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Abstract
This paper deals with uniform convergent methods for solving singularly perturbed two-point
boundary value problems with piecewise smooth coefficients. Construction of the numerical meth-
ods is based on locally exact schemes or on local Green’s functions. Uniform convergent properties
of the proposed methods on arbitrary meshes are proven. Numerical experiments are presented.

1 Introduction

We consider the following two linear singularly perturbed problems. The first is the selfadjoint
problem

Lµu(x) = µ2u
′′
(x) − β(x)u(x) = f(x), x ∈ Ω = (0, 1), (1)

u(0) = u(1) = 0, β(x) ≥ β∗, β∗ = const > 0,

where µ is a small positive parameter. The second problem is the non-selfadjoint problem

Lεu(x) = εu
′′
(x) + α(x)u

′
(x) − β(x)u(x) = f(x), x ∈ Ω = (0, 1), (2)

u(0) = u(1) = 0, α(x) ≥ α∗, α∗ = const > 0, β(x) ≥ 0,

where ε is a small positive parameter. Suppose that the coefficients in (1) and (2) are piecewise
smooth functions, i.e.

α(x), β(x), f(x) ∈ Qn
p (Ω̄), n ≥ 0.

We say that v(x) ∈ Qn
p (Ω̄) if it is defined on Ω̄ and has derivatives up to order n, the function

itself and its derivatives can only have discontinuity of the first kind at a finite set of points
p = {p1, . . . , pJ}, 0 < pj < pj+1, j = 1, . . . , J − 1, i.e. Qn

p (Ω̄) = Cn(Ω̄\p).
The solutions to (1) and (2) are functions with a continuous first derivative, which satisfies the

boundary conditions and the equation everywhere, with the exception of the points in p. Problems
(1) and (2) have an unique solution (see for details in [1])

u(x) ∈ C1(Ω̄) ∩ Qn+2
p (Ω̄).

In general, the solution to (1) has boundary layers at the end-points x = 0, 1 and interior layers at
the points of p (see, below, Lemma 1), and the solution to (2) possesses a boundary layer only at
x = 0 (Lemma 2).

It is well-known that classical numerical methods for solving singularly perturbed problems are
inefficient, since in order to resolve layers they require a fine mesh covering the whole domain.
For constructing effective numerical algorithms to handle these problems, there are two general
approaches: the first one is based on layer-adapted meshes and the second is based on exponential
fitting or on locally exact schemes. The basic property of the effective numerical methods is uniform
convergence with respect to the perturbation parameter. The three books [2, 3, 4] develop these
approaches and give comprehensive applications to wide classes of singularly perturbed problems.
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We note here the survey [5] concerning with the recent progress made on the layer-adapted mesh
approach.

In this paper we concentrate on the locally exact schemes applied to problems (1), (2) with the
piecewise smooth coefficients. The main theoretical results for convergent properties of numerical
methods based on the locally exact scheme approach have been obtained on uniform computational
meshes (see for details in [2, 4]), and this fact may play a negative role in the practical use of
this approach. But as it is mentioned in [2], the locally exact scheme approach can be applied
successfully on nonuniform meshes too.

We highlight here the attractive feature of the uniform convergent numerical methods on arbi-
trary meshes: only a locally fine mesh is required for resolving local details. For example, problem
(1) with the piecewise smooth coefficients possesses in general the boundary layers near the end-
points and the interior layers at the points of discontinuity of the coefficients. If one needs to
resolve accurately the exact solution only inside one layer, then in the case of the methods on
layer-adapted meshes, the fine mesh is required near all the layers to get uniform convergence. But
in the case of the methods on arbitrary meshes, for maintaining uniform convergence, it is enough
to introduce the fine mesh only inside the layer of interest and the uniform mesh outside this layer
(strictly speaking, the points of discontinuity have to be included in this uniform mesh).

The aim of this work is to construct uniform in the small parameter convergent methods on
arbitrary meshes. We apply the locally exact scheme approach based on local Green’s functions.
To illustrate this approach, consider a linear two-point boundary value problem

Lu(x) = f(x), x ∈ (a, b), u(a), u(b) given,

where L is the differential operator.
Introduce an arbitrary partition

Ω̄h = {xi, i = 0, 1, . . . , N, x0 = a, xN = b}, ωi = (xi, xi+1), hi = xi+1 − xi, h = max hi.

We single out the principal part L̃ of L such that this operator can be inverted explicitly on each
interval ω̄i, i = 0, . . . , N − 1, and it satisfies the following estimate

∫ b

a

|(L − L̃)u(x)|dx ≤ Chk, k > 0,

where C is a constant independent of h.
We now use local Green’s functions to construct an integral-difference scheme satisfied by the

exact solution. For i = 0, . . . , N − 1, consider the following linear two-point boundary value
problems on ω̄i

L̃φmi = 0, x ∈ (xi, xi+1), m = 1, 2,

φ1i(xi) = φ2i(xi+1) = 1, φ1i(xi+1) = φ2i(xi) = 0.

Denoting by Gi(x, s) the local Green’s function for the operator L̃ on ω̄i, we represent the exact
solution on each interval ω̄i in the form

u(x) = uiφ1i(x) + ui+1φ2i(x) +
∫ xi+1

xi

Gi(x, s)ψ(s)ds, ui = u(xi), (3)

ψ(x) = (L̃ − L)u(x) + f(x).

Assume that L̃ on ω̄i is the operator with sufficiently smooth coefficients and thus L̃ is the piecewise
smooth operator on the whole domain [a, b]. From this, u(x) ∈ C1[a, b] and we must have

du(xi − 0)
dx

=
du(xi + 0)

dx
, i = 1, . . . N − 1.
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Equating these derivatives calculated from (3), we obtain the required integral-difference scheme

aiui−1 − ciui + biui+1 = Ψi, i = 1, . . . , N − 1, u0 = u(a), uN = u(b), (4)

ai = φ
′

1,i−1(xi), bi = −φ
′

2i(xi), ci = φ
′

1i(xi) − φ
′

2,i−1(xi),

Ψi = −
∫ xi

xi−1

[Gi−1(x, s)]
′

x=xi
ψ(s)ds +

∫ xi+1

xi

[Gi(x, s)]
′

x=xi
ψ(s)ds,

where the prime denotes differentiation. In general, the integrals cannot be evaluated exactly, but
we can overcome this difficulty by appropriate approximations to ψ. Some implementations of this
approach can be found in [6, 7, 8].

In [2], the difference-integral scheme (4) is constructed by representing the exact solution in
the form (3) on each interval [xi−1, xi+1] and putting x = xi to get the three-point scheme. In [4],
for constructing the locally exact scheme for (2), the same property as in the present work that
u

′
(x) ∈ C1(Ω̄) is exploited, but instead of the local Green’s functions, the so-called L-splines (the

adapted-spline functions) are used to express the exact solution on [xi, xi+1].
Some preliminary results concerned with a priori estimates and continuous dependence of the

solutions to problems (1) and (2) with piecewise smooth coefficients are given in section 2. In section
3, the uniform difference schemes on arbitrary meshes are constructed and uniform convergent
properties are proved. Results of numerical experiments are presented in section 4.

2 Some preliminary results

In this section we formulate and prove some preliminary results necessary below.

2.1 A priori estimates

The following lemmas contain estimates of the solutions to problems (1) and (2).

Lemma 1 If the functions β(x), f(x) ∈ Qn
p (Ω̄), n ≥ 0, then an unique solution exists and u(x) ∈

C1(Ω̄) ∩ Qn+2
p (Ω̄). The solution u(x) to (1) satisfies the following estimates

max
0≤x≤1

|u(x)| ≤ β−1
∗ ‖f‖;

∣∣∣dnu(x)
dxn

∣∣∣ ≤ K‖f‖[1 + µ−nΠ(x)], x ∈ Ω̄, n = 1, 2,

Π(x) = exp(−msx/µ) +
J∑

j=1

exp(−ms | x − pj | /µ) + exp(−ms(1 − x)/µ),

ms = β
1/2
∗ , ‖f‖ = sup{f(x), x ∈ Ω̄}, u

′′
(pj) = (u

′′
(pj − 0), x = pj − 0;u

′′
(pj + 0), x = pj + 0),

here K denotes a generic positive constant independent of µ and f(x).

Proof. Note that [9] contains the proof of the lemma but it is an inconvenient source. The
result that problem (1) with the piecewise smooth coefficients has an unique solution can be found
in [1].

Prove that the maximum principle for (1) holds true: if a function w(x) ∈ C1(Ω̄) ∩ Qn+2
p (Ω̄)

and satisfies Lµw(x) ≤ 0, x ∈ (0, 1), w(0), w(1) ≥ 0 then w(x) ≥ 0, x ∈ [0, 1]. Suppose to the
contrary that there is a point x∗ where w(x∗) < 0. If x∗ /∈ p, where p is the set of the points
of discontinuity then from w

′
(x∗) = 0 and w

′′
(x∗) ≥ 0, it follows that Lµw(x∗) > 0, so we get a

contradiction with our assumption. Now suppose that x∗ ∈ p. Since w
′
(x) is a continuous function

then w
′
(x∗) = 0 and w

′
(x) ≥ 0 in some small vicinity [x∗, x∗ + δ], δ > 0. In general, w

′′
(x) has a



4 R.L.I.M.S. Vol. 3, April, 2002

jump point at x∗, but on the interval (x∗, x∗ + δ], it is a continuous function. Now, if δ is small
enough, then β(x), f(x) are continuous functions and w

′′
(x) does not change a sign in this interval.

Representing w
′
(x) in the form

∫ x

x∗+0
w

′′
(s)ds, we conclude that w′′(x) ≥ 0, x ∈ (x∗, x∗+δ]. Hence,

Lµw(x) > 0, x ∈ (x∗, x∗ + δ], that contradicts our assumption. The bound on u(x) is derived by
applying the maximum principle to the functions −‖f‖/β∗ ± u(x).

Now prove the estimate on u
′
(x) and u

′′
(x). For simplicity, suppose that the set p contains

only one point p1. Denoting by ur(x) the solution of the reduced problem with µ = 0, on [0, p1]
introduce the function z(x) = u(x) − ur(x) which satisfies the problem

Lµz(x) = −µ2u
′′

r (x), x ∈ (0, p1), z(0) = z0, z(p1) = z1.

On [0, p1], consider the function w(x):

w(x) = −µ2( sup
x∈[0,p1−0]

|u′′

r (x)|/β∗) − |z0| exp(−msx/µ) − |z1| exp[−ms(p1 − x)/µ].

Since Lµ(w ± z) ≥ 0, x ∈ (0, p1), w ± z ≤ 0, at, x = 0, p1, from the maximum principle it follows
that |z(x)| ≤ −w(x) and

|u(x)| ≤ K[1 + Π(x)], x ∈ [0, p1].

From (1) and the definition of z, we have u
′′
(x) = µ−2β(x)z(x), and, hence the estimate for u

′′

holds true.
To estimate u

′
(x), we integrate with respect to t the equality

u
′
(x) − u

′
(t) =

∫ x

t

u
′′
(s)ds,

over the interval [t1, t2] and obtain

u
′
(x) = (t2 − t1)−1

[
u(t2) − u(t1) +

∫ t2

t1

(x − t)u
′′
[t + θ(t)(x − t)]dt

]
, 0 < θ < 1.

From here, we conclude that

|u′
(x)| ≤ (t2 − t1)−1|u(t2) − u(t1)| + |x − (t1 + t2)/2| max

t∈[t1,t2]
|u′′

(t)|.

Choosing t1 = x, t2 = x + µ if x ∈ [0, p1/2] or t1 = x − µ, t2 = x if x ∈ [p1/2, p1], we get the
estimate for u

′
(x). In the case x ∈ [p1, 1], the estimates can be proved analogously.

From this lemma it follows that the exact solution of (1) has the boundary layers near the
end-points and the interior layers near the points of discontinuity of the set p.

Lemma 2 If the functions α(x), β(x), f(x) ∈ Qn
p (Ω̄), n ≥ 0, then unique solution to (2) exists and

u(x) ∈ C1(Ω̄) ∩ Qn+2
p (Ω̄). The following estimates of the solution hold

max
0≤x≤1

|u(x)| ≤ K‖f‖;

|u′
(x)| ≤ K‖f‖[1 + ε−1 exp(−α∗x/ε)], x ∈ Ω̄,

where a generic positive constant K is independent of ε and f(x).

Proof. It is known (see [1] for details) that if the coefficients of the equation from (2) satisfy
the conditions inf α(x) ≥ α∗ > 0, inf β(x) ≥ 0, then unique solution to (2) exists.

Firstly, we estimate the solution to (2). The transformation u(x) = exp(−σx)v(x), for a positive
constant σ, yields the equation and the boundary conditions

Lσ
ε v = εv

′′
+ ασv

′ − βσv = fσ, v(0) = v(1) = 0,



I. Boglaev, Uniform Convergent Methods on Arbitrary Meshes 5

ασ = α − 2εσ, βσ = β + ασ − εσ2, fσ = exp(σx)f.

If we choose σ = α∗/4, then in the equation for v, both the coefficients of v
′
(x) and that of −v(x)

are positive, i.e. ασ ≥ α∗/2, βσ ≥ β∗ = 3α2
∗/16, (where we suppose that ε ≤ 1).

The maximum principle for the differential operator Lσ
ε with the piecewise smooth coefficients

holds true: if a function w(x) ∈ C1(Ω̄)∩Qn+2
p (Ω̄) and satisfies Lσ

ε w(x) ≤ 0, x ∈ (0, 1), w(0), w(1) ≥
0 then w(x) ≥ 0, x ∈ [0, 1]. This result is proved as in Lemma 1.

The bound on v(x), ‖v‖ ≤ β−1
∗ ‖fσ‖ is an immediate consequence of the maximum principle

and is derived by applying the maximum principle to the functions −‖fσ‖/β∗ ± v(x). Thus, the
estimate for u(x) follows.

Now, we prove the estimate for u
′
(x). Integrating (2), we get

u
′
(x) = A exp(−q(x)) + ε−1

∫ x

0

[β(s)u(s) + f(s)] exp(q(s) − q(x))ds,

A = u
′
(0), q(x) = ε−1

∫ x

0

α(s)ds.

From here and using the estimate for u(x), it follows that

|u′
(x)| ≤ |A| exp(−q(x)) + K1‖f‖ε−1

∫ x

0

exp(α∗(s − x)/ε)ds.

We only need to check that
|u′

(0)| ≤ K2‖f‖/ε.

Writing the equation from (2) in the form

ε(u
′
(x) exp(q(x)))

′
= [β(x)u(x) + f(x)] exp(q(x)),

and integrating it, we obtain

u
′
(x) = exp(−q(x))

[
ε−1

∫ x

0

(βu(s) + f) exp(q(s))ds − R(1)
( ∫ 1

0

exp(−q(s))ds
)]

,

R(x) = ε−1

∫ x

0

∫ s

0

(βu(τ) + f) exp(q(τ) − q(x))dτds.

From here, the estimate for u
′
(0) follows.

Remark 1 We note that using a more complicated approach, it is possible to prove the estimate
for u(x) with K = α−1

∗ .

2.2 Continuous dependence of the solutions

Similarly to (1), introduce the following selfadjoint problem

µ2ū
′′
(x) − β̄(x)ū(x) = f̄(x), x ∈ Ω = (0, 1), (5)

ū(0) = ū(1) = 0, β̄(x) ≥ β∗, β∗ = const > 0,

Lemma 3 If the coefficients in (1), (5) β(x), β̄(x), f(x), f̄(x) ∈ Qn
p (Ω̄), n ≥ 0, then for z(x) =

u(x) − ū(x), where u(x), ū(x) are the solutions to (1) and (5), respectively, the following estimate
holds

max
x∈Ω̄

|z(x)| ≤ C(‖β − β̄‖ + ‖f − f̄‖),

where a constant C is independent of µ.
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Proof. Subtracting (5) from (1), we obtain

Lµz(x) = (β − β̄)ū(x) + (f − f̄), x ∈ Ω, z(0) = z(1) = 0.

Applying Lemma 1, it follows that

max
0≤x≤

|z(x)| ≤ β−1
∗ ((max

x∈Ω̄
|ū(x)|)‖β − β̄‖ + ‖f − f̄‖).

Estimating ū(x) by Lemma 1, we prove the required estimate with C = max(‖f̄‖/β2
∗ , β

−1
∗ ).

Consider the non-selfadjoint problem

εū
′′
(x) + ᾱ(x)ū

′
(x) − β̄(x)ū(x) = f̄(x), x ∈ Ω = (0, 1), (6)

ū(0) = ū(1) = 0, ᾱ(x) ≥ α∗, α∗ = const > 0, β̄(x) ≥ 0,

Lemma 4 If the coefficients in (2), (6) α(x), ᾱ(x), β(x), β̄(x), f(x), f̄(x) ∈ Qn
p (Ω̄), n ≥ 0, then for

z(x) = u(x) − ū(x), where u(x), ū(x) are the solutions to (2) and (6), respectively, the following
estimate holds

max
x∈Ω̄

|z(x)| ≤ C(‖α − ᾱ‖ + ‖β − β̄‖ + ‖f − f̄‖),

where a constant C is independent of ε.

Proof. Introduce Green’s function G(x, s) for the differential operator Lα
ε = εd2/dx2 −αd/dx:

G(x, s) =
1

εW (s)

{
φ2(x)φ1(s), 0 ≤ x ≤ s ≤ 1,
φ2(s)φ1(x), 0 ≤ s ≤ x ≤ 1,

φ1(x) = (Q(1) − Q(x))/Q(1), φ2(x) = Q(x)/Q(1), Q(x) =
∫ x

0

Φ(s)ds,

Φ(s) = exp
(
− ε−1

∫ s

0

α(τ)dτ
)
, W (s) = −Φ(s)/Q(1).

The functions φ1(x), φ2(x) are the solutions of the following problems

Lα
ε φ1,2 = 0, x ∈ Ω, φ1(0) = φ2(1) = 1, φ1(1) = φ2(0) = 0.

Now we prove the estimate uniform in the small parameter

max
x∈Ω̄

∫ 1

0

|G(x, s)|ds ≤ K. (7)

Using the explicit formula for G(x, s), we get
∫ 1

0

G(x, s)ds = −ε−1

∫ x

0

(Q(x) − Q(1))Q(s)
Q(1)Φ(s)

ds − ε−1

∫ 1

x

Q(x)(Q(s) − Q(1))
Q(1)Φ(s)

ds.

From here, it follows that
∫ 1

0

|G(x, s)|ds ≤ 2
ε

∫ 1

0

Q(1) − Q(s)
Φ(s)

ds =
2
ε

∫ 1

0

P (s)ds,

P (s) =
[
exp

(
ε−1

∫ s

0

α(τ)dτ
)] ∫ 1

s

exp
(
− ε−1

∫ η

0

α(τ)dτ
)
dη.

The function P (s) is the solution of the initial value problem

P
′
(s) = (α(s)/ε)P (s) − 1, P (1) = 0.
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From the maximum principle for the initial value problem, we obtain the estimate

max
s∈Ω̄

|P (s)| ≤ ε/α∗.

From here, we conclude (7) with K = 2/α∗.
From (2), (6), it follows that z(x) = u(x) − ū(x) is the solution of the following problem

Lεz(x) = f̃(x), x ∈ Ω, z(0) = z(1) = 0,

f̃(x) = −(α − ᾱ)u
′
(x) + (β − β̄)u(x) + (f − f̄).

Denote by Z(x) the solution of the problem

LεZ(x) = −|f̃(x)|, x ∈ Ω, Z(0) = Z(1) = 0.

From the maximum principle, the following inequality holds

|z(x)| ≤ Z(x), x ∈ Ω̄.

Now using Green’s function G(x, s) of the differential operator Lα
ε , we write down Z(x) in the form

Z(x) =
∫ 1

0

G(x, s)β(s)Z(s)ds +
∫ 1

0

G(x, s)(−|f̃(s)|)ds.

Since G(x, s) ≤ 0, Z(x) ≥ 0, β(x) ≥ 0, it follows that

Z(x) ≤
∫ 1

0

|G(x, s)f̃(s)|ds.

From here, (7), and Lemma 2, we prove Lemma 4.

3 Uniform difference schemes

Applying the integral-difference method (3), (4), we construct uniform convergent methods on
arbitrary meshes for solving (1) and (2). On Ω̄, introduce an arbitrary mesh Ω̄h:

xi, i = 0, . . . , N, x0 = 0, xN = 1, max
i

(xi+1 − xi) = h.

We suppose that the points of discontinuity of the functions α(x), β(x), f(x) in (1), (2) belong to
the mesh Ωh, i.e. p ⊂ Ωh.

3.1 Difference scheme for the selfadjoint problem (1)

On Ω̄, introduce the piecewise-constant functions

β̄(x) = β(xi + 0), f̄(x) = f(xi + 0), xi + 0 ≤ x ≤ xi+1 − 0,

xi ∈ Ω̄h, i = 0, . . . , N − 1, (f(xi ± 0) = lim
x→xi±0

f(x)).

Applying the integral-difference method to the problem

L̄µū(x) = µ2ū
′′
(x) − β̄(x)ū(x) = f̄(x), x ∈ Ω, ū(0) = ū(1) = 0,

we write down (4) in the explicit form

aiūi−1 − ciūi + biūi+1 = Fi, i = 1, . . . , N − 1, (8)
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ū0 = ūN = 0, ai = (µ2κi−1)/ sinh(κi−1hi−1), bi = ai+1, κi = β
1/2
i /µ,

ci = µ2[κi−1 coth(κi−1hi−1) + κi coth(κihi)],

Fi = fi−1κ
−1
i−1 tanh(κi−1hi−1/2) + fiκ

−1
i tanh(κihi/2)],

φ̄1i(x) = sinh(κi(xi+1 − x))[sinh(κihi)]−1, φ̄2i(x) = sinh(κi(x − xi))[sinh(κihi)]−1,

where βi = β(xi + 0), fi = f(xi + 0). Since the difference scheme (8) is the exact scheme for the
solution ū(x), then we can determine ū(x) by the explicit formula

ū(x) = ūiφ̄1i(x) + ūi+1φ̄2i(x) + φ̄3i(x), x ∈ [xi, xi+1], i = 0, . . . , N − 1, (9)

φ̄3i(x) = −(fi/βi)[1 − φ̄1i(x) − φ̄2i(x)].

Theorem 1 Let β(x), f(x) ∈ Q1
p(Ω̄) and Ω̄h (p ∈ Ωh) be an arbitrary mesh.

i) The difference scheme (8) converges to the exact solution u(x) of (1) uniformly with the first
order in h

max
0≤i≤N

|u(xi) − ūi| ≤ Ch.

ii) On the whole interval Ω̄, the formula (9) represents the continuous approximate solution
with the first order of accuracy.

iii) The flux µū
′
(x) approximates µu

′
(x) uniformly with the first order in h, i.e.

max
x∈Ω̄

|µu
′
(x) − µū

′
(x)| ≤ Ch.

Proof. Since ‖β − β̄‖, ‖f − f̄‖ ≤ Ch, then properties i) and ii) are immediate consequences of
Lemma 3. To prove iii), we note that z(x) = u(x) − ū(x) can be represented in the form

z(x) = z(xi)φ̄1i(x) + z(xi+1)φ̄2i(x) +
∫ xi+1

xi

Ḡi(x, s)[(f(s) − f̄(s)) + (β(s) − β̄(s))u(s)]ds,

where Ḡi(x, s) is the Green’s function of the differential operator L̄µ on [xi, xi+1]. Now differenti-
ating this formula and using i) and Lemma 1, we prove iii).

Remark 2 The difference scheme (8) has the following nonuniform estimate

max
0≤i≤N

|u(xi) − ūi| ≤ C min(h, h2/µ).

See for details in [10].

Remark 3 If we apply the integral-difference method (3), (4) to the differential operator µ2d2/dx2,
we obtain the classical difference scheme on the uniform mesh

ai+1(ūi+1 − ūi) − ai(ūi − ūi−1) − βih̄iūi = fih̄i, i = 1, . . . , N − 1,

ū0 = ūN = 0, ai = µ2/hi−1, h̄i = (hi−1 + hi)/2,

φ̄1i(x) = (xi+1 − x)/hi, φ̄2i(x) = (x − xi)/hi.
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3.2 Difference scheme for the non-selfadjoint problem (2)

As before, introduce the piecewise-constant functions

ᾱ(x) = α(xi + 0), β̄(x) = β(xi + 0), f̄(x) = f(xi + 0), xi + 0 ≤ x ≤ xi+1 − 0.

For simplicity, we consider two cases of problem (2). The first one is (2) with β(x) ≥ β∗, β∗ =
const > 0, and the second β(x) = 0, x ∈ Ω̄.

If β(x) is strictly positive, then applying the integral-difference method (3), (4) to the problem

L̄εū(x) = εū
′′
(x) + ᾱ(x)ū

′
(x) − β̄(x)ū(x) = f̄(x), x ∈ Ω, ū(0) = ū(1) = 0,

we obtain the following difference scheme

aiūi−1 − ciūi + biūi+1 = Fi, i = 1, . . . , N − 1, ū0 = ūN = 0, (10a)

ai = κi−1 exp(−λi−1hi−1)[sinh(κi−1hi−1)]−1, bi = κi exp(λihi)[sinh(κihi)]−1,

ci = c
(1)
i + c

(2)
i , c

(1)
i = −λi−1 + κi−1 coth(κi−1hi−1), c

(2)
i = λi + κi coth(κihi),

Fi = (fi−1/βi−1)(c
(1)
i − ai) + (fi/βi)(c

(2)
i − bi), λi = αi/(2ε), κi = (λ2

i + βi/ε)1/2,

φ̄1i(x) = [exp(−ν1i(xi+1 − x)) − exp(−ν2i(xi+1 − x))][exp(−ν1ihi) − exp(−ν2ihi)]−1,

φ̄2i(x) = [exp(ν1i(x − xi)) − exp(ν2i(x − xi))][exp(ν1ihi) − exp(ν2ihi)]−1,

ν1i = −λi − κi, ν2i = −λi + κi,

where αi = α(xi + 0), βi = β(xi + 0), fi = f(xi + 0).
If β(x) = 0, x ∈ Ω̄, the difference scheme has the form

αiri(ūi+1 − ūi) − αi−1ri−1(ūi − ūi−1) + αi(ūi+1 − ūi) = Fi, i = 1, . . . , N − 1, (10b)

ū0 = ūN = 0, ri = exp(−αihi/ε)[1 − exp(−αihi/ε)]−1,

Fi = fihi + fi(di−1 − di), di = ε/αi − rihi,

φ̄1i(x) = ri[exp(αi(xi+1 − x)) − 1], φ̄2i(x) = 1 − φ̄1i(x),

As before for the selfadjoint problem, the difference schemes (10a,b) are the exact scheme for the
solution ū(x). Hence, we can determine ū(x) explicitly. For the difference scheme (10a), ū(x) is
determined by (9) with the functions φ̄1i(x), φ̄2i(x) from (10a). In the case of (10b), we have

ū(x) = ūiφ̄1i(x) + ūi+1φ̄2i(x) + φ̄3i(x), x ∈ [xi, xi+1], i = 0, . . . , N − 1, (11)

φ̄3i(x) = (fi/αi)[(x − xi)φ̄1i(x) − (xi+1 − x)φ̄2i(x)].

Theorem 2 Let α(x), β(x), f(x) ∈ Q1
p(Ω̄) and Ω̄h (p ∈ Ωh) be an arbitrary mesh.

i) The difference schemes (10a,b) converge to the exact solution u(x) of (2) uniformly with the
first order in h

max
0≤i≤N

|u(xi) − ūi| ≤ Ch.

ii) On the whole interval Ω̄, the formulas (9) and (11) represent the continuous approximate
solution with the first order of accuracy.

iii) The flux εū
′
(x) approximates εu

′
(x) uniformly with the first order in h, i.e.

max
x∈Ω̄

|εu′
(x) − εū

′
(x)| ≤ Ch.
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Proof. Since ‖α − ᾱ‖, ‖β − β̄‖, ‖f − f̄‖ ≤ Ch, then properties i) and ii) are immediate
consequences of Lemma 4. To prove iii), we note that z(x) = u(x) − ū(x) on [xi, xi+1] can be
represented in the form

z(x) = z(xi)φ̄1i(x) + z(xi+1)φ̄2i(x) +
∫ xi+1

xi

Ḡi(x, s)f̃(s)ds,

f̃(s) = [f(s) − f̄(s)] − (α − ᾱ)u
′
(s) + (β − β̄)u(s),

where Ḡi(x, s) is Green’s function of the differential operator L̄ε on [xi, xi+1]. Now differentiating
this formula and using i) and Lemma 2, we prove iii).

Remark 4 In [11], for the semilinear problem

εu
′′
(x) + α(x)u(x) = g(x, u), x ∈ Ω, u(0) = u(1) = 0,

α(x) ≥ α∗, ∂g/∂u ≥ 0,

with sufficiently smooth functions α(x), g(x, u), the nonlinear scheme (10b) with fi = g(xi, ūi) was
introduced. The construction of this scheme is based on the integral-difference method (3), (4)
applied to the differential operator L̄α

ε = d2/dx2 + ᾱ(x)d/dx. Using the method of the discrete
Green function, it was proved that on an arbitrary mesh, the difference scheme (10b) converges to
the exact solution of the semilinear problem uniformly with the first order in h.

If g(x, u) is a linear function g(x, u) = f(x) + β(x)u(x), then we get the problem (2). It
means that for sufficiently smooth functions α(x), β(x), f(x), the difference scheme (10b) with the
right-hand side

Fi = (fi + βiūi)(hi + di−1 − di)

possesses uniform convergence of the first order in h.
Note here that the left-hand side in (10b) consists of the selfadjoint part and the so-called upwind

part, thus the integral-difference method ”automatically” gives us the upwind discretization of the
convection term.

4 Numerical results

We consider problems (1), (2) with smooth coefficients and introduce two layer-adapted meshes.
The first type of meshes is a modification of Bakhvalov’s mesh (B-mesh) from [6] with logarith-

mic mesh generating functions inside the boundary layers and uniform mesh generating functions
outside the boundary layers. For problem (1), we choose the two transition points σ, 1 − σ, such
that

xNµ = σ, x2Nµ = 1 − σ, σ = −µ ln(µ)/
√

β∗.

Inside the boundary layers [0, σ], [1 − σ, 1], we logarithmically grade the mesh

xi = ρ(i, Nµ), x3Nµ−i = 1 − ρ(i, Nµ), i = 0, . . . , Nµ, 3Nµ = N,

ρ(i, Nµ) = −(µ/
√

β∗) ln[1 − (1 − µ)N−1
µ i],

and outside the layers, the mesh is uniform

xi = σ + (1 − 2σ)N−1
µ i, i = Nµ + 1, . . . , 2Nµ − 1.

For problem (2), we choose the transition point σ such that

xNε = σ, σ = −(ε/α∗) ln(ε), xi = −(ε/α∗) ln[1 − (1 − ε)N−1
ε i], i = 0, . . . , Nε,
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xi = σ + (1 − σ)N−1
ε i, i = Nε + 1, . . . , 2Nε, 2Nε = N.

The second type of meshes is the piecewise equidistant meshes (S-mesh) from [3], where the
uniform meshes are constructed inside the layers and outside them as well. For problem (1) the
two transition points σ, 1 − σ are defined by

xNµ
= σ, x2Nµ

= 1 − σ, σ = µ ln(N)/β∗, N = 3Nµ.

Inside the layers [0, σ], [1 − σ, 1], we choose the uniform mesh with the step spacing σ/Nµ and
outside the transition points, the uniform mesh with the step spacing (1 − 2σ)/Nµ. Similarly, for
problem (2) the transition point σ = ε ln(N)/α∗, and in [0, σ], [σ, 1] the step spacing is defined by
σ/Nε and (1 − σ)/Nε, respectively, where N = 2Nε.

For problem (1), introduce the classical difference scheme on the nonuniform mesh

µ2

h̄i

(Ui+1 − Ui

hi
− Ui − Ui−1

hi−1

)
− βiUi = fi, i = 1, . . . , N − 1, U0 = UN = 0,

and for problem (2), the simple upwind scheme on the nonuniform mesh

ε

h̄i

(Ui+1 − Ui

hi
− Ui − Ui−1

hi−1

)
+ αi

(Ui+1 − Ui

hi

)
− βiUi = fi,

i = 1, . . . , N − 1, U0 = UN = 0.

4.1 Numerical results for problem (1)

As a test problem, consider (1) with β(x) = 1 + x, β∗ = 1 and the exact solution

u(x) = exp(−x/µ) + exp(−(1 − x)/µ) − (1 + exp(−1/µ)), u(0) = u(1) = 0.

In this case we have

f(x) = −x[exp(−x/µ) + exp(−(1 − x)/µ)] + (1 + x)[1 + exp(−1/µ)].

Nµ δB ; δsp
B

16 1.15-2; 1.39-2 3.30-2; 1.50-2 4.29-2; 1.50-2 4.79-2; 1.50-2
64 1.30-3; 3.62-3 7.02-3; 3.81-3 1.02-2; 3.81-2 1.17-2; 3.81-2
256 8.58-5; 9.14-4 1.45-3; 9.68-4 2.41-3; 9.69-4 2.80-3; 9.69-4
1024 5.40-6; 2.26-4 2.26-4; 2.43-4 5.38-4; 2.43-4 6.81-4; 2.43-4

µ 10−2 10−4 10−6 10−8

Table 1: Errors on B-mesh

In Tables 1 and 2, for various values of µ and Nµ, we give the maximum errors of the approxi-
mate solutions obtained by the classical difference scheme and by the special difference scheme (8)
on B-mesh and S-mesh, respectively, where

δ = max
0≤i≤N

|u(xi) − Ui|, δsp = max
0≤i≤N

|u(xi) − ūi|.

The numerical results are clear illustrations of the convergent estimate from Theorem 1.
In Tables 3 and 4, we represent the numerical results on modified B∗-mesh and S∗-mesh,

respectively. The modified meshes are constructed in such a way that the fine mesh is introduced
only inside the boundary layer at x = 0, and the uniform mesh is chosen outside this layer including
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Nµ δS ; δsp
S

16 1.01-2; 1.41-2 2.03-2; 1.41-2 2.04-2; 1.41-2 2.04-2; 1.41-2
64 4.92-4; 5.03-3 5.01-3; 5.12-3 5.24-3; 5.12-3 5.24-3; 5.12-3
256 1.02-5; 1.60-3 1.22-3; 1.64-3 1.33-3; 1.64-3 1.33-3; 1.64-3
1024 9.36-7; 4.93-4 2.16-4; 4.96-4 3.24-4; 4.96-4 3.25-4; 4.96-4

µ 10−2 10−4 10−6 10−8

Table 2: Errors on S-mesh

Nµ δB∗ ; δsp
B∗

16 2.32-2; 2.27-2 3.30-2; 8.59-6 4.29-2; 8.66-8 4.79-2; 8.66-10
64 5.50-3; 3.67-2 7.01-3; 3.17-6 1.02-2; 3.25-8 1.17-2; 3.25-10
256 3.64-4; 1.10-2 1.43-3; 1.01-6 2.40-3; 1.08-8 2.81-3; 1.08-10
1024 2.30-5; 2.91-3 1.62-4; 4.71-3 5.38-4; 3.37-9 6.81-4; 3.38-11

µ 10−2 10−4 10−6 10−8

Table 3: Errors on B∗-mesh

the boundary layer near x = 1. These numerical results for the special scheme (8) show a significant
improvement in the accuracy for sufficiently small values of the perturbation parameter µ. This
fact can be explained if we indicate that for sufficiently small values of µ, the maximum errors
δsp
B,S in Tables 1, 2 occur at mesh points inside the boundary layer at x = 1. Now for the modified

meshes, where in the region outside the boundary layer at x = 0 the coarse uniform mesh is in
use, the reduced problem for µ = 0 is actually calculated. In the case of the classical scheme, the
maximum errors δB,S occur at mesh points inside the boundary layer at x = 0. It explains the fact
that for sufficiently small µ, the accuracy of the classical scheme on the modified B∗, S∗-meshes is
approximately the same as in Tables 1, 2.

4.2 Numerical results for problem (2)

Consider (2) with α(x) = 1 + x, α∗ = 1, β(x) = 0 and the exact solution

u(x) = [1 − exp(−x/ε)][exp(−1/ε) − 1]−1 + x, u(0) = u(1) = 0.

The right hand side in (2) is defined by

f(x) = (x/ε) exp(−x/ε)[exp(−1/ε) − 1]−1 + x + 1.

Nµ δS∗ ; δsp
S∗

16 2.32-2; 2.23-2 2.01-2; 3.94-6 2.04-2; 3.94-8 2.04-2; 3.94-10
64 5.40-3; 3.65-2 4.93-3; 1.36-6 5.20-3; 1.36-8 5.20-3; 1.36-10
256 3.51-4; 1.08-2 1.36-3; 4.32-7 1.31-3; 4.32-9 1.31-3; 4.32-11
1024 2.14-5; 2.80-3 1.62-2; 4.70-3 3.23-4; 1.31-9 3.25-4; 1.31-11

µ 10−2 10−4 10−6 10−8

Table 4: Errors on S∗-mesh
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Nε δB ; δsp
B

16 5.93-2; 3.03-2 6.47-2; 4.21-2 6.55-2; 4.24-2 6.59-2; 4.24-2
64 1.52-2; 5.81-3 1.61-2; 1.07-2 1.61-2; 1.08-2 1.62-2; 1.08-2
256 3.82-3; 1.25-3 3.84-3; 2.62-3 4.07-3; 2.71-3 4.08-3; 2.71-3
1024 9.52-4; 2.79-4 9.79-4; 6.24-4 9.81-4; 6.76-4 9.81-4; 6.77-4

ε 10−2 10−4 10−6 10−8

Table 5: Errors on B-mesh

Nε δS ; δsp
S

16 6.85-2; 2.94-2 6.97-2; 4.25-2 6.97-2; 4.26-2 6.97-2; 4.26-2
64 2.62-2; 5.01-3 2.64-2; 1.07-2 2.64-2; 1.08-2 2.64-2; 1.08-2
256 8.82-3; 9.09-4 8.84-3; 2.66-3 8.84-3; 2.73-3 8.84-3; 2.73-3
1024 2.73-3; 1.89-4 2.75-3; 6.23-4 2.78-3; 6.76-4 2.78-3; 6.76-4

ε 10−2 10−4 10−6 10−8

Table 6: Errors on S-mesh

In Tables 5 and 6, for various values of ε and Nε, we represent the maximum errors for the
simple upwind scheme and the special difference scheme (10b) on B-mesh and S-mesh, respectively.
The numerical experiments confirm our theoretical results from Theorem 2 concerning the uniform
convergence of (10). They also indicate that the theoretical results are fairly sharp.
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