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Abstract 

Software development has improved over the past decade with the rise in the pop­

ularity of the Object-Oriented (00) development approach. However , software 

projects continue to grow in complexity and continue to have alarmingly low rates 

of success. 

Aspect-Oriented Programming (AOP) is touted to be one solution to this soft­

ware development problem. It shows promise of reducing programming complexity, 

making software more flexible and more amenable to change. The central concept 

introduced by AOP is the aspect. An aspect is used to modularise crosscutting 

concerns in a similar fashion to the way classes modularise business concerns. A 

crosscutting concern cannot be modularised in approaches such as 00 because the 

code to realise the concern must be spread throughout the module ( e.g. a tracing 

concern is implemented by adding code to every method in a system) . AOP also 

introduces join points, pointcuts, and advice which are used with aspects to capture 

crosscutting concerns so they can be localised in a modular unit. 

00 took approximately 20 years to become a mainstream development approach. 

AOP was only invented in 1997. This project considers whether AOP is ready for 

commercial adoption. This requires analysis of the AOP implementations available, 

tool support, design processes, testing tools, standards, and support infrastructure. 

Only when AOP is evaluated across all these criteria can it be established whether 

it is ready to be used in commercial projects. Moreover, if companies are to invest 

time and money into adopting AOP, they must be aware of the benefits and risks 

associated with its adoption. This project attempts to quantify the potential benefits 

in adopting AOP, as well as identifying areas of risk. 

SolNet Solutions Ltd, an Information Technology (IT) company in Wellington, 

New Zealand, is used in this study as a target environment for integration of aspects 

into a commercial development process. SolNet is in the business of delivering large 

scale enterprise Java applications. To assist in this process they have developed a 

Common Services Architecture (CSA) containing components that can be reused to 

reduce risk and cost to clients. However, the CSA is complicated and SolNet have 

lll 



identified aspects as a potential solution to decrease the complexity. 

Aspects were found to bring substantial improvement to the Service Layer of 

SolNet applications, including substantial reductions in complexity and size. This 

reduces the cost and time of development, as well as the risk associated with the 

projects. Moreover, the CSA was used in a more consistent fashion making the 

system easier to understand and maintain, and several crosscutting concerns were 

modularised as part of a reusable aspect library which could eventually form part 

of their CSA. 

It was found that AOP is approaching commercial readiness. However, more 

work is needed on defining standards for aspect languages and modelling of design 

elements. The current solutions in this area are commercially viable, but would 

greatly benefit from a standardised approach. Aspect systems can be difficult to 

test and the effect of the weaving process on Java serialisation requires further 

investigation. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Software D evelopment Problem 

Software development has long been prone to spectacular project failure rates that 

would be unacceptable in any other professional discipline. The 1994 Chaos Report 

from The Standish Group showed that just 16% of projects were successful. Of those 

unsuccessful projects 31 % were never completed and 53% had problems such as cost 

or time overruns and missing functionality (The Standish Group 1994). An example 

of a high profile project failure in New Zealand was the Integrated National Crime 

Information System (INCIS). This ambitious project suffered numerous time delays 

and cost overruns before it was eventually abandoned with only a small portion of 

the system in operation (Small 2000). 

We believe many project failures can be attributed to the sheer size and com­

plexity of software system developments and the inability of traditional development 

methodologies to cope with this. Object-Oriented (00) technology has become the 

major development methodology helping to reduce complexity with new concepts 

such as inheritance, abstraction, and polymorphism (Boner, Vasseur & Dahlstedt 

2005a). The latest Chaos Report in 2003 shows a substantial improvement since 

1995 with 34% of projects categorised as successful and only 15% of projects fail­

ing. However, 51 % of projects still have some problems (The Standish Group 2003). 

Despite the advances made in recent years, professionals continue to strive to find 

ways to improve project success rates. 

In this thesis, Aspect-Oriented Programming (AOP) is presented as a develop­

ment approach which has the potential to reduce software complexity and increase 

software project success. 

1.2 Aspect-Oriented Programming 

Aspect-Oriented Programming is a relatively new programming paradigm invented 

at the Xerox Palo Alto Research Center (Xerox-PARC) in the mid nineties by Gregor 
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Kiczales and his research team. It attempts to reduce program complexity using the 

notion of separating crosscutting concerns from the core program concerns (Kiczales, 

Lamping, Mendhekar, Maeda, Lopes, Loingtier & Irwin 1997). This is considered to 

be one of the most promising approaches to reducing program complexity, and was 

ranked in the 10 emerging technologies that will change the world by Massachusetts 

Institute of Technology's (MIT) Technology Review (van der Werff 2001). 

AOP adds the concept of an aspect for the purposes of designing and imple­

menting crosscutting concerns. Aspects complement the more familiar concepts of 

procedures and objects found in the Structured and 00 paradigms (Kiczales 2005). 

AOP is not a replacement for these other paradigms, but rather complements them 

with a new modularisation technique. Core program concerns can be implemented 

using traditional modularisation techniques and crosscutting concerns using aspects. 

1.2.1 Object-Oriented Programming 

Although aspects can be used with other programming paradigms such as Struc­

tured Programming, most implementations available are based around current 00 

languages. The reasons why the 00 paradigm is not suitable for all problems faced 

in modularising code and how aspects complement this technology to solve these 

problems is discussed. 00 was designed to model real-world domain entities and 

their behaviour as objects. However , there are many elements of a design that must 

be intermixed with these objects which are incongruent with the object 's original 

intent. AOP addresses this problem by allowing behaviour to be added to objects 

in a non-intrusive, modularised fashion (Glover 2004). 

A good example is a banking system with an 'Account' class containing a 'with­

draw' method. Being a banking system there are many things that must happen 

before and after the 'withdraw' method modifies the account's balance such as secu­

rity checks, auditing, transaction handling, and persistency. All these extra concerns 

are not directly part of the main concern of withdrawing funds from an account, 

but they must be coded with the logic for withdrawing money to ensure the sys­

tem meets its non-functional requirements. Clearly these extra concerns will require 

more code than the actual withdrawal of money, and concerns such as transaction 

handling will be spread across multiple classes making it difficult to maintain and 

evolve. With AOP it is possible to remove these concerns from the core classes and 

modularise them as aspects . This will make the system easier to design, code, test, 

and maintain. 

Although the concepts of AOP are not inherently linked to any particular 00 
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language, most of the current mainstream implementations are based around the 

Java language. This is probably attributable to the strong Java open source com­

munity rather than any inherent features of the Java language itself since other 

languages are having implementations developed such as Python, PHP, C#, Ruby, 

Perl , and Lisp (Wikipedia 2005a). Moreover, AOP implementations based on Java 

have received strong vendor support from groups such as IBM, BEA Systems, Xerox, 

and JBoss. 

1.3 SolNet Solutions Ltd 

1.3.1 Company Profile 

SolNet Solutions is an Information Technology (IT) company based in Wellington 

and Auckland, New Zealand, with approximately 125 staff. Their core business is 

the delivery of J2EE solutions for large enterprise systems. 

1.3.2 Current Development Environment 

SolNet have invested substantisl t.imp a.nd money into their existing development 

processes and tools to enable them to produce high quality, reliable systems, as 

cheaply and timely as possible. SolNet has developed a set of standard reusable 

components that can be used in typical J2EE projects. These components enable 

them to significantly reduce the cost and risk involved in conducting J2EE projects. 

This set of components is referred to as the Common Services Architecture (CSA). 

1.3.3 Motivation for AOP Assessment 

SolNet's current infrastructure (CSA) is complicated and relies on individual devel­

opers being familiar with the components available and how to correctly use them. 

SolNet are continually looking for ways to reduce the complexity and make their 

CSA easier for developers to use and more reusable across different types of projects. 

They would also like to increase flexibility such as having the ability to easily change 

the components used in a project. For example, changing from EJB Persistency to 

Hibernate by plugging in a different aspect. 

Senior development staff at SolNet have recognised that AOP has potential to 

simplify their CSA and make it more accessible to different projects. SolNet Solu­

tions entered into this Technology in Industry Fellowship (TIF) project to have an 

assessment undertaken of AOP technology and how it fitted into their development 
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lifecycle and to assess the potential benefits it could produce in their commercial 

environment . 

1.4 Project Objective and Scope 

There is a substantial amount of research being conducted on AOP, and tools are 

continually being developed. However , the availability of tools does not necessar­

ily mean that AOP is ready to be used commercially (in the real world). To be 

used commercially there must also be availability of training resources, books, qual­

ity assurance tools, integrated development environments, patterns, diagramming 

techniques, and support infrastructure. Furthermore, the technologies must meet 

non-functional requirements such as scalability, fault tolerance, and openness. 

In this thesis AOP is examined over several of these areas to try and establish 

its readiness for commercial adoption. Moreover, we try to quantify the commercial 

benefits of AOP by refactoring a real world project to measure the benefits as a 

result of using an AOP approach. In doing so we can identify areas where SolNet 

can benefit from AOP and assess the risks and affect on different areas of their 

development process. 

The objective of this thesis is to show how Aspect-Oriented Software Develop­

ment can be integrated into a real-world environment at SolNet Solutions with the 

ultimate goal of assessing the readiness of aspects for use in a commercial environ­

ment. 

The areas investigated are: 

• Approaches to Aspect-Oriented Programming. 

• Tool support for Aspect-Oriented development. 

• Fitting aspects into the design process. 

• Aspect-Oriented standards. 

• Testing aspects. 

• Metrics for evaluating aspect software. 

• Refactoring a real-world project to use AOP. 

• Measuring the risks and benefits of using AOP with respect to the refactored 

project. 
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Prior to starting this project it was estimated that aspects could reduce the total 

cost of ownership for SolNet projects by 6%. In this thesis we try to quantify the 

benefits of AOP and evaluate them against this hypothesis. However, this may not 

be possible because of the limited historical data available from SolNet to provide 

a baseline for comparison. 

The results obtained are reported in the context of the SolNet Solutions ' en­

vironment. However, this environment is considered to be representative of many 

J2EE development companies. It is believed that other companies face similar prob­

lems and would have comparable benefits and risks in adopting an Aspect-Oriented 

approach. Therefore, it is inferred that the results obtained will be applicable to 

other commercial environments. 

Due to the rapidly changing nature of the Aspect-Oriented community, certain 

limitations were realised when making some assessments. These were made from a 

practical perspective to enable the work to be completed despite changes happening 

concurrently with the technologies being evaluated. This was most critical when 

evaluating the different AOP approaches and tool support. During these two phases 

the major implementations cont inually released new versions and features as well as 

fixing bugs. To continually update and incorporate the new information would have 

been an endless task. For this reason the current version at the time of conducting 

the work was evaluated. Some upcoming features are mentioned, but they are not 

evaluated. 

There are many different approaches similar to aspects for achieving separation 

of concerns such as Composition Filters (Aksit 2001), Hyperslices (Tarr & Ossher 

2001) , and Subjects (Wikipedia 2005b). However , these approaches are outside the 

scope of this thesis and are only briefly examined. 

1. 5 Overview of Thesis 

This chapter has introduced the objectives and scope of this thesis. In the re­

maining chapters findings from applying aspects at different places in the software 

development lifecycle are discussed. 

Chapter 2 reviews AOP concepts and terminology for unfamiliar readers. 

The different techniques used for AOP are explored in Chapter 3. This com­

pares and contrasts the most popular implementations available. One of the more 

experimental implementations is examined to see what motivates the development 

of the smaller frameworks and how their approach differs from the mainstream im­

plementations. 
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The motivation for Aspect-Oriented tool support is explored in Chapter 4. This 

includes design, build, development, testing, documentation, and quality assurance 

tools. The quality of the current tools is assessed and the need for improved tools 

is identified. 

In Chapter 5 the various notations developed to guide the design of Aspect­

Oriented software are reviewed, in particular some extensions to the de facto stan­

dard Unified Modelling Language (UML) are considered. The use of a notation 

based on standard UML extensions is proposed. Finally, it is discussed how this 

notation can be integrated with SolNet Solution's design techniques. 

Test driven development has become an important approach for developing qual­

ity software. In Chapter 6 the techniques available for testing Aspect-Oriented 

software are assessed. 

To enable us to assess whether our Aspect-Oriented refactoring of a SolNet 

project has made any improvements, a set of objective, quantitative measurements 

is required for evaluating AO solutions. In Chapter 7 the use of traditional metrics 

is proposed. The potential to use new Aspect-Oriented metrics is discussed. 

Chapter 8 explores the standards that have been developed for AOP. It then 

makes recommendations for future standardisation paths to make AOP easier to 

adopt. 

The major goal of this project is to assess the benefits and risks to SolNet 

Solutions in adopting AOP. Chapter 9 shows the integration of AOP into two real 

projects which SolNet is undertaking with the New Zealand Qualifications Authority 

(NZQA). A qualitative and quantitative analysis of the benefits and risks in using 

AOP for these projects is presented. Finally, further possibilities for utilising AOP 

at SolNet Solutions are discussed. 

Chapter 10 presents a summary of findings from this project and recommenda­

tions for future work. The applicability of the findings to environments outside of 

SolNet Solutions is discussed. 




