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ii . 

Abstract 

A development of the theory of optimum experimental design is 
presented . The notation and proofs are in terms commonly 
used by statisticians , rather than in the earlier measure theory 
terms . The D-optimali�; equivalence theorem is extended to 
the singular case� and similar results derived for a numb�r of 
o�her criteria . Atwood's theorem for spe cial n-tic polynomials 

is extended to the case where not all parameters are of interest . 
Finally methods of constructing optimal designs are considered 
and extended to allow deletion of unsatisfactory points , and 
some numerical examples are included .  
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1 .  I N T R 0 D U C T I 0 N 

1 . 1  PURPOSE . 

The j ustification for the work leading to this thesis can 
perhaps best be illustrated by quoting M . J .  Box in his comments 
to two papers on the subj ect of des ign optimality , Laycock 
( 1972 ) and Hynn ( 19 72 ) : "Tonight ' s  two authors are to be 
congratulated on achieving a high standard of lucidity in what is 
a notoriously difficult subj ect mathematically . In the past , 

many authors working in this area have been at pains to conform 
to an abstruse but widely accepted style , with the result that 
their work has been only readily appreciated by a rather small 
and elite band of the already converted ." Along the s ame lines , 
a quotation from Box and Draper ( 1971 ) is relevant : 
"There is. a tendency , on the part of many statisticians who are 
connected with experimental des ign , to omit mention of the 
excellent papers written by those l-lho belong to what is popularly 
( and complimentarily ) kno\m as the "Kiefer School" . ·The papers 
concerned are often long , intricate and involved , and most of 
them are fine pieces of detailed reason ing . They are , however , 
extremely difficult t o  read and the experimenter ( or even the 
stat istician! ) searching for a design may qui ckly be deterred 
after reading a page or two . "  

As an example of the type of style referred to by Box , consider 
the following definition of M-optimali ty , quoted from a \-tell
known paper on the subj ect! 

A des ign is said to be M et , c  
optimal in !::,. if , for some 

,•: in Hd�·/et ) , cpd�'; 

inf 2 inf 2 
f$�·· (J,l,O' ) = max sup f$cp(J,l,O' ) 

r .. d1: dEll q:EHd (a:) r c c 

Stripped of the difficult notation , the above expression states 
that a design is M .-optimal if there exists a test such that the et,c 



. . . f h h T / 2 . m1.n1.mum.power o t e test , on t e contour 1111 a =c , 1.s a 
maximum over all designs and tests • 

. Another example is the following theorem : 

I f  9 ( 1 )  is estimable under s*, equat ions ( 2 . 1 ) , ( 2 . 2 ) , 
( 2 . 17 ) ( a ) , and ( 2 . 19 ) ( a )  are equivalent . Moreover , 
( 2 . 1 ) ( and thus any of the above ) implies ( 2 . 1 7 ) ( b ) , 
which is equivalent to ( 2 . 19 ) (b ) , while ( 2 . 1 ) is  
implied by ( 2 . 17 ) ( c )  (or ,  equivalently , ( d ) ) .  

The equations referred to span five pages in the original paper . 

The primary purpose of this thesis is to provide a general 
development of the subject of optimum design , in terms readily 
followed by the bulk of 3tatisticians. This , in turn , has 
made it necessary to re-·prove the basic theorems in matrix 
terms . As a result of this it has been possible to ext end a 
number of these theorems . 

1 . 2  GENERAL APPROACH . 

2 .  

The historical approach , following Kiefer ( 19 59 , 1961a , 1961b , 
1962a , 1962b )  and Kiefel' and Wolfowit z ( 1959 , 1960 ) , has used a 
definition of a regression or experimental design as a probability 
measure with support at a finite number of points . This measure , 
usually denoted by � is used in integrations over the region of 

operability , thus 

r ds = 1 ·R 

and , if  x represents a point in R, ,.... 

is Fisher ' s  information matrix for the design . 

By contrast , statisticians tend to refer to a desi gn matrix X, 
all of whose n rows are in R ,  as specifying a design . 



The information matrix is now 

1 
n 

the fact that S is a function of a particular design X, being 
implicit . This is the approach adopted in this thesis . 
It has been necessary to introduce a weighting matrix �' in 
order to take advantage of continuity arguments . A is a 

diagonal matrix , whose diagonal elements are positive ( or at 
least non-negative ) and add to one , and whose ith diagonal 
element represents the proportion of the s ample taken at the 
point given by the ith rcw of X. Now 

1. 3 GENERALIZED INVERSES . 

3. 

Earlier work , particularly Kiefer (1962b ) and Karlin and Studden 
(1966 ) ,  has made extensive use of game theory methods in obtaining 
their results . However , the same results may be obtained by 

the more natural use of generali zed invers es, Apart from the 
specialization in section 6 . 3 ,  the usual one-condition generali zed 
inverse defined by AA-A = A is used . Where A is symmetric 
( as it usually is in the present context ) A- is , for convenience , 
taken to be symmetric also .  This enables consideration of 
s ingular information matrices in a straightforward way . 

Theorem 8 . 1 and its supporting lemmas , is an attempt to provide a 
proof in answer to the comment of Atwood ( 1969 ) that if  S is 
s ingular , "there is no s imple known theorem analogous to this 
result" ( that , where interest is in s of the k parameters , 
D-optimality is equivalent to an analog of G-optimality . ) .  



2 .  THE GENERAL LINEAR MODEL 

2 . 1  BACKGROUND . 

The general linear model has relevance in the context in which 
an experimenter wishes to draw conclusions about some physical 
process which produces some measurable result or response . 
This response may be s ingle valued or multi-valued.  This 
thesis will consider only the single valued case . 

The experimenter wishes to draw conclusions about the underlying 
process , for any one of a number of reasons . To do so , he 

I • postulates a form of model under wh1ch the response depends on 
a number of independent variables ,  together with a random 
disturbance factor . He suppose that there are w independent 
variables ,  dec10ted by the wx1 vector �· The response will be 

denoted by y. Thus , the model is 

4 .  

y = f(�) + E " ( 2 . 1 ) 

where f is some scalar function , and E is  a random variable with 
zero mean . 

The experimenter may go further , and suppose that y depends on 
a linear combination of k linearly independent functions xi of 

F , thus x .  = x. ( F ) , With x denoting the k x 1 vector with .<. l l� ...... 
elements x. , the model now becomes: l \ 

with x = x ( s: ) ...... ...... � 

where the constant but unknown elements of � are referred to 

( 2 . 2 )  

as the parameters of the model . Thi s  is the general linear 
model . Note that the model is linear in � and �, not necessarily 
in � , polynomials being the commonest counter-example . 

' . 



3 .  THE EXPERIMENTAL SITUATION 

3 . 1  SPECIFICATI ON OF THE PROBLEM . 

5 .  

The experimenter then formulates the question to which be requires 
an answer .  The commonest questions are: 

1 .  Is  L� = � true , where � is some known vector 
and L a knovm r x k matrix? 

2 . What is the expected value of y for some� of 
particular interest? 

( 3 . 1 ) 

( 3 . 2 )  

3 .  What are the valu8s of � , or of some transformation ( 3 . 3 ) 
Rfs of them? ., . ,....., 

Of these , ( 3 . 1 )  is the hypothesis testing problem, ( 3 . 2 )  the 
prediction problem , and ( 3 . 3 )  the parameter estimation problem . 
The estimation problem may b8 further complicated when interest is  
restricted to some sub-set of the space of� , I ,  called the 
region of interest . I wiJl be used indifferently, and without 
ambiguity , to represent the region defined on �and the derived 
region defined on the space of x ( as well as its normal meaning of ,.., 
the identity matrix) .  This leads to 

4.  What is the expected value of y for all � E I? 

3 . 2  THE EXPERIMENTAL DESIGN . 

( 3 . 4) 

In order to satisfy his curiosity about one or more of the above 
questions , the experimenter designs an experiment . He is assumed 
to be able to select some �within some space R (known as the region 
of operability and usually determined by physical limitat ions , or , 
in some cases by the limits of reliability of the form of the model 
given by ( 2�2 ) ) ,  and perform an experiment which yields a sample 



value of y .  The region , I ,  referred to above,may coincide with 
R ,  be a subset of it ( the interpolation problem) or be completely 
disj oint ( the extrapolation problem) , or overlap R .  

The single experiment noted above is  repeated a number of times 
at the same or different values of �· vle suppose that n such 
single experiments are performed in all . Let us suppose that 
the experimenter sele cts , at most , p distinct values of� , and 
that the ith of these values is  used A . .  n t imes, where A·· is 11 . .  11 
benreen 0 and 1 .  The complete s et of n samplings will hereafter 
be termed the experiment . 

Now assemble the p values of �, derived from the p values of � , 

6. 

as the rows of a matrix X, p x k .  Also assemble the corresponding 
values of Ai i  as the diagonal elements of a p x p matrix A, whose 
non�diagonal elements are zero . The matrix X will be known as 
the design matrix , and A as the weighting matrix ,  the matrix pair 
D = ( X, A) being known as the design . Thus we introduce the 
following definition of a design : 

Definition 3 . 2  . 1  

A design is  a matrix pair D = (X ,A) where T 
� '  the rows of X 

are in the region R ,  and A is a diagonal matrix whose 
diagonal elements are non-negative and add to one . 

Certain theoretical requirements need the imposition o f  the 
constraint that the region R be a compact space , and this  constraint 
will be assumed to hold . It is difficult to imagine any practical 
example in which it does not hold . As noted previously , 
S = XTAX is Fisher ' s  information matrix . 

3 . 3 DERIVED DES IGNS . 

Given any point �' in R ,  ·a design· can be constructed . Also , ·  
given any two designs , further designs may b e  constructed . 



., 

Lemma 3 . 3 . 1  

. T If  x E R then ( x  , 1) is a design . ,..., ,..., 

For the remainder of this thesis , we assume that D = ( X , A) 
is a des ign . Alternative designs will be indicated by 
superscript · syrriliols , thus D* = (X*, A*) . 

Lemma 3 . 3 . 2  

I f  D = ( X, A) is a design, then so i s  (X, A*) where A* is 
any weighting matrix s atisfying definition 3 . 2 . 1 .  

Note that this may require n ��if some A·· is irrational . �� 
It does not , however , affect p .  

Lemma 3 . 3 . 3  

If  D = ( X , A) is a des ign, and � E R, then n�·: = (x�·: , N':) is  a 
design , where 

7 .  

0 � 0 � 1 

Corollary 

If D = ( X , A) and n�·: = ( X�':, N':) are designs , then so is D+ = ( X+ , A+ ) 
where 

A+ = (
( 1-

0

9) A o � e � 1 (3 . 5 )  

+ The symbol D will be used frequently for the design given by 
(3 . 5 ) .  Note that S+ = ( 1-9) S  + 9S*. 



3 . 4  OTHER OPTIONS . 

The experimenter is also able to choose the method of estimation , 
necessary even where the main interest is in hypothesis testing , 
and , where applicable , the test to be used .  

8 . 

While a maximum likelihood estimate , and the usual F-test , are 
used in the vast maj ority of cases , they do not exclude the 
possibility of alternatives being preferabie in some circumstances .  
Any test will , of course , require some distributional assumption 
about the errors , E, in.the model . 

In addition , the experimenter may be unsure of the adequacy 
of the model ( 2 .  2 )  , and may wish to guard against bias al'ising 
from the possibility that some specified alternative model is 

the true model . For the purposes of this thesis the model 
( 2 . 2 )  will be assumed to be correct . 

3 .  5 ' DISTRIBUTION OF ERRORS . 

Throughout this thesis , the errors E will be assumed to be 
normally distributed , with zero mean . 

While some \Wrk has been · dorie on the case where errors in 
different response measurements are correlated , in the maj ority 
of work they are assumed to .be \.mcorrelated , and this will be 

taken to be the case in this thesis . 

h d h . 2 T e errors are also assume to ave a common varJ.ance , o • 

3 . 6  EXPLICIT MODEL . 

Let U be an n x k matrix derive� from D � ( X , A) by repeating 
the ith row of X ,  X .. n times . Evidently this is possible only J.J. 
if  X .. n is an integer for each i .  If  A has irrational elements ].]. 
on the diagonal , then it is not poss ible to perform the exPeriment 



implied by the design D = ( X ,A) . Such a design may occur when 
an attempt is made to use an optimum design , in which case 
an approximate design will give a near optimum when n i s  
sufficiently large . The approximate design modifies A· · in �� 
such a way that A • •  n values are integers . �� In developing 
the model it is assumed that this has been done and that U 
exists . Novl the model , at the experimental points , is 

X. = u� + §_ , 

T T Note that U U = nX A X -. ns 

2 E "'N (O ,cr I )  "' "' ( 3 . 6) 

Using maximum likelihood estimation , the normal equations are 

A T nS� = U X. ( 3 . 7) 

which , s ince SS-UT = UT , always has a solution (from the theory 
of generalized inverses ) .  The solution is 

A 1 - T -
E_' = nS U x_ +  ( I-S S )!2_ 

where £is arbitrary , and S is a one condition generalized 
inverse of S (that is , SS S = S ) .  For convenience , S \o�ill 
be taken to be symmetric .  

Suppose now that the aim of the experiment i s  to test the 
hypothesis  L� = � , where L is r x k .  This  requires LL � = �, 
for consistency , and LS-S = L for L� to be estimable , ( see 
Pringle and Rayner ( 1 971 ) , for example ) .  

If  either of these conditions is not met , then useful results 
cannot be obtained . 

The usual test is an F-test which tests 

SS ( H )  /rank L ( 3 . 9) 
SS(E)/(n-rank X) 

.T'f 

9. 



with degrees of freedom rank L and (n - rank U) = (n - rank X ) , 
where 

10. 

- T T - T 
SS ( H )  = ( LS U z - �) Q ( LS U X - �) ( 3 . 1 0 ) 

where Q and 

with non-cent�ality p arameter 

1 1 T - - . 
� Lf - �) Q QQ ( L� - �) 
(j 

( 3 . 1 1 ) 

A 
In the equivalent estimo.tion problem , the variance of Lf i s  given 
by 

again , provided Lf
.
is estimable . 

3. 7 DEVELOPMENT OF A CANONICAL FORM 

( 3 . 12) 

Algebraic manipulation of expressions such as those given above 
can be cumbersome . To lessen this , a number of writers use 
a canonical form of t he model . In  particular Lehmann ( 1 95 9) 

gives a general account , without existence proofs , and Kendall 
and Stuart ( 1 967) Vol 2 ,  give a development which contains basic  
errors . ( In the equat�on before ( 2 4.90) , the left hand s ide is , 
at mos�of rank k ,  and the right hand s ide is of rank n ,  in 
general n > k ) . Being unable to find any mention of the less 
than full rank case , or any explicit form for the transformation , 

the author has developed the model given below , to fill this gap , 
and ,  in particular , to  �over the singular cas e .  The model is 
that of the last section , and the aim is to test the hypothesis 
Lf = �, with LL-� = � and LS-S = L ( that is , L� = � is consistent , 
and L� is estimable ) .  Note that this requires rank L � rank S = 
rank X .  



11 . 

We desire to transform z by � = C� + £with a number of specified 
characteristics . Partition z ( and C and b correspondingly ) in ,.., ,...., 
such a way that �1 is (ratik L) x 1 ,  � is (n - rank X) x 1 ,  
and �3 is ( rank X - rank L) x 1 .  The condit ions we set on C 
and£ are , for any � , 

1 .  The transformation must be reversible . 
2 .  var z = r/I 
3 .  'E(�) = 0 

4 .  E(�1 ) = Q if and only if L� = �· 

cbndition 1 .  

This implies that C must he non-singular . 

Condition 2 .  

( 3 . 1 3 ) j 

This implies that CCT = I  and hence that CT = C- 1 , and the C . 
" � 

( the parti tions of C )  are orthogonal and orthonormal . 

Condition 3 .  

This imples that c2u� - � = Q for any �, and hence that 
£2 = 52_ and c2u = 0. Th·us c2 is any (n - rank X) x n matrix , 
orthonormal and in the null space of U .  In particular , c2 may 
be taken as any orthonormal basis for I - l US-UT 

n • 

Condition 4. 

This requires that c1u� + £1 = Q if and only if L� = �· It is 
readily shown (by solving L� = � and inserting in c1 U� + £1 = .Q) 
that a necessary condition is 

T and we require a full rank solut ion c1 , such that c1c1 = I .  
Such a solution is given by 

' ·c = PNS-UT 
1 

where L = HN with N of full rank and dimension rank L x k, 

M is  of full rank and dimension r x rank L ,  and 

\. 



P is  of full rank and dimension rank L x rank L ,  given by 

It can be shown that c1u� + b1 = 0 if and only if L� = g, and 
T T "" 

that c 1c1 = I ,  c1c2 = o. Also , £1 = -nPNL �· 

Reverting to condition 1 ,  c3 is chosen to make C of full rank . 
Thus any conformable matrix orthonormal and orthogonal to c1 
and c2 will suffice . Finally , � 3 is arbitrary and may be set 
to zero . 

I 
3 . 8 SUMMARY OF CANONICAL FORM . 

Summarizing the above results : 

Let ;<, = 

where 

( 3 . 20 )  

T - T where c1 = PNS-U ,  c2 is  an orthonormal basis for·r - US U , 
and c3 is any matrix ortho·,1ormal and orthogonal to c1 and c2 , 

with L = MN and PTP = n (NS-NT ) -1• 

12 . 



The problem can now be phrased: given a vector� of independent 
normal variates with common variance, with E(�) = 2 , test 
the hypothesis z1 = 0. Under these conditions, "' "' 

SS(H) 

SS(E) 

T = �1� l 
f 

T 2 with non-centrality parameter� �le where�= E(�1). 

3(9 SIMPLIFIED MODEL. 

(3.21 ) 

It is difficult, with the above canonical form, to see the 

13. 

immediate application of results. For this reason an alternative 
and intermediate form will be used in this thesis. With the 
notation of sections 3. 6 aud 3. 7 ,  .let L = MN _1 and augment N 1 
to a non-singular square matrix N. 

Now let 

whence 

(. N1�

0

-�) 
� = N� -

·-

and we use the model 

y -

(3.22) 

(3.23) 

= (3.24) 

If L� = � , then MN�- MNL-� = 2 , whence premultiplication by 
T -1 T · 

(M M) M s�ows that �1 = Q· Conversely, if �1 = 2' N1� = N1L � 
and premultiplication by M gives L� = �· 
Thus L� = �is equivalent to � = Q· 



1 

We may thus, without loss of generality, take the hypothesis 
to be ,€!_1 = £ , Hhere J!1 is s x 1 , with s = rank L. The above 
formulae give the means to proceed to the full model, where 
necessary. The form of the model is unchanged from that given 
in section 3.6, and the formulae of that section apply, with 

N.= .L = (I O) ( 3. 25) 

14. 

We will partition U (and X in the general model) and S to conform 
to the pal'titioning of .@.· Pringle and Rayner ( 1971 ) give a 
generalized inverse of a partitioned matrix. 
S gives 

Applying this to 

s = 

where Q = s 1 1  - s12s;2s21 and has the same meaning in the 
present context as Q in section 3. 6. 

Hence 

Now 

= ,€!,1 

( 3. 2 6) 

Combining ( 3. 25) and ( 3. 26) gives LS-LT = Q , which, if J!1 is 
to be estimable, must be non-singular, hence, in this case 
Q- = Q-1 , and ( 3. 1 0) becomes 

"T A SS(H) = ,E!_1Q ji1 
( 3.27) 



T -1 2 with non-centrality parameter �1Q �1/a , and 

.. 1 2 -1 . var .t1 = no Q 

This is the form of the model which will be used in the 
succeeding sections. 

(3.28) 

On occasion we may refer to the case in ·which 1.@.1 is not 
estimable. In such a case the formulae in (3.27) are meaning
less, but 

. ,. 
var A �1 

where Q- is, for convenience, taken to be symmetric. 

3.10 SIZE OF THE EXPERIMENT. 

As a practical consideration, the experimenter does not want to 
have the number of distinct points in his experiment to be 
indefinitely large. It will be seen later that the practical 
design criteria depend oP..ly on S, rather than explicitly on 
A or X. Thus it is sufficient to consider the set of possible 
S matrices. The following theorem enables a limit to be placed 
on the number of rows in X. 

Caratheodory's Theorem (from Fedorov (1972)) 

15. 

Each point v,': in the convex hull v,•: of any subset V of m-dimensional 
space can be rep�esented in the form 

where a. ;;:: o, � 

m+1 
v,•: = I: ,...., 

i=.1 

m+1 

a.v. �""l. 

I: a. = 1, � i=1 
v. E V .  ""l. 

Also, if�*. is a boundary point of the set V*, then am+l = 0. 



The matrix S has k(k+1)/2 distinct elements and may thus be 
considered a vector in m�k(k+1)/2 dimensional space. Consider 
now the set of S matrices arising from experiments concentrated 
at a single point, that is, the set of S matrices such that 
S = xxT. Let this be the subset V in Caratheodory's theorem. ,...,..,_ 
Now, any general S matrix has the form 

s = 
p 
I: 

i=1 
T >.. • •  x. x. J. J."'J. "'1. 

where each x.x: is represented by a vector in V .  Thus S is "'1. "'1. 
within the convex hull of V ,  and thus, by Caratheodory's 
theorem, can be represented by 

�k(k+1)+1 
s = I: 

i=1 
T a. x. x. J. "'1. "'1 

Thus, any S can be derived from at most k(k+1)/2 + 1 distinct 
points, and hence p � k(k+1) /2 + 1. 

. � 

16. 



4. OPTIMALITY AND TESTS OF HYPOTHESIS 

4.1 GENERAL CONSIDERATIONS. 

Unfortunately, optimality is not a uniquely defined quality. 
In the area of hypothesis testing - in general, the experimenter 
requires his test, assumed to be of size a (0 < a< 1 ) , to be 
as powerful as possible. However, it can be shown that, for 
the general linear model, a universally most powerful (UMP) test 
does not exist, unless r=1 vrhere r is the number· of rows of L. 
This has the effect of reducing L to a vector, or in the 

j l'f" d d 1 f d . h t t t t t f . 1 s1mp 1 1e mo e , o re uc1ng t e es o a es o a s1ng e 
parameter. This result was established by Kolodzieczyk ( 1935 ) . 
Where the hypothesis is simple, that is, where r=1, the ordinary 
F-test is UMP. 

Kiefer ( 19 5 8 )  has summarized most of the following results • . 

4.2 UNBIASED TESTS. 

Certain tests may have optimal properties. A test whose power 
function is not less than a,· the size of the test, for' any value 
of the parameters is said to be unbiased. Note that, since the 
test is of size a, at the null hypothesis its power is not 
greater than a. Hence, for an unbiased test, it must be exactly 
a at the null hypothesis. It should be noted that the term 
"bias" in this context is completely distinct from the meaning 
i:n the estimation context. A biased test is one which is more 
likely to reject the null hypothesis when it is true, than when 
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it is false, for some specific alternative hypothesis. The 
importance of this criterion is that it is a natural seeming 
requirement, and by restricting attention to unbiased tests, in 
cases where no UMP test exists, a test which is UMP among unbiased 
tests (Ul>1PU) may sometimes be fotmd. I� can, unfortunately, be 
shown that no UMPU test exists for the general linear hypothesis. 



. , 

4. 3 LOCALLY UNBIASED TESTS. 

The situation is improved if the requirement of the last section 
is relaxed somewhat. An alternative is that the power of the 
test at the null hypothesis be equal to a, and that the power be 
non-decreasing in the n�ighbourhood of the null hypothesis. 

2 Thus, if n is the power of the test, a function of �1 and cr 

in the simplified model, a test is locally unbiased if 

1 . n = a 

2 . on 0 at -
"" 

0�1 

3 .  The matrix 

Ho 

o2n 
oE_1o�� is non-negative definite 

at H0 

. ( 4. 1 ) 

( 4. 2 )  

( 4. 3 ) 

The determinant of the matrix in condition 3 is the Gaussian 
curvature of the power function. If this is positive definite, 
the test is said to be strictly locally unbiased. 

4. 4 SIMILAR TESTS. 

A similar test is one for which n = a at H0. Since all unbiased 
tests are similar tests, consideration of similar tests may 
sometimes lead to UMPU tests • 

4. 5 TYPE D AND E TESTS. 

Isaacson ( 1 95 1 ) i�troduc�d the notion of type D tests, extending 
the ideas of Neyman and Pearson ( 1 936 and 1 938) . A type D test 
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is one which is strictly locally unbiased, and for which the 
Gaussian curvature at the null hypothesis is a maximum. An 
important characteristic of type D tests is that they are invariant 
under transformations of.the parameter space which are locally 
one-to-one and which are twice differentiable with continuous 
partial derivatives. Isaacson extended his idea of type D tests 
to include type E tests which have the same requirements, but 



which include nuisance parameters. E type tests are therefore 
appropriate to the simplified model, D type to the model where 
L is of rank k (the number of parameters in the model). 

4,6 INVARIANCE. 

Suppose the problem is put in the canonical forin of section 3. 6. 
The form of the problem suggests that we might reasonably 
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require certain properties from the test used. For example we 
would not like the test to give a different result if we 
reorganized the various matrices in such a t-tay that the same 
values of ::,1 occurred, but in a different order. Thus we require 
the test to be invariant nver all the orderings of the elements 
of �1 . A similar remark applies to the elements of �2 and �3• 

Considering the method of derivation of the canonical form, 
the matrix C could be premultiplied by a block diagonal orthogonal 
matrix without violating any of the requirements for c. Thus 
it is reasonable to expect the test to be invariant under 
orthogonal transformations of z and z2. In addition, b3 was �1 � � 
arbitrary, and the test sl1ould therefore be invariant under the 
addition of a constant vector to �3. Finally, multiplication of 

2 z by a constant affects only a , and we expect the test to reflect ,.., 
this. 

Thus we might reasonably expect that the test be invariant 
under the above group of transformations. It must be emphasized 
that- invariance is not a necessary criterion. Kiefer ( 1958) 
has given examplea in which tests which are not invariant in the 
above sense have greate� power, in some circumstances, than the 
corresponding invariant test. In each case, however, some subset 
of � is selected for special treatment. 

4.7 THE F-TEST. 

The ordinary F-test is derived as the likelihood ratio test for the 
general linear hypothesis. It has the characteristic that its 



T 2 power function is a function of A = �1Q �1/cr alone, given by 

TT = 

where v1 , and v2 are the degrees of freedom, F� is the 1 00( 1 -a) 

percentage point of the distribution, and dG(F') is the density 
function of the non-central F distribution, given by 

dG(F') = e-�A L 

i 
(�A) 
-.-,-

1. 

i = O  B(�v1
+i, �2 ) 

B being the appropriate beta function. 

TT = i }: a. A = a + 
i=O 1 

i r. a. A  
1.=1 1 

by evaluating the constant term. 

Evidently 

2 0. 

(4.4) 

(4.5) 

(4.6) 

Condition (4.1), TT= a at the null hypothesis (A = 0 , in this case) 
is thus satisfied. Also 

CD 

OTT oTT OA 2 L i-1 
since OA 2 

o.fi1 
= OA o�1 

= 2 iaiA Q�1 
0�1 

= 2Q�1 
cr i=l cr 

and, since �1 0 at the null hypothesis, so is On = 
ok1 

and at the �ull hypothesis this becomes 

2. " . , i-1
Q + 2 L-J 1ai��. C1 . 

i=1 

(4.7) 

(4.8) 

(4.9) 



Now n is a strictly increasing function of A � 0 , and hence 
a1 > 0.· Thus the matrix ( 4 . 9) is non-negative definite, since 
Q is. Also, if �1 is estimable the matrix is positive definite. 
Thus the F-test is locally unbiased or strictly locally unbiased, 
according to whether � is not estimable or estimable. 

In addition, note that the F-test statistic is invariant under 
the transformations given in section 4. 6. Lehmann ( 1 959) has 

2 1 .  

shown that it is UMP among tests which are invariant in this se�se. 

4. 8 WALD'S THEOREM. 
I 

The following result is due to Hald ( 1942 ) ,  with simpler proofs 
·given by Wolfowitz ( 1 949) and Lehmann ( 1 95 0) : 

The F-test maximizes the integral of the power function 
on the surface A = c > o, among similar tests of size a. 

4 . 9 HSU'S THEOREM. 

Hsu ( 1941 ) showed that the F-test ls UMP among tests of size a 
whose power function is a function of A only. As noted by 
Kiefer ( 1958) this may also be derived from Wald's Theorem. 

4. 10 F-TEST OF TYPE D OR E. 

Kiefer ( 1958) has shmm, using Wald's Theorem, that the F-test 
is of D or E type, depending on whether all the parameters are 
being tested. 

4. 11 USE OF THE F-TEST. 

The comments of the previous sections give no incontrovertible 
justification for the use of the F-test. Of the qualities 



noted, invariance seems to be the most compelling. In addition 
there are general reasons for using the F-test, for example it 
is well understood, easily calculated, and well tabulated. 
All this should not blind one to the fact that, in a given 
situation, it is not necessarily completely optimal. 

; . 
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5 .  DESIGN OPTIMALITY CRITERIA FOR HYPOTHESIS TESTING 

5 . 1  M-OPTIMALITY. 

This is the most general type of optimality, defined by Kiefer 

( 19 58 ) . A design is said to be M-optimal if there exists a 

test whose minimum pm.;er on the contour ��W !1/c
/ = c, with 

c > 0, is at least as great as the minimum power on the same 

2 3. 

contour for any design an0. any test and for any value of c. 

Unfortunately, M-optimal designs are very difficult to characterize, 

and the criterion has little practical application. W defines 

the contour on which the power function is to be examined. 

5.2 L-OPTIMALITY. 

This criterion, also defined by Kiefer ( 195 8 ) , is essentially 

a local (that is, near to the null hypothesis � = 0) version of "'1 
M-optimality. Letting the greatest minimum power on the 

T �1w �1 = c, c > 0, contour, referred to above, be nmax' a design 

is said to be L-optimal if there exists a test of size n whose 

minimum power on the same contour, denoted by n is such that 

lim 
e-o 

n - n 
n -n max 

= 1 

If this holds for all n (0 < n < 1 )  then the design is L-optimal. 

This criterion is �lightly more tractable than M-optimality. 

5.3 D-OPTIMALITY. 

This, in the hypothesis testing context, is a restricted version 

of L-optimality, in which the tests are restricted to type D or 

E. In this case, a D-optimal design is one which maximizes the 

Gaussian curvature of the power of the test. By ( 4.9 ) this is 

the design which maximizes det Q .  vlald ( 1943 ) and Ehrenfeld ( 19 5 5 )  



considered this type of optimality. When a subset of the 

� is considered, as in the simplified model, this criterion ""' 
is sometimes (for example Hhi ttle ( 1973)) called D -optimali ty. · s 

5 . 4  E-OPTIMALITY. 

Wald ( 1 943 )  and Ehrenfeld ( 1955 )  also considered E-optimality 

(named, apparently, after Eh�enfeld, and having no connection 

with E type tests). Suppose attention is restricted to F-tests 
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' only, then an M-optimal design, within this limitation, is termed 

an E-optimal design. 

I 
Since the test is now fixec, and the power of the test is a 

monotone increasing function of A ,  M-optimality now requires that 

the design be such that the minimum value of A on the contour 
T 2 

�1H�/CJ = c be a minimum for all c, simultaneously. A Lagrange 

multiplier e is used to minimize 

At this minimum Q�1 = 9W�1 whence 0 = ��Q�1/co
2 is, taking W=I, 

proportional to the maximum eigenvalue of Q , and an E-optimal design 

is one which minimizes this greatest eigenvalue. 

5 . 5 COMPARISON OF CRITERIA. 

-
Kiefer ( 1958) pointed out that E-optimality makes an ad hoc 

assumption that the F-test is to be used. He then quoted a r·ather 

artificial example (intended purely to make this point) for which 

E-optimality was achieved, and then showed that the design was 

neither M-optimal nor L-optimal, and finally concluded that L- or 

D-optimality, though local, seem preferable to E-optimality . 

. . 



6 .  DESIGN OPTIMALITY CRITERIA FOR ESTIMATION 

6 . 1  GENERAL CONSIDERATIONS. 

Reverting to the discussion on the experimenter's aims, given 

in section 3 . 1  and in succeeding sections, problems ( 3 . 2 ) , 

( 3 . 3 ) and ( 3 . 4 ) have not yet been covered. In each of these 

we attempt to estimate some value or vector of values. In 

such a case it is reasonable to require that an optimal design 

be a design that minimizes the variance of the estimate, or the 

generalized variance Nhere interest lies in more than one 

estimate, and we will first consider such criteria. The 
I 

problems now become 
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for ( 3 . 3 ) :  minimize: .var(Rft) ( 6 . 1 )  

for ( 3 . 2 ) : minimize: 

where x is a known vector. ,.... 

For ( 3 . 4 ) we may minimize the average variance or the maximum 

variance, thus 

minimize:] 
�EI 

T - -
X S SS X dx ,.... � � 

(known as Q-optimality) or, alternatively, 

minimize: T - -max x S SS x 
xEI "' 

� 
"' 

( 6.2 ) 

( 6 . 3 ) 

( 6 . 4 ) 

Evidently ( 6 . 1 )  is not meaningful in itself, since one cannot, in 

general, minimize a matrix. Thus, normally, a function of the 

matrix is used, the generalized variance being the most common, thus 

' . 
minimize: det RS-R

T 
( 6 . 5 ) 

This is D-optimality (in the simplified model of section 3 . 9 ,  the 
-1  matrix becomes Q ). 
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Alternatively , one might seek to minimize the average variance 
of the parameters , or the maximum variance , giving 

minimize: max 
i=1 ,r 

The first of these is equivalent to 

and s econd to 

minimize: max 
i= 1 ,r 

6 . 2 SIMPLIFIED MODEL . 

Criteria ( 6 . 5 ) , ( 6 . 6) and ( 6 . 7) may be put in terms of the 
simplified model , as follows 

for ( 6 . 5 ) , maximize: det Q 
for ( 6 . 6 ) , minimize: trace Q - 1  

for ( 6 . 7) , minimize: - 1  max [Q J .. 
i=1 ,r 1.1. 

( 6 . 6) 

( 6 . 7) 

( 6 . 8 )  
( 6 . 9 )  
( 6 . 1 0 )  

A s  noted above , ( 6 . 8 )  is D-optimality , discussed in s ection 5 . 3 . 
The other two have been discussed by various writers . Criterion 
( 6 . 9 ) ,  called A-optimality , has been considered by Elfving (1952 ) ,  
Stone ( 19 59 ) , and Kiefer ( 19 59 ) , and ( 6 . 1 0 )  by Murty ( 1971 ) . In 
addition , Kiefer ( 1959 ) mentions a criterion (R-opt imality ) 
related to A-optimality , 

maximize : trace Q ( 6 . 1 1 )  

Note that , although "minimize: 
( 6 . 9 )  and ( 6 . 11 )  are not . 

-1  det Q " and ( 6, 8 )  are equivalent , 
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Stone ( 19 5 9 )  considered an optimality criterion based on 
Shannon ' s  information me�sure . This criterion was first 
mentioned by Lindley (1956). Stone took the information about 

f after the experiment less the information before the experiment 
as his measure . In order to develop his results , he had to 

assume that f was a random variable with a multivariate normal 
distribut ion , with non-singular covariance matrix. Since 
this is not the case in the present mode l ,  his results will not 
be considered further . 

Another optimality criterion, c-optimality, discussed by 
Wynn ( 1972 ) seeks to minimize the variance of cT

R,  where c is ,...., "' ,..., 
known . This may be cons5_dered as a special case of most of the 
above , and , in particular of D-optimality , with s=1 . 

6 . 3 RESPONSE ESTIMATION . 

Criteria ( 6 . 2 ) , ( 6 . 3 ) and (6 .4) cannot be couched in terms of 
the simplified mod�l , referring as they do to the estimate of y 
at the point�' which , in turn , uses all of � · 

T - -All these criteria involve the expression � S SS �· Now the 
generalized inverse used for S- is any solution of SS-S = S .  
If  P is such that ( and such a P alVIays exists ) 

PSPT 
- ( Io 

o

o
) 

then it can be shown ( Pringle and Rayner ( 1971 ) , for example ) 
that S must be of the form 

where u ,  V �  and W are.completely arbitrary . 



We have already imposed the restriction that the generalized 
inverse be symmetric . This requires V = UT and T w = w 

in addition , we require W = T 
s

-
ss 

-
I f ,  u u' then = s . 

Making this requirement simplifies (6.2) , (6 . 3) and (6.4) 

accordingly . No generality is lost by this process . 

T - - T Note also that x S x = trace S xx • "' "' .....,.., Thus (6 . 2) and (6.3) 

( as well as A-optimality ( (6.6) or (6.9)) and c-optimality ) 
are specializations of 
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�inimize trace S-B (6 . 1 2) 

I 
where B is a known square matrix , often of rank 1 .  This area 
will be cousidered in Chapter 9, where (6 . 1 2) is termed 

.B-optimality . 

By contrast ,  (6 . 4) is something of a special case , known as 
G-optimality . I t  is not directly defined ( in terms of variance 
of estimates )  for the s implified model , but an analogous expression 
which reduces to G-optimality when s=k is given by 

minimize max 
xER "" 

T -( x  S x "' ,..., (6 . 13) 

The expression in parentheses will be denoted by d ( x ,D ) , D ,..., 
being the design which gives rise to S .  It  will be shown in a 
later section that G-optimality , defined in this manner , is 
equ�valent to D-optimality , that is , a design which is  G-optimal 
i s  also. D-optimal , and vice versa .  Note , for future reference , 
that , by expanding S a� a partitioned matrix , 

' . 

-· 

d (� , D )  T -= X S X ,..., ,..., 



7 .  GENERAL OPTI !1ALITY 

7 .1 �OPTIMALITY . 

Many of the criteria menti0ned in the last chapter are special 
cases of what Whittle (1973 ) has called �opt�mality . 

Suppose � is a scalar function of the design D = (X � A). 
Assume that � is  concave . This implies that 
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. �+ 
0!: (1 - 8 )� + 9ct' (7.1) 

+ 
where � and cp:': are defiued on the designs D and n�': ,  and � is  
the function of D

+ 
= (X

+
, A

+
) with 

/\+ 
= 

( ( 1-

0

8)A 

A sufficient condition for concavity is  that 

s 0 for all D, D *  

8= 0+ 

the derivative being assumed to exist . 

Define 

= �  oe 
6= 0+ 

Note that � = 0 vrhen D = D l''. 

e�• ) 

(7.2) 

(7. 3) 
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The maximal rate of ascent of cp from D towards n:': , with increasing 
. a, is given by 

p = sup � 
n:•, 

��ittle ' s  theorem is now 

I 
I 

I f  cp is a concave scalar function of . the design D ,  
then a qroptimal des ign can be characteri zed by 
any of the following three conditions: 

D maximi zes et> 
D minimizes p 
p = 0 

Proof: 

The continuity of the elements of x and the compactness 
of R ensure that a design that maximi zes cp does exist . 
At such a point � � 0 for all D* , hence p � 0 .  
However , � = 0 when D = D* , hence p = 0 .  Thus ( 7 . 5 )  
implies ( 7 . 7) . Furthermore p � � for any D* , and 
qi = 0 for D = D:': , hence p � 0 .  But the lower bound 
is reached for at least one design ( that Hhich maximi zes 
cp) and hence (7 . 6 )  ana ( 7 . 7) are equivalent . Finally , 
in p � 0 ,  equality holds only at a maximum of cp, and 
hence ( 7 . 7 )  implies ( 7 . 5 ) .  

7 . 2  - APPLICATIONS . 

( 7 . 4 )  

( 7 . 5 )  
( 7 . 6 )  
( 7 . 7) 

As noted above , many of the criteria considered are special cases 
of Whittle ' s  theorem . The application to particular criteria 
will be considered in succeeding chapters . 

,, 



8 .  APPLICAT ION OF gr-OPTIMALITY TO D-OPTIMALITY . 

8 . 1  PRELIMINARY RESULTS 

First note that det Q is a maximum if and only if log det Q 
i s  a maximum. Let c:p = log det Q ,  Hhere Q is  as mentioned 
in criterion ( 6 . 8 ) .  Throughout this section , c:p will be so 
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defined .  Iri addition we assume det Q > 0 for some design , for 
if this is not the case , any design is D-optimal . 

A nuffiber of preliminary lemmas are required . 

Lemma 8 . 1 . 1  

If  A .  is contained in 1 the row space of B .  and B .  is 1 1 
non-negative definite , where Ai and Bi are r x r ,  for 
all i ,  then 

_ T _ T 
W = E A . B . A . - ( E A . ) (  E B . )  ( E A . ) 1 1 1 1 1 1 

is  non-negative definite . 
n values of i .  

Proof .. 

Summations are taken over the 

B .  can be expressed as P': P .. ·an:d A .  as K .  P . •  1 1 1 1 1 1 
Let 

D = 

P = CJ 
Now W = K(D  - E )KT 

K ) n 

( 8 . 1 ) 



Also DP = P ,  PTD = PT , D2 = D ,  E2 = E and hence DE = E = ED , 
T and thus D - E is idempotent , or W = VV where V = K ( D  - E )  

which establishes the result . 

Corollary 1 

Proof 
· - T - T �W = 0 implies that KD = KE or A . B . P . = ( I:A . ) (r:B . )  P . •  � � � � � l 

The proof in one direction follows by post-multiplicat ion by 
P . , noting that A . B:B . = A . . The proof of the converse is � � � � l 
obtained by postmultiplying the equation on the right of the 
corollary by B�A . and summing over i .  

l � 

Corollary 2 Kiefer ' s  lemma ( Kiefer ( 1959 ) , lemma 3 . 2 )  
Kiefer ' s  result is a special case , with B .  non-singular , since J. . 
in such a case A .  is  necessarily contained in the row space of � 
Bi . Kiefer also included an arbitrary weight ing function 
which can be absorbed in the matrices . 

Lemma 8 . 1 .  2 

�+ = log det Q+ is  concave in 8 

Proof 

1 .  + det Q � det [ ( 1  - 8 ) Q  + 9Q*] 
· - Note that 

which is non-negative definite by lemma 8 . 1 . 1 .  Hence 
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the result follows , since det ( A  - B )  :<: 0 implies det A :<: det B .  



2 . det( ( 1  - S ) Q  + SQ*] � ( 1  - S ) det Q + Sdet Q* 

This relationship holds for 8 = 1 .  Now take 0 � 8 < 1 .  
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Let W = ( 1  - 8 )Q  + 8Q* . Observe that det W > 0 for 0 � 8 < 1 .  

o log det W 
ae = 

= 

det
1 

Vl L 
' i , j  

1 L 
i , j  det W 

o det W 
ow . •  lJ 

ij w ( q�:: . - q . .  ) lJ lJ 

where Wij is the cofactor of >"� · . and wij  the corresponding l J  
element of  H-1 • 

o2log det H 
-oe  

i ,j ,u ,v 

= - 2: 
i , j ,a ,v 

hence log det W and thus det W are concave . 

3 .  Finally �+ is concave i f  and only if det Q+ is  concave . 

· Lemma 8 . 1 . 3  

= + - . + -- ( S  ) ( S* - S ) ( S  ) 

for 0 < 0 < 1 or for 0 � 0 < 1 if  S* is contained in the row space of 
s .  



Proof 

It is readily verified that , with 0 < 0 < 1 ,  both S and s:': are 
contained in the rwo space of S+ . (The proof involves putting 
s+ in the form VTV and showing that sv

-
v = S ,  and hence that 

S ( S+ ) - ( S+ ) = s ,  with a similar result for s:': ) . Thus 

. ' d  . S+ ( S+ ) -S+ Now conslder the 1 ent1ty = 
Differentiating 

or •1 

< s:': 

from which 

( 8 . 2 )  

From ( 8 . 2 )  and generalized inverse theory , this has a solution 
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for the derivative . Without loss of generality the solution may 
be taken to be the expression in the statement of the lemma . 

If S* i s  contained in the row space of s ,  ( 8 . 2 ) , and hence the 
remainder of the proof,  holds for e = o. 

Lemma 8 . 1 . 4  

o log det Q+ 
o e  = 

( 8 . 3 ) 



· · Proof 

o log det Q+ 
Let u = -----3;:-;8�-...;.._ + - 1  = trace (Q ) 

from the proof of lemma 8 . 1 . 2 ,  where the derivative was evaluated 
for rl . 

Expanding 

a cs22 ) 
on differentiating and using lemma 8 . 1 . 3  for 

oS 

Note that the result holds at 9= 0 by continuity arguments , see  
Appendix I I I . 

Now , from the theory of generalized inverses , 
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( 8 . 4- ) 

On using this to expand the expression on the right of ( 8 . 3 ) , noting 
that the second t erm cancels , the right hand s ide of ( 8 . 3 )  is equal 
to 

= u 



using the fact that matrices commute under the trace operator 
. + - 1  t o  place ( Q  ) at the beginning o f  the second term , giving 
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this express ion identical to ( 8 . 4 ) . This establishes the result . 

Lemma 8 . 1 . 5 

Proof 

� = o log det Q 
oe 

From lemma 8 . 1 . 4  

8= 0+ 

The last term is  equal to rank S - rank s
2 2

, and this  is equal to 
rank Q by inspection of the identity 

s 

Lemma 8 . 1 .  6 

If D* is any des ign , then it may be replaced by a design 
matrix consisting of a. single row , such that � will be 
at least as  great . 

Proof 

Noting that s�� 

and similarly , 

� ' ... ·'· ... T = U• A".-- X""X .. .. � �i"-'i"':i.. where the xV are the rows of X* , � 
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x. -- � ' ... < ••. Ts- ... 'i' L A" .. x·.. x •.\ -i ii -:l -i ( 8 . 5 ) 

I f  we select that value of i ,.;hich maxlmlzes the expression in 

brackets , and replace X* by that x�T alone , the resulting � "'1. 
is  at least as great as in ( 8 . 5 ) . 

Lemma 8 . 1 .  7 

T - T -p = max (� S � - �s2 2� ) - rank Q 
X ,.... 

Proof 

This is an immediate consequence of lemma 8 . 1 . 6 .  

Lemma 8 . 1 .  8 

I f  max 
X ,..., 

T ( x  Fx ,.... ,.... 
T �H � )  = trace ( FS - HS22 ) 

where F and H are any conformable matrices , then 

Proof 

T x . Fx .  "'1. "'1. 

trace (FS  - Hs22 ) 

T T = max(� F� - �H� )  
X ,..., 

for i = 1 ,  . • •  ,p 

and if this is equal to the maximum over � , then each of the 
T T x . Fx .  - x . 2Hx . 2 must be equal to the maximum . "'1. "'1. "'1. "'1. 
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Note that if p from lemma 8 . 1 . 7  is zero , then the above result 
holds with F = S- and H = s;2 , s ince rank Q = trace S-S - trace s;2s2 2 • 

8 . 2 EQUIVALENCE THEOREM 

Theorem 8 . 1  

Where a design for v:hich Q is non.:..singular exists , the 
following criteria are equivalent 

I 1 .  
2 .  

3 .  

Proof 

D maximizes 
D minimi zes 

T -max( x  S x -""' "' 
X ""' 

det Q 
T -max( x  S x -"' "' 

T -
�s22�2 ) 

· � 

T -
�2 822� ) = rank Q 

T -= x . s  x .  ""l. ""l. 

= s 

( 8 . 6 )  
( 8 . 7 )  

( 8 . 8 )  

This result follovts from Whittle ' s  theorem and from the pre ceding 
lemmas . 

This theorem was first proved , for the case in which s=k , with S 
non-singular , by Kiefer and Wolfowitz ( �96 0 ) , and extended to the 
case s <  k ,  but with S still non-singular , by Kiefer ( 1962b ) ,  
using a difficult games theory argument . The most appealing and 

. . s implest proof for that case appears to be that given by Federov 
( 1972 ) . As far as I am aware , the above result is the first time 
the theorem has been extended , in a reasonably simple fo:r'm , to 
the case in whi ch S and s2 2  may be singular . The form of d ( x ,D )  
given in ( 6 . 14 ) , ( 8 . 7 )  and ( 8 . 8 ) i s  new in that the generalized 
inverses extend d(�,D ) to . the singular case . 

' . 



9 .  APPLICATION OF qrOPTIMALITY TO OTHER CRITERIA 

9 . 1  GENERAL COMMENT 

As mentioned in section 6 . 3 ,  many optimality criteria are special 
cases of 

minimize trace S-B 

and Hhittle ' s  theorem may be applied to this . The theorem can 
also be applied to R-optimality ( maximize trace S ) . 

By contrast ,  E-optimality (minimize the maximum eigenvalue of S )  

and the criterion that minimizes the largest diagonal element of 
- T -S ( or of R S R ,  see equation ( 6 . 7 ) ) ,  are intr�ctable . In 

particular , for any reasonable choi ce of optimi zing function , �' 

may not exist at all points since the choice of eigenvalue or 
diagonal element may change with e .  

9 . 2  R-OPTIMALITY 

+ + Let � = trace S ,  and � = trace S • Now 

ocp+ + os+ 
= L otraceS uv 

as os+ � 
u ,v . uv 

=L ouv ( s1� -uv s ) uv 
u ,v  

= L < s 1: 
uu s . ) uu 

u 

= trace ( s�·: - S )  

where ouv = 1 i f  u=v ,  and otherwise zero . 

39 . 
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Note that this derivative is independent of 9 ,  and hence that the 
s econd derivative , with respect to e ,  is zero . � is thus concave . 

A lso , for the same reason , � from Whittle ' s  theorem is given by 

� = trace ( S* - S )  

Now , since s�·; = r A* x*x*T , there is some value of i such that 
i ii--1."-'i 

and thus , in turn , any x�·= may be replaced by a s ingle vector �, 

s uch that � is at least as large . Hence 

Now 

T p = max qi 
s�·: 

= max x x ...., ,..., X "' 

suppose that p=O .  In 

T trace max X X = ,..., ...., 
X ,..., 

= T x . x . "-'1 "-'1 

trace S 

this case 

s 

for i = 1 ,  . . .  , p 

from lemma 8 . 1 . 8 . 

This now implies that A is  arbitrary , and the selection of the 

p oints is the only important · :factor . If , however , the � for 

which xTx is a maximum is  unique. then S has rank one , with rather ...., ,...., 
unfortunate results for estimation purposes . 

However , for completness , vfuittle ' s  theorem gives : 

The following criteria are equivalent , and each implies R-optimality : 

1 .  

2 . 

3 .  

D maximi zes trace S 
T D minimi zes max x x - trace S ,...., ...., 

X ,...., 
T T max x x = trace S =  x . x . for all i = 1 ,  • . •  ,p . ...., "' "-'1 "-'1 



Note that these imply that an R-optimum design is not invariant 
of location changes . 

In any case , the remarks above regarding the rank of S suggest 

strongly that R-optimality is  an unsatis factory criterion . 

9 . 3  B-OPTIMALITY 

At this point , we define the term B-optimality , in whi ch the aim 
is to minimize the quantity 

trace S B 

/ 
where B is a known , non-negative definite matrix .  As noted in 

· section 6 . 3 ,  A-optimality , c-optimality , Q-optimality and what 
might be called point optimality ( in which it is des ired to 

41 . 

T -minimize � S � for a given �) are special cases of this criterion . 

Let cp = -trace s B ,  and we seek to maximize ( algebraically )  
Also , to improve legibility , let 

G = ( S+ ) -

for this section . + GB . Now cp = -trace 

Note that , if W is depennent on 9 ,  and B is not 

o trace WB 
ae 

' . 

., 

trace WB 
ow uv 

� aw . .  b . .  
= L...J l.J J l. 

ijuv 
Owuv 

� Ow • •  

- L...J 
l. J 

- . .  aw-
l.JUV UV 

Ow • .  
- l.J b - . ---as ij  l. J 

= trace oW B 
ae 

ow uv 
as 

ow uv 
as 

cp. 



Hence 

acl = 
a e  - trace oG B 

ae 

42 . 

= trace G ( S* - S ) GB ( 9 . 1 )  

from lemma 8 . 1 . 3 ,  for 0 < e < 1 ,  and at 8=0 by continuity . 

a
2rn+ = [ o " o ] oS; trace cm- ( S;': - S ) GB + G (  S;': - S )  0� B 

= -2  tr�ce G ( S*  - S ) G ( S* - S )GB 

� 0 provided B is non-negative definite, and hence 

cp is convex ,  as required by the theorem. Setting 8=0 in ( 9 . 1 ) 

gives 

- T -= trace S 0:: >.,;;: . x�<x;:: ) S  B - trace S SS B 
i u. "'l. ""l. 

and , as in previous se ctions , we may select the value of i which 
maximizes 

.• ,TS-BS- ·'· x•: x·: ""1. ""1. 

and replace X* by this R. ·  alone , giving 'J. 

Now , in a manner s imilar to that noted in sect ion 9 . 2 ,  if p�o, from 
lemma 8 . 1 . 8 ,  

T - -x . S  BS x .  ""1. ""1. 
T - -= max x S BS x 

X "" 
"" "' for i = 1 ,  • • •  ,p 



4 3 .  

Whittle ' s  theorem now gives : 

The following criteria are equivalent , and each implies B-optimality : 

1 .  
2 .  

3 .  

Note that , 

-
D minimizes trace s B 
D minimizes 

' T - -
max x S BS x 

T - -max X s BS X ....... 
X 

for a suitable 

X ....... 

= 

= 

,...., ....... 

trace s ss 

T - -
x . S  BS x .  "'1. "'1. 

selection of 

- -
trace s ss B 

, 
-

B 

for i = 1 ,  . • •  ,p 

- -
s trace s ss B = trace 

T�is also holds if B is contained in the row space of S .  As 
s 

a practical matter , the v2rious quadratic forms are not un ique if 
� and B are not contained in the rm'l' space of S .  Thus it is  
reasonable to make the requirement that � and B be  contained in 
the row space of s .  

-
B .  



10 .  D-OPTIMA IN SPECIAL CASES 

10 . 1 SPECIAL N-TIC PO�YNOMIAL 

A form of the model , termed a special n-tic polynomial , was 
defined by Scheff� ( 195 8) . In this case , the elements of x ,.... 

are ( with the possible inclusion of a constant ) products of the 
elements of �' with the restriction that no element of � occurs 
at higher than the first degree , and the further requirement 

T that all such products occur . Thus , if � = < ;1�2;3 ) , 

I 
the initial 1 being opt iona� . 

10 . 2  ATWOOD ' S  THEOREM 

44 . 

AtvTOod ( 1969) proved that , for a special n-tic polynomial , and s=k ,  
a D-optimal desi gn can have no experimental points in the interior 

of any line segment in the space of
.
� , on which all the variables 

but one are held constant . 

The following theorem strengthens Atwood ' s  result . 

Theorem 10 . 2. 1 

In the case where s � k ,  and S is not necessarily of full rank , 
a D-optimal design can include no points in the interior of any line 
segment in the space of � , on which all the variables but one are 
constant , unless ,  on the whole of that line segment 

is independent of the elem8nt of � that is not held constant . 



4 5 . 

Proof 

Since Q is at least non-negative definite , d (x ,D )  is never negative . ,.,., 
However , from the special n-tic form of �, d(�,D )  is at most 
quadratic in each si ' and holding all but one of these si constant 
makes d ( x , D )  a non-negative quadratic  and hence convex . I f  · "' 

� - s12s;2� is  not independent of the si which varies , 
d(�, D )  is a· strictly convex quadratic ,  and cannot have a maximu� 
in the interior of any segment of the line . 

Corollary I f  s =k , � - s12s;2� becomes � which cannot be 
i�dependent of any S · , and hence the exception condition does not l. 

. hold . ( This is Ati.,rood '  s result ) .  

The exception condition has caused considerable difficulty . The 
author has been unable to find an example in which the condition 
is met , and hence to shm.,r that such exceptional designs do exist . 
It also appears to be particularly difficult to characterize such 
designs . 



11 . CONSTRUCT ION OF D-OPTIMAL DESIGNS 

1 1 . 1  PREVIOUS WORK 

46 . 

Wynn ( 1 9 70 , 1972 ) has provided methods in the full r'ank case for 
obtaining �-optimum des igns by adding to some starting design 
the point � which maximizes 

T - 1  X S X ,... "' 

with a new A given by 

p;J 
Whittle ( 19 7 3 ) improved the method of augmenting A by suggesting 

where a:. is  chosen to maximize the optimization cri t.erion . 

1 1 . 2  RECALCULATION OF A 

The methods noted above while sui table for sequential design , 
suffer from the disadvantage of not deleting unsatisfactory points 
when the design is constructed in advance . The following 
sections give a refinement whose derivation began with an attempt 
to select , given X ,  that A which maximizes det Q .  



1 1 . 3  EXPLICIT RESULTS 

Lemma 1 1 . 3 . 1  

T = XX and 9 < 1 then ,...,.., 

+ ologdetQ 
oO 

= 

+ d ( x , D  ) -s ,...., 
1- 9 

Proof First note that , s ince S+ = ( 1- 9 ) S  + SS* 

s = s�·� - s = 

I Hence , in the present ce'l.se 

+ i + - T + trace ( S  ) - ( S* - S )  = � trace ( S  ) (� - S ) 

= 1 T + -
1 - 9  (� ( S . ) � 

+ with a similar result involving s2 2  

From lemma 8 . 1 . 4  

+ ologdetQ 
oe  

= 

and the result follows on noting that 

+' + s = rank S - rank s 22  

. .  Theorem 11 . 3 . 1  

47 . 

' . 

A design D = ( X ,A) may be improved by the addition of a given point 
� if and only if 

d ( x , D )  > s ,... 

Proof This  follows from lemma 1 1 . 3 . 1  setting 9=0 .  

Corollary The design may be improved by increasing A · · if and - � �  
only if d( x .  , D )  > s .  "'l. 



Theorem 11 . 3 . 2  

A design D = ( X , A) may be improved by reducing the weighting of 
some point x. and res caling the remainder ,  if and only if "'1. 

d ( x .  ,D )  < s "'1. 

48 . 

Proof This follows from lemma 1 1 . 3 . 1 ,  with 8 = A  . •  , on writing l l  
S for s+ , with the ith diagonal element of  A set to  zero . 

We now assume that x is , in fact , one of the rows of X ,  and wish ..... 
to adj ust A · · by l l  

c 1- S ) A  . .  + e . l l . 

and the other diagonal elements of 1\ by ( 1 - e )  A .  . vli th j f. i .  ] ]  
Note that this implies that x i s  contained in the row space of ..... 
S .  Now 9 is to be sele cted in such a way that · 

+ d( x ,D ) = s ..... 

From Pringle and Rayner ( 197 1 ) , theorem 2 . 1 8 ,  

where 

c s
+

)
- = 

1:6 [s-
- 1-e�ew s-.�J?s-] 

T -W = X S X .  ..... ..... Now 

+ T + - 1 [ ew2 J w = � ( s ) � = '1-S' w - 1-0+ ow 

+ w 
1·-e+ew 

with a similar expression (with w2 

Thus , optimizing in terms of � requires a solution of the equation 

w = s ( 1 1 . 2 )  1 - 9+ 9w 

in terms of e .  Thus , once � has been chosen , 9 may be calculated 
as the solution of a quadrati c .  



Viewed as a function of 8 ,  det Q+ has two turning points , and 
dis continui ties at 

e = 1 ,  1 1 
1-w ' 1-w 2 . 

in des cending order . Hence there will be one solution between 
1 a�d 1�w of which the sign will depend on the sign of w-w2-s , 
which in �urn indicates whether the weighting of a point 
should be increased or decreased.  

I 
If  a point has its weighting 

decreased below zero , the weighting should be set to  zero , and 
the point deleted from the Gesign . 

I 
11 . 4  IMPROVEHENT TO DET Q 

If  the intention is to improve det Q by replacing Q with Q+ , 
assuming for the moment tha.t S is of full rank , then 

and 

= det s+ 
+ det s2 2  

e det ( ( 1- 8 ) S] ( 1  + 1_8  w)  
= --------------���---0 det [ ( 1-8 ) s22 ] ( 1  + H w2 ) 

( 1- 0 ) s det s 1- 0+0w = 
det 82 2  1 - 0+0w2 

= ( 1- 8)  s det Q 1- 8+0vr 
1+8+ew2 

49 . 

Q+ det ( 1- 8 ) 8 1- 8+ 8vr ( 11 . 1 ) = 
det Q 1-8+ 8w2 



' 
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The same result is obtained if the restriction of a full rank 

S matrix is  relaxed . The proof involves a rather lengthy 

·expansion of Q + , but is otherwise straightfon.,rard . 

If  x is already a point , x . , in the des ign , then 9 may be negative , � . �l 
if e is  sufficiently negative that A · · becomes negative , the l l.  
point is  s imply deleted from the des ign , and the other A values 
rescaled . 

In this case 

S+ 1 ( T ) = 1 A S - A . .  x . x .  - • • ll"'l"'l l l  

and by a process similar to that above , 

det Q+ 
det Q = ( 1-A . .  ) ll 

-s 1-), . . w .  l l  l 
1-A · . w . 2 ll l 

( 11 . 3 )  

In theory , ( 11 . 1) and ( 11 . 3) give the means to select the best 
available point for alteration . In practice , it may be s impler 
to use some arbitrary , but reasonable criterion for selection , 
since the decision making process  derived from the above equations 
may involve more calcuJ.ation than the adj ustment process . In 
the examples quoted later,  that x .  for which the absolute value of "'1. 

d ( x .  , D )  - · s . "'1. 

was greatest was chosen , with good results . As noted below , 
the method of selecting the maximum d ( xi ,D )  leads to very s low 
convergence . 

1 1 . 5  ALL PARAMETERS OF INTEREST 

I f  all parameters are of interest , that is , if s=k , the above 
expressions s implify considerably . 



In particular ( 11 . 2 )  becomes 

w = k 1-0+Sw 

w-k or e = (w-1)k 

and 

det Q+ 
det Q 

Ndte that , if  x = x .  , and "'1 

k - w > ). . .  w(k- 1 )  
. J_J_ 

then an attempt will be made to reduce ). . .  below zero . J. J. 
s ituation 

det Q+ 
det. Q = 

1-). . .  w . J_ J_  J_ 
k ( 1-).  . .  ) J_J_ 

5 1 . 

( 11 . 4 )  

In this 

Note that ( 11 . 4 ) is an increasing function of w ,  hence any w .  J_ 
between the largest w .  and k ,  need not be considered as a candidate . J_ 



12 . CONSTRUCTION OF B-OPT IMAL DESIGNS 

12 . 1  IMPROVEt�NT OF A 

By direct analogy to the previous chapter , a design may be 

improved in terms of B-optimality , as follows . 

From ( 9 . 1 ) , using G = ( S+ ) -

o trace GB 
ae trace G ( xxT - S ) GB ,.....,..., 

and this is to be equated to zero and solved for a .  Once again 
it is assumed that x is li11early dependent on s .  This gives 

G 1 ( s- a S-
�

TS- ) ) = 1- a 1-e+ew 

where w = T -X S X ,... ,... 
Straightforward multiplic�tion , noting that SS  x = x , gives ,..., 

G ( xxT - S ) G  = ,....,... 1 - [ 1- 92
+ a2w T J -S 2 ,?9:S - S S 

( 1 - a+Ow ) 

and on postmultiplying by B ,  taking traces and equating to zero 

trace S SS B = 
2 2 1- 8 + a w 

2 ( 1-a+ Gw ) 

T - -X S BS x ,... ,... 
Note that the left hand s ide is equal to trace S B for S 
suitably chosen , or for B linearly dependent on s .  

52 . 



1 3 . 1  BACKGROUND 

1 3 .  APPLICATIONS 

A computer program was written to test convergence of the 
D-optimality criterion under the conditions of the last section .  
Since the computer ( a  PDP11/45 ) was not equipped with double 
precision arithmetic , numerical instability tended to occur . 

5 3 .  

For this reason , full rank models Hith all parameters of interest , 
and with small values of k were chosen . 

In each case four points 1.,rere chosen at random from the region 
of operability , and the iteration s cheme used to improve �. 
When this had converged ,  a new point was chosen at random , and i f ,  
f h · · Ts- 1 k · · d d · d · d or t �s po�nt , � � > , �t was �nclu e �n the es�gn , an 
the iteration continued , otherwise ne\v random points were selected 
until the condit ion was met . 
points had been selected . 

This  was repeated until 16 extra 

In addition , as described in sect ion 13 . 4 ,  arising from a local 
problem , an aisle quadratic was analysed , thus providing a 
practical example of the application of the iterative s cheme . 

Finally , although it was not used in the examples noted above , a 
generali zed inverse routine , as des cribed in Appendix I ,  was 
developed .  This was tested and found quite satisfactory . 

1 3 . 2  LINEAR MODEL 

In this test example , 



The optimum is given by weightings of . 2 5  each at the points 
< s1 , t;2 ) = ( 1 , 1 ) , ( 1 , - 1 )  , ( -1 , 1 )  , ( - 1 , -1 ) , for which design 
det S = 1 .  The design was considered to have converged Hhen 

T -1 2 
L( X s X - 3 ) /p � . 25E- 8 .  "' "' 

Ten runs vrere carried out , and the final values of det s ,  

together with the number of iterations required are given . . T -1 contrast , the strategy of selecting max x S x rather than "' -· T - 1  max abs (� S � - 3 )  require� for run 1 , 333  iterations t o  
converge for the first four points , and had not converged for 
the fifth 2000 iterations later . 

By 

Figure 1 gives the order in which points were eliminated in run 
1 ,  illustrating the manner in vlhich points were selected closer 
and closer to the periphery . 

Lastly , the final design is given in table 2 ,  for run 1 ( the 
best ) , run 8 ( the worst )  and run 9 ( the quickest convergence ) . 

A straightforward calculation reveals that if ,  in the optimal 
design , the point C t;1 , s2 ) = ( 1 , 1 )  is replaced by ( 9 , 9 ) , the 
derivative of det s vrith respect to a ,  at a =  1 is 1 ,  and hence , 
as the point moves immrds from the corner , det S drops at the 
same rate . If all four points �ave 1 replaced by 9 in the 

5 4 . 

4 • . .  
same way , then det S = 9 · , which falls off rapidly with decreasing 
9 .  - This exp lains what might be · thought t o  be lmv values of det S .  



5 5 .  

TABLE 1 

Results for linear model .  

Run Final det S Iterations required Iterat ions required 
for first 4 points for 20 points 

1 . 8439 2 5  1 3 3 8  

2 . 6 711 2 ( 1 1 )  6 2 0  

3 . 5666 2 ( 17 )  86 1 

4 • 6435 2 ( 5 )  116 3 

5 . 76 10 1 3  759  

6 . 72 16 2 ( 39 )  5 9 9  

7 • 8385 2 ( 12 )  9 7 1  
8 . 4495 26 706 

9 . 7141 2 ( 1 1 )  362 

10 . 7402 12  664  

Note : In the number of iterations required column , the bracketed 
figures give the iterations required for the fifth point , 
where one of the first four was unsuitable and immediately 
eliminated . 
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Fig 1 .  Order of elimination of points in linear model , run 1 .  

Dots are points left in the final design . 
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TABLE 2 

Final points and lambda values for three runs in the linear mode l .  

Run 

1 

(best 
det S = . 8439 ) 

8 

(worst 
det S = . 4495 ) 

9 

( quickest 
convergence , 
det S = . 7141 ) 

. 2 5 6 3  

• 2 3 � 8  

• 26 34 

. 2460 . 

. 26 9 5  

. 0 810 

. 3066  

. 2441 

. 09 8 8  

. 2 5 3 8  

. 2 6 7 7  

. 22 9 4  

. 24 9 1  

, 99 8  

. 87 3  

- . 992  

- . 9 7 5  

. 97 3  

. 021  

. 875  

- . 99 7  

- . 75 3  

• 85 3 

. 859  

- . 86 3  

- . 97 1  

• 9 32 

- . 94 5  

. 96 1  

- . 9 86 

. 85 6  

. 99 9  . 

- . 9 39  

- . 0 5 4  

- . 82 3 

. 99 7  

- . 9 8 6  

. 849  

- . 9 7 4  



1 3 . 3 POLYNOMIAL MODE L 

In this example , the model was 

The theoretical optimum has four points , with �1 = -1 , -1/$, 
� - 3 

1 /�� , 1 ,  and each A = . 2 5 ,  with det S = 16/ 3125  = 5 . 12 x 10 

Two refinements were added to the procedure for this model .  
I f  p=k ,  then X is  square , hence det S = ( det X ) 2 

n A • • ,  which �� 
is maximized in terms of A by A · · = 1 /p for i =  1 ,  • • •  ,p . �l. 
Thus whenever the number of points in the design dropped to k ,  
A Has immedia.tely set tu  this value and a neH point selected . 

5 8 .  

The other refinement ax·ose from the observation that most 
iterations arose from the difficulty in separating , and rej ecting 
one of , two very close points . However , such points do not 
affect det S greatly , and another point may be added Hithout 
loss of efficiency . Hence , if convergence had not been reached 
100  iterations after the last new point , a further point was 
added . The unsatisfactory point of the close pair was then 
usually rej ected in the next series of iterat ions . 

I t  is interesting to consider the behaviour of det S under 
departures from the optimum design . Let the design be 
s1 = -a, - � , � ,a ,  with equal weightings . 
Now 

det S 

Differentiating with respect to a gives 

With a=1 ,  �=1 /JS, this gives  192/ 31 2 5  or 12 det S �  for the 

derivative , indicating great sensitivity at the extremes . On the 
other hand , with a =  1/JS, � = 1 ,  the value is zero , substantiating 



the observed insens itivity to the exact intermediate values . 
In fact , with a. = 1 ,  fj = • 5 ,  det S is • 9656  of the optimum . 

In view of the above , the value of det S achieved depended 
almost entirely on how close the randomly selected end points 
came to to p lus or minus one . However , table 3 illustr'ates 
two representive runs . The second was much the worst seen , 

- 3  - 3  for most , det S ranged from 4 . 1  x 10  t o  4 . 5 _X 1 0  • 

1 3 . 4 AISLE QUADRATI� 

The method des c"ribed in sections 13 . 2  and 1 3 .  3 was intended 
more as an illustrative device than as a serious approach to 
design optimization . The situation described in this section 
arose from a practical problem with a constraint imposed by 
the physical environment . The aim of the experiment was to 
estimate quadratic  growth contours in a glasshouse . 
with two physical dimensions , the model becomes 

Thus 

Hm-1ever , the normal layout of a glass-
house imposed another restriction - the aisle down the centre 
required abs s2 � a. where a. is a constant depending on the 
particular glasshouse . 

In approaching this pro�lem , the twelve points illustrated in 
figure _ 2 were s�lected as the starting points for a des ign , and 
the iterative procedure used to refine A .  In the particular 
problem considered , a. = 1/3 .  

The final design thus generated is given in table 4 .  
the assymmetry . 

Note 

Using the symmetry of the situation , 3 similar optimum designs 
may be produced .  Averaging these 4 optimum designs leads to 
a symmetric optimum , given in the last column of tab le 4 .  

59 . 



TABLE 3 

Final points and A values for two runs in the polynomial model . 

det S 

4 . 95 X 10- 3  

( best ) 

2 . 16 X 10- 3  

( worst )  

• 2494 
. 2 502 
. 2494 
. 0008  
. 2 501  

. 25 

. 2 5  

. 2 5  

. 2 5  

E;1 

. 9946 

. 4435 
- . 4384 
- . 4564 
- . 9 999  

. 92 79 

. 4117 
- . 4381 
- . 9 335 

60 . 
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� �  
----------- 0 -----------

1 1 3 

1 2 J------ 4 

Fig 2 .  Layout of selected points for aisle quadrati c .  
The heavy rectangles represent the region of 
operability .  

61 . 



TABLE 4 

Optimum aisle quadratic des ign with points from figure 2 as 
starting values . 

Point 

1 .. J. 

I 2 1 
I 3 1 

4 1 
5 0 
6 0 
7 0 

8 0 

9 -1 
10 -1  
1 1  -1 
1 2  -1 

1 
, 3333  

- . 3333 
-1  

1 
. 3333 

- •. 3333 
-1  

1 
. 3 333 

- . 3333 
-1 

A from 
computer run 

. 146 3 

. 0 314 

. 05 70 

. 1377  

. 0699  

. 0748 

. 02 35 

. 0 87 1  

. 1463  

. 0314 

. 0570  

. 1 377  
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Symmetric 
A 

. 1420 

. 0442 

. 0442 
. 1420 
. 07 85 
. 0492 
. 0492 
. 07 85 
. 1420 
. 0442 
. 0442 
. 1420 



6 3 . 

Regardles s  of a, for such a symmetric des ign , S has the form 

s11  0 0 s 14 s 15 0 
0 s22 0 0 0 0 
0 0 0 0 0 s 33 

s = ( 13 . 1 )  s14 0 0 s44 s45 0 
s is 0 0 s45 s s s  0 
0 0 0 0 0 s66  

and hence s-
1 has the same form . Us ing superscripts to 

-t T -1 denote the elements of S · , and noting that x .  S x .  = 6 for ""1. "'l. 
the points in the design , we have 

11  6 + 
2 55 s = a s 

s22 + 2s14 44 = -s 

33 + 2s15 2 55 s = - (  1+a ) s 
66  2s 45 0 s + = 

and using these relationships 

T -1 44 2 2 s 55 ( �� -1 ) ( �� 
2 X S X - 6 = s �1 ( �1 -1 )  + - a ) "' ,...., ( 1 3 . 2 )  

I t  is now easy to see that any point ( �1 , �2 ) in the allowable area , 
other than those in the design , must reduce the value of ( 1 3 . 2 )  

below zero . Hence the points considered produce a true optimum . 

· ·  The equations to be solved to give � for a given a proved quite 
intractable . However , a polynomial approximation for the 
optimum value of s 33  was obtained , and from this the other 
values may be derived as indicated in Appendix II . 

I f  interest is concentrated on the constant and linear terms 
only , a slightly different problem arises . 



6 4- .  

In this case , and using the same 1 2  points , again , by considerations 
of symmetry , S has the form given in ( 1 3 . 1 ) . 
are interested in 

In this case , we 

in which W ,  the matrix in square brackets , has the same form as 
S ,  except that the bottom �ight element is zero . 

Again , calculating d ( x .  , D )  = 3 for the points in the design leads ""l. 
to 

2 = 3 + a w5 5  

2 = - ( 1+et ) .., 5 5  

= 0 

and 

with the same conclusions as previously . 



14 .  S_UMHARY AND CONCLUS IONS 

As noted in the introduction the main aim of this thesis  has 
been to rephrase the exi sting optimum des ign theory in terms 
more familiar to a statistician . For this reason Chapter 2 
gives the background to the matrix formulation of the general 
linear model . 

65 . 

Chapter _3 then dis cusses the various questions the experimenter 
might pose , then shows how , if the interest is in testing a linear 
hypothes is , the general hypothes is is equivalent , under a 
canoni cal transformation , to a s impler hypothesis . Because of 
the difficulty in interpreting this canonical form , an intermediate 
form , termed the simplified model has been developed . For 
completeness , the cha�ter concludes with a proof ( from Federov) 
that the number of distinct points required is bounded . 

In Chapters 4 and 5 ,  a general development of hypothesis testing 
optimality theory , based largely on Kiefer ( 19 5 8 ) , has been 
presented , and , in particular , the development of D-optimality 
in this context . Chapter 6 cons iders various optimality 
criteria app lied to parameter estimation . 

Chapter 7 merely reiterates Whittle ' s  theorem with 3light 
modifications to matrix notation . Chapter 8 presents a proof 
for the equivalence theorem for D-optimality in its most general 
form , and s imilarly Chapter 9 d�rives equivalence theorems for 
R-optimality , and a general class of criteria , termed in this thesis , 
B-optimality . 

Chapter 10 extends one of the theorems of Atwood ( 1969 ) , indicating 
how a matrix notation is adaptable to the type of special case 
he· considered .  

Chapters 11 _and 12 give methods of design refinement whi ch can 
be used in oarticular cas� a�ain emohasizin� the notation chosen . 



Chapter 13 gives some examples of these methods in practice . 

In all the above topics , Chapter 8 presents the most difficult 
mathematics . It should be noted , however , that this arises 
from the generality of the results . The proof simplifies 
accordingly for more restricted cases . Chapters 8 to 12 are 
those which illustrate the utility of the notation normally 
used in linear model theory when applied to the subj ect of 
design op'timization . 
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APPENDIX I 

GENERALIZED INVERSE CALCULATION 

In calculating generalized inverses in the application of the 
results of section 11 , a modified Cholesky algorithm was used . 

Theorem 

If X is partitioned as ( X1 x2 ) with x1 of full rank and x2 
= x1K ,  

7 1 .  

then I 

s 

with partitioning conformable to that of X ,  is a generalized 
inverse of S with the additional properties that S is symmetric 
and S s s  = S • 

Proof 

s 

Evaluation of ss-s and S-SS- then establishes the result . 

Note that the partition above is  conditioned only by the rank of 
X ,  and does not ( necessarily )  correspond to the partition used 
elsewhere in this thesis . 

Evidently the columns of X may be permuted , and the result holds 
with s imilar permutations on the rows and columns of S and S- . 

The practical result of the above theorem i s  that , in the present 
situation , a generalized inverse of S may be obtained by the 



ordinary Cholesky decompos ition , with the additional rule that , 
whenever a zero diagonal element is encountered ,  the whole of 
the corresponding row and column are set to zero , and thereafter 
treated as any other row . 

As a practical consideration , if using a computer , a decision 
has to be made as to whether a part icular diagonal element is 
zero or not . Thus a lower threshold needs to be set for this 
value . 
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APPENDIX I I  

D-OPTIMUM AISLE QUADRATIC 

Note that the first coefficient in the expansion of s 2 3 is 
exact , to  7 places , derived from an analyti c  solution for 
a=O .  The other coeffi cients provide a polynomial approximation 
( the best obtainable on the available computer ) 

I 

s 33  = s 15 = . 743485 3 + . 0015 168a + . 07 7491a2 + . 11364a
3 

4 5 6 . 17851a + . 19 5 38a + . 0486 51a 

, 2 s ;3 - a 
844 = s 14 = --�2�------

2
-
a
�2 ( 1+a ) s 33 -

2 2 s 5 5  = ( 1+a ) s 3 3  a 

x1 
= x4 

= "-g = "-12 = 

x2 = x3 = "-1o = X1 1= 

"-s = "-s = 

822 /4 

( s6 6  - s22 ) /4a 

1 ( 5 33 - a.2 

� 1 - a2 

1-s 33 
2 1-a 

2 

- 52 2 ) 

With the numbering given in figure 2 .  

Given s 33 , all but the first of the expressions are exact . 

_, . 
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APPENDIX I I I  

CONTINUITY THEOREM 

The �ollowing theorem is somewhat outs ide the general theme of 
this thesis , and is included merely for completeness . 

Theorem I f  � is contained in the column space of A then 

T ( ( 1- 8)  � + 8£.) [ ( 1- 9 )  A + 9B r [ ( 1- 8 )  � + OR) 

is continuous in the interval 0 � 9 < 1 where A and B are non

negative definite . 

Proof 

There exists a non-singular transformation U ,  such that 

T T UAU = D and UBU = E 

where D and E �re diagonal , and the diagonal elements of D are 
zero or one . ( See , for example , Rao and Mitra ( 197 1 ) , theorem 
6 . 2 . 3) .  

Thus U( ( 1- 9 )A  + eB)UT = ( 1- 0 ) D  + 9E and from the properties of 
generalized inverses ( Pringle and Rayner ( 19 7 1 ) , theorem 1 . 3 ) , 

noting that DD-
= D .  

Now the diagonal elements o f  [ ( 1- S ) D  + 9E]- are o f  the form 

(with d . .  ,e  . .  non-negative ) 1. 1.  1. 1.  

1 
( 1-e) d . . + 9e . .  1.1. 1. 1.  

or 0 ( if d • •  =e • •  =0 ) 1.1. 1.1. 
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and hence 8r( ( 1- 6 ) D  + 6E]- , for r � 1, is continuous in the 
range 0 � e < 1 .  Thus the terms in Ob are continuous . "' 

I t  is  suffi cient , therefore to consider the term (neglecting the 
( 1- 8)  2 factor ) 

Note that , s ince � is �ontained in the column space of A ,  

/ I 

Hence 

�T [ (  1 - 8 ) A  + 6BT .§:. = � TUT [ (  1 - 8 ) D  + eEru(u- 1DU.§:,) 

T T = � U ( ( 1- 6 ) D  + 6E] -DU.§:. 

Now the typical element of [ ( 1-0 )D  + 6E]-D is 

d . .  1.1. 
< 1-a) d . . + ee . .  1. 1.  1.1. 

which is zero if d . .  is zero and otherwise 1.1. 

1 
. 1-e + 6e . . 1. 1.  

with the denominator positive in the range 0 � a <  1 ,  and thus 
is continuous . 

This establishes the result . 

' . 

7 5 .  



Evidently the theorem extends to the case 0=1 if b is linearly ,... 
dependent on B .  

The extens ion of 

a log det Q 
ae 

to the case 8=0 in lemma 8 . 1 . 4 ,  as well as similar results 
e lsewhere , depends on this theorem.  
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