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Abstrqgg

A development of the theory of optimum experimental design is
presented. The notation and proofs are in terms commonly /
used by statisticians, rather than in the earlier measure theory
terms. The D-optimality equivalence theorem is extended to

the singular case, and similar results derived for a number of
other criteria. Atwood's theorem for special n-tic polynomials
is extended to the case where not all parameters are of interest.
Finally methods of constructing optimal designs are considered
and extended to allow deletion of unsatisfactory points, and

some numerical examples are included.
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d. I N TR QD) UI.C T IO N

1.1 PURPOSE.

The justification for the work leading to this thesis can

perhaps best be illustrated by quoting M.J. Box in his comments
to two papers on the subject of design optimality, Laycock

(1972) and Wynn (1972): "Tonight's two authors are to be
congratulated on achieving a high standard of lucidity in what is
a notoriously difficult subject mathematically. In the past,
many authors working in this area have been at pains to conform
to an abstruse but widely accepted style, with the result that
their work has been only readily appreciated by a rather small
and elite band of the already converted." Along the same lines,
a quotation from Box and Draper (1971) is relevant:

"There is.a tendency, on the part of many statisticians who are
connected with experimental design, to omit mention of the
excellent papers written by those who belong to what is popularly
(and complimentarily) known as the "Kiefer School". The papers
concerned are often long, intricate and involved, and most of
them are fine pieces of detailed reasoning. They are, however,
extremely difficult to read and the experimenter (or even the
statistician!) searching for a design may quickly be deterred

after reading a page or two."

As an example of the type of style referred to by Box, consider
the following definition of M-optimality, quoted from a well-
known paper on the subject:

A design is said to be Ma = optimal in A if, for some
9

o d
(p(;* in Hd"':(a) Py

inf @ (u,02) = max sup inf B (u,02)
T P g deA ¢fH () I ®

Stripped of the difficult notation, the above expression states

that a design is Ma c-optimal if there exists a test such that the

9
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minimum power of the test, on the contour p @/c =c, is a

maximum over all designs and tests.

Another example is the following theorem:

If 6(1) is estimable under €%, equations (2.1), (2.2),
(2.17)(a), and (2.19)(a) are equivalent. Moreover,
(2.1) (and thus any of the above) implies (2.17)(b),
which is equivalent to (2.19)(b), while (2.1) is
implied by (2.17)(c) (or, equivalently, (d)).

The equations referred to span five pages in the original paper.

The primary purpose of this thesis is to provide a general
development of the subject of optimum design, in terms readily
followed by the bulk of statisticians. This, in turn, has
made it necessary to re-prove the basic theorems in matrix

terms. As a result of this it has been possible to extend a

number of these theorems.

1.2 GENERAL APPROACH.

The historical approach, following Kiefer (1959, 1961a, 1961b,
1962a, 1962b) and Kiefer and Wolfowitz (1959, 1960), has used a
definition of a regression or experimental design as a probability
measure with support at a finite number of points. This measure,
usually denoted by g is used in integrations over the region of

operability, thus

‘[‘Rdg s @

and, if x represents a point in R,

fr % g = n(g)

is Fisher's information matrix for the design.

By contrast, statisticians tend to refer to a design matrix X,

all of whose n rows are in R, as specifying a design.



The information matrix is now

1
= Yy ee
n

the fact that S is a function of a particular design X, being
implicit. This is the approach adopted in this thesis.

It has been necessary to introduce a weighting matrix A, in
order to take advantage of continuity arguments. A is a
diagonal matrix, whose diagonal elements are positive (or at
least non-negative) and add to one, and whose ith diagonal
element represents the proportion of the sample taken at the

point given by the ith rcw of X. Now

1.3 GENERALIZED INVERSES.

Earlier work, particularly Kiefer (1962b) and Karlin and Studden
(1966), has made extensive use of game theory methods in obtaining
their results. However, the same results may be obtained by

the more natural use of generalized inverses, Apart from the
specialization in section 6.3, the usual one-condition generalized
inverse defined by AA A = A is used. Where A is symmetric .
(as it usually is in the present context) A is, for convenience,
taken to be symmetric also. This enables consideration of

singular information matrices in a straightforward way.

Theorem 8.1 and its supporting lemmas, is an attempt to provide a
proof in answer to the comment of Atwood (1969) that if S is
singular, "there is no simple known theorem analogous to this
result" (that, where interest is in s of the k parameters,

D-optimality is equivalent to an analog of G-optimality.).




2. THE GENERAL LINEAR MODEL

2.4 BACKGROUND.

The general linear model has relevance in the context in which
an experimenter wishes to draw conclusions about some physical
process which produces some measurable result or response.
This response may.be single valued or multi-valued. This

thesis will consider only the single valued case.

The experimenter wishes to draw conclusions about the underlying
process, for any one of a number of reasons. To do so, he
postulates a form of model under which the response depends on

a number of independent variables, together with a random
disturbance factor. We suppose that there are w independent
variables, denoted by the wxl vector g. The response will be

denoted by y. Thus, the model is

y = f{g) + € - * I2eD

where f is some scalar function, and € is a random variable with

Zero mean.

The experimenter may go further, and suppose that y depends on
a linear combination of k linearly independent functions x; of
g , thus x,; = xi(;). With x denoting the k x 1 vector with

elements X:s the model now becomes:

\
\

¥y = ,>5T§ + € with x = x(g) (2.2)

where the constant but unknown elements of f are referred to
as the parameters of the model. This is the general linear
model. Note that the model is linear in § and X, not necessarily

in g , polynomials being the commonest counter-example.



3. THE EXPERIMENTAL SITUATION

3.1 SPECIFICATION OF THE PROBLEM.

The experimenter then formulates the question to which he requires

an answer. The commonest questions are:

1. Is Lf = g true, where g is some known vector (3.1)

and L a knovn r x k matrix?

2., What is the expected value of y for some & oif (3.2)

particular interest?

3. What are the values of E’, or of some transformation (3.3)
RE,of them? ‘

Of these, (3.1) is the hypothesis testing problem, (3.2) the
prediction problem, and (3.3) the parameter estimation problem.
The estimation problem may be further complicated when interest is
restricted to some sub-set of the space of € , I, called the
region of interest. I will be used indifferently, and without
ambiguity, to represent the region defined on € and the derived
region defined on the space of x (as well as its normal meaning of

the identity matrix). This leads to

4. What is the expected value of y for all g € I? (3.4)

3.2 THE EXPERIMENTAL DESICGN.

In order to satisfy his curiosity about one or more of the above
questions, the experimenter designs an experiment. He is assumed
to be able to select some E within some space R (known as the region
of operability and usually determined by physical limitations, or,
in some cases by the limits of reliability of the form of the model

given by (2.2)), and perform an experiment which yields a sample



value of y. The region, I, referred to above,may coincide with
R, be a subset of it (the interpolation problem) or be completely

disjoint (the extrapolation problem), or overlap R.

The single experiment noted above is repeated a number of times
at the same or different values of €. We suppose that n such
single experiments are performed in all. Let us suppose that
the experimenter selects, at most, p distinct values of g , and
that the ith of these values is used xiin times, where xii is
between 0 and 1. The complete set of n samplings will hereafter

be termed the experiment.

Now assemble the p values of x, derived from the p values of E ,

as the rows of a matrix X, p x k. Also assemble the corresponding
values of kii as the diagonal elements of a p x p matrix A, whose
non-diagonal elements are zero. The matrix X will be known as

the design matrix, and A as the weighting matrix, the matrix pair

D = (X,A) being known as the design. Thus we introduce the

following definition of a design:

Definition 3.2.1

A design is a matrix pair D = (X,A) where ziT, the rows of ¥
are in the region R, and A is a diagonal matrix whose

diagonal elements are non-negative and add to one.

Certain theoretical requirements need the imposition of the
constraint that the region R be a compact space, and this constraint
will be assumed to hold. It is difficult to imagine any practical
example in which it does not hold. As noted previously,

T . . . . .
S = X'AX 1is Fisher's information matrix.

3.3 DERIVED DESIGNS.

Given any point X, in R, a design-can be constructed. Also,

given any two designs, further designs may be constructed.



Lemma 3.3.1
' i : .
If x € R then (x ,1) is a design.
For the remainder of this thesis, we assume that D = (X,A)

is a design. Alternative designs will be indicated by

superscript symbols, thus D¥* = (X% A%).

Lemma 3.3.2

If D = (X,A) is a design, then so is (X,A*) where A* is

any weighting matrix satisfying definition 3.2.1.

Note that this may require n = « if some \;; is irrational.

It does not, however, affect p.

Lemma 3.3.3

If D = (X,A) is a design, and x € R, then D* = (X*,A*) is a

design, where

g (1-6)A 0
X% = 7 Nt = 0<06=<1

Corollarz

If D = (X,A) and D% = (X*,A") are designs, then so is pt = (X+,A+)

where

% (1-86)A 0
X+=< ) A 0<0 <1 (3.5)
X5 0 O

+ 3 . .
The symbol D will be used frequently for the design given by
(3.5). Note that st = (1-6)s + os*.



3.4 OTHER OPTIONS.

The experimenter is also able to choose the method of estimation,
necessary even where the main interest is in hypothesis testing,

and, where applicable, the test to be used.

While a maximum likelihood estimate, and the usual F-test, are
used in the vast majority of cases, they do not exclude the
possibility of alternatives being preferable in some circumstances.
Any test will, of course, require some distributional assumption 4

about the errors, €, in the model.

In addition, the experimenter may be unsure of the adequacy
of the model (2.2), and may wish to guard against bias arising
from the possibility that some specified alternative model is
the true model. For the purposes of this thesis the model

(2.2) will be assumed to be correct.

3.5 DISTRIBUTION OF ERRORS.

Throughout this thesis, the errors € will be assumed to be

normally distributed, with zero mean.

While some work has been domne on the case where errors in
different response measurements are correlated, in the majority
of work they are assumed to-be uncorrelated, and this will be

taken to be the case in this thesis.

- , 2
The errors are also assumed to have a common variance, o .

3.6 EXPLICIT MODEL.

Let U be an n x k matrix derived from D = (X,A) by repeating
the ith row of X, Xiin times. Evidently this is possible only
if A qn is an integer for each 1i. If A has irrational elements

on the diagonal, then it is not possible to perform the experiment



implied by the design D = (X,A). Such a design may occur when
an attempt is made to use an optimum design, in which case

an approximate design will give a near optimum when n is
sufficiently large. The approximate design modifies Xii in
such a way that Xiin values are integers. In developing

the model it is assumed that this has been done and that U

exists. Now the model, at the experimental points, is
2 4
3, B Wi e, € ~N(0,0°1I) (3.6)
T T
Note that U U = nX" A X =nS

Using maximum likelihood estimation, the normal equations are
A T
nSg = Uy (3.7)

which, since SS—UT = UT, always has a solution (from the theory

of generalized inverses). The solution is
g=2suly + (1-s7)n
n ~

where h is arbitrary, and S° is a one condition generalized
inverse of S~ (that is, SS°S = S). For convenience, S will

be taken to be symmetric.

Suppose now that the aim of the experiment is to test the
hypothesis Lg = g , where L is r x k. This requires LL—g'= £s
for consistency, and IS S = L for Lg to be estimable, (see
Pringle and Rayner (1971), for example).

If either of these conditions is not met, then useful results

cannot be obtained.

The usual test is an F-test which tests

SS(H) /rank L (3.9)
SS(E)/(n-rank X)




10.

with degrees of freedom rank L and (n - rank U) = (n - rank X),

where

ss(i) = (1s7U'y - gTq (1s7U'y - g) (3.10)
where Q = %{LS—LT)_, and

SS(E) = yT(I - %-US_UT)y (3.11)
with non-centrality parameter

g - 9T R (g - g)

2 -8 Qe (g -g

In the equivalent estimation problem, the variance of Lg is given
by

var Lf = = 0’18 . (3.12)

again, provided Lf is estimable.

3.7 DEVELOPMENT OF A CANONICAL FORM

Algebraic manipulation of expressions such as those given above
can be cumbersome. To lessen this, a number of writers use

a canonical form of the model. In particular Lehmann (1959)
gives a general account, without existence proofs, and Kendall
and Stuart (1967) Vol 2, give a development which contains basic
errors. (In the equation before (24.90), the left hand side is,
at most, of rank k, and the right hand side is of rank n, in
general n > k). Being unable to find any mention of the less
than full rank case, or any explicit form for the transformation,
the author has developed the model given below, to fill this gap,
and, in particular, to cover the singular case. The model is
that of the last section, and the aim is to test the hypothesis
QE = g, with LL_§'= g'and LS'S = L (that is, LB = g'is consistent,
and Lf is estimable). Note that this requires rank L < rank S =

rank X.




11.

We desire to transform ybyz=Cy+b with a number of specified
characteristics. Partition 2'(and C and E’correspondingly) in

such a way that z, is (rank L) x 1 is (n - rank X) x 1,

1 » Zp

and z is (rank X - rank L) x 1. The conditions we set on C

3
and b are, for any f ,

1. The transformation must be reversible.
2

2. var zZ=0 I

_ (3.13);
3. E(EQ) =0
u, E(Ed) = 0 if and only if Lg = g.

/
i

Condition 1%

- This implies that C must be non-singular.

Condition 2.

g . T i -
This implies that CC = I and hence that C = C 1, and the Ci

(the partitions of C) are orthogonal and orthonormal.

Condition 3.

This imples that C2Q§ - QQ = 0 for any f, and hence that

b, =0 and CU=0. Thus C, is any (n - rank X) x n matrix,
orthonormal and in the null space of U. In particular, C

be taken as any orthonormal basis for I - %-US_UT.

o, may

Condition U4,

This requires that Cng + Ed =g [ End) pnly I EE 3 25 ity pirs
readily shown (by solving Lf = g and inserting in Clqg + E& =0)
that a necessary condition is

1) =0

LS_UT(I " czc
AT

1 1 = I'

and we require a full rank solution Cl’ such that C
Such a solution is given Lty

- T
=P
01 NS U

where L = MN with N of full rank and dimension rank L x k,

M is of full rank and dimension r x rank L, and



P is of full rank and dimension rank L x rank L, given by

pTp = n(nsNT) "2

It can be shown that C1U§'+ 24 = 0 if and only if Lg = g, and

s T -
that 01C1 =1, ¢cC,=0. Also, by = -nPNL g.

Reverting to condition 1, C, is chosen to make C of full rank.

3

Thus any conformable matrix orthonormal and orthogonal to C1

and C2 will suffice. Finally, b, is arbitrary and may be set

3
to zero.

3.8 SUMMARY OF CANONICAL FORM.

Summarizing the above results:

Let z=C +bh=|z (3.20)

where —nPNL_g

W
"
o

- . . - T
where C1 = PNS U , C2 is an orthonormal basis for I - US U ,

and C3 is any matrix orthonormal and orthogonal to 01 and C2,
with L = MN and P'P = n(NSTN")"%,

12.
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The problem can now be phrased: given a vector z of independent

normal variates with common variance, with E(gQ) = 0 , test

the hypothesis zy = 0. Under these conditionms,
SS(H) = 242, )
; ~ (3.21)
' . -
SS(E) = %2

o 3 _ L, 2 _
with non-centrality parameter L1 E/O‘ where U = E('%l)'

3.9 SIMPLIFIED MODEL.

It is difficult, with the above canonical form, to see the
immediate application of results. For this reason an alternative
and intermediate form will be used in this thesis. With the

notation of sections 3.6 and 3.7, let L = MN, and augment N

1
to a non-singular square matrix N,

Now let
N1L <,
8=Ng - (3.22)
9
9 9 NlL -4
whence Bp=N"g+N (3.23)
0
and we use the model
N1L g .
y - on~1 = UN B+ € (3.24)
0

If Lg = g , then MNf - MNL—E_ = 0 , whence premultiplication by

T, \=1,T _ ; _ . 5 o
(M"M) "M shows that 'Ql = 0. Conversely, if 9-1 =0, Nlﬁ = N1L g
and premultiplication by M gives Lg = g.

Thus Lg = Q is equivalent to 94 = 10,
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We may thus, without loss of generality, take the hypothesis
to be Eﬂ = 0 , where ﬁl is s x 1, with s = rank L. The above
formulae give the means to proceed to the full model, where
necessary. The form of the model is unchanged from that given

in section 3.6, and the formulae of that section apply, with
N=L-=(IO0) g£=0 (3218 )

We will partition U (and X in the general model) and S to conform

to the partitioning of B. Pringle and Rayner (1971) give a

generalized inverse of a partitioned matrix. Applying this to
S gives
_ Q -Q 54555,
8 = (3.26)
S305210 Spp ¥ §555,40784,55,
where Q = S, - S,.S..S and has the same meaning in the

11 Ai=22 =24
present context as Q in section 3.6.

Hence Ei %(Q Uy - Q78458 22”2)x

Now E(Ei) = %{Q"UT - 812822U2)(U g, + UB,)

:21

Combining (3.25) and (3.26) gives LsLt = Q , which, if £q is
to be estimable, must be non-singular, hence, in this case
Q = Q_l, and (3.10) becomes

SS(H) = ézo Ea
(3.27)

ss(E) = y (1 - ZusTuhyy



. . T
with non-centrality parameter giQ 1‘5,1/02, and

a 12 -1
var 51 = 0 Q (3.28)

This is the form of the model which will be used in the

succeeding sections.

On occasion we may refer to the case in which LE& is not

estimable. In such a case the formulae in (3.27) are meaning-

less, but

where Q 1is, for convenience, taken to be symmetric.

3.10 SIZE OF THE EXPERIMENT.

As a practical consideration, the experimenter does not want to
have the number of distinct points in his experiment to be
indefinitely large. It will be seen later that the practical
design criteria depend orly on S, rather than explicitly on

A or X. Thus it is sufficient to consider the set of possible
S matrices. The following theorem enables a limit to be placed

on the number of rows in X.

Caratheodory's Theorem [(from Fedorov (1972))

15.

Each point xﬁ in the convex hull V¥ of any subset V of m-dimensional

space can be represented in the form

mt+1
=Ly
; al =4l
m+1
where a, 2 0, X a. =1, v, €V,
i joq & >~

Also, if y* is a boundary point of the set V¥, then Qi1 0.
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The matrix S has k(k+1)/2 distinct elements and may thus be
considered a vector in m=k(k+1)/2 dimensional space. Consider
now the set of S matrices arising from experiments concentrated
at a single point, that is, the set of S matrices such that

S = ff?' Let this be the subset V in Caratheodory's theorem.

Now, any general S matrix has the form

5 §
S= X Aj XX
ji=1 TR
where each 5i§§ is represented by a vector in V. Thus S is

within the convex hull of V, and thus, by Caratheodory's

theorem, can be represented by

Bk(k+1)+1

Shs z . X, X
g i~i~l
i=1

Thus, any S can be derived from at most k(k+1)/2 + 1 distinct
points, and hence p < k(k+1)/2 + 1.



L7/

L, OPTIMALITY AND TESTS OF HYPOTHESIS

4.1 GENERAL CONSIDERATIONS.

Unfortunately, optimality is not a uniquely defined quality.

In the area of hypothesis testing - in general, the experimenter
requires his test, assumed to be of size a (0 < @ < 1), to be

as powerful as possible. However, it can be shown that, for
the general linear model, a universally most powerful (UMP) test
does not exist, unless r=1 where r is the number of rows of L.
This has the effect of reducing L to a vector, or in the
sfﬁplified model, of reducing the test to a test of a single
parameter. This result was established by Kolodzieczyk (1935).
Where the hypothesis is simple, that is, where r=1, the ordinary
F-test is UMP. |

Kiefer (1958) has summarized most of the following results.

L,2 UNBIASED TESTS.

Certain tests may have optimal properties. A test whose power
function is not less than a, the size of the test, for any value
of the parameters is said to be unbiased. Note that, since the
test is of size a, at the null hypothesis its power is not
greater than a. Hence, for an unbiased test, it must be exactly
a at the null hypothesis. It should be noted that the term
"bias" in this context is completely distinct from the meaning

in the estimation context. A biased test is one which is more
likely to reject the null hypothesis when it is true, than when
it is false, for some specific alternative hypothesis. The
importance of this criterion is that it is a natural seeming
requirement, and by restricting attention to unbiased tests, in
cases where no UMP test exists, a test which is UMP among unbiased
tests (UMPU) may sometimes be found. It can, unfortunately, be

shown that no UMPU test exists for the general linear hypothesis.




4.3 LOCALLY UNBIASED TESTS.

The situation is improved if the requirement of the last section
is relaxed somewhat. An alternative is that the power of the
test at the null hypothesis be equal to a, and that the power be
non—decreasihg in the neighbourhood of the null hypothesis.
Thus, if m is the power of the test, a function of E& and 02

in the simplified model, a test is locally unbiased if

1. m=a at H, (4.1)
2, 9 - atH (4.2)
3B, ¢
1
32
3. The matrix —oT_ is non-negative definite  (4.3)

qgiagz at H,

The determinant of the matrix in condition 3 is the Gaussian
curvature of the power function. If this is positive definite,

the test is said to be strictly locally unbiased.

b4 SIMILAR TESTS.

A similar test is one for which m = a at HO. Since all unbiased
tests are similar tests, consideration of similar tests may

sometimes lead to UMPU tests.

4.5 TYPE D AND E TESTS.

Isaacson (1951) introduced the notion of type D tests, extending
the ideas of Neyman and Pearson (1936 and 1938). A type D test

is one which is strictly locally unbiased, and for which the
Gaussian curvature at the null hypothesis is a maximum. An
important characteristic of type D tests is that they are invariant
under transformations of the parameter space which are locally
one-to-one and which are twice differentiable with continuous
partial derivatives. Isaacson extended his idea of type D tests

to include type E tests which have the same requirements, but
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which include nuisance parameters. E type tests are therefore
appropriate to the simplified model, D type to the model where

L is of rank k (the number of parameters in the model).

4.6 INVARIANCE.

Suppose the problem is put in the canonical form of section 3.6.
The form of the problem suggests that we might reasonably
require certain properties from the test used. For example we
would not like the test to give a different result if we
reorganized the various matrices in sugh a way that the same

values of z, occurred, but in a different order. Thus we require

1
the test to be invariant over all the orderings of the elements

of z . A similar remark applies to the elements of z

d z,.
1 and z

2 3
Considering the method of derivation of the canonical form,

the matrix C could be premultiplied by a block diagonal orthogonal
matrix without violating any of the requirements for C. Thus

it is reasonable to expect the test to be invariant under
orthogonal transformations of 2, and Z, In addition, 26 was
arbitrary, and the test should therefore be invariant under the
addition of a constant vector to Z3- Finally, multiplication of
Z by a constant affects only 02, and we expect the test to reflect
this.

Thus we might reasonably expect that the test be invariant

under the above group of transformations. It must be emphasized
that invariance is not a necessary criterion. Kiefer (1958)

has given examples in which tests which are not invariant in the
above sense have greater power, in some circumstances, than the
Acorresponding invariant test. In each case, however, some subset

of Ed is selected for special treatment.

4,7 THE F-TEST.

The ordinary F-test is derived as the likelihood ratio test for the

general linear hypothesis. It has the characteristic that its
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power function is a function of A\ = ng §4/02 alone, given by

w

TE f dG[F’(vl,vQ,l)] (4.4)

FGL(\J1 2V, ,0)

where v,, and v, are the degrees of freedom, F& is the 100(1-a)
percentage point of the distribution, and dG(F’) is the density

function of the non-central F distribution, given by

: Ly, +i
Sl 2
e (Vi) ! ——
« 1T \%, @b o
X
1y _ 2 ; : b,
dG(F’) = e v RS dar’ (u4.5)
i=0 BCGsv,+i, LHv,) 14— F’
al 2 Vv,
B being the appropriate beta function. Evidently
m= X aikl =a+ X aill (4.6)
i=0 i=1

by evaluating the constant term.

Condition (4.1), m = a at the null hypothesis (A = 0, in this case)

is thus satisfied. Also

o omaox _ 2 Z i-1 . )
— T == = = ia. A" "QB, since == = =5 Qf (4.7)
QE& — o\ le o2 = i i 9f4 02 1
and, since g, = 0 at the null hypothesis, so is )] .
1 ~ aﬁl
2 @
'a'é—z—rf = -23 E i(i-l)aikl—zog,lgiQ i 12 E iaixl'iq (4.8)
(o) ' (o .
'@1 ﬁ/l . i=2 i=1

and at the null hypothesis this becomes

2a

1 .
—Q (4.9)
o2
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Now T is a strictly increasing function of \ = 0, and hence

a; > 0. Thus the matrix (4.9) is non-negative definite, since
Q is. Also, if él is estimable the matrix is positive definite.
Thus the F-test is locally unbiased or strictly locally unbiased,

according to whether Eh is not estimable or estimable.
In addition, note that the F-test statistic is invariant under

the transformations given in section 4.6. Lehmann (1959) has

shown that it is UMP among tests which are invariant in this sense.

4.8 WALD'S THEOREM,

The following result is due to Wald (1942), with simpler proofs
given by Wolfowitz (1949) and Lehmann (1950):

The F-test maximizes the integral of the power function

on the surface A\ = ¢ > 0, among similar tests of size a.

4.9 HSU'S THEOREM.

Hsu (1941) showed that the F-test is UMP among tests of size a
whose power function is a function of X\ only. As noted by

Kiefer (1958) this may also be derived from Wald's Theorem.

4.10 F-TEST OF TYPE D OR E.

Kiefer (1958) has shown, using Wald's Theorem, that the F-test
is of D or E type, depending on whether all the parameters are

being tested.

4.11 USE OF THE F-TEST.

The comments of the previous sections give no incontrovertible

justification for the use of the F-test. Of the qualities
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noted, invariance seems to be the most compelling. In addition
there are general reasons for using the F-test, for example it
is well understood, easily calculated, and well tabulated.

All this should not blind one to the fact that, in a given

situation, it is not necessarily completely optimal.
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5. DESIGN OPTIMALITY CRITERIA FOR HYPOTHESIS TESTING

5.1 M-OPTIMALITY.

This is the most general type of optimality, defined by Kiefer
(1958). A design is said to be M-optimal if there exists a

test whose minimum power on the contour gzw E’i/c2 = ¢, with

c > 0, is at least as great as the minimum power on the same
contour for any design and any test and for any value of c.
Unfortunately, M-optimal designs are very difficult to characterize,
and the criterion has little practical application. W defines

the contour on which the power function is to be examined.

5.2 L-OPTIMALITY.

This criterion, also defined by Kiefer (1958), is essentially

a local (that is, near to the null hypothesis Eq = 0) version of
M-optimality. Letting the greatest minimum power on the

gzw él = ¢, ¢ > 0, contour, referred to above, be Moax® @ design
is said to be L-optimal if there exists a test of size a whose
minimum power on the same contour, denoted by m is such that

1im = & - 1

c=0 TTmax

If this holds for all a (0 < a < 1) then the design is L-optimal.

This criterion is élightly more tractable than M-optimality.

5.3 D-OPTIMALITY.

This, in the hypothesis testing context, is a restricted version
of L-optimality, in which the tests are restricted to type D or
El. In this case, a D-optimal design is one which maximizes the
Gaussian curvature of the power of the test. By (4.9) this is
the design which maximizes det Q. Wald (1943) and Ehrenfeld (1955)
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considered this type of optimality. When a subset of the
p is considered, as in the simplified model, this criterion

is sometimes (for example Whittle (1973)) called Ds—optimality.r

5.4 E-OPTIMALITY.

Wald (1943) and Ehrenfeld (4955) also considered B—optimality.
(named, apparently, after Ehrenfeld, and having no connection .
with E type tests). Suppose attention is restricted to F-tests
only, then an M-optimal design, within this limitation, is termed
an E-optimal design.

/
Since the test is now fixed, and the power of the test is a
‘monotone increasing function of )\, M-optimality now requires that
the design be such that the minimum value of \ on the contour
Ezﬂ§1/02 = ¢ be a minimum for all c, simultaneously. A Lagrange

multiplier O is used to minimize
T 2 T 2
BB, /0" - 8(§dR§1/c - c)
. p— _ - 2 . . -
At this minimum le = ew§1 whence 0 = glqgi/co is, taking W=I,

proportional to the maximum eigenvalue of Q, and an E-optimal design

is one which minimizes this greatest eigenvalue.

5.5 COMPARISON OF CRITERIA.

Kiefer (1958) pointed out that E-optimality makes an ad hoc

k assumption that the F-test is to be used. He then quoted a rather
artificial example (intended purely to make this point) for which
E-optimality was achieved, and then showed that the design was
neither M-optimal nor L-optimal, and finally concluded that L- or

D-optimality, though local, seem preferable to E-optimality.
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6. DESIGN OPTIMALITY CRITERIA FOR ESTIMATION

6.1 GENERAL CONSIDERATIONS.

Reverting to the discussion on the experimenter's aims, given
in section 3.1 and in succeeding sections, problems (3.2),
(3.3) and (3.4) have not yet been covered. In each of these
we attempt to estimate some value or vector of values. In
such a case it is reasonable to require that an optimal design
be a design that minimizes the variance of the estimate, or the
generalized variance where interest lies in more than one
estimate, and we will first consider such criteria. The

problems now become
. SR a4 DT
for (3.3): minimize: _var(Ré) = =0 RS R (6.1)

Qsz‘ss'z (6.2)

~

for (3.2): minimize: var(%ﬁ?S"UTy) =g

where x is a known vector.

For (3.4) we may minimize the average variance or the maximum

variance, thus

minimize:ul. xTS_SS_x dx (6.3)
7€l

(known as Q-optimality) or, alternatively,

minimize: max z?S—SSié (6.4)
x€I

Evidently (6.1) is not meaningful in itself, since one cannot, in
general, minimize a matrix. Thus, normally, a function of the

matrix is used, the generalized variance being the most common, thus
ST -_T
minimize: det RS R . (6.5

This is D-optimality (in the simplified model of section 3.9, the

matrix becomes Q_l).
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Alternatively, one might seek to minimize the average variance

of the parameters, or the maximum variance, giving

r
minimize: = X [3-02 RS_RT]..
- & n ii
i=1
R — 1 2 -_T
minimize: max E-o RS R Jii

i=1,r

The first of these is equivalent to
P -T
minimize: trace RS R° = trace S R'R. (6.6)

and second to

minimize: max [RS_RT]_, (6.7)
i=1,r e
6.2 SIMPLIFIED MODEL.

Criteria (6.5), (6.6) and (6.7) may be put in terms of the

simplified model, as follows

for (6.5), maximize: det Q (6.8)

for (6.6), minimize: trace Q—1 (6.9)

for (6.7), minimize: max [Q_l].. (6.10)
i=1,r =

As noted above, (6.8) is D-optimality, discussed in section 5.3.
The other two have been discussed by various writers. Criterion
(6.9), called A-optimality, has been considered by Elfving (1952),
Stone (1959), and Kiefer (1959), and (6.10) by Murty (1971). 1In
addition, Kiefer (1959) mentions a criterion (R-optimality)

related to A-optimality,

maximize: trace Q (6.11)

Note that, although "minimize: det Q_l" and (6.8) are equivalent,
(6.9) and (6.11) are not.



27,

Stone (1959) considered an optimality criterion based on
Shannon's information measure. This criterion was first
mentioned by Lindley (1956).  Stone took the information about
p after the experiment less the information before the experiment
as his measure. In order to develop his results, he had to
assume that f was a random variable with a multivariate normal
distribution, with non-singular covariance matrix. Since

this is not the case in the present model, his results will not

be considered further.

Another optimality criterion, c-optimality, discussed by
Wynn (1972) seeks to minimize the variance of ¢ f, where c is
known. This may be considered as a special case of most of the

above, and, in particular of D-optimality, with s=1.

6.3 RESPONSﬁ ESTIMATION.

Criteria (6.2), (6.3) and (6.4) cannot be couched in terms of
the simplified model, referring as they do to the estimate of y

at the point x, which, in turn, uses all of f,

All these criteria involve the expression KFS-SS—z. Now the
“generalized inverse used for S~ is any solution of SS°S = S.
If P is such that (and such a P always exists)
Low 0
PSPT =

then it can be shown (Pringle and Rayner (1971), for example)
that S~ must be of the form

where U, V, and W are completely arbitrary.
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We have already imposed the restriction that the generalized

. . . . T T
inverse be symmetric. This requires V= U and W =W .

If, in addition, we require W = UTU, then S°SS = S~.
Making this requirement simplifies (6.2), (6.3) and (6.4)

accordingly. No generality is lost by this process.

Note also that 5?8—5 = +trace 8—55?. Thus (6.2) and (6.3)
(as well as A-optimality ((6.6) or (6.9)) and c-optimality)

are specializations of /

minimize trace S B (6.12)

where B is a known square matrix, often of rank 1. This area
will be considered in Chapter 9, where (6.12) is termed

‘B-optimality.

By contrast, (6.4) is something of a special case, known as
G-optimality. It is not directly defined (in terms of variance
of estimates) for the simplified model, but an analogous expression

which reduces to G-optimality when s=k is given by

op Y T - T. .-
minimize max (xS x - x.S_x

) (6.13)

The expression in parentheses will be denoted by dQﬁ,D), D
being the design which gives rise to S. It will be shown in a
later section that G-optimality, defined in this manner, is
equivalent to D-optimality, that is, a design which is G-optimal
is also D-optimal, and vice versa. Note, for future reference,
that, by expanding S  as a partitioned matrix,

L= T.-

X S x = %.8..%

d(2,D) = xS % - %,85,%)

= O - 4
- ¢ - S .
(51 81292252) Q (51 512 22352) (6.14)
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7. GENERAL OPTIMALITY

7.1 ¢-OPTIMALITY.

Many of the criteria mentioned in the last chapter are special

cases of what Whittle (1973) has called ¢-optimality.

Suppose ¢ is a scalar function of the design D = (X,A).

Assume that ¢ is concave. This implies that
o = (1 - 0)p + Byt 0<8=<1 (7.1)

where ¢ and ¢ are defined on the designs D and D¥*, and qf is

the function of Dt = (x', AT) with

X (1-0)A 0
W 0 e/\*

A sufficient condition for concavity is that

2 +
o Q.
202

< 0 for all D, D* (7.2)

6=0+

the derivative being assumed to exist.

Define

8=0+ (7.3)

Note that § = 0 when D = D%,
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The maximal rate of ascent of ¢ from D towards D**, with increasing
6, is given by
p = sup (7.4)

D%

Whittle's theorem is now

If ¢ is a concave scalar function of the design D,
then a -optimal design can be characterized by

any of the following three conditions:

D maximizes ¢ (7.5)
/ D minimizes p : (7.6)
‘/

p=0 (7.7)

Proof:

The continuity of the elements of x and the compactness
of R ensure that a design that maximizes ¢ does exist.
At such a point $ < 0 for all D*, hence p < 0.

However, § = O when D = D*, hence p = O. Thus (7.5)
implies (7.7). Furthermore p 2 $ for any D¥*, and

$ = 0 for D = D*, hence p 2 O. But the lower bound

is reached for at least one design (that which maximizes
) and hence (7.6) and (7.7) are equivalent. Finally,
in p 2 0, equality holds only at a maximum of ¢, and
hence (7.7) implies (7.5).

7.2 APPLICATIONS.

As noted above, many of the criteria considered are special cases
of Whittle's theorem. The application to particular criteria

will be considered in succeeding chapters.
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8. APPLICATION OF ¢-OPTIMALITY TO D-OPTIMALITY.

8.1 PRELIMINARY RESULTS

First note that det Q is a maximum if and only if log det Q

is a maximum. Let ¢ = log det Q, where Q is as mentioned
in criterion (6.8). Throughout this section, @ will be so
defined. In addition we assume det Q > O for some design, for

if this is not the case, any design is D-optimal.
A number of preliminary lemmas are required.
Lemma 8.1.1

If Ai is contained in the row space of Bi and Bi is
non-negative definite, where A; and B; are r x r, for
all i, then

. _ T
W=2Z AiBiAi -(z Ai)( z Bi) (x Ai) (8.1)

is non-negative definite. Summations are taken over the

n values of 1i.
Proof

N
B. can be expressed as Pipi and Ai as K;P..

1
Let
e O
El(PlPi) P, 0
D = o ;
0 P (Pp )P
n nn n
"1 T - T
P = : K = (K1 i Kn) E=P(PP)P
P
n

Now W = K(D - E)KT
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Also DP = P, PTD = PT, D2 = D, E2 = E and hence DE = E = ED,

I T
and thus D - E is idempotent, or W = VV where V = K(D - E)

which establishes the result.

Corollary 1 W =0 if and only if A, = (Eﬁi)(EBi)-Bi
S 1G q - T -_T
Proof W = 0 implies that KD = KE or A.B.P, = (ZA,)(¥B,) P,.
A==y Bl 1 1. 1

The proof in one direction follows by post-multiplication by
P.s noting that AiBEBi = Ai' The proof of the converse is
obtained by postmultiplying the equation on the right of the

corollary by B;Ai and summing over i.

Corollary 2 Kiefer's lemma (Kiefer (1959), lemma 3.2)
Kiefer's result is a special case, with Bi non-singular, since
in such a case Ai is necessarily contained in the row space of
Bi’ Kiefer also included an arbitrary weighting function

which can be absorbed in the matrices.

Lemma 8.1.2

+ +
¢ = log det Q 1is concave in 0

Proof

1. det Q" = det[(1 - 8)Q + 6Q*]
" Note that '

( 4 . .'.. = o A LT o
Q - (1 -6)Q _eg = (1 - 0)812822321 + 6832352351

- [(1 - 8)s,, + 88§,][(1 - @)S,, + 65%,]) [(1-6)S,,+65%,]

which is non-negative definite by lemma 8.1.1. Hence

the result follows, since det(A - B) = 0 implies det A 2 det B.
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2. det[(1 - 8)Q + 6Q*] = (1 - O)det Q + Bdet Q*

This relationship holds for 6 = 1. Now take 0 < 6 < 1.

Let W= (1 - 6)Q + 6Q%. Observe that det W > 0 for 0 < 6 < 1.
d log det W _ 1 3 det 5 243
FY:) T det W ob
1,3 Oy

= 1 ij Voh 1=
dor W Z s = ags)

1,3

- ij Y, -
1]
i3 ij .
where W - is the cofactor of wij and w - the corresponding
element of W o.
~ yiddaw
8210g det W _ z - W T ——
06 A awuv ob 1] 1]
1,],U,V
== iy jv ¥ & e
:E:: LAl TR
i’j ’u’v

- trace[w'i(Q* -0 <o

hence log det W and thus det W are concave.
31 Finally ¢¢ is concave if and only if det Q+ is concave.

- Lemma 8.1.3

alsty”
ob

= —(sH7(s* - s)sTy”

for 0 <0 <1or for 0 < 06 < 1 if S* is contained in the row space of
S.



34,

Proof

It is readily verified that, with 0 < § < 1, both S and S* are
contained in the rwo space of st. (The proof involves putting
s* in the form VTV and showing that SV'V = S, and hence that
s(st)"(s*) = s, with a similar result for S%*). Thus

- . s e
st(sty (s% - 5) = s% - 5 = (5% - 8)(s™)7s (8.2)
Now consider the identity S+(S+)_S+ = S+.
Differentiating
ast oot + .(S+)" + ool T as’
e — S +8 ==-— 8 + 5 (S = S
S5~ (S 5 (s") 55 36
or
+ .-

(s* - 8)(sH)7s" + " a_é%_)_g +8T Y (sr w8y =8k -

from which

+ ;ST _ P
S Fp— 8§ = -(s* - 9)

From (8.2) and generalized inverse theory, this has a solution
for the derivative. Without loss of generality the solution may

be taken to be the expression in the statement of the lemma.
If S* is contained in the row space of S, (8.2), and hence the
remainder of the proof, holds for 6 = 0.

‘Lemma 8.1.4

d log det QT V(o T oy (s
4 <3 = trace[(s) (8#%-8)] - trace[(S,,) (8%,-5,,)]

(8.3)
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" "Proof

-9 log det Q+ -1 BQ+

Let u =5 = trace (Q+) =0

from the proof of lemma 8.1.2, where the derivative was evaluated
for W,

Expanding

trace[ (@)™ 2= (sT, - 87 (s} )78} )

=
1

+

trace[(Q")™1[8%,-8,,-(8§,-5,,)(83)7sh .

B (sf )y (s

21 12 22 B

(st )(s )

12 22) (85,759, %1-8517]]

3(822)’

on differentiating and using lemma 8.1.3 for -5 °

Note that the result holds at 6=0 by continuity arguments, see

Appendix III.

Now, from the theory of generalized inverses,

+.-1 st y”
& . (s 5 HES - 12( 9)
+.-1 + \- =1t ot -
_(S ) 321(Q ) (s,,) +(S 5) 821(Q ) 78,,(8,,)

On using this to expand the expression on the right of (8.3), noting
that the second term cancels, the right hand side of (8.3) is equal
to

trace[(Q")~ (Sii-s 1“512(822) (83,-554)1]

+ = e
+ tr;ce[(ng) s [ (Q12 12)+512(822) (8%,-8,5)]]



using the fact that matrices commute under the trace operator

+,- - opmss
to place (Q ) ! at the beginning of the second term, giving

this expression identical to (8.4).

Lemma 8.1.5

_ 0 log det Q _ —a% - o
$ = s = trace S S5%- trace 822822
6=0+
Proof
From lemma 8.1.4
= T T ok _ ¥ - N
& trace S S trace 822822 (trace S S trace 822822)

The last term is equal to rank S - rank S

rank Q by inspection of the identity

g -5,,.5

12722 1

Lemma 8.1.6

“822521

2

0

Q

If D* is any design, then it may be replaced by a design

matrix consisting of e single row, such that § will be

at least as great.

Proof

. T . .
Noting that S* = Z. A¥.x¥x¥ where the x¥ are the rows of X¥,
_ 1 Tiisi~d i

i l* x¥% X*T

and similarly, 352 =X TiXLE,

36.

This establishes the result.

- rank Q

0

22

5 and this is equal to
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’, vT -t !T — 1,
=3 A= PR SRNEVE ST - .
3 Zi lii(x. X x4 x% ) - rank Q (8.5)

S
22242

If we select that value of i which maximizes the expression in
. T .
brackets, and replace X* by that 5? alone, the resulting §

is at least as great as in (8.5).

Lemma 8.1.7

i
p = max (x

X
~

- T -
S x - Engng) - rank Q

Proof

This is an immediate consequence of lemma 8.1.6.

Lemma 8.1.8

T T _
If max (z_ﬁé - zQH zQ) = trace (FS - H822)

X

~

where F and H are any conformable matrices, then

xTFx - xT
~T~ ~2 A2

1l T
Hx.. = mix(z’fi = §QH§Q)

~

for 1 = 1,...,p

Proof

_ T T
trace (FS - HSQQ) — E lii(firﬁi - Ei2H§i2)

and if this is equal to the maximum over x , then each of the

T Hx, must be equal to the maximum.

T
5iF5i - §i2 ~12
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Note that if p from lemma 8.1.7 is zero, then the above result

holds with F = S and H = 822 , since rank Q = trace S S - trace 822822.

8.2 EQUIVALENCE THEOREM

Theorem 8.1

Where a design for which Q is non-singular exists, the

following criteria are equivalent

1. D maximizes det Q (8.6)
Ny T .- T. .-
2. D minimizes mix(5 S % - %,8,5%,) (8.7)
3 max(xTS—x - xi8T % ) S mank Q= 8 (8.8)
g e ~ L4 ~2 22&/2 °
- = x'8x, - g st Eop 121
Zi° Xy T Eio®00%40 kgl |

Proof

This result follows from Whittle's theorem and from the preceding

lemmas.

This theorem was first proved, for the case in which s=k, with S
non-singular, by Kiefer and Wolfowitz (1960), and extended to the
case s < k, but with S still non-singular, by Kiefer (1962b),
using a difficult games theory argument. The most appealing and
" simplest proof for that case appears to be that given by Federov
(1972). As far as I am aware, the above result is the first time
the theorem has been extended, in a reasonably simple form, to

the case in which S and 822 may be singular. The form of d(x,D)
given in (6.14), (8.7) and (8.8) is new in that the generalized

inverses extend d(x,D) to the singular case.
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9. APPLICATION OF ¢-OPTIMALITY TO OTHER CRITERIA

9.1 GENERAL COMMENT

As mentioned in section 6.3, many optimality criteria are special
cases of

minimize trace S B

and Whittle's theorem may be applied to this. The theorem can

also be applied to R-optimality (maximize trace S).

By contrast, E-optimality (minimize the maximum eigenvalue of S)

and the criterion that minimizes the largest diagonal element of
= uc : .

S (or of R"S R, see equation (6.7)), are intractable. In

particular, for any reasonable choice of optimizing function, ¢,

262

may not exist at all points since the choice of eigenvalue or

diagonal element may change with 6.

9.2 R-OPTIMALITY

+ +
Let ¢ = trace S, and ¢ = trace S . Now

+

Bcp+ ___Zatraces+ CE

N st o6
u,v Suv

.
= E Sl - iS
buv (SUV uv)
u,v

(s* -5 )
uu uu
u

trace(S* - S)

where buv = 1 if u=v, and otherwise zero.
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Note that this derivative is independent of 6, and hence that the

second derivative, with respect to 6, is zero. ¢ is thus concave.

Also, for the same reasocn, § from Whittle's theorem is given by

$ = trace(S® - S)

e 0%

Now, since S* = X A%.x%¥x¥ , there is some value of i such that
7 TiiMi~d
. Jooge ] o
trace S% < trace xixi = x¥ X
A ~

and thus, in turn, any X** may be replaced by a single vector X,

such that ¢is at least as large. Hence
T
p=max § = max x x - trace S
S X
Now suppose that p=0. In this case
T
max x x = trace S
2
= =05

s fiﬁi Hor 0 = L ol
from lemma 8.1.8.

This now implies that A is arbitrary, and the selection of the
points is the only imporfant~factor. If, however, the x for

. T . . q . q
which x"x 1is a maximum is unique then S has rank one, with rather

unfortunate results for estimation purposes.
However, for completness, Whittle's theorem gives:

The following criteria are equivalent, and each implies R-optimality:

1. D maximizes trace S

oy T
2. D minimizes max X x - trace S
X

1y SO T P .
3. max x X = trace S = x.x. for all 1 = 1,...,p.

Ll
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Note that these imply that an R-optimum design is not invariant

of location changes.

In any case, the remarks above regarding the rank of S suggest

strongly that R-optimality is an unsatisfactory criterion.

9.3 B-OPTIMALITY

|
At this point, we define the term B-optimality, in which the aim

is to minimize the quantity

/

where B is a known, non-negative definite matrix. As noted in

trace S B

section 6.3, A-optimality, c-optimality, Q-optimality and what
might be callad point optimality (in which it is desired to

- s . . - . .
minimize xS x for a given x) are special cases of this criterion.

Let ¢ = -trace S B, and we seek to maximize (algebraically) ¢.

Also, to improve legibility, let
é = @iy
for this section. Now q? = -trace GB.

Note that, if W is dependent on 6, and B is not

ow
uv

ow o0
uv

0 trace WB _ 0 trace WB
o6 -

uv

ow. .b.. ow

ow ob

oW, . ow
- :E: 17 uv
ow 00 Tij

ijuv  uv

ow, .
o,
1 o ij

trace éﬂvB

06
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Ik
%5_ = - trace %%-B
= trace G(S* - S)GB (9.1)

from lemma 8.1.3, for 0 < 6 < 1, and at 6=0 by continuity.

2.+
%y _ G ey _ e a 6

-2 trace G(S® - S)G(S* - S)GB

< 0 provided B is non-negative definite,and hence

¢ is convex, as required by the theorem. Setting 6=0 in (9.1)

gives

L]
n

trace S (S® - 8)S™B

trace S S*S B - trace S SS B

— v, ) ,T = - =
trace S (Z A%.x%x% )S B - trace S SS B
T Mid~d

and, as in previous sections, we may select the value of i which

maximizes

#Ts™BS”

x

x-.::
=]

8

and replace X* by this X; alone, giving

p = max ﬁTS-BS-ﬁ," trace S SS B
P

Now, in a manner similar to that noted in section 9.2, if p=0, from

lemma 8.1.8,



43,

Whittle's theorem now gives:

The following criteria are equivalent, and each implies B-optimality:

1. D minimizes trace S B

2. D minimizes max z?S—BS_zl - trace S SS B
X

~

3. max ﬁ?S-BS-ﬁ. trace S SS™B

& /
_ T = .
= x.5S BS X. for i = 1,...,p

Note that, for a suitable selection of S , trace S SS B = trace S B.
Tﬂis also holds if B is contained in the row space of S. As

a practical matter, the various quadratic forms are not unique if
| % and B are not contained in the row space of S. Thus it is
reasonable to make the requirement that x and B be contained in

-

the row space of S.
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10. D-OPTIMA IN SPECIAL CASES

10.1 SPECIAL N-TIC POLYNOMIAL

A form of the model, termed a special n-tic polynomial, was
defined by Scheffé (1958). In this case, the elements of x
are (with the possible inclusion of a constant) products of the
elements of g, with the restriction that no element of E occurs
at higher than the first degree, and the further requirement

that all such products occur. Thus, if g? = (g1g2§3),

T
=018 g G BE B0 B B R

the initial 1 being optional.

10.2 ATWOOD'S THEOREM

Atwood (1969) proved that, for a special n-tic polynomial, and s=k,
a D-optimal design can have no experimental points in the interior
of any line segment in the space of € , on which all the variables

but one are held constant.

The following theorem strengthens Atwood's result.

Theorem 10.2.1

In the case where s <k, and S is not necessarily of full rank,
* a D-optimal design can include no points in the interior of any line
segment in the space of € , on which all the variables but one are

constant, unless, on the whole of that line segment

Xy = S49520%,

is independent of the element of g€ that is not held constant.
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Proof

12520%p)

' ~ - _ \T.-1
From (6.14), d(x,D) = (Ei - SiQngkQ) Q (54 - S

Since Q is at least non-negative definite, d(i,D) is never negative.
However, from the special n-tic form of x, d(x,D) is at most
quadratic in each Es> and holding all but one of these gi constant
makes d(x,D) a non-negative quadratic and hence convex. If

X - S

X1 7 °12°22% /,
d(g,D) is a strictly convex quadratic, and cannot have a maximum

is not independent of the gi which varies,
in the interior of any segment of the line.

Corollary If s=k, x S becomes z,which cannot be

" S12°20%
independent of any g:» and hence the exception condition does not

- hold. (This is Atwood's result).

The exception condition has caused considerable difficulty. The
author has been unable to find an example in which the condition

is met, and hence to show that such exceptional designs do exist.
It also appears to be particularly difficult to characterize such

designs.
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11. CONSTRUCTION OF D~OPTIMAL DESIGNS

11.1 PREVIOUS WORK

Wynn (1970, 1972) has provided methods in the full rank case for
obtaining D-optimum designs by adding to some starting design

the point x which maximizes

T o1 To-1
X5 X - %Sk

with a new A given by

¢l
ptl A ¢
1
0 p+1

Whittle (1973) improved the method of augmenting A by suggesting

((1—@.):\ 0 )
0 a

where o is chosen to maximize the optimization criterion.

.

11.2 RECALCULATION OF A

The methods noted above while suitable for sequential design,
suffer from the disadvanfage of not deleting unsatisfactory points
when the design is constructed in advance. The following
sections give a refinement whose derivation began with an attempt

to select, given X, that A which maximizes det Q.



14'.:3 EXPLICIT RESULTS

Lemma 11.3.1

If 8% = §§? and 6 < 1 then

+
dlogdetqt  3(xsD)-s
ab B 1-0

. . + .
Proof First note that, since S = (1-6)S + 6s*

s’ - ps* b _ 8% - 8
6

+
S = g

Hence, in the present case

trace(S+)-(S* -9 = T%F trace(S+)-(5§? = S+)

—1—-(xT(S+)—x - rank 8)
1—e ~ ~
+

with a similar result involving 822.

From lemma 8.1.4

ologd ‘cQJr +\ - +
O0fCEN = tpace(S') (S* - §) - trace(S2

06 2

and the result follows on noting that

_ t +
» s = rank S rank 822

Theorem 11.3.1

)7 (s

2.

22"

S

22

)

47.

A design D = (X,A) may be improved by the addition of a given point

% if and only if

d(x,D) > s

Proof This follows from lemma 11.3.1 setting 6=0.

Corollary  The design may be improved by increasing X;. if and

only if d(zi,D) > s.
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Theorem 11.3.2

A design D = (X,A) may be improved by reducing the weighting of

some point X and rescaling the remainder, if and only if
d(xi,D) <s

Proof This follows from lemma 11.3.1, with 8 = lii’ on writing

s for S+, with the ith diagonal element of A set to zero.

We now assume that x is, in fact, one of the rows of X, and wish

toaﬁumzhiby
(1-8)x;; + 6

and the other diagonal elements of A by (1-O)kjj with § # 1i.
Note that this implies that x is contained in the row space of

S. Now 6 is to be selected in such a way that’
d(g,D+) = s
From Pringle and Rayner (1971), theorem 2.18,
(8') = [S— - g S-xxTS_]
e Toov0w S X%

where w = xS x. Now

W
¥ 1-0+6w
: s . : - .- +
with a similar expression (with Wy = §2822§2) for W,

Thus, optimizing in terms of X requires a solution of the equation
W W

T-0r0w -6t60, = ° (11.2)

in terms of 6. Thus, once X has been chosen, 6 may be calculated

as the solution of a quadratic.
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Viewed as a function of 6, det Q+ has two turning points, and

discontinuities at

in descending order. Hence there will be one solution between
1 and T%;- of which the sign will depend on the sign of W-W,=S,
which in turn indicates whether the weighting of a point

should be increased or decreased. If a point has its weightiﬁg
decreased below zero, the weighting should be set to zero, and

the point deleted from the design.

/
/

11.4 IMPROVEMENT TO DET Q

If the intention is to improve det Q by replacing Q with Q+,

assuming for the moment that S is of full rank, then

det S+

+
det 822

det Q+

_ det[(1-8)S + 6xx )
T
det{(1-0)8,,+6% %]

det((1-0)8)(1 + s W)

det[(1-6)S,,](1 + I:e-g-wQ)

- (1_0)3 det S 1-0+0w

det 822 1—9+0w2

s 1-6+6w

and
det Q+
det Q

S 1-6+6w

= (-0 Tove,

(11.1)



50.

The same result is obtained if the restriction of a full rank
S matrix is relaxed. The proof involves a rather lengthy

] + C 2 .
expansicn of Q , but is otherwise straightforward.

If x is already a point, Zio in the design, then 6 may be negative,
if 0 is sufficiently negative that Xii becomes negative, the
point is simply deleted from the design, and the other \ values

rescaled.

In this case

+ 1 T
Sty 87 ki)

and by a process similar to that above,

+ 1-X..W,
det Q _ -s il
Ere S ER A Wy (S
a1 118D

In theory, (11.1) and (11.3) give the means to select the best
available point for alteration. In practice, it may be simpler
to use some arbitrary, but reasonable criterion for selection,
since the decision making process derived from the above equations
may involve more calculation than the adjustment process. In

the examples quoted later, that zi'for which the absolute value of
d(x.,D) -'s
= .
was greatest was chosen, with good results. As noted below,

the method of selecting the maximum d(xi,D) leads to very slow

convergence.

11.5 ALL PARAMETERS OF INTEREST

If all parameters are of interest, that is, if s=k, the above

expressions simplify considerably.
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In particular (11.2) becomes

6 = w-k
or R CTED) S

and
M =( k1 * . A (11.4)
det @ T\ w-1 k )

Note that, 1f x = X s and
k = w > A, .w(k-1)
ii

then an attempt will be made to reduce Xii below zero. In this

situation

det Q+ 1—)‘:'L:I,wi

det. Q

(1-0g )"

25

Note that (11.4) is an increasing function of w, hence any W,

between the largest We and k, need not be considered as a candidate.
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12, CONSTRUCTION OF B-OPTIMAL DESIGNS

12.1 IMPROVEMENT OF A

By direct analogy to the previous chapter, a design may be

improved in terms of B-optimality, as follows.

From (9.1), using G = (s™y"

it - trace G(zz? - S)GB
and this is to be equated to zero and solved for 6. Once again
it is assumed that x is linearly dependent on S. This gives

1 £ 0 - Te-
G-l—-'s(s 'msi%s)>

where w = X S x
~n

Straightforward multiplication, noting that SS-E'= x , gives

2 2
s - e e —b [ 1@ T S} -
(1-6) (1-6+6w)

and on postmultiplying by B, taking traces and equating to zero

1-6%40%w T

trace S SS B = s X S_BS-x
(1-6+6w)

~

Note that the left hand side is equal to trace S B for S~

suitably éhosen, or for B linearly dependent on S.
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13. APPLICATIONS

13.1 BACKGROUND

A computer program was written to test convergence of the
D-optimality criterion under the conditions of the last section.
Since the computer (a PDP11/45) was not equipped with double
precision arithmetic, numerical instability tended to occur.

For this reason, full rank models with all parameters of interest,

and with small values of k were chosen.

In each case four points were chosen at random from the region

of operability, and the iteration scheme used to improve A.

When this had converged, a new point was chosen at random, and if,
for this point, §?8-1§,> k, it was included in the design, and

the iteration continued, otherwise new random points were selected
until the condition was met. This was repeated until 16 extra

points had been selected.

In addition, as described in section 13.4, arising from a local
problem, an aisle quadratic was analysed, thus providing a

practical example of the application of the iterative scheme.
Finally, although it was not used in the examples noted above, a

generalized inverse routine, as described in Appendix I, was

developed. This was tecsted and found quite satisfactory.

13.2 LINEAR MODEL

In this test example,

35T = (18, &) with 0 < 128y =1
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The optimum is given by weightings of .25 each at the points
(§1,§2) = (1,1),(1,-1),(-1,1),(-1,-1), for which design

det S = 1. The design was considered to have converged when
Z(xSlx—3) /p < .25E-8.

Ten runs were carried out, and the final values of det S,
together with the number of 1teratlonq requlred are given. By
contrast, the strategy of selecting max x S 1x rather than

max abs(z? _15,— 3) required, for run 1, 333 iterations to
converge for the first four points, and had not converged for

the fifth 2000 iterations later.

Figure 1 gives the order in which points were eliminated in run
1, illustrating the manner in which points were selected closer

and closer to the periphery.

Lastly, the final design is given in table 2, for run 1 (the

best), run 8 (the worst) and run 9 (the quickest convergence).

A straightforward calculation reveals that if, in the optimal
design, the point (gl,gQ) = (1,1) is replaced by (6,8), the
derivative of det S with respect to 6, at 6 = 1 is 1, and hence,

as the point moves inwardé'from the corner, det S drops at the

same rate. If all four points have 1 replaced by 6 in the

same way, then det S = 64, which falls off rapidly with decreasing
6. - This explains what might be‘thought to be low values of det S.



55

TABLE 1

Results for linear model.

Iterations required Iterations required

Bug Sl dEs for first 4 points for 20 points
1 . 8439 25 1338
2 6711 2(11) 620
3 .5666 2(17) 861
i .6U35 2(5) 1163
5 .7610 13 759
6 .7216 2(39) 599
7 . 8385 2€12) 971
8 L4495 26 706
9 L7141 2(11) 362

10 . 7402 12 664

Note: In the number of iterations required column, the bracketed
figures give the iterations required for the fifth point,
where one of the first four was unsuitable and immediately

eliminated.
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| L ok
l |
6
)
3
i0 : 14
1] : 15
82 s, = r .
Bilg, Order of elimination of points in linear model, run 1.

Dots are points left in the final design.
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TABLE 2

Final points and lambda values for three runs in the linear model.

i A ST €2
il .2563 .998 +932
(best .2358 .873 -.945
det S = .8u439) . 2634 -.992 )k
2460 . -.975 -.986

8 .2695 .973 . 856
(worst .0810. _ .021 .995
det S = .uu9s) . 3066 . 875 -.939
L2441 -.997 -.054
.0988 -.753 -.823

9 .2538 . 853 .997
(quickest .2677 .859 . -.986
convergence , .2294 ' © -.863 . 849

det S = .7141) L2491 - -.971 ' -.974
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13.3 POLYNOMIAL MODEL

In this example, the model was

T 2 .3
x = (1 g & gl)

The theoretical optimum has four points, with By = -1,-1/.5,

1/v€; 1, and each A\ = .25, with det S = 16/3125 = 5.12 ¥ 10—3.

Two refinements were added to the procedure for this model.

If p=k, then X is square, hence det S = (det X)2 b Xii’ which

is maximized in terms of A by xii = 1/p for 1 = 1,...,p.

Thus whenever the number of points in the design dropped to k,

A was immediately set to this value and a new point selected.
The other refinement arose from the observation that most
iterations arose from the difficulty in separating, and rejecting
one of, two very close points. However, such points do not
affect det S greatly, and another point may be added without
loss of efficiency. Hence, if convergence had not been reached
100 iterations after the last new point, a further point was
added. The unsatisfactory point of the close pair was then

usually rejected in the next series of iterationms.

It is interesting to consider the behaviour of det S under
departures from the optimum design. Let the design be
€, 7 -@, -p,p,0, with equal weightings.

Now

1 2 2.4
det § = 5= « 5((1 -67)

Differentiating with respect to @ gives

2 _2.3 2 2
—afs (a"-p") (5a"-p")
With a=1, p=1/+5, this gives 192/3125 or 12 det S, for the

derivative, indicating great sensitivity at the extremes. On the

other hand, with a = 1/v€; g = 1, the value is zero, substantiating



the observed insensitivity to the exact intermediate values.

In fact, with a =1, g = .5, det S is .9656 of the optimum.

In view of the above, the value of det S achieved depended
almost entirely on how close the randomly selected end points
came to to plus or minus one. However, table 3 illustrates
two representive runs. The second was much the worst seen,

for most, det S ranged from 4.1 x 10-3 to 4.5 x 10—3.

13.4 AISLE QUADRATIC

The method described in sections 13.2 and 13.3 was intended
more as an illustrative device than as a serious approach to
design optimization. The situation described in this section
arose from a practical problem with a constraint imposed by
the physical environment. The aim of the experiment was to
estimate quadratic growth contours in a glasshouse. Thus

with two physical dimensions, the model becomes

T 2 2
E ol g e e

with -1 < g4, §, < 1. However, the normal layout of a glass-
house imposed another restriction - the aisle down the centre
required abs E,zQ where o is a constant depending on the

particular glasshouse.

In approaching this problem, the twelve points illustrated in
figure 2 were selected as the starting points for a design, and
the iterative procedure used to refine A. In the particular

problem considered, a = 1/3.

The final design thus generated is given in table U4, Note

the assymmetry.

Using the symmetry of the situation, 3 similar optimum designs
may be produced. Averaging these 4 optimum designs leads to

a symmetric optimum, given in the last column of table 4.
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TABLE 3

Final points and A values for two runs in the polynomial model.

det S .

et A g1

.95 x 1072 249y .99L6

(best) .2502 L4435
249y -.438y
.0008 - -.4564
.2501 -.9999

-3 )
2.16 x 10 .25 .9279
(worst) .25 4117

«25 -.4381
«25 -.9335
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Fig 2.

S

©

Layout of selected points for aisle quadratic.
The heavy rectangles represent the region of

operability.

61.
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TABLE 4

Optimum aisle quadratic design with points from figure 2 as

starting values.

Point gi g, co;pi:;: . Symietric
1 1 1 1463 1420
/ 2 1 .3333 .0314 . 0442
8 q -.3333 .0570 . 0LL2
M 1 4 .1377 1420
5 0 1 .0699 .0785
6 0 .3333 .0748 .0492
7 0 -.3333 .0235 .0492
8 0 ! .0871 .0785
9 -1 1 .1463 1420
10 | .23333 .0314 . 0442
11 -1 -.3333 .0570 .0LL2

.1377 .1420

XY
N
1
[N
1
[N
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Regardless of a, for such a symmetric design, S has the form

S O 0 Bgp Eg ©
0 822 0 0 0 0
. - 0 0 Sa3 0 0 0 (13.1)
Sy @ 0 muyy sp © '
S¢s 0 9 sy5 855 O
0 0 0 0 Se6
and hence gt has the same form. Using superscripts to
denote the elements of S—l, and noting that 528-1Xi = 6 for
the points in the design, we have
S11 -6 + a28b5
S22 B 2814 - _Suu
oo s 18 -(1+a2)355
366 + 2345 =0
and using these relationships
Pt a2, 2 55, 2 2 2
xS x-6=s"g( -1)+s (§2—1)(52—a) (1899

It is now easy to see that any point (§1,§2) in the allowable area,
other than those in the design, must reduce the value of (13.2)

below zero. Hence the points considered produce a true optimum.

The equations to be solved to give A for a given a proved quite
intractable. However, a polynomial approximation for the
optimum value of s,, was obtained, and from this the other

33
values may be derived as indicated in Appendix II.

If interest is concentrated on the constant and linear terms

only, a slightly different problem arises.
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In this case, and using the same 12 points, again, by considerations
of symmetry, S has the form given in (13.1). 1In this case, we

are interested in

in which W, the matrix in square brackets, has the same form as

S, except that the bottom »ight element is zero.

Again, calculating d(fi’D) = 3 for the points in the design leads
to

w = 3 + a2w
11 - 55
Wop Mgy = Wy
W.. + 2w = —(1+a2)w
33 15 SIS
Wus )

and

2.2 2 2 2
d(x,D) - 3 = w, € (g, -1) + w . (g,-1)(g -a")

with the same conclusions as previously.
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14, SUMMARY AND CONCLUSIONS

As noted in the introduction the main aim of this thesis has
been to rephrase the existing optimum design theory in terms
more familiar to a statistician. For this reason Chapter 2
gives the background to the matrix formulation of the general

linear model.

Chapter 3 then discusses the various questions the experimenter
might pose, then shows how, if the interest is in testing a linear
hypothesis, the general hypothesis is equivalent, under a

canonical transformation, to a simpler hypothesis. Because of
the difficulty in interpreting this canonical form, an intermediate
form, termed the simplified model has been developed. For
completeness, the chapter concludes with a proof (from Federov)

that the number of distinct points required is bounded.

In Chapters 4 and 5, a general development of hypothesis testing
optimality theory, based largely on Kiefer (1358), has been
presented, and, in particular, the development of D—optimalit&
in this context. Chapter 6 considers various optimality

criteria applied to parameter estimation.

Chapter 7 merely reiterates Whittle's theorem with slight
modifications to matrix notation. Chapter 8 presents a proof

for the equivalence theorem fér D-optimality in its most general
form, and similarly Chapter 9 derives equivalence theorems for
R-optimality, and a general class of criteria, termed in this thesis,

B-optimality.

Chapter 10 extends one of the theorems of Atwood (1969), indicating
how a matrix notation is adaptable to the type of special case

he considered.

Chapters 11 and 12 give methods of design refinement which can

be used in particular cases again emphasizing the notation chosen.



Chapter 13 gives some examples of these methods in practice.

In all the above topics, Chapter 8 presents the most difficult
mathematics., It should be noted, however, that this arises
from the generality of the results. The proof simplifies
accordingly for more restricted cases. Chapters 8 to 12 are
those which illustrate the utility of the notation normally
used in linear model theory when applied to the subject of

design optimization.

66.



67.

15. REFERENCES

ATWOOD, C.L. (1969).
"Optimal and efficient designs of experiments."

Ann. Math. Statist., 40, 1570 - 1603

BOX, M.J. & DRAPER, N.R. (1971).
"Factorial designs, the IXTXI criterion and some related matters."

/

Technometrics, 13, 731 - 742

EHRENFELD, S. (1955).
"On the efficiency of experimental designs".
Ann. Math. Statist., 26, 247 - 255

ELFVING, G. (1952).
"Optimum allocation in regression theory."
Ann. Math. Statist., 23, 255 - 262

FEDEROV, V.V. (1972).

Theory of Optimal Experiments

Academic Press, N.Y. & London

HSU, P.L. (1941).
"Analysis of variance from the power function standpoint."

Biometrika 32, 62 - 69

ISAACSON, S. (1951).
"On the theory of unbiased tests of simple statistical hypotheses

specifying the values of two or more parameters."
Ann. Math. Statist., 22, 217 - 234

KARLIN, S. & STUDDEN, W.J. (1966).
"Optimum experimental designs."
Ann. Math. Statist., 37, 783 - 815

KENDALL, M.G. & STUART, A. (1967).
The Advanced Theory of Statistics.

3 Vols., Griffin, London.



68.

KIEFER, J. (1958).
"On the nonrandomized optimality and randomized nonoptimality
of symmetric designs."

Ann. Math. Statist., 29, 675 - 699

KIEFER, J. (1959).
"Optimum experimental designs."
J.R. Statist. Soc. B, 24, 272 1- 3|19

KIEFER, J. (1961a).

"Optimum designs in regression problems, II."

Ann. Math. Statist., 32, 298 - 335

y

KIEFER, J. (1961b).
| "Optimum experimental designs V, with applications to systematic
and rotatable designs."

Proc. Fourth Berkely Symp. Math. Statist. Prob., 1, 381 - 405

KIEFER, J. (1962a).
"An extremum result."
Canad. J. Math., 14, 597 - 601

KIEFER, J. (1962b).
"Two more criteria equivalent to D-optimality of designs."

Ann. Math. Statist., 33, 792 - 796

KIEFER, J. & WOLFOWITZ, J. (1959).
"Optimum designs in regression problems."

Ann. Math. Statist., 30, 271 - 294

KIEFER, J. & WOLFOWITZ, J. (1960).
"The equivalence of twc extremum problems."

Canad. J. Math., 12, 363 - 366

KOLODZIECZYK, S. (1935).
"On an important class of statistical hypotheses."

Biometrika 27, 161 - 190



LAYCOCK, P.J. (1972).
"Convex loss applied to design in regression problems."
J.R. Statist. Soc. B, gi, 148 - 186

LEHMANN, E.L. {1950).
"Some principles of the theory of testing hypotheses."
Ann. Math. Statist., 21, 1 - 26

LEHMANN, E.L. (1959).
Testing Statistical Hypotheses.

Wiley, New York

LINDLEY, D.V. (1956).
"On a measure of the information provided by an experiment."

Ann. Math. Statist., 27, 986 - 1005

MURTY, V.N. (1971).
"Minimax designs."

J. Am. Statist. Assoc., 66, 319 - 320

NEYMAN, J. & PEARSON, E.S. (1936).
"Contributions to the theory of testing statistical hypotheses,
Part I."

Statist. Res. Memoirs, 1, 1 - 37

NEYMAN, J. & PEARSON, E.S. (1938).
"Contributions to the theory of testing statistical hypotheses,
Parts II and III." |
Statist. Res. Memoirs, 2, 25 - 57

PRINGLE, R.M. & RAYNER, A.A. (1971).

Generalized Inverse Matrices with Applications to Statistics.

Griffin, London

RAO, C.R. & MITRA, S.J. (1971).

Generalized Inverse of Matrices and its Applications

Wiley, New York

69.



70.

SCHEFFE, H. (1958).
"Experiments with mixtures."
J.R. Statist. Soc., B, 20, 3uL - 366

STONE, M. (1959).

"Application of a measure of information to the design and
comparison of regression experiments."

Ann. Math. Statist., 30, 55 - 70.

WALD, A. (1942). ’
"On the power function of the analysis of variance test."
/Ann. Math. Statist., 13, 434 - 439
WALD, A. (1943).
"On the efficient design of statistical investigations."
Ann. Math. Statist., 14, 134 - 140

WHITTLE, P. (1973).
""Some general points in the theory of optimal experimental
design." |
J.R. Statist. Soc. B, 35, 123 - 130

WOLFOWITZ, J. (1949).
"The power of the classical tests associated with the normal
distribution.”

Ann. Math. Statist., 20, 540 - 551

WYNN, H.P. (13970).
"The sequential generation of D-optimum experimental designs."

Ann. Math. Statist., 41, 1655 - 1664

WYNN, H.P. (1972).
"Results in the theory and construction of D-optimum experimental
designs." ,
J.R. Statist. Soc. B, 34, 133 - 147, 170 - 186



7/ a8

APPENDIX I

GENERALIZED INVERSE CALCULATION

In calculating generalized inverses in the application of the

results of section 11, a modified Cholesky algorithm was used.

Theorem
If X is partitioned as (X1 X2) with X4 of full rank and X, = X1K,
then
-1
) S11 0
S —
0 0

with partitioning conformable to that of X, is a generalized
inverse of S with the additional properties that S is symmetric
ad e =K, '

Proof

S..K

S11 11

T T i
K S11 K SllK

Evaluation of SS°S and S_SS--then establishes the result.
Note that the partition above is.conditioned only by the rank of
X, and does not (necessarily) correspond to the partition used

elsewhere in this thesis.

Evidently the columns of X may be permuted, and the result holds

with similar permutations on the rows and columns of S and $ .

The practical result of the above theorem is that, in the present

situation, a generalized inverse of S may be obtained by the




ordinary Cholesky decomposition, with the additional rule that,
whenever a zero diagonal element is encountered, the whole of
the corresponding row and column are set to zero, and thereafter

treated as any other row.

As a practical consideration, if using a computer, a decision
has to be made as to whether a particular diagonal element is
zero or not. Thus a lower threshold needs to be set for this

value.

{724




73.

APPENDIX II

D-OPTIMUM AISLE QUADRATIC

Note that the first coefficient in the expansion of Sog is
exact, to 7 places, derived from an analytic solution for
a=0. The other coefficients provide a polynomial approximation

(the best obtainable on the available computer) /

Sag T S4g T . 7434853 + ,0015168a + .077&91&2 + .1136“&3
- .17851(:'.1\L + .19538a5 + .048651&6
2 2
S - Q
- _ 33

22 = Syy T Sqy T

- 2 2
(1+a )333 - 2a

_ 2 2
Sgg = (1+a )s33 -a
o 1 . 2 2 2
Sge = Sys ° 8533 { 15333 - 5(1+q )533 - 3a” + 8a oo }

Ay =N, = Ag = A, =8, /4

il L 9 12

Ay = Ao = A = Ayu= (5.0 - 5,.) /402

2 3 10 11 66 22

2
k:l :1<u_s>
sk TT\ T2 22
3 =% &b 1535, S
6~ M T3 3 5
1-g o

With the numbering given in figure 2.

Given Sag3» all but the first of the expressions are exact.
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APPENDIX ITI

CONTINUITY THEOREM

The following theorem is somewhat outside the general theme of

this thesis, and is included merely for completeness.
Theorem If a is contained in the column space of A then
2 B
((1-6)g + 6b] [(1-6)A + 6B] [(1-8)a + 6b)

is continuous in the interval 0 < 6 < 1 where A and B are non-

negative definite.

Proof

There exists a non-singular transformation U, such that

UAUT = D and UBUT = E

where D and E are diagonal, and the diagonal elements of D are
ZEero or one. (See, for example, Rao and Mitra (1971), theorem
6.2.3).

Thus U[(1-0)A + GB]UT = (1-0)D + BE and from the properties of

generalized inverses (Pringle and Rayner (1971), theorem 1.3),

[(1-8)A + €5]

uT[(1-6)D + 6E]U

A™ = u'DU

noting that DD~ = D.

Now the diagonal elements of [(1-0)D + 6E]  are of the form

(with dii’e non-negative)

ii

1
(1-9)dii+6eii

or 0 (if d..=e,.=0)
1l 11
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and hence er[(1-e)n + 6E]” , for r 2 1,is continuous in the

range 0 < 6 < 1. Thus the terms in 6b are continuous.

It is sufficient, therefore to consider the term (neglecting the

(1—6)2 factor)

QT[(146)A + 6] a

Note that, since g is contained in the column space of A,

a=ang = Uty Ut

~

D Ug

0‘1902

Hence

2 [(1-0)a + 6B] a ETUT[(:L—G)D + eE]—U(U-lDUE)

gTUT[(l—G)D + 6E] DUa

Now the typical element of [(1-8)D + E] D is

(.

e
(1-8)d. .+6e..
S

which is zero if dii is zero and otherwise

[N

11

with the denominator positive in the range 0 < 6 < 1, and thus

is continuous.

This establishes the result.



Evidently the theorem extends to the case 0=1 if b is linearly

dependent on B.

The extension of

0 log det Q
o6

to the case 6=0 in lemma 8.1.4, as well as similar results

elsewhere, depends on this theorem.
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