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This paper describes a comparison of some numerical methods for solving the
advection-diffusion (AD) equation which may be used to describe transport
of a pollutant. The one-dimensional advection-diffusion equation is solved by
using cubic splines (the natural cubic spline and a ”special” AD cubic spline)
to estimate first and second derivatives, and also by solving the same problem
using two standard finite difference schemes (the FTCS and Crank-Nicolson
methods). Two examples are used for comparison; the numerical results are
compared with analytical solutions. It is found that, for the examples studied,
the finite difference methods give better point-wise solutions than the spline
methods.

1 Introduction

Pepper et al. (1) and Okamoto et al. (2) solve the one-dimensional advection equa-
tion by using a spline interpolation technique that they call a quasi-Lagrangian cubic
spline method. In section 4 of (3), Ahmad & Kothyari solve the one dimensional
advection-diffusion equation by using cubic spline interpolation for the advection
component and the Crank-Nicolson scheme for the diffusion component. Sastry (6)
uses a cubic spline technique to approximate the solution of the one-dimensional
diffusion equation.

In this paper the one-dimensional advection-diffusion (advection-dispersion) equa-
tion is solved by using cubic spline interpolation to obtain estimates for the advec-
tion and diffusion terms. The same problem is investigated using finite difference
schemes. Numerical results are shown and compared with analytical solutions.
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2 Governing Equation and Numerical Methods

2.1 Governing Equation

The volumetric concentration of a pollutant in a moving, turbulent fluid may be
described by the advection-diffusion equation

∂C

∂t
+ ∇·(V C) = ∇ · (K̄ ⊗∇C) (1)

Here, C(x, y, z, t) is the concentration (mass per unit volume) of pollutant at point
(x, y, z) in Cartesian coordinates, at time t. The vector V is the fluid velocity field
and K̄ is the eddy-diffusivity or dispersion tensor.

In this study, we consider one-dimensional motion with constant speed u and
dispersion D which gives the 1-D advection-diffusion equation:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
(2)

with appropriate initial and boundary conditions. Here, C(x, t) is the concentration
of the pollutant at point x (0 ≤ x ≤ L) and time t, u is the constant wind speed
in the x direction and D is the diffusivity coefficient in the x direction. Several
combinations of boundary conditions are possible. We distinguish three cases, all
for a finite domain:
Case 1:

C(x, 0) = f(x)
C(0, t) = c0

C(L, t) = cL

(3)

Case 2:
C(x, 0) = f(x)
C(0, t) = c0
∂C
∂x

(0, t) = 0
(4)

Case 3:
C(x, 0) = f(x)
C(0, t) = c0

q(0, t) = (Cu − D ∂C
∂x

)(0, t) = constant
(5)

where c0, cL are constant concentration values, while the quantity q = uC − D ∂C
∂x

is the mass flux of pollutant per unit cross-sectional area, and includes both of the
advective and dispersive components. All cases correspond to a fixed constant con-
centration at the left-hand end, together with one of: a constant concentration at
the right-hand end (Case 1), advective pollutant inflow only at the left-hand end
(Case 2) or fixed constant pollutant influx there (Case 3).

For construction of interpolating cubic splines at any step in a numerical approx-
imation procedure, 2 extra conditions are required apart from the Ci values at the
mesh points xi. The ”natural” cubic spline requires the condition that ∂2C

∂x2 = 0 on
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the interpolants at x = 0, L. How does this requirement impact on the boundary
conditions?

For all cases above, C = c0 at x = 0 implies that

∂C

∂t
(0, t) = 0,

and therefore

u
∂C

∂x
− D

∂2C

∂x2
= 0

at x = 0, i.e. ∂q

∂x
(0, t) = 0. This implies that q(0−, t) = q(0+, t). Assuming that

the pollutant source is well-mixed, then C = c0 upstream and q = uc0 at x = 0−.
Because C = c0 at x = 0+, this means that ∂C

∂x
= 0 at x = 0+ and so ∂2C

∂x2 = 0 at
x = 0+. Cases 1 and 2 therefore are consistent with the boundary condition at x = 0
corresponding to the natural cubic spline, while Case 3 is not. Hence the motivation
for developing a ”special” cubic spline scheme for the advection-dispersion equation,
as outlined in a letter section of this paper.

2.2 Finite difference (FTCS) method

Finite difference schemes involve calculating approximate values of the unknown
function at a finite number of (mesh- or grid-) points in the domain. Here we let
0 = x1 ≤ xj ≤ xN+1 = L be the grid points in x-domain. The time is divided into
equal steps of size ∆t, with time tn−n∆t. Derivatives are approximated by truncated
Taylor Series expansions. For our purposes, we use an explicit forward difference
estimate for the time derivative (FT), and central difference approximations for the
space derivatives (CS) that both have the same truncation error; hence the acronym
FTCS. The approximate solution of the governing equation using the finite difference
scheme satisfies:

Cn+1
j − Cn

j

∆t
+ u

Cn
j+1 − Cn

j−1

2∆x
= D

Cn
j+1 − 2Cn

j + Cn
j−1

(∆x)2
+ O(∆t, (∆x)2) (6)

for j = 2, 3, . . . , N , while for j = N + 1, one-sided forms of the difference formulae
are required:

Cn+1

N+1
−Cn

N+1

∆t
+ u

3Cn
N+1

−4Cn
N

+Cn
N−1

2∆x

= D
2Cn

N+1
−5Cn

N
+4Cn

N−1
−Cn

N−2

(∆x)2
+ O(∆t, (∆x)2)

(7)

all for for n = 0, 1, 2, . . . , where the initial values are C0
j = C((j − 1)∆x, 0).

Hindmarsh (7) and Sousa (8), show that the conditions that the finite difference
scheme in Equation (6) is stable are

2
D∆t

∆x2
≤ 1,
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and

(
u∆t

∆x
)2 ≤ 2

D∆t

∆x2
.

Rearrangement and simplification of both of these conditions gives the restriction
on the size of the time step in terms of the parameters and the grid-size:

∆t ≤ min{∆x2

2D
,
2D

u2
}

2.3 The Crank-Nicolson method

The Crank-Nicolson scheme approximates the governing equation by using central
differences in time; the spatial derivatives are estimated by the average of their
values at time step n and step n + 1, in the form:

Cn+1

j −Cn
j

∆t
+ u(1

2
(

Cn+1

j+1
−Cn+1

j−1

2∆x
+

Cn
j+1

−Cn
j−1

2∆x
))

= D(1
2
(

Cn+1

j+1
−2Cn+1

j +Cn+1

j−1

(∆x)2
+

Cn
j+1

−2Cn
j +Cn

j−1

(∆x)2
)) + O(∆t, ∆x2),

(8)

with a similar equation for the right-hand end-point. The Crank-Nicolson scheme
is unconditionally stable (4).

2.4 Cubic spline method (”natural” cubic spline)

For this work the definition of the ”natural” cubic spline includes:
(i) The interpolating spline segments are cubic polynomial functions on each sub-
interval [xj , xj+1], j = 1, 2, . . . , N , and the segments agree with the function values
at the grid-points;
(ii) the first and second derivatives of the cubic spline segments are continuous at
the internal points;
(iii) the second derivatives of the cubic spline segments at the first and the last grid
points are equal to zero.

The approximate solution of the governing equation using the cubic spline method
satisfies:

Cn+1
j − Cn

j

∆t
+ uP n

j = DQn
j . (9)

for j = 1, 2, . . . , N + 1; n = 0, 1, 2, . . . where P n
j is the first derivative and Qn

j the
second derivative of the cubic spline function at the point xj at time n∆t. Equation
(9) can be written in the explicit form:

Cn+1
j = Cn

j + D∆tQn
j − u∆tP n

j . (10)

The values of the slopes P n
j can be obtained by solving the following system of

simultaneous equations (derived by manipulation of the equations which result from
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the continuity conditions for the spline segments; see (5) for details of algebraic
working):
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(11)

where

dn
1 = 3(

Cn
2 −Cn

1

x2−x1
)

dn
i = 3

µj

hj+1
(Cn

j+1 − Cn
j ) + 3

αj

hj
(Cn

j − Cn
j−1) for j=2,3,. . . ,N

dn
N+1 = 3(

Cn
N+1

−Cn
N

xN+1−xN
)

and where αj =
hj+1

(hj+hj+1)
, muj = 1 − αj =

hj

(hj+hj+1)
, hj+1 = xj+1 − xj and hj =

xj − xj−1.
The values of Qn

j are the second derivatives of cubic spline at points xj for
j = 2, 3, . . . , N , at time n∆t. For the natural cubic spline it is assumed that s′′1(x1) =
s′′n(xn+1) = 0 (i.e. Qn

1 = Qn
N+1 = 0). Then we have:

Qn
j = 6

Cn
j+1 − Cn

j

(xj+1 − xj)2
− 4

P n
j

xj+1 − xj

− 2
P n

j+1

xj+1 − xj

(12)

for j = 2, 3, . . . , N .

2.5 Cubic spline method (”Special A-D” cubic spline)

The boundary condition C = c0 at x = 0, implies that

∂C

∂t
(0, t) = 0, (13)

and so

(u
∂C

∂x
− D

∂2C

∂x2
)(0, t) = 0. (14)

In this section we present a cubic spline interpolation scheme that satisfies the
condition (12).

The requirement is that uP n
1 = DQn

1 and uP n
N+1 = DQn

N+1. These imply that
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Qn
1 = u

D
P n

1 and Qn
N+1 = u

D
P n

N+1 (compare with natural cubic spline where Qn
1 =

0; Qn
N+1 = 0). The values of P n

j can then be calculated from the following system:
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where

dn
1 = 3(

Cn
2 −Cn

1

x2−x1
)

dn
j = 3

µj

hj+1
(Cn

j+1 − Cn
j ) + 3

αj

hj
(Cn

j − Cn
j−1) for j=2,3,. . . ,N

dn
N+1 = 3(

Cn
N+1

−Cn
N

xN+1−xN
)

and αj =
hj+1

(hj+hj+1)
and µj = 1 − αj =

hj

(hj+hj+1)
. For this case Qn

j , j = 2, 3, . . . , N

can be obtained from

Qn
j = 6

Cn
j+1 − Cn

j

(xj+1 − xj)2
− 4

P n
j

(xj+1 − xj)
− 2

P n
j+1

(xj+1 − xj)
(16)
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while Qn
1 and QN +1n are calculated directly using the formulae already given above.

3 Numerical Experiments

Two examples are solved by the various methods outlined above, and the calculated
numerical approximations are compared with the analytical solutions and with each
other. The idea is to try to find the method which gives the best estimates for solu-
tions of the advection-dispersion equation. Example 1 is a boundary value problem
on a finite domain, as in Case 1 defined in Section 2.1 above. Example 2 is for a
semi-infinite domain, but a finite-domain solution is sought.

3.1 Example 1.

The one-dimensional advection-diffusion equation:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
(17)

is to be solved with the boundary and initial conditions:

C(0, t) = 0
C(L, t) = 100
C(x, 0) = 100x

L
0 ≤ x ≤ L

The analytical solution is (4):

C(x, t) = 100[
e

Px
L − 1

eP − 1
+

4πe
Px
2L sinh(P/2)

eP − 1

∞
∑

m=1

Am + 2πe
Px
2L

∞
∑

m=1

Bm] (18)

where P is the Peclet number

P =
uL

D
and the coefficients Am, Bm are given by

Am = (−1)m m

βm

sin(
mπx

L
)e−λmt

Bm = [ (−1)m+1 m

βm

(1 +
P

βm

)e
−P
2 +

mP

β2
m

] sin(
mπx

L
)e−λmt,

where

βm = (
P

2
)2 + (mπ)2

and

λm =
u2

4D
+

m2π2D

L2
=

Dβm

L2

In this study, we assume that L = 1.0 m, D = 0.01 m2s−1, u = 0.1 ms−1, ∆x =
0.1 m (i.e. N = 10) and ∆t = 0.01 s. The numerical solutions and the analytical
solution of this example are shown in Figure 1. The continuous line is the steady-
state (long-time) solution.
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Figure 1: Comparisons of the solutions for Example 1 using various methods

It can be seen in Figure 1 that the numerical solutions given by all of the methods
decrease with time from the initial (linear profile) condition. The calculated values
are shown at times t = 0(0.5)5s. The time T = 5s is still too early for the steady
state to be approached. The errors in the numerical results are shown in Figure 2.

Figure 2 shows the error in the numerical solutions from each of the methods
when compared with the analytical solution, for the three cases N = 10, N = 20 and
N = 40, corresponding to ∆x = 0.1, 0.05 and 0.025 respectively. Comparisons are
made for the solutions at time t = 5s and t = 25s. The latter time corresponds very
closely to steady state. From Figure 2(a)(i) for T = 5 and ∆x = 0.1, the errors
are all small except near x = 1. The error for the natural cubic spline is positive
and larger in magnitude than the errors for the other three methods, which are all
negative. For smaller ∆x [in (b)(i)∆x = 0.05 and (c)(i)∆x = 0.025] the errors all
reduce in size and appear to be O(∆x2).

For large T (T = 25 in Figure 2(a)(ii), (b)(ii) and (c)(ii), effectively steady-
state) the error for the natural cubic spline scheme is again large and positive, while
for the other three methods the errors are almost identical and negative, and this is
the same for smaller ∆x as well.
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Figure 2: Comparison of the errors in the numerical solutions for Example 1 with
the analytical solution. (a) dx = 0.1 [(i) T = 5, (ii) T = 25]. (b) dx = 0.05 [(i) T
= 5, (ii) T = 25]. (c) dx = 0.025 [(i) T = 5, (ii) T = 25].
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Because the solutions of the FTCS and Crank-Nicolson methods give better
point-wise approximations to the analytical solutions than the ”natural” cubic spline
and ”Special A-D” cubic spline schemes for Example 1, for the next example we will
present only the solutions given by the FTCS method and the natural cubic spline
schemes.

3.2 Example 2.

Solve the one-dimensional advection-diffusion equation:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
(19)

on a semi-infinite domain x = [0,∞), with the initial and boundary conditions:

C(x, 0) = 0 ; x ≥ 0
C(0, t) = 1 ; t > 0
∂C(∞,t)

∂x
= 0 ; t > 0.

The analytical solution to this problem is given by (9):

C(x, t) =
1

2
[erfc(

x − ut√
4Dt

) + exp(
xu

D
)erfc(

x + ut√
4Dt

)]

where erfc(x) is the complementary error function defined by

erfc(x) = 1 − erf(x)

where

erf(x) =
2√
π

∫ x

0

e−z2

dz

In this example, the solution is required for a semi-infinite domain but we will
solve this problem over a finite domain x = [0, 2] by assuming that L = 2 m, D =
0.01 m2s−1, u = 0.1 ms−1, ∆x = 0.1 m (i.e. N = 20) and ∆t = 0.01 s. We will
then comparer the solutions for 0 ≤ x ≤ 1 only.

In this example the special cubic spline method is not presented. The conditions
for a specialized A-D cubic spline method for this example are P n

1 = 0 and Qn
1 = 0,

which are different from the conditions for the ”Special A-D” cubic spline in Example
1.

The numerical solutions and the analytical solution for this example may be
compared in Figure 3. Figure 4 shows the error of the numerical solutions when
compared with the analytical solution, for the two cases N = 10 and N = 40,
respectively. The values in Figure 4 are plotted every 50 time steps [i.e. at t =
0(0.05)5s].

In Figure 3, the numerical solutions are shown for T = 5; solutions given by
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Figure 3: Comparisons of the solutions for Example 2 using various methods
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Figure 4: Comparison of the errors in the numerical solutions for Example 2 with
the analytical solution at T = 5. (a) dx = 0.1 [(i) dt = 0.01, (ii) dt = 0.005]. (b)
dx = 0.05 [(i) dt = 0.01, (ii) dt = 0.005]. (c) dx = 0.025 [(i) dt = 0.01, (ii) dt =
0.005].
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all methods increase with time. The numerical solutions continue to increase to the
steady state solution (C(x,∞) = 1).

From Figure 4 (a)(i) for ∆x = 0.1 and dt = 0.01, the errors for the natural
cubic spline scheme are larger in magnitude than the errors for FTCS method. For
smaller ∆x [in (b)(i)∆x = 0.05 and (c)(i)∆x = 0.025] the errors all reduce in size
and appear to be O(∆x2).

For the small time step size dt = 0.005 in Figure 4 (a)(ii), (b)(ii) and (c)(ii), the
error for the natural cubic spline is again larger than the FTCS method. However,
as expected, the errors for the spline scheme decrease as the grid-size decreases.

4 Conclusion

Finite difference methods and cubic spline schemes for the one dimensional advection-
diffusion equation have been presented. For the test examples studied, it has been
found that the FTCS and the Crank-Nicolson finite-difference methods give better
point-wise solutions than the ”natural” cubic spline and ”Special A-D” cubic spline
schemes. However, the ”Special A-D” cubic spline method gives better point-wise
solutions than the ”natural” cubic spline method.
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