
Copyright is owned by the Author of the thesis.  Permission is given for 
a copy to be downloaded by an individual for the purpose of research and 
private study only.  The thesis may not be reproduced elsewhere without 
the permission of the Author. 
 



DeepRepresentation Learning
for Action Recognition

Adissertation presented in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy
in

Computer Science

atMassey University, Auckland, NewZealand

JunRen

2019





To Shuangshuang Lu
for her love and support



Abstract

�is research focuses on deep representation learning for human action recognition based on

the emerging deep learning techniques using RGB and skeleton data. �e output of such

deep learning techniques is a parameterised hierarchical model, representing the learnt

knowledge from the training dataset. It is similar to the knowledge stored in our brain,

which is learned from our experience. Currently, the computer’s ability to perform such

abstraction is far behind human’s level, perhaps due to the complex processing of

spatio-temporal knowledge.

�e discriminative spatio-temporal representation of human actions is the key for human

action recognition systems. Different feature encoding approaches and different learning

models may lead to quite different output performances, and at the present time there is no

approach that can accurately model the cognitive processing for human actions. �is thesis

presents several novel approaches to allow computers to learn discriminative, compact and

representative spatio-temporal features for human action recognition from multiple input

features, aiming at enhancing the performance of an automated system for human action

recognition.

�e input features for the proposed approaches in this thesis are derived from signals that are

captured by the depth camera, e.g., RGB video and skeleton data. In this thesis, I developed

several geometric features, and proposed the following models for action recognition:

CVR-CNN, SKB-TCN, Multi-Stream CNN and STN. �ese proposed models are inspired by

the visual attention mechanisms that are inherently present in human beings. In addition, I

discussed the performance of the geometric features that I developed along with the

proposedmodels.



Abstract

Superior experimental results for the proposed geometric features and models are obtained

and verified on several benchmarking human action recognition datasets. In the case of the

most challenging benchmarking dataset, NTU RGB+D, the accuracy of the results obtained

surpassed the performance of the existing RNN-based and ST-GCN models. �is study

provides a deeper understanding of the spatio-temporal representation of human actions

and it has significant implications to explain the inner workings of the deep learning models

in learning patterns from time series data. �e findings of these proposed models can set

forth a solid foundation for further developments, and for the guidance of future human

action-related studies.
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Chapter 1

Introduction

1.1 Human action recognition

In the computer vision research community, Human Action Recognition (HAR), which is the

key for Human Action Understanding (HAU), has been one of the most important research

lines because of its wide spectrum of applications, e.g., patient monitoring, smart

surveillance and sport video analysis and so forth. �e ultimate objective of HAR is to

determine the label of the action for a person or a group from a stream of videos and its

context information. As reported in [1], currently, there is no one general theoretical

framework that is available that can be employed to ideally model the evolution of human

actions. HAR is associated with a wide variety of challenges, such as scaling, occlusion and

clutter in the spatial domain. �e extra overhead posed by the changing illuminations,

dynamic situations, cluttered background, and so forth turn HAR into a more complicated

task. Moreover, HAR is also complicated by the variations between different actors [2],

because different actors usually present quite different appearance for the same action.

In the past years, HAR has been extensively investigated, even though there are still

challenges for realistic applications. �e earlier works related to HAR are based on videos and

images, due to the easily accessible videos and images, so various algorithms were proposed

for videos in different scenarios. With the advancement in depth camera technology, such as

the Kinect from Microsoft, it became possible to acquire depth information from the

environment directly, and this has resulted in depth images. Consequently, human action

recognition based on computer vision can be divided into RGB video-based approach and

depth video-based approach. Moreover, with the more recent advancement of pose

estimation, skeleton-based action recognition has become another alternative for this task.
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�erefore, the depth video-based action recognition includes two efficient research lines,

namely, depth image-based action recognition and skeleton-based action recognition. For

the former approach, most research adopted similar approaches that were designed for RGB

video-based action recognition. More recently, the latter approach has become one of the

most efficient methods for action recognition, because of the accurate and compact

representational ability of the skeleton data, which is promising in realistic applications,

e.g., robotics vision and game control. In summary, the rich spatial structure and the

dynamics of the RGB video and depth video are used to distinguish different actions. In

terms of image-based action recognition, as another research line of action recognition, it

usually relies on image segmentation techniques or object detection techniques. �is

approach is effective for actions that are not sensitive to motion dynamics, and the body pose

is the key clue for classifying the actions correctly from the static images. Although various

successful models have been developed for HAR, there is still room for improvement,

particularly for realistic applications. �erefore, more efficient alternative models should be

developed for robust action recognition. Human beings are capable of learning and

recognizing different actions, due to the brain’s powerful signal processing ability,

particularly the attention mechanisms. However, in computer vision, mimicking the

function of the human brain is one of the most challenging tasks.

1.2 Problem statement

�is thesis aims to identify efficient representation learning approaches for HAR from

multiple features that are easily accessible in our daily life, including RGB video and human

skeleton data. �e question then becomes how to encode the skeleton sequence efficiently for

human action recognition? Other questions include the following: are there any more

discriminative features that are available to distinguish human actions in complex scenes,

and also, how to extract and fuse multiple features to increase the recognition accuracy of

HAR systems? �e visual features acquired from the environment include redundant

information, how to refine the input features and extract significant representative

information about the actions so as to augment the discriminative ability of the action

recognition systems? Is there any advanced approach to suppress the interference of the

2
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irrelevant noise to train a more robust model for skeleton-based action recognition systems?

Although various effective spatial and temporal hand-crafted features demonstrate superior

performance on existing datasets, another open question that still exists is how to utilize the

deep learning techniques to augment the training dataset. �is research proposes several

approaches to address the questions mentioned above.

1.3 Motivation

�e task of HAR research mainly includes the following five parts: feature extraction from

video or skeleton sequence, feature selection, feature encoding, feature fusion and classifier.

�ese five components are deeply investigated in the domain of computer vision research,

and among these steps efficient feature encoding (feature representation) is considered as

the most important step for subsequent operations. Conventional approaches to encode

hand-crafted features for creating spatio-temporal representation are based on

Spatial-Temporal Pyramids (STP) methods [3]. In traditional RGB video-based methods, the

predefined feature detector and descriptor are utilized to extract and represent interest

regions in video frames. In terms of the classical feature detector, it includes the Harris

detector [4], the Cuboid detector [5] and the Hessian detector [6]. Regarding the classical

feature descriptor, it includes the Cuboid descriptor [5], the HOG3D descriptor [7], the

HOGHOF descriptor [8] and the ESURF descriptor [9]. Even though these feature detectors

and descriptors are commonly used in image and video processing; they are not specifically

designed for HAR. �ese methods convert spatio-temporal variations into static features and

then use a spatio-temporal volume to represent the actions contained in one period of the

video, which unavoidably lose some information. Due to the limited representation ability of

the hand-crafted features, it is very challenging to further improve the performance. Apart

from the limitation of the recognition accuracy, because traditional video-based methods

require more computational cost for feature extraction, they are not suitable for large-scale

realistic action recognition systems.

As an emerging topic in the area of academia as well as in industry, deep learning is a

promising approach for some challenging artificial intelligence problems. However, up to

now, there are still no an official definitions for deep learning, which can be generally treated

3
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as an approach to compose the representations of the data in a hierarchical manner. �e

Error Backpropagation Algorithm is the core idea for the training of neural network models,

such as Multilayer Perceptron, Deep Belief Network (DBN), Deep Boltzman Machine (DBM),

Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN), and so forth

[10]. According to the most recent literature, the CNNs and the RNNs are the two most

widely used neural networks among the numerous deep learning models. �e CNNmodel is

the product of combining the theory of signal process and neural perception. It uses the

convolution operation and the pooling operation to reduce the training parameters for

large-scale neural network models. �e convolution operation can be treated as a series of

filters in the signal processing area. While the RNN model can be treated as a kind of

time-series filters, since it is good at processing time series problems. Deep learning models

are often referred to these twomodels or their combinations of them.

�e first prototype of the current popular CNNmodel was proposed by Fukushima in 1980.

It was used to detect patterns from the input data [11]. Due to the computational limitation,

the convolutional neural network could not be applied widely at that time. �e rapid rise of

advanced neural networks is due to the significant improvement of AlexNet in 2012, on the

ImageNet competition by Alex Krizhevsky et al. After that, the CNN model, as a

biologically-inspired model, has extensively been used in solving computer vision problems,

and then it achieved a breakthrough in many computer vision problems, including object

localization, object detection, object segmentation, large scale video classification and

human action recognition [12]–[15].

�e application of RNNs was limited in earlier times because of its training problems, such

as gradient vanishing and gradient explosion. Jurgen Schmidhuber and his student Sepp

Hochreiter proposed the Long-short Term Memory (LSTM) model, which uses three gates to

control the information transmission in the RNNs, to provide an efficient solution for the

gradient vanishing and explosion problem. After that, Jurgen Schmidhuber and his student

Alex Graves extended the LSTM model into handwriting digit recognition and speech

recognition successfully [16], [17], which advanced the research of RNN significantly. �e

training of RNNs relies on the Back Propagation �rough Time (BPTT) [18], which updates

the parameter iteratively by unfolding the RNN along the time axis.

�e data acquired in real-world applications for action recognition often consists of spatial
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structure information and temporal dynamics. �e former reflects the state of the object at

one specific time step, while the latter reflects the evolution of the spatial structures. Both

the CNNs and the RNNs model can be applied to process the static spatial structure

information and the time-series signals. For example, static images mainly contain the static

spatial information, so the CNNs model is widely used to solve images classification

problems, while we can also convert the spatial information in a static image into sequential

information, and then use the RNNsmodel to solve the image-related problems [19].

Motivated by the excellent representation learning ability of the deep learning techniques,

especially the CNNmodel and the RNNmodel, this thesis devised several models for learning

efficient representation from multiple features that are available for action recognition. �e

efficient extraction of the feature representation will be useful for a wide spectrum of

applications. In this research study, we verified our proposed models based on several

challenging and publicly available datasets that are designed for human action recognition.

1.4 Contributions

�e aim of this thesis is to recognize actions from multiple input features with the latest

emerging deep learning techniques. �e first two parts of our work investigated the

hand-crafted features that are derived from the skeleton sequence with our proposed CNN

model and RNN model extensively. �e third part of this work introduces a new attention

mechanism for the Long-short Term Memory Recurrent Neural Network (LSTM-RNN) and

utilizes this proposed model to recognize actions from videos with the CNN-based feature as

input. We investigated the effect of different memory size for our Long-short Term Memory

with Constituent nodes (LSTM-C) model for HAR. �e fourth part of this thesis attempts to

combine multiple geometric features for HAR with a novel multi-stream CNN model. �en,

we attempt to use the STN model to transform the input sequence so as to augment the

training dataset in the last part, which will in turn improve the performance on the test

dataset. �e proposed model demonstrates superior performance compared to the related

models reported in the latest literature, and the performance of the STNmodel on the largest

database called NTU RGB+D [20] surpasses the performance of the existingmethods by 1.66%

(CV) and 1.42%(CS). To sum up, the following contributions can be identified from this thesis:
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• Motivated by the video-based optical flow, the Skeleton based Optical-flow guided

Features (SOFs) are introduced in this thesis and several discriminative geometric and

kinematic features are proposed. For this contribution, traditional skeleton-based

features are investigated and novel motion and energy features are developed. We

verified the proposed features with two most popular deep learning models, the CNNs

and the RNNs. Based on the baseline system, we optimized these two models,

respectively, by proposing the correctness-vigilant regularizer for the convolutional

neural network and developing spatio-temporal kernel based temporal convolutional

neural network. With the proposed correctness-vigilant regularizer, we can speed up

the training process and output a more robust model, achieving a better recognition

accuracy on the testing dataset.

• A spatio-temporal kernel-based temporal convolutional network is utilized to address

the limitation of the CNN-basedmodels, which involves a conversion of the skeleton to

the static image that unavoidably loses some temporal information. With the proposed

spatio-temporal kernel, we can aggregate sequential features locally and globally in a

hierarchical way.

• A novel attention mechanism for video-based action recognition is proposed, which

can integrate the spatial feature from the static images and the temporal dynamics

between the image frames together to formulate the final optimized representation

for the entire video. Image-based CNN-features are used to represent the spatial

features, which are fed into our proposed LSTM-Cmodel, and then the LSTM-Cmodel

is utilized to selectively extract the key frames from the input sequence to formulate

the final representation. Experimental results of LSTM-C model on several video

benchmarking datasets indicate that the LSTM-C model can efficiently extract the key

features from the input visual features, which make the output model outperform the

baseline systems.

• A multi-stream CNN framework is proposed for fusing the skeleton based geometric

relational features. Multiple independent CNN models are employed to extract

discriminative features from different features separately, and then a fusion operation

is utilised to fuse the extracted features. �e multi-CNN model can obtain the

state-of-the-art result on the UTD-MHAD dataset in terms of recognition accuracy.
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• Finally, a STN model is proposed to filter and at the same time enhance the sequential

input features in an end-to-end manner to improve the performance of the output

model on the testing dataset. Our results in Fig.7.9 provide some visualization of the

original input and transformed features. With the transformed sequence as the input

of the classifier, the output results on several benchmarking datasets demonstrated

the superiority of the STNmodel. �e proposed framework is flexible to accommodate

actions that are performed by multiple actors.

1.5 Outline of the dissertation

�e other chapters in this dissertation are structured as follows:

• Chapter 2 presents a comprehensive review for the current state of the action

recognition field. �e evolution of the human action recognition research in the past

decades is presented to provide a general introduction to traditional and modern

approaches for human action recognition, including various input features, feature

extraction, representation learning and classification techniques that have been

proposed by other researchers.

• Chapter 3 proposes the skeleton-based motion and energy features, which we call

primitive geometric features (PGFs), for action recognition. For feature encoding, we

converted the extracted features from the skeleton sequence into static images in

order to take advantage of the CNNs in extracting spatial patterns from the images.

With the aim to speed up the training process, we devised a novel loss regularizer -

correctness-vigilant regularizer (CVR).

• Chapter 4 follows the proposed idea in Chapter 3, and presents several geometric

relational features, collectively called the skeleton-based optical flow guided features

(SOFs). A new spatio-temporal kernel is proposed to extract better representation for

the input geometric relational features. Different from Chapter 3, the geometric

relational features are fed into a RNN model in Chapter 4. An attention mechanism

based on the RNN model will be explained in this Chapter. In addition, in order to

ensure the attention mechanism is more flexible, the window-size and stride are

introduced in this mechanism.
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• Chapter 5 presents a novel model for the video-based HAR, which uses the extracted

features with the VGGmodel from the segmented video frames as input. With the aim

to alleviate the influence of the changes of illumination, subject appearance and

backgrounds, the pre-trained CNN model is adopted to extract the images-based

spatial features. As observed in the previous exploration, we note that it becomes

much more difficult to improve the accuracy taken video as the input even with a

powerful model and computation that are available. We proposed a novel framework,

which can extract the skeleton data from the video directly to improve the recognition

accuracy.

• Chapter 6 aims to explore the potential of the proposed geometric features further. We

devised a multi-stream CNN model to fuse different features. In order to determine

the most efficient features for the multi-CNN model, we explored the performance of

different combinations of input features for the proposed multi-stream CNN

framework extensively on the UTD-MHAD dataset.

• Chapter 7 presents a STN model, which can transform the input features to augment

the training dataset, so as to enhance the robustness of the trained model on the

testing dataset. �e proposed skeleton transformer functions as a redundant

information cleaner, which can remove the irrelevant information and select out the

important features from the original input sequences to formulate a more

discriminative sequence.

• Chapter 8 summarizes and concludes this thesis, highlights the contributions, states

the limitations and points out the future research options.

8



Chapter 2

Literature Review forHumanAction

Recognition

�is thesis aims to address the representation learning problems in the HAR-based system

using multiple features, namely, the skeleton and the RGB videos, by utilizing the powerful

feature extraction ability of the CNN models and the RNN models. In this Chapter, we will

discuss and review Action Recognition and Deep Learning since these are the two topics that

are most related to this thesis.

2.1 An overview of action recognition

In general, the goal of human action recognition based on computer vision is to enable

machines to understand people’s actions in the visual scene through the camera. We can

generally categorize the approaches for action recognition into four categories with respect

to the types of input data used, such as RGB video-based HAR, still image-based HAR, image

sequence with depth information-based HAR and skeleton-based HAR.

Among these approaches, the RGB video-based HAR is the most popular approach for

traditional action recognition. It is promising in intelligent surveillance, robotic vision,

content-based video retrieval and other related areas. Recently, some researchers have

started to implement action recognition using still images [21], because they believe that

humans can recognize the actions from only one picture. �ey intend to develop a powerful

algorithm to enable the machine to recognize the action types from the still image. In reality,

the human actions are mainly characterized by the state of the human body and the objects

the human interacts with in three dimensions. �e traditional RGB video-based approaches
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project the human movements information on the plane that is perpendicular to the axis of

the camera, which will lose the 3D information and as a result it will be more difficult to

recognize complex actions. On the contrary, the latest developed depth-camera can

compensate for the lost information by capturing the depth information. �is promoted the

progress of the depth-image sequence-based action recognition. After applying the highly

accurate pose estimation algorithm into the depth camera, we can estimate the human

skeleton sequence in 3D space from those depth images obtained by the depth camera

directly. �e human skeleton sequences are more likely to accurately reflect the variation of

body posture in the 3D space and therefore action recognition based on the human skeleton

has become a new hot spot [22]. Although there are still no official definitions for action

recognition, we often refer to action recognition to classify the action types from the

sequential data. In the skeleton-based approaches, the skeleton sequences are extracted first,

and then those skeleton sequences are used to represent the human actions. Currently, most

research studies mainly focus on mining the space and time-varying characteristics of the

skeleton sequence and this approach is easier to accept intuitively. Still image-based action

recognition can be treated as understanding the scene or reconstructing the scene through a

still image, which primarily relies on the human posture and the surrounding environment

to judge the action of the subjects in the still image. �is is not trivial because it discards the

dynamic information of the actions, but it can be an effective auxiliary method for action

recognition.

Action recognition (a.k.a. Activity Classification), a general concept, includes gesture

recognition, action recognition, interaction recognition and group activities recognition

[23]. Gesture recognition mainly distinguishes different types of gestures by the movement

of human body parts, such as "stretch out hands", "kick legs" and some other kinds of simple

gestures. �is task is relatively simple and the difficulty of this task is to obtain the

representation of the dynamic characteristics of the movement for different gestures. �e

action recognition is to determine the action label of one person or a group of people from a

video. �e target actions for this task are the combination of different types of gestures of

different body parts, such as running, waving and jumping. �ese actions rely more on the

time-varying characteristics of the relative motion of different limbs. �e interactive action

mainly refers to the actions between different people and actions as well as between people

10
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and objects. In order to enable the computer to recognize interactive actions, we not only

need to analyse the movement of different body parts, we also need to consider the state

between the actor and the objects. For example, in terms of kicking a ball and kicking, the

patterns of these two kinds of movements are similar, and the distinctive feature to

distinguish these two movements is whether there is an interactive action between the

people’s leg and the football. �e group activity recognition can be divided into two

sub-categories generally, order and non-order group activity. For example, there are some

regular patterns for a military parade as opposed to the people on the street, in which there

are no common patterns. Both of these two kinds of group action recognition rely on the

general state of the group and the context environment information of these subjects. For

ordered group actions, the regular patterns for ordered group actions are useful for the

recognizing process, while there is no regular pattern for non-order group actions. In other

words, the group action recognition process is a scene understanding process in most cases,

and we can judge the group actions from one image of the groups whereas if we want to

recognize an individual action of a group, we can convert the group action recognition into

individual action recognition. We need to segment each of the interested people from every

frame and get the motion sequences of the interested people. Generally the above four

categories can be grouped into two major categories, i.e., action recognition (referred to as

individual action recognition) and activity recognition (group action recognition).

Sometimes, we use action recognition to represent all of these categories.

Considering the real-world applications of action recognition, we can categorise the action

recognition problems into action recognition from a single view and action recognition from

multiple views. �e former tries to classify different types of action through the spatial

movement of the target in the vision scene from one point of view, while the latter one tries to

improve the accuracy and robustness of the classification through analysis of the relationship

of the action features from different cameras. �e action recognition research at the

early-stage was mainly based on small datasets that were collected in some controlled

settings, with fixed background and illumination, to model the movement of a single front

target. Nevertheless, in reality, the scene’s background is much more complex, so action

recognition of such a complex scene is much more challenging. �ere are many databases

available for action recognition, such as WEIZMANN [24], KTH [25], WEIZMANN [26],

11
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UTD-MHAD [27], NTU RGB+D [20] and all of these public datasets fuel the action

recognition research rocket. Fig. 2.1 shows the chronology of the development of these

databases and their characteristics. It is evident that they are becoming more and more

complex, and the scale of actions included in the database is becoming greater and the

amount of the data is also increasing. In the future, we foresee that action recognition will be

implemented based on a large-scale dataset from complex scenes.
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Figure 2.1: List of available databases for HAR

An action recognition system is usually composed of the following five steps: feature

extraction, feature selection, feature coding, feature fusion and classification. Feature

extraction is the fundamental step for action recognition. In the traditional video feature

extraction process, the system usually applies 3D filters to detect the keypoints in the

time-spatial cube first, and then we use manually designed multiscale filters to extract the

surrounding texture features of these keypoints, and finally we get the representation from

the features of keypoints’ surrounding texture. �e filters used to detect time-spatial

keypoints are called detectors. Classic detectors include the Cuboid Detector [28], the

Harris3D detector [4] and the Hessian Detector [6]. �e group filters that are used to extract

texture features around the keypoints are called Descriptors. Popular Descriptors are the

Cuboid [28], the HOG3D [29], the SIFT3D [30], the HOG/HOF [31] and the ESURF [6]. �e
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low-level feature extraction process from video is independent from the target problems, and

the feature selection process needs to consider the specific situation for different tasks to

extract discriminative feature in order to get discriminative representations. Dense

Trajectory [32]–[34] is one of the best methods, and Slow Features [35] have also presented

excellent performance in many kinds of action recognition tasks. Another research area

associated with the traditional action recognition methods is feature coding. �e classical

coding methods include Bag of Words/Features (BoW/BoF) [32]–[34], Sparse Coding [36],

[37], local Soft Assignment Coding [38], Fisher Vector Coding [39], [40] and its

non-probability version, VLAD [41]. �e purpose of feature coding is to map those extracted

features to a new hypothesized feature space non-linearly in order to improve its

distinguishability. In general, while the single features have limited ability to distinguish

different actions, the multi-features based action recognition combines some different kinds

of hand-crafted features in order to utilize more information of the video. In addition,

feature fusion is also a common method to select representative information extracted from

videos with different methods and reduce the dimension of the representation [42]–[44]. �e

SVMmodel is one efficient classifier for action recognition [45]–[47], and the contribution of

the SVM-based approaches is that researchers have attempted to propose novel kernel

functions or to use MKL to improve the performance of the SVM classifier. Some researchers

have also investigated SSVM [48] to solve the action recognition problems in a multi-view

scenario.

In summary,we can generally categorize action recognition into traditional approaches and

the deep learning-basedmethod, and there are still many problems that need to be addressed

for this task. Deep learning, an end-to-end learning model, has received too much attention

from academia and industry because this model can put all those pre-processing phases into

onemodel. While the traditional approach is to implement every phase independently, which

made it challenging to control the system’s learning performance. In the next sections, wewill

review these two approaches extensively.
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2.2 Traditional approaches for action recognition

2.2 Traditional approaches for action recognition

�ere is a rich tradition in computer vision for image sequences studying [49]. Traditional

action recognition mainly used hand-crafted features to model the action’s evolution. Based

on a review of the literature, the following threemajor types of input features, e.g. RGBVideo,

Depth Video and RGB+D video, are the most efficient features for action recognition.

2.2.1 RGBVideo-based action recognition

In the early stage of action recognition, [50] proposed to implement RGB video-based action

recognition by matching Motion History Images (MHI) and Motion Energy Images (MEI),

which describe the movements by their appearance. Fig.2.2 shows the appearance of two

movements projected on a plane from a specified view (view-based approach) along with

time, which not only demonstrated the motion posture of the people and the variations of

posture along the time axis. Even though this kind of representation was designed to

recognize themotion directly, which is efficient in some simple environments, it cannot work

properly in complex scenes and the performance is degraded due to the various backgrounds,

illumination and other environmental factors. Action recognition in complex scenes usually

relies on the time-spatial keypoints detection [4], [6], [28] to obtain the interest region of a

video, and then it gets the texture feature around these keypoints by using some feature

descriptors [6], [29]–[31], and finally it builds the classification model based on the statistical

representation. Schuldt et al. [51] obtained the histogram of vision vocabularies with the Bag

of Words (BoW) model based on the local hand-crafted features, and then the obtained

histogram is fed into the subsequent model to build a classifier. �ismethod was popular and

led to the current version of the research in action recognition with the BoWmodel. However,

the pure BoW-based model got the global representation from the video and discarded the

distribution information of the visual features in the time spatial-space, which is important

for action recognition. �erefore, Kovashka and Grauman [52] proposed a method to obtain

the local time-spatial feature representation with the BoW model based on the raw features

that were obtained in the previous stage, and then they were able to get the context feature

representation with the time-spatial pyramid model [53]–[55]. Although, this kind of model

can extract context features from the videos, it did not reflect the motion features of the
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moving individuals. In order to address this problem, Wang and Mori [56] introduced the

Deformable Part-based Model (DPM) into the video feature extraction process to model the

action based on the local and global motion characteristic. Xie et al. [57] also modelled the

action based on the DPM model. �ey described the action using a sequence of postures of

the actors, which relies on the extracted postures from each frame. Similarly, Tian et al. [58]

also built a similar spatio-temporal part-based model to model the human actions.

Figure 2.2:MEI andMHI based approach [1]

�e BoWmodel mainly relies on the spatio-temporal representation that is obtained from

the surrounding regions of the keypoints. �is kind of model is efficient when the scene is

simple, as graph (a) of Fig.2.3 shows, the spatio-temporal key points are mainly situated on

the foreground. Yet, as shown in graph (b) of Fig.2.3, if the background becomes complex, it

is not easy to find a perfect detector to direct the keypoints to track the moving object in the

foreground, since it needs to be further processed by using dimension reduction algorithms.

a b

Figure 2.3:Detection of spatio-temporal interest points [4], [59]

Zhang and Tao [60] extracted the time-spatial cube along with the boundary of the moving

objects in the video, and then they obtained the slow feature representation from these cubes
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with the Slow Feature Analysis (SFA) and used it as the input of the classifier. �is method is

characterized by obtaining the efficient features with motion boundary detection.

Figure 2.4:�eworkflow of feature extraction process of Dense Trajectory [33]

After a comprehensive review of the existing approaches, we can find that the most

effective feature extraction method is to extract features along with the Dense Trajectories

(DT), which was proposed by Wang et al. [33], [34]. Messing et al. [61] first proposed to

represent the motion information with the motion trajectory of the keypoints. �is method

first detects the keypoints using the Harris3D detector, and then obtains the trajectory with

the Kanade-Lucas-Tomasi (KLT) algorithms [62]. However, the accuracy of the keypoint

detection is sensitive to the background, and the representation ability is limited. Based on

the previous work, Wang et al.[33] proposed to select the discriminative features along with

the trajectory of the keypoints, which was also called improved Dense Trajectory (iDT). As

Fig.2.4 shows, they first applied dense sampling in each spatial scale, then they tracked these

sample points and optimized the trajectory, and finally they utilised the BoWmodel to obtain

the features around the trajectory point. After this, in order to deal with the jitter problems in

camera, Wang et al. [21], [34] adopted a similar method with [60] to obtain the feature

representation along with the boundary of the moving object. �ey also used the Motion

Boundary Histogram (MBH) to represent the foreground motion information, they then

fused the trajectories-based HOG and HOF features. �ese DT-based features outperformed

the traditional methods because they extracted the trajectory features from different

spatio-temporal pyramids.

�e camera viewpoint keeps changing in realistic applications, while most of the current

research studies are utilising databases that were captured from a single view. �e videos of

these databases have recorded the information of vision scenes projected on the plane that are

perpendicular with the axis of the camera, and this cannot reflect all of the information in the
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scene (especially thosemoving objects in the foreground) because of the cluttered background

and occlusion. With the advance of action recognition in a single camera viewpoint, some

researchers began to implement action recognition under multi-cameras settings. For this

task, themain purpose is to extract themotion features that are independent from viewpoint.

Souvenir and Babbs [63] extracted the view-invariant feature of people by using R-transform

andManifold Learning. �e common features of themulti-view action recognitionmethods is

to extract invariant representations for different viewpoints to improve the robustness of the

model to view-variant.

2.2.2 Depth video-based action recognition

�edepth camera canacquiredepth information thatwasneglectedby traditional 2Dcameras,

which can describe the movement of the target object precisely in 3D space. With the advance

and prevalence of low-cost low-power depth cameras, action recognition based on the depth

camera gained significant attention from researchers and from industries. �e depth video-

based action recognition includes depth image-based action recognition, skeleton sequence

(estimated from depth image sequence) based action recognition and combination of both to

implement action recognition. In this section, we will review these three methods.

Figure 2.5:�eworkflow of Histogram extraction fromOriented 4D Normals [64]

For the depth video-based action recognition, most of the research studies have been

conducted by transferring the traditional methods for RGB video to depth video. Li et al. [65]

proposed a Bag-of-Points (BoP) model, which utilise Action Graph to model the dynamics of

actions in the temporal domain. Xia et al. [66] built HOJ3D based on skeleton joints, and

quantized the HOJ3D feature using BoW after LDA transformation and then modelled the

sequences by HMMmodel. �ework of Oreifej and Liu [64] extracted the normal vector of the
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depth sequences in 4D space (time, depth and 2D coordinate space) to obtain HON4D, which

is the final representation feature that is fed into the classifier. �e process is illustrated in

Fig.2.5. Song et al. [67] extracted the Body Surface Context texture features through the 3D

point cloud. �is method is computation-intensive and Lu et al. [68] improved this algorithm

by proposing "π tests" based BRSF model. As Fig.2.6 shows, the depth image is divided into

three layers, labelled as green, red, and blue, representing background, action and cluttered

region respectively. �e pixel-pair 1 to 6 indicates the same background, cluttered region, the

same action and background, the same background and cluttered, and same cluttered and

action.

Figure 2.6: Example of BRSF [68]

Traditional depth-image based action recognition models rely on the specifically designed

feature descriptors to extract the spatial and time-varying characteristic from the 3D cloud,

which belongs to the probability method, while the current skeleton-based action recognition

models mainly use the physical parameters to represent the local features of the movements.

Traditional skeleton-based model can be categorized into two categories: 1) extract the

posture and time-varying information from the skeleton sequences; 2) extract the key posture

to implement template matching. We will introduce these two methods in the next

paragraphs.

Aiming at extracting the spatial and time-varying information from the skeleton data

efficiently, Wang et al. [69] proposed a pose-basedmodel, as shown in Fig.2.7. In this model,

they estimate the coordinates of the joints of the human body with an improved posture
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estimation algorithm. Once the coordinates of the joints are available, a pose dictionary is

created with the five parts coordinates of the skeleton. �en, the spatio-temporal

representations can be extracted based on the created dictionary. Chaudhry et al. [70]

applied LDS to extract the time-varying information from the skeleton data. Vemulapalli et

al. [71] mapped the human skeleton-based 3D geometry features into a Lie Group with the

mapping parameter between the rotation and local or global coordination of the skeleton

joints. �en, they used the Dynamic Time Warping (DTW) algorithm and the Fourier

Temporal Pyramid (FTP) to simulate the evolution of the human movements. While all of the

models mentioned above attempt to extract the local representation from the skeletal data,

which cannot represent the evolution process of action globally, while this is significantly

important for HAR.

Figure 2.7: Pose-Based action recognition model [69]

Action recognition is essentially a time-series analysis problem. Lv and Nevatia [72] used

the HMM model to model the action evolution process globally. Wu and Shao [73] used the

DNNmodel to estimate the transmissionprobability of theHMMstate, and then to predict the

action types. Gong et al. [74] used a Kernelized Temporal Cut model to align the skeletal data

with the movement, and the DMW to measure the similarity of the actions. �e performance

of using theHMMmodel to simulate the evolution process of actions is limited by two difficult

problems: 1) align and segment the input sequence data; 2) estimate the transition probability.

�e DMWmodel involves a great amount of computation, which is challenging to implement

in real-time applications.

Even though human skeletal data can describe the variations of human posture accurately,

but it discards the appearance information from the depth image, which consequently
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degrades the performance of the complex action recognition, such as interactive actions. In

order to address these problems, Wang et al. [75] used joints as keypoints and extracted the

texture features surrounding these joints, which are called the Local Occupancy

Patterns (LOP). And then they utilised the FTP to estimate the skeletal data sequence and

used the SVM model as the classifier to implement classification. Yang and Tian [76] have

also carried out some similar work. In conclusion, the combination of the depth images and

skeletal data to achieve action recognition is an efficient and popular approach. Treating

joints as keypoints and extracting spatio-temporal features from depth images actually is a

feature-selection process. Another recent work [77] proposed using graph convolutional

neural network to extract the spatio-temporal features from the skeleton sequence. �is

model is illustrated in Fig.2.8. �e significant limitation of this model is that they need to

design the graph specifically for different tasks, even so, some recent advances have been

achieved based on this model.

Figure 2.8: Framework of ST-GCNmodel [77]

2.2.3 RGB+D video-based action recognition

Due to the advent of the cost-effective Kinect sensor, researchers have started to devote a lot

of attention to recognizing actions using the RGB-D data [59], [64], [75], [78], [79]. With the

additional depth information, it provides an efficient method to remove the background and

simplify the intra-class motion variations. Some researchers proposed some

semi-supervised learning methods for action recognition, which has made it possible to

exploit the large amount of conventional RGB data [80]. �ey utilized the RGB-D data as the

source database and learned the correlations between the RGB data and the depth data,

which can be transferred to the target RGB video database.

�e RGB-D based action recognition is a typical feature fusion problem, because it relies

on the features that have been extracted from both the RGB images and the depth images.
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a b

Figure 2.9: Transfer learning for the RGB Dataset (a) and BHIMmodel (b) [80], [81]

Chaaraoui et al. [82] extracted the skeleton and 2D silhouette of people, and then represented

the human actions by fusing these features. Lin et al. [83] treat depth information and

skeleton data as an auxiliary method for RGB video-based action recognition, which

reconstructs the action information from this auxiliary information to adapt to a different

database. Jia et al. [80] utilised the Low-Rank Transfer Learning method to model the

subspace of the Depth and RGB data. As shown in graph (a) of Fig.2.9, they transfer the depth

information into the RGB video through the Cross-Modality Regularizer, introducing

different modality features to solve the RGB-based action recognition problems. Kong and

Fu [81] proposed the BHIM model, shown in graph (b) of Fig.2.9 , to projects the RGB and

depth features onto a common public subspace. Yu et al.[84] devised a new LFF descriptor

based on the gradient field of the RGB and the depth sequences.

2.3 Deep learning-based action recognition

�e previous section reviewed the traditional methods for action recognition. However

recently, the focus of this research relies less on traditional methods and more on the deep

learning-based methods. �is shift has been triggered not only by the availability of the

computational resources, it is also by the achievement obtained by Krizhevsky in the

ImageNet Competition in 2012. �e deep learning-based action recognition approach mainly

depends on the convolution and recurrent neural network to extract the spatial and temporal

dynamic features of the image or skeleton sequences.
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Kim et al. [85] first introduced deep learning into the action recognition research. He

obtained the volume of the front object through segmenting the front object from the

background, and then extracted the action descriptors by using the Gabor filter. �e

extracted descriptors are then fed into a 3D-CNNmodel to extract distinctive feature further

for the subsequent classifier, WFMMNNmodel. Fig.2.10 demonstrates the framework of this

model and the structure of the WFMMNN. �e contribution of this work is that the author

firstly proposed the 3D-CNNmodel and then usedWFMMNN as the classifier.

Figure 2.10:�e architecture for 3D-CNNmodel [85]

After this, Baccouche et al. [86] utilised the LSTM-RNN to recognize actions, using BoW

to obtain the representation of each frame, and then fed these representations of the image

into the LSTM-RNN model, in which the temporal representation is extracted. As shown in

Fig.2.11, we can get the final decision from the last frame. Even though this model is simple,

it is the first time to extract spatial and temporal features simultaneously. �is model became

one of the most popular approaches in action recognition and video analysis, and most of the

approaches that were developed later are based on this model. It is worth mentioning that

many ideas and algorithms have been developed based on this work in the past years and to

this day it still has an influence on the current research, with the dramatic changes that have

happened to the data, models, algorithms and computing power.

In 2011, Baccouche et al. [87] improved the model proposed by themselves in 2010, which

use 3D-CNNmodel to extract local spatial representation anduse LSTM-RNNmodel to extract

temporal dynamic information from sequences of spatial representation. �is is the first time

to implement action recognition based on original video sequence through Neural Network,

which is a popular model to realize action recognition and another popular one is the Two-

Stream [88] model. In the same year, Le et al. [89] proposed ISA, as shown in Fig.2.12, which
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Figure 2.11:�e framework for LSTM-RNNmodel [86]

is a combination of the traditional methods and deep learning.

Figure 2.12: Stacked convolutional ISA network [89]

Alex Krizhevsky et al. raised the new current of research on the neural network, because

the significant achievement was attained on ImageNet Competition in 2012. After that, many

researches were conducted in artificial intelligence using CNN [12]–[14], [88], [90]–[98],

which promoted the development of DNN. Karpathy et al. [91] first conducts research on

large-scale video analysis using CNN in 2014, they tested four different architectures of the

CNN model, showing that the later fusion demonstrated better performance. In 2014,

Simonyan and Zisserman proposed a Two-Stream model [88] on the NIPS workshop, which

is considered as the most significant breakthrough in deep learning for video analysis.

Fig.2.13 shows the architecture of this model. �is model proposes adopting two

convolutional neural networks to take advantage of the complementary information of these

two sub-models. �ese two sub-models first extract the static spatial information from the

vision scenes (spatial stream) and the dynamic information from the temporal stream, which

is reflected by the optical flow. �e extracted features were then fused in the last decision

layer. �is model is pre-trained on the large image dataset, which is used to address the
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limitation of the low resource problem of the training data. �is is a common strategy for all

applications that are based on the video analysis and action recognition.

Figure 2.13:�e framework for two-streammodel [88]

�e Long-term Recurrent Convolutional Network (LRCN) [99] and the Temporal Segment

Networks (TSN) [100] are two popular deep learningmodels that were proposed for video and

action classification. �e LRCN model firstly used the CNN model to obtain the spatial

representation of the video frames, and then utilized the LSTM-RNN to model the

time-varying dynamic information between the sequential frames. In general, this model is

similar to the works of [87], the biggest difference is that [87] trains the 3D-CNN and the

LSTM-RNN separately. However, [101] proved that this kind of model could not improve the

performance of the system efficiently, but it increased the model’s complexity and the

number of parameters. After this work, various models were proposed based on this model.

Wang et al. [102] combined the idea of [32]–[34], selecting features along with the trajectory

by using the pooling operation of CNN to obtain efficient feature representation, and then

combined it with the improved Dense Trajectories features [32] to conduct the classification.

In another study [103], the authors proposed to address the universal limitation of existing

models in the literature with a novel model, which can accommodate variant length of video

sequences. Wu et al. [101] combined themerits of the LRCN and the Two-Streammodel. �ey

firstly obtained the representation of images and optical sequences by employing a

pre-trained model, then they utilize the LSTM-RNN model to obtain the global

representation of the sequence and finally they built a regularized feature fusion network to

fuse the features to implement classification. �e TSN model, as shown in Fig.2.14, is also a

two-stream model to take care of the spatial and temporal features that are extracted from
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the video snippets.

Figure 2.14: Current most popular video analysis framework [99]

Wang et al.[69] borrowed the idea of the two-stream model to solve the action recognition

problem, but they converted the representation of multi frames into a video representation of

fixed length by utilising the temporal pyramid pooling operation based on 3D-CNN. Another

universal model, as shown in Fig.2.15, was designed by Du et al. [97]. �is model is applicable

for action, action similarity labeling, dynamic scene recognition and object recognition task.

Even so, this model showed its limitation on the extraction of dynamic representations for

actions.

Figure 2.15:Unified framework for video analysis [97]

Lastly, there are some other deep learningmodels that are proposed for action recognition.

For example, Sun et al. [104] replaced the ISA model in [89] with the SFA model, and built an
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unsuperviseddeep learningnetworkwith a slow feature fusion strategy for action recognition.

Srivastavs et al. [105] provided an unsupervised model , which can map different length of

input sequences to a fixed length of output sequences, which can also be used to reconstruct

and predict the sequence data. �e architecture of this model is shown in Fig.2.16.

Autoencoder Model

Future Predictor Model Composite Model

Figure 2.16:Unsupervised video representation learning model [105]

In order to train an robust action recognition model from the video stream continuously,

Hasan and Roychowdhury [106] proposed a framework based on the Sparse Autoencoder and

Active Learning. �is framework can select distinctive features and utilise the unlabelled

samples to increase the accuracy of the pre-trained model further. Motivated by this, we

proposed to use the LSTM model to transform the input sequence adaptively so as to

augment the training samples and improve the performance of the skeleton-based action

recognition.

2.4 Summary

A thorough and deep review of the current state of action recognition research studies is

presented in this Chapter. We generally categorized the research about action recognition

into three research lines according to the type of input data used, such as skeleton, RGB video

26



2.4 Summary

and depth video. Since there is no one perfect feature extraction method for different input

data, and given that the skeleton data has already contained the depth information, we

therefore focus more on skeleton and RGB video-based features and explore the

spatio-temporal feature extraction methods from the perspective of these two modality

features.
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Chapter 3

Skeleton-to-Image basedHumanAction

Recognition

In the machine learning research, the input data, as the lifeblood of machine learning, is

expected to provide rich and discriminative patterns for classifiers. Inspired by the image

classification with CNN model, this Chapter presents a novel approach for converting the

skeleton-based features into static images to carry out action classification.

3.1 Motivation

�eHuman Action Recognition (HAR) is one promising approach for doing human-computer

interaction research, as it is highly vital in addressing the demands of modern society, such

as automatic video surveillance for security, patient monitoring for recovery, content-based

video retrieval, and so forth. In line with this, deep learning systems are fast becoming the

defacto standard for object recognition, video understanding and pattern recognition due to

their inherent powerful feature learning ability from a vast amount of data. It makes sense to

capitalise on its great success and to further improve it for the complex task of action

recognition. Heuristic based approaches for action recognition have attracted an increasingly

large and diverse group of researchers. Among the many input features used for action

recognition, the 3D skeleton sequence stands out because of recent advancements in pose

estimation algorithms [23], [107]. Recently, skeleton-based approaches have significantly

progressed using deep learning-based models, since they can help to provide highly accurate

spatio-temporal information for action recognition, as compared to RGB or depth videos.

�ey are also computationally inexpensive as compared to traditional appearance-based
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approaches, lending themselves more amenable for real-world applications [75].

CNN models have gained a very good reputation as one of the most efficient approaches

for solving a wide variety of challenging tasks, e.g., image/video classification [108], ASR [90]

and NLP [109]. It has been reported in the literature that CNNmodels have been successfully

applied in HAR tasks, taking skeleton data as input [110], [111]. Motivated by existing

regularizers that only consider the correct prediction of the model [112], in this Chapter, we

attempted to further improve the discriminatory ability of the CNN model by introducing a

new correctness-vigilant regularizer that accounts for both the correct and wrong predictions

in the training iterations to speed up the training process. To the best of our knowledge, the

proposed output regularizer serves as pioneering work which treats both the correct and

incorrect prediction probabilities as two extra supervisory signals in the loss layer. We

systematically investigated the efficacy of the proposed model on several popular human

action recognition datasets. �e empirical results prove that the proposed output regularizer

works well with the cross-entropy loss function. Motivated by the feature extraction

techniques used in speech recognition [90], we proposed to concatenate the proposed

primitive geometric relational features, including the motion and energy features, which are

derived from the skeleton sequence, together with the original joint coordinates.

Considering the inherent advantages of the CNN models in extracting the spatial features

from images, we then encoded the proposed features into the color images that we call the

temporal kinematic images, carrying vital motion features. After that, we trained our

proposed Correctness-Vigilant Regularized CNN (CVR-CNN) model based on the converted

images to classify the actions.

3.2 Relatedwork

In terms of HAR using 3D skeleton data, it has been investigated with different methods over

the past several decades [22]. Here, we only review some of the closely related literature with

our approach, including the existing geometric features and the regularization techniques

that are used together with the CNNmodel.
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3.2.1 Skeleton-based primitive geometric features

�ehuman bodymovement can be represented as themovements of skeletons that are formed

by a hierarchy of joints. In the public databases, typical layouts of the skeletal representation

of a human body are usually composed of 15, 20 or 25 joints. [111] concatenated together all the

joints coordinates to represent one action by one static image, casting the action recognition

problem into an image classification problem. However, they did not consider the relationship

of the joints between the different frames explicitly, which severely limits the performance

of the CNN model because they cannot extract effective features that can reflect the spatial

relationship between the joints. In [113], the authors selected a sequence of informative joints

to represent spatio-temporal features in the preprocess stage, which may also lead to losing

information. In the existing literature, we observe that all of the parametric representation,

e.g., the angle, position, and orientation [66], [114], are used by classifiers directly. Another

study [115] proposed several pose-related features, such as distance between joints, distance

between the joints and the planes, angle between different limbs. Moreover, [71] proposed

using "Trisarea" to describe the geometric correspondences between the joints, which utilize

the area of the predefined triangles to represent the geometric features. However, much of

the prior research derives the geometric features from only one single frame, therefore this

thesis proposes a simple yet highly intuitive set of geometric features, called PGFs, to extend

the input representations that were fed into the CNNmodel. �e proposed features, the PGFs,

not only consider the relationship between the joints in a single frame but also consider the

variation of the joint coordinates through time, by introducing the representativemotion and

energy features to enrich the texture pattern of the converted temporal kinematic images [116].

3.2.2 Regularized CNNmodels

Due to its convincing performance in spatial feature extraction, the CNN model has been

widely used for image classification, which learns the correlation between the local pixels

efficiently by using a different scale of convolutional kernels. However, action recognition

using the CNN model based on the skeleton data is still a challenging problem, mainly

because of the significant variations of sequences, pertaining to the same action. �erefore,

most of the previous research, over a long period of time, attempted to extract discriminative
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features using the CNN model with regularization techniques [117]. Many of the techniques

were proposed to alleviate the issue of overfitting, such as early stopping, L1/L2

regularization [118], weight decay, dropout [119], and batch normalization [120], model

averaging [121], and data augmentation, and so on. �ese techniques, along with other forms

of regularization, almost act on the hidden activations or weights of a neural network. �ere

are also some works explored adding a regularizer on the output layer [122], [123], but all of

them only took advantage of the correct prediction probability produced by the softmax layer.

Few studies have been conducted to exploit the wrong prediction probability. In our opinion,

the wrong predicted labels are also indicative of the knowledge learned by the neural

network, which can provide more insight about the training process and can be used to

update the corresponding weights more appropriately. To some extent, this augments the

supervisory training signals, influencing the formation of the learned features, and making

themmore discriminative.

Generally, three key facts can be observed from these related works. Firstly, the spatial and

temporal representations of the input skeleton sequence are critically important for the

performance of the action recognition systems. However, the spatial and temporal

representations are of a different nature, and how to represent these two features ideally is

still an open question. In this Chapter, we attempted to extend the input representations and

use the methods in the image classification area to extract these two critical features

simultaneously. Secondly, some actions are characterized by certain joints, and the features

that were extracted from these joints will be more discriminative than others. �irdly, due to

the significant variations in the skeleton sequences, the robustness of the model is very

important for the efficacy of the classifier on the test dataset.

3.3 �e algorithms

3.3.1 General architecture

An ideal human action recognition system favors feature representation that is invariant to

different types of human physiques and anthropometric differences between individuals. �e

features used in this Chapter can be found in Section 3.3.3. Here, we present the workflow of
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Figure 3.1:�e flowchart of the proposed CVR-CNN framework

our proposedmodel to learn global features from these primitive geometric relational features

(represented by the converted static images, refer to section 3.3.3). �eworkflow of the system

is described in Fig.3.1.
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Figure 3.2: Architecture of CVR-CNNModel

Our proposed framework is shown in Fig.3.2, the skeletal data are first converted into

static color texture images. In this proposed framework, we have incorporated several

advancements. For example, we added helpful features (e.g., displacement information of

each joint for the current frame and the previous frame) that describe the motion between

the skeletal joints. �is idea was inspired by a technique from speech recognition that

amplifies the spatio-temporal cues. �e color texture images explicitly involve both the joint

coordinates, as well as the motion and kinematic energy along with the time domain.

Moreover, aiming at speeding up the training process, our method involves a novel output
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regularization technique for the CNNmodel, which is called CVR-CNN, to help extract more

discriminative features.

�e pseudocode for the proposed pipeline is shown in following code block:

1 videos # given training and testing video/skeleton sequences
2
3 num_instance = len(videos)
4
5 for i in range(num_instance):
6 skeleton # given skeleton inputs.
7
8 # Motion calculation
9 for j in range(len(skeleton)):
10 Motion = skeleton(j+1) - skeleton(j)
11
12 # Energy calculation
13 Energy = square(Motion)
14 Image = [skeleton, Motion, Energy] # converted image matrix
15
16 Train_path, Test_path # given the train and test path
17 input = loading_data(Train_path, Test_path)
18
19 # Define the proposed model
20 outputs = PretrainedVGG(input)
21 outputs_prob = Dense(num_classes)(outputs)
22
23 # Training
24 for i in range(epoch):
25 label, features = Load_training_batch(batch_size, Train_path)
26 outputs_prob = train_one_batch(loss, accuracy, lable, features)
27 predict = argmax(outputs_prob)
28
29 # Calculate metrics for the model
30 loss = softmax_cross_entropy(label, predict) # Equation 3.5
31 loss_pos = positive_cross_entropy(label, predict) # Equation 3.9
32 loss_neg = negative_cross_entropy(label, predict) # Equation 3.10
33 final_loss = weighted(loss, loss_pos, loss_neg) # Equation 3.14
34
35 # update parameters
36 final_loss.backward()
37 train_accuracy = reduce_mean(correct_pred equal lable)
38
39 # Testing
40 if i % 5 = 0:
41 label, features = Load_testing_batch(batch_size,Test_path)
42 test(loss, accuracy, lable, features)
43
44 # Calculate testing metrics
45 test_accuracy = reduce_mean(correct_pred equal lable)

Code block 1: Convert primitive geometric relational features into images and trainCVR-CNNmodel
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�e hyperparameters that can be tuned in the proposed framework are listed in Table 3.1.

Table 3.1:Hyperparameters for the CVR-CNNmodel

parameter Description Default value

Image-size size of imput images 224× 224
lr start learning rate 0.001

Epoch number of epoches for training 50

batch_size number of training instance for each batch 64

Input premitive geometric relational features (motion, energy)

outputnodes equal to the target classes of actions

3.3.2 Novel input representation of actions

Motivated by [90] and [124], we propose a novel type of features to encode the skeletal motion

contained in a skeleton sequence. �e main limitation of the traditional optical flow for RGB

video is theexpensive computational costs,while the limitationof theexistingapproaches [66],

[114] based on the skeleton data is that theymainly consider the relationship between the joints

of a human body in a single frame. In order to encode the temporal information, our approach

takes the representative motion and kinematic energy that are derived from the consecutive

frames into consideration, which explicitly inputs the motion patterns, represented as PGFs,

of each joint andbodypart into the subsequent classifier. �edevisedgeometric andkinematic

features are demonstrated in graph (a) and graph (b) of Fig. 3.3, the details of these features

will be presented in the following sections.

b

t-1 t

a c

Part1

Part2 Part3

Part4 Part5

Figure 3.3: Example of typical layout of skeleton data (a), motion features (b) and body-part
representation strategy
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3.3.3 Encoding primitive geometric features

Du et al., [111] firstly proposed to encode a sequence of joint coordinates into a static image.

However, due to the noise data obtained by the pose estimation algorithms, the converted

static image, in turn, became noisy in a complex environment. �is method emphasized the

salient change of some of the joints. Taking as an example, an action "wave left hand", we

need to paymore attention to the left hand, and not to all of the frequent slight movements of

the other joints. As a result, we propose to combine the joint coordinates, their motion and

energy features as the input representation, which simultaneously encode the

spatio-temporal features that exist in the skeleton sequence into one static color image.
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Figure 3.4:�e process of conversion from skeleton data to temporal kinematic image

representation

As shown in Fig.3.4, for a specific skeleton sequence I, which consists of F frames, and

each frame includes N joints, the nth joint of the fth frame can be formulated as

Jfn = (Jfn,x, J
f
n,y, J

f
n,z), where f ∈ (1, ..., F) and n ∈ (1, ...,N). From Fig.3.4(c), it can be

seen that each coordinate is eventually mapped to a colour channel. �e value of N and the

accuracy of the joint coordinates are determined by the motion capture system, pose

estimation algorithms or the depth information obtained by the depth camera. Fig.3.3(a)

shows a popular joint configuration. In order to simplify the problem, we adopted one typical
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layout of skeleton, with 20 joints in each frame, to demonstrate the calculation of our

proposed primitive geometric features. Pseudo code block 2 provide more details for this

process.

1 # arrange the skeleton data according to the predefined joint order (body
part representation strategy, shown in Fig.3.3(c))

2 skeleton_sequence
3 skeleton_sequence = rearrange_joints(skeleton_sequence, Joint_Order)
4
5 # rotate the skeleton sequence relative to the right and left hips(

optional step)
6 # RHip,LHip indicate the joint coordinate of the right hip and left hip
7 skeleton_sequence = rotate_ske(skeleton_sequence,RHip,LHip)
8
9 # interpolate points between adjacent joints(optional step)
10 skeleton_sequence = interpolate_ske(skeleton_sequence,RHip,LHip)
11
12 # normalized skeleton sequence
13 skeleton_sequence
14
15 image = []
16
17 for frame in range(len(skeleton_sequence)):
18 for joint in range(N) # N = len(frame), number of joints
19 x, y, z = skeleton_sequence[frame][joint]
20 r, g, b = x, y, z
21 image[frame][joint] = r, g, b
22
23 output_image = imresize(image,[224,224]);

Code block 2: Represent geometric features with static RGB images

We followed the configuration of [111], and divided the human body into five parts, such as

Trunk, LeftArm, RightArm, LeftLeg, RightLeg, as illustrated in graph (c) of Fig.3.3. As shown

in Equation 3.1,
~Part(i)M indicates the displacement of joints in body part i from current

frame to the next frame, which can be extended to the angle-based features and the

distance-based features that will be described in detail in Chapter 4. In this Chapter, we only

utilize the basic joint coordinates as the geometric features and their derived motion and

energy features. �e motion-based features indicate the variations of the basic joint

coordinates between the consecutive frames, whereas, the energy-based features roughly

accounts for the representative energy exerted by the actor within a fixed time period. We

will detail the calculations of primitive geometric features and their derived motion and

energy features in the following sections. �e converted static color image can be denoted as

the followingmatrix, I:
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I =
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(3.1)

where each colour pixel corresponds to a coordinate in the skeleton representation.
~Part(i)J

corresponds to joint coordinates;
~Part(i)M corresponds to motion-based features;

~Part(i)E

corresponds to energy-based features.

3.3.3.1 Representativemotion

Human action representations do not only depend on the position of the limbs at the current

timestep but they also rely on the previous positions at timestep-1. Normally, if we want to

describe the state of a moving object, we usually present the speed and the direction of that

object. For example, if we describe a running human, we need to give both the speed (km/h)

and direction (e.g., left to right). Similarly, in this Chapter, as we describe a human’s action,

we also need to describe both the velocity and the motion direction of the joints, because

different joints have a different velocity as a human takes different actions, and the direction

will also vary. For example, we define the direction of the motion of the joints by measuring

the displacement between the corresponding joints in consecutive frames, which can be

calculated by the following formula:

φn,f = (Jfn,x − J
f−1
n,x , J

f
n,y − Jf−1n,y , J

f
n,z − J

f−1
n,z ) (3.2)

whereφn,f indicates thenth joints’ direction in the fth frame relative to the previous frame,

and (Jfn,x, J
f
n,y, J

f
n,z) is the joint’s coordinate of thenth joint in fth frame.
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3.3.3.2 Representative kinetic energy

Human actions are characterized not only by themotion direction, they are also characterized

by the energy, or speed when the human finishes one specific action. For instance, we define

the kinetic energy for all of the joints by using the corresponding joints’ coordinates in the

consecutive frames with the following formula:

Efn = k(vfn)
2 =

1

∆t2
k

∣∣∣∣Jfn − Jf−∆fn

∣∣∣∣2
=

1

∆t2
k
∑

p=x,y,z

(Jfn,p − Jf−∆fn,p )2

=
1

∆t2
k

{
(Jfn,x − J

f−∆f
n,x )2 + (Jfn,y − Jf−∆fn,y )2

+ (Jfn,z − J
f−∆f
n,z )2

}
(3.3)

where Efn is the representative kinetic energy, k can be treated as the weight of the person,

which is a constant coefficient, for simplicity we set k = 1. ∆t = ∆f × ( 130), where ∆f is

an integer number, 1/30 is the frequency, which is different for each dataset. Different body

partswill havedifferent energieswhenhumansperformdifferent actions. For example, Fig.3.5

shows the variation of one joints’ kinetic energy, e.g., the Ankle, for two typical actions: "Kick"

and "Run slowly".

After computing all the aforementioned geometric features, we then converted the

obtained matrix I, refer to formula (3.1) , into a color texture image using a colormap

function. In this work, we used the simplest colormap function:

Pfn = 255 ∗ pf
n−min(p)

max(p)−min(p) . Lastly, we resized the converted images into fixed-size of

images, e.g., 224 × 224 images, which will be used as input of our subsequent CNN model.

�is operation is essential because the shape of the input image should conform to the input

requirements of the VGG model. �e whole process is demonstrated in Fig.3.4 and several

converted images of different features are shown in Fig.3.6. Each of the features is explained

in the following paragraphs.

As shown in Fig.3.6, ten different Primitive Geometric Features (PGFs) for four different

actions are extracted from the skeleton sequence data. PGF1 represents the skeleton images
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Figure 3.5: Variation of kinetic energy of joint "ankle" for two actions: "kick" and "run slowly"
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Figure 3.6: Image representation of ten different PGFs for four actions in NTU RGB+D.�e

code for calculating the above 10 features can be accessed in this link:

https://gitlab.com/jren2019/skb_cvr_cnn/blob/master/calSOF.m

converted from the original skeleton data with normalization. PGF2 represents the skeleton

images converted from skeleton preprocessing with a global rotation matrix, in order to

eliminate the effects of view variations. Shown as graph (a) of Fig.3.7, we transformed the

joint coordinates of a skeleton sequence into a new space, which use the ’hip center’ as the

origin. �e z axis of the new space is the same as the orientation of the torso. �e direction of
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Figure 3.7: Rotation and interpolation of features: PGF2 (left figure) and PGF3 (right figure)

y is obtained by the following formula:

y = argmin

y
arccos (y, n)

s.t. y ⊥ z
(3.4)

where n is the direction pointing from the "left hip" to the "right hip". �e x axis can be

derived by x = z × y. �e converted skeleton sequence, which used the "hip center" as the

origin, is view invariant. For PGF3, we introduced a novel approach to augment the converted

image, interpolating several points between adjacent joint coordinates to increase the

dimension of converted images. For example, shown as graph (b) of Fig.3.7, the limb

connected with Joint 6 and Joint 15 are inserted 5 points using the interpolation algorithm. If

we leave it to the image resize (scaling) function, and not perform the interpolation between

the adjacent joints (by adding more points between joints), then the image resize function

will basically perform interpolation on the unrelated joints; thus, introducing noise.
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Specifically, if we arrange the joint coordinates as shown in Fig.3.7 and Fig.3.4, the image

resize function will insert some pixel values between joint 1 and joint 5, joint 8 and joint 9,

joint 12 and joint 13, joint 16 and joint 17. However, all these inserted pixel values can be

treated as noise, because they cannot represent meaningful information of human pose; that

is, there are no correlations between the inserted pixel values and the physical coordinates of

the limbs.

For PGF4, we adopt both the rotation and interpolation approach to extract the skeletal

images. �e remaining 6 skeletal images are derived from PGF4, which are the result of the

different combinations of the original feature, such as motion and energy features.

Concretely, "PGF4-M" and "PGF4-E" indicates the motion and energy features based on the

skeleton coordinates. "PGF4+PGF4-M" represents the concatenation of the extracted "PGF4"

feature and "PGF4-M" feature together to represent the whole sequence. While the

"PGF4+PGF-E" indicates the combination of the "PGF4" feature and the "PGF4-E" feature

together to represent the skeleton sequence. Different discriminative characteristics of

different actions are reflected by the texture pattern of the converted images and the

temporal dynamics are reflected by the color patterns along the time axis.

3.3.4 Correctness-Vigilant Regularized CNNModel

As stated in Section 3.3.2, a vast wealth of techniques have been used to regularize the

training of the Deep Neural Networks (DNN). [122] proposed perturbing the negative

log-likelihood of the correct prediction by assigning a wrong label randomly for image

recognition to produce a larger cross-entropy, which is a kind of method for generating a

broader, more robust discriminative knowledge from the training patterns by using the

hidden knowledge learned by the neural network. In this work, we propose using both the

correct and wrong prediction probabilities simultaneously as two kinds of extra supervisory

signals to accelerate the training convergence speed. Szegedy [125] argues that putting all

probability on a single class in the training dataset is a symptom of overfitting. �e proposed

regularizer aims at mitigating this problem, making our network better at generalizing

beyond the training data.

�e output layer of the CNNmodel defines the score function f : RD → RK that maps the

extracted features to the confidence scores for each class. �e softmax or 1 − of − K
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encoding method is a standard scheme for the deep learning-based classification problems,

where K indicates K distinct categories, at the top layer, to generate the confidence scores.

For example, the database UTD-MHAD includes 27 possible distinct actions, so the softmax

layer has 27 nodes denoted by pi, where i = 1, ..., K. �e value of pi defines a discrete

probability distribution, which satisfies

∑K
1 pi = 1. �e output of nodes in the penultimate

layer can be represented as h, which is connected with the last softmax layer byw. �erefore,

the sum of all the input into a softmax layer, as indicated by z, is:

zi =
∑
k

hkWki (3.5)

�en we have the softmax function, which gives the probability computed for class i:

pi =
ezi∑K
k e
zj

(3.6)

�e predicted class l̂would then be:

l̂ = argmax

i

pi = argmax

i

zi (3.7)

therefore, a neural network produces a conditional distribution pθ(y|x) over Class y given an

input x through a softmax function. �e cross-entropy of this ground-truth distribution is

commonly defined as:

C0 = −
1

n

∑
i

K∑
j

yj log(pθ(yj|xi)) (3.8)

where K represents the number of classes for the target task, the yj is the one-hot encoding of

the target class label for each example, andn is the batch-size.

Apart from the above commonly used ground-truth cross-entropy, we now define the

output-positive cross-entropy and the output-negative cross-entropy as formula 3.9 and 3.10.

Equation C1 corresponds to the positive log-likelihood of the correct prediction, where

yj = yi, equation C2 corresponds to the negative log-likelihood of all of the wrong
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predictions, where yj 6= yi. In these two equations, yi is the index of the target class label.

C1 = −
1

n

∑
i

K∑
j,yj=yi

pθ(yj|xi) log(pθ(yj|xi)) (3.9)

C2 = −
1

n

∑
i

K∑
j,yj 6=yi

pθ(yj|xi) log(pθ(yj|xi)) (3.10)

According to the information theory [126], the distribution of both the correct and incorrect

predictions together influences the generalizability of the trained model. �erefore, we

experimented with these two equations to comprise the regularization term used during the

training process, which leads to our proposed objective function as:

L′(θ) = C0 + (αC1 + βC2) (3.11)

A common problem that occurs while training a classifier using the standard objective

function, C0, is that the confidence levels computed for the patterns in the training set are

much larger than those found in the testing dataset. In order to increase the confidence levels

of the classifiers in the training process and maintain the training stability, we integrate the

proposed regularizers into the standard log-likelihood loss function. Additionally, in order to

strengthen the supervisory signal whenever C1 or C2 considerably diminishes, we employ a

thresholding function to the output regularizers. As shown in Fig.3.8, the regularization

restricts the variation of positive and negative cross entropy in the shaded area, which can

improve the accuracy and the generalizability of the model at the same time. In addition, this

regularization is designed to help to speed up the training and help to extract more

discriminative features from the training dataset.

Furthermore, in order to make the trained model more robust, we add another

regularization item once the training process is near the final iterations. We assume that the

ground-truth distribution of each class is a uniform distribution, P = [P1, ..., Pk, ..., PK].

Next, we randomly generate a number w ∈ [0.1, 0.2], and then we get the uniform

distribution asWk = w
K . �erefore, to calculate the smoothed-out probability distribution of
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Figure 3.8: Regularized cross-entropy

one example belonging to different classes is:

P =

[
P1, ..., Pk, ..., PK

]
= (1−w) ∗

[
y1...yk...yK

]T
+Wk (3.12)

With this hypothesized distribution, we applied the discrete KL-divergence formula [127] to

compute the loss, which can be represented as:

D(P||Q) =
∑

P(i) log(
P(i)

Q(i)
) (3.13)

where Q(i) is the output prediction of the model for the given input example to each class.

Adding this item to the previous objective function leads to the loss function that can be

represented as the following formula:

L(θ) = L′(θ) + γD(P||Q)

= C0 + αC1 + βC2 + γD(P||Q)
(3.14)

In general, this customized loss function helps to provide more insights into the

generalization capability of the classifier during training. As a result, it can also help to boost

its performance on the testing dataset. �e weight parameters in 3.11 and 3.14, α,β, γ,

indicate the weights that are used to balance the components of the loss function. f
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3.4 Empirical testing and analysis

3.4.1 Datasets

We evaluate the proposed primitive geometric relational features and the regularized CNN

model on several widely used action recognition datasets [20], [27], [128] . All the featureswere

derived from the skeleton data provided by the database.

UTD-MHAD dataset: In terms of the UTD-MHAD dataset [27], we followed the evaluation

configuration proposed by the author of this dataset, using 431 examples of the first 5 actors

as the training dataset, and the remaining 430 examples of the remaining 5 actors are used

for testing.

Northwestern-UCLA dataset: �e Northestern-UCLA dataset [128] provides skeleton data of

10 action categories, 1494 action sequences in total, which are obtained by using 3 Microsoft

Kinect v1 cameras simultaneously. It is designed to investigate the variation of different

actions from different viewpoints.

HDM05 dataset: �e HDM05 dataset is the largest skeleton dataset that was acquired by

using Optical Motion Capture System, including 130 actions with 2337 videos in total. �e

actions in this dataset are performed by 5 non-professional actors, and each frame of the

skeleton data consists of 31 joints. Due to the fact that this dataset is captured from the

MoCap system, the produced skeleton includes fewer outliers compared to the outputs of

pose estimation algorithms, and the joint coordinates in this dataset are much more

accurate.

NTU RGB+D dataset: �e NTU RGB+D dataset [20] serves as the latest and the most

challenging dataset for HAR, which contains 60 action classes. All of the action instances

included in this dataset can be generally divided into three categories, including the

health-related actions, the daily actions and the mutual actions. Each action instance

contains a sequence of 3D locations for 25 skeleton joints. �ere are 56880 skeleton sequences

in total in this dataset, captured by 3 Kinect cameras, and an extra challenge is posed by the

significant intra-class and view point changing for this dataset.
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3.4.2 Implementation details

�e pre-trained CNN models provide an efficient solution for low-resource problems, which

can help to boost up the performance on small dataset. �ere are somewell knownpre-trained

CNNmodels available, such as, the VGG [129], the Xception [130], and the Resnet [131]. Due to

the expensive computational cost of the Xception and the Resnet model, we adopt to re-train

the parameters of the pre-trained VGGmodel. For the training of the CNNmodel, theweights

of the lower layer in theCNNare learnedbybackpropagating thegradients fromthe last output

layer. In order to implement this, we need to differentiate the proposed regularization items

with respect to the net input of the top layer. HerewedenoteL0 = C1+C2, which is the cross-

entropy for all the classification results. Denoting the ith logit by zi, the partial derivative of

L0 with respect to zi can be denoted as the following equation, see 3.15 below:

∂L0
∂zi

=−

∂
K∑
j=1

yj logyj

∂zi

=yi
(
− logyi−C0

) (3.15)

From this point on, the backpropagation algorithm is same as the standard Softmax-based

deep learning models. Notably, the gradient of our proposed item, the positive cross-entropy

and the Negative cross-entropy, with respect to the logits can be accomplished by the deep

learning toolkits (e.g., Tensorflow, Pytorch) automatically.

3.4.3 Results and Comparisons

�e summarized results and a comparison with the related literature on four challenging

datasets are listed in Table 3.2. We selected several widely reported algorithms in the recent

literature as our baseline system, such as, [132], [133], [134], [124]. In contrast to our existing

work, our proposed approach achieves competitive results on all four datasets. �e

performance on both UTD-MHAD dataset and Northwestern-UCLA dataset is improved by

adding the motion features to 89.9% and 87.9% respectively.
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Table 3.2: Performance comparison for CVR-CNNmodel

Features UTDMHAD Northwestern UCLA HDM05 NTU RGB+D

CV CS

CNN + JTM [135] 85.8 - - 75.2% 73.4%

CNN + JDM [135] - - - 82.3% 76.2%

CNN + Optical spectra [136] 86.9% - - - -

Deep RNN [20] 66.1% - - - -

3D-HoTMBC [137] 84.4% - - - -

Cov3DJ [138] 85.6% - - - -

CNN + JDM [132] 88.1% - - - -

HON4D [64](reported by [139]) - 39.90% - - -

SNV [140] - 42.80% - - -

AOG [128] - 53.60% - - -

HBRNN-L [141] - 78.52% - - -

LARP [71](reported by [139]) - 74.72% - 66.95% 61.37%

Actionlet ensemble [142] - 76.60% - - -

HOPC [133] - 80.0% - - -

Res-TCN [124] - - - 83.10% 74.30%

SkeletonNet [134] - - - 81.16% 75.94%

SO-Feature [143] - - 71.31% - -

Lie Group SE[144] - - 75.78% - -

Seq2Img[145] - - 83.33% - -

w/o-cvr w-cvr w/o-cvr w-cvr w/o-cvr w-cvr CV-w/o-cvr CV-w-cvr CS-w/o-cvr CS-w-cvr

PGF1 89.6% 89.8% 74.6% 76.7% 93.0% 93.3% 82.5% 83.5% 70.3% 73.2%

PGF2 87.0% 87.0% 85.0% 87.0% 93.1% 93.5% 84.2% 85.4% 71.9% 74.2%

PGF3 85.9% 89.1% 79.6 % 78.3% 90.0% 91.4% 82.0% 83.2% 71.4% 75.0%

PGF4 88.8% 89.7% 85.0% 86.9% 88.9% 91.1% 84.3% 85.9% 76.6% 79.1%

PGF4-M 80.7% 85.0% 86.4% 84.7% 85.9% 86.5% 77.6% 79.6% 67.7% 70.1%

PGF4-E 77.0% 77.8% 85.2 % 87.6% 81.6% 83.5% 63.6% 68.8% 52.8% 59.0%

PGF4+PGF4-M 83.5 % 89.9% 87.3% 87.9% 88.9% 89.5% 83.8% 84.7% 75.1% 77.4%

PGF4+PGF4-E 80.0 % 79.5% 84.9 % 86.1% 86.7% 88.5% 82.9% 83.6% 74.8% 76.9%

PGF4-M+PGF4-E 88.9% 88.1% 83.3 % 86.4% 85.7% 86.6% 78.4% 79.5% 67.6% 69.2%

PGF4+PGF4-M+PGF4-E 85.8 % 83.2% 87.3% 86.6% 87.0% 91.0% 82.6% 83.2% 73.7% 75.8%

�e proposed approach can achieve more accurate results on the NTU RGB+D dataset by

following the two standard evaluation protocols, and the result indicates that the proposed

approach can effectively distinguish the actions from large-scale dataset. From the results

presented in Table 3.2, we can argue that the skeleton, our proposed motion and energy

features can effectively characterize the human actions.
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3.4.3.1 Result of UTD-MHADdataset

For the UTD-MHAD dataset, the cross-subject evaluation protocol is adopted [27], a total of

431 video samples that were performed by the first five actors are used for training and the

rest 430 examples of the last five actors are kept for testing. We compared our results with

[132], [138], [20] and [135], and our proposedmodel achieved the highest recognition accuracy

at 89.9%, taking the "PGF4+PGF4-M" as the input feature. All of the other feature combinations

also achieved excellent results on this dataset. �e confusion matrix in Fig.3.12 demonstrates

that different features

PGF4 PGF4-M

PGF4-E PGF4+PGF4-M (produce best results)

Figure 3.9: Convergence rate curves of training for different input features on UTD-MHAD

have different discriminative abilities for each action that are included in this dataset. From

Fig.3.12 , we can observe that the confusionmatrix with our proposed regularizer can achieve

a better classification performance than its opposite. In order to investigate the effects of the

proposed regularizer on the training process of the CNN model, the convergence rate curves

and loss curves for several different settings are shown in Fig.3.9.

It is easy to find that the model with our proposed regularizer converges much faster and

stops training earlier than the opposite configuration, training without proposed regularizer.

It should be noted that the loss of themodel with the correctness-vigilant regularizer is larger
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than the loss of the model without the correctness-vigilant regularizer, while achieving a

better recognition accuracy. �is phenomenon proves that the regularizer can help to train a

robust model, which can achieve better performance on the testing dataset. �e confusion

matrix of the best combination features "PGF4+PGF-M" is shown in Fig.3.10, from which we

can see that the motion feature has effective discriminative ability. �is result again verified

the effectiveness of our proposed regularizer.
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Figure 3.12: Confusionmatrix for three different features on UTD-MHAD (Left: without
correctness-vigilant regularizer, Right: with correctness-vigilant regularizer)
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3.4.3.2 Result of Northwestern UCLA dataset

For the Northwestern UCLA dataset, we adopted the evaluation setup that was proposed by

[76], the samples were captured by the third cameras are used as the testing dataset, and the

samples of the first two cameras are used for the training dataset. As shown in Table 3.2, the

results of our proposed features and regularizer have increased to 87.9%, an increase of 7.9%

compared with [133]. �e different discriminative ability of our proposed features is more

evident on this dataset and the effectiveness of our proposed regularizer is more significant

on this dataset. Our proposed approach greatly improves the performance on this dataset.

�e confusionmatrix of the most effective feature combination "PGF4+PGF-M" is shown in

Fig.3.11. As can be seen, most of actions are well distinguished by both test approaches, but

the model trained with the proposed regularizer can achieve a better performance than the

opposite one. �e training and testing accuracy and loss curves for the Northwestern-UCLA

dataset are shown in Fig.3.13. As expected, the proposed method can efficiently prevent

overfitting problem, achieving better recognition accuracy with higher loss and this fact can

also prove that the trained model with our proposed regularizer is robust on the testing

dataset.

3.4.3.3 Result of HDM05 dataset

�e joint coordinates contained in this dataset are much more accurate than the other

datasets that were obtained with the pose estimation algorithms, because this dataset is

captured by utilizing the optical motion capture system. Some actions in this database are

very similar, which should be categorized into the same category. For example, the "jogging

starting from air" and "jogging starting from floor" should be the same class "jogging". We

followed the strategy of [146] to recategorize the actions into 65 classes. Following the

experimental setup of [145], we split randomly half of the sequences for the training and

those that were left for the testing. As shown in Table 3.2, we achieved better results

compared with [145] on this dataset.
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PGF4-M

PGF4-E PGF4+PGF4-M (produce best results)

PGF4

Figure 3.13: Convergence rate curve of training for different features on Northwestern UCLA

3.4.3.4 Result of NTURGB+Ddataset

�e NTU RGB+D dataset is currently the most challenging dataset for action recognition. It

includes 56880 sequences, among of which 448 sequences are mixed with one or two people

appeared in the video. �e standard evaluation protocols proposed in [20], the cross-subject

(CS) evaluation and the cross-view (CV) evaluation, are adopted in our experiments. As

shown in Table 3.2, ourmodel can achieve competitive results on the cross-view experimental

protocol, which indicates that our proposed primitive geometric relational features are

suitable for modelling the temporal dynamics of actions captured in different viewpoints for

this challenging dataset. �e convergence curve for both cross-view evaluation strategy and

cross-subject evaluation strategy is shown in Fig.3.14. Again, the regularizer performs

consistently well to speed up the training process and improve the generalizability of the

trained model. �e confusion matrix for the cross-subject evaluation with our proposed

model is shown in Fig.3.15.
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PGF4 (CS evaluation) PGF4 (CV evaluation)

Figure 3.14: Convergence rate curves of training for best results on NTU RGB+D
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Figure 3.15: Confusionmatrix for best result on NTU RGB+D

53



3.5 Summary and contributions

3.5 Summary and contributions

In this Chapter, we verified the effectiveness of our proposed framework and features for

human action recognition. In summary, we can identify threemajor contributions as follows:

1) We introduced a novel temporal kinematic image representation for the skeleton-based

motion and energy features. �is approach can effectively embed a rich set of information

consisting of the joints’ coordinates and our proposed primitive geometric relational features

into one static image to characterize the human actions.

2)�eresulting classifier trainedwith our proposed correctness-vigilant regularizer performs

consistently well on several benchmarking datasets. �e proposed regularizer helps to speed

up the training process and improve the generalizability of the trained model on the testing

dataset.

3) We demonstrated that the proposed motion and energy features can also characterize the

human actions, which works very well on small datasets. �e performance of the motion and

energy features will degrade on large datasets.
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Chapter 4

Spatio-temporal Kernel based Temporal

Convolutional Network forHuman

Action Recognition

In the previous Chapter, we converted the skeleton sequence classification problem into an

image classification problem, which is not the most natural way for sequential signal

processing since it cannot model the temporal dynamics very well in the temporal domain.

Also, except for the previous introduced geometric features in Chapter 3, we extended the

research to design several novel interpretable geometric features based on the skeleton

sequence data. �e proposed features are instinctively a sequence of signals, and the RNN

model was created for modelling the sequential dynamics. �erefore, this Chapter explores

the performance of our proposed spatio-temporal kernel-based temporal convolutional

networks with the extended geometric relational features as input.

4.1 Motivation

Even though action recognition is an extensively researched topic, it is still a challenging

problem in realistic applications. In order to adapt to the challenges posed by real-world

scenarios, an ideal human action recognition system should be able to generalize well despite

the presence of large variations within a class of action and it should be able to uniquely

distinguish the actions that belong to different classes. For a multitude of action classes to

consider, the classifier will find it more difficult to uniquely identify classes from one to

another, since it is more likely to find highly indistinguishable classes. Aiming at addressing



4.1Motivation

this problem, we extend the idea of Chapter 3 and propose some geometric features for

action analysis from the skeleton sequence, and then an advanced recurrent framework is

utilized to extract the discriminative features from the raw input.

Inspired by the excellent ability of the CNNmodel in extracting the spatial features from the

input image with multiple convolutional kernels, and the ability of the RNNmodel in dealing

with the variation in the length of the sequential data, the proposed framework in this Chapter

incorporates a spatio-temporal kernel into the convolution operation, to learn the dynamics

of the motion in the whole sequence and to learn the dependency relations in a relatively local

rangeof features, aswell as the interdependency relationsbetween the jointswithinone frame.

Most of the traditional approaches for skeleton-based action recognition utilize

descriptors that are carefully handcrafted [22], [147] to represent temporal dependencies.

However, the drawback of using these existing engineered features is that they are

inadequate for use in complex scenes due to their limited discriminability [148]. Moreover, it

is inevitable that measurements coming from skeleton data acquisition systems are usually

plagued with noise and inaccuracies. As a result, relying on the acquired noise-infested

skeleton data without de-noising first, and without advanced learning mechanisms to

extract temporal geometric and kinematic features, it is hard to produce accurate action

recognition classifiers. �e pose variations that were presented during a person perform a

specific action can be described by the variations of some geometric features, such as angles

between adjacent limbs. An advanced neural network should be designed to extract these

features from the raw joint coordinates. However, there is no such kind of neural network

model available for the skeleton-based action recognition. In order to utilize the

representation ability of these geometrical features for skeleton-based action recognition

and take advantage of the learning ability of neural networks, we proposed to employ several

geometric features as input for the proposed SKB-TCN model. �e explicit geometric

features for the SKB-TCN model is promising for improving the recognition accuracy and

reducing the pressure for representative features extraction in the training process. �is

Chapter investigates the performance of a novel recurrent neural network with explicit

geometric features as inputs for skeleton-based action recognition.
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4.2 Relatedwork

It is evident in the literature that activity recognition with the aid of multiple sensing devices

strategically fixed in the environment to capture multiple features simultaneously is one

promising research direction, yet is still lacking one ideal model that can mine the

relationship between a consecutive frames of signals in the spatial and temporal domain

simultaneously. In this section, we provide an extensive review on the different geometric

features and signal encoding methods that are suitable for the skeleton-based action

recognition, used by recently developed algorithms. Next, we introduce the LSTM-RNN

based approaches, which are closely related to the proposed approach. Lastly, the attention

mechanism techniques used by DNN based technologies are reviewed, because our model

can also be treated as an attention-basedmodel.

4.2.1 Geometric relational features based on 3D skeleton

While undergoing a physical activity, the skeletal and muscular systems should work

together, producing movements. �e movements of human body can be simply represented

as the movement of a sequence of skeletal poses, formed by a hierarchy of interlinked joints

and bones, positioned at different angles, possessing distinct kinematic energies. Previous

skeleton-based approaches for action recognition proposed various methods for extracting

discriminative information from the raw skeleton data. �ese approaches are specifically

detailed and reviewed in Chapter 2. In this chapter, we will review the skeleton based

features from a more high-level perspective. �e skeleton-based feature extraction methods

can generally be categorized into three groups, which includes the joint-based features, the

mined joint-based features and the dynamics-based features.

1) Joint-based features aim to capture the relative body joint locations. For example, [111]

concatenated together all the joints coordinates, and then transformed them into one static

image, holistically representing one complete action sequence. In [149], after examining the

features using a boosting algorithm, it was inferred that the pairing of the features between

the current frame and historical frames is useful for subsequent action recognition. In

Muller’s work [150], various statistical features based on geometric features were introduced

for efficient motion captured data retrieval. All of these features were all carefully
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predefined, considering the relative position, angle and speed of the pre-selected body parts

(e.g., torso, hand, elbow, legs, foot, and so forth.). However, they did not consider adding

features that detail the geometric relationship of joints within one frame or between

different frames explicitly.

2)�e mined joint-based features rank the different joint-related features, e.g., the mean

or variance of the joint angles, and so forth. to capture the most discriminative body parts for

different actions. For instance, [113] examines a temporal window to generate an

arrangement of important joints. �ey claim that the features are highly intuitive and

interpretable. Seidenari et al. [151] breaks down the original 3D skeleton sequence into

kinematic chains, and thenmap the joint positions into a locally defined reference system. In

turn, they utilized an approach called the multi-part bag-of-poses, which paves the way for

the alignment of the different limbs using a variant of the nearest-neighbor algorithm.

3)Lastly, the dynamics-based features aimatmodeling the evolutionprocess of the dynamic

features,whichareobservable fromeither a subset of joints, or fromtheentire set of joints. For

example, [152] utilized the Grassmanian manifold learning approach to map the 3D skeleton-

based features into its subspaces so as to improve the performance of the action recognition

system based on the extracted features in the subspaces.

In summary, even though we can mine rich information from the three kinds of

descriptors mentioned above, most of them cannot describe the local variation of the

skeleton sequence very well, so they cannot derive very good representation globally for the

whole sequence. �ey either rely heavily on the learning model to learn the representative

features or neglect the native feature of the skeleton sequence, and rarely consider the local

range features of actions. In this present Chapter, extending the idea of Chapter 3, we utilize

a set of highly intuitive geometric relational features to work together with a novel

spatio-temporal kernel to learn geometric and kinematic representations for recognizing

actions. �is is motivated by the feature extraction process of speech processing technique,

which extracts a feature vector from a window-sized frames. �e proposed spatio-temporal

kernel can undertake this work efficiently.
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4.2.2 Local signal encoding strategies for action recognition

Contextual information modelling for different activities is the most critical component for

activity analysis. Before feeding the extracted features into a learning model for further

analysis, the raw signals should be processed properly into the type of the models’ input. For

skeleton-based action recognition, all the instances in the segmented action recognition

dataset usually provides a skeleton sequence and a corresponding label. �e target for action

classification is to classify the provided video or skeleton sequence into its correct label. In

general, there are two popular approaches to deal with this problem in the research

community: 1) encode the variation of actions into a static image; 2) treat it as a

time-dependency signal. �e first approach convert the skeleton pose variation in one video

sequence into a static image, which is introduced in Chapter 3, using the projection of

coordinates on three orthogonal planes for action classification. �e second approach

instinctively treats the skeleton sequence or its derived sequence as a time-series signal,

which contains the variation of joint coordinates or other relational attributes, such as our

proposed various geometric features, and their derived motion and energy features.

(a) draw x (b) draw tick

(c) hammer (d) foward punch

Figure 4.1: Actions instances with similar variation of skeleton sequences

For both cases, in the skeleton data preprocessing, the normalization process typically

involves converting all of the data sequences so that they will all be of the same length for

batch processing. To this end, some sequences will be shrunk while others will be expanded

to fit the normalized length. In other words, the length of the sequence should perfectly align

with the exact number of steps that the RNN model will be executing for. In the case of a

sequence expansion, the original sequential data is typically padded with repeating frames so

as to increase the sequence up to a target length. However, this introduces temporal
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information loss, as the gap between consecutive frames in the original sequence widens.

With regards to the case of sequence compression, it also brings about a similar problem,

that is, some of the patterns are lost due to frame deletions. �e loss of patterns inevitably

causes a loss of temporal information contained in the original sequence. For example,

sequences of four similar actions are shown in Fig.4.1, where it shows that the first two

frames are almost the same, and therefore we can treat these three frames as one frame;

however the traditional recurrent neural network cannot do this explicitly. So, we proposed

our spatio-temporal kernel based temporal convolutional network to address this problem.

�e arrangement of features corresponding to the joints is also critical to the performance of

the classifier. Previous works have proposed the arrangement of joints according to groups of

body parts [111] as well as arrangement of joints according to some predefined body part

traversal [153] that were proven to be effective for some datasets. However, so far, there is no

universally known and proven arrangement of joints that works well with any of the datasets.

Moreover, in principle, different actions will benefit from the involvement of the different

arrangements of joints and correlations between them.

In light of these problems, our proposed model contains a spatio-temporal kernel which

effectively serves as a pooling layer. According to the window size that is assigned to the

model, the proposed kernel takes multiple frames as input, and then outputs the extracted

features which are considerably smaller in size, filtering out all the unnecessary inputs, while

exhibiting the important spatial relationships between joints in each frame. On the other

hand, in the case of sequence contraction it is inevitable that to some extent, the original

skeleton data are altered in a way that noise is introduced, usually polluted to some extent,

therefore it is essential for the network to disambiguate them. With our proposed geometric

and kinematic features, we can preserve the core information detailing the actions, such as

the naturalness and smoothness of the movements, which can ensure that the learning

process will be consistent for all samples.

RNN-based approaches have shown to be dominant when applied to skeleton-based action

recognition. However, the existing methods typically feed on the coordinates of the joints as

inputs, without any geometric or kinematic clue. An efficient approach for improving the

accuracy of these systems is to allow the system to operate on features that are extracted from

both the spatial and temporal domains. Even though the RNNmodels are good at finding the
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temporal relationships between the features among the multiple frames, they neglect the

spatial relations in each individual frame. In this Chapter, we specifically selected a set of

simple geometric relational features for action recognition. While previous skeleton-based

models considered a priori arrangements of limbs to extract meaningful features, in this

study, we used of a spatio-temporal kernel to discover the rich set of relationships between

the joints and limbs; thus addressing the weaknesses of the existing approach.

4.2.3 Skeleton-based action recognition

In recent years, the 3D skeleton-based action recognition has become one of the most

popular approaches for HAR, because of the advancement of the skeleton estimation

algorithms. Some attempts have applied the RNNmodel into action recognition successfully

and the RNN-based models have shown great advantages in capturing the temporal

dynamics in sequential skeletons. Recently, Du et al. [111] and Zhu et al. [154] successfully

adapted the RNN model for the task of action recognition. Du et al. [111] are the first

researchers who devised a hierarchical RNN model for skeleton-based action recognition, in

which each frame of the skeleton data is divided into five parts according to the human body

structure and then each part is fed into five independent recurrent neural networks. �e

outputs of the recurrent units in the five RNN models are then concatenated together in the

next succeeding higher recurrent layer. �e resulting concatenated features are then used as

the input for the next recurrent layer, until all of the features are fused together taking into

account all of the body parts. Lastly, the computed features are then fed into a classifier layer

(softmax). In contrast, Zhu [154] proposed a fully connected deep LSTM network to discover

the co-occurrence movements for human body parts. �is work used the hidden states of the

recurrent network as the extracted features, which relies heavily relies on the long-term

dependency learning ability of the recurrent neural networks. Li et al. [155] proposed a spatial

and temporal attention model to assign different weights to the joints within each frame and

selectively extract discriminative features. A view adaptive model was proposed by Zhang et

al. [156] to process the input skeleton to adapt to the a proper observation viewpoints. �e

TS-LSTM model was proposed by [157] to capture the short-term, medium-term and the

long-term temporal dependencies as well as the spatial dependency.

Although RNNs are widely used for predicting and classifying sequential data, which are
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rarely used for extracting features from awindow’s worth of time-series data and utilizing the

hidden states or the outputs of the LSTM-RNN as discriminating features to be used as input

vectors to another layer of RNN. In this Chapter, we propose a novel strategy formitigating the

reliance of action recognition systems on the RNN’s long-term dependency learning ability.

4.3 �e algorithms

4.3.1 Extension of geometric relational features

With the general conception inmind that was proposed in Chapter 3, as shown in graph (b) to

graph (h) of Fig.4.2, we attempt to extract more interpretable geometric relational features in

the following sections, such as the distance between different joints, joint-joint orientation,

the angles between different joint-joint lines, the angles between joint-joint lines with

planes, the angles between planes, the distance between joint and joint-joint lines, the

distance between joint and planes. Following the steps introduced in Chapter 3, all of these

geometric features can derive their corresponding motion and energy representation. For

example,
~∆M_Angle is the variation of our predefined angles between consecutive frames.

~∆M_Distance indicates the variation of our predefined distance between the joints in a

single frame. While
~∆E_Angle represents the representative energy carried when the

performer finished the variation of a predefined angle from the previous pose to the current

pose.
~∆E_Distance indicates the representative energy carried once the actor has finished

the variation of our pre-defined distance between the joints from the previous frame and the

current frame.

Joint-joint displacement: �e joint coordinates change dynamically when human perform

different actions, shown as graph (b) of Fig.4.2, the orientation of joint pairs changes also. As

stated before, the jth joint coordinate of the fth frame is represented as (J
f
j,x, J

f
j,y, J

f
j,z), and

the kth joint coordinate of the fth frame is represented as (J
f
k,x, J

f
k,y, J

f
k,z). �e joint-joint

orientation can be calculated as the following equation:

φfj,k = (Jfj,x − J
f−1
k,x , J

f
j,y − Jf−1k,y , J

f
j,z − J

f−1
k,z ) (4.1)

Angles between different joint-joint lines: Commonly, the angle between the human body
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Figure 4.2: Extended geometric relational features. a) motion features derived from joint

coordinates; b) Distance between two joints; c) Angle between adjacent limbs; d) Angle

between joint-joint-lines; e) Angle between joint-joint-line and plane; f) Angles between

plane and plane; g) Distance between two joints; h) Distance between joint and

joint-joint-line; i) Distance between joint and plane

segments, shown as graph (c) and graph (d) of Fig.4.2, is used to describe the human pose.

�e variation of the angles displays different patterns for different actions. For example,

when a human brushes his teeth, the angle of the upper part of the human body changes

more frequently relative to the lower part. On the other hand, when a human runs or walks,
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the angles of the lower part change more frequently. �e angles between the segments can be

calculated as the following formula:

θn,f = cos
−1

 α · β∣∣∣∣α∣∣∣∣ ∣∣∣∣β∣∣∣∣
 (4.2)

where θn,f represents the nth angle that we pre-defined for the fthframe. Operator (·) is the

inner product of the direction vector. Operator | | denotes the magnitude of a vector. α andβ

are the joint-to-joint vector representations.

Angles between joint-joint lines and planes: In order to represent the relative position

between the human body parts with our predefined planes, we propose using the angle

between the joint-joint lines and the predefined planes to represent the relative position of

the two joints and another three joints, which is shown in the graph (d) of Fig.3.3. For

example, the angle between the joint-joint-line Jfj → Jfk and the plane J
f
a → Jfb → Jfc can be

calculated by the Equations 4.3 and 4.4. Given three joints Jfa, J
f
b and J

f
c, the normal vector of

the plane defined by these three joints can be calculated with following Equation:

~na,b,c = (Jfa → Jfb)� (Jfb → Jfc) (4.3)

�e angle between the line Jfj → Jfk with the plane J
f
a → Jfb → Jfc can be represented by the

angle between the line and the normal vector of the plane as follows:

θ(j,k)→(a,b,c) = cos
−1

 α · β∣∣∣∣α∣∣∣∣ ∣∣∣∣β∣∣∣∣
 (4.4)

whereα is the orientation vector of Jfj → Jfk,β is the normal vector calculated by formula 4.3.

Some databases provide joint angles in the motion capture files, whereas, some database do

not provide this feature, so we proposed to compute this angle based on the raw joint

coordinates.

Angles between predefined planes: �e angles between our predefined planes, shown in the

graph (e) of Fig.3.3, can also represent the human pose, the angles between the planes can

describe the relationship between a group of six joint positions. �e angle between two planes

can be represented by the angle between the normal vectors of two planes. For example, the
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angle between the plane (Jfa → Jfb → Jfc) and the plane (J
f
i → Jfj → Jfk) can be calculated by

formula 4.3 and formula 4.2 also.

Distance between different joints: �e variation of the distance between the joints can also

reflect the characteristics of different actions. As shown in the graph (f) of Fig.3.3, we selected

a set of important joints, and applied the distance between them as the input features. �e

distance between each pair of key joints can be calculated by the following formula:

Di,j,k =

∣∣∣∣Pi,t − Ph,t∣∣∣∣ (4.5)

Distance between joint and joint-joint lines:�e variation of the distance between the joints

and body limbs can also reflect the characteristics of the different actions. As shown in the

graph (g) of Fig.3.3, we selected a set of important pair of joints and joint-joint lines, and

applied the distance between them as the input features. �e distance between

(Jfi,x, J
f
i,y, J

f
i,z) and line (J

f
j,x, J

f
j,y, J

f
j,z)→ (Jfk,x, J

f
k,y, J

f
k,z) can be represented as:

Dfi−>j,k =
2Sf4i,j,k∣∣∣∣Jfi − Jfk

∣∣∣∣ (4.6)

where Sf4i,j,k is calculated by using Herons Formula.

Distance between joint and planes: In order to represent the pose of a human while an actor

performs specific actions, the relationship between one joint and a group joints is important

in terms of characterising the pose of one human at a specific timestep. As shown in the

graph (h) of Fig.3.3, we devise the concept of the distance between the joint and the

predefined planes, which can represent the relative position between one joint and the other

three joints, consisting of one plane in the space. �e distance between the joint Jfi and the

plane Jfa → Jfb → Jfc can be calculated by using the normal vector of the plane, which can be

obtained with the Equation 4.7, and the joint coordinate Jfi .

~nfa,b,c = (Jfa → Jfb)� (Jfb → Jfc) (4.7)

�e angle between the line and the plane can be represented by the angle between the line and
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the normal vector as follows:

Distancei→(a,b,c) = J
f
i � ~nfa,b,c (4.8)

In order to simplify the representation of our predefined features, we use the symbols that

are listed in Table 4.1 to represent the features that are illustrated in Fig.4.2. �e details of

these symbols are also described in Table 4.1. For all of the derived features based on the

above basic features, we use SOF_#N_M,N = 1, ..., 8 to indicate the motion features of the

corresponding basic features, and represent the energy features of the corresponding basic

features as SOF_#N_E,N = 1, ..., 8.

Table 4.1: Representation of proposed geometric relational features

# Description

SOF_#01 Joint coordinate (Jfk,x, J
f
k,y, J

f
k,z)

SOF_#02 Distance between two joints, Equation-4.5

SOF_#03 Orientation from joint one to joint two, Equation-4.1

SOF_#04 Distance between joint and joint-joint-line, Equation-4.6

SOF_#05 Distance between joint and plane, Equation-4.8

SOF_#06 Angle between joint-joint-lines, Equation-4.2

SOF_#07 Angle between joint-joint-line and plane, Equation-4.4

SOF_#08 Angles between plane and plane, Equation-4.2

4.3.2 General architecture

An ideal human action recognition system favors feature representation that is invariant to

different types of human physiques and anthropometric differences between individuals. �e

workflow of the proposed framework in this chapter is shown in Fig.4.3. With the preprocess

techniques thatwere proposed in the previous chapter, we transformall skeleton data into one

universal system, and the origin is located at the hip of the human body, and this reduces the

effect of different human body size for the extraction of geometric features.
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Figure 4.3:�eworkflow of the proposed SKB-TCN framework

�e pseudocode of the preprocess phase in the above workflow graph is shown in the

following code block.

1 # num_instance is the total number of instance that are included in the
database

2 for (i = 0; i < num_instance; i++) {
3 # ske and size are two input parameters
4 # ske is skeleton data of instance i, size is the target size.
5 ske, size:
6
7 # generate the index of selected frames randomly
8 index = rescale(len(ske), size)
9
10 # extract the selected frames from the ske sequence
11 ske_scaled = ske[index]
12 # return the dynamically generated normalized sequence
13 return ske_scaled
14 }

Code block 3:Normalize the skeleton sequence into same length

�e pseudocode of the proposed SKB-TCNmodel is shown in following code block:

1 # Variables
2 # given a window of input sequences, window-size is 4
3 input_feature
4
5 X_t-2, X_t-1, X_t, X_t+1 = input_features
6
7 # modify the output of the LSTM model with proposed algorithm
8 for i in range(4):
9 o_t_i, c_t_i = LSTM(input_feature[i])
10
11 # feature fusion, mean can be replaced with other functions
12 o_t = mean(o_t_1, o_t_2, o_t_3, o_t_4)

Code block 4:�e pseudocode for one SKB-TCN unit

Afterwehave obtained thenormalized sequencewith the above dynamic rescale algorithm,we

can then extract the predefined geometric relational features and train the SKB-TCNmodel.
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1 Train_path, Test_path # Preprocessing, extract features for each sequence
2 joint_pairs, lines, planes # predefined variables
3 ske # given one skeleton data from training or testing dataset
4 # SOF1, ..., SOF8: reffer to Table 4.2, M and E indicate Motion and Energy
5 for i in range(len(ske):
6 SOF1 = pos(i).reshape(T,-1); # joint coordinates
7 SOF1_M = pos[i+1]-pos[i]
8 SOF1_E = sum(square(SOF1_M), axix=2)
9 SOF2 = [pos[i][j]-pos[i][k] for j, k in joint_pairs] # Equation 4.1
10 SOF2_M = SOF2[i+1]- SOF2[i]
11 SOF2_E = sum(square(SOF2_M), axix=2)
12 SOF3 = Lineline_angle(pos[i], lines) # Equation 4.2, SOF3
13 SOF3_M = SOF3 [i+1] - SOF3[i]
14 SOF3_E = square(SOF3_M)
15 SOF4 = line_pl_angle(SOF2[i], planes) # Equation 4.3, SOF4
16 SOF4_M = SOF4[i+1] - SOF4[i]
17 SOF4_E = square(SOF4_M)
18 SOF5 = pdist(pos[i]) # joint-joint distance, Equation 4.5, SOF5
19 SOF5_M = SOF5(i+1)-SOF5(i)
20 SOF5_E = square(SOF5_M)
21 SOF6 = joint_line_dist(pos[i], lines) # Equation 4.6, SOF6
22 SOF6_M = SOF6[i+1] - SOF6[i]
23 SOF6_E = square(SOF6_M)
24 SOF7 = joint_planes_dist(SOF6[i], planes) # Equation 4.7, SOF7
25 SOF7_M = joint_planes_dist(i+1)- joint_planes_dist(i+1)
26 SOF7_E = square(SOF7_M)
27 SOF8 = planes_angle(SOF2[i], planes) #Equation 4.2, 4.3, SOF8
28 SOF8_M = SOF8[i+1] - SOF8[i]
29 SOF8_E = square(SOF8_M)
30 save(Train_path, Test_path) # save extracted feature from skeleton
31 }
32 # Training SKB-TCN model
33 model = SKB_TCN(input, w, s, depth, num_layers, rnn_type)
34 for i range(epoch):
35 label, input = loading_train_batch(Train_path)
36 outputs = model(input)
37 outputs_prob = Dense(num_classes)(outputs[-1])
38 predict = argmax(outputs_prob)
39 # Calculate metrics for the model
40 loss = softmax_cross_entrypy_with_logits(label, predict)
41 accuracy = reduce_mean(correct_pred equal lable)
42 # Update parameters
43 loss.backward()
44 if i % 5 = 0:
45 label, input = Load_testing_batch(batch_size, Test_path)
46 accuracy = test(input)

Code block 5: Extract predefined features for N samples and train the SKB-TCNmodel

�e pseudocode of the feature extraction and training process is shown in code block 5. �e

hyperparameters that can be tuned in the proposed framework are listed in Table 4.2.
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Table 4.2:Hyperparameters tuned in our proposedmodel

parameter Description Default value

w window size of spatio-temporal kernel 3

s stride of spatio-temporal kernel 1

type the type of recurrent cell, such as LSTM, GRU, RNN LSTM

nb_layers number of layers of spatio-temporal kernel 1

nb_hidden number of hidden nodes of spatio-temporal kernel 128

lr learning rate 0.001

length length of the normalized sequence 30

epoch epoches of training 50

batch_size batch size of training 64

input input features, which are listed in Table 4.1

4.3.3 Pipeline for action recognition

As a data-driven method for learning long-term sequential information, RNN has recently

gained attraction in the skeleton-based action recognition research community. �e Vanilla

RNN model was proposed for learning the time-dependent temporal relationships between

the structured inputs. �ey take in the sequential data (x1, ..., xt), then recursively generates

a sequence of hidden states (h1, ..., ht) and a sequence of outputs (y1, ..., yt) in the

following way:

ht = σ(Wxhxt +Whhht−1 + bh) (4.9)

yt =Whyht + by (4.10)

whereσ is an activation function, e.g., the logistic sigmoid function,which squash the value of

a vector into 0 and 1,Wxh is theweightmatrices between the input and the hidden layer,Whh

is theweightmatrices between the previous step and the current step of the hidden layer,Why

is the weightmatrices between the hidden layer and the output layer, bh, by are the biases for

the hidden and the output layer, respectively.

�e LSTM network [18] is an upgraded version of the RNN model, and the novel concept

of the gating mechanisms is integrated into the LSTM to control the information flow in the

hidden layer of the recurrent network. �e architecture of one LSTM units is demonstrated

in Fig.4.4. One LSTM units includes an input activation function, one memory cell and three
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Figure 4.4: Information flow of one LSTM node

gates. �e three gates are named as input it, forget ft, and output ot respectively. �e input

gate it controls how to update thememory cell. Aiming at avoiding the gradient vanishing and

error bellowing up problems during the training process, the forget gate ft was introduced,

which decides what is to be forgotten and remembered by the memory cell. �e output gate

ot enables the memory

cell’s state so it can control the final output state of the LSTMunit. �ese upgrades all together

enable the LSTMmodel to learn long-range temporal dependencies in the time-series problem

and capture the extremely complex patterns that exist in the input sequences. �e information

flow in one LSTM unit is controlled by the following formula:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

(4.11)

As illustrated in Fig.4.4 and Equation 4.11, the output vector of three gates are indicated as
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i, f and o respectively. �e state of the memory cell and the hidden nodes are represented as c

and h. σ represent the logistic sigmoid function. Furthermore, in order to enhance the

feature inference capability and achieve performance improvement for the LSTM model,

[158] proposed the Bidirectional LSTM (BiLSTM), which processes the input sequences from

past to future and in a reverse direction simultaneously. �is enhanced model consists of two

LSTM layers, which generate the output vectors

−→
h ,−→c and

←−
h , ←−c from two opposing

directions respectively. Subsequently, the outputs

−→
h ,
←−
h are combined together to calculate

the final output sequence for the BiLSTM layer.

yt =Why
−→
h t +Why

←−
h t + by

4.3.4 Local temporal contextual feature extraction

�e 3D skeleton sequences are composed of structured joints and data segments, where

action-specific identification patterns only appear in a short period of time. Taking as an

example, an action sequence with 10 frames depicting an action, such as "waving hands". We

can suppose that the sequences can be decomposed into frames where from first to the 5th

corresponds to a "waving left arm", while from the 6th to the 10th frame corresponds to a

"waving right arm", we can segment the two actions and treat them separately as two

different "local action features". In this work, our system extract representative motion and

energy features based on the raw 3D joints coordinates, and then feeds them into a

Spatio-temporal Kernel Based Temporal Convolutional Network (SKB-TCN) model, which is

shown as Fig.4.5. As can be viewed in Fig.4.5, this architecture can be viewed from the

bottom-up, as comprising of a hierarchy of layers, e.g., the input representation layer, the

temporal convolutional layer, the extracted features from the output layer (pooling layer).

Evidently, it is possible to construct multiple layers, repeating the same hierarchy, where the

extracted features from the previous layer serve as the input layer to another temporal

convolutional layer, followed by another output layer, generating extracted features. �is

proposed model is different from the traditional 1D convolutional recurrent neural network,

which learns n feature maps by optimizing the n designed filters from the input

representations. Our proposed spatio-temporal kernel serves as an internal operation in the

framework, which enable this framework can extract muchmore complex features.
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Figure 4.5:�e architecture of spatio-temporal kernel.

In order to extract a window of meaningful local features from the input sequences with

the proposed model, we employ a preprocessing technique to keep the number of input

frames, input features and the number of dimensions, per feature constant. Specifically, let

X represent one complete action skeleton sequence from a dataset, let N be the number of

frames of an action sequence X, and use X1, X2, ..., XN to denote N frames of the whole

sequence. X
′
1, X

′
2, ..., X

′

N
′ are the features corresponding to N

′
(N

′ ≤ N) windows with

window size as wsize. Let l denote the dimension of the extracted features per frame, the

input representation for the spatio-temporal kernel therefore is of size l × wsize. In this

case, each frame is represented as one-dimensional feature vector, with length to be l. For a

complete action sequence, we slide an inspection windoww, comprised ofwsize consecutive

frames, according to a stride length of s, until the entire action sequence is examined

completely. �is window of features, as a short sequence signal with shape l × wsize, serve

as an input to our spatio-temporal kernel. �en, the spatio-temporal kernel, as a features

extraction function, produces the corresponding hidden states (h1, ..., hwsize
) for each
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window input sequence. �ese output features are then used to describe the input windoww

frames by utilizing a pooling operation (max, average or other customized functions),

generating the final feature vector of size H × 1, where H is the number of hidden nodes of

the spatio-temporal kernel. In turn, these extracted features are concatenated together

through time, producing another input sequence called X
′
, which containsN

′
frames of size

H each.

4.3.5 Variation of the proposedmodel

�e backbone of our proposed framework is built on the multi-layers LSTM model and the

embedded spatio-temporal kernel. Taken the input sequence of skeleton-based features, the

spatio-temporal kernel refines the representations hierarchically. In order to enhance the

performance of the spatio-temporal kernel and extract better representation for each

window worth of input frames, we can substitute the LSTM network as the BiLSTM network,

the Gated Recurrent Unit (GRU) and the vanilla RNNmodel can also be the alternatives.

4.4 Empirical testing and analysis

4.4.1 Datasets

We tested our proposed model on three benchmark datasets, including the UT-Kinect action

dataset, the SBU-Kinect Interaction dataset and the UTD-MHAD dataset.

UT-Kinect-action dataset: �e UT-Kinect action dataset [66] consists of the following 10

actions: walk, sit down, stand up, pick up, carry, throw, push, pull, wave and clap hands.

�ese actions were acquired by using a single Kinect camera, and all actions are performed by

10 different actors, and each actor performed each of the actions two times. �ere are 199

action sequences, each sequence consists of a different number of frames and each frame

contains 20 3D joint coordinates.

SBU-Kinect Interaction dataset: �e SBU Kinect interaction dataset [159] is captured by

using one Kinect V1 camera within the controlled settings. �is dataset is designed for

depicting the interaction of two-persons, aiming at addressing complex action recognition

problem. �is database is still a challenging action recognition database for the existing
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action recognition models, even though all of the interactions in this dataset are simple,

mainly because the length of each of the sequences is relatively short and because of the low

accuracy of the joint coordinates. It contains 6614 frames for the eight types of interactions,

e.g., "approaching", "departing", "kicking", "punching", "pushing", "hugging", "shaking hands"

and "exchanging". �is dataset is carefully designed for interaction action recognition, since

all frames of this database include two actors performing an interaction actions.

UTD-MHAD dataset: As introduced in the previous Chapter, the UTD-MHAD dataset is one

challenging dataset, which provides a limited action instance for training and it includes 27

actions, e.g., "swipe to the left", "swipe to the right", "wave", "front clap", "throw", "cross arms",

"basketball shoot", "drawx", "drawcircle (CW)", "drawcircle (CCW)", "draw triangle", "bowling",

"boxing", "baseball swing", "tennis swing", "arm curl", "tennis serve", "two hand push", "knock

door", "catch", "pick and throw", "jogging", "walking", "sit to stand", "stand to sit", "forward

lunge", "squat". �e large number of actions pose an extra challenge for action recognition on

this dataset.

4.4.2 ImplementationDetails

�e proposed model is implemented with the Tensorflow toolkit. �e start learning rate is

assigned as 0.001, and we report all the best results after 50 epochs of training on the testing

dataset. After some preliminary experimental testing, we found that the performance of the

proposed framework is not sensitive to the number of the hidden nodes, therefore we set the

number of hidden nodes to be the same as the dimension of the input features. �e

spatio-temporal kernel and the backbone recurrent neural network contains the same

number of hidden nodes. For the spatio-temporal kernel, we use max-pooling at the top layer

and the LSTM unit is utilized in the following experiments. In order to investigate the

performance of the variant model, in section 4.4.4, we report the effects of the different

number of hidden units of recurrent network to our model. �e values of the initial weights

for the model are initialized randomly from the uniform distributions. �e models are

trained with the Adam optimizer with momentum.
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4.4.3 Results and comparisons

�eproposedmodel is evaluatedon threedatasets, e.g., theUT-Kinectdataset, theSBU-Kinect

interaction dataset and the UTD-MHAD dataset.

Table 4.3: Performance comparison of SKB-TCNmodel and related models on UT-Kinect,
SBU-Kinect and UTD-MHAD dataset.

# UT-Kinect SBU-Kinect UTD-MHAD

Skeleton Joint Features [160] 87.9% - -

Elastic functional coding[161] 94.9% - -

Lie Group [71] 93.6% - -

Ensemble Learning [157] 96.97% - -

Body-pose features [159] - 71.31% -

ST-LSTM [153] 95.0% 93.3% -

Multiple instance learning [159] - 80.3% -

Contrast mining [162] - 86.9% -

CHARM [163] - 83.9 -

Active Joint Interaction Graph [164] - 94.12% -

Hierarchical RNN [141] - 80.35% -

Co-occurrence LSTM [154] - 90.41% -

Body part-based features[134] - 93.47% -

Bag of Points [65] - - 72.9%

SOF_#01 76.5% 59.4% 4.4%

SOF_#02 92.2% 89% 69.8%

SOF_#03 90.6% 77.5% 50.0%

SOF_#04 95.3% 86.9% 51.3%

SOF_#05 64.1% 69.4% 48.4%

SOF_#06 92.2% 71.8% 79.6%

SOF_#07 70.3% 31.3% 54.9%

SOF_#08 12.5% 26.9% 3.6%

Table 4.3 presents the summarized results of our proposedmethod and a comparisonwith the

results of other relatedmodels. It can be seen that the proposedmodel can achieve competitive
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results on the first two datasets compared with the existing models. �e results of our model

are listed in eight parts, the results of the different features are shown as an individual input.

4.4.4 Results of UT-Kinect dataset

We follow the experimental setup proposed by [160], in which the first 5 subjects are used for

training while the remaining 5 subjects are used for testing to test our proposed model. As

shown in Table 4.3, some features works very well on this dataset, while some cannot perform

well on this dataset. For example, the proposed feature SOF_#04, which is known as distance

between the joint and joint, can achieve the highest accuracy on this dataset. And also, we can

note that the proposed featureSOF_#08, which is knownas the angle between the pre-defined

planes, cannot achieve good accuracy. �e convergence rate curves for all the proposed eight

features are shown in Fig.4.6. From the graphs shown in Fig.4.6, we can see that there is an

overfitting problem and the training process is not stable.

In order to exploit the proposed features further, we investigated the derived motion and

the energy features on this dataset extensively. �e results with the different configurations

of the derived motion and the energy features of the aforementioned features on this dataset

are shown in Table 4.4. We can notice that the combination of the two features that performs

individually well on this dataset, but cannot always produce the best result. It is worth

pointing out that the feature combination of SOF_#06 +M outperformed the other features

and SOF_#02 + E, SOF_#02 +M + E , SOF_#06 + E also have significant discriminability

and can achieve competitive performance. �e best result of our model hit the

state-of-the-art results (98.4%) compared with the previous best model [157] (96.97%) on the

UT-Kinect-Action Dataset.

�e above reported results are achieved with a window size of 3 and stride of 1. Since the

proposed model is flexible to be configured with a different window size and stride, we

evaluated our model with different settings for these two parameters on the most significant

features and combinations, namely, the SOF_#04, the SOF_#02+ E, the SOF_#02+M+ E,

the SOF_#06 +M, and the SOF_#06 + E. As shown in the Table 4.5, the SOF_#04 and the

SOF_#06 + M can both achieve the highest recognition accuracy on this dataset with

different settings. We can generally conclude that different features present a different

performance with a different window size and stride settings. �is verified the assumption
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Figure 4.6: Convergence rate curve for different geometric relational features for UT-Kinect

that different geometrical features present different temporal patterns in the time domain.

It is worth noting that, the same window-size with big stride will lose some temporal
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Table 4.4: Performance of different combination with the derivedmotion and energy features
on UT-Kinect dataset

# M E SOF_#0N+M SOF_#0N+ E SOF_#0N+M+ E

SOF_#01 10.9% 12.5% 73.4% 76.5% 70.3%

SOF_#02 70.3% 54.6% 93.8% 95.3% 95.3%
SOF_#03 85.9% 76.6% 85.9% 90.6% 89.0%

SOF_#04 70.3% 64.0% 92.2% 92.2% 93.8%

SOF_#05 17.2% 12.5% 64.0% 64.0% 70.3%

SOF_#06 87.5% 70.3% 98.4% 95.3% 93.8%

SOF_#07 15.6% 56.3% 67.2% 70.3% 70.3%

SOF_#08 7.8% 5.0% 14.1% 14.1% 10.9%

information, and this results in degrading the performance of the recognition accuracy. In

the future we will investigate methods to extract the best temporal patterns from the

different features.

Table 4.5: Recognition accuracy based on the derived features with different configurations

# SOF_#04 SOF_#02+ E SOF_#02+M+ E SOF_#06+M SOF_#06+ E

window_size = 3, stride = 1 95.3% 95.3% 95.3% 98.4% 95.3%

window_size = 5, stride = 3 96.8% 95.3% 90.6% 79.7% 71.9%

window_size = 7, stride = 3 98.4% 96.8% 93.8% 85.9% 96.8%

window_size = 7, stride = 5 96.9% 92.2% 93.8% 93.8% 95.3%

4.4.5 Results of SBU-Kinect Interaction dataset

�e experimental results for the SKB-TCN model on the SBU-Kinect interaction dataset are

listed in Table 4.3. As the results in Table 4.3 shown, the features based on skeleton, motion

and energy concept outperform the other feature choices. We compared our proposedmodels

with [141], [154], [164], and the large margin between our model and the previously existing

models can be attributed to both the discriminative ability of our proposed features and the

spatio-temporal kernel. Because the interaction actions involvemore geometric relationships

than those actions that are performed by only one person, this can be explicitly embedded in

our proposed features.

In order to verify the effectiveness of the proposed approach based on the derived motion

and energy features on this dataset, we divide thewhole dataset into two subsets, 25% samples
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are used for testing and the remaining samples are used for training. �e recognition accuracy

for the different combinations are presented in Table 4.6.

Table 4.6: Performance of different combination with the derivedmotion and energy features
on SBU-Kinect.

# M E SOF_#0N+M SOF_#0N+ E SOF_#0N+M+ E

SOF_#01 64.4% 57.8% 17.2% 15.9% 55.3%

SOF_#02 75.9% 15.3% 85.9% 71.6% 89.1%
SOF_#03 68.8% 68.8% 71.6% 79.7% 75.0%

SOF_#04 75.3% 15.9% 90.6% 93.8% 87.8%

SOF_#05 35.0% 15.3% 62.8% 60.9% 65.9%

SOF_#06 65.6% 61.6% 76.6% 73.4% 81.3%

SOF_#07 52.2% 44.7% 34.4% 29.1% 32.2%

SOF_#08 17.5% 15.3% 29.7% 32.8% 35.9%

From the experimental results, we can identify that the proposed feature can work

together with their derived motion and energy features. However, the performance of the

derived motion and energy features based on the geometric feature cannot perform

consistently well. In Chapter 6, more approaches will be investigated to explore the potential

of our proposed geometric features .

4.4.6 Results of UTD-MHADdataset

�e UTD-MHAD is one of the most challenging action recognition datasets, because of the

large scale of actions that are included with limited training examples. �e low resource of

training data in this database poses a great challenge to the deep learning based approach. We

followed the cross-subject evaluationprotocol proposedby [27],whichproposed touse the first

5 subjects as training dataset and the other 5 subjects are used for testing. It can be observed

from Table 4.3, the proposed feature SOF_#04, which is known as the distance between joint

and joint, can achieve the highest accuracy on this dataset. Andwe can also note that the other

proposed features cannot achieve good accuracy, and they cannot even converge.
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LL_A_M LL_A+LL_A_M+LL_A_E JJ_D+JJ_D_M+JJ_D_E

Figure 4.7: Convergence curve for best three combinations on UTD-MHAD

�e recognition accuracy for the different combinations for the original features and their

derivedmotion and energy features are presented in Table 4.7. �e convergence curves for our

best three results are shown in Fig.4.7.

Table 4.7: Performance of different combination with the derived motion and energy features
on UTD-MHAD.

# M E SOF_#0N+M SOF_#0N+ E SOF_#0N+M+ E

SOF_#01 3.9% 4.2% 44.8% 7.3% 3.9%

SOF_#02 7.0% 12.2% 74.0% 66.9% 77.6%

SOF_#03 43.2% 27.6% 57.6% 53.1% 48.2%

SOF_#04 8.9% 17.2% 46.9% 12.1% 49.2%

SOF_#05 3.6% 3.6% 43.5% 3.0% 46.6%

SOF_#06 7.6% 56.0% 81.3% 36.0% 82.0%

SOF_#07 3.9% 4.2% 12.2% 8.1% 53.9%

SOF_#08 3.6% 3.6% 4.4% 5.2% 59.3%

From the obtained results on this database, we can see that the performance of the

proposed geometric feature and their derived features cannot perform very well compared

with the previous two datasets. �is reason for the performance degrade is due to the large

scale of the actions included in this database. Based on the experimental result we can argue

that the recurrent neural network can work efficiently with the proposed geometric features

for action recognition on small dataset, but the performance will degrade on large dataset.

�e performance degrade on large dataset can generally be attributed to the following two

reasons: 1) due to the low discriminability of the features for the large-scale of actions, the
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different people present a different action performance and produce different geometric

features; 2) the recurrent neural network is not easy to train, especially if the temporal

dependency relationship is complex.

4.4.7 Ablation Study

In this ablation study
1
, we aim to highlight the advantage of our model compared with the

normal LSTM model, we tested the performance of SOF_#02 feature on the UT-Kinect with

normalization length as 50. Utilizing the SOF_#02 feature, we can achieve 95.31% accuracy

while we use the SKB-TCN model, and 87.5% accuracy if we use the traditional LSTMmodel.

�e convergence rate curve is shown in Fig.4.8. We envisage this phenomenon will be more

obvious while the sequence is involved with more noise.

Figure 4.8: Convergence rate curve for the proposedmodel with(left) and without(right)
spatio-temporal kernel

Aiming at suggesting an optimal setting for the spatio-temporal kernel, we examined the

effect of the different settings of the kernel for the normalized length with 100 frames on the

UT-Kinect dataset further. �e performance of the spatial-temporal kernel with different

settings taking the SOF_#02 as the input features are shown in Fig.4.9-(a). It can be observed

that when we set the stride size between 1/3 and 1/2 of the window size, the performance of

the spatio-temporal kernel can outperform the traditional model. Moreover, we don’t

encourage setting the window-size too large, because it will slow down the convergence rate.

1
Anablation study typically refers to removing some "feature" of themodel or algorithm, and seeing

how that affects performance.
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(a) Performance of various settings for 

spatio-temporal kernel

(b) Performance of 

variant spatio-temporal kernels

Figure 4.9: Performance of variant model with spatio-temporal kernel

As stated in Section 4.3.5, our proposed spatio-temporal kernel can be configured with

different recurrent units, which can be the LSTM, the GRU and the Vanilla RNN model. In

order to verify the performance of different variants model, we test the variant model on the

UT-Kinect dataset with the normalized length of 100 frames and as suggested by the above

experiments, the window size is 15, and the stride size is 5. �e performance of different

models is shown in Fig.4.9-b. As can be observed from the graph, even though the vanilla

RNN unit can achieve similar recognition accuracy with LSTM model, we suggest to use

LSTMmodel because the output model is muchmore robust than the vanilla RNNmodel and

can avoid gradient vanishing and error exploding problems efficiently. In the future, we

intend to utilize network-based kernels to enhance this framework, so that it can be extended

to other applications as well.

4.5 Summary and contributions

In this Chapter, we demonstrated the performance of the SKB-TCNmodel with our proposed

features as input. �e following contributions can be identified:

1)We proposed several skeleton based optical flow-guided features to characterize the human

actions. As shown in the experiment sections, different features present different

performance on each database. �is can be attributed to the variation of actions performed

by different actors in different environmental settings.
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2)We incorporated the Spatial-Temporal Kernel into the LSTM-RNN model. �is model can

learn the spatial relationship amongmultiple attributes that are used to represent the human

activities. By extending the RNN model to the spatial domain, we demonstrated how the

SKB-TCN model can explore the constraints and correlations between the geometric

relational features in a single frame. It can also learn the temporal dependencies between the

consecutive features from a sub-sequence of frames and aggregate them to get compact

features for the subsequent layers of the recurrent neural network model.
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Chapter 5

Action Recognitionwith CNNFeatures

using LSTM-CRNNModel

Recognizing activities from RGB-videos is the foundation of various computer vision

applications, for example, automating action recognition can advance the way we monitor

activities so that it is not necessary to ask a human to classify each video by watching them

day and night (e.g. for airport security purposes, etc.), not unlike a computer that never gets

tired. However, the classification of activities from a video is still a challenging topic since we

need to consider spatial and temporal features simultaneously that together represent each

activity. Previous chapters explored the spatio-temporal feature extraction from skeleton

data, while the extraction of spatio-temporal features from RGB video is much more difficult

than the previous one. �erefore, an efficient approach for obtaining discriminative spatial

and temporal features from RGB videos is proposed in this Chapter. �is approach first

extracts CNN features from segmented video frames, and then uses our proposed LSTM-C

model to extract global features from a video level perspective for classification.

5.1 Motivation

With the impressive advancements achieved by deep learning models in recent years, the

CNN and RNN models have attracted attention, and have been extensively exploited in

vision-related tasks because of their powerful feature extraction ability [165]. Combining

CNNs and RNNs expands the diversity of architectures available for researchers solving

action understanding tasks [166], [167]. As reported in the literature, variants of both the

RNN and CNN models have demonstrated their powerful representation learning ability in
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vision-based problems (e.g., image/video classification) and time-series problems (e.g.

language modeling, speech recognition and image/video captioning).

Computer vision is a research line that uses computer science techniques and artificial

intelligence algorithms to extract rich representation from the input images or videos, aimed

at understanding 2-dimensional or 3-dimensional images for promising vision-based

applications. Action recognition focus on interpreting and acquiring meaningful

representation of human movements from the provided images or videos. Applications of

human action understanding can be found in search engines for image identification,

surveillance systems for security and healthcare monitoring for patients, and so on [147].

�erefore, more advanced algorithms should be developed for discriminative representation

learning for these applications, which can help to provide more accurate solutions for

realistic applications and save the cost and time for a particular application.

Even though optical flow-based approaches[168] were the most popular solution for HAR,

but the limitation of this approach is that it cannot capture the sudden changes robustly. For

example, in some constantly changing image structures in videos they usually includes some

key points, which present non-constant motion, which may provide important cues for

characterizing the change of the image structure. �e Local feature descriptor for static

images, e.g., 2D SIFT [169], were adopted for action recognition in traditional approaches.

However, the depth information was lost in 2D images. In order to overcome this challenge,

3D SIFT [170] descriptors are developed to extract features that contain 3D information. In

summary, the performance of all of these methods is limited mainly because of their

insufficient representational ability.

Most recently, action recognition from videos with CNN-based features has attracted

increasing attention in video classification. Several successful models were developed based

on RNNs, taking frame-level CNN-based features for video-based action recognition.

However, the aforementioned framework takes extracted features based on pre-trained CNN

models as inputs for the LSTM classifier. In our opinion, the modelling of temporal

relationship between these features extracted by the CNNmodel may be improved to capture

richer motion information. It is a known problem that successful regularizers for the CNN

models does not work well with RNNs and LSTMs, therefore, a proper regularizer is needed

to regularize the learning process. �erefore, we introduce a time-series correctness-vigilant
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regularizer via adding our novel constituent nodes to the LSTM cells. Altogether, we propose

a novel pipeline that involves an attention-aware CNN-RNN model, using the LSTM with

constituent nodes (LSTM-C), for video-based action recognition.

5.2 Relatedwork

Automatically classifying videos is one significant task for scene understanding, which is a

major goal of computer vision. While detecting and classifying human actions is a more

challenging problem in video classification, it not only requires the representation learning

model to be powerful enough to localize the human beings and capture their motion in a

short time period. For this reason, it is still is an unsolved problem for most of the current

advanced algorithms, since the algorithms need to mimic the special human ability to

interpret the visual and motion variation of the videos. �e literature that is most related to

our proposed approach includes following two categories. �e first one combines the local

space-temporal engineered descriptor [171] with deep learning techniques, which is similar

to the approach introduced in Chapter 3. �e second one is based on deep learning

techniques that use neural network to inference representation from the original images. We

employed the second approach and proposed a framework to efficiently and effectively

incorporate the spatial-temporal information for action recognition in this Chapter.

Motivated by the latest approaches for image classification, we introduced the CNN-based

image features into our framework because it can extract semantic features robustly that are

related to subjects from the video sequence.

As stated in Chapter 2, most carefully designed descriptors used in image processing [172]

have been transferred into the action recognition area. In order to discover more useful

video-based features for video-based action recognition, some researchers attempt to use

deep learning techniques to extract video representation directly [15], [88]. Different from

image classification, a video sequence that includes human actions usually presents the

evolution of visual appearance along the time axis, basically these are 3-D signals. Following

this research idea, Ji et al. [173] customized a 3-D CNN model based on the 2-D CNN model,

that is able to extract both the spatial and temporal features efficiently. Simonyan et al.

proposed another successful model, the two-stream ConvNet [88]. �is model can capture
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both the appearance information from the static video frames and the motion features from

the consecutive video frames. More recently, some of the literature shows that the LSTM

model is able to learn the long-term dependency relationship by introducing memory units

into the vanilla recurrent neural network. And it combines the CNN and RNN model for the

spatio-temporal feature extraction from the video and since this is the most natural choice,

some breakthroughs were achieved on several benchmark datasets with this idea. However,

due to the fact that the existing models that take the frame-level CNN-image features as

input for the LSTM models, it is not easy to remove redundant information of the input

sequence and it may fail to capture the most important temporal patterns from consecutive

frames. Another limitation of the RNN neural networks for action recognition is that the

training is not as efficient as the CNN models, because there are a lot of training tricks that

can be used on CNN training, therefore in this Chapter, we introduced a novel regularize

mechanism for RNNmodel, which can be extended to other time-series problems.

5.3 �e algorithms

5.3.1 General architecture

As a well-known and important solution for the modern video-based action understanding

system is the choice of the combination of both the visual and the temporal representation.

In order to address the above two issues and extract the spatial and temporal features

simultaneously from videos, combining the CNN and the LSTM-C model for video based

action recognition is a promising approach. We integrate the CNN features as part of the

spatio-temporal features fed into our customized LSTM nodes. �e whole pipeline shown in

Fig.5.1 includes the following two stages, the pre-processing phase and train the LSTM-C

models (classification). In the preprocess phase, we augment the training data by randomly

selecting the fixed length of frames from the RGB frames of RGB video.
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Input 

RGB Video
Segment video 

into images

Pretrained 

CNN model

(Spatial Feature 

extraction)

Training

LSTM-C

Classifier

Output

prediction

Preprocessing Training

Data 
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Figure 5.1:�eworkflow of the proposed CNN-LSTM-C framework

With this architecture, we enable the network can detect what we call the significant action

motions. With the CNN feature extraction as a preprocessing step, the proposed framework

can extract more semantic features from the raw images for video classification. �en

extracted feature vectors were fed into the subsequent recurrent learning classifier, which

then extract the final representation of the current input video. �e pseudocodes of the

workflow for the proposed LSTM-C and the whole framework is shown as code block 6 and

code block 7:

1 input_feature # extracted features with VGG, shape: 20488*N, N indicates
the length of the video

2 memory_size # memory_size
3 o_t # hidden nodes
4 c # memory state
5 O_t # constituent node output
6
7 # modify the output of the LSTM model with proposed algorithm
8 for i in range(len(input_feature)):
9 o_t, c = LSTM(input_feature[i])
10
11 # calculate the constituent nodes with Equation 5.2
12 O_t = constituent_nodes(o_t(t-2), o_t(t-1), o_t(t)) # memory_size=3

Code block 6:�e pseudocode for one layer LSTM-Cmodel

�e hyperparameters that can be tuned in the proposed framework are listed in Table 5.1.

Table 5.1:Hyperparameters settings in our proposedmodel

parameter Description Default value

memory_size the memory size of LSTM_Cmodel 3

nb_layers number of layers of LSTMmodel 1

nb_hidden number of hidden node of LSTM units 128

lr learning rate 0.001

length length of the normalized sequence 30

epoch epoches of training 500

batch_size batch size of training 64
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1 # Preprocessing
2 videos # given path of videos
3
4 num_videos = len(videos)
5 for i in range(num_videos):
6 images = ffmpeg_segment(video[i])
7 cnn_features = VGG(images) # use VGG model
8
9 # Make tfrecord example
10 for feature in features:
11 ex = make_example(feature)
12 writer = TfRecordWriter(save_path)
13 writer.write(ex.SerializeToString()) # save features
14 writer.close()
15 # given training and testing path
16 Train_path, Test_path
17 # Define the proposed model
18 model = LSTM_C(input_feature, memory_size, depth, num_layers) # code

block 4
19
20 for i in range(epoch):
21 label, input_feature = Load_training(batch_size, Train_path)
22 outputs = model(input_feature)
23 outputs_prob = Dense(num_classes)(outputs[-1])
24
25 if i % 2 = 0:
26 label, input_feature = Load_testing(batch_size, Test_path)
27 accuracy = test(label, input_feature)

Code block 7: Extract CNN-features for N videos and train the LSTM-Cmodel

5.3.2 Workflow of the CNN-LSTM-C framework

As demonstrated in the code block 4, the whole architecture of this framework can be

illustrated as Fig.5.2, which can be divided into four phases: 1). Pre-processing phase which

involves segmenting the input videos into static images, which are used as input for the

subsequent CNN models for feature extraction; 2). �e spatial feature extraction phase with

the VGG model, which processes the input images and outputs one compact feature vecto

and finally 3). �e spatial-temporal feature extraction phase, training our proposed LSTM-C

model with extracted features in step 2 as input to reach the fourth phase; 4). Classification

phase with Softmax layer.
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Figure 5.2: Proposed framework for video-based action recognition

5.3.2.1 Pre-processing phase

Due to the fact that the pretrained CNNmodels can only work on static images, therefore we

segment the videos into a sequence of image frames. And the pretrained CNN model takes

a fixed size of images as input for feature extraction. We then resize the segmented images

into fixed size, e.g., 224× 224 according to the requirement of the adopted pre-trained CNN

model.

5.3.2.2 CNN feature extraction

With these segmented images, the VGG model is used to extract the compact feature vectors

from thepreprocessed images.�evideo framesderived from theRGBvideo are first resized to

224x224, and then fed into the VGGmodel, which outputs a fixed dimension (2048) vector for

each image, and a sequence of this vector is used to represent the input video. In the training

and testingphases, the extracted flat vectors are fed into our proposedLSTM-Cunits to extract

the spatio-temporal features for the whole video.
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5.3.2.3 Classification phase: LSTM-C

�e RNN model is good at solving the sequence-to-sequence modeling problem, which has

been successfully used in many commercial applications. As regards the RNN Network

training, gradient explosion or vanishing is one common problem, and there are various

ways to mitigate this problem, e.g. proper initialization of the weight, regularization, proper

activation function (ReLU is preferred than sigmoid or tanh activation function). �e ReLU

derivative is a constant value, which is 0 or 1, this advantage of the ReLU activation function

can efficiently prevent the gradient vanishing problem. Another advanced solution is to

employ the LSTM or GRUmodel, which are especially proposed for addressing the vanishing

gradients problem so as to discover the long-term relationships from the time series signals.

Although both the LSTMandGRUmodel can solve the convergence problem to some extent,

what could be further improved is the discriminative ability of the extracted features. �is

thesis proposes an LSTM-C architecture based on the traditional RNNarchitecture, which can

work with both the LSTM and GRU units. �ese two architectures are devised to prohibit the

vanishing gradients via the integrated gating mechanism. Based on the existing framework,

aiming at improving the representation learning ability of the LSTM/GRU based architecture,

we propose a modified version, which is called the LSTM-C.

�e output of LSTM or GRU units is the new hidden state st, but they are calculated in a

different way compared with vanilla RNNmodel. In the vanilla RNNmodel, the hidden state

can be calculated by

st = tanhUxt +Wst−1 (5.1)

where xt represent the inputs feature for current time step t, and the st−1 indicates the state

of previous hidden nodes. Previously, the network treats the LSTMorGRU as a black box, they

output the next hidden state based on the current input and previous hidden state recursively.

Yet in reality, each decision can be made dynamically, by considering and comparing several

historical outputs and then deciding the final output of the model.

In our LSTM-C architecture, even though most of the calculations are the same with the

LSTM, we devised a novel way to compute the final hidden or output state by involving a new

algorithm. In order to make this Chapter self-explanatory, we will recap some of the basics
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of the popular LSTM model, and then introduce our proposed LSTM-C unit in the following

sections. With this architecture, the final action recognition result can be obtained by using

a softmax layer which assigns a probability distribution to each of the possible actions in the

problem domain.

5.3.2.4 LSTMwith constituent node

As stated in Chapter 4, the RNN-based classification approaches utilize the output of one

LSTM Unit to encode the original single input frame, and use the output of the last LSTM

unit to encode the whole input sequence. Nevertheless, for video-based action recognition,

this approach has significant limitations, since the last frame of the video will have the most

influence on the action class recognition result. On the other hand, the previous frames will

have minimal impact on the classification due to the forgetting effect. Regardless, a human

action is often defined by the whole movement process, and while some frames are the key

frames,
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Figure 5.3:�e architecture of the LSTM-Cmodel

some frames are irrelevant, which should be ignored. Motivated by this instinctive

phenomenon, we propose a novel LSTM architecture which is called LSTM with constituent

node (LSTM-C), that integrates an external constituent node for each LSTM cell. Each

constituent node looks at a history of output vectors corresponding to human movements,
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then assigns weights proportional to the correctness of the probability distribution of each

LSTM node. �e architecture of the LSTM-Cmodel is demonstrated in Fig. 5.3.

As illustrated in Fig.5.3, a historical output vectorOt is introduced at time t. It is generated

by a score weighting scheme using the output response vector ot at time t and the historical

output at time t-1, t-2 and so on. �e update equation of the historical output vectorOt can

be expressed as the following formula:

Ot =


αtot + (1− αt)Ot−1, if εht ≥ εot−1

t∑
k=1

wtkok, if εot ≤ εot−1

(5.2)

where αt is the weight controlling the balance between the current response ot and the

historical stateOt−1. �e weight αt is calculated by the following formula:

αt =
1

2
ln(
εot−1

εot

) (5.3)

where εot denotes the loss between the training label y and the estimated label ŷt at time t

using the softmax function on c+VOt.w
t
k denotes theweight of responseok. It is calculated

by:

wtk =

 0, if k ≤ τ
1
t−τ , if k ≥ τ

(5.4)

where τ is the parameter controlling the forgetting effect. Finally, a softmax layer is employed

to provide the estimated label ŷ of action video, which is determined by the last outputOT :

ŷ = softmax(UOT + b) (5.5)

where U and b are the bias vector and the weight matrix of the softmax layer respectively.
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5.4 Empirical testing and analysis

5.4.1 Datasets

Several popular video datasets, e.g., the UCF11 dataset, the UCF Sports Action dataset and

the UTD-MHAD dataset, are used as our testbed for our proposed framework. Fig.5.4

demonstrated four action samples of the first two datasets.

(a) UCF Sport dataset

(b) UCF 11 dataset

Figure 5.4: Samples of experimental action recognition datasets

UCF-11 Human Action Dataset includes 11 human action categories, 1600 sequences in total.

�e 11 categories are horse back riding, volleyball spiking, basketball shooting, walking with a

dot, trampoline jumping, tennis swinging, swinging, juggling, soccer, golf-swinging, diving,

and biking/cycling.

UCF Sports Dataset is a low resource database [174], which contains 10 sports actions in 150

video samples, including walking, golf swinging, swinging (on the bench), skateboarding,

running, horse riding, weight lifting, kicking ball, diving and swinging. All of these videos

were collected from various websites, e.g., BBC Motion gallery and GettyImages. �e length

of all of these video clips ranges from 2.2 seconds and 14.4 seconds.

UTD-MHAD Dataset provides multiple modality data, such as video, depth, skeleton and

inertial data. More details can be referred to the introduction about this dataset in Chapter 3.

One example action for the different signals of this dataset is presented in Fig.5.8.
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5.4.2 ImplementationDetails

We conduct experiments with two goals. �e first goal is to study the influence of the

LSTM-C in our algorithm. Secondly, we compared our results with other state-of-the-art

algorithms. We used the pre-trained VGG model to extract the CNN features, which is then

fed into the LSTM-C model. In the LSTM-C model, there are 128 hidden neurons in the

hidden layer. �e probability of dropout is set as 0.5. �e start learning rate is set as 0.001 for

the LSTM-C model. �e learning rate decay with a base of 0.1 every 10 epochs in the training

process. �e regularization value of the LSTM model is set as 0.003. �e batch-size is set as

32. �e Adam optimizer is employed to train the network for the LSTM-Cmodel.

5.4.3 Results and comparisons

�ree datasets, such as, the UCF-Sport Action, the UCF 11 and the UTD-MHAD, have been

investigated with our proposed approach. We summarized the results of action recognition

accuracy across these datasets in Table 5.2.

5.4.3.1 Results onUCF-11 Dataset

�e UCF-11 dataset is a challenging human action recognition dataset, because of the

complex environmental factors, e.g., the varied illumination, variation in object scale, varied

viewpoint, complex background, and the low quality of the videos. Similar to the original

setup, we select examples of one subject as the testing dataset and the left examples are

used for training. �e performance metric is calculated by the average accuracy over all of the

experiments. �e results indicate the robustness of our proposed model across the different

configurations. As shown in Table 5.2, our proposed approach can increase the recognition

accuracy over the best state-of-the-art results.

In order to compare our model with the traditional LSTM model, we configure our model

with different configurations, the memory size ranges from 0 to 90. �e model is the same

with LSTM model if the memory size is set as 0. As shown in the above graph, even the

traditional LSTM model can achieve similar recognition accuracy as with the LSTM-C model

with a memory size of 30. Aiming at discovering more insights about the effect of the

constituent nodes to the model training process, we show the training loss and accuracy and
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Table 5.2: Comparison of LSTM-C and related models on UCF11 and UCF-Sports.

# UCF 11 UCF Sport

Orientation tensor [175] 75.4% -

Dense trajectory [33] 84.2% 89.1%

Tensor motion descriptor[168] 68.9 -

Local motion[176] 88.0% -

Visual attention [177] 84.96 -

Interest points motion [178] 91.3% -

Visual-DTAM [179] 91% -

CRNN [180] 91.2% -

Two stream LSTM 94.6% -

Le et al. [89] - 86.5%

Kovashka & Grauman[52] - 87.2%

Souly & Shah [181] - 85.1%

Wang et al. [182] - 85.6%

Weinzaepfel et al.[183] - 90.5%

LSTM-C(memory_size = 3) 97.9% 89.18%

LSTM-C(memory_size = 15) 97.3% 81.08%
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Figure 5.5: Performance of LSTM-C on UCF 11 dataset

testing loss and accuracy in Fig.5.6. It is evident to observe that the model with constituent

nodesmakes the training process muchmore stable than the original LSTMmodel, and it can
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Figure 5.6: Convergence curves for LSTM and LSTM-C withmemory_size = 30 on UCF 11

effectively prevent the overfitting problem.

5.4.3.2 Results onUCF Sports action dataset

�e results of our model on the UCF Sports dataset is shown in Table 5.2. We follow the

experimental setup that was proposed by [184], in this work they proposed to use 2/3 of the

action examples for the training dataset, and the left as the testing dataset. In this way, the

training dataset and the testing dataset includes 103 videos and 47 videos respectively. As

described before, the lengths of these videos are different, so, in order to train in a batch

manual, we rescale the length of each video clip into 24 frames in the preprocess phase. We

compare our results with [52], [181]–[183], and our model can achieve competitive results

compared with other solutions except for [183]. �e results of [183] are better than ours,

because they used video and optical flow as the input, while ours only utilizes the RGB video

frames.

m=3 m=15

Figure 5.7: Convergence curves for RGB video-based action recognition for UCF-Sports
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�e convergence curve of the LSTM-C model with the memory-size configured as 3 and 15 is

shown in Fig.5.7.

5.4.3.3 Results of UTD-MHADdatabase

a b

c d

Figure 5.8: An action instance of UTDMHAD dataset: a) RGB image, b) original skeleton data
(provided by the database, (x, y, z) for 20 joints), c) estimated noisy 3d skeleton data, d)

estimated 2D skeleton data

Different from the previous two datasets, which contains only 11 and 10 actions respectively,

the UTD-MHAD contains 27 actions, which is much more challenging compared with the

previous two evaluated datasets. �e result of our experiments on the UTD-MHAD dataset

with video as input is shown in Table 5.3. Our approach with video as input on this dataset

can only achieve 38% accuracy. In order to improve this, we attempt to estimate the skeleton

data from the video for the video-based action recognition.

One example action instance is shown in Fig. 5.8, Fig. (a) shows one RGB frame for this

action, while Fig. (b) shows the original skeleton data provided by the database. �is skeleton
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datawas captured by amotion capture system,which ismuchmore accurate than the skeleton

data that was estimated by the pose estimation algorithm. Motivated by the advancement in

pose estimation technology, we used OpenPose [185] to extract the skeleton data directly from

the videos, and then evaluated our models on the extracted features. �erefore, we firstly use

OpenPose to estimate the 2D and 3D joint coordinates from the captured video provided by the

UTD-MHAD dataset. �e estimated 3D and 2D joint coordinates for one action are shown in

graph (c) and graph (d) of Fig.5.8. As shown in Fig.5.8-(c), the estimated 3D joint coordinate is

noisy and the classification accuracy is also not good, while the estimated 2D joint coordinate

is much more accurate. �erefore, we use the estimated 2D joint coordinates as input for our

model that were proposed in Chapter 4. Table 5.3 presents the result of the proposed approach

and the related results reported in the literaturewhich adopt the video as input. As canbe seen,

the extracted 2D skeleton with the model proposed in Chapter 4 improves the recognition

accuracy

Table 5.3: Performance comparison of video-based approach on UTD-MHAD dataset

# RGB Video

DMM-CRC [27] 66.1%

STIP-BOW-SVM [186] 67.37%

WHDMMs-ConvNets [187] 73.95%

RGB-baseline 38%

RGB-based-2d-skeleton 72.1%

significantly. As shown in Table 5.3, the RGB video-based approach cannot get a good result.

We attribute the reason for this is because the video frames contains much redundant

information, which degrades the performance of the classifier, and the limited training data.

�e state-of-the-art approach based on the RGB video usually needs a huge scale of training

data and a big deep neural network to
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Figure 5.9: Accuracy of RGB video-based action recognition for UTD-MHAD dataset

model the evolution of the temporal features that existed in RGB videos. Because of this, there

are few results on this dataset based on the RGB video data that are reported in the literature.

As the convergence rate curve of RGB video based training and estimated 2d skeleton

training indicates in Fig.5.9 that the performance of the estimated 2d skeleton data

significantly improved the accuracy from the 38% to 72% taken video as input features. �e

left graph of Fig.5.9 is the result of the video features as input, the right graph is produced by

taking the estimated 2D skeleton from the video as the input features.

5.5 Summary and contributions

For this Chapter, there are three major contributions that can be identified as follows:

1) A novel framework is proposed by integrating the LSTM-C with the CNN-based spatial

features for the video-based action recognition. �e proposed model can achieve competitive

results on the test datasets, although our model only utilizes the images based spatial

features of the human actions at specific timestep, without optical flow and other

hand-crafted features.

2) On the other hand, the LSTM-C cells can help to explore the most significant temporal

features, thereby improving the holistic features representation for the whole video. �e

experimental results demonstrated that the incorporated attention mechanism can produce

a superior performance compared to our baseline system. �e findings of this Chapter have

provided a glimpse for future research based on visual attention.

3) We find that the performance of action recognition based on video data is extremely
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difficult to improve further, which will also be degraded significantly on large datasets.

Extracting the skeleton data from the videos directly with the pose estimation algorithm for

action recognition is one efficient approach for video based action recognition. �is

approach can reduce the computational cost significantly and improve the performance for

video-based action recognition.
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Chapter 6

Multi-streamCNNmodel forHuman

Action Recognition

From the previous experimental results, we can observe that it becomes more challenging to

improve the performance of accuracy further with video as the input features, even with a

more powerful model and the computation resources that is available. Even though the

proposed hand-crafted features can improve the recognition accuracy on small human action

recognition datasets, the performance will degrade significantly on large datasets. As we

have observed in previous Chapters, the skeleton-based motion and energy features can also

efficiently characterize human actions. Motivated by the most popular two-stream CNN

model for video classification and the powerful feature extraction ability of the CNN model

demonstrated in previous Chapters, we devised a multi-stream CNN-based framework to

accommodate the skeleton-based motion and energy features for 3D skeleton-based action

recognition in this Chapter.

6.1 Motivation

�e ultimate objective for computer vision systems is to mimic the way of humans process

and understand meaningful data from multiple features (some features have constraints

between each other, e.g., images, video, audio) regarding a subject in action within a scene.

For example, humans are capable of interpreting visual information using natural language

systems. It is also possible to infer from a visual stimulus what is the implied intent is behind

the human actions that are present in the video. A huge amount of work has been conducted

to achieve this goal including object detection/recognition (equivalent to identifying the



6.2 Related work

noun descriptor), action recognition (equivalent to identifying a verb descriptor) and

attribute learning (equivalent to identifying an adjective or adverb descriptor). All of these

research initiatives aim at providing more accurate and more sensitive semantic information

for human action understanding. Among all of these tasks, action recognition is essential to

develop more complicated systems since it serves as the foundation for capturing the context

of what is happening in a scene, as well as to provide some clues on other more difficult

classification tasks, moving from coarse-grained to fine-grained classification, such as

recognizing emotions and interactive actions. �e successful two-stream model takes

advantage of the spatial features and temporal features contained in the videos, which can

merge both the spatial and temporal features efficiently. As we have proposed, the motion

and energy features based on the skeleton sequence in the previous Chapters, we attempt to

fuse the skeleton and their derivedmotion and energy features in this Chapter by proposing a

multi-stream CNNmodel.

6.2 Relatedwork

�e most popular Recurrent Neural Network (RNN) was proposed for the time-series

problem, which can model the temporal dependency of the sequential signals. �us, it is a

natural choice for 3D skeleton-based action recognition to extract global features for one

action sequence. However, based on a review of the literature more and more of the research

has adopted the CNN model to learn the skeleton features and it has achieved an impressive

performance in recent years. Previous research has made great progress in action

recognition andmany excellent models have been proposed, and different test strategies have

been explored. Some works extract different features from the video frames and then fuse

them for classification. �e RNN model is also widely used to fuse the extracted features

together [141], and various pooling methods have been developed [188]. CNN gained great

success in image processing. Among many of the CNN models used in the field of video

processing, the 3D-CNN [173] is efficient in extracting the spatio-temporal features from the

RGB video. Other methods capitalise on the temporal information including the optical flow,

trajectories, and the human pose estimation. While all of these methods do a good job in

action recognition based on video, the universal limitation of these methods is that they are
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Figure 6.1:Workflow of the proposedMulti-stream CNNmodel

expensive in terms of computations. However, using the multiple skeleton-based features for

action recognition has not gained too much attention, especially with the low resource of the

training data, in the research community, therefore, we explore the performance of the

fusion with different skeleton-based geometric features as input in this Chapter.

Although various models have been extensively researched in the past years, action

recognition in realistic application is still challenging, because of the viewpoint changes,

occlusions, the complex environment background and similar actions. In this chapter,

aiming at improving the performance of deep learning systems for action recognition tasks,

in this Chapter, we utilize a novel hybrid model that is able to employ a set of multiple skeletal

features and test it on three challenging benchmarking datasets. We believe that learning

more compact and meaningful representations from a set of multiple inputs will be one of

the most effective tools to further advance the topic of action recognition.

6.3 �e algorithm

6.3.1 General architecture

As stated in previous Chapters, the input action-related features are the key for accurate

action recognition and subsequent applications. Although our previous approach can work

well based on the different features independently or the merged features, it is not easy to

improve the performance further and the performance in complex scenes will be degraded to

some extent. In order to derive more complex semantics surrounding the action recognition

(e.g., to understand the intent behind the actions), more sensitive semantics should be

learned from a set of multiple features. In this Chapter, we explore combining the

skeleton-based feature for action recognition, and formulating a multi-streammodel, which
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Figure 6.2:Overview of the proposedmulti-stream CNNmodel for fusing geometric and

kinematic features. �e input streams are combinations of the aforementioned features,

such as "joint coordinates", "motion features" and "energy features".

can extract richer information for action recognition from the different combinations of the

input features. �e workflow is shown in Fig.6.1.

1 Train_path, Test_path
2 # Loading geometric relational features
3 train_data, test_data, label = loading_data(Train_path, Test_path)
4
5 for i in range(epoch):
6 label, Feat, Feat_M, Feat_E = Load_training(batch_size,train_data)
7
8 # use multi cnn model to extract features
9 Feat1, Feat2, Feat3 = model(Feat), model(Feat_M), model(Feat_E)
10
11 # Maximum, Average, Sum, Multiply
12 out_feat = Maximum(Feat1, Feat2, Feat3 )
13 prediction = Dense(num_class)(out_feat)
14 loss = cross_entropy(label, prediction)
15
16 # update parameters
17 los_final.backward()
18 accuracy = reduce_mean(prediction == label)
19
20 if i % 5 == 0:
21 label, Feat, Feat_M, Feat_E = Load_testing(batch_size,test_data)
22 loss, accuracy = test(label, Feat, Feat_M, Feat_E)

Code block 8: Training and testing pseudocode ofMulti-CNNmodel
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�e proposed model can be illustrated as Fig. 6.2. �is multi-stream model can take

multiple features as input, and the extracted features of each single stream CNN model are

flattened and merged to represent the input of a subsequent fully-connected neural network

for classification. �e pseudocode for feature extraction is presented in Chapter 4. �e

pseudocode for training and testing of the proposed framework is shown in code block 5.

6.3.2 Multi-streamCNNmodel

In the previous Chapters, we designed several geometric features to characterize the human

actions based on the acquired joint coordinates, each feature can characterize the relative

position of each pose independently. While the Recurrent Neural Networks are also designed

to extract this kind of high-level features from the input joint coordinates or the input

geometric features as described in Chapter 4, nevertheless it is not easy to train and they

cannot extract effective features from multiple features at the same time. In order to

combine these features efficiently and extract the most effective features from the input

streams, in this Chapter we attempt to use a multi-stream CNN model to fuse multiple

features with different fusing strategies. Different from themost popular two-streammodel,

which is based on videos, our multi-stream model is based on the skeletal features. �e

skeleton sequence provides more compact and accurate information to describe human

actions. And the skeleton data does not contain the noisy background information and it is

extremely small in size compared with the RGB video data.

�e interaction between the different geometric features and the combination of different

geometric features is important to characterize a human action. In Chapter 3 we used one

stream CNN model to extract the high-level spatio-temporal information from the

skeleton-based static images. �is approach converts the action recognition problem into an

image classification problem, which unavoidably will lose some information once we resize

all of the concatenated geometric features into a fixed size of static image. In terms of the

RNN-based model introduced in Chapter 4, with our proposed spatio-temporal kernel, even

though it can improve the spatial features extraction ability of the model, it is insufficient for

complex actions. �erefore, in this Chapter we attempt to propose a multi-stream CNN

framework to extract the discriminative representation taking the multiple features as input.

Specifically, the proposed architecture for a single person is shown in Fig.6.3, which can be
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6.3�e algorithm

extended into a more general architecture to accommodate the actions performed by

multiple subjects.

Specifically, the skeleton sequence of one person is represented as X, and the various

geometric features can be derived from the sequence dataX by following the steps introduced

in Chapter 4. �en, the extracted skeleton-based geometric features can be fed into the

multi-stream CNNmodel independently. In order to fuse the information from the multiple

sources, we fuse their features maps across the output channels in the subsequent layers of

the network (shown in Fig.6.3), and the fuse operation is based on the flattened features that
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Figure 6.3: Variants of proposedmulti-stream CNNmodel for fusing geometric features

were extracted via the CNN models. �e parameters of each stream are learned

independently, and the extracted features of each stream are fused by the concatenation

along the output channels after the third convolution layer. Compared with the model that

was used in Chapter 3 the proposed model contains much less trainable parameters. �e

lightweight model allows us to train the model from scratch so it can achieve super

performance on the low-resource UTD-MHAD dataset.

6.3.3 Interaction actions

In most activities, e.g., shaking hands, hugging, kissing, multiple persons are involved, so

we make our model scalable to multi-person scenarios, which is promising for group activity

recognition. To make our proposed model scalable to group activities, we perform a

comprehensive evaluation on our proposed features and feature fusion strategies, including
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the average, maximum, sum and multiply fuse strategy. In order to discover the

co-occurrence features in the interaction actions, which are performed by multiple subjects,

we tested our model on the SBU-Kinect dataset and the NTU RGB+D dataset. Different from

experiments on actions that involve only one subject, we fed the coordinates and motion

features of each subject into the one-stream CNN model separately. As illustrated in

Fig.6.3-b, different features go through a separate sub-network and their Conv3 featuremaps

are merged with an element-wise maximum, mean, sum or multiply fusion strategy. It is

worthwhile mentioning that the element-wise fusion method can generalize well to actions

that are performed by a variable number of persons. �is feature fusion strategy is promising

for group activity recognition.

6.4 Empirical testing and analysis

6.4.1 Dataset

Weevaluated our proposed framework on three benchmarkdatasets, namely, the SBU-Kinect,

the UTD-MHAD and the NTU RGB+D dataset.

6.4.1.1 SBU-Kinect InteractionDataset

�e SBU-Kinect Interaction dataset [159] depicts the interaction between two actors. �ere

are 15 joints for each actor in every skeleton frame that captured by the Kinect camera. For the

evaluationprotocol,we followed the evaluation strategyproposed in [159], performing subject-

independent 5-fold cross-validation.

6.4.1.2 UTD-MHADDataset

As described before, this is a multimodal dataset for action recognition, providing skeleton

joint positions, inertial sensor signals, RGB video and depth video. �is dataset includes 861

video instances for 27 actions performed by eight subjects. �is dataset was chosen because

of its difficulty and accuracy gap compared with the other action recognition dataset. In all of

our experiments, 861 sequences of UTD-MHAD datasets were investigated, half of sequences

were used for training and the rest sequences of the dataset were used for testing. �is is a

108



6.4 Empirical testing and analysis

(a)(a) (b)

(c) (d)

Figure 6.4: Visualization for two actions with swapping the positions of two subjects

challenging dataset, because the evaluation protocol on this dataset is using a half-to-half

training and testing strategy, training with low resource data is one most challenging topic

for deep learning, which is known as a data-hungry approach.

6.4.1.3 NTURGB+DDataset

As introduced in Chapter 3, the NTU RGB+D dataset is so far the latest and the most

challenging dataset for skeleton-based human action recognition. �is database contains

more than 56000 action instances and about 4 million frames in total for 60 actions. �ese

action instances are performed by 40 different subjects, and the actions are recorded from 3

views. Due to the changing viewpoints, intra-class and length variations, this dataset is a

very challenging action recognition dataset. More details about this dataset can be referred

to previous chapters.

6.4.2 Results of SBU-Kinect Interaction database

�e previously proposed features work well on UT-Kinect dataset by using our proposed

SKB-TCN model, because the data is captured in a controlled environment and the actions

are relatively simple and are performed by one person. �e performance of the proposed

feature degrades once we scale the same model to complex actions, such as interaction
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actions, and actions with various backgrounds. �erefore, for the SBU-Kinect dataset, we

only use the motion features and the original coordinates as input, and introduced some

extra data augmentation techniques in this experiment. We augment the training data via

mirroring the positions of the two actors randomly, and we dynamically normalize the

sequence length. Two of the action examples with mirrored position of the two subjects are

shown in Fig.6.4, this data augmentation technique mimics the view-point changing

situation. Motivated by this, we will utilize the neural network to learn the transformation to

augment the training dataset in the next Chapter.

Table 6.1: Performance comparison of Multi-CNN and related models on SBU-Kinect

# RGB Video

Yun et al. [159] 80.3%

CHARM [163] 83.9%

HBRNN-L [141] 80.35%

Co-occurrence LSTM [154] 90.41%

ST-LSTM [153] 93.3%

Two-Stream CNN Ave: 93.3%, Std: 0.013

�ree-Stream CNN Ave: 91.52%, Std:0.016

Wefollowed the setupproposed in [154], and the result details are listed inTable 6.1. For data

augmentation, we dynamically rescale the sequence length to 16. We compared our proposed

modelwith [154], significant improvement on the recognition accuracy for this database canbe

identified from Table 6.1. With the maximum fusion strategy, our model achieves accuracy of

93.3%,which is a competitive result compared to the state-of-the-artmodel [153]. �estandard

deviation of our result for 5-fold validation is 0.013, which proves that our model is stable and

robust. Other fusion strategies, e.g., average, sum and multiply can also achieve very close

results compared with the maximum fusion strategy.

�e superior advantage of our proposed framework is that it is able to address multiple

person’s action recognition in a flexible manner, which is an efficient approach to explore the

relationship between our proposed geometric features of a single person or multiple subjects

simultaneously. Because this database is performed by two people, in order to analyse the
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Figure 6.5: Confusionmatrix of five-fold testing with multi-stream CNNmodel

CS Two Stream CS Three Stream

CV Two Stream
CV Three Stream

Figure 6.6: Convergence curve of Multi-stream CNNmodel on NTU RGB+D

pose relationship between these two people while they perform different actions, we attempt

to feed the features of different people into a separate stream and fuse the extracted features

in the top layer. �e confusionmatrix of the five-fold testing result is shown in Fig.6.5 above.
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6.4.3 Results of NTURGB+Ddatabase

In order to extend this idea to a large scale action recognition application, we evaluated our

model on the latest challenging action recognition dataset, NTU RGB+D. Table 6.2 presents

the result of ourmodel and the results of similar models. As shown in this table, better results

can be achieved than Chapter 3. From the experimental results, we can see the two-stream

model usually achieves better performance than the three-stream model on this database. It

seems that the derived energy features cannot augment the discriminative ability of the

learned representation, while introduce some redundant information to the representation

that learned from the joint coordinates and motion features. �e proposed model works well

on this dataset, and can achieve competitive results compared with the state-of-the-arts

results. �e convergence curves for both the Cross-View and the Cross-Subject evaluation

strategies are demonstrated in Fig.6.6 below.

Table 6.2: Performance comparison of Multi-CNN and related models on NTU RGB+D.

CS CV

HBRNN [20] 59.1% 64.0%

LSTM [189] 70.3% 82.4%

CNN [139] 76.0% 82.6%

TS-LSTM [157] 74.6% 81.3%

two-stream three-stream two-stream three-stream

Sum 79.0% 78.3% 84.3% 83.9%

Multiply 77.0% 75.9% 82.0% 78.8%

Average 79.6% 78.9% 84.5% 83.8%

Maximum 78.7% 78.7% 84.7% 84.1%

6.4.4 Results of UTDMHADdatabase

Inorder todiscover thepotential of thegeometric features,weextensively tested somepossible

combinations of the proposed features on the UTD-MHAD dataset. �e result of each feature

(mono-feature) is shown in Table 6.3.

112



6.4 Empirical testing and analysis

6.4.4.1 Mono-SOFs feature basedmulti-streammodel

For multi-stream CNN model, we can fuse features extracted by a different CNN model via

different strategies, such as Maximum, Sum, Average and Multiply. �e results of our

proposedmulti-streammodel with maximum fusion strategy on the UTD-MHAD dataset are

shown in Table 6.3.

6.4.4.2 Dual-SOFs feature basedmulti-streammodel

For the purpose and with the goal to discover the co-occurrence relationship between the

different features, we fed multiple features into our proposed model. We have 8 skeletal

Table 6.3: Performance comparison of Multi-CNN and related models on UTD-MHAD.

Deep RNN [20] 66.10%

Cov3DJ [138] 85.58%

CNN + JTM [135] 85.81%

CNN + SOS [136] 86.97%

3D-HoTMBC [137] 84.40%

CNN + JDM [132] 88.10%

Fusion approach maximum sum average multiply

SOF1 80.23% 71.16% 73.49% 78.37%

SOF2 84.18% 83.95% 82.55% 83.72%

SOF3 87.90% 83.02% 84.88% 87.21%

SOF4 84.65% 79.77% 81.39% 65.12%

SOF5 76.97% 76.74% 77.91% 73.49%

SOF6 76.27% 71.63% 76.04% 74.65%

SOF7 68.60% 63.49% 74.65% 64.65%

SOF8 60.00% 54.88% 57.20% 58.83%
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geometric relational features, so there are 28 possible combinations. �e results of these 28

combinations are listed in Table 6.4. �e combination of SOF2 and SOF3 can obtain the

state-of-the-art recognition accuracy with a Maximum fusion strategy on this dataset.

Fig.6.7 shows the convergence curve of four different fusion strategies with the SOF2 and

SOF3 as input features. �e output results demonstrate that all of the proposed features can

describe the human actions efficiently on this database with the multi-stream CNNmodel as

the classifier, and each of the features can work together with the other features.

6.5 Summary and contributions

In this Chapter, amulti-stream framework is adopted to fuse the proposedmotion and energy

features. Furthermore,weextendour framework todealwithmulti-person involvedactivities.

Table 6.4: Results of different feature combinations on UTD-MHAD

SOF1 SOF2 SOF3 SOF4 SOF5 SOF6 SOF7 SOF8 SOF1 SOF2 SOF3 SOF4 SOF5 SOF6 SOF7 SOF8

Average Fusion Maximum Fusion

SOF1 - 85.12% 84.18% 81.16% 79.77% 82.56% 75.35% 73.26% 86.51% 85.34% 81.39% 81.62% 80.93% 75.11% 76.05%

SOF2 - - 87.44% 84.42% 85.58% 78.13% 80.47% 80.23% - - 90.47% 84.88% 84.65% 86.05% 81.86% 79.07%

SOF3 - - - 83.72% 88.14% 85.11% 82.09% 82.33% - - - 86.51% 87.20% 83.95% 84.41% 84.88%

SOF4 - - - - 80.0% 78.37% 77.67% 81.40% - - - - 84.42% 80.70% 79.77% 82.33%

SOF5 - - - - - 82.79% 76.51% 78.37% - - - - - 83.02% 79.07% 76.04%

SOF6 - - - - - - 78.37% 78.37% - - - - - - 81.16% 76.04%

SOF7 - - - - - - - 78.37% - - - - - - - 76.04%

SOF8 - - - - - - - - - - - - - - - -

Multiply Fusion Sum Fusion

SOF1 - 85.12% 79.53% 76.28% 67.67% 72.33% 64.65% 59.30% - 86.27% 84.88% 83.95% 84.65% 85.11% 70.23% 74.41%

SOF2 - - 86.05% 83.25% 84.65% 82.09% 83.95% 83.95% - - 89.30% 83.26% 85.12% 83.72% 82.79% 82.79%

SOF3 - - - 72.56% 82.79% 80.47% 81.86% 82.33% - - - 88.84% 89.30% 83.26% 84.88% 88.37%

SOF4 - - - - 74.19% 71.40% 64.19% 68.37% - - - - 84.19% 78.84% 78.13% 83.26%

SOF5 - - - - - 83.95% 70.70% 71.16% - - - - - 82.09% 78.37% 78.60%

SOF6 - - - - - - 72.33% 74.65% - - - - - - 78.83% 78.60%

SOF7 - - - - - - - 71.16% - - - - - - - 78.60%

SOF8 - - - - - - - - - - - - - - - -

Followingmajor contributions can be identified from this Chapter:

1) An efficient approach for fusing multiple features is proposed for skeleton-based action

recognition. �e proposed multi-stream CNN model is adopted to extract discriminative

representation from the skeleton and its derived motion and energy features, which shows

better performance compared to other CNN basedmodels.
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6.5 Summary and contributions

(a) Average Fusion (b) Maximum Fusion

(c) Multiply Fusion (d) Sum Fusion

Figure 6.7: Convergence rate curves for different fusion strategies on UTD-MHAD
(SOF2+SOF3)

2)We devised a novel element-wise features fusion strategy, which can extract and fuse the

extracted features efficiently. �is fusion strategy is better than the other approaches, such

as concatenation fusion strategy, that needs to consider the number of people involved in the

actions beforehand.

3) �e proposed framework presents a better performance on the interaction action

recognition dataset, SBU-Kinect interaction dataset. �is means that the multi-CNN model

and the element-wise fusion strategy are efficient for group action recognition, which

involves multiple people in one action.
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Chapter 7

HumanAction Recognition based on

Skeleton TransformerNetwork

As we found in Chapter 4, data augmentation is one of the most crucial factors for the

training of the RNN-based model taking the skeleton-based geometric and kinematic

features as input. Even though the approaches proposed in Chapter 4 perform very well on

small datasets, but it is hard to scale these approaches to large-scale datasets, such as NTU

RGB+D, because of the significant cost in terms of storage and computation. Also, the

geometric features’ representation ability is insufficient for large scale of actions in complex

scenes. In this Chapter, we customized a skeleton transformer based on the LSTM network to

transform the input sequences. �is improved the robustness of the trained model on the

testing dataset.

7.1 Motivation

Recognizing human actions based on the 3D skeleton data, commonly referred to as 3D

action recognition, is fast gaining interest from the scientific community recently, because

this approach presents a robust, compact and a perspective-invariant representation of

motion data. In the recent literature, the common ideas for all skeleton-based action

recognition approaches are attempting to generate a robust spatio-temporal representation

for the original skeleton data and make the trained model generalize well on the testing

dataset. In line with this research, there are various advanced approaches that have been

proposed [22], [147], [190] to extract the complex spatial and temporal relationships from the

raw skeleton coordinates. Despite the significant progress that has been achieved by



7.2 Related work

introducing the novel hand-crafted spatial and temporal features in the previous Chapters,

the limitation of existing hand-crafted features in the spatial and temporal domain is that

their representation ability is not sufficient for the complex actions and cannot meet the

demand in the real-world application. With the normalization operation in the preprocess

phase, the existing temporal features contain some redundant and irrelevant information in

the temporal domain. So there is an open question that remains in terms of the best way to

learn a more robust and effective representation in order to eliminate these irrelevant and

redundant temporal information. And using the RNN model to learn these features

automatically will be a future research focus. Motivated by these facts, we attempt to propose

a framework that can consider both the local and global information contained in an input

sequence to refine the input sequence. �e proposed model can generally consider the local

and global information for action recognition, but cannot identify the local and global

features accurately. Identifying the local and global features from the input skeleton

sequence will be our future research topic.

7.2 Relatedwork

Relevant recent attempts that aim at solving the 3D human action recognition problem [20],

[141], [191] have shown encouraging performance, and provided evidence of the efficacy of

RNNs in modeling the complex dynamics of human actions in the temporal domain. �e

main focus of the previous existing models was to utilize RNNs over temporal domains to

discover the dynamic motion patterns for 3D action recognition globally. However, all of

these works used hand-crafted rules to extract the discriminative information in static

postures in each individual frame and ignored the temporal features in a the short term,

which we call local features, and temporal features in the long term, which we call global

features.

�e trainingof a robustdeep learningmodelusually has ahighdemand for the trainingdata,

which requires the training data to covermore patterns that appeared in the testing dataset, to

improve the robustness on the test dataset and avoid the underfitting or overfitting problem.

Data augmentation is one of the most effective approaches to solve the low-resource training

problemand improve the generalization of themodel. Various approaches for augmenting the
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7.2 Related work

training data have been reported in the literature, but most of them are proposed for image

classification. [191] proposed to use angle rotation, scaling and shear transformation. [192]

employed a randomly cropping approach and randomly horizontally flip the converted static

image as a data augmentation approach to increase the robustness of the input sequence. [193]

devised a novel data augmentation approach, which rotates the 3D coordinate randomly and

adds some Gaussian noise to augment the amount of the training dataset.

However, most of the existing approaches for training data augmentation are based on

some predefined transformations in the spatial domain, and we extended the data

augmentation to the temporal domain in Chapter 3 and Chapter 4. All of these methods are

restricted by either a low representation ability or an expensive computational cost. For

example, while the method of horizontal flip approach neglects the temporal dependence

between the sequential frames, a randomly cropping approach will lose some of the spatial

information. All of these operations that have been adopted in the preprocess phase will

introduce some interference information that is unhelpful to the classification to enlarge the

training dataset. Motivated by the aforementioned works, in this Chapter, we propose a novel

Skeleton Transformer Network (STN) for the 3D skeleton-based action recognition, which

utilizes advanced deep learning techniques to learn useful representation for classification so

as to augment the training dataset by itself. Also, due to the proposed loss functionmakes the

transformed sequence shares similar characteristics with the original input sequential

features. In another words, the transformed sequence is a blend of the input sequences. Each

frame of the transformed sequence is a combination of the local and global information that

is contained in the input sequence, which can efficiently handle the variation in the execution

of an action. With this proposed framework, the output model can be robust to counter the

noisy input data, and this proposed approach can easily be extended to the other applications

to process the input sequential data.

118



7.3�e algorithm

7.3 �e algorithm

7.3.1 General architecture

�e proposed framework for STN is shown in Fig. 7.1, it consists of two streams, one of which

accepts the original input sequence (raw joint coordinates) directly and another one includes

the sequential transformer network, which accepts the original input and then outputs the

transformed sequence of the input feature. �e transformed sequence will be fed into the

subsequent classifier.
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Figure 7.1: Framework of the STNmodel

It is worth mentioning that the proposed model is easy to be extended for group activity

recognition. For example, as mentioned before, the interaction actions are usually performed

by more than one person, the integration of all of these involved actors can be inputted into
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Figure 7.2: Variant of STNmodel to accommodate actions performed by multiple actors. �e

transformed coordinates are hypothetical examples, a visualisation of the actual results are

provided in Fig.7.9

1 Train_path, Test_path # path of the training and testing data
2
3 skeleton = iterate(Train_path, Test_path)
4 N = number of training and testing examples
5 # preprocessing
6 for i in range(N):
7 skeleton, label = read(skeleton[i])
8 normalized_skeleton = norm(skeleton)
9 save(normalized_skeleton)
10 # Loading skeleton data
11 train_data, test_data, label = loading_data(Train_path, Test_path)
12
13 # Training and testing
14 for i in range(epoch):
15 # Define the proposed model:
16 label, input = Load_training(batch_size,train_data)
17 out_ori = multi_layer_LSTM(input)
18 out_trans = multi_layer_LSTM(transform(input))
19 final_out = merge(out_ori, out_trans)
20 loss_ori, loss_trans = cross_entropy(label, out_ori, out_trans)
21 loss_mse = MSE(transform(input), input)
22 loss_final = loss_ori + loss_trans + loss_mse
23 # update parameters
24 loss_final.backward()
25
26 accuracy = reduce_mean(out_original equal label)
27 if i % 5 = 0:
28 label, features = Load_testing(batch_size,test_data)
29 loss, accuracy = test(label, features)

Code block 9: Training and testing pseudocode of STNmodel
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7.3�e algorithm

our transformer network for preprocessing, and then input the transformed coordinates into

the subsequent classifier. �is process can be illustrated by Fig. 7.2. �e pseudocode for this

framework is shown in code block 6.

7.3.2 Skeleton transformer network

As illustrated in Chapter 4, the RNN model excels in modelling the temporal relationship

contained in the time series sequence and extracting the global representation for the whole

sequence which can preserve the temporal information in the extracted global

representation. �e Vanilla RNN model cannot model long-term dependency very well

because of the gradient vanishing and error blowing up problem. �erefore, we adopt the

advanced RNN architecture LSTM [18] as the backbone model for our framework. �e LSTM

neural includes three gates and one cell memory unit. �e gates can control the information

to pass or forget at each timestep, the details of the information flow are stated in Chapter 4.

�e LSTM unit is utilized to build the STN, as shown in the right part of Fig.7.1, which

accepts the original skeleton data and outputs a transformed version of the input skeleton

data. �is transforming process can be treated as a transformation operation on the input

joint coordinates, such as the angle rotation operation, but it is different from the traditional

transformation operation, because it is learned by the deep learning framework. For

example, one input skeleton sequence X as input to the sequential transformer network, and

we can get the transformed version of the input sequenceX ′
. �en the processed sequenceX ′

and the original skeleton sequence X are then fed into the subsequent multiple layers of

action classifier in parallel. �e output of action classifier for the original skeleton sequenceX

and transformedX ′
can be indicated as F(X) and F(X ′), then we fuse these two outputs as the

final output of the model with a maximum or an average strategy. Even though the structure

of our proposed model is similar to the model that was proposed in [105], but their model is

designed for video classification and they did not feed the original input into the classifier.

For the skeleton transform stream, it consists of two transform modules with symmetric

architecture. One is used to compress the dimension of the raw input and the other one is

used to output a transformed vector, that has same dimension with the input sequence. �e

STN model first compresses the original input into a subspace and then recovers the

compressed representation into the original space. �is process is learned by the training of
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7.3�e algorithm

the whole framework in an end-to-end learning manner, and the transformation capability

of the network determines the generalization ability of the whole model. So, in order to train

this model well for the spatial-temporal-structural information extraction, we devised a new

loss function, which will be described in the following sections. �is loss function considers

both the loss of the final classification and the transform loss into consideration, which helps

to train the whole framework in an end-to-endmanner.

7.3.3 Training optimization

In order to train the proposed sequential transformer network to extract more robust and

proper representations from the input skeleton sequences, we customized a loss function

based on the widely used Cross-Entropy loss function. Specifically, for one original input

sequence X, the corresponding label is y; the transformed sequence of X can be dedicated as

X ′
; the loss function can be formulated as the following formula:

L = Loriginal(θ) + Ltransformed(θ) + λ‖X− X ′‖2 (7.1)

whereL consists of three parts, the original classification loss Loriginal(θ), the transformed

skeleton classification lossLtransformed(θ), themean squared loss between the transformed

sequence and the original skeleton sequence ‖X−X ′‖2. �e first two items of the loss function

are the cross-entropy loss, which can be calculated by following two formulae:

Loriginal(ŷ
i
original, yi) = −

C∑
i=1

yilogŷ
i
original (7.2)

Loriginal(ŷ
i
transformed, yi) = −

C∑
i=1

yilogŷ
i
transformed (7.3)

where the yi = (y1, y2, ..., yC) represents the ground truth label for the ith sequence

skeleton data; the ŷioriginal and ŷ
i
transformed represents the prediction of the original

input sequence and the prediction of the transformed sequence. �e third part of the loss

function is the transformed loss between the original input sequence and the transformed

sequence. �e λ is a scalar, which determines the significance of the transformed loss.
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7.4 Empirical testing and analysis

7.4.1 Dataset

In thisChapter,weverified theproposedalgorithmon three 3Dbenchmarkdatabases, e.g., the

UTD-MHAD dataset, the Northerwestern-UCLA dataset and the NTU RGB+D dataset, which

are described in previous Chapters. �e first two datasets have limited training data. In order

not to repeat, we have only described some of the preprocessing phases on these datasets in

this Chapter. For these three datasets, we adopted similar preprocessing steps, except that

for the NTU-RGB+D dataset, because the skeleton sequence contains multiple persons’ joint

coordinates. �e main issue that affects the performance of the proposed model is that it is

expecting an input with 150 dimensions to accommodate the joint coordinates of two persons

within a frame. However, in the dataset there are cases where there is only one actor within a

frame. �is means that only half of the 150 features are available. �erefore it could throw the

algorithm off.

In order to process these sequences in a batch style during the training phase, we tested

the following two different preprocessing approaches: 1) copy the joint coordinates of the first

subject as the joint coordinates of the second subject; 2) keep the joint coordinates of the

second subject as blank if there is only one subject involved in the target actions. With these

two preprocessing approaches, the output skeleton features for the NTU-RGB+D dataset have

150 dimensions for each frame. �is is different from our approach in Chapter 3, where we

only kept the skeleton coordinates of one person, because if we keep the joint coordinates of

the second subject as blank, the converted image will have large patches of black areas.

Table 7.1: Performance comparison of STN and related models on UTD-MHAD.

Model Accuracy%

Deep RNN [20] 66.10%

Kinect+Inertial [27] 79.10%

3D-HoTMBC [137] 84.40%

CNN + JDM [132] 88.10%

CNN + JTM [135] 85.81%

CNN + SOS [136] 86.97%

transformed original fusion

STN 87.44% 85.11% 86.51%
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7.4.2 Results of UTDMHADdatabase

Table 7.1 listed the results for our proposed model and the results of several other related

models on the UTD-MHAD. Compared with the other existing methods, our proposed

approach is able to achieve competitive results on this dataset. �e final classification score

produced by the three strategies, e.g. the transformed, the original, and the fusion,

demonstrate different results. And it is worth mentioning that the fusion strategy cannot

outperform the other two strategies, in a realistic application, we can select the maximum

confidence score as the final result.
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Figure 7.3: Confusionmatrix of STN on UTD-MHAD

�e convergence rate curve of the training and testing on this database is shown in Fig.7.4.

It can be observed that both the training and the testing accuracy increase steadily, and the

loss for both the training and testing decrease consistently.

Figure 7.4: Convergence curve of STNmodel on UTD-MHAD
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7.4.3 Results of Northwestern UCLA database

�e best result of our proposed STN model on the Northwestern UCLA dataset is shown in

Table 7.2. In terms of the better recognition accuracy of our model, it can be identified

compared with other existing methods, specifically, the RNN based baseline model, e.g., the

HBRNN-L and the EnTS-LSTM. �e output of the transformed stream can achieve the best

recognition accuracy compared with the other two fusion strategies. �is means that our

proposed transformer network is beneficial for processing the view-variant action

recognition problem, because the output of the transformer network can cover some unseen

patterns that appeared in the testing dataset.

Table 7.2: Performance comparison of STN and related models on Northwestern-UCLA

Method Accuracy%

AOG [128] 53.60%

Lie group [71] 74.20%

HBRNN-L [141] 78.52%

HOPC [133] 80.00%

EnTS-LSTM [157] 89.22%

transformed original fusion

STN 89.78% 85.00% 87.60%
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Figure 7.5: Confusionmatrix of STNmodel on Northwestern UCLA
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In order to discovermore insights about the training process of the proposed framework on

this dataset, we show the convergence rate curves of the training and testing on this database

in Fig. 7.4. As can be seen, the training and testing performance for the fusion and original

streams increase steadily in the whole training. �e performance of the transformer stream

decreases significantly sometimes, because of the uncertainty of the transformed sequence.

Figure 7.6: Training and testing accuracy and loss for STN on Northwestern UCLA

7.4.4 Results of NTURGB+Ddatabase

�e NTU RGB+D dataset is one most popular action recognition datasets, which includes

56,880 skeleton instances in total, and the noisy skeleton coordinates contained in this

dataset pose great challenges to distinguish 60 actions. Following the two popular evaluation

protocols: the Cross-Subject protocol and Cross-View protocol, the data is splitted into the

training and testing subsets. For the cross-subject evaluation protocol, the training subset

includes 40,320 samples and testing subset includes 16,560 samples. For the cross-view

evaluation protocol, the training subset contains 37,920 samples, the left 18960 samples

belong to the testing subset.

Following the standard evaluation protocol, the skeleton sequence contained in the

training and testing dataset are different significantly, the difference can be alleviated by our

proposed network. �e proposed model reduced the difference existing in the training and

testing dataset by introducing more noise during the training process to improve the

generalization ability of the trained model on the test dataset. Table 7.3 presents the result of

our proposed model and the various widely reported results on the NTU RGB+D dataset. �e

implementation of our sequential transformer network consists of 2 layers of the LSTM
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Table 7.3: Performance comparison of STN and related models on NTU RGB+D

# CS CV

HBRNN [141] 59.07% 63.97%

P-LSTM [20] 62.93% 70.27%

ST-LSTM [194] 69.20% 75.70%

GCA-LSTM [189] 74.40% 82.80%

Clips+CNN+MTLN [195] 79.57% 84.83%

ST-GCN [77] 81.50% 88.30%

IndRNN (6 layers LSTM) [196] 81.80% 87.97%

Transformed Original Fusion Transformed Original Fusion

STN

(copy-skeleton-of-first-subject)
81.30% 80.86% 83.22% 88.16% 88.03% 89.96%

STN

(nocopy-skeleton-of-first-subject)
79.43% 78.80% 80.92% 84.94% 85.60 87.37%

network and the top action classifier is a 3 layers LSTM-RNN model, all of the LSTM layers

contains the same number of hidden LSTM nodes, and the number of nodes of the last

fully-connected layer equals the number of the action categories, which is 60 for this dataset.

We used the Adam optimizer to optimize the whole framework, and the start learning rate is

initialized as 0.001. �e batch size of the training process is set as 32. �e dropout

regularization is utilized to alleviate the overfitting problem. We trained the model for 6000

epochs and report the best test result. We compared our results with [141], [20], [194], [189],

[195], [196], our method can achieve superior performance compared with the other existing

works.

�e results listed in Table 7.3 show that our proposed approach greatly outperformed the

other baseline systems. For Cross-View evaluation protocol, our STN outperforms the best

existing model IndRNN by 2%. �e result of our model on both the cross subject evaluation

protocol and the cross view evaluation protocol outperforms the other state-of-the-art

models, which means the proposed model is not only able to efficiently models the variation

of the same action performed by the different people, it also can deal with the view changing

problem very well. Because some action sequences in the NTU RGB+D database includemore

than one person, we investigated two strategies to process this problem, the "copy" and the

"nocopy" strategy. �e "copy" strategy means we copy the first person’s joint coordinates if

there is only one subject in the action sequence. In terms of the "nocopy" strategy, it means

we keep the second subject as blank if there is only one person in the action sequence. �e

confusion matrix for the best recognition accuracy produced by the CV evaluation strategy is
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Figure 7.7: Confusionmatrix of best result with Cross-View evaluation strategy

shown in Fig.7.7, it is easy to identify that the trained model has excellent performance,

which can correctly classify most of the action sequences.

�e convergence rate curve of our model during the training process is shown in Fig.7.8.

�e model converges much faster on this big database than that on the UTD-MHAD dataset,

and the model can be well trained after around 2000 epochs. We predict that our proposed

model can work well on an even larger dataset, we will verify our model on the NTU RGB+D

120 dataset, which includes 120 actions and more training examples. �e great margin

between our results with the compared results indicates that our proposed model has

superior improvement on this dataset, so this validates that our approach can be employed to
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Figure 7.8: Convergence rate curve for training and testing on NTU RGB+D

other sequential problems.

7.4.5 Visualization

In order to provide more insights for the proposed skeleton transformer, we visualize the

original input sequence and the transformed input sequence with the static images by

following similar steps as those that were used in Chapter 3. Each of the joint coordinates, (x,

y, z), is treated as a pixel value in the RGB image. �e image representations of several raw

input sequences and transformed sequences are shown in Fig. 7.9. �ere are two columns for

10 actions. �e left column corresponds to the original raw input sequence, while the right

column corresponds to the transformed sequence. From the visualisation of the original and

the transformed features, it can be seen that some types of actions (as indicated by the

numbers alongside each frame) have very similar feature patterns in the original features.

For instance, action type 8 and action type 39 have features that resemble each other before

the transformation. Inspecting their transformed features, we can see that the STN

converted the original features to make them easier to discriminate. �is verified that the

skeleton transformer network removed the redundant noise and made the significant

discriminative feature more outstanding. �e transformed sequences were used to augment

the training set, making the STN model more robust against noisy input sequences; thus,

improving its generalisation ability.
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Figure 7.9: Image visualization of raw skeleton sequence and the transformed sequences. �e

number alongside each frame indicates the action type.

7.5 Summary and contributions

In summary, the following contributions can be highlighted for this Chapter.

1) We devised a novel and a highly efficient model for the skeleton-based human activity

recognition and this framework significantly improves the recognition accuracy by

introducing a novel skeleton transformation mechanism. �e introduced STN model can

help to produce a robust model that can perform better on the test dataset by augmenting the

training dataset and training the recurrent model in an end-to-end manner. Another
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function of the proposed skeleton transform operation is that it can help to remove the noise

from the input sequence and keep the discriminative temporal dependency information that

exists in the original sequence.

2)�e customized loss function can control the loss between the classification loss and the

transformation loss so as to extract a more discriminative representation from the input

skeleton sequence. Experiments conducted on several challenging action recognition

datasets, such as the NTU RGB+D, demonstrate that our proposed model can outperform

those similar models reported in the latest literature.

3)�e proposed STN model provides an efficient solution for representation learning from

time-series data, especially if the time-series data includes complex patterns and if the data

is corrupted by noise. �is model can be easily adapted to other applications for time-series

signal processing.
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Chapter 8

Conclusion and perspectives

�is thesis extensively explored and highlighted several contributions for HAR using a multi-

features input. To conclude our work, we first summarize our experimental results andmajor

contributions, and then point out some promising research directions for our future research.

8.1 Key contributions

�is thesis investigated several automatic techniques for representation learning with

multiple features as the input for HAR. �e CNN based approaches were shown to achieve

super good results as they can utilise the pretrained model to enhance the training process.

�e RNN based models are the most natural choices for human action recognition, which

perform well in modelling the temporal dependency between the consecutive frames.

Another reason for the popularity of the RNN models is that it requires much fewer

parameters to be trained compared with the CNNmodel. However, when compared with the

CNN model (demonstrated in Chapter 4 and 5), the RNN based approaches are not easy to

train due to the overfitting problem. In summary, the four major contributions of this thesis

can be identified as follows.

Our first contribution is that we introduced the concept of skeleton-based optical flow into

the skeleton-based human action recognition, deriving themotion and energy features based

on the raw skeleton coordinates. For this part, we investigated the traditional skeleton-based

features and developed new geometric and kinematic features. Additionally, the

performance of the proposed features were verified with two of the most popular deep

learning models, the CNN model and the RNN model. Based on the baseline performance,

we optimised these two models by proposing the correctness-vigilant regularizer and the
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spatio-temporal kernel for the CNN and RNN model respectively. �e proposed

correctness-vigilant regularizer can help to speed up the training’s convergence and improve

the generalisation of the trained model (Chapter 3). �e limitation of the CNN model is that

the conversion of the skeleton to static images will lose temporal information. �is is because

any sequence longer than the predefined input size of 224x224 will have to be compressed, so

key frames might be dropped. �is can be addressed by using our proposed spatio-temporal

kernel-based temporal convolutional model (Chapter 4). With the proposed spatio-temporal

kernel, we could aggregate the sequential features locally and globally in a hierarchical way to

effectively extract the instance-level features from the input skeleton sequence. Regarding

the output the proposed two models, the experimental results showed a significant

improvement on the tested benchmarking databases in terms of recognition accuracies.

�e second contribution is that we devised a novel feature selection mechanism for the

video-based action recognition system via the LSTM-C model (Chapter 5). It can integrate

spatial features contained in static images and the temporal dynamics between the static

frames together to formulate the final representation of the whole video. We proposed using

CNN features to represent the spatial features, which will mitigate the stress of the RNN

model to extract spatial features from image frames. With these CNN features as the input to

our proposed LSTM-C recurrent neural network, the LSTM-C model can selectively extract

discriminative frames from the input spatial features to formulate the final representation.

We evaluated different configurations of the LSTM-Cmodel on several databases to verify the

effectiveness of the proposed framework. �e empirical results demonstrate that the

proposed model is an effective attention mechanism in extracting the key features from the

input CNN features, and out-performed the baseline system. Action recognition from videos

is a topic that has been researched extensively, and it is difficult to improve the performance

of this approach further because of the significant computational cost and the lack of a more

powerful model to extract compact patterns from RGB videos. In order to address this

problem, we proposed using the skeleton data that is extracted from the video directly to

carry out action recognition. �e empirical results indicated that this approach is an efficient

solution for video-based action recognition.

My third contribution of this research is that we proposed a novelmulti-streamCNNmodel

to improve the action recognition performance further. �e proposed model demonstrated
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good performance on small datasets with limited training data. Four fusion strategies (sum,

average, multiply and max) were employed to fuse the extracted features by each CNNmodel

and different combination options were also investigated in this contribution. �e proposed

framework was shown to achieve state-of-the-art performances on the UTD-MHAD dataset.

(Chapter 6)

�e last contribution of this thesis is that one efficient STN model is proposed, which

provides an efficient data augmentation approach for skeleton-based action recognition

(Chapter 7). Given an input sequence, the proposed network will output a variant of the

original sequence, which contains all discriminative features but omits unrelated and

redundant information that only contributes to noise. �e results of the STN model on three

challenging datasets demonstrate superiority of the proposed model over other

state-of-the-art approaches. �is framework provides us with a flexible and robust

evaluation approach, which opens up more alternative classification results, and we can

achieve the final optimal prediction by comparing the three output scores. �e training

strategies utilized in this model can efficiently prevent the error exploding and gradient

vanishing problem that we encountered in Chapter 4 and Chapter 5.

8.2 Futurework

�e research presented in this thesis has explored various possibilities of representation

learning for action recognition. �e discovery raised more questions than it has addressed.

�e findings and discussion of our proposed models have allowed us to outline several future

research directions for HAR.

Even though the proposed optical flow guided skeleton-based features contain rich

information of human actions, utilising the skeleton-based geometric and kinematic

features to improve recognition accuracies is still at a preliminary stage. �erefore, more

options should be investigated in the future to improve the accuracy. For example, the

number of geometric features needs to be determined for each situation. �e best set of

geometric features should also be investigated in the future. A potential research direction

for future work can be feature-selection based on our proposed geometric and kinematic

features. In this research, we mainly considered actions that involve one or two subjects. In
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the future we may extend our researches to that involve more than two subjects. Another

direction is to introduce amore powerful neural networkmodel, including both CNNs, RNNs

and other complex architectures to process the extracted geometric features.

For RGB video-based action recognition, we use the CNNmodel to extract spatial features

from RGB images. �en we utilised a customised RNN model to discover the temporal

patterns in time domain. In the future, we can explore the idea of introducingmore semantic

features into our framework, such as, saliency based features. �is is a promising trend for

video-based action recognition since modern deep neural networks make it possible to

extract rich and accurate information from videos. In addition, the extracted features from

videos, such as depth, skeleton, motions and so forth, can provide more options and more

promising solutions for RGB video based action recognition.

Another research line involves integrating the potential attention mechanism that can be

integrated into our proposed framework. �is should be further investigated. In this

research study, we introduced several attention mechanisms in the action recognition

framework, however a more flexible and effective attention mechanism should be looked

into. �is can be useful for applications, such as action detection and anomaly action

detection. In the future we intend to extend our proposed attention mechanism into action

detection, which is much more challenging compared to action recognition. At last, a more

powerful attention mechanism and a more powerful signal fusion approach should be

investigated in the future for multi-modality features-based action recognition.
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