
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Massey University Library
Thesis Copyright Form

Title Of ~h esis: j) IV/.\ 'i' -e ~ """ ell /2e o,,,{,' 1 !, d .:r,__,_ 'r p.,' (&', si ·~

(1) \ (a/ I give permission for my thesis to be made available to
V readers in Massey University Library under conditions

determined by the Librarian.

(b) I do riot wish my thesis to be made available to readers
without my written consent for ... months. '

(2) ~ I agree that my thesis, or a copy, may be sent to
another institution under conditions determined by the
Librarian.

(b) I do not wish my thesis, or a copy, to be sent to
another institution without my written consent for ...
months.

(3) ~- I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for
... months.

Sig;µed. -
Date 30, :3

. The copydght of this thesis belongs to the author. Readers. must
sign their name in the space below to show that they· recognise
this. They are asked to add 'their permanent address.

NAME AND ADDRESS 'DATE

DNA Sequence Reading
by Image Processing

A thesis presented in partial fulfilment of the requirements
for the degree of

Master of Science

in Computer Science at

Massey University

Supervised by

Dr Donald Bailey
and

Dr John Hudson

Fan Baozhen

1993

To my mother, father

and sisters

Abstract

The research described in this thesis is the development of the DNA sequence reading

system.

Macromolecular sequences of DNA are the encoded form of the genetic information of all

living organisms. DNA sequencing has therefore played a significant role in the

elucidation of biological systems. DNA sequence reading is a part of DNA sequencing.

This project is for reading DNA sequences directly from DNA sequencing gel

autoradiographs within a general purpose image processing system.

The DNA sequence reading software is developed based on the waterfall software

development approach combined with exploratory programming. Requirement analysis,

software design, detailed design, implementation, system testing and maintenance are the

basic development stages. The feedback from implementation and system testing to

detailed design is much stronger in image processing than a lot of other software

development.

After an image is captured from a gel autoradiograph, the background of the image is

normalised and the contrast is enhanced. The captured image consists several lane sets of

Abstract iv

bands. Each of the lane set represents one part of a DNA sequence. The lane sets are

separated automatically into subimages to be read individually. The gap lines between the

lane sets are detected for separation. The geometric distortions are corrected by finding

the boundaries of the lane set in the sub image. The left boundary of the lane set is used to

straighten lane set and the right boundary is used to warp the lane set into a standard

width. If separation of the lane sets or geometry correction is unsuccessful by automatical

processing, manual selection is used. After the band features are enhanced, the individual

bands are extracted and the positions of the bands are determined. The band positions are

then converted into the order of the DNA sequence. Different part of a sequence from

subsequences are merged into a longer sequence.

In most of the cases, the individual lane sets in a captured image are able to be separated

automatically. Manual processing is necessary to handle the cases where the lane sets are

too close.

The system may reach an accuracy of 98% if the bands are clear. Manual checking and

correcting the detected bands helps to obtain a reliable sequence. If a lane set on the

autoradiograph is indistinct or bands are too close it may reduce the accuracy, in extreme

cases to the point where it is unreadable. For a 512x512 image captured from a gel

autoradiograph, preprocessing takes 90 seconds, processing each subimage takes 40

seconds on a 33Hz 486 PC. If processing a 430x350 mm autoradiograph with 16 lane

sets, assuming 6 images are required, it takes about 40 minutes.

As I complete my study for my master's degree, I want to call to mind my mother and

father and sisters, and my whole family who have encouraged and supported me so

much over the past years. I am very grateful to my family, who have helped me to persist

in my studies when I often felt too old to continue. I feel very relieved and thankful that

after so many years of what seems like wasted time and many struggles I have now

completed my work.

When I was a small girl I loved studying very much, and was inspired by my parents,

and by my sisters. However, circumstances were very difficult from my youth onwards,

as a result of the environment at that time.

My parents had no opportunity to get an advanced education when they grew up in

China. So they placed their hope on their children. Indeed their greatest desire was that

their children would get a good education. As their daughters, we sought not to

disappoint their expectation. At school we all got high grades in our work. My eldest

sister, Guizhen, and my second sister, Guimei, passed the entrance examinations and

were both admitted to university. My third sister, Guie, delayed going to middle school

because she had been competing in wushu, a sport in which she became outstandingly

Preface vi

successful and the champion for the whole of China. After middle school, she too went

to university. I am the fourth in the family, and I was admitted to one of the best middle

schools in Qingdao city after taking the entrance examinations.

My sisters set a fine example for me, inspiring me subconsciously to go on from school

to university, and then after my undergraduate study to undertake postgraduate research,

and then do research or teach in a university. It all seemed so straight-forward. But the

Cultural Revolution in China commenced just as I was completing my three years of

study at middle school. So overnight the dream of studying in university evaporated.

High school study is for a period of three years between middle school and tertiary study

in China, and I felt sure I could go there. However, because my father had once been a

capitalist I was not permitted to attend, even though my school marks were always

excellent. When I discovered that I would not be permitted to study in high school I was

broken-hearted. In my dreams I would imagine that I was at school, and when I woke

up, I would cry because I would never be allowed to take a seat in the lecture theatre.

Later, I went to the countryside and worked in a factory. All the "golden time" of my

youth had come to nothing. It was ten years later when once again people were admitted

to university by sitting the entrance examinations. However, I had attended no classes at

high school level, while others had attended for three years. My sisters encouraged me to

take the entrance exams anyway, and with their help and my own study I got very good

marks much to my surprise. Even then I encountered prejudices against admitting me to

university, and I almost missed out on gaining entrance. But I was stubborn, and I clung

onto the gleam of hope and refused to succumb to the opposition. So finally I entered my

university career, ten years late. My university study in China was the essential

preparation to overseas study.

New Zealand is the first foreign country I have ever visited. As a mature student, I found

study overseas much more difficult than for others in the same course. Language is one

problem, but I have also experienced a serious ailment in my back, and although I do not

look ill, I have constantly had to struggle with it. Nobody else has any idea just how

acute this little problem has been. I spent a great deal of time trying to control the pain, so

that I could concentrate better on my work. The suffering reduced my ability to work and

to live, and this made me lose confidence. The worry and distress made my condition

worse, and several times I almost abandoned my study. Yet my family's desire that I

succeed, and my own long-cherished desire from when I was a child, kept me going,

preventing me from giving up. It may have been very hard, but I am determined to go

forward and upward.

Preface vii

God has taken care of me. Just before completing my MSc I again almost lost confidence

about my future direction. Just at this point the pain in my back began to reduce. So the

hope of what lies in the future has returned to me. The desire to climb forward and

upward has returned to my heart. I am still my stubborn self, and I will not give up on

my aspirations.

During the difficult experiences of my life, I have always had the complete support of my

whole family to get me over dangers and difficulties. My mother has always been my

guide through life. Whenever difficulty or danger has come near, I have always

remembered when I was a child lying in my cradle. She would pick me up and place me

securely in her arms. In a way this is what she still does when I am in difficulties. She

has always protected and helped her children and encouraged them to go forward and

upward. I wish my mother good health, much happiness and long life.

During the two years when I was working on my masters in New Zealand, two members

of my family have died, my honoured father and my third sister Guie. They were so far

away across the oceans that they could not farewell me before they went to heaven. The

pictures of two roses in the Introduction of my thesis are a special tribute to my father

and my sister Guie.

When I left home to come to New Zealand, my father wept. He had a premonition that he

would never see his youngest daughter again. But I do not believe that my father and

sister Guie have left the world. I dreamed about my father last night. I know from this

that my father is still alive. So I have a good reason to do what my family want and what

they hope for me. I can feel that God is with me, and peace and happiness are present

with me, for that is what my sister Guie prayed for and wished as blessing for me in her

will. So I want my father, my sister Guie and all my family to smile upon me as I live

here.

This thesis is therefore a gift to my father and mother as a thanksgiving for the way they

brought me up, and also to my sisters in thanksgiving for their care and love. It is also a

memorial to my father and my sister Guie.

My all family, my parents, my sisters, my brother-inlaws, my nieces and my nephews,

have encouraged and supported me over the past years when I study in NZ. Many thanks

to everyone in my family.

Many thanks to my supervisor Dr Donald Bailey, for his valuable guidance throughout

this project, for his helping me to learn image analysis techniques, for his patience in

trying to understand my Chinese way of thinking and talking, especially when checking

my thesis and conference papers, for his encouragement and support when I felt like

giving up since my father and sister died.

I would like to thank Dr Nick Ellison for providing invaluable technical information on

DNA sequencing and for the provision of the autoradiographs used to develop the

software.

I would also like to thank Professor Mark Apperley and Dr John Hudson for their

encouragement and support and to thank Terry Cunniffe for being a nice neighbour and

helping set up memorial for my father with David's help.

CONTENTS

Abstract ... iii
Preface .. v

Acknowledgments .. . iix

Chapter 1 Introduction ... 1

Chapter 2 Image Processing and VIPS 4

2 . 1 Image processing ... 5

2. 2 Vision Image Processing System (VIPS) IO

Chapter 3 DNA Sequence Reading Software Development 13

3 .1 DNA sequencing ... 14

3 . 2 An Image processing software development approach 16

3. 3 Requirement analysis .. 17

3 . 4 Software design .. 18

3 . 5 Detailed design and implementation .. 20

3 . 6 System testing and maintenance .. 25

Chapter 4 Image processing module Algorithms 27

4 . 1 Image acquisition .. 27

4. 2 Contrast enhancement ... 33

4. 3 Gap line detection .. 37

4. 4 Subimage separation41

4. 5 Boundary extraction ... 42

4. 6 Geometry warping ... 47

4 . 7 Band extraction .. 53

4 . 8 Band scanning ... 56

Chapter 5 Results ... 62

5. 1 Subimage separation and geometry warping 63

5 . 2 Accuracy .. 65

5 . 3 Timing .. 70

Chapter 6 Summary and Conclusions 71

References .. 74

Appendix I: Expressions of VIPS Commands 76

Appendix II: VIPS Programs for DNA Sequence Reading 79

Appendix III: C Programs of VIPS Commands developed 97

Chapter 1

Digital image processing has been a rapidly evolving field during the last 30 years with

a growing range of applications in a broad spectrum of science and engineering

disciplines [Jain, 1989]. This growth is coupled with improvements in the processing

speed, image display and storage capabilities of computers and cost effectiveness of the

related signal processing devices and computers [Pratt, 1978]. Image processing is a

broad subject of interdisciplinary study and research in such diverse fields as computer

and information science, statistics, physics, astronomy, chemistry, biology,

psychology, medicine, geology, engineering and so on [Bailey, 1985].

DNA sequence reading is one application of image processing in fundamental genetic

and cellular analysis. Genetic and cellular analysis is an important part of biological,

agricultural and medical research [Bodmer, 1987]. The goal of this project is to

incorporate automatic DNA sequence reading capability from a gel autoradiograph

within a general purpose image processing system.

The genetic information of a living organism is encoded by the DNA contained within

every living cell of that organism. DNA sequences are a representation of the genetic

structure of DNA molecules. After the DNA reactions are run on an electrophoresis gel

Chapter 1 Introduction 2

the DNA sequence can be read from the gel autoradiograph. A DNA sequence reading

system is developed for reading sequences directly from DNA sequencing gel

autoradiographs by image processing techniques. A number of subsequences in an

image are captured from a gel autoradiograph. Each subsequence must be read

separately. Most of the subsequences may be separated automatically. If necessary,

manual processing may be used to separate the subsequences. The subsequence

boundaries are extracted and are used to correct for geometric distortions. Individual

bands are extracted and the band positions are detected. The order of the DNA

sequence is then determined from the sequence of band positions. Different parts of a

sequence from different subimages are merged into a longer sequence. The algorithms

of the DNA sequence reading system are developed and implemented using VIPS

(Vision Image Processing System), version 4.1, which currently runs on an PC under

Windows, an Apple Macintosh and a DEC Micro VAX.

Chapter 2 includes a brief survey of image processing and introduces the Vision Image

Processing System (VIPS). Some of the image processing concepts are explained

which are used in the following chapters on DNA sequence reading software

development. These are image acquisition, feature enhancement, linear convolutional

filters, intensity histograms, image segmentation, thresholding and line profiles. VIPS

is used as the software development and implementation environment for this project.

The hardware components required by VIPS and software features of VIPS are

described.

In chapter 3, the DNA sequencing application is described more fully and an image

processing software development model, based on the waterfall software development

approach combined with exploratory programming, is presented. Each stage of the

model (requirement analysis, software design, detailed design and implementation,

system testing and maintenance) is described as it relates to DNA sequence reading

system development. A general model for image processing and the final system

function module structure are given in section 3.4. The control module algorithms of

DNA sequence reading system are described in section 3.5.

Chapter 4 describes the algorithms for the image processing module of the DNA

sequence reading system in detail. An image must be acquired from a DNA sequence

gel autoradiograph. Contrast enhancement increases the faint bands in the DNA

sequence images. Several subsequences may be in the same captured image and each

subsequence must be read separately. The gap lines between subsequences are

detected, which are used to obtain separate subimages for each subsequence. Geometric

distortions often occur on gel autoradiographs. In order to successfully process most of

Chapter 1 introduction 3

the gel autoradiographs, geometry correction is necessary. The subsequence boundaries

are extracted and are used to correct for geometric distortions. The left boundary is

used to shear the image to straighten left side and the right boundary is used to

trapezoid warp the right side. The individual bands are extracted and the positions of

the bands are then detected. The band positions are sorted into a list and then converted

into a DNA sequence. Different parts of a sequence are merged into a longer sequence.

Chapter 5 discusses the results of the DNA sequence reading system. Automatic

separation of lane sets and geometry warping are successful on most of the images

captured. If the boundaries of a band lane set are not clear, manual selection of the lane

set and manual geometry correction are used. The accuracy of the system depends on

the clarity of the bands on the gel autoradiograph. If the bands are clear, the accuracy

of automatic processing may reach 98%. The output is checked and any errors may be

corrected manually to obtain an acceptable accuracy. Timing is carried out on a 33MHz

486 PC. Automatically processing a 430 x 350 mm autoradiograph with 16 lane sets

(see Figure 3.1-1) takes about 40 minutes.

Chapter 6 summarises the system and the thesis and gives suggestions for future work.

The mathematical expression of the VIPS operations used in this thesis are summarised

in Appendix I. Appendix II gives VIPS programs for the DNA sequence reading

system. Several new VIPS commands were developed for DNA sequence reading:

STRAIGHTEN, PARALL, SEQUENCE, POINTS, SORT and JOIN. The C programs for

these commands are given in Appendix III.

During the research for the project the following papers were published:

Fan B., Bailey D.G. and Hudson J., Image processing in DNA Sequence Reading, 7th

NZ Image Processing Workshop, pp 117-122, Christchuch NZ, (8, 1992).

Fan B. and Bailey D.G.,Algorithms for DNA Sequence Reading by Image Processing,

NZ Computer Science Research Students' Conference, pp 109-116, Hamilton NZ,

(10, 1992).

Fan B. and Bailey D.G., Algorithms for DNA Sequence Reading by Image Processing,

NZ Journal of Computing, pp 47-56, Palmerston North NZ, (5, 1993).

Fan B. and Bailey D.G., Preprocessing Algorithms for Automatic DNA Sequence

Reading, TENCON' 93 Computing, pp 998-1001, Beijing China, (10, 1993).

Chapter2

lfflEt(l'I J:rQ'Q.,s$1i"n,g
Q,r,(I "l"P"S

Visual imagery is one of the most important sensory inputs to the human perceptual

system [Kasturi and Trivedi, 1990]. However, many of the activities which need to be

done in modern science are repetitive and mundane, so people have attempted to

automate such activities. Since vision is so important, we have also attempted to

automate vision. Many theoretical and technological breakthroughs are required before

we could emulate the visual functions of human beings [Jain, 1989].

Image processing, as a technology, is a step toward automating visual tasks. Image

processing and analysis are used primarily to augment human vision and to extract

numerical information from images by applying series of mathematical operations. In

practical image processing, there are two principal application areas. The first is the

improvement of pictorial information for human interpretation. This is also called

computer assisted vision and is primarily used to augment human vision and to extract

information from images. The second is the processing of scene data for autonomous

machine perception, mainly for inspection and manipulation, which is known as

machine vision [Gongalez and Wintz, 1987].

Chapter 2 Image processing and VIPS 5

The DNA sequence reading system described in this thesis is an application of

computer assisted vision. In section 2.1, some concepts and terminology of image

processing techniques used in the following chapters are explained.

Vision Image Processing System (VIPS) is a tool for investigating the applicability and

practicability of image processing techniques to industrial and scientific problems.

VIPS is used as the software development environment for developing the DNA

sequence reading system. The hardware required and the software features of VIPS are

described in section 2.2.

2.1 Image Processing

Some concepts and terminology of image processing techniques, which will be used in

the following chapters, are explained in this section. These are image acquisition,

feature enhancement, linear convolutional filters, intensity histograms, image

segmentation, thresholding and line profiles.

Image acquisition. Images can be acquired by a sensor system specially designed to

view a scene and provide a digital representation of that scene. The continuous two

dimensional intensity pattern is quantised, or sampled, both in position and in intensity

giving a digital image. The sampling rate is the number of pixels (J;tl£ture elements)

per unit area. This must be larger than twice the maximum frequency to preserve the

useful information in an image without aliasing [Gongalez and Wintz, 1987].

We may consider a digital image as a two dimensional array f(x,y), whose row and

column indices identify a point in the image and the corresponding matrix element

identifies the grey level or colour at that point.

Feature enhancement. Image enhancement is one of the principal image processing

techniques. Images are processed to enhance or extract features which are important for

the particular application. Filters, multiple image combination and histogram

modification are used for enhancement.

A spatial domain filter calculates the value of each pixel of the output image as some

function of the values corresponding pixel and its neighbours in the input image.

Different functions enhance or detect different features. This neighbourhood can be

thought of as a moving window, where the window is moved from pixel to pixel as

each output value is calculated. Figure 2.1-1 illustrates a (3x3) moving window centred

at (x, y) in an image.

Chapter 2 Image processing and VIPS 6

(x, y)

~
Image

Figure 2.1-1 A 3x3 moving window centred at (x, y) in an image.

The general moving window filter with an mxn window can be represented

mathematically as

P
011

/x,y)=f(P;,
1
(x+i,y+ }),

Vi E {-f , .. ,f},j E {-1, .. ,1})
(Eq. 2.1-1)

where p
0111

is the output image, f() is the filter function which is evaluated at each

position of the window in the image, P;
11

is the input image [Bailey, 1993].

Figure 2.1-2 gives an example of edge enhancement. The (a) is the original image, (b)

is an edge detected image using a Sobel filter.

a) b)

Figure 2.1-2 Edge enhancement

a) original image, b) edge detection by Sobel filter.

Linear convolutional filters. Linear convolutional filters are one class of filters, which

use a weighted average or linear combination of the pixel values within the window.
The filter function f() in Eq.2.1-1 can be represented by

Chapter 2 Image processing and VIPS 7

Pm,/x,y) =-
1

- ± ± w(i,j)P;n(x+i,y+ j)
scale i=-!!lJ·=-!!.

2 2

(Eq. 2.1-2)

where w(i,j) are the fixed kernel weights corresponding to each position within the

moving window. The kernel weights are chosen to detect a particular property of

interest in an image. Figure 2.1-3 gives noise smoothing and different edge detection

filter kernel weights [Bailey et al, 1984].

¼[:
1

:] ½[~
1 ~J r-1 0

:J ±[~l

1

!] 1 0 ½ -1 0 0

1 -1 -1 -1 0 1 -2 -1

noise horizontal vertical diagonal
smoothing edge detection edge detection edge detection

Figure 2.1-3 Kernel weights of smoothing and detection.

Intensity histograms. The grey level histogram is a function which summarizes the

grey level content of an image. The function shows, for each grey level, the number of

pixels in the image that have that grey level. The abscissa is grey level and the ordinate

is frequency of occurrence (number of pixels) [Castleman, 1979]. Intensity histograms

may be used to enhance images. Figure 2.1-4 gives a histogram of an image. Figure

2.1-5 gives a contrast enhanced image and the histogram, which expanded the range of

grey levels linearly .

Figure 2.1-4 An image and the intensity histogram.

The intensity histogram may also be used for image segmentation.

Chapter 2 Image processing and VIPS 8

Figure 2.1-5 The contrast stretched image and the histogram.

Image segmentation. Image segmentation is the splitting of an image into its

meaningful constituent parts, or regions which have a common property [Gongalez and

Wintz, 1987]. Edge detection, boundary tracking, thresholding and region growing are

the principal image segmentation approaches [Bailey, 1991]. Image thresholding is the

most commonly used method of image segmentation. It splits an image into component

regions based on the pixel value at each point. Simple thresholding uses a single

threshold level. All pixels less than this threshold are categorised as belonging to one

class, while those above the threshold are categorised as belonging to the second class.

Figure 2.1-6 gives an example of image segmentation using thresholding. The

threshold level is selected by examining the histogram (see Figure 2.1-5) to segment

the background and the object. The threshold is chosen at 155 which is just to the left

of the main peak, separating the background and the object.

Figure 2.1-6 Image segmentation.

Figure 2.1-7 gives an example of edge detection by thresholding. These pixels with

level less than 30 are classified as not edge and set to white. The remaining pixels

(greater than 30) are classified as edge pixels, and are set to black.

Chapter 2 Image processing and VIPS 9

Figure 2.1-7 Image thresholding.

Line profile. The intensity line profile of a image is used to analyse the image features

at a defined line. Sharpness of edges, contrast, noise and thresholding range may be

determined by analysing the intensities along a line in an image. Figure 2.1-8 shows a

profile along the line of the image. The sharpness of edges can be seen from the slope

of the lines. The contrast of the image can be seen from the profile shape. The noise

can be seen clearly on flat part.

Figure 2.1-8 An image with line profile.

These image processing techniques, along with others, can be combined to form image

processing algorithms.

Vision Image Processing System (VIPS) is a tool for developing image processing

algorithms. The DNA sequence reading system is developed and implemented using

VIPS.

Chapter 2 Image processing and VIPS 10

2.2 Vision image processing system (VIPS)

VIPS is designed to support general-purpose image processing. It is a tool for

investigating the applicability and practicability of image processing techniques to

industrial and scientific problems. It runs on several different computing platforms,

MicroVAX, IBM compatible PC and Macintosh with a common command line

interface used on all. Sequences of VIPS command lines may be combined together

into program files. The main function of VIPS is to provide an environment for the

development of image processing algorithms. Therefore, the system is highly

interactive and has available hundreds of general purpose image processing operations

and functions. VIPS is written in portable C. New commands and new functions may

be developed and added to the system by users if necessary [Image Analysis Unit,

1992]. VIPS is developed by my supervisor, Dr. Donald G. Bailey, at the Image

Analysis Unit of Massey University.

VIPS hardware requirements. The required hardware components of VIPS are

similar even when VIPS is implemented on different computing platforms. Image

sensor, frame grabber, image display, computer and image processing software storage

are the indispensable components required for image processing. The components of

VIPS hardware required are shown in Figure 2.2-1.

Object

mage
Sensor

Network

Frame Grabber

Digitizer
Frame Display
Buffer Generator

8----------'

Figure 2.2-1 Components of VIPS hardware required.

VIPS
Software
Package

Printer

Chapter 2 Image processing and VIPS 11

An image sensor is required for image acquisition which converts an image into an

analog signal suitable for input into a frame grabber. The most common method for

capturing images is to use a solid state video camera.

The frame grabber provides the interface between the computer, and the camera and

display. A frame grabber typically involves three functional parts: a digitiser, a frame

buffer and a display generator. The analog signal produced by the camera is

transformed to a digital format. The digital image data are stored into the frame buffer,

where they can be read by the CPU in the computer. The function of the display

generator is to convert the stored digital information into an analog video signal, and

output this signal to a video monitor or image display, where the image can be viewed.

Image display is indispensable for checking the result images. A monochrome or

colour video monitor is used to display analog video signal images, or images are

displayed directly in another window on the computer terminal.

A general purpose computer provides versatility as well as ease of VIPS application

programming. Currently, a microVAX under VMS, an IBM compatible PC under

Windows or a Macintosh are used as platforms for VIPS and VIPS applications. At

least 2M bytes of RAM is required for data throughput on a general image processing

project. The memory requirements depend on the number of images required, which

depends on the intended application.

A printer is used to hard copy resultant images and output files if necessary.

Network may be used to get images to be processed from remote computers or to

convey results to remote computers.

Figure 2.2-2 Vision Image Processing System on a PC.

Chapter 2 Image processing and VIPS 12

Figure 2.2-2 shows VIPS running on a PC with the hardware required.

VIPS software. VIPS software package is command based. Operations within VIPS

are invoked by entering commands in response to a prompt. The VIPS window on the

screen shows VIPS command lines, user prompt and text input and output. The VIPS

kernel part includes command parser, command table and variable table. Each

command and function code includes command definition and command procedure.

Display driver and utilities are also provided for use by commands. Figure 2.2-3 gives

the VIPS structure.

VIPS window
on screen

Command lines
user prompt --

input & output

VIPS kernel

Command
table

I

' Command
parser

4
Variable

table

--

--

Command code
function code

Command
definition

Command
procedure

I

Figure 2.2-3 VIPS structure.

- Display
driver

-- Utilities

VIPS is written in portable C. Hundreds of VIPS commands are available. New

commands may be added by the user by providing a command definition and a

command procedure. New functions may be added as well.

The general VIPS command format is as below:

VIPS V4: COMMAND parameterl [parameter2 ... J [/optionl ...]

In a VIPS application, command lines can be combined in a text file, as a program. As

an example, a rotate program is given below which captures a (512x512) image from

the display, then rotates the image and displays the rotated images repeatedly.

PROGRAM
DISPLAY image
FOR n = 1 4

ROTATE image
DISPLAY image

END
END

!rotate. vip

!repeat 4 times
!rotate 90 degrees

Chapter3

ll!l,H'A &fi(il1c.em¢'iitnil9
~,Q.Jt,ware· ll!le,Ve:1rt:Ji,,m'.e1m1

DNA sequences are a representation of the genetic structure of DNA molecules. The

generation and analysis of DNA sequence data, DNA sequencing, has played a

significant role in the elucidation of biological systems. DNA sequence reading is a

part of DNA sequencing, and provides a bridge between the generation and the analysis

of DNA sequence data.

DNA sequences may be read manually by trained technical staff. However, although

the reading process is straight forward, it is tedious, and therefore prone to errors. After

reading, the sequence must then be transcribed into a computer for entry into or

comparison with a sequence database. This transcription step is also error prone. The

very nature of the problem: being well defined and very repetitive makes it amenable to

image analysis techniques. Although several commercial packages are available for

DNA sequence reading, these are either limited in what they do (for example an

operator manually points to each band using a digital-pad) or expensive (for example.

laser sequence reading is part of the whole sequencing machine) and highly specialised

(all the software does is DNA sequencing). The goal of this project is to incorporate

Chapter 3 DNA Sequencing Software Development 14

automatic DNA sequence reading capability from a gel autoradiograph within a general

purpose image processing system.

In this chapter, the DNA sequencing process is described, an image processing

software development model is presented and each stage in the model is described with

processes of DNA sequence reading system development. A general model for image

processing and the final system function module structure are given in section 3 .4. The

control flow diagrams of control modules in the DNA sequence reading system are

described in section 3.5.

3.1 DNA sequencing

The genetic information of a living organism is encoded by the DNA contained within

every living cell of that organism. DNA itself consists of a chain of nucleotide residues

derived from the bases adenine, cytosine, guanine and thymine. Thus the genetic code

can be determined by reading the sequence of bases within the DNA, a process referred

to as DNA sequencing.

The current methodology of DNA sequencing has its origins in a variety of different

fields of nucleic acid enzymology and chemistry. DNA sequencing relies on the

incorporation of radiolabelled nucleotide residues into the DNA molecule to be

sequenced and the generation of populations of radiolabelled oligonucleotides that

begin from a fixed point and terminate randomly at a fixed residue within that DNA

molecule. The population of radiolabelled oligonucleotides is separated on the basis of

size by gel electrophoresis and the DNA sequence is determined by the examination of

an autoradiographic image of the separated oligonucleotides [Hindley, 1983].

The DNA sequence itself is determined by reading the sequence of bands in the four

lanes on the autoradiograghic image of the sequencing gel starting at the bottom of the

gel and working up, where each lane represents one of the four bases, adenine (A),

cytosine (C), guanine(G) and thymine (T). The correct sequence is obtained by noting

the most intense band at each level, developing a feel for the spacing [Daivies,

1982].The sequence read from gel autoradiogragh either is used directly, or form the

input to a software package which obtains a consensus sequence from overlapping

sequences [Elder and Southern, 1987].

Automatic reading of DNA sequencing gel autoradiographs is the purpose of the

project mentioned in the thesis.

Chapter 3 DNA Sequencing Software Development 15

Figure 3.1-1 gives an example of DNA sequence gel autoradiograph.

Figure 3.1-1 DNA sequence autoradiograph.

Chapter 3 DNA Sequencing Software Development 16

3.2 An Image Processing Software Development approach

Image processing software development is inherently iterative. Since both hardware

and techniques are still limited, applying image processing to a particular application

relies strongly on checking intermediate results during the development process. The

standard waterfall model of software development [Sommerville, 1989] fits most of the

stages in image processing software development. However the feedback from

implementation and system testing to detailed design is much stronger in image

processing than a lot of other software development.

An approach based on the waterfall model combined with exploratory programming

were used to develop the DNA sequence reading system. Figure 3.2-1 outlines this

approach.

Requirements
analysis

' and outline
specification Software • design

J Detailed .. Implemen-
ll design tation and t

unit testing
System

J l h lo testing t
I J

Operation and
maintenance

Figure 3 .2-1 Image processing software development model.

The general requirements analysis stage includes feasibility study, requirement

definition and specification, and then system specification. The feasibility study

specially relies on image processing hardware and image processing techniques. The

detailed requirement cannot be defined at this stage, only outline specification is

possible. A general model for image processing software design can be used in a small

system design. Image acquisition, image preprocessing, feature extraction and post data

processing are the top modules in the structure diagram of any image processing

software. Different applications require different middle modules in the structure

diagram. Detailed design can be defined as selecting the individual image operations.

Implementation can be defined as supplying the series of operations with parameters.

Detailed design depends on implementation. A depth-first search is used to select a

Chapter 3 DNA Sequencing Software Development 17

suitable operation path (the algorithm) from a operation tree for each image processing

function module. Implementation generates preliminary programs and then decides the

operation parameters, instead of deriving the program from low-level specification.

System testing demonstrates the adequacy of the system rather than the correctness of

the programs. When a larger number of images are tested, various complicating factors

and special cases may be introduced, so that the detailed design and implementation

must be refined repeatedly. The development stages overlap and feed information to

each other.

The following sections will give detailed descriptions of each stages in the image

processing software development model with the DNA sequence reading system

development processes.

3.3 Requirement analysis

It is important to make a distinction between user need and software requirement.

Users may need a software system to support their task, but the problems to be solved

must be collected and analysed. A software requirement is a property that the software

system must satisfy. Feasibility, requirement definition and specification, and system

specification make up general requirement analysis.

The feasibility study of a image processing software relies on image processing

hardware and image processing techniques mastered by people and available to the

developers. The detailed requirements are hard to define but an outline specification is

possible. A prototype of exploratory programming is often required if it is a new

application area to the software developer.

In developing a system for DNA sequence reading, VIPS was chosen as the

development environment. Exploratory programming is used to determine the

feasibility of using image processing techniques and to outline the possible accuracy. A

straightforward part of a DNA sequence autoradiograph is captured into a sample

image (see Figure 3.3-1). After thresholding the image, most of the bands on the DNA

sequence image are segmented. It is possible to increase the readability of the image by

preprocessing and enhancing the band features. The positions of the centre of gravities

of the segmented bands may be used to get the sequence of the bands.

The accuracy is very important in the system. The accuracy should be at least as good

as that from manually reading the bands. Uncertainty codes may be used, but missing

or false bands are not acceptable. It is possible to increase the accuracy by image

Chapter 3 DNA Sequencing Software Development 18

preprocessing, but it is hard to affirm how well the process will be at this stage. A

manual correction step may be added at the end of the algorithm to make the system

more acceptable.

-- -------~--- -r. ---= ...a

-- --

b)

~ .-.-: = =: -- = MW¥ Wt

----l!llil ~ .. --=--=-- -~-.. - =-- ---lllfllllll'--- -------- -· --• --c)

Figure 3.3-1 Exploratory programming results
a) a sample DNA sequence;

b) segmented image with threshold 11 O;
c) segmented image with threshold 150.

Besides general image processing operations, DNA sequence reading may require

individual operations, for example, sorting band positions into a DNA sequence. VIPS

is extendable, allowing new operation commands to be added for an application

system. So, the project of DNA sequence reading is created.

3.4 Software design

Design is a creative process. Software design is the process of representing the

functions of each software system in a manner which may readily be transformed to

one or more programs. Image processing software design requires that the software

developers have strong experience and extensive background in image processing. A

general model of image processing software design may be used to form the top

modules of a small image processing application. Figure 3.4-1 gives a general model of

image processing software design [Bailey, 1988].

Chapter 3 DNA Sequencing Software Development

Capture images

Compensate deficiencie:
Normalise image

Quantitative measurement
Integrity or completeness checking
Surface property inspection
Sorting

Data transform
Convert result form

Figure 3.4-1 A general model of image processing software design.

19

The initial DNA sequence reading system top module structure is given in Figure 3.4-

2. The DNA sequence images must be captured from a DNA sequence autoradiograph.

Contrast enhancement is the main part of preprocessing, which enhances the flat bands

in the image. The information to be extracted is the position and order of the bands in

the image. For this, the bands are filtered and detected. The purpose of the system is to

obtain the DNA sequence. The positions of the bands are scanned and then sorted. The

order of the bands is transformed into the order of the bases in the DNA sequence.

DNA
sequence
reading

I
I I I I

acquire enhance extract sequence
image contrast bands reading

Figure 3.4-2 DNA sequence reading system top module structure.

Chapter 3 DNA Sequencing Software Development 20

After more images were tested, an automatically process of all subsequences in a

captured image is added into the system. The final system function module structure is

refined as Figure 3.4-3.

DNA
sequence
reading

I I I
acquire enhance automatically manually

image contrast process process

I I
I I

detect separate subimage select
gap lines subimage reading subimage

geometry extract sequence

correction bands reading

I I
extract warp manually scan

boundaries geometry correction bands

Figure 3.4-3. DNA sequence reading system function module structure.

3.5 Detailed design and implementation

Detailed design and implementation are closely related to problem solving. Each

function module is designed into an algorithm. In an image processing context, this

involves developing an algorithm for each function module to obtain the desired

resultant image or data from a given image. The detailed design depends on

implementation.

There is little or no underlying theory that may be used to determine the sequence of

image processing operations through which a desired solution image can be obtained

from a given image. In practice, an operation sequence (an algorithm) is frequently

decided by trying out operations and checking the resultant images [Bailey, 1988].

Detailed design may be defined as selecting the operations while implementation may

be defined as determining suitable parameter values. The operation selection relies on

implementation. In other words, algorithm development is largely a heuristic process.

Chapter 3 DNA Sequencing Software Development

unsatisfactor:,

resultant
image

goal

image

Figure 3.5-1 Searching an image processing operation path.

21

There may be several operation paths for solving the same problem. An operation

search tree for an image processing function module may be created by a experienced

image processing algorithm designer. Searching for a path that gives satisfactory

results is the purpose of detailed design. Figure 3.5-1 represents a simplified image

processing operation search tree with depth-first search. The root of the tree is a given

image to be processed. The median nodes are median resultant images. The arc

between two nodes is a single image processing operation (or embedded algorithm).

The leaves of the tree are resultant images. Some resultant images are not successful.

The goal images are satisfactory (node j, f).

The control module designs of the DNA sequence reading system are described briefly

below. The image processing module algorithms will be given in Chapter 4.

DNA sequence reading module. The DNA sequence reading module is the main

system control module. The image to be processed may be either captured directly

from a gel autoradiograph by VIPS through a camera, or loaded from image data files

which have been captured previously. The user is offered the selection of the

acquisition mode, or to exit from the system. When loading from a file, the input image

file name is checked until the file name is acceptable. As preprocessing, the enhance

contrast module is called to make faint bands readable and enhance the contrast

between band lane sets and the inter-set spaces. Since each lane set represents a

different part of the DNA sequence, the lane sets must be separated into different

subimages and then be processed individually. Most of lane sets may be separated

Chapter 3 DNA Sequencing Software Development 22

automatically. If the image can not be separated well, for example if the space between

the lane sets is too small, the subimages may be selected manually. The process type is

selected by user. The control flow diagram (CFD) of the system control module is

given in Figure 3.5-2.

DNA Sequence Reading

File

Capture image Load image file N

Enhance contrast Exit

N

Automatically process Manually process

Figure 3.5-2 System control module CFD.

Automatically process module. The automatically process module separates each

subimage automatically before processing each subsequence. Detect gap lines module

detects the spaces between lane sets and then obtains the separation key points, the

leftmost point and the rightmost point of each gap centre line. The separate subimage

module successively extracts subimages using the separation key points of the gap line.

If the lane set is not extracted satisfactorily, the user may select the lane set manually

for the subimage. The subimage reading module processes each subimage to give the

corresponding DNA sequence. Figure 3.5-3 gives the automatically process module

CFD.

Manually process module. The manually process module is necessary to handle the

cases where the image cannot be separated automatically. For example, if the DNA

sequencing reactions are loaded into the gel without gaps between each set of four

sequencing reactions, the system cannot locate separation points, preventing automatic

lane set separation. The manually process module prompts user to successively select

Chapter 3 DNA Sequencing Software Development 23

each lane set manually before reading the subsequence. This is repeated until all the

required subsequences are processed. Figure 3.5-4 gives the manually process module

CFD.

Automatically process

Detect gap lines

Separate subimage

y

Subimage reading

N

End

N

Select subimage
manually

Figure 3.5-3 Automatically process module CFD.

y

Manually process

Select subimage
manually

Subimage reading

End

Figure 3.5-4 Manually process module CFD.

Chapter 3 DNA Sequencing Software Development 24

Subimage reading module. The subimage reading module is called by both

automatically process and manually process modules. The subimage reading module

processes a subimage containing one lane set which represents one subsequence. The

geometry correction module corrects any irregularities in the geometry of the lane set,

which call the extract boundaries module and the warp geometry module. The

extract boundaries module determines the left and right boundaries of the lane set as

required for geometry warping. The warp geometry module uses the left boundary of

the lane set to straighten the set, and the right boundary of the lane set to align the

bands between the lanes with a predefined width. The extract bands module removes

the background, enhances the band features and then obtains the band positions by

band detection. The scan bands module scans the band positions to give the DNA

subsequence and then joins subsequences into a longer sequence. Figure 3.5-5 gives the

subimage reading module CFD.

Subimage reading

' Extract boundaries

Warp geometry

y

Extract bands

Scan bands

-I Geometry

I correction

Geometry warp
manually

Figure 3.5-5 Subimage reading module CFD.

Chapter 3 DNA Sequencing Software Development 25

3.6 System testing and maintenance

System testing integrates and tests the programs as a complete system to ensure that the

software requirements have been met. Image processing system testing demonstrates

the adequacy of system for the application rather than the correctness of the programs.

The initial exploratory programming processes a single, or a small range of

representative images. A larger range of images must be tested to verify that the system

is adequate. Various complicating factors and special cases may be introduced, and the

system modified to handle these. If necessary, the execution time may be reduced by

modifying the algorithm to reduce or eliminate processing bottlenecks. The

information obtained is fed back to previous phases, especially the detailed design and

implementation phases. The algorithms must be refined repeatedly and the operation

parameters must be adjusted again and again until the system is satisfactory. It is

possible that more function modules (and algorithms) are needed to overcome the

deficiencies.

After initial detailed design and implementation of the DNA sequence reading system,

more DNA sequence images had been captured and tested. It was found that the band

lane sets on the images are often much darker than the gaps between the lane sets.

Because each lane set will be separated into individual subimage to be read

respectively, it is possible to separate each lane set automatically instead of having to

select each lane set manually. The gap line detection module and lane set separation

module are added into the system to accomplish this. In the case of some unsuccessful

images, the manual processes are still kept in the system as an option. If the designer

has good skill and experience on similar tasks, the automatic lane set separation

process should have been considered at requirement analysis stage.

Maintenance is the longest life-cycle phase. The system is put into practical use.

Maintenance involves correcting errors which were not discovered in earlier stages of

the life-cycle, improving the implementation of system units and enhancing the

system's services as new requirements are perceived. Maintenance of image processing

system is often needed for more special cases of images which have not been covered

in system testing.

Figure 3.6-1 shows the DNA sequence reading system which is running on a

Macintosh.

Chapter 3 DNA Sequencing Software Development 26

Figure 3.6-1 DNA sequence reading system runs on Macintosh.

Chapter4

t1M~· .. $1'gj:11,m:1e·
·.·.i9!fli*f li:FJ!QJ. Alg·g,rilfti;ffl'S

The DNA sequence reading system is developed using a combination of exploratory

programming and the waterfall model. The system software has a modular structure.

The system function module structure and the design of each control module in the

function module structure have been described in chapter 3.

In this chapter, the algorithms of image processing modules in the function module

structure of the DNA sequence reading system are described in detail. The data flow

diagram (DFD) of each module is given with explanation of each processing step in

separate sections. Expressions for the associated mathematical operations and the

corresponding VIPS command lines are given in appendixes I and II.

4.1 Image acquisition

Gel autoradiographs are commonly used for DNA sequencing in genetics research (see

Figure 3.1-1). An image is captured from an autoradiograph with sufficient resolution

to give good contrast between adjacent bands. The impulse noise in the image is

smoothed and the normalisation of the background is carried out. The image to be

Chapter 4 DNA Sequence Reading Algorithms 28

processed may be captured directly by VIPS through a camera or loaded from image

data files which have been captured previously. Figure 4.1-1 is the acquire image

module data flow diagram.

original
image

Fig. 4.1-2

background
image

Fig. 4.1-3

noise
smoothed
image

contrast
module

Figure 4.1-1 Acquire image module DFD.

image

Figure 4.1-2 A captured DNA sequence image with profile.

subimage
module

(1) Capture DNA image. The autoradiograph is placed on a light box to give good

contrast. A transmission image of the autoradiograph is acquired through a solid state

Chapter 4 DNA Sequence Reading Algorithms 29

video camera (see Figure 2.2-2). The camera limits the image resolution to 512x512

picture elements (pixels). A large gel autoradiograph therefore contains more

information than can be processed readily in a single image. For this reason, several

overlapping images are obtained of the autoradiograph, with the resulting subsequences

merged after processing. The size of each subimage is limited by sampling

considerations.

The smallest features of interest in the image are the bands in the lanes. The Whittaker

Shannon sampling theorem [Gonzalez and Wintz, 1987]) requires that adjacent bands

have a minimum spacing of 2 pixels (one pixel for the band and one for the gap

between the bands). This gives a best case lower limit on the resolution - if the bands

are half way between pixels the contrast will be very low. A band spacing of at least 3

pixels is required to detect the individual bands reliably. However, the bands are not

spaced evenly along the length of the gel. The spacing is maximum at one end, and

decreases to a minimum at the other end. In practise, the bands get so close together

that the sequence past a certain point is not even readable manually. Therefore, the

image size is determined by the spacing at that readable limit.

Figure 4.1-3 A captured background image with line profile.

A typical autoradiograph with a readable area of 250x350 mm may require 6 or more

separate images to achieve the required resolution. Figure 4.1-2 shows a typical images

captured from an autoradiograph (Figure 3.1-1) and will be used through out this

Chapter 4 DNA Sequence Reading Algorithms 30

chapter as an example for most of the image processing steps. The intensity profile

along the line A-Bis plotted to show the features of the image, which will be used to

compare the processed image.

(2) Capture background. Normalisation of the background reduces the variation of

the background which is caused from the light box and camera lens. A background

image is required for normalising the background. The background image is captured at

the same environment as DNA sequence image only without the autoradiograph on the

light box. Figure 4.1-3 shows the background image of Figure 4.1-2. The intensity

profile along the line A-B shows variation of the background and noise on a captured

image.

(3) Smooth noise. The high frequency noise in the captured images may be removed

by a lowpass filter before further processing. A local average smooth operation is used

to filter the noise in the image. The average smooth operation is a special linear

convolutional filter. The weights of the average smooth operation in a moving window

(see Figure 2.1-1) are all one. This enables the expression of local average smooth

operation, BOX AVERAGE, to be simplified fromFILTER LINEAR (see Eq.AI-4).

A small window size 2x3 is used to keep the small band features of the image while

removing most of the noise. Figure 4.1-4 shows the image, with the profile along line

A-B, after smoothing. It can be seen that the line profile shape is much smoother than

that in Figure 4.1-2.

Figure 4.1-4 The impulse noise smoothed image.

Chapter 4 DNA Sequence Reading Algorithms 31

Figure 4.1-5 Noise smoothed background image.

Figure 4.1-6 Background normalised image.

(4) Smooth background. The background image also needs to be smoothed. A larger

window size is used, since the background image contains no fine detail of interest and

Chapter 4 DNA Sequence Reading Algorithms 32

a larger window gives more smoothing. Figure 4.1-5 shows the background image,

with the profile along the line A-B, after smoothing with a 15x15 window. After noise

smoothing, the profile shape in Figure 4.1-5 is much smoother than that in Figure 4.1-

3.

(5) Background normalise. The background of object image may be variable because

of uneven illumination from the light box and camera lens. A division operation is used

to normalise the image with respect to the background. Division is a point operation on

two images, which divides the object image by the background image and then

multiplies by a constant (Eq.AI-14). Each pixel value is calculated from the

corresponding pixel values in the input images. In this application, to prevent saturation

the multiplier constant k is set to 200. Figure 4.1-6 shows the background normalised

image with profile at position A-B, from Figure 4.1-4 and Figure 4.1-5. The intensity of

the spaces between the lane sets (the background) is normalised into similar grey levels.

Acquire
image

module

background
normalized Fig. 4-1-6

image

Detect
gap lines
module

background
normalized
image

Fig. 4.1-6

minimum
image

Fig. 4.2-4

range
image

Fig. 4.2-5

contrast
enhanced

Separate
subimage
module

Figure 4.2-1 Enhance contrast module DFD.

Fig. 4.2-3

Chapter 4 DNA Sequence Reading Algorithms 33

4.2 Contrast enhancement

Some of the bands in the image are quite faint, and are not able to be detected reliably.

A contrast enhancement step is required to make more faint bands readable. Also

contrast enhancement improves reliability of gap position detection (section 4.3) and

boundary extraction (section 4.5). A local linear intensity stretch operation BOX

STRETCH (Eq .AI-7) may be used to enhance the contrast.

In DNA sequence images, the widths of the lane sets may vary from one image to

another, and the length of the space between bands is also variable. If the same window

size is used on an image with wider lane sets or larger empty spaces, noise may be

stretched into a grey level band which will interfere with thresholding in the

segmentation step, or with the lane set boundaries in the geometry correction step. If

the same moving window size is used on an image with narrower lane sets, or the

window size is too big, some bands will not be enhanced well.

Figure 4.2-2 Vertically smoothed image.

A series of operations are used to enhance contrast without being limited by the band

lane set width. The series of operations for contrast enhancement work on the same

basis as BOX STRETCH, except that the maximum and minimum values are detected

using different windows. A maximum image is obtained by BOX MAXIMUM using a

Chapter 4 DNA Sequence Reading Algorithms 34

horizontal moving window, and a minimum image is obtained by BOX MINIMUM

using a vertical moving window. Subtraction of the minimum image from the

maximum image gives a stretch range image. Subtraction of the minimum image from

the original image gives the proportion image. The proportion image is then divided by

the range image to get a contrast enhanced image. Figure 4.2-1 is the enhance contrast

moduleDFD.

(1) Vertically smooth. An average smoothing operation BOX AVERAGE is used to

further smooth out any noise which may be presented in the image before finding the

minima and maxima. A window size of 15x3 smooths the bands vertically with

minimal interference across the boundaries of the lane sets. Figure 4.2-2 shows the

vertically smoothed image from Figure 4.1-6.

(2) Horizontal maximum. A maximum image is required to get a stretching range

image. Each pixel value of the maximum image is determined by the maximum pixel

value in the moving window (Eq.AI-5).

A horizontal lx80 window is used to obtain the horizontal maximum image. In fact,

the maximum image gives the intensities of the gaps between the lane sets. The width

of the window was selected at 80, assuming that at least five lane sets are captured in

the image. This ensures that the gap pixels will be included in the window even for

centre pixels of the lane sets. Figure 4.2-3 shows a maximum image from Figure 4.2-2.

A B

Figure 4.2-3 Maximum image.

Chapter 4 DNA Sequence Reading Algorithms 35

(3) Vertical minimum. A minimum image is also required to get the stretching range

image. Each pixel value of the minimum image is determined by the minimum pixel

value in the moving window (Eq.AI-6).

A vertical moving window is used to extend the bands along the length of the lane. It is

possible that no band exists in a very long distance in some lanes. For this reason, a

large window size 400xl is used to ensure that bands are always extended with lanes.

Figure 4.2-4 shows the minimum image obtained from Figure 4.2-2.

Figure 4.2-4 Minimum image from Fig.4.2-2.

(4) Range image. The range image for contrast enhancement is obtained by subtracting

the minimum image from the maximum image (Eq.AI-12).

If resultant value is negative it is set as zero. Figure 4.2-5 shows the range image

obtained from Figure 4.2-3 and Figure 4.2-4

(5) Proportion image. The proportion image is obtained by subtracting (Eq.AI-12) the

minimum image from the original image, which gets the proportion of each pixel value

in the image between the maximum image and the minimum image.

Each pixel value of the proportion image then has 5 added to prevent excessive

enhancement between the lane sets where the range is small. This effectively prevents

Chapter 4 DNA Sequence Reading Algorithms 36

enhancement of any noise in the gaps. The proportion image is shown in Figure 4.2-6

which is obtained from Figure 4.2-4 and Figure 4.1-5.

Figure 4.2-5 Range image from Fig.4.2-3 and Fig.4.2-4.

Figure 4.2-6 Proportion image from Fig.4.2-4 & Fig.4.1-6.

Chapter 4 DNA Sequence Reading Algorithms 37

(6) Contrast stretch. Then contrast stretching is performed by dividing (Eq.AI-14) the

proportion image by the range image. The contrast enhanced image is shown in Figure

4.2-7 with profile of line A-B. The amplitude of the profile is larger than that of Figure

4.1-6. The gaps between lane sets are whiter and the bands are blacker.

Figure 4.2-7 Contrast enhanced image with profile.

4.3 Gap line detection

There are number of lane sets in a captured image, each of which represents a part of a

DNA sequence. The different sets may be from different parts of the same DNA

sequence or from different DNA sequences, depending on the samples loaded into the

reaction gel. The lane sets must be separated into subimages and then be read

individually. If there are gaps or spaces between the lane sets, the gap centre lines can

be detected for automatic separation of the lane sets. Smoothing the image vertically

makes the lane set boundaries clearer. The smoothed image is then thresholded to

obtain a gap image. The gap centre lines can be obtained by thinning the gap areas to a

single pixel wide. The gap centre lines then are coded and the separation points

detected. The gap line detection module DFD is given in Figure 4.3-1.

Chapter 4 DNA Sequence Reading Algorithms

Enhance
contrast
module

contrast
enhanced
image

Fig. 4.2-7

gap line
chains

gap key
points Fig. 4.3-5

Separate
subimage
module

vertically
smoothed
image

Fig. 4.3-2

gap
centre line

Fig. 4.3-4

gap centre

Figure 4.3-1 Detect gap lines module DFD.

38

(1) Vertically smooth. Gap line detection extracts the vertical features of the image. A

vertical smoothing operation (Eq.AI-4) keeps the vertical features of the lanes and

masks the effect of the individual bands. This makes the lane set boundaries clearer for

segmentation of the gaps. A 40x3 window is used for this smoothing. Figure 4.3-2

shows the minimum image from Figure 4.2-7.

Figure 4.3-2 Vertically smoothed image.

Chapter 4 DNA Sequence Reading Algorithms 39

Figure 4.3-3 Gap segmentation.

(2) Segment gaps. The gaps are then segmented by thresholding (Eq.AI-15). The

threshold range is set as 235 to 255. In order to obtain smoother gaps, the average

smoothing operation and thresholding are repeated. Figure 4.3-3 shows the gap image

of Figure 4.3-2.

Figure 4.3-4 Gap centre lines.

Chapter 4 DNA Sequence Reading Algoritluns 40

(3) Thin gap centre. The purpose of gap line detection is to get the gap position for

lane set separation. For this purpose, each gap is then thinned into a single pixel wide

skeleton . The image is skeletonised by first labelling pixels with their distance from

the background. The set of pixels which are symmetrically placed with respect to the

background are detected. This set is given a linear structure by removing pixels in such

a way that the original topology is preserved [Arcelli and Di Baja 1985]. Figure 4.3-4

shows the gap centre line image which is thinned from Figure 4.3-3.

(4) Code gap lines. The gap lines are then coded to get the pixel position chains. The

gap lines are coded by scanning the image until the first pixel of each line is found. The

line is then tracked, being converted into a chain code with all positions of the line

pixels. Each gap line is tracked separately [Freeman 1974].

(5) Detect key points. The leftmost and the rightmost pixels of each gap centre line are

detected. Figure 4.3-5 gives the gap key points of Figure 4.3-4, which are the leftmost

pixel and the rightmost pixel of each gap centre line. False line chains or more than one

chain for each gap may occur. False position points are detected and removed by

distance and length checking. If two position points are very close the one with longer

chain is kept.

Figure 4.3-5 Gap key points.

Chapter 4 DNA Sequence Reading Algorithms 41

4.4 Subimage separation

The lane sets in a DNA sequence image must be split into separate subimages for

individual processing. The detect gap line module detects the key points of each gap

centre line. The leftmost point of the gap to the left of a lane set is used as the left

boundary. Similarly the rightmost point of the gap to the right of a lane set is used as

the right boundary. This prevents losing of the image if the lanes are not exactly

vertical. All of the pixel data between the left and right boundaries are copied into a

separate subimage. Figure 4.4-1 is the separate subimage module DFD.

Enhance
contrast
module

Detect
gap lines
module

contrast
enhanced

Figure 4.4-1 Separate subimage module DFD.

Extract
boundaries
module

Warp
geometry
module

Figure 4.4-2 shows one of the lane sets of the example image, which is separated from

Figure 4.2-7.

Figure 4.4-2 Single lane set subimage.

Chapter 4 DNA Sequence Reading Algorithms 42

4.5 Boundary extraction

Geometric distortions often occur on gel autoradiographs because of variations in the

conditions during electrophoresis. In order to successfully process most of the gel

autoradiographs, geometry correction is necessary. Most of the distortions may be

corrected by finding the boundaries of the lane set, and making these vertical. To find

the lane set boundaries, the vertical edges of the band lane are enhanced by vertical

smoothing and then detected by a linear convolution filter. The local maxima along

each row are detected, and false edges are eliminated. A distance image is used to

distinguish between the lane set boundaries and individual lane boundaries within the

set. The boundaries are then converted to a series of line segments, represented as a list

of key points, which are used to straighten the lanes.

Boundary extraction module DFD is given in Figure 4.5-1.

Separate
subimage
module

smoothed image

smoothed
image

distance
image

Fig. 4.5-3a

Fig. 4.5-3a

Fig. 4.5-4

distance
image

Fig. 4.5-4

gradient
image

Fig. 4.5-6

boundary
image

edges image

Fig. 4.5-5

Fig. 4.5-3b

fine edge
image

Fig. 4.5-3e

coded
boundary

Fig. 4.5-7

edge
peaks Fig. 4.5-3c

Warp
geometry
module

Figure 4.5-1 Extract boundary module DFD.

Chapter 4 DNA Sequence Reading Algorithms 43

(1) Vertically smooth. The first step is to smooth (Eq.AI-4) the image vertically using

a 40x3 moving window. This makes the vertical features (the lanes) in the image more

visible as in Figure 4.5-3a.

(2) Filter edges. A linear convolution filter (Eq.AI-2) extracts the vertical edges of the

lane sets. A 3x3 window is used with the kernel weights in Figure 4.5-2. The detected

edges as are shown in Figure 4.5-3b.

1

9
r~ ~ =~]
l1 o -1

Figure 4.5-2 The filter weights for extracting vertical edges.

a. b. C. e.

Figure 4.5-3 Edges extraction

a) vertically smoothed image; b) edges image; c) edge peaks;

d) false edges removed image; e) fine edge image.

(3) Local maximum. After further smoothing a local maximum detection filter, BOX

EXTREME (Eq.AI-9), detects the maximum pixels. These correspond to points of

maximum gradient, along the edges of the individual lanes. A lx15 window is used to

Chapter 4 DNA Sequence Reading Algorithms 44

detect maxima corresponding to each of the detected edges along each row. Figure 4.5-

3c shows the location of the edge peaks.

(4) Remove false edges. Each detected edge is labelled with the edge strength by

logically ANDing (Eq.AI-13) the results from the previous two steps (see Figure 4.5-

3c).

The image is then thresholded (Eq.AI-15), so that only the significant edges are kept.

The false edges removed image is given in Figure 4.5-3e. (In this example, there were

not many false edges.)

(5) Distance transform. Only the left and right boundaries of the lane set are required

for geometry correction. Approximate boundaries may be found by thresholding the

vertically smoothed image (Figure 4.5-3a). These boundaries are shown in Figure 4.5-

4a.

The boundary image is then distance coded to determine the distance of each pixel

from the boundaries. The distance transform expression, DISTANCE is given in Eq.AI-

18. Figure 4.5-4b gives the distance coded image of Figure 4.5-4a.

Figure 4.5-4 Distance transform

a) Approximate boundaries; b) Distance image; c) Inverted distance image.

Chapter 4 DNA Sequence Reading Algorithms 45

The distance image is then inverted, INVERT (Eq.AI-17), to make the central region

darker for reducing the strength of the edges within the lane set. Figure 4.5-4c shows

the inverted distance image.

(6) Remove centre edges. The inverted distance image ANDed (Eq.AI-13) with the

edge image to code the edges with their distance. This reduces the strength of the edges

within the lane set (see Figure 4.5-5c). The image is then thresholded (Eq.AI-15) to

extract only the lane set boundaries as shown in Figure 4.5-5d.

a) b) c) d)

Figure 4.5-5 Remove centre edges

a)edges image; b)distance image; c)centre strength reduced image; d)boundary image.

(7) Distinguish left and right . The left boundary of the lane set is used to straighten

left side of the lane set and the right boundary is used to stretch the right side to make

the lanes within the set. For this reason, the left and right boundaries must be

distinguished. Distinguishing the left and right boundaries by positions alone is not

reliable since there may be false boundaries. Since the left boundary consists of

positive step and the right boundary consists of a negative step, the left and right

boundaries may be distinguished on the basis of the sign of the edge gradient in that

region.

Chapter 4 DNA Sequence Reading Algorithms 46

Thresholding the distance image and smoothing it obtain the approximate lane set area

around the boundaries (Figure 4.5-6a). Shifting one column, COPY (Eq.AI-19), and

then subtracting (Eq.AI-12) the two images with one column difference obtain a

gradient image (Figure 4.5-6c).

The gradient image is then expanded linearly (Eq.AI-16) to stretch the contrast range.

The contrast range are set as 108 and 148. The gradient image is shown in Figure 4.5-

6d.

a) b) c) d)

Figure 4.5-6 Gradient extraction

a) smoothed boundary area; b) shifted image from (a);

c) variation image; d) gradient image.

(8) Detect left and right boundaries. Since the left edge pixel values in the gradient

image are about 108 (set in EXPAND operation) and the right edge pixel values are

about 148, ANDing the gradient image with the boundary image (Eq.AI-13) obtains a

coded boundary image with a darker left boundary and a lighter right boundary (Figure

4.5-7).

Chapter 4 DNA Sequence Reading Algorithms 47

a) b) c)

Figure 4.5-7 Coding boundaries

a) the boundary image; b) gradient image; c) coded boundary image.

4.6 Geometry warping

Geometric distortions must be corrected before the band order can be read reasonably.

With the knowledge that each band lane runs roughly parallel to its neighbours, that the

lanes are of approximately equal width and are approximately equally spaced, and that

any changes take place in a continuous manner [Elder & Southern, 1987], it is possible

to make lane set boundaries vertical. The extracted boundaries are converted into series

of key points. Besides the first and the last row, every big change (three columns) in

the boundary is defined as a key point. The left boundary points are used to shear the

image to straighten left side and the right boundary points are used to trapezoid warp

the right side to make the lane set into a standard width. Since the extracted boundaries

may be broken into several parts, the key points of the boundaries are refined before

straightening. Figure 4.6-1 gives the warp geometry module DFD.

(1) Convert left boundary. The coded boundaries (Figure 4.5-6) have different

intensities. The pixel values of left boundary are less than 128 meanwhile the pixel

values of right boundary are greater than 128. Thresholding (AI-15) between levels 1

and 127 detects the left boundary, which is then coded as a chain. The first chain is

Chapter 4 DNA Sequence Reading Algorithms 48

extracted if more than one chain is coded. The extracted chain is then converted into a

series of points.

Separate
lane set
module

subimage
Fig. 4.4-2
Fig. 4.6-2a

Extract
bands

module

left
boundary
points

Fig. 4.6-2b

straightened

geometry
corrected
image

Fig. 4.6-4c

coded
boundary

Fig. 4.5-7c

Extract
boundary
module

right

coded
boundary

boundary
points

Fig. 4.6-4b

Fig. 4.5-7c

Figure 4.6-1 Warp geometry module DFD.

(2) Remove left false points. Since part of the next subsequence or noise may be

extracted into the boundary image, false boundaries may be converted. If false

boundaries occur in the boundary image or the boundary is broken into several parts

after extracting, more than one chain may be coded. The series of points are refined.

The false points are removed according to the positions and the length of the chain. If

two chains are coded and the vertical positions are close, these are possibly broken

parts from the boundary. If one is above another the two parts are joined together. If the

two chains are parallel the shorter one is removed. Figure 4.6-2b gives the left

boundary key points.

(3) Straighten left side. The left side of the lane set is straightened vertically by using

the left boundary key points to shear the image horizontally, to put the key points into

column O of the image. Figure 4.6-3 illustrates the schematic of shifting left hand side

between two key points.

All pixels in a given row are moved by the same amount:

Chapter 4 DNA Sequence Reading Algorithms

.,_ ___,
a) b) c)

Figure 4.6-2 Left side straightening

a) subimage; b) left boundary points; c) straightened image.

key
point 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I :.-
1
I
I
I
I
I
I

l+--
1
I
I
I
I
I
I

~-----
' I I
I
I
I
I :.-------
l shift

~1
(.) I

•,CI

a:l l+--------<r----'
:> l key

point 2

Figure 4.6-3 Shift left side correction schematic.

49

Chapter 4 DNA Sequence Reading Algorithms 50

. key point 2 col - key point 1 col . .
shift= . . (row-key pomt 1 row)+ key pomt 1 col

key pomt 2 row - key pomt 1 row

Shifting each part between each two key points into column O of the image straightens

the left side (see Figure 4.6-2c).

The STRAIGHTEN VIPS command was specially written for this application, with the

C program given in Appendix III.

(4) Convert right boundary. The pixel values of right boundary are larger than 128.

The image is thresholded between 128 to 255, then chain coded and converted to points

as before (the same as the left boundary).

(5) Remove right false points. Detection of right false points is similar to the left side.

The broken chain parts are joined and any false chains are removed. Figure 4.6-4b

shows the right boundary key points image.

(6) Trapezoid warp. Lanes may not be the same width over their complete length.

Lanes can be made parallel by warping the image from a trapezoid. Figure 4.6-5

illustrates the stretching of the right side between two key points.

a) b) c)

Figure 4.6-4 Right side stretching

a) straightened image; b) right boundary points; c) geometry corrected image.

Chapter 4 DNA Sequence Reading Algorithms

s
0

~
<ii
(.)

-~
>

.
I <ii

key I .2
point 1 i ~

...----<-"}---b-J >
I
I
I
I
I
I
I

-~
I
I
I
I
I

I -8
..i-

~
Cl)

key
point 2

Figure 4.6-5 Stretch right hand side schematic.

The whole row is stretched as:

h
key point 2 col - key point 1 col (k .

1
) stretc = ---'--=--------'---''----- row - ey pomt row

key point 2 row - key point 1 row

51

The stretching is performed by duplicating certain pixels as the row is copied. Figure

4.6-4c shows the right side trapezoid warped image.

The PARALLEL command was written for this purpose, and C program is given in

Appendix III.

Figure 4.6-6 shows an example of boundary correction by manually selecting left and

right side key points.

A similar procedure may be used if necessary to make the bands horizontal by shearing

and stretching the image vertically. Figure 4.6-7 gives an example of using this method

to correct for "smiling".

Chapter 4 DNA Sequence Reading Algorithms 52

a. b. C.

Figure 4.6-6 Geometry correction

a)geometrically distorted image; b)straightened image; c)geometry corrected image.

Figure 4.6-7 Geometry correction of skewed bands.

Chapter 4 DNA Sequence Reading Algorithms 53

4. 7 Band extraction

After the geometry has been corrected in the separate subimages of each lane set, the

next phase of the processing is to extract the individual bands. Contrast enhancement

improves the readability of the faint bands and the background is clipped to reduce

noise. Keeping only the centre of each lane is useful to avoid problems when bands

from different lanes overlap. Horizontal smoothing along the length of the bands

reduces the noise and enhances the separation where the bands are very close.

Following this, the bands are enhanced by filtering. The maximum pixel in each

column of the band is extended through the whole band to make detection more

reliable. The bands are then detected by thresholding. Figure 4.7-1 gives the extract

bands module DFD.

band

Warp
geometry
module

geometry
corrected
image

Fig. 4.6-4c
Fig. 4.7-3a

filtered
band
image

Fig. 4.7-5a

extended Fig. 4.7-Sb
image

segmented
band
image

Fig. 4.7-5c

background
removed
image

Fig. 4.7-3b

centre part
image

Fig. 4.7-3c

horizontal
smoothed
image

smooth

Fig. 4.7-3d

band
kernel
image

Fig. 4.7-Sd

Scan
band

module

Figure 4.7-1 Extract bands module DFD.

(1) Remove background. The background does not contain any information of

interest, and variations in contrast in the background and shadows cause problems in

later processing. In the histogram of the band image (Figure 4.7-2), the sharp peak on

the right corresponds to the light background, the broad peak corresponds to the

shadows and the sharp peak on the left corresponds to the bands. Since the background

is lighter than the bands, the background may be removed by clipping. Adding a

Chapter 4 DNA Sequence Reading Algoritluns 54

constant increases the background to 255 (Eq.AI-11). If the resultant pixel value

exceeds 255 then it is clipped at 255. The band image is then expanded linearly (Eq.AI-

16) to stretch the contrast range of the lower intensities. The background removed

image is given in Figure 4.7-3b.

Figure 4.7-2 Band image and the histogram.

(2) Keep centre part of band lane. Only the centre of each lane is kept to avoid

problems when bands from different lanes overlap. A subroutine is used to clear to the

background level strips between the band lanes.

(3) Horizontal smooth. The next step is to select only the bands. Smoothing (Eq.AI-4)

along the length of the bands before feature extraction reduces the noise and enables

some close bands to be separated. Such a smoothing step increases the accuracy and

extends the readable range of the DNA sequence from the gel autoradiograph.

Smoothing is accomplished by using a moving average with a 2x5 window. Again only

the centre of each lane is kept. Figure 4.7-3d shows the smoothed image.

(4) Filter bands. A 3x3 linear convolutional filter is then used to enhance the bands.

For each output pixel, the linear filter takes a weighted average of the pixel values in

the neighbourhood of that pixel in the input image. The weights used are shown in

Figure 4.7-4.

Chapter 4 DNA Sequence Reading Algorithms

-
a) b)

- . - : - -

-Iii
I .. - :

..

... -..
I

..
c)

iill ..

• -...
ill

II

I
...

•
...

-:;

Figure 4.7-3 Background removing

""

d)

..
!II -

"" ...
II

"'

II

...

:;

I ..

a) geometry corrected image; b) background removed image;

c) centre parts of lanes; d) horizontal smoothed image.

1

9

Figure 4. 7-4 The filter weights for extracting the bands.

55

This filter combines horizontal smoothing with vertical edge detection in one

operation. Only the positive value is used for the output; negative values are set to zero

(Eq.AI-3). This keeps only one edge of each band.

The filtered image is expanded linearly (Eq.AI-16) to stretch the contrast range. A non

linear edge enhancement filter, BOX ENHANCE (Eq.AI-8), further enhances the

detected edges and separates close bands using a 3x13 window. Figure 4.7-5a shows a

filtered and enhanced image.

(5) Extend bands. The lightest pixel in each row of the band is then extended through

the whole band to make detection more reliable. A maximum operation (Eq.AI-5) with

Chapter 4 DNA Sequence Reading Algorithms 56

lx24 window is used for extension. Again only the centre of the lane is kept. Figure

4.7-5b shows the band extended image.

a) b) c) d)

Figure 4.7-5 Band filtering

a) band filtered image; b) band extended image;

c) band segmented image; d) kernel band positions.

(6) Segment bands. The image is then thresholded (Eq.AI-15) to detect the bands

(Figure 4.7-5c).

(7) Thin bands. Only the band kernel is kept for position scanning. The band kernel is

also used to obtain the width of the band, which may detect combined bands. A

subroutine is used to clear the background. Figure 4.7-5d shows the band kernel image.

4.8 Band scanning

The individual band kernels are scanned to determine the order of the bands within the

four lanes, and hence the order of the bases in the DNA sequence. The band positions

are detected and then sorted into a list, going upwards from the bottom of the image.

The list is then converted into a DNA sequence. Two or more close bands may be

extracted as a single band. If a band is wider than a preset width, it is split into two

bands. Detected bands are then drawn on the image. The user may correct the sequence

Chapter 4 DNA Sequence Reading Algorithms 57

by adding missing bands or deleting false bands. A lower case letter is used in the

sequence to indicate that the result is uncertain. Figure 4.8-1 gives the scan bands

module DFD.

Extract
bands
module

bases
order

user

band
kernel
image

Fig. 4.7-5d
Fig. 4.8-2a

band
position
list

Fig. 4.8-3

bands

Scan band

band
positions
list

to be
corrected

►

DNA
subequence

Fig. 4.8-6

basic
DNA
sequence

Figure 4.8-1 Scan bands module DFD.

user

disk

longer
DNA

(1) Scan band positions. The band kernel image is coded into chains (one chain for

each band). For each chain, the position is detected and put into a list. The detected

bands are then drawn onto the image to show the user which bands have been detected.

It is possible that some close bands or combined bands are detected as one. The

missing bands are detected by the width of the extracted bands. The band spacing

varies along the lane. Figure 4.8-2b shows the scanned bands and detected missing

bands.

(2) Sort positions. DNA sequences are normally read from the bottom of the sequence

up. The position list is therefore sorted into this order. Figure 4.8-3 gives the sorted

position list for this example. In the sorted list, the first number of the pair is the row

within the image of the band. The second number is the column in the image which

depends on the lane in which the band is found.

The SORT command was written specially for this application, and the C program is

given in Appendix III.

Chapter 4 DNA Sequence Reading Algoritluns

a) b)

Figure 4.8-2 Band scanning
a) band kernel; b) detected bands.

{ (506,87) (502,12) (492,62) (483,87) (476,87) (467,87) (465,12) (459,12) (448,62) (442,62)
(435,12) (427,87) (421,62) (413,87) (406,87) (403,12) (394,62) (387,87) (382,62) (374,87)
(369,62) (360,87) (357,37) (350, 12) (349, 12) (337,62) (330,87) (324,62) (316,87) (311,62)
(307,12) (298,62) (292,87) (286,87) (285,12) (277,62) (274,12) (270,12) (261,87) (256,87)
(253,37) (245,87) (243,37) (240,12) (232,87) (230,12) (222,87) (217,87) (213,62) (208,62)
(204,12) (199,37) (193,62) (191,12) (181,12) (175,62) (173,12) (170,12) (161,87) (159,62)
(156,12) (153,12) (144,87) (143,37) (132,87) (130,62) (124,87) (120,62) (117,37) (115,12)
(107,87) (106,37) (103,12) (97,87) (96,12) (89,87) (89,12) (82,62) (78,87) (75,62) (71,12)
(63,62) (59,87) (57,62) (56,12) (50,62) (48,12) (43,62) (42,12) (35,87) (30,12) (29,37)
(23,87) (21,62) (16,12) (16,87) (10,62) (7,37) (3,87) (1,12) (0,87) } }

Figure 4.8-3 Band position list.

58

(3) DNA sequencing. Each lane in the gel autoradiograph represents one of the four

bases Adenine, Cytosine, Guanine or Thymine (abbreviated as A, C, G and T) which

make up the DNA. The lane order may be defined by the user (or is assumed to be T,

C, G, A by default). The series of bands corresponds to the relative positions of the

different bases along the DNA strand. The column number of each band is used to

classify it as belonging to one of the four bases. This results in the base sequence of the

section of DNA represented by the image.

Ambiguities may arise on a sequencing gel and during sequence reading. Several bands

may be bunched together in the same lane on the gel autoradiograph. In this case it is

Chapter 4 DNA Sequence Reading Algoritluns 59

not always possible to resolve all of the bands [Brown, 1984]. An uncertainty code can

be used to indicate that there may be one or more extra bands undetected. Sometimes

bands may be detected in the same position in different lanes. In such cases, it is

uncertain which band is correct. A similar problem occurs when the bands are very

close in the image. Uncertainty codes increase the readable range of the DNA sequence

on the gel autoradiograph by indicating possible errors in the output. If necessary, such

uncertainties may be resolved by the user. A lower case letter is used to indicate that

the result is uncertain.

The DNA base order and the format of sequence result file may be defined by user. The

default base order is "TCGA" and the default width of output file is 50 bases, organised

in groups of ten.

The DNA sequence read from Figure 4.8-2a is shown in Figure 4.8-4. Note that there

are two uncertain codes in this example.

ATGAAATTGG TAGAATGAGA GACTTGAGAG TGAATGTTAA CACTATAAGG
TCGTTGTTAG TTACAGAGCT ACTATAtGAG TGAGTGTGTA TCAGTaGCAT
A

Figure 4.8-4 The DNA sequence of the above example.

The C program for the SEQUENCE command is given in Appendix III.

a) b)

Figure 4.8-5 Detected band correction

a) detected bands; b) corrected bands.

Chapter 4 DNA Sequence Reading Algorithms 60

(4) Check detected bands. The accuracy of DNA sequence is very important in DNA

sequencing. The results should be at least as accurate as that from manually reading the

bands. It is impossible that the image processing algorithms can read all possible

images without error. Therefore it is necessary to cheek the detected bands. From the

detected band image, user may select the bands to be corrected using a mouse, adding

missing bands or deleting false bands. Meanwhile the uncertain bands must be

confirmed before joining into a longer sequence. Figure 4.8-Sb shows the final image

and Figure 4.8-6 gives the final DNA subsequence.

ATGAAATTGG
TCGTTGTTAG
ATA

TAGAATGAGA GACTTGAGAG
TTACAAGAGC TACTATATGA

TGAATGTTAA
GTGAGTGTGT

Figure 4.8-6 Final DNA sequence.

CACTATAAGG
CATCAGTAGC

(5) Join DNA sequence. Resolution requirements (described in section 4.1) mean that

the complete length of each lane set is not able to be contained in a single image. This

means that the sequence data obtained from each subimage represents only part of the

sequence, and the subsequences from several images need to be joined to get the

complete sequence of each lane set.

Also, varying the gel running times makes different parts of the DNA sequence

readable. Therefore it is possible to get a very long DNA sequence by joining different

parts of the sequence that are obtained from different gel running times.

The DNA sequence joining procedure is given as follows and the detailed C program

of JOIN command is given in Appendix III.

Sequence joining procedure:

put first part of the sequence in the result sequence;

take the first band of the second part;

for each band in the same base in the first part

check that the remaining bands in first part match the second part;

if all remaining bands match

copy remainder of second part to result sequence;

finished match - exit;

end if;

end for;

end procedure.

Chapter 4 DNA Sequence Reading Algorithms 61

This procedure can be repeated to join multiple parts together. A DNA sequence

joining example is shown in Figure 4.8-7.

GTAATTAACA
TTTAATAAAT
TTTGAAAGGG
GTTAACTTAA
AATGAAATTG
GTAGAATGAG
AGACTTGAGA
GTGAATGTTA
ACACTATAAG
GTCGT

TTAACACTAT
AAGGTCGTTT
GTTAGTTACA
AGAGCTACTA
TATGAGTTGA
GTGTGTACCT
AGATGCATTA
GACATAGTTG
CTCAAAAG

GTAATTAACA
TTTAATAAAT
TTTGAAAGGG
GTTAACTTAA
AATGAAATTG
GTAGAATGAG
AGACTTGAGA
GTGAATGTTA
ACACTATAAG
GTCGTTTGTT
AGTTACAAGA
GCTACTATAT
GAGTTGAGTG
TGTACCTAGA
TGCATTAGAC
ATAGTTGCTC
AAAAG

Figure 4.8-7 Sequence joining (from bottom up).

Chapters

The DNA sequence reading system has been tested on several gel autoradiographs

made by different geneticists. A larger range of gel autoradiographs needs to be tested

before general use.

Automatic separation of lane sets and geometry warping are successful on most of the

images captured. The lane set separation and geometry warping require that the edges

of the subsequence must not touch each other, or anything dark. If the boundaries of a

band lane set are not clear, manual selection of the subimage and manual geometry

correction are used. Some unreliable subsequences at the bottom of the sequence may

need further geometry correction to get an acceptable sequence.

The accuracy of the system depends on clarity of the bands on the gel autoradiograph

and the clarity mainly depends on reactions running on the gel. If the bands are clear,

the accuracy of automatic processing may be 98% or better. The accuracy needs to be

at least as good as that from manually reading the bands. The output is then checked

and any errors may be corrected manually to obtain an acceptable accuracy, especially

if the bands are not clear enough. If the bands are too close, the accuracy will be

reduced. The top part of a gel autoradiograph, where the bands are more closely

Chapter 5 Results 63

spaced, may be captured by zooming, increasing the accuracy and widening readable

range of the autoradiograph. If only part of a subimage is readable, the unreadable part

may be removed. Some unreliable subimages at the bottom of the sequence may be

useful after being checked and corrected, which also broadens the readable range of the

autoradiograph.

5.1 Subimage separation and geometry warping

Subimage separation and geometry warping are successful on most of the images

tested. Gaps between band lane sets are required for automatic subimage separation and

geometry warping. If the boundaries of a band lane set are not clear, manual selection

of the lane set and manual geometry correction are required.

All of the subimage examples shown so far in this chapter have been successfully

separated automatically. If there is no gap between lane sets (subsequences), the

subsequences can not be automatically separated. For example, subsequences b and c

in Figure 5.1-1 have no gap between them. Also, if the lane sets are very oblique they

may not be separated properly. In those cases manually selection of a subimage is used.

a) b) c)

Figure 5.1-1 No gaps between subsequence b) and c).

If there is no gap between band lane sets, the boundaries of the two subsequences

cannot be detected and so geometry warping can not be done automatically. In the

Chapter 5 Results 64

above example, the boundaries between subsequence b and c can not be detected.

Boundary key points must be selected manually for geometry warping.

If the boundary is not clear, for example there are extra marks beside a boundary, these

may interfere with boundary detection and geometry warping. The subimage may be

corrected either from the unsuccessfully warped result or from the original separated

subimage. Figure 5.l-2a shows an example of unsuccessful geometry warping. There is

a pen mark beside the edge (see Figure 5.1-2al), which is recognised as the boundary

(see a2). The unsuccessfully warped result is then corrected manually into a3.

al) a2) a3) bl) b2)

Figure 5 .1-2 Geometry warping requirement of clear boundaries.

If there is a space between the marks and sequence edge, the mark will be ignored, and

the image will be warped successfully. Figure 5.l-2b shows a successful example in

which a gap is between the edge and a mark is ignored.

If the lanes are very oblique or the bands are very faint, geometry warping may fail.

Manually correction is needed if it does. Figure 5. l-3a is a successful example of

automatically geometry warping. Figure 5.l-3b is an example of manual geometry

correction. The band lanes are oblique and the bands are faint so the boundaries are not

detected correctly. Manually selection of boundary key points is needed. The corrected

image in Figure 5. l -3b shows the result of manual geometry correction.

Cha ter 5 Results 65

a) b)

Figure 5.1-3 Oblique lane examples.

5.2 Accuracy

The clarity of the bands on the gel autoradiograph is a very important factor of the

accuracy. If the bands are clear, the accuracy may reach 98% or better. For example,

the error ratio of clear band subimage 2), 4), 5), 6) in Figure 5.2-2 and subimage 3 in

Figure 5.2-3 is less than 2%. The reading errors of automatically processing these

examples are listed in Figure 5.2-1.

Sub Detected I False I Missing f ncertain I Error Comments
Examples no bands bands bands bands ratio

1 41 bottom unreliable
2 59 0 0 0 0% clear

Figure 5.2-2 3 46 bottom unreliable
4 59 0 0 0 0% clear
5 57 0 1 0 2% clear
6 60 1 0 0 2% clear
1 101 6 2 2 8% not clear
2 60 bottom unreliable
3 94 0 2 0 2% clear

Figure 5.2-3 4 bottom unreliable
5 98 2 3 0 5% not clear
6 55 3 1 0 7% faint
7 85 0 4 0 5% some combined bands

Figure 5.2-4 1 163 4 10 14 9% too close
Fi_gure 5.2-5 2 38 0 4 4 10% too unreadable

Figure 5.2-1 Results of examples.

Chapter 5 Results 66

1) 2) 3) 4) 5) 6)

Figure 5.2-2a Example image 1 (bottom part of an autoradiograph).

1) 2) 3) 4) 5) 6)

Figure 5.2-2b The results of image 1 (before checking).

Chapter 5 Results 67

1) 2) 3) 4) 5) 6) 7)

Figure 5.2-3a Example image 2.

1) 2) 3) 4) 5) 6) 7)

Figure 5.2-3b The results of image 2 (before checking).

Chapter 5 Results 68

Some subimages may not be sufficiently clear because of the conditions of the

reactants running on gel or other factors, for example, subimage 1 and 5 in image 2.

The result may be checked manually to obtain an acceptable sequence. Some bands

may be combined together without sufficient information to be separated, for example,

some bands on subimage 7 in image 2. In this case, checking by a geneticist is

necessary to decide if bands are missing.

If the bands captured in a subimage are too close (the band density is too high), there is

a greater chance of setting two (or more) bands in the same row, causing the accuracy

to drop to a point where it may be unacceptable. The top part of a gel autoradiograph

often has closer bands. It is suggested that a higher resolution image be obtained by

zooming in. This will increase the accuracy and broaden the readable range of the

autoradiograph. Figure 5.2-4 shows a subimage from the top part of a gel

autoradiograph. Many uncertain bands are obtained from the closer bands (see Fig.5.2-

4b). It is also hard to check and correct the detected bands because they are so close.

Figure 5.2-4c shows the same subsequence after zooming in. There are fewer uncertain

bands and the result (Fig. 5.2-4d) is easier to check and correct.

a) b) c) d)

Figure 5.2-4 Zoom in for top part of a autoradiograph.

If part of a subimage is readable, the unreadable or unreliable part may be removed

from the resultant sequence. The display may be zoomed in to help checking and

Chapter 5 Results 69

correcting false and missing bands. The top part of the subimage in Figure 5.2-5a is

unreadable (see b). The result is then displayed by zooming in and then is corrected

(see c). The unreadable and unreliable part is removed (seed).

a) b) c) d)

Figure 5.2-5 Remove unreadable and unreliable part by zooming in display.

Figure 5.2-6 Sequence checking and correction on a half readable subimage.

Cha ter 5 Results 70

Correction of the unreliable part of the sequence broadens the readable range of the

autoradiograph. Figure 5.2-6 is a faint half readable subimage at bottom of a sequence.

The result is corrected into an acceptable sequence. Figure 5.2-6c shows the corrected

result with missing bands added and false bands deleted by consulting the original

image.

5.3 Timing

Timing is carried out on a 33Hz 486 PC. For a 512x512 image captured from a gel

autoradiograph, preprocessing before separation of the lane sets takes 90 seconds.

Extracting and scanning each subimage takes 40 seconds. If there are 8 subimages in a

single captured image, it takes 7 minutes for reading the 8 subsequences. This assumes

that the user responds to YIN checking without delay. Suppose 6 images are required to

get the data from all readable sections of a gel autoradiograph, the image processing

steps would take about 40 minutes to process the complete autoradiograph. However,

this does not include the time required for the user to position and capture the image

sections or the time for the user to check the resulting sequences. If manually subimage

selection or geometry warping is required, it will take longer.

Chapter6

In this thesis, the development of the DNA sequence reading system was described.

The genetic information of a living organism is encoded by the DNA contained within

every living cell of that organism. DNA sequences are a representation of the genetic

structure of DNA molecules. The generation and analysis of DNA sequence data, DNA

sequencing, has played a significant role in the elucidation of biological systems. DNA

sequence reading is a part of DNA sequencing.

Although several commercial packages are available for DNA sequence reading, these

are either limited in what they do or are expensive and highly specialised. In this

project, a system is developed for reading DNA sequences directly from DNA

sequencing gel autoradiographs within a general purpose image processing system.

VIPS (Vision Image Processing System) is used as the software development

environment which runs on PC under windows, Macintosh and Micro VAX under

VMS. Chapter 2 in this thesis gave a brief survey of image processing concepts and

introduced VIPS.

Chapter 6 Summary and Conclusions 72

Since both hardware and techniques are still limited, applying image processing to a

particular application relies strongly on checking intermediate results during the

development process. The standard waterfall model of software development fits most

of the stages in image processing software development. However, the feedback from

implementation and system testing to detailed design is much stronger in image

processing software development because various complicating factors may be

introduced from a larger number of images. The DNA sequence reading software was

developed based on the waterfall software development approach combined with

exploratory programming. Chapter 3 described the software development model with

the system development processes. In most of the cases, the individual lane sets in a

captured image are able to be separated automatically. Manual processing was found to

be necessary to handle the cases where the lane sets are too close or the lanes are

severely warped.

The algorithms for each image processing module were given in Chapter 4. The

following modules were necessary:

• Capture an image of several lane sets from a gel autoradiograph and normalise

the background;

• Enhance the contrast of the image for different widths of lane sets from one

image to another;

• Detect the centre lines of the gaps between the lane sets for automatic separation

of the lane sets;

• Separate lane sets into subimages to be read individually;

• Extract boundaries of the lane set for geometry correction;

• Straighten the left side of the lane set and warp the right side into a standard

width as geometry correction;

• Extract individual bands and detect the positions of the bands;

• Scan bands to determine the positions into the order of the DNA sequence and

merge the subsequence into a longer sequence.

There are several limitations of this system. 1) For automatic processing, the system

requires spaces between lane sets when the sequencing reactions are loaded into the

gel. If no spaces are present, manual selection of a lane set and the lane set boundaries

are necessary. 2) The number of lane sets in an image captured should be between 4

and 8. Spaces before the first lane set and after the last lane set are required for

automatic separation of the lane sets and geometry correction. If the edges of the lane

set are indistinct, automatic separation of lane set and geometry correction may be

Chapter 6 Summary and Conclusions 73

unsuccessful, so manual selection of lane set edges is needed as well. 3) Manually

checking of the detected bands is required to add missing bands or delete false bands to

obtain an absolutely reliable sequence. The uncertain bands must be confirmed before

joining into a longer sequence.

The system may achieve an accuracy of 98% or better if the bands are clear. If a lane

set on the autoradiograph is indistinct or bands are too close it may reduce the

accuracy, in extreme cases to the point where it is unreadable. For a 512x512 image

captured from a gel autoradiograph, preprocessing takes 90 seconds, processing each

subimage takes 40 seconds on a 33Hz 486 PC. If processing a 430x350 mm

autoradiograph with 16 lane sets, assuming 6 images are required, it takes about 40

minutes.

For future work, a larger range of gel autoradiographs need to be tested and the image

processing algorithms need to be refined further for varied images. The accuracy on

unclear images may be improved for varied images. The gap line detection and

boundary detection may be refined for very faint images and very oblique images. The

human computer interface for manual checking may be refined to make it more

friendly. Gel autoradiographs from different geneticists need to be tested before general

use of the system.

[Bailey et al, 1984]: Bailey D.G., Hodgson R.M. and McNeill S.J., Local Filters in

Digital Image Processing, 21st NZ national electronics conference,

Christchurch, 1984, 95-100.

[Bailey, 1985]: Bailey D.G., Hardware and Software Developments for Applied Digital

Image Processing, Ph.D. thesis, Christchurch, 1985.

[Bailey, 1988]: Bailey D.G., Machine Vision: a multi-disciplinary systems engineering

problem, Hybrid Image and Signal Processing, SPIE Vol 939, 1988, 148-

155.

[Bailey, 1991]: Bailey D.G., Raster Based Region Growing, 6th New Zealand image

processing workshop, Lower Hutt, 1991, 21-26.

[Bailey, 1993]: Bailey D.G., Frequency Domain Self-filtering for Pattern Detection,

First New Zealand Conference on Image & Vision Computing, Auckland,

1993.

Fe erences 75

[Bodmer, 1987]: Bodmer S.W., Introduction in "Nucleic Acid and Protein Sequence

Analysis", edited by Bishop M.J. and Rawlings C.J., IRL Press, Oxford

Washington DC, 1987.

[Castleman, 1979]: Castleman K.R., Digital Image Processing, Prentice Hall,

Englewood Cliffs, 1979.

[Daivies, 1982]: Davies R.W., DNA Sequencing, in "Gel Electrophoresis of Nucleic

Acids: a practical approach", edited by Rickwood D. and Hamer B.D.,

IRL Press, Oxford, 1982, 117-172.

[Elder and Southern, 1987]: Elder J.K., and Southern E.M., Automatic Reading of

DNA Sequencing Gel Autoradiographs, in "Nucleic acid and protein

sequence analysis", edited by Bishop M.J. and Rawlings C.J., IRL Press,

Oxford Washington DC, 1987.

[Freeman, 1974]: Freeman H., Computer Processing of Line-Drawing Images, ACM

Computing Survers, Vol 6, 1974, 57-97

[Gongalez and Wintz, 1987]: Gongalez R.C. and Wintz P., Digital Image Processing,

second edition, Addison-Wesley Publishing Company, Reading

Massachusetts, 1987.

[Hindley, 1983]: Hindley J., DNA Sequencing, Elsevier Biomedical Press, Amsterdam,

1983.

[Image Analysis Unit, 1992]: Image Analysis Unit, VIPS Reference Manual and Users

Guide, version 4.1, Massey University, Palmerston North.

[Jain, 1989]: Jain A.K., Fundamentals of Digital Image Processing, Prentice Hall,

Englewood Cliffs, 1989.

[Pratt, 1978]: Pratt W.K., Digital Image Processing, A wiley-interscience publication,

New York, 1978.

[Sommerville, 1989]: Sommerville I., Software Engineering, Addison-Wesley

Publishing Company, Wekingham, 1989.

Appendix/

;-~~tet'Si(Ql:IS ~f
Vl:PS tumman;Ois

Moving window calculation :

PauJx,y) = f(P;,,(X+i,y+ }),

Vi E {-f, .. ,y},j E {-1-, .. ,1-})

FILTER LINEAR Pin Pout weights scale /ABSOLUTE :

P011Jx,y)=-
1

- ± ±.w(i,})P;,1(x+i,y+ })
scale i=-m.;·=-!l.

2 2

FILTER LINEAR PinPout weights scale /POSITIVE :

()-{-
1-f ±.w(i,})P;,,(x+i,y+j)

Pour x,y - scale i=-'fj=-1±
0

if >0

otherwise

BOX AVERAGE Pin Pout (m n) :

1 T ~
Paur(x,y) =--I, L, P;,,(x+i,y+ })

m x n i=-19: j=-1±

(AI-1)

(AI-2)

(AI-3)

(AI-4)

Appendix I Expressions of VIPS Commands

BOX MAXIMUM Pin Pout (m n) :

P0u1(x,y) = Max(p;11 (x + i,y+ j),

\-Ii• E { Ill Ill} 1· E { ll "}) V --y, .. ,2, -2,••,2

BOX MINIMUM Pin Pout (m n) :

Pou/x,y)=Min(p;n(x+i,y+ j),

Vi E {-f, .. ,-y},j E {-1, .. ,t})

BOX STRETCH Pinllout Pin2 (m n) :

P (X y) = Pin (x,y) - Pmin (x,y) X 255
out ' () () Pmax x,y - Pmin x,y

BOX ENHANCE PinPout (m n) :

-{Pmax (x,y) if Pin(x,y) > (Pmax (x,y) + Pmin (x,y)) 12
P0 u/x,y) - () h . Pmin x,y ot erw1se

BOX EXTREME IMAX Pin Pout (m n) :

{
1 if Pitt(x,y) = Pmax(x,y),

Pou/x,y) = 0 otherwise

ADD Pinllout Pin2 /saturate :

(x)={P;,,1(x,y)+p;112 (x,y) if<255
Pour ,y 255 otherwise

ADD Pinl/out constant /saturate :

{
P;,,1(x,y)+const if< 255

PourCx,y) = 255 otherwise

SUBTRACT Pinllout Pin2 /SATURATE :

-{P;n/x,y)- P;112(x,y)
Pm,/x,y)-

0

AND Pinl/out Pin2 /BITWISE :

if >0

otherwise

Pou,(x,y) = P;,,i(x,y) A P;,,2(x,y)

77

(AI-5)

(AI-6)

(AI-7)

(AI-8)

(AI-9)

(AI-10)

(AI-11)

(AI-12)

(AI-13)

Appendix I Expressions of VIPS Commands 78

DIVIDE Pinl/out Pin2 k /SATURATE :

{

k Pi111(x,y)

P011Jx,y) = Pi112(x,y)

255

if< 255
(AI-14)

otherwise

THRESHOLD Pin/out thl th2 :

x -{255 if threshold! :s; Pi11 (x,y) :s; threshold2
Po11,(,y)- O th . o erw1se

(AI-15)

EXPAND Pinllout levell level2 :

0 ij:s; 0

() Pi,,Cx,y)-levellx255 iif>0,<255
p0111 x, y = level2 - levell

(AI-16)

255 if~ 255

INVERT Pinllout /ADDITIVE

P011,(x,y) = 255- P;11 (x,y) (AI-17)

DISTANCE Pinllout /EIGHT :

p
0111

(x,y) = kjj(x,y)-(nearest black pixel)jj (AI-18)

COPY Pin Pout (i j) :

p
011

,(x,y)= pil,(x+i,y+ j) (AI-19)

Appendix II

V'Hl1>$ Pf'Cl>Stams tl.lr
~NA se~,uence· RtEJ:clin,g

Numbers on RHS refer to where the algorithm is described in the main body of the

thesis. [4.1(2)] refers to chapter 4 section 1 DFD step 2.

&&

DNA Sequence Reading module: (see section 3.5)

PROGRAM !seq. vip ---- Main program.
WRITE /LINE /LINE /LINE /LINE

WRITE " ************************************" /LINE
WRITE " * DNA Sequence Reading System *" /LINE

WRITE " ************************************" /LINE
WRITE /LINE /LINE /LINE /LINE
DECLARE PROGRAM dna_acq dna_cont dna_line dna_sepa dna_sub dna_boun dna_warp
DECLARE PROGRAM dna__geom dna_band dna_scan dnajoin dna_manu dna_blinel dna_bline2
DECLARE STRING seq_imvar seq_auto seq_ok seq_subok seq_lepos seq_getyp seq_exit
DECLARE STRING seq_manu seq_correct dna_dir
DECLARE LIST seq_lp seq_rp seq_lepol
DECLARE INTEGER seq_n seq_left seq_right seq_bacexist
DECLARE IMAGE (512 512) seq_i seq_a seq_b seq_bac

LET dna_dir = "dna\"

LOAD 'dna_dir'acq.vip dna_acq

Appendix II VIPS Programs for DNA Sequence Reading

LOAD 'dna_dir'cont.vip dna_cont
LOAD 'dna_dir'line.vip dna_line
LOAD 'dna_dir'sepa.vip dna_sepa
LOAD 'dna_dir'sub.vip dna_sub
LOAD 'dna_dir'boun.vip dna_boun
LOAD 'dna_dir'warp.vip dna_warp
LOAD 'dna_dir'geom.vip dna_geom
LOAD 'dna_dir'band.vip dna_band
LOAD 'dna_dir'scan.vip dna_scan
LOAD 'dna_dir'join.vip dnajoin
LOAD 'dna_dir'manu. vip dna_manu
LOAD 'dna_dir'blinel.vip dna_blinel
LOAD 'dna_dir'bline2. vip dna_bline2

SET OUTPUT /OFF
ROAM (0 0)(512 512)
LET seq_bacexist = 0

REPEAT
!Step 1: select image input type and input a DNA sequence image to be read

LET seq_exit = "N"
WHILE seq_exit = "N"

RUN dna_acq seq_i seq_bacexist seq_exit seq_bac !acquires an image
IF seq_exit = "Y"

DELETE dna_ * seq_*
SET OUTPUT /ON
EXIT

END
END

!Step 2: enhance contrast of the DNA sequence image
RUN dna_cont seq_i seq_a
WRITE/LINE

!enhances contrast of the image

INQUIRE " Separate lane sets automatically ? [Y] " /ENTITY seq_auto
WRITE/LINE
IF seq_auto = "N"

!Step 3: manually process
RUN dna_manu seq_i seq_a

ELSE
!Step 4: automatically process

!manually separates subimage

RUN dna_line seq_a seq_b seq_lp seq_rp !detects gap lines
FOR seq_n = 0 %LENGTH(seq_lp- 1)

DECLARE IMAGE (1 1) seq_seta seq_seti
RUN dna_sepa seq_n seq_lp seq_rp seq_a seq_seta seq_i seq_seti!separates subimage
WRITE/LINE
INQUIRE " Is the selected subimage ok ? [Y] " /ENTITY seq_ok
WRITE/LINE
IF seq_ok = "N"

INQUIRE " Correct the subimage ? [N]
IF seq_correct = "Y"

" /ENTITY seq_correct
!select subimage manually

LET seq_subok = "N"
WHILE seq_subok = "N"

DISPLAY seq_a (0 0)
WRITE /LINE " Select a subimage to be processed " /LINE
INQUIRE " Tick left_top and drag to right_bottom: " seq_lt seq_size
DELETE seq_seti seq_seta
DECLARE IMAGE seq_size seq_seti seq_seta
COPY seq_i seq_seti ((0 - %ROW(seq_lt)) (0 - %COL(seq_lt)))
COPY seq_a seq_seta ((0 - %ROW(seq_lt)) (0 - %COL(seq_lt)))
CLEAR

DISPLAY seq_seti seq_lt
WRITE/LINE
INQUIRE " Is the selected subimage ok ? [y] " /ENTITY seq_subok

80

Appendix II VIPS Programs for DNA Sequence Reading

WRITE/LINE
END
CLEAR

DISPLAY seq_seti (0 0)
RUN dna_sub seq_seta seq_seti

END
ELSE

CLEAR
DISPLAY seq_seti (0 0)

RUN dna_sub seq_seta seq_seti
END
DELETE seq_set*

END
END
WRITE/LINE
INQUIRE" Select any subimage? [N] "/ENTITY seq_manu
IF seq_manu = "Y"

!read subimage

RUN dna_manu seq_i seq_a !manually selects subimage
END
WRITE /LINE /LINE /LINE /LINE

UNTIL 1 =2
END

81

&&

Acquire Image module: (see section 4.1)

PROGRAM !acq.vip ---- Acquires images.
DECLARE STRING acq_type acq_imfile acq_bacfile acq_imvar acq_exit acq_imin
DECLARE IMAGE (512 512) acq_i acq_a acq_bac acq_b
DECLARE INTEGER acq_back

LET acq_exit = "N"
LET acq_back = 0
WRITE /LINE " Select Image Input: " /LINE /LINE
WRITE " Capture Image(C) Load Image File(F)
INQUIRE " " /ENTITY acq_type /LINE /LINE
WRITE /LINE /LINE

Exit(E) [CL "

IF acq_type = "F"
LET#3 = "F"
LET acq_imin = "N"
REPEAT

INQUIRE" Input Image File Name:" /ENTITY acq_imfile
IF %LENGTH(acq_imfile) > 0

IF %EXIST('acq_imfile' /FILE) = 0
WRITE " The image file does not exist" /LINE

ELSE
LET acq_imin = "Y"

END
END

UNTIL acq_imin = "Y"
LOAD 'acq_imfile' acq_i /pie

!input image file
!#3=seq_exit

WHILE acq_back = 0 !#2=seq_bac
INQUIRE " Input Background File Name: " /ENTITY acq_bacfile
IF %LENGTH(acq_bacfile) > 0

IF %EXIST('acq_bacfile' /FILE) = 0
WRITE " The background image file does not exist" /LINE

ELSE

ApPendix II VIPS Programs for DNA Sequence Reading

LOAD 'acq_bacfile' acq_bac /pie
LET acq_back = 1

END
END

END
ELSE

82

IF acq_type = "E" !exit DNA Sequence Reading
INQUIRE " Exit DNA Sequence Reading [NJ ? " /ENTITY acq_exit
WRITE /LINE /LINE
IF acq_exit = "Y"

LET#3 ="Y"
ELSE

LET#3 = "N"
END
DELETE acq_*
SET ERROR /INFO
EXIT

!#3=seq_exit

ELSE !capture DNA sequence image
SET CUR/off
WRITE /LINE /LINE "Capture an image of DNA sequence autoradiograph " /LINE
CAPTURE O (0 0) (512 512) !capture DNA image [4.1(1)]
GET acq_i (0 0) (512 512)
IF#2=0

WRITE "Remove everything to capture an image of the background " /LINE
CAPTURE O (0 0) (512 512) !capture background [4.1(2)]
GET acq_bac (0 0) (512 512)
LET#2 = 1
LET #4 = acq_bac

ELSE
LET acq_bac = #4

END
SET CUR /on
LET#3 = "C"

END
END

DISPLAY acq_i (0 0)
WRITE /LINE /LINE
BOX AVERAGE acq_i acq_a (2 3)

DISPLAY acq_a (0 0)
BOX AVERAGE acq_bac acq_b 15
DIVIDE acq_a acq_b 240

DISPLAY acq_a
LET #1 = acq_a
DELETE acq_ *

END

!smooths noise

!smooths background
!background normalize

!#l=seq_i

[4.1 (3)]

[4.1(4)]
[4.1(5)]

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&~&&&

Enhance Contrast module: (see section 4.2)

PROGRAM !cont.vip ---- Enhances contrast.
DECLARE IMAGE (512 512) cont_d cont_e cont_f cont__g cont_t

DISPLAY #1 (0 0)
BOX AVERAGE #1 cont_d (15 3)
BOX MAXIMUM cont_d cont_e (1 80)
BOX MINIMUM cont_d cont_f (400 1)
SUBTRACT cont_e cont_f /SATURATE

!#l=seq_i
!vertically smooth
!horizontal maximum
!vertically minimum
!the range image

[4.2(1)]
[4.2(2)]
[4.2(3)]
[4.2(4)]

Appendix II VIPS Programs for DNA Sequence Reading

LET cont_g = #1
SUBTRACT cont_g cont_f /SATURATE
ADD cont_g 5 /SATURATE
DIVIDE cont_g cont_e 200

DISPLAY cont_g
LET #2 = cont_g
DELETE cont_*

END

!the proportion image

!contrast stretching

!#2=seq_a

83

[4.2(5)]

[4.2(6)]

&&

Detect gap lines module: (see section 4.3)

PROGRAM !line. vip ---- Detects gap lines.
DECLARE IMAGE (512 512) line_a line_b
DECLARE CHAIN line_c line_chn
DECLARE LIST line_cp line_fm line_leh line_rih line_lp line_rp line_len line_lenl
DECLARE LIST line_l line_r line_tll line_brl
DECLARE VECTOR line_lep line_rip line_p
DECLARE INTEGER line_ch_n line_ch_bn line_p_n line_pn line_h_n line_n line_sortn line_sortm
DECLARE STRING line_ok

LET line_leh = { }
LET line_rih = { }
LET line_len 1 = { }

DISPLAY #1 (0 0)
BOX AVERAGE #1 line_a (3 3)
BOX MINIMUM line_a line_b (400 3)

DISPLAY line_b
THRESHOLD line_b 200

DISPLAY line_b
THIN line_b /BINARY

DISPLAY line_b
CHAIN CODE line_b line_c
CHAIN BRANCH line_c line_ch_bn
CHAIN SIZE line_c line_tll line_brl
IF line_ch_bn = 0

WRITE "no line found"
ELSE

!gets gap line left and right point lists

!#l=seq_a

!vertical minimum [4.3(1)]

!segments gaps between lane sets [4.3(2)]

!thins gap centre line [4.3(3)]

!codes gap lines [4.3(4)]

!reports error message

FOR line_ch_n = 1 line_ch_bn !detects key points of gap [4.3(5)]
CHAIN EXTRACT line_c line_ch_n line_chn
POINTS line_chn line_cp
LET line_lep = %INDEX(line_cp 1)
LET line_rip = %INDEX(line_cp 1)
FOR line_p_n = 2 %LENGTH(line_cp)

IF %COL(line_lep) > %COL(%INDEX(line_cp line_p_n))
LET line_lep = %INDEX(line_cp line_p_n) !puts the leftest point to left list

END
IF %COL(line_rip) < %COL(%INDEX(line_cp line_p_n))

LET line_rip = %INDEX(line_cp line_p_n) !puts the rightest point to right list
END

END
LET line_leh = line_leh & {line_lep}
LET line_rih = line_rih & {line_rip}
LET line_lenl = line_lenl & {%COL(%INDEX(line_cp %LENGTH(line_cp)))

%COL(%INDEX(line_cp 1))}
END

Appendix II VIPS Programs for DNA Sequence Reading

LET line_! = line_leh
LET line_r = line_rih
LET line_len = {}
SORT line_leh /h
SORT line_rih /h
!SORT line_tll /HORIZONTAL
!SORT line_brl /HORIZONTAL
FOR line_sortn = 1 %LENGTH(line_leh)

LET line_sortm = 1
REPEAT

!sorts lists from left to right

!sorts left point list
!sorts right point list

!sorts line length list

IF %INDEX(line_leh line_sortn) = %INDEX(line_l line_sortm)
LET line_len = line_len & { %INDEX(line_lenl line_sortm)}
LET line_ok = "Y"

ELSE
LET line_sortm = line_sortm + 1
LET line_ok = "N"

END
UNTIL line_ok = "Y"

END

LET line_lp = { %INDEX(line_leh 1)} !deletes false points
LET line_rp = { %INDEX(line_rih 1)}
LET line_p = %INDEX(line_leh 1)
LET line_pn = 1
FOR line_h_n = 2 (line_ch_bn - 1)

IF (%COL(%INDEX(line_leh line_h_n)) - %COL(line_p)) > 45
LET line_lp = line_lp & { %INDEX(line_leh line_h_n)}
LET line_rp = line_rp & { %INDEX(line_rih line_h_n)}
LET line_p = %INDEX(line_leh line_h_n)
LET line_pn = line_h_n

ELSE
IF (%COL(%INDEX(line_rih line_h_n))- %COL(line_p)) > 45

LET line_lp = line_lp & { %INDEX(line_leh line_h_n)}
LET line_rp = line_rp & { %INDEX(line_rih line_h_n)}
LET line_p = %INDEX(line_leh line_h_n)

LET line_pn = line_h_n
ELSE

IF %INDEX(line_len line_h_n) > %INDEX(line_len line_pn)
LET line_lp = line_lp & { %INDEX(line_leh line_h_n)}
LET line_rp = line_rp & { %INDEX(line_rih line_h_n)}
LET line_p = %INDEX(line_leh line_h_n)
LET line_pn = line_h_n

END
END

END
END

LET #2 = line_b
LET #3 = line_lp
LET #4 = line_rp
END
DELETE line_*

END

!#2=seq_b
!#3=seq_lp
!#4=seq_rp

84

&&

Separate Subimage module: (see section 4.4)

Appendix 11 VIPS Programs for DNA Sequence Reading 85

PROGRAM !sepa. vip ---- Separates lane sets
DECLARE INTEGER sepa_n sepa_le sepa_ri
DECLARE STRING sepa_ok

LET sepa_n = #1
REPEAT

IF sepa_n = 0
LET sepa_le = 0
LET sepa_ri = %COL(%INDEX(#3 (sepa_n + 1)))

ELSE
IF sepa_n = %LENGTH(#2)

LET sepa_le = %COL(%INDEX(#2 sepa_n))
LET sepa_ri = (%COL(%SIZE(#4))- 1)

ELSE
LET sepa_le = %COL(%INDEX(#2 sepa_n))
LET sepa_ri = %COL(%INDEX(#3 (sepa_n + 1)))

END
END
IF (sepa_ri - sepa_le) > 40

DELETE sepa_set* #5 #7

!#l=seq_n

!#2=seq_lp

!#3=Seq_rp

DECLARE image ((%ROW(%SIZE(#4))) (sepa_ri - sepa_le)) sepa_seta sepa_seti #5 #7
COPY #4 sepa_seta (0 (0 - sepa_le)) !#4=Seq_a
COPY #6 sepa_seti (0 (0 - sepa_le)) !#6=seq_i
CLEAR

DISPLAY sepa_seta (0 sepa_le)
DISPLAY sepa_seti (0 0)

LET #5 = sepa_seta
LET #7 = sepa_seti
LET sepa_ok = "Y"

ELSE
LET sepa_n = sepa_n + 1

END
UNTIL sepa_ok = "Y"
LET #1 = sepa_n
DELETE sepa_ *

END

!#5=seq_seta
!#7=seq_seti

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&,&&&

Subimage Reading module: (see section 3.5)

PROGRAM
DECLARE STRING sub_ok sub_giv sub_seq
DECLARE IMAGE (%SIZE(#!)) sub_setg sub_setp
DECLARE INTEGER sub_bn

RUN dna_boun #1 sub_setg
RUN dna_warp #2 sub_setg sub_setp

REPEAT
WRITE/LINE

!sub.vip ---- Processes subimage.

!#l=Seq_seta
!#2=seq_seti

!geometry correction manually

INQUIRE " Is the geometry corrected image ok ? [Y] " /ENTITY sub_ok
IF sub_ok = "N"

INQUIRE " Give up the subimage ? [Y] " /ENTITY sub_giv
IF sub_giv = "N"

RUN dna_geom sub_setp #2
ELSE

Appendix II VIPS Programs for DNA Sequence Reading

DELETE sub_*
SET ERROR /INFO
EXIT

END
ELSE

LET sub_ok = "Y"
END

UNTIL sub_ok = "Y"

86

DECLARE IMAGE (%SIZE(sub_setp)) sub_setc sub_setb
RUN dna_band sub_setp sub_setc sub_setb sub_bn
RUN dna_scan sub_setc sub_seq sub_bn sub_setb
RUN dnajoin sub_seq
DELETE sub_*

END

&&&&&&&&:&&

Extract Boundaries module: (see cection 4.5)

PROGRAM !boun.vip --- Extracts boundaries of lane set.
DECLARE IMAGE ((%ROW(%SIZE(#l))) (%COL(%SIZE(#l)))) boun_b boun_c boun_d boun_e

boun_f boun_g boun_gg
DECLARE MASK boun_mask

BOX AVERAGE #1 boun_b (40 3) !#l=seq_seta vertically smooth [4.5(1)]
SET MASK boun_mask { 1 0 -1 1 0 -1 1 0 -1 }
FILTER LINEAR boun_b boun_c boun_mask 2.0 /ABSOLUTE !filters boundaries of lane set[4.5(2)]
EXTEND boun_c
BOX AVERAGE boun_c boun_d (30 3)
BOX EXTREME /max boun_d boun_e (1 15)
AND boun_e boun_d
THRESHOLD boun_e 15
LET boun_f = boun_b
THRESHOLD boun_f O 240
DISTANCE boun_f
EXP AND boun_f
INVERT boun_f
AND boun_e boun_f
THRESHOLD boun_e 200
LET boun_g = boun_f
THRESHOLD boun_g O 254
BOX AVERAGE boun_g boun_gg (51 21)
COPY boun_gg boun_g (0 1)
SUBTRACT boun_g boun_gg /off
EXP AND boun_g 108 148
BOX AVERAGE boun_g boun_gg (3 10)
AND boun_gg boun_e
LET #2 = boun_gg
DELETE boun_ *

END

!smooths boundaries
!obtains the most changed edges

!removes false edges

!distance transform

!removes centre edges

[4.5(3)]
[4.5(4)]

[4.5(5)]

[4.5(6)]

!distinguish left and righ [4.5(7)]

!boundaries with different intensities [4.5(8)]
!#2=sub_setg

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&:&&&&&&&&~&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Appendix II VIPS Programs for DNA Sequence Reading 87

Warp Geometry module: (see section 4.6)

PROGRAM !warp.vip ---- Geometry warping.
DECLARE IMAGE ((%ROW(%SIZE(#2))) (%COL(%SIZE(#2)))) warp_a warp_leg warp_leedge
DECLARE IMAGE ((%ROW(%SIZE(#2))) (%COL(%SIZE(#2)))) warp_rig warp_riedge warp_i
DECLARE IMAGE ((%ROW(%SIZE(#2))) 100) warp_ip
DECLARE CHAIN warp_lechai warp_lecn warp_rich warp_ricn
DECLARE LIST warp_lep warp_lep2 warp_p warp_rip warp_rip2 warp_newp
DECLARE VECTOR warp_point
DECLARE INTEGER warp_chbn warp_chn warp_pn warp_sn warp_tl warp_t
DECLARE REAL warp_shift warp_mean warp_sd

LET warp_i = #1
LET warp_leg = #2

DISP warp_i (0 200)
CLEARO (0 0) (512 200)
THRESHOLD warp_leg I 127
BOX AVERAGE warp_leg warp_leedge (40 3)
THRESHOLD warp_leedge 30
THIN warp_leedge
CHAIN CODE warp_leedge warp_lechai
CHAIN BRANCHES warp_lechai warp_chbn
IF warp_chbn = 0

write "no boundary found"
ELSE

FOR warp_chn = 1 warp_chbn
CHAIN EXTRACT warp_lechai warp_chn warp_lecn
IF warp_chn = 1

!# I =seq_seti
!#2=seq_setg

!convert left boundary
!smooth edges

!left edges

!get one left edge

[4.6(1)]

POINTS warp_lecn warp_lep
ELSE

!get first part of the key point list

POINTS warp_lecn warp_lep2 !get other parts of the point list
IF (%COL(%1NDEX(warp_lep2 1))- %COL(%1NDEX(warp_lep 1))) < 15

!remove false points [4.6(2)]
IF (%COL(%INDEX(warp_lep 1))- %COL(%INDEX(warp_lep2 1))) < 15

IF %ROW(%INDEX(warp_lep2 1)) < %ROW(%1NDEX(warp_lep
%LENGTH(warp_lep)))
IF (%ROW(%INDEX(warp_lep2 %LENGTH(warp_lep2)))

- %ROW(%1NDEX(warp_lep2 1))) > (%ROW(%1NDEX(warp_lep
%LENGTH(warp_lep)))- %ROW(%1NDEX(warp_lep 1)))

LET warp_lep = warp_lep2
END

ELSE
ADD warp_lep warp_lep2 /END

END
ELSE

IF (%ROW(%1NDEX(warp_lep2 %LENGTH(warp_lep2)))
- %ROW(%1NDEX(warp_lep2 1))) > (%ROW(%1NDEX(warp_lep
%LENGTH(warp_lep)))- %ROW(%INDEX(warp_lep 1)))

LET warp_lep = warp_lep2
END

END
ELSE

IF (%ROW(%1NDEX(warp_lep2 %LENGTH(warp_lep2)))
- %ROW(%INDEX(warp_lep21))) > (%ROW(%INDEX(warp_lep
%LENGTH(warp_lep)))- %ROW(%1NDEX(warp_lep 1)))

LET warp_lep = warp_lep2
END

END
END

Appendix II VIPS Programs for DNA Sequence Reading

END
END
IF %LENGTH(warp_lep) > 0

IF %ROW(%INDEX(warp_lep 1)) > 0
LET warp_p = warp_lep
LET warp_lep = {}
LET warp_lep = { (0 (%COL(%INDEX(warp_p 1))))}
ADD warp_lep warp_p /END

END
ELSE

LET warp_lep = { (0 0) (511 0)}
END
IF %ROW(%INDEX(warp_lep %LENGTH(warp_lep))) < (%ROW(%SIZE(#l)) - 1)

LET warp_lep = warp_lep & { (((%ROW(%SIZE(#l))) - 1) (%COL(%INDEX(warp_lep
%LENGTH(warp_lep)))))}

END

88

STRAIGHTEN warp_i warp_lep /v

LET warp_rig = #2

!straighten left side [4.6(3)]

!get right edge
THRESHOLD warp_rig 128 255 !converts right boundary [4.6(4)]
BOX AVERAGE warp_rig warp_riedge (40 3)
THRESHOLD warp_riedge 30
THIN warp_riedge !right edges
CHAIN CODE warp_riedge warp_rich
CHAIN BRANCHES warp_rich warp_chbn
IF warp_chbn = 0

WRITE "no boundary found"
ELSE

FOR warp_chn = 1 warp_chbn
CHAIN EXTRACT warp_rich warp_chn warp_ricn
IF warp_chn = 1

POINTS warp_ricn warp_rip
ELSE

!get first part of the key point list

POINTS warp_ricn warp_rip2 !get other part of the point list
IF %ROW(%INDEX(warp_rip2 1)) < %ROW(%INDEX(warp_rip %LENGTH(warp_rip)))

IF %LENGTH(warp_rip2) > %LENGTH(warp_rip)
LET warp_rip = warp_rip2

END
ELSE

ADD warp_rip warp_rip2 /END
END

END

!join available parts of point list

END
END

LET warp_newp = {} !remove false points [4.6(5)]
FOR warp_pn = 1 %LENGTH(warp_rip)

FOR warp_sn = 1 %LENGTH(warp_lep) !get shift
IF %ROW(%INDEX(warp_rip warp_pn)) < %ROW(%INDEX(warp_lep warp_sn))

LET warp_tl = %REAL((%COL(%INDEX(warp_lep warp_sn))
- %COL(%INDEX(warp_lep (warp_sn - 1)))))

LET warp_t = warp_tl / %REAL((%ROW(%INDEX(warp_lep warp_sn))
- %ROW(%INDEX(warp_lep (warp_sn - 1)))))

LET warp_shift = warp_shift + warp_t * %REAL((%ROW(%INDEX(warp_rip warp_pn))
- %ROW(%INDEX(warp_lep (warp_sn - 1)))))

LET warp_point = (%ROW(%INDEX(warp_rip warp_pn)) (%COL(%INDEX(warp_rip
warp_pn)) - %INTEGER(warp_shift)))

ADD warp_newp {warp_point} /END
LET warp_sn = %LENGTH(warp_lep) + 1

ELSE
LET warp_shift = %REAL(%COL(%INDEX(warp_lep warp_sn)))
IF %ROW(%INDEX(warp_rip warp_pn)) = %ROW(%INDEX(warp_lep warp_sn))

Appendix II VIPS Programs for DNA Sequence Reading

LET warp_point = (%ROW(%INDEX(warp_rip warp_pn))
(%COL(%INDEX(warp_rip warp_pn)) - %INTEGER(warp_shift)))

ADD warp_newp {warp_point} /END
LET warp_sn = %LENGTH(warp_lep) + 1

END
END

END
END
IF %ROW(%INDEX(warp_newp 1)) > 0

LET warp_p = warp_newp
LET warp_newp = {}
LET warp_newp = { (0 (%COL(%INDEX(warp_p 1))))}
ADD warp_newp warp_p /END

END
IF %ROW(%INDEX(warp_newp %LENGTH(warp_newp))) < (%ROW(%SIZE(#l))- 1)

ADD warp_newp {(((%ROW(%SIZE(#l))) I) (%COL(%INDEX(warp_newp
%LENGTH(warp_newp)))))} /END

END

STATISTICS warp_i ,,,, warp_mean warp_sd

89

TEST warp_ip %INT(((warp_mean - warp_sd) * 1.02))
PARALLEL warp_i warp_ip warp_newp /v !trapezoid warp right side [4.6(6)]
EXTEND warp_ip

DISP warp_ip (0 300)
DELETE#3
DECLARE IMAGE ((%ROW(%SIZE(#2))) 100) #3
LET #3 = warp_ip
DELETE warp_*

END

!#3=seq_setg

&&

Manual Correction module: (see section 3.4 Figure 3.4-3)

PROGRAM !geom.vip ---- Manually geometry correction.
DECLARE IMAGE geom_seta geom_setp
DECLARE STRING geom_cor geom_res geom_le geom_lepos geom_ri geom_ripos geom_ok
DECLARE INTEGER geom_n
DECLARE REAL geom_mean geom_sd
DECLARE LIST geom_list geom_lel geom_ril

LET geom_cor = "Y"
WHILE geom_cor = "Y"

WRITE/LINE
LET geom_seta = #1 !#l=subsetp
INQUIRE " Correct from the result ? [Y] " /ENTITY geom_res
IF geom_res = "N"

LET geom_seta = #2
CLEARO (0 300) (512 100)

DISP geom_seta (0 300)
END

REPEAT
INQUIRE " Correct left side ? [N] " /ENTITY geom_le
IF geom_le = "Y"

!#2=subseti

!straighten left side manually

INQUIRE " Tick points of left boundary to strait " /LINE geom_lepos
IF %LENGTH(geom_lepos) > 0

LET geom_list = {'geom_lepos'}

ApPendix II VIPS Programs for DNA Sequence Reading

LET geom_lel = { }
FOR geom_n = 1 %LENGTH(geom_list)

ADD geom_lel { (%INDEX(geom_list geom_n) - (0 300))} /END
END
STRAIGHTEN geom_seta geom_lel /v

DISP geom_seta (0 300)
END

ELSE
LET geom_le = "N"

END
UNTIL georn_le = "N"

REPEAT
INQUIRE " Correct right side ? [N] " /ENTITY geom_ri
IF geom_ri = "Y"

!straighten right side manually

INQUIRE " Tick points of right boundary to warp " /LINE geom_ripos
IF %LENGTH(geom_ripos) > 0

LET geom_list = {'geom_ripos'}
LET geom_ril = { }
FOR geom_n = 1 %LENGTH(georn_list)

ADD geom_ril { (%INDEX(geom_list geom_n) - (0 300))} /END
END
STATISTICS geom_seta ,,,, geom_rnean georn_sd
TEST geom_setp %INT(((geom_mean - geom_sd) * 1.02))
PARALLEL geom_seta geom_setp geom_ril /v
EXTEND geom_setp

DISP georn_setp (0 300)
LET geom_seta = geom_setp

END
ELSE

LET georn_ri = "N"
END

UNTIL georn_ri = "N"

INQUIRE" Correcte the subimage again? [N] "/ENTITY geom_cor
END
LET #1 = georn_seta
DEL geom_*

END

90

&&

Extract Bands module: (see section 4.7)

PROGRAM !band.vip --- Extracts bands.
DECLARE IMAGE (512 100) band_a band_b band_c band_d band_e band_fband_g
DECLARE IMAGE (512 100) band_h band_i band_ta band_tb
DECLARE MASK band_mask
DECLARE INTEGER band_ wb
DECLARE REAL band_mean band_sd

BOX AVERAGE #1 band_a (2 5)
LET band_b = band_a
AVERAGE /MlNIMUM /ROW /FILL band_b band_c
BOX MINIMUM band_c band_d (9 1)
BOX MAXIMUM band_b band_e (21 1)
SUBTRACT band_e band_d /sat
SUBTRACT band_b band_d /sat

!#l=seq_setp

!enhances contrast

Appendix II VIPS Programs for DNA Sequence Reading

DNIDE band_b band_e
DISP band_b (0 300)

LET band_ta = band_b
BOX AVERAGE band_ta band_tb (5 3)
SUBTRACT band_ta band_tb /OFF /SAT
STATISTICS band_ta ,,,, band_mean band_sd
RUN dna_blinel band_ta %INT(((band_mean - band_sd) * 1.03))
BOX AVERAGE band_ta band_tb (1 11)
STATISTICS band_tb ,,,, band_mean band_sd
THRESHOLD band_tb O %1NT(((band_mean - band_sd) * 0.97))
BLOB band_tb ,, band_ wb
IF band_ wb > 85

LET band_b = band_a
AVERAGE /MINIMUM /ROW /FILL band_b band_c
BOX MINIMUM band_c band_d (5 1)
BOX MAXIMUM band_b band_e (21 1)
SUBTRACT band_e band_d /sat
SUBTRACT band_b band_d /sat
DNIDE band_b band_e

DISP band_b (0 300)
IF band_wb > 130

LET band_b = band_a
AVERAGE /MINIMUM /ROW /FILL band_b band_c
BOX MINIMUM band_c band_d (3 1)
BOX MAXIMUM band_b band_e (21 1)
SUBTRACT band_e band_d /sat
SUBTRACT band_b band_d /sat
DNIDE band_b band_e

DISP band_b (0 300)
END

END
BOX MAXIMUM band_b band_f (1 60)
BOX AVERAGE band_f band_d (9 69)
SUBTRACT band_d band_b /sat
IF band_ wb < 85
SUBTRACT band_d 100 /sat
ELSE

IF band_ wb < 130
SUBTRACT band_d 80 /sat

ELSE
SUBTRACT band_d 50 /sat

END
END
INVERT band_d
EXP AND band_d

91

!get band number for window size

!reenhances contrast

!remove background [4.7(1)]

!background subtracted
RUN dna_blinel band_d 255
box ave band_c band_d (2 3)

!keeps centre part of each lane [4.7(2)]

SET MASK band_mask { 1 1 1 2 2 2 -3 -3 -3}
TESTband_e
FILTER LINEAR band_d band_e band_mask /POSITIVE
EXTEND band_e
BOX AVERAGE band_e band_g
BOX ENHANCE band_g band_h (3 13)
BOX MAXIMUM band_h band_i (1 24)
RUN dna_blinel band_i 255
THRESHOLD band_i 2 255
RUN dna_bline2 band_i 0
LET #2 = band_i
LET #3 = band_b
LET #4 = band_ wb
DELETE band_*

END

!smooth [4.7(3)]

!filter bands

!further enhances image
!long bands image

!segment bands
!thin bands

[4.7(4)]

[4.7(5)]

[4.7(6)]
[4.7(7)]

Appendix II VIPS Programs for DNA Sequence Reading 92

&&&&&&&,&&&

Scan Bands module: (see section 4.8)

PROGRAM !scan.vip ---- Scans bands.
DECLARE IMAGE ((%ROW(%SIZE(#I))) (%COL(%SIZE(#I)))) scan_c
DECLARE INTEGER scan_len scan_n scan_k scan_dn scan_dm scan_d scan_un
DECLARE INTEGER scan_lenl scan_len2 scan_len3 scan_resort
DECLARE REAL scan_width
DECLARE LIST scan_data scan_add_bands scan_del_bands scan_bands scan_uncer scan_off
DECLARE STRING scan_long scan_string scan_seq scan_corr scan_zoom scan_ad
DECLARE STRING scan_ok scan_name scan_addyes scan_delyes scan_offyes
DECLARE VECTOR scan_posl scan_pos2 scan_pos scan_lt scan_offsize scan_add scan_del
DECLARE CHAIN scan_chain scan_chaink
DECLARE MASK scan_mask

LET scan_data = { }
LETscan_uncer= {(-1-1)}
LET scan_long =" Band is too wide!"
LET scan_c = #1

CHAIN CODE scan_c scan_chain
CHAIN BRANCHES scan_chain scan_n
FOR scan_k = I scan_n

CHAIN EXTRACT scan_chain scan_k scan_chaink
CHAIN SIZE scan_chaink scan_pos 1 scan_pos2
LET scan_pos = (scan_posl + scan_pos2 + (11)) / 2
CHAIN LENGTH scan_chaink scan_len
IF scan_k < 5

LET scan_ width = 4
ELSE

LET scan_width = %ROW(scan_pos) / scan_k
END
IF #3 > 100

LET scan_lenl = %INTEGER((scan_width * 4.5))
LET scan_len2 = %INTEGER((scan_width * 6.5))
LET scan_len3 = %INTEGER((scan_width * 8.5))

ELSE
LET scan_lenl = %INTEGER((scan_width * 3.2))
LET scan_len2 = %INTEGER((scan_width * 5.1))
LET scan_Ien3 = %INTEGER((scan_width * 7.0))

END
IF scan_len < scan_len 1 !normal band

ADD scan_data { scan_pos} /END

!scan bands

!#l=sub_setc

!scan band positions

!extract each band

[4.8(1)]

DRAW LINE (scan_pos + (0 297)) (scan_pos + (0 303)) !draw band extracted for user
FOR scan_un = 1 %LENGTH(scan_uncer)

IF %ROW(%INDEX(scan_uncer scan_un)) = %ROW(scan_pos)
DRAW LINE (scan_pos + (-1 300)) (scan_pos + (1 300)) 0 !sign uncertain band

END
LET scan_uncer = { scan_pos}

END
ELSE

IF scan_len < scan_len2
ADD scan_data { (scan_pos - (%INT((scan_width / 2)) 0)) (scan_pos

+ (%INT((scan_width / 2)) 0))} /END
DRAW LINE (scan_pos + ((0 - (%INT((scan_width / 2)))) 297)) (scan_pos

+ ((0 - (%INT((scan_width I 2)))) 303))

Appendix II VIPS Programs for DNA Sequence Reading

DRAW LINE (scan_pos + (%INT((scan_ width/ 2)) 297)) (scan_pos
+ (%INT((scan_width / 2)) 303))

ELSE
IF scan_len < scan_len3

ADD scan_data {(scan_pos - (%INT(scan_width) 0)) scan_pos (scan_pos
+ (%INT(scan_width) 0))} /END

DRAW LINE (scan_pos + ((0 - (%INT(scan_width))) 297)) (scan_pos
+ ((0 - (%INT(scan_width))) 303))

DRAW LINE (scan_pos + (0 297)) (scan_pos + (0 303))
DRAW LINE (scan_pos + (%INT(scan_width) 297)) (scan_pos

+ (%INT(scan_width) 303))
ELSE

WRITE scan_long
END !end if len<=three

END !end if len<=two
END !end if len<=one

END !end for

93

SORT scan_data NERTICAL
SEQUENCE scan_data scan_string NERTICAL
WRITE /LINE scan_string /LINE

!vertically sort positions [4.8(2)]
!DNA sequencing [4.8(3)]

WRITE/LINE
INQUIRE II Correct sequence ? [N] 11 /ENTITY scan_corr
IF scan_corr = 11Y11

INQUIRE II Zoom in ? [N] 11 /ENTITY scan_zoom
IF scan_zoom = 11Y11

ROAM (0 200) (256 256)
END

END
WHILE scan_corr = 11Y11

LET scan_add_bands = {}
LET scan_del_bands = { }
LET scan_off = { }
LET scan_bands = { }

!check detected bands

INQUIRE II Add bands(A) Delete band(D) Remove part(R)? [N] 11 /ENTITY scan_ad
WRITE/LINE
WHILE scan_ad = "A11 !add bands

INQUIRE " Tick a band to be added: 11 /ENTITY scan_addyes
IF %LENGTH(scan_addyes) > 0

LET scan_add = 'scan_addyes'
IF %COLUMN(scan_add) < (25 + 300)

LET scan_add = (%ROW(scan_add) 12)
ELSE

IF %COLUMN(scan_add) < (50 + 300)
LET scan_add = (%ROW(scan_add) 37)

ELSE
IF %COLUMN(scan_add) < (75 + 300)

LET scan_add = (%ROW(scan_add) 62)
ELSE

IF %COLUMN(scan_add) < (100 + 300)
LET scan_add = (%ROW(scan_add) 87)

END
END

END
END
DRAW LINE (scan_add + (0 297)) (scan_add + (0 303))
ADD scan_add_bands { scan_add} /END

ELSE
LET scan_ad = 11N"

END
END

[4.8(4)]

Appendix II VIPS Programs for DNA Sequence Reading

ADD scan_data scan_add_bands /END !join added bands

WHILE scan_ad = "D" !delete band
INQUIRE " Tick a band to be deleted: " /ENTITY scan_delyes
IF %LENGTH(scan_delyes) > 0

LET scan_del = 'scan_delyes'
IF %COLUMN(scan_del) < (25 + 300)

LET scan_del = (%ROW(scan_del) 12)
IF %COLUMN(scan_del) < (50 + 300)

LET scan_del = (%ROW(scan_del) 37)
ELSE

IF %COLUMN(scan_del) < (75 + 300)
LET scan_del = (%ROW(scan_del) 62)

ELSE
IF %COLUMN(scan_del) < (100 + 300)

LET scan_del = (%ROW(scan_del) 87)
END

END
END

END
DRAW LINE (scan_del + (0 297)) (scan_del + (0 303)) 0
ADD scan_del_bands { scan_del} /END

ELSE
LET scan_ad = "N"

END
END
IF %LENGTH(scan_del_bands) > 0 !removed bands

FOR scan_dn = 1 %LENGTH(scan_data)
LET scan_d = 0
FOR scan_dm = 1 %LENGTH(scan_del_bands)

IF %INDEX(scan_data scan_dn) = %INDEX(scan_del_bands scan_dm)
LET scan_d = 1

END
END
IF scan_d < 1

ADD scan_bands { %INDEX(scan_data scan_dn)} /END
END

END
LET scan_data = scan_bands

END

WHILE scan_ad = "R" !remove unreadable part

94

INQUIRE " Tick left_top and drag to right_bottom of the unreadable part " scan_lt scan_offsize
FOR scan_dn = 1 %LENGTH(scan_data)

IF %ROW(%INDEX(scan_data scan_dn)) > %ROW(scan_lt)
IF %ROW(%INDEX(scan_data scan_dn)) < (%ROW(scan_lt) + %ROW(scan_offsize))

ADD scan_off { %INDEX(scan_data scan_dn)} /END
END

END
END
INQUIRE " Remove another unreadable part ? [N] " /ENTITY scan_offyes
IF scan_offyes = "Y"

LET scan_ad = "R"
ELSE

LET scan_ad = "N"
IF %LENGTH(scan_off) > 0

DECLARE IMAGE scan_offsize scan_offim
COPY #4 scan_offim ((0 - %ROW(scan_lt)) 0)

DISP scan_offim scan_lt
DELETE scan_offim
LET scan_bands = { }
FOR scan_dn = 1 %LENGTH(scan_data)

!delete removed bands

Appendix II VIPS Programs for DNA Sequence Reading

LET scan_d = 0
FOR scan_dm = 1 %LENGTH(scan_off)

IF %INDEX(scan_data scan_dn) = %INDEX(scan_off scan_dm)
LET scan_d = 1

END
END
IF scan_d < 1

ADD scan_bands { %INDEX(scan_data scan_dn)} /END
END

END
LET scan_data = scan_bands

END
END

END
WRITE/line
INQUIRE " Correct sequence ? [N]

END !while scan_corr="Y"
ROAM (0 0) (512 512)

LET scan_resort = 1
IF %LENGTH(scan_add_bands) = 0

IF %LENGTH(scan_del_bands) = 0
IF %LENGTH(scan_off) = 0

LET scan_resort = 0
END

END
END

" /ENTITY scan_corr

!resequencing
!sign resort

95

IF scan_resort > 0 !resequencing if sequence corrected
SORT scan_data NERTICAL
SEQUENCE scan_data scan_seq NERTICAL
WRITE /LINE scan_seq /LINE /LINE

END

REPEAT !save sequence
INQUIRE" Name of this subsequence:" /ENTITY scan_name

UNTIL %LENGTH(scan_name) > 0
FILE /OPEN/WRITE 'dna_dir"scan_name'.dat
WRITE /FILE scan_seq
FILE /CLOSE 'dna_dir"scan_name'.dat

LET #2 = scan_seq
DEL scan_*

END

PROGRAM
DECLARE IMAGE (512 17) subline
TEST subline #2
COPY subline #1 (0 -8)
COPY subline #1 (0 17)
COPY subline #1 (0 42)
COPY subline #1 (0 67)
COPY subline #1 (0 92)
DELETE subline

END

PROGRAM
DECLARE image (512 17) subline
TEST subline #2
COPY subline #1 (0 -5)
COPY subline #1 (0 13)
COPY subline #1 (0 20)

!bline 1. vip ---- Keeps centre of each lane.

!bline2.vip ---- Keeps centre positions.

Appendix II VIPS Programs for DNA Sequence Reading

COPY subline #1 (0 38)
COPY subline #1 (0 45)
COPY subline #1 (0 63)
COPY subline #1 (0 70)
COPY subline #1 (0 88)
DELETE subline

END

96

&&

Manually Process module: (see section 3.5)

PROGRAM !manu.vip ---- Selects a lane set manally.
DECLARE VECTOR manu_lt manu_size
DECLARE STRING manu_ok manu_sel
DECLARE INTEGER manu_set

LET manu_sel = "Y"
REPEAT
LET manu_ok = "N"
LET manu_set = 0
WHILE manu_ok = "N"

DISPLAY #1(00)
WRITE /LINE " Select a subimage to be processed " /LINE
INQUIRE" Tick left_top and drag to right_bottom:" manu_lt manu_size

IF manu_set = 1
DELETE manu_seti manu_seta

END
DECLARE IMAGE manu_size manu_seti manu_seta
LET manu_set = 1
COPY #1 manu_seti ((0- %ROW(manu_lt)) (0 - %COL(manu_lt)))
COPY #2 manu_seta ((0 - %ROW(manu_lt)) (0 - %COL(manu_lt)))
CLEAR

DISPLAY manu_seti manu_lt
INQUIRE " Is the selected subimage ok ? [Y] " /ENTITY manu_ok

END
RUN dna_sub manu_seta manu_seti
WRITE/LINE
DELETE manu_seti manu_seta
INQUIRE " Select another subimage ? [Y] "/ENTITY manu_sel

UNTIL manu_sel = "N"
DELETE manu_ *

END

!#l=seqi
!#2=seqa

&&

Appendix Ill

.~·.··.FJ:r:o;.gitarr:i:s· of ~;l1PS
CiO"fll•~anes. c:1eve,1~1peG1

STRAIGTHEN.H:

enum { IPO_STRA_HORIZONTALLY = 1,
IPO_STRA_ VERTICALLY = 2,
IPO_STRA_WARP = 4,
IPO_STRA_BLACK = 8,
IPO_STRA_ WHITE = 16 } ;

ipv _status ipif_straighten(char *params);
ipv _status ipc_straighten(short options, ipv _image *image, ipv _list **vectors, long *position);

extern ipv_command ipcc_straighten;

STRAIGTHEN.C:

/*------------------------------------
Format: STRAIGHTEN image vectors position [options]
Parameters: image

vectors
position
options

(IMAGE) <i> The input image to be straightened.
(LIST) <i> The vectors to be straightened horizontally or vertically.
(INTEGER) <i> The position (row/column) straightened line is set at.
(OPTION) [/HORIZONTALLY/WARP]<i>The direction the image to be

straightened by and the mode to fill rest pixels.
/HORIZONTALLY The image to be straightened horizontally.
NERTICALLY The image to be straightened vertically.
/WARP Fill rest pixels with warping around.
/BLACK Fill rest pixels with 0.
/WHITE Fill rest pixels with 255.

------------------------------------*/
#include <stddef.h>

Appendix III C Programs of VIPS Commands Developed

#include "g_error.h"
#include "g_defin.h"
#include "u_option.h"
#include "u_pararne.h"
#include "u_image.h"
#include "c_straig.h"

98

/*------------------------------------*/
long straight_pos;
long straight_pos_def = 0;

ipv_param ipcp_straight[3] =
{ { IPVO_REQD, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0 },
{ IPVO_REQD, IPT_LIST, IPTM_LIST, NULL, NULL, 0 },
{ 0, IPT_INTEGER, IPTM_INTEGER, &straight_pos, &straight_pos_def, 0 } };

ipv _com_ variant ipcv _straight[l] =
{ { 0, 0, (ipv_proc *) ipc_straighten, NULL, 3, ipcp_straight} };

ipv_command ipcc_straighten =
{ "STRAIGHTEN", "/HORIZONTALLYNERTICALLY/W ARP/BLACK/WHITE",

IPO_STRA_ VERTICALLYIIPO_STRA_ WHITE,
IPO_STRA_HORIZONTALL YIIPO_STRA_ WARP,
I, ipcv _straight } ;

#define WHERE ipcc_straighten.command
/*-----------------------------------*/

ipv_status ipif_straighten(char *params){

}

ipv _status stat;
ipv_var_desc image, vectors, position;
long def_position;
short options;

/* pointers to actual parameters*/
/* Defined line on which straightened points will be*/

/* Direction and mode to fill rest pixels*/

ipum_error(ipu_options(&options, params, "/HORIZONTALLY NERTI CALLY
/WARP /BLACK/WHITE"));

if ((options & 0x3) == 0) options I= IPO_STRA_HORIZONTALLY;
if ((options & Ox 1 c) == 0) options I= IPO _STRA_ WARP;

ipum_error(ipu_parameter(¶rns, I, IPVO_REQD, &image,
IPT_B_IMAGE, IPTM_B_IMAGE));

ipum_error(ipu_parameter(¶ms, 2, IPVO_REQD, &vectors,
IPT_LIST, IPTM_LIST));

stat= ipu_parameter(¶ms, 3, 0, &position, IPT_INTEGER, IPTM_INTEGER);
if (stat== IPMW _PARS_NOV AR) {

def_position = 0;
position.address.integer= &def_position;

}
else ipum_error(stat);

return(ipc_straighten(options, image.address.image, vectors.address.list, position.address.integer));

/*------------------------------------
Procedure: ipic _straighten
Purpose: Obtains a straitened image from a oblique image.
Parameters: ipv _image *image <i> The image to be straightened.

ipv _list *vectors <i> The vectors to be straightened horizontally or vertically.
long position <i> The line to be straightened at.
short options <i> The direction the image to be straightened

and the mode to fill rest pixels.

Appendix III C Programs of VIPS Commands Developed

Return: IPMS
IPMZ_

Errors:
Calls: ipum_user_abort

Written:
Modified:

24, Apr.1992
10, Oct.1992

Checks for control C.

B.Fan
B.Fan

Add new command for DNA sequence.
For new VIPS verion.

99

------------------------------------*/
ipv _status ipc_straighten(short options, ipv _image *image, ipv _list **vectors, long *position)
{

ipv_pixel
ipv_list
long
long
float

do {

buffer[512];
*p, *prep;
i, j, diff, ndiff, total_diff, list_len, sort_count=0;
image_size_row, image_size_col;
tan;

/*sort vectors*/
list_len = 0;
sort_count++;
p = *vectors;
while (p != NULL && p->next != NULL) { /*sort one vector*/

}

if (p->type==IPT_REAL)
ipum_error_3(IPME_PARS_WRONGTYP, "Element", "VECTOR", "REAL");

else if (p->type!=IPT_ VECTOR)
ipum_error_3(IPME_FARS_ WRONGTYP, "Element", "VECTOR", "INTEGER");

list_len++;
if ((options & IPO_STRA_HORIZONTALLY)?(p->val.v.col <= p->next->val.v.col)

:(p->val.v.row<=p->next->val.v.row)){ /*point next*/
prep= p;
p = p->next;

}
else {

prep->next = p->next;
prep = p->next;
p->next = prep->next;
prep->next = p;

/*change order with next*/

} while(sort_count < list_len);
if (p != NULL)

if (options & IPO_STRA_HORIZONTALLY)
p->val.v.col++;

else p->val. v.row++;
if (options & IPO_STRA_HORIZONTALLY && list_len>=l) {

p = *vectors;
image_size_row = image->size.row;
while(p != NULL && p->next != NULL){ /*loop for vector list*/

if (p->val.v.col != p->next->val.v.col) {
tan= (float)(p->next->val.v.row - p->val.v.row)/

(float)(p->next->val.v.col - p->val.v.col); /*tan=row/column*/
diff = p->val.v.row - *position;
for (j=p->val.v.col; j<p->next->val. v.col; j++){ /*restore from column I to column 2 */
total_diff = diff + (int)((j-p->val.v.col) * tan); /*get difference for each column*/
if (total_diff > 0) {

for (i = 0; i < total_diff; i++)
if (options & IPO_STRA_WARP)
buffer[i] = image->data.b[i][j]; /*store for warping*/

for (i=total_diff; i<image_size_row; i++)
image->data.b[i-total_diff] [iJ = image->data.b[i][j]; /*shift pixels*/

for (i=0; i<total_diff; i++) /*fill rest spaces*/
if (options & IPO _STRA_ WARP)
image->data. b [image_size _row-total_diff +i Ju] = buffer[i];

else if (options & IPO_STRA_BLACK)

Appendix Ill C Programs of VIPS Commands Developed

image->data.b[image_size_row-total_diff+i]Li] = 0;
else if (options & IPO_STRA_ WHITE)

image->data.b[image_size_row-total_diff+i]Li] = 255;
}
if (total_diff <0) { /*opposite direction*/

ndiff = -total_diff;
for (i = 0; i <= ndiff; i++)

if (options & IPO_STRA_WARP)
buffer[i] = image->data.b[image_size_row-1-i] [j];

for (i = image_size_row-1-ndiff; i>0; i--)
image->data.b[i+ndiffJ [j] = image->data.b[i]O];

for (i=0; i<=ndiff; i++)
if (options & IPO _STRA_ WARP)
image->data.b[ndiff-i] [j] = buffer[i];

else if (options & IPO_STRA_BLACK)
image->data.b[ndiff-i][j] = 0;

else if (options & IPO_STRA_ WHITE)
image->data.b[ndiff-i][j] = 255;

} /*end if total_diff<0*/
} /*end for j*/

} /*end if ... col != ... col*/
p = p->next;
ipum_user_abort;

} /*end while*/
return(IPMS_);
}
else if (options & IPO_STRA_ VERTICALLY && list_len>=l) {

p = *vectors;
image_size_col = image->size.col;
while(p != NULL && p->next != NULL){

if (p->val.v.row != p->next->val.v.row) {
tan= (float)(p->next->val.v.col - p->val.v.col)/

(float)(p->next->val. v.row - p->val. v.row);
diff = p->val.v.col - *position;

/*loop for vector list*/

/*tan=column/row*/

100

for (j=p->val.v.row; j<p->next->val.v.row; j++){ /*restore from column 1 to column 2 */
total_diff = diff + (int)((j-p->val.v.row) * tan); /*get difference for each column*/
if (total_diff > 0) {

if (options & IPO _STRA_ WARP)
for (i = 0; i < total_diff; i++)

buffer[i] = image->data.bQ][i];

/*store pixels for WARP mode*/

for (i=total_diff; i<image_size_col; i++)
image->data. b[j] [i-total_diffJ = image->data. b [j] [i];

for (i=0; i<total_diff; i++)
if (options & IPO _STRA_ WARP)
image->data.b[j][image_size_col-total_diff+i] = buffer[i];

else if (options & IPO_STRA_BLACK)
image->data.bQ][image_size_col-total_diff+i] = 0;

/*shift pixels*/
/*restore pixels* I

else if (options & IPO_STRA_ WHITE)
image->data.b[j][image_size_col-total_diff+i] = 255;

}
if (total_diff <0) {

ndiff = -total_diff;
if (options & IPO _STRA_ WARP)

for (i = 0; i <= ndiff; i++)
buffer[i] = image->data.b[j][image_size_col-1-i];

for (i = image_size_col-1-ndiff; i>0; i--)
image->data.bQ][i+ndiffJ = image->data.bO][i];

for (i=0; i<=ndiff; i++)
if (options & IPO _STRA_ WARP)
image->data.bO][ndiff-i] = buffer[i];

else if (options & IPO_STRA_BLACK)
image->data.bO][ndiff-i] = 0;

else if (options & IPO_STRA_ WHITE)

Appendix Ill C Programs of VIPS Commands Developed

image->data.b[j][ndiff-i] = 255;
/*end if total_diff<0*/

/*end for j*/
/*end if ... row != ... row*/

p = p->next;
ipum_user_abort;

} /*end while*/
return(IPMS_);
}
else { ipum_error_l(IPME_COMM_INVPARAM, "At least two vectors required");

return(IPMS_); }
}
#undef WHERE

101

/*------------------------------------*/

&&&&&&&MM&&&

PARALL.H:

enum { IPO_PARA_HORIZONTALLY = 1,
IPO_PARA_ VERTICALLY = 2 };

ipv_status ipif_parallel(char *params);
ipv_status ipc_parallel(short mode, ipv_image *imagel, ipv_image *image2,

ipv _list **vectors, long position, ipv _ vector *size);

extern ipv_command ipcc_parallel;

PARALL.C:

/*------------------------------------
Format: PARALLEL imagel image2 vectors [position size mode]
Parameters: image I (IMAGE) <i> The input image to be paralleled.

image2 (IMAGE) <o> The output image paralleled.
vectors (LIST) <i> The vectors to be paralleled horizontally or vertically.
position (INTEGER)[0] <i>The first line to be paralleled on the input image.
size (VECTOR)[(512 100)/HORIZONTALLY or (100 512)NERTICALLY]

<i> The output image size.
mode (OPTION)[/HORIZONT ALL Y]<i> The direction the image to be paralleled by.

/HORIZONTALLY The image to be paralleled horizontally.
NERTICALLY The image to be paralleled vertically.

------------------------------------*/
#include <stddef.h>
#include "g__error.h"
#include "g_defin.h"
#include "u_option.h"
#include "u_parame.h"
#include "u_image.h"
#include "c_parall.h"
#include <stdio.h>

/*------------------------------------*/
long parallel_pos;
long parallel_pos_def = 0; /*Defined position*/
ipv _ vector parallel_siz;
ipv _ vector parallel_siz_hdef = { 100, 512};
ipv_vector parallel_siz_vdef= {512, 100};

ipv_param ipcp_parallel_h[5] =
{ { IPVO_REQD, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0 },

Appendix III C Programs of VIPS Commands Developed

{ IPVO_REQDIIPVO_DECL, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0 },
{ IPVO_REQD, IPT_LIST, IPTM_LIST, NULL, NULL, 0},
{ 0, IPT_INTEGER, IPTM_INTEGER, ¶llel_pos, ¶llel_pos_def, 0 },
{ 0, IPT_ VECTOR, IPTM_ VECTOR, ¶llel_siz, ¶llel_siz_hdef, 0} };

ipv _param ipcp_parallel_ v[5] =
{ { IPVO_REQD, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0},
{ IPVO_REQDIIPVO_DECL, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0 },
{ IPVO_REQD, IPT_LIST, IPTM_LIST, NULL, NULL, 0},
{ 0, IPT_INTEGER, IPTM_INTEGER, ¶llel_pos, ¶llel_pos_def, 0 },
{ 0, IPT_ VECTOR, IPTM_ VECTOR, ¶llel_siz, ¶llel_siz_vdef, 0} };

ipv _com_ variant ipcv _parallel[2] =
{ { IPO_PARA_VERTICALLY, IPO_PARA_HORIZONTALLY, (ipv_proc *) ipc_parallel,

NULL, 5, ipcp_parallel_h },
{ IPO_PARA_HORIZONTALLY, IPO_PARA_ VERTICALLY, (ipv_proc *) ipc_parallel,

NULL, 5, ipcp_parallel_ v } } ;

ipv _command ipcc_parallel =
{ "PARALLEL", "/HORIZONTALLYNERTICALLY",

IPO_PARA_ VERTICALLY, IPO_PARA_HORIZONTALLY,
2, ipcv _parallel } ;

#define WHERE ipcc_parallel.command

102

/*----------------------------------*/

ipv_status ipif_parallel(char *params){
ipv _status statl, stat2;
ipv_var_desc imagel, image2, vectors, position, size;
long def_position;
short mode;
ipv _ vector def_size;

/*pointers to actual parameters*/
/*Defined position*/

/*The direction to be paralleled by.*/

ipum_error(ipu_options(&mode, params, "/HORIZONTALLY NERTICALL Y"));
if (mode== 0) mode= IPO_PARA_HORIZONTALLY;

ipum_error(ipu_parameter(¶ms, 1, IPVO_REQD, &imagel,
IPT_B_IMAGE, IPTM_B_IMAGE));

ipum_error(ipu_parameter(¶ms, 2, IPVO_REQD I IPVO_DECL, &image2,
IPT_B_IMAGE, IPTM_B_IMAGE));

ipum_error(ipu_parameter(¶ms, 3, IPVO_REQD, &vectors,
IPT_LIST, IPTM_LIST));

statl = ipu_parameter(¶ms, 4, 0, &position, IPT_INTEGER, IPTM_INTEGER);
if (statl == IPMW _PARS_NOV AR) {

def_position = O;
position.address.integer= &def_position;

}
else ipum_error(statl);
stat2 = ipu_parameter(¶ms, 5, 0, &size, IPT_ VECTOR, IPTM_ VECTOR);
if (stat2 == IPMW _PARS_NOV AR) {
if (mode== IPO_PARA_HORIZONTALLY) {

def_size.row = 100;
def_size.col = 512;
size.address.vector= &def_size;
}

if (mode == IPO_P ARA_ VER TI CALLY) {
def_size.row = 512;
def_size.col = 100;
size.address. vector = &def_size;
}

}
else ipum_error(stat2);

Appendix III C Programs of VIPS Commands Developed

}

return(ipc_parallel(mode, image I .address.image, image2.address.image, vectors.address.list,
*position.address.integer, size.address. vector));

103

/*------------------------------------
Procedure: ipic_parallel
Purpose: Obtains a paralleled image from a arbitrary image.
Parameters: ipv_image *imagel <i> The image to be paralleled.

ipv _image *image2 <o> The output image paralleled.
ipv _list *vectors <i> The vectors to be paralled of the arbitrary image.
long position <i> The start line to be paralled on the input image.
ipv _ vector *size <i> The output image size.
short mode <i> The mode to be paralled by.

Return: IPMS_
IPMZ_

Errors:
Calls: ipum_error

ipum_user_abort
If images are different sizes.
Checks for control C.

Written: 12, Agu.1992
Modified: 12, Oct.1992

B.Fan Add new command for paralleling DNA sequence.
B.Fan For new VIPS verion.

--------------------------------------*/
ipv_status ipc_parallel(short mode, ipv_image *imagel, ipv_image *image2,

ipv _list **vectors, long position, ipv _ vector *size)

ipv _list *p, *prep;
long il, i2, j, i2start, i2end, list_len, diff, sort_count=0;
float tan, sizel, rate;

if (image2->size.row !=size->row II image2->size.col != size->col)
ipum_error(ipu_change_image(image2, size));

do {
list_len = 0;
sort_count++;
p = *vectors;

/*sort vectors*/

while (p != NULL && p->next != NULL) { /*sort one vector*/

}

if (p->type==IPT_REAL)
ipum_error_3(IPME_PARS_ WRONGTYP, "Element", "VECTOR", "REAL");

else if (p->type!=IPT_ VECTOR)
ipum_error_3(IPME_PARS_ WRONGTYP, "Element", "VECTOR", "INTEGER");
list_len++;

if ((mode== IPO_PARA_HORIZONTALLY)?(p->val.v.col<=p->next->val.v.col)
:(p->val.v.row<=p->next->val.v.row)){ /*point to next vector*/

prep= p;
p = p->next;

}
else {

}

prep->next = p->next;
prep = p->next;
p->next = prep->next;
prep->next = p;

/*change order with next vector*/

} while(sort_count < list_len);
if (p != NULL) /*add 1 more column/row to last vector for right edge of output image*/
if (mode== IPO_PARA_HORIZONTALLY)

p->val.v.col++;
else p->val.v.row++;

if (mode== IPO_PARA_HORIZONTALLY && list_len>=l) {
p = *vectors;
while(p != NULL && p->next != NULL){ /*loop for vector list*/

if (p->val.v.col != p->next->val.v.col) {
tan= (float)(p->next->val.v.row - p->val.v.row)/

(float)(p->next->val.v.col - p->val.v.col); /*tan=row/column*/

Appendix Ill C Programs of VIPS Commands Developed 104

diff = p->val.v.row - position;
for (j=p->val.v.col; j<p->next->val.v.col; j++){ /*restore from column I to column 2 */

}

i2start = 0;
sizel = diff + G-p->val.v.col)*tan;
rate= image2->size.row/sizel;
for (il=0; il<=sizel; il++) {

}

i2end=(long)(il *rate+0.5);
for (i2=i2start; (i2end<image2->size.row)?(i2<=i2end):(i2<i2end); i2++)

image2->data. b [i2]fj] = image I ->data. b [i 1 +position]fj]; }
i2start = ++i2end;

} /*end for j*/
/*end ifp .. !=next..*/

p = p->next;
ipum_user_abort;

} /*end while*/
return(IPMS_);
}
else
if (mode== IPO_PARA_ VERTICALLY && list_len >= I) {

p = *vectors;
while(p != NULL && p->next != NULL){ /*loop for vector list*/

if (p->val.v.row != p->next->val.v.row) {
tan= (float)(p->next->val.v.col - p->val.v.col)/

(float)(p->next->val.v.row - p->val.v.row); /*tan=column/row*/
diff = p->val.v.col - position;
for (j=p->val.v.row; j<p->next->val.v.row; j++){ /*restore from column I to column 2 */

i2start = 0;
sizel = diff + G-p->val.v.row)*tan;
rate= image2->size.col I sizel;
for (il=0; il<sizel; il++) {

}

i2end=(long)(il *rate+0.5);
for (i2=i2start; (i2end<image2->size.col)?(i2<=i2end):(i2<i2end); i2++)

image2->data. b [j] [i2] = image I ->data. b [j] [i I +position];
i2start = ++i2end;

ipum_user_abort;
} /*for j*/

/*if p .. !=next..*/
p = p->next;
ipum_user_abort;

} /*while*/
return(IPMS_);

}
else ipum_error_l(IPME_COMM_INVPARAM, "At least two vectors required");
return (IPMS _);

#undef WHERE
!*------------------------------------*/

&&

SORT.H:

enum { IPO_SORT_HORIZONTALLY = I,
IPO_SORT_VERTICALLY =2 };

ipv_status ipif_sort(char *params);
ipv _status ipc_sort(short mode, ipv _list **list);

extern ipv _command ipcc_sort;

Appendix Ill C Programs of VIPS Commands Developed 105

SORT.C:

/*------------------------------------
Format: SORT pre_list [mode]
Parameters: pre_list (LIST) <i> The previous list to be inserted.

mode (OPTION) [/HORIZONTALLY] <i>The mode to be sorted.
/HORIZONTALLY Sort horizontally.
NERTICALLY Sort vertically.

------------------------------------*/
#include <stddef.h>
#include "g_error.h"
#include "g_defin.h"
#include "u_option.h"
#include "u_parame.h"
#include "u_image.h"
#include "c_sort.h"

/*------------------------------------*/

ipv_param ipcp_sort[l] =
{ { IPVO_REQD, IPT_B_IMAGE, IPTM_B_IMAGE, NULL, NULL, 0} };

ipv _com_ variant ipcv _sort[l] =
{ { 0, 0, (ipv_proc *) ipc_sort, NULL, 1, ipcp_sort} };

ipv_command ipcc_sort =
{ "SORT", "/HORIZONTALLYNERTICALLY", IPO_SORT_ VERTICALLY,

IPO_SORT_HORIZONTALL Y,
1, ipcv_sort };

#define WHERE ipcc_sort.command
/*------------------------------------*/

ipv _status ipif_sort(char *params){
ipv _ var_desc list;
short mode;

/*pointers to actual parameters*/
/*sorting mode*/

ipum_error(ipu_options(&mode, params, "/HORIZONTALLY NERTICALLY"));
if (mode== 0) mode= IPO_SORT_HORIZONTALLY;

ipum_error(ipu_parameter(¶ms, 1, IPVO_REQD, &list, IPT_LIST, IPTM_LIST));

return(ipc_sort(mode, list.address.list));
}
/*------------------------------------
Procedure:
Purpose:
Parameters:

Return:
Errors:
Calls:
Written:
Modified:

ipc_sort
Inserts data to the sorted data list and cancels invalid data.
ipv _list *list <io> The list to be inserted.
short mode <i> The sorting mode.
IPMS
IPME_P ARS_ WRONGTYP
ipum_error_3
30, Apr. 1992
10, Oct. 1992

B.Fan
B.Fan

Add new command for DNA sequence.
For new VIPS verion.

------------------------------------*/
ipv _status ipc_sort(short mode, ipv _list **list) {

ipv _list *prep, *newp, *nextpp, *prenewp;
char comp;

prep = (*list);
newp=NULL;

/*prep points to the head of previous list*/
/*newp points to the head of the ne*/

Appendix Ill C Programs of VIPS Commands Developed 106

while(prep != NULL) { /*loop for every iterm in previous list*/
if (prep->type==IPT_INTEGER)

ipum_error_3(IPME_PARS_ WRONGTYP, "Element", "VECTOR", "INTEGER");
if (prep->type==IPT_REAL)

ipum_error_3(IPME_FARS_WRONGTYP, "Element", "VECTOR", "REAL");
if (newp == NULL) { /*if new_list empty*/

newp = prep; /*insert the item as head of new list*/
prep= prep->next;

}
else {

newp->next = NULL;
*list = newp;

comp=(mode==IPO _SORT_HORIZONT ALL Y)?(prep->val. v .cok=newp->val. v.col)
:(prep->val.v.row>=newp->val.v.row);

if (comp) { /*insert item as head of new list*/
nextpp = prep->next;
prep->next = newp;
newp = prep;
prep = nextpp;
*list = newp;

}
else {

comp=(mode==IPO _SORT_HORIZONT ALL Y)?(prep->val. v .col>newp->val. v .col)
:(prep->val. v.row<newp->val.v.row); /*item inserted not as head of new list*/

while(newp != NULL && comp) { /*find the position to be inserted to*/
prenewp = newp;
newp = newp->next;
if (newp!=NULL)
comp=(mode==IPO_SORT_HORIZONTALLY)?(prep->val.v.col>newp->val.v.col)

}

:(prep->val. v.row<newp->val. v.row);

nextpp = prep->next;
prep->next = newp;
prenewp->next = prep;
prep = nextpp;

newp = (*list);
} /* else 1 */
ipum_user_abort;

} /*while*/
return(IPMS_);

}

#undef WHERE

/*insert data*/

/*------------------------------------*/

&&

SEQUENCE.H:

enum { IPO_SEQU_HORIZONTALLY = 1,
IPO_SEQU_ VERTICALLY = 2 };

ipv _status ipif_sequence(char *params);
ipv_status ipc_sequence(short mode, ipv_list **vectors, char **sequence, char **order,

long line_width);

extern ipv_command ipcc_sequence;

ApPendix III C Programs of VIPS Commands Developed 107

SEQUENCE.C:

/*------------------------------------
Format: SEQUENCE vectors sequence [order line_width mode]
Parameters: vectors (LIST) <i> The vector list to get DNA sequence.

sequence (STRING) <o> The DNA sequence.
order (STRING) [TCGA]<i>The order of bases.
line_width (INTEGER) [50] <i>The output file line width.
mode (OPTION)[/HORIZONTALLY]<i> The sequencing direction.

/HORIZONTALLY Sequence horizontally.
NERTICALL Y Sequence vertically.

------------------------------------*!
#include <stdlib.h>
#include <ctype.h>
#include "g_error.h"
#include "g_defin.h"
#include "u_option.h"
#include "u_parame.h"
#include "c_sequen.h"
#include "f_length.h"

/*------------------------------------*/
char *sequence_ord;
char *sequence_ord_def = "TCGA";
long sequence_ wid;
long sequence_ wid_def = 50;

ipv_param ipcp_sequence[4] =
{ { IPVO_REQD,IPT_LIST, IPTM_LIST, NULL, NULL, 0},
{ IPVO_REQDIIPVO_DECL, IPT_STRING, IPTM_STRING, NULL, NULL, 0 },
{ 0, IPT_STRING, IPTM_STRING, &sequence_ord, &sequence_ord_def, sizeof(char) },
{ 0, IPT_INTEGER, IPTM_INTEGER, &sequence_wid, &sequence_wid_def, sizeof(long) } };

ipv _com_ variant ipcv _sequence[l] =
{ { 0, 0, (ipv_proc *) ipc_sequence, NULL, 4, ipcp_sequence} };

ipv_command ipcc_sequence =
{ "SEQUENCE", "/HORIZONTALLY NERTI CALLY",
IPO_SEQU_ VERTICALLY, IPO_SEQU_HORIZONTALLY,
1, ipcv _sequence } ;

#define WHERE ipcc_sequence.command
/*------------------------------------*/

ipv _status ipif_sequence(char *params){
ipv _status statl, stat2;
ipv_var_desc vectors, sequence, order, line_width; /*pointers to actual parameters*/
long def_line_ width;
char *def_order="TCGA";
short mode;

ipum_error(ipu_options(&mode, params, "/HORIZONTALLY NERTICALLY"));
if (mode== 0) mode= IPO_SEQU_HORIZONTALLY;

ipum_error(ipu_parameter(¶ms, 1, IPVO_REQD, &vectors,
IPT_LIST, IPTM_LIST));

ipum_error(ipu_parameter(¶ms, 2, IPVO_REQD I IPVO_DECL, &sequence,
IPT_STRING, IPTM_STRING));

statl = ipu_parameter(¶ms, 3, 0, &order, IPT_STRING, IPTM_STRING);
if (statl == IPMW _PARS_NOV AR)

ApPendix Ill C Programs of VIPS Commands Developed

}

order.address.string = &def_order;
else ipum_error(statl);

stat2 = ipu_parameter(¶ms, 4, 0, &line_width, IPT_INTEGER, IPTM_INTEGER);
if (stat2 == IPMW _p ARS_NOV AR) {
def_line_width = 50;
line_ width.address.integer= &def_line_ width;

}
else ipum_error(stat2);

return(ipc_sequence(mode, vectors.address.list, sequence.address.string,
order.address.string, *line_ width.address.integer));

108

/*------------------------------------
Procedure: ipc_sequence
Purpose: From vector list gets DNA sequence list.
Parameters: ipv _list **vectors <i> The vector list to get DNA sequence.

char **sequence <o> The DNA sequence.
char **order <i> The order of bases.
long line_width <i> The line width of the output file.
short mode <i> The sequencing direction.

Return: IPMS_
Errors:
Calls: ipum_error

ipum_user_abort
Written: 4, May 1992 B.Fan

DBailey
Add new command for DNA sequence.
New list length Modified: 27, Jul 1993

--------------------------------------*/
ipv_status ipc_sequence(short mode, ipv_list **vectors, char **sequence, char **order,

long line_ width) {

ipv_list
long
char

*pp;
num, length, preposition, position!, position2;
*orderlist, *element= '\0';

ipum_error(ipf_length_list(&length, vectors));
if (*sequence== NULL)

free(*sequence);
element= *sequence= malloc(length+2+length/5+length/line_ width);
if (element== NULL)

ipum_error(IPME_SYST_INSUFMEM);
*element = 0;
orderlist = *order;
num = 0;
preposition = -1;
for (pp= (*vectors); pp != NULL; pp= pp->next) {

num++;
position I= (mode==IPO_SEQU_HORIZONTALLY)?(pp->val.v.row)

:(pp->val.v.col); /*line of the position*/
position2 = (mode==IPO_SEQU_HORIZONT ALL Y)?(pp->val. v .col):(pp->val.v.row);
switch (position I) { /*set the base*/

case 12: if (position2 != preposition) /*the first lane*/
*element++ = to upper(orderlist[0]);

else *element++= tolower(orderlist[0]); break;
case 37: if (position2 != preposition) /*the second lane*/

*element++= toupper(orderlist[l]);
else *element++= tolower(orderlist[l]); break;

case 62: if (position2 != preposition) /*the third lane*/
*element++= toupper(orderlist[2]);

else *element++= tolower(orderlist[2]); break;
case 87: if (position2 != preposition) /*the fourth lane*/

*element++= toupper(orderlist[3]);
else *element++= tolower(orderlist[3]); break;

Appendix III C Programs of VIPS Commands Developed

default: ipum_error_l(IPME_COMM_INVPARAM, "Band in wrong position");

}

}
preposition = position2;
if (num/(float)line_ width == num/line_ width)

*element++= '\n';
else

if (num/10.0 == num/10)
*element++ = ' ';
*element++ = ' ';

ipum_user_abort;

*element = '\O';
return(IPMS_);

#undef WHERE

/*data file form*/

109

/*------------------------------------*/

&&

JOIN.H:

ipv _status ipifjoin(char *params);
ipv_status ipcjoin(char **seq 1, char **seq2);

extern ipv _command ipccjoin;

JOIN.C:

/*------------------------------------
Format: JOIN seql seq2
Parameters: seql (STRING) <io> The first part of the DNA sequence

seq2 (STRING) <i> The seconde part of the DNA sequence
------------------------------------*/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include "g_error.h"
#include "g_defin.h"
#include "u_parame.h"
#include "cjoin.h"

/*-----------------------------------*/
ipv_param ipcpjoin[2] =

{ { IPVO_REQD, IPT_STRING, IPTM_STRING, NULL, NULL, 0 },
{ IPVO_REQD, IPT_STRING, IPTM_STRING, NULL, NULL, 0} };

ipv _com_ variant ipcv join[l] =
{ { 0, 0, (ipv _proc *) ipcjoin, NULL, 3, ipcpjoin } } ;

ipv _command ipccjoin =
{ "JOIN", 0, 0, 0, 1, ipcvjoin };

#define WHERE ipccjoin.command
/*-----------------------------------*/
ipv_status ipifjoin(char *params){

Appendix I/I C Programs of VIPS Commands Developed 110

ipv _ var_desc seq 1, seq2; /*pointers to actual parameters*/

ipum_error(ipu_parameter(¶ms, 1, IPVO_REQD, &seq 1,
IPT_STRING, IPTM_STRING));

ipum_error(ipu_parameter(¶ms, 2, IPVO_REQD, &seq2,
IPT_STRING, IPTM_STRING));

return(ipcjoin(seq I .address.string, seq2.address.string));
}
/*------------------------------------
Procedure: ipc_Jom
Purpose: Joins multiple parts of a DNA sequence together
Parameters: char **seql <io> The first part of the DNA sequence

char **seq2 <i> The seconde part of the DNA sequence
Return: IPMS_
Errors:
Calls: ipum_error

ipum_user_abort
Written:
Modified:

7, Oct.1992 B.Fan
12, Oct.1992 B.Fan

Add new command for DNA sequence.
For new VIPS verion.

------------------------------------*/
ipv_status ipcjoin(char **seq 1, char **seq2) {

long seqli, seq2i, seqltemp, seqllen, seq21en;
long i=0, num=0, width=0;
char *sequence;

seq lien = strlen(*seq 1);
seq2len = strlen(*seq2);
if ((sequence =(char*) malloc(seqllen+seq21en+3)) == NULL)

ipum_error(IPME_SYST _INSUFMEM);
strcpy(sequence, (*seq 1));
while(sequence[i] !='\n')

if (sequence[i++]!=' ')
width++;

for (seqli=0; seqli<=seqllen; seqli++) {
while(sequence[seq Ii]==' 'llsequence[seq li]=='\n')

seqli++;
seq 1 temp=seq 1 i;
for (seq2i=0; seq2i<seq2len; seq2i++) {

while(((*seq2)[seq2i]==' 'll(*seq2)[seq2i]=='\n'))
seq2i++;

while(sequence[seq 1 temp]=' 'llsequence[seq 1 temp]='\n')

/*count output line width*/

/*compare *seql and *seq2*/
/*ignor' ','\n' in seql */

/*compare each *seq2[i]*/
/*ignor' ','\n' in seq2*/

/*ignor' ','\n' in seql when comparing*/

}

seq 1 temp++;
if (sequence[seqltemp] = (*seq2)[seq2i]) {

seq 1 temp++;

}

if (sequence[seqltemp]='\0') {
sequence[seqltemp++] =' ';
sequence[seqltemp] =' ';
strcpy(sequence+seq ltemp-1, (*seq2)+seq2i+ 1);
seq 1 i =seq lien;
break; /*compeleted comparing exit loop*/

else break; /*not match from next seql[i]*/

seq I temp = 0;
i=0; /*tidy sequence*/
while(sequence[i] !='\0') {

if (sequence[i] !=' ' && sequence[i] !='\n') {
sequence[seqltemp++] = sequence[i++];

Appendix III C Programs of VIPS Commands Developed

}

}

num++;
if (num/(float)width == num/width)

sequence[seq ltemp++] = '\n';
else

if (num/10.0 == num/10) {
sequence[seqltemp++] =' ';
sequence[seqltemp++] =' ';

}

else i++;

sequence[seqltemp] = '\O';
free(*seq 1);
*seq 1 = sequence;
ipum_user_abort;
return(IPMS_);

#undef WHERE

111

!*-------------------------------------*!

&&

MA::CN.C:

#include "i_comman.h"
#include "u_initia.h"
#include "u_vips.h"
#include "sd_bits.h"
#include "c_parall.h"
#include "c_join.h"
#include "c_sequen.h"
#include "c_straig.h"
#include "c_points.h"

#define WHERE "main program"

main() {

}

ipum_error(ipu_initialise());
ipum_error(ipu_init_mouse());
ipum_error(ipi_abort_init());

ipum_load_c("SORT", ipif_sort);
ipum_load_c("SEQUENCE", ipif_sequence);
ipum_load_c("STRAIGHTEN", ipif_straighten);
ipum_load_c("PARALLEL", ipif_parallel);
ipum_load_c("JOIN", ipif_join);
ipum_load_c("POINTS", ipif_points);
ipu_ vips();
return(IPMS_);

&&

