Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

REAL WORLD EVALUATION OF
ASPECT-ORIENTED SOFTWARE
DEVELOPMENT

A thesis submitted in partial fulfilment of the requirements for
the degree of Master of Science in Computer Science at

Massey University, Palmerston North, New Zealand

CHRISTOPHER MARK ELGAR
2006

il

Abstract

Software development has improved over the past decade with the rise in the pop-
ularity of the Object-Oriented (OO) development approach. However, software
projects continue to grow in complexity and continue to have alarmingly low rates
of success.

Aspect-Oriented Programming (AOP) is touted to be one solution to this soft-
ware development problem. It shows promise of reducing programming complexity,
making software more flexible and more amenable to change. The central concept
introduced by AOP is the aspect. An aspect is used to modularise crosscutting
concerns in a similar fashion to the way classes modularise business concerns. A
crosscutting concern cannot be modularised in approaches such as OO because the
code to realise the concern must be spread throughout the module (e.g. a tracing
concern is implemented by adding code to every method in a system). AOP also
introduces join points, pointcuts, and advice which are used with aspects to capture
crosscutting concerns so they can be localised in a modular unit.

00 took approximately 20 years to become a mainstream development approach.
AOP was only invented in 1997. This project considers whether AOP is ready for
commercial adoption. This requires analysis of the AOP implementations available,
tool support, design processes, testing tools, standards, and support infrastructure.
Only when AOP is evaluated across all these criteria can it be established whether
it is ready to be used in commercial projects. Moreover, if companies are to invest
time and money into adopting AOP, they must be aware of the benefits and risks
associated with its adoption. This project attempts to quantify the potential benefits
in adopting AOP, as well as identifying areas of risk.

SolNet, Solutions Ltd, an Information Technology (IT) company in Wellington,
New Zealand, is used in this study as a target environment for integration of aspects
into a commercial development process. SolNet is in the business of delivering large
scale enterprise Java applications. To assist in this process they have developed a
Common Services Architecture (CSA) containing components that can be reused to

reduce risk and cost to clients. However, the CSA is complicated and SolNet have

il

identified aspects as a potential solution to decrease the complexity.

Aspects were found to bring substantial improvement to the Service Layer of
SolNet, applications, including substantial reductions in complexity and size. This
reduces the cost and time of development, as well as the risk associated with the
projects. Moreover, the CSA was used in a more consistent fashion making the
system easier to understand and maintain, and several crosscutting concerns were
modularised as part of a reusable aspect library which could eventually form part
of their CSA.

It was found that AOP is approaching commercial readiness. However, more
work is needed on defining standards for aspect languages and modelling of design
elements. The current solutions in this area are commercially viable, but would
greatly benefit from a standardised approach. Aspect systems can be difficult to
test and the effect of the weaving process on Java serialisation requires further

investigation.

iv

Acknowledgements

I wish to acknowledge my supervisors Dr. Jens Dietrich (Massey University) and
Shane Griggs (SolNet Solutions Ltd) for their time, support, and ideas during this
project. Without them, this project would not have been so successful.

Thank you to Technology New Zealand for their financial support of this project
through the Technology in Industry Fellowship (TIF).

To all the staff I have been involved with at SolNet Solutions thank you for
your time and feedback as I tried out ideas which will hopefully make their way
into your everyday work! In particular, Peter Abbott and Antony Binns for their
support when deploying and working with some complex systems, Simon Brierley
for embracing AOP and taking it into a real project, and all the Senior Developers
and Architects who were interviewed to find out more about how SolNet operates.

Thank you to my parents and relatives for their support during the preparation of
this thesis. In particular, your proof reading and comments were greatly appreciated.

To anyone | have missed, apologies, and thank you for your contributions!

vi

Table of contents

ABSTRACT

ACKNOWLEDGEMENTS

|

RV

INTRODUCTION

1.1 The Software Development Problem

1.2 Aspect-Oriented Programming
1.2.1 Object-Oriented Programming

13 bolNetSohitiene Iifd. « v s w o suwasmwis avaimawes vswyw
133 Conpity PRolle - cow sswsmwan sesw s mus o5 5 s w5
1.3.2 Current Development Environment
1.3.3 Motivation for AOP Assessment

14 Projeet Objective and SCOPE + « « s s s m oy dsa w55 o 8@ 50

L8 Overview OFTHEEIE & « v v v a vomumus wowwm v 55 65w

AOP OVERVIEW

2.1 Introduction e e e e e
2.2 Important AOP Concepts and Terminology
22X ColBEENS . v v s w v W 95 EWEFG FFE REEE G % e s
222 Scattering snid Tanglng v v svus sww aemus v w5 s
2.2.3 Crosscutting Concerns v v v v i e
o0 BIEPOBL . b v m i me s pamnd S Ed EE S SRR
20 JOPOBY sr e i S ER S HES SEE SSE N FE @ E S
220 FoMMe - oo s vn snmen avesm v ot 65 s s ¥ 6 & 6
227 Advice e e e e e e e e e e e e
2.2.8 Intertype Declaration
S28 WEHRE & i e s amiisimaim i vam v mdams
2230 OBIYIOMEHEES « s« vavsa s vam s er o8 w6 E W
2.2.11 Dynamic and Static Crosscutting
2.3 AOP System Overview o i i it i e e
24 DOMOBY . o a2 b abmidthes il siebadefasnssss

APPROACHES TO AOP

Sl TR . < v v s v i s e s E BE R EE B EE B EE B A w8
3.2 Establishing Criteria for Framework Evaluations
3.3 Framework Evaluations
3] Vendor Bagking o s mvre samosmed s amembs &
32 Bicehsd: wss v ie vivsa i S si@ys sa@e@en o
088 Wt BEEE « oo wsnma s 96 @ o6 S ils BESE S ©a
B34 DBUPDOED: o o ovmos v s o m s s B A R R S S B s E S R
3.3.5 Training Resources

vii

iii

3.3.6 Documentation e 18

3.3.7 Tool Support e 18
328 Al IBNiuale - 5 cspns v ds et Bn s oo &P de &b 19
3.3.9 Composition Languageo oo v i e 19
3210 Static Pomtenb Cheekhig « o o« o x ws ws o w i s e mw e 20
L] WWEEs PO e w oxox w s m e k 5 @ SR N G 20
3.3.12 Standards Adherence 21
3.3.13 Framework Integration 21
3814 Joti Poith Model : ¢ ws w65 tsasmins 66 8% 5 méd 21
8310 TyDeEBEAAVION « v v v s u ve em M e 55 @ 5% o9 74 22
sunlD Conteshunl Tfermafion « » o« w5 ¢ oo 0 soe o 5 0w & 6 s W 6 s 22
3.3.17 Intertype Declarations 22
3.3.18 Java Language Level Support 22
3319 JVMOUDDOIE 5 o4 v s s come §5 56 & 60 %3 & 23
3.3.20 Advice Ordetiig . ¢ « v i o ss v s wwas vy ¢ 9@ 0@ v A 23
$.0:.2]1 Aspect Litesyole Models - - o x vs wowmoman o5 & s w0 s 23
S22 Poltdeut Det@gmigy « v swrm v g 6 s 0w o n 53 5 0w & mw 24
3.3.23 Easeof Adoption 24
3.3.24 Environment Requirements 25
0020 Bulldherhesd o v ¢ s wumes s Cohm e n o8 @5 EE 56 25
3:3.20 Ramibinis Dot . « = s v o v amen o8 & 6w e 6 25
kit DEbuapaiily o o 5 v sow s muw o wowoeEEE R S 8RR 26
3.3.28 Testability 26
3.329 Aspect LIDIATIES« v v o v v su moo s 2m mom e m e e 26
Fa80 Conipabibility « 2 s s s v @ s v SR i e W EE 6 a 27
Gl LHEE . v camas vewsmon s GE RIS FE @ P E PG 27
3.4 Language Choice - SolNet Solutions 28
3.5 Alternativesto AOP 28
Bl EIBBO 2 iocomro st oo omems mos oo & s w8 8w 29
S0 DoV FIEEIS « ¢ s cosivis sa diaEan b ddmam i s 29
3.5.3 Composition Filters and Hyperslices 29
g6d Uhotemy an APPIoaEE « o w s s cw R o m@ @ s &% 5% & x5 3 30
3.6 Summary e e e e e e e 30
TOOL SUPPORT 31
4T Toeameion . « 5 o nm s b 5 m % Bk 5 o 8 mom o Bk & o 8w B & R 31
Gd Bl 608 5% s i s GBI S e A8 VS Fa e 31
221 ANT IHeRiion . - comer va vavm s en 28 & & a5 31
4222 Weven beptabion . « o eon: e v w & 550w wwr 8 % 6 & & w e R @ 32
4.3 Integrated Development Environments 33
431 Eclipse i i i e e e e e e e e e e e e e 33
432 NetBesnsend JBUllder . . o -« o v ot mem o s s mm s ke 36
433 InteliJIDBA «ss s i wsn s ¢aneswsi fa@aman 37
d3A JUSTRIBHEF v oo vvvamun v% s wea s v 6w 5% e 37
ddl TEBINE . o w oom o o« mome @ % 5 5 w0 BN R B B B S R R R W e N 37
4.5 Debuggers e e e e e e 38
4.6 Documentation 39
gl s e Y T T Y P I T TNy 39
88 Nl DER 6 v i e v sl s N S5 B5 R EE D EH 3 8% 2 %4 40
) BUMIRN « vovn srwaia oz 5o s o0 s @6 B g EE E R 41

5 ASPECT-ORIENTED DESIGN

8.l Trlroduebion « « o e o w30 v s e w5 mm g B owowoE s e R E B oE R s
5.2 Aspect-Oriented Design Approaches
52.1 UseCase Approach
522 Thame/UML : o5 vu vamew po €5 iwbn 69 8E 5
o238 fSeneral UML EMSRRIOE « csn vowvnmamin s omwoa s
5.2.4 Model-Based Approach
5.2.5 UML Structural and Behavioural Diagrams
5.3 FPitting with SolNetSolutions « s s v s sxs weaswsm sv o3 585 &
5.4 Aspect-Oriented Design Patterns and Idioms
5.4.1 Refactoring OO patterns using Aspects
5.4.2 Aspect-Oriented Patterns
943 Aspectd [diomE - v o5 s g vn sa s da s €5 o3 855 3
Bh BUHHIEN oo csmes memos S 9@ oW 6% @ % 69 65 6N &8 EN g
6 TESTING
6.1 Introduction e
62 THODRBIEMENS - vi v v5 53 c1 2 %3 68 Bns 5 s S8 Es 88 505 8
63 Aspect Testing Challeniges - ¢ 5 cs v 55 vu veswew va w4 @85 o
64 ACP Testing Approached ; . . s v v s 5 v o me v w ws 0% @ s w5 o
6.4.1 Data Flow Testing
642 Test AdGOUATY o 1 v b5 v a5 b s 5o B b e sing noa mamns o
643 Tesl GaNerition - ¢ v o5 cow du eI ES @8 HaEH S 4
644 Vot Testitg ABPECIE + « wowevs vomesmen o689 5w e s &
6.4.5 State Based Testing
6.4.6 Fault Based Testing
6.4.7 'Traditional Testing Techniques
6.5 ADP Testing Prameworks - « oo v 56 vsmaawvs en o506 o
6.6 Summary L. e e e e e e
7 METRICS
Td IOCroduelion « «cwis e85 9% 6B s SEB iR S e 08 FRE B Y §
1.2 Motivation fop Methies . : v o 5 v v on dswonm aw o d o6 wen i
7.3 Traditional Metrics e
7.4 Aspect-Oriented Metrics
T BOMIBEY 5 is0 8 8088l Fes b s ia mameEs sd b o
8 AOP STANDARDS
O I 50T U AT
8.2 Motivation for Standards L.
8.3 Candidates for Standardisation
8.4 Girrent Standads Bl « - o ss s saesiwin gy 65 645
5B AOP AIBEHEE - o« o55 w5 5 s v 5 s 50 & 5 00 ¥ 8 & AT & S B 8w & R B
8.5.1 Goals of the AOP Alliance
8.5.2 AOP Alliance Components API
8.5.3 AOP Alliance Interoperability
8.5.4 Future of the AOP Alliance
8.6 Potential Standardisation Paths . « « « v v v v v ws wow v a o e,
8.7 Framework Interoperability
B8 IVM SUBDOIE . - o 55 ¢ 08 83 568 5 S meumnsmmmer o8 me b
8 GUGARIY :vsomin i s s N EPUASRE B LT A6 64 6553

ix

9 INTEGRATING ASPECTS INTO A SOLNET

SOLUTIONS PROJECT 97
g1 IBodieille s snd rs S e S s s R LaMEEMASMES SRS 97
9.2 SolNet Development Frameworks 0000 97
9:21 Applieslion BEEEEIIE . o & v o« o e s 0w o8 R E R E 8 B G 97

9.2.2 Common Services Architecture 98

9.2.3 Incident Reporting Framework 98

9.2.4 Business Object Framework 98

925 'Transsction Handling . . s « « v ov v s wiwm smvs @ s o 99

9.3 NZQA-SPER Project 99
9.3.1 General Architecture 102

9.3.2 Identifying Potential Aspects 103

9.3.3 Aspect Design and Implementation 105

9.3.4 Integrating Aspects into the Build Process 112

9.3.5 Project Testing o v i i ittt e 113

38 Metties - s is wsncissmis iamismi® e @ames 117

94 NZQA Piopst~BOS ; « voawssvsvnon svmasmen sgaws wen 123
9.5 Benette snd IDedeofls . v cnvsmomum wamonnmam 5w o o 125
9.5.1 Benefits e e e e e e 125

952 TrodeolE, » s cac:insstsmebossmel @ in 6 s 126

9.6 Aspects Future at SolNet = : « v 5 v ¢ w54 svwpzwon saw e v 126
B ST oo x ww @ 5 5 5 % 80k G R s R0 M0 R W N R W B B R0 S 127

10 CONCLUSION 129
BT Introd et iitie s 2. 0 4 S E R o E B G0 e E B B A e R S d S8 s 129
102 Sy e FRditgs . « v s v s G @ o b s W e e 95 % 4 s 9 83 129
10.3 Applicability of Results in other Environments 130
10.4 Future Work e e e e 131
05 SHIRIRY 26 2 005 cs dh e G Raw s dbm s hdinmm e mhs B s 132
GLOSSARY 143
APPENDICES 148
A FRAMEWORK EXAMPLES 149
Al Introduction e e e e e 149
A.2 Example Application Class . . .« v « o ¢ 0 v 0 w0 v o v 0 85 o5 .5 5 149
Al ARG s am s i D i s SR E G SR R R E SRR s 150
k. ASPEOEWETKE & oav o o owomomie % w58 08 R BT R M R K WO KW B B K0 R GR & I 151
A5 JBoss AOP e 153
A6 Spring Framework v vt i e e e e e e e e 155
A ETHOE o3 s 30 i 3 n S i R R RS LRSI SRR O TS 5 160
AR BN « wcovowos o v w v i e 9 B B e R R R B R 6 161

B EXTENDED CODE LISTINGS 163
C ASPECT CODE LISTINGS 169
C.l Base ASDPECES . v v v vt o v o s e m oo e n e e e e e e e e e e 169
C2 DPER AGnotla: o v 4 s i i S5 G s 0B i3 SIS RS s8N 5% &3 187
3 BOBAGDEOE: » v on smmemrs o 5o s o6 m e s e e & 0% &0 199

List of Figures

21

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5

5.6

8.1
8.2

9.1
9.2
9.3
9.4

AUP SvatesW THEOTaT s s s s s sm i@ S fb s im0 58 5§ 5 s 10
AJDT Screenshot e 35
JBOSBIDE Sereenshiol . © « o v v o2 o b r e b E b b AR e 36
UML Notation for Enterprise Architect 41
UseCase Slice o . i i i i i i e e e et e e e 45
Use Case Aspect Representation 46
Theme/UML Crosscutting Theme 48
UML Class Diagram ¢ v v v vt ve i e e e e e v 51
State Diagram - Tangled Model 52
State Diagram - Separate Concerns . : « . : « v cs 56 v 6 v = 5 % s 53
AOP Alliance Join Point Hierarchy 87
AOP Alliance Advice Hierarchy 88
SolNet Incident Reporting Framework 99
NZQA Applications v v o i e e e e e e e e e 101
SPER Eagered Archifeofiiie ¢ viwss i e o e v @565 @ s 102
Bokic ASpott DISGISIN v « v x o3 w v mw mos @ mom R 6 R W A 6 108

x1

xii

List of Tables

01 SPEB MEEFIEE » o « wa vos won 5% s 466 CUm 6 85 684 118

xiii

xiv

Listings

Gl Dpletoll ABHESY « v v ss ren v R G R WA B R B E R 56
5.2 Make class implement Singleton00l oL 56
6.1 Proposed example aUnit code 7l
6.2 JMock style aUnit code 7l
D) AEDet SUUOLEYIONS i s v v is s A s Ve SR EAGER FE 5 S 2
8.1 AOPAllisnceAdapter ASPect . « & « « v v v s 5 w v i v oo s % &5 5 & u 90
8.2 MyMethodInterceptor Aspect 90
8.3 MyAOPAllianceAdapter Aspect 91
9.1 General Service Bean method structure 103
9.2 Enrolment Fees Method - Before Refactoring 107
9.3 Enrolment Fees Method - After Refactoring 107
9.4 Single Aspect Approach L 108
9.5 Base Service Wrapper Aspect c i i e . 109
9.6 begin(String comment) Aspect Example 110
9.7 Service Weapper Bade ASPBEt . « os o v w vw o v w ke w8 e B e A 111
9.8 Service Wrapper Sub Aspecto 111
9.9 SPER ANT aspect properties 113
910 Aspectd compilationBesk « - v s s s e a w3 s ta A s b s s 114
911 BOG SertdeeMethingd . « oz c s s s rvu wamios s mEE @ F 0 E G 124
A0 HollaWerld HasmDIOES « o 5 v 0w momome e mom i 5 6 % 8 o0 5 % o 9 8 2 149
A2 Aspect] Tracing 150
A3 Aspectd OUEPUL . & v v oo 5 2 hom i o wm 5 B mmm W A 150
Al AepebtWeirks Traclig - « v jwisg s i @i n $s @ e s P S &8 S 5 151
A.5 AspectWerkz Configuration File - . . « o v oo vn v iin vuw e 152
A6 AspectWerkz Output 152
AT JBoss Tracing o e e 153
A8 JBoss Configuration Pile : : . i 6 v s 5o v s vos s mini nawsw 154
A JBOSSQUEEE v v v o v i a4 RIE IR E RIS LB s E R B 154
A.10 Spring HelloWorld Interface . .« « < v v w v o vu cnman c5 s s 155
A.11 Spring HelloWorld Class 156
ANIOEE TIBENE 2 e s s nss nomsdeo med shmambhamas 157
AAFopiig Configniation File . « v s se v iwinwawsswan s 55 158
RILEPHBECIDUE - « 5 s o s wop comiE D e W E M A YIS EE B S 159
A.15 Dynaop Application Launcher 160
A.16 Dynaop Tracing i e e 161
A.17 Dynaop Configuration File 161
AISDRRAOPOUIDHE ¢ « cow s 95 PR s B EI W I WS I G EE L 685 161
B:1l Decompiled Service Bean < « v 2 s v s s mw v o msn samuan 54w s 163
B.2 Example aUnit Test Aspect, 165
C.1 Service Wrapper Base Aspect 169
C.2 Exception Handler Base Aspect 171

XV

C.3 Transaction Rollback Base Aspect 173

C.4 Service Wrapper Base Aspect - External Interface 174
C.5 Custom Exception Handler (External Interface) Base Aspect 176
C.6 Transaction Rollback (External Interface) Base Aspect 177
OF BeDoeB ABDEEE & - « s s s o s om0 % 660 e 28 57 « 5w« 178
C.8 Base JDK Tracing ittt e 180
(.9 Boagelogh) TYOBNE . . . oo 0o oo s o mnm o ow oo mms s m oo s 182
CIDPeilype JDK THaBIHE « : s v ¢ g w39 56 4 ad GV GBI 446 5 185
C.11 Pertype Lood] TY8ERE - . v sw v s s am s v s asmsms s &5 s 186
C.12 Sper Service Wrappero e e 187
C.13 Sper Exception Handler 189
(.14 Spar Transactionl Bollbaelt < o5 vovns wss s wa@as wign s 190
.15 SXIL Sarvice WEABEET « o « v s wos s 6 aw e s oo s &5 55 a8 56 & @ 191
C.16 SXI Exception Handler 192
C.17 Sper Aspect Precedence 194
ISP PO« 5 64 s i s i G606 SO B FE IR SRS AT EE H R AL 195
CGI)OBXLPOMREIEE o wiv o wu wrmos $6 56 @ 4% 54% V@65 & 6w 197
.20 BOS Servite WENBPRE, < s wv wos v mes s e w5 @ w86 0586 199
C.21 EOS Exception Handler 200
C.22E0S Aspect Precedence . . v o5 v5 9 65 ¢ 55 s3 e sa 55w 4 201
G2 EOS PHmteits <o s sawemew evwss vuw oo z@sa B 202
LR LIS TR, o v s w s oo s 6w GG B I &R W & @ RN § R 203

XVvi

CHAPTER 1
INTRODUCTION

1.1 The Software Development Problem

Software development has long been prone to spectacular project failure rates that
would be unacceptable in any other professional discipline. The 1994 Chaos Report
from The Standish Group showed that just 16% of projects were successful. Of those
unsuccessful projects 31% were never completed and 53% had problems such as cost
or time overruns and missing functionality (The Standish Group 1994). An example
of a high profile project failure in New Zealand was the Integrated National Crime
Information System (INCIS). This ambitious project suffered numerous time delays
and cost overruns before it was eventually abandoned with only a small portion of
the system in operation (Small 2000).

We believe many project failures can be attributed to the sheer size and com-
plexity of software system developments and the inability of traditional development
methodologies to cope with this. Object-Oriented (OO) technology has become the
major development methodology helping to reduce complexity with new concepts
such as inheritance, abstraction, and polymorphism (Boner, Vasseur & Dahlstedt
2005a). The latest Chaos Report in 2003 shows a substantial improvement since
1995 with 34% of projects categorised as successful and only 15% of projects fail-
ing. However, 51% of projects still have some problems (The Standish Group 2003).
Despite the advances made in recent years, professionals continue to strive to find
ways to improve project success rates.

In this thesis, Aspect-Oriented Programming (AOP) is presented as a develop-
ment approach which has the potential to reduce software complexity and increase

software project success.

1.2 Aspect-Oriented Programming

Aspect-Oriented Programming is a relatively new programming paradigm invented

at the Xerox Palo Alto Research Center (Xerox-PARC) in the mid nineties by Gregor

2

Kiczales and his research team. It attempts to reduce program complexity using the
notion of separating crosscutting concerns from the core program concerns (Kiczales,
Lamping, Mendhekar, Maeda, Lopes, Loingtier & Irwin 1997). This is considered to
be one of the most promising approaches to reducing program complexity, and was
ranked in the 10 emerging technologies that will change the world by Massachusetts
Institute of Technology’s (MIT) Technology Review (van der Werff 2001).

AOP adds the concept of an aspect for the purposes of designing and imple-
menting crosscutting concerns. Aspects complement the more familiar concepts of
procedures and objects found in the Structured and OO paradigms (Kiczales 2005).
AOP is not a replacement for these other paradigms, but rather complements them
with a new modularisation technique. Core program concerns can be implemented

using traditional modularisation techniques and crosscutting concerns using aspects.

1.2.1 Object-Oriented Programming

Although aspects can be used with other programming paradigms such as Struc-
tured Programming, most implementations available are based around current OO
languages. The reasons why the OO paradigm is not suitable for all problems faced
in modularising code and how aspects complement this technology to solve these
problems is discussed. OO was designed to model real-world domain entities and
their behaviour as objects. However, there are many elements of a design that must
be intermixed with these objects which are incongruent with the object’s original
intent. AOP addresses this problem by allowing behaviour to be added to objects
in a non-intrusive, modularised fashion (Glover 2004).

A good example is a banking system with an ‘Account’ class containing a ‘with-
draw’ method. Being a banking system there are many things that must happen
before and after the ‘withdraw’ method modifies the account’s balance such as secu-
rity checks, auditing, transaction handling, and persistency. All these extra concerns
are not directly part of the main concern of withdrawing funds from an account,
but they must be coded with the logic for withdrawing money to ensure the sys-
tem meets its non-functional requirements. Clearly these extra concerns will require
more code than the actual withdrawal of money, and concerns such as transaction
handling will be spread across multiple classes making it difficult to maintain and
evolve. With AOP it is possible to remove these concerns from the core classes and
modularise them as aspects. This will make the system easier to design, code, test,

and maintain.

Although the concepts of AOP are not inherently linked to any particular OO

3

language, most of the current mainstream implementations are based around the
Java language. This is probably attributable to the strong Java open source com-
munity rather than any inherent features of the Java language itself since other
languages are having implementations developed such as Python, PHP, C#, Ruby,
Perl, and Lisp (Wikipedia 2005a). Moreover, AOP implementations based on Java
have received strong vendor support from groups such as IBM, BEA Systems, Xerox,
and JBoss.

1.3 SolNet Solutions Ltd

1.3.1 Company Profile

SolNet Solutions is an Information Technology (IT) company based in Wellington
and Auckland, New Zealand, with approximately 125 staff. Their core business is

the delivery of J2EE solutions for large enterprise systems.

1.3.2 Current Development Environment

SolNet have invested substantial time and money into their existing development
processes and tools to enable them to produce high quality, reliable systems, as
cheaply and timely as possible. SolNet has developed a set of standard reusable
components that can be used in typical J2EE projects. These components enable
them to significantly reduce the cost and risk involved in conducting J2EE projects.

This set of components is referred to as the Common Services Architecture (CSA).

1.3.3 Motivation for AOP Assessment

SolNet’s current infrastructure (CSA) is complicated and relies on individual devel-
opers being familiar with the components available and how to correctly use them.
SolNet are continually looking for ways to reduce the complexity and make their
CSA easier for developers to use and more reusable across different types of projects.
They would also like to increase flexibility such as having the ability to easily change
the components used in a project. For example, changing from EJB Persistency to
Hibernate by plugging in a different aspect.

Senior development staff at SolNet have recognised that AOP has potential to
simplify their CSA and make it more accessible to different projects. SolNet Solu-
tions entered into this Technology in Industry Fellowship (TIF) project to have an

assessment undertaken of AOP technology and how it fitted into their development

4

lifecycle and to assess the potential benefits it could produce in their commercial

environment.

1.4 Project Objective and Scope

There is a substantial amount of research being conducted on AOP, and tools are
continually being developed. However, the availability of tools does not necessar-
ily mean that AOP is ready to be used commercially (in the real world). To be
used commercially there must also be availability of training resources, books, qual-
ity assurance tools, integrated development environments, patterns, diagramming
techniques, and support infrastructure. Furthermore, the technologies must meet
non-functional requirements such as scalability, fault tolerance, and openness.

In this thesis AOP is examined over several of these areas to try and establish
its readiness for commercial adoption. Moreover, we try to quantify the commercial
benefits of AOP by refactoring a real world project to measure the benefits as a
result of using an AOP approach. In doing so we can identify areas where SolNet
can benefit from AOP and assess the risks and affect on different areas of their
development process.

The objective of this thesis is to show how Aspect-Oriented Software Develop-
ment can be integrated into a real-world environment at SolNet Solutions with the
ultimate goal of assessing the readiness of aspects for use in a commercial environ-
ment.

The areas investigated are:

e Approaches to Aspect-Oriented Programming,.
e Tool support for Aspect-Oriented development.
e Fitting aspects into the design process.

e Aspect-Oriented standards.

e Testing aspects.

e Metrics for evaluating aspect software.

e Refactoring a real-world project to use AOP.

e Measuring the risks and benefits of using AOP with respect to the refactored

project.

5

Prior to starting this project it was estimated that aspects could reduce the total
cost of ownership for SolNet projects by 6%. In this thesis we try to quantify the
benefits of AOP and evaluate them against this hypothesis. However, this may not
be possible because of the limited historical data available from SolNet to provide
a baseline for comparison.

The results obtained are reported in the context of the SolNet Solutions’ en-
vironment. However, this environment is considered to be representative of many
J2EE development companies. It is believed that other companies face similar prob-
lems and would have comparable benefits and risks in adopting an Aspect-Oriented
approach. Therefore, it is inferred that the results obtained will be applicable to
other commercial environments.

Due to the rapidly changing nature of the Aspect-Oriented community, certain
limitations were realised when making some assessments. These were made from a
practical perspective to enable the work to be completed despite changes happening
concurrently with the technologies being evaluated. This was most critical when
evaluating the different AOP approaches and tool support. During these two phases
the major implementations continually released new versions and features as well as
fixing bugs. To continually update and incorporate the new information would have
been an endless task. For this reason the current version at the time of conducting
the work was evaluated. Some upcoming features are mentioned, but they are not
evaluated.

There are many different approaches similar to aspects for achieving separation
of concerns such as Composition Filters (Aksit 2001), Hyperslices (Tarr & Ossher
2001), and Subjects (Wikipedia 2005b). However, these approaches are outside the

scope of this thesis and are only briefly examined.

1.5 Overview of Thesis

This chapter has introduced the objectives and scope of this thesis. In the re-
maining chapters findings from applying aspects at different places in the software
development lifecycle are discussed.

Chapter 2 reviews AOP concepts and terminology for unfamiliar readers.

The different techniques used for AOP are explored in Chapter 3. This com-
pares and contrasts the most popular implementations available. One of the more
experimental implementations is examined to see what motivates the development
of the smaller frameworks and how their approach differs from the mainstream im-

plementations.

The motivation for Aspect-Oriented tool support is explored in Chapter 4. This
includes design, build, development, testing, documentation, and quality assurance
tools. The quality of the current tools is assessed and the need for improved tools
is identified.

In Chapter 5 the various notations developed to guide the design of Aspect-
Oriented software are reviewed, in particular some extensions to the de facto stan-
dard Unified Modelling Language (UML) are considered. The use of a notation
based on standard UML extensions is proposed. Finally, it is discussed how this
notation can be integrated with SolNet Solution’s design techniques.

Test driven development has become an important approach for developing qual-
ity software. In Chapter 6 the techniques available for testing Aspect-Oriented
software are assessed.

To enable us to assess whether our Aspect-Oriented refactoring of a SolNet
project has made any improvements, a set of objective, quantitative measurements
is required for evaluating AO solutions. In Chapter 7 the use of traditional metrics
is proposed. The potential to use new Aspect-Oriented metrics is discussed.

Chapter 8 explores the standards that have been developed for AOP. It then
makes recommendations for future standardisation paths to make AOP easier to
adopt.

The major goal of this project is to assess the benefits and risks to SolNet
Solutions in adopting AOP. Chapter 9 shows the integration of AOP into two real
projects which SolNet is undertaking with the New Zealand Qualifications Authority
(NZQA). A qualitative and quantitative analysis of the benefits and risks in using
AOP for these projects is presented. Finally, further possibilities for utilising AOP
at SolNet Solutions are discussed.

Chapter 10 presents a summary of findings from this project and recommenda-
tions for future work. The applicability of the findings to environments outside of

SolNet Solutions is discussed.

