 

The ratio of the two placental proteins hCG and PSG forms a prognosis index for hydatidiform mole 

and gestational trophoblastic disease. A value less than 5 indicates a 73% chance of persistent 

disease, whereas a value greater than or equal to five, indicates a 74% chance of remission {67}. 

In the treatment of breast cancer patients, the absence of PSG suggests an improved prognosis, 

while presence of PSG in breast cancer patients estimates a 40%-85% chance of mortality in less 

than 4 years {68,69,70}. 

In the management of trophoblastic tumours, the measurement of hCG concentration is the most 

useful measurement in these patients. Only in isolated cases in which PSG persists after hCG has 

become undetectable, does the measurement of PSG become valuable {100}. 

The determination of PSG concentration in the serum of patients with non-trophoblastic tumours 

such as carcinoma of the breast, intestine or ovary, does not give practical information on the 

extent and progression of the disease. However, detection of PSG in carcinoma tissue itself may 

have prognostic significance. Since PSG is said to have immunosuppressive properties {71,72}, it 



seems likely that the production of this protein by malignant tumours might be a means by which 

the tumour escapes immunological recognition and continues to grow. 

Therefore, there are possible practical implications in investigating the involvement of the PSG in 

circumventing the human immune system, to allow the design of more effective treatments for 

tumourous conditions. 
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Investigation into the nature of phosphorylation in PSG proteins could provide insight into the role of 

PSG in pregnancy and diseases. Phosphorylation of tyrosine residues in proteins, have been 

shown to play a major role in the control of cell growth and differentiation {101}. Therefore, similar 

events in the PSG could conceivably trigger a cascade of events involved in implantation and 

trophoblastic invasion. 

A.4: THE STRUCTURE AND EVOLUTION OF CEA AND PSG 

A.4.1: Structure of CEA 

The human PSG are encoded by multiple, linked genes located on chromosome 19, q13.1-13.3 

overlapping the region containing the closely related CEA gene subgroup {74,75,77}. Fluorescence 

in situ hybridisation to metaphase chromosomes localised the PSG subgroup telomeric to the CEA 

subgroup. Finer mapping suggests that most of the genes are contained within 800 kb of sequence 

flanked by Sacll restriction sites {77}. In total, the CEAIPSG gene family region is estimated to 

span 1.1 to 1.2 Mb {76}. 

Based on sequence comparisons, the PSG have been classified as a subgroup of the CEA family, 

for which carcinoembryonic antigen is the prototype. 

Carcinoembryonic antigen (CEA) was found to be present in colonic tumors and foetal gut tissue by 

Gold and Freedman in 1965 { 104}. It was initially thought to be absent in normal adult intestine, 

however, later studies revealed the presence of CEA in several normal tissues including human 

colon {105-108}. Despite the lack of tumor specificity, CEA is one of the most widely used human 

tumor markers for assessing the recurrence of colorectal, breast and lung cancers. The serum 

concentration of CEA represents an important parameter in the post-operative surveillance of 

cancer patients {109, 11 0} 



The CEA protein is a highly glycosylated molecule with a molecular weight of 180,000 daltons. 

Glycosylation inhibition studies show the protein to consist of a single polypeptide chain with an 

apparent molecular weight of approximately 80,000 daltons {111}. Amino acid sequence deduced 

from the nucleotide sequence of the CEA cDNA, shows that CEA is synthesised as a precursor of 

702 amino acids. The leader peptide (34 amino acids) is followed by the mature CEA peptide (668 

amino acids). 
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Due to the presence of three internal repeats, the peptide can be divided into a number of structural 

domains. A schematic diagram of the CEA domain arrangement is shown in Figure 1. The three 

repeat domains of 178 amino acids each reveal an exceptionally high degree of sequence similarity, 

having between 67% and 73% of their amino acids identical. Allowing for conserved 

changes/substitutions the degree of similarity is even higher. Each domain contains four cysteine 

residues at precisely the same positions. These CEA repeat domains are relatively long, and each 

can be further sub-divided into two subdomains (A,B) of approximately equal size. The amino acid 

sequence from these subdomains display similarity to each other, as well as to the N-terminal 

domain {123}. The degree of conservation at the nucleotide level is also very high (80%-83% 

identity). Other proteins with internal repeats have been reported in the literature, but the internal 

degree of similarity of the repeating domains of CEA is the highest reported so far {112}. 

Analyses at the genomic level for members of the CEA family indicated a precise correlation 

between the exons and the A and B sub-domains {116,117,122}. A domain model was 

subsequently proposed for CEA, which assumes that the conserved neighbouring cysteine residues 

present in the repeat domains form disulphide bonds, creating a looped secondary structure 

characteristic of the immunoglobulin family {113,116,123}. This is shown in Figure 2, 

demonstrating the strong similarity in secondary structure amongst members of the immunoglobulin 

superfamily {84}. 

The C-terminal domain of CEA consists of 27 amino-acids and is strongly hydrophobic. This 

provides a potential insertion region for the CEA protein into the plasma membrane and is of an 

appropriate length to span the lipid bilayer. Therefore, this provides a possible means to anchor 

CEA to the cell surface membrane {124}. 
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FIGURE 1: CEA THE PROTOTYPE DOMAIN MODEL. 

The CEA protein domain arrangement based on deduced amino acid 
sequence. Domain sizes are indicated below the domain blocks. 
Invariant cysteine residues are marked(*). 
Adapted from Thompson et al. {25). 
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FIGURE 2: MEMBERS OF THE IMMUNOGLOBULIN SUPERFAMILY 
A schematic representation of some members of the immunoglobulin family. 
Filled circles represent variable region (VJ-like domains, other circles closed 
with (ss) represent constant domains. Adapted from Khan et al. {81). 




