
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

I MASSEY UNIVERSITY I
LIBRARY

An Object-Oriented Database· Methodology

for application development with

extended relational or object-oriented DBMS

A thesis presented in partial fulfilment of the requirements

for the degree of

Master of Science in Computer Science at Massey University

Benny Liew

1992

Acknowledgement

Firstly, I would like to thank Mr Roger Tagg, my thesis supervisor, for helping me

to draft out the contents and using the two case study examples from his 57.0DB(Object­

Oriented Database) paper. His advice and guidance throughout is greatly appreciated.

Many books and articles were borrowed from him for use in this thesis.

Next, I would like to express my appreciation to Dr. Daniela Mehandjiska­

Stavreva, my alternate supervisor for her helpful comments on the structure, written style

and presentation of this thesis ..

I would like to thank Massey University Library for using the facilities for my

literature search, especially the Library Interloan staff for their excellent services. A total

of eight books and more than a dozen of journal articles were requested within New

Zealand and overseas. Some of these articles came as far as Canadian universities'

libraries.

Thanks go to Mr. Colin Eagle and Mr. Richard Rayner for their excellent support of

Postgres on our Sun Microstations network; and also to Mr Todd Cochrane, our PhD

student of Computer Science Department, for his past assistance. I wish Todd every

success for his PhD research work.

Lastly, I would like to thank Mum and Dad for so many years of upbringing.

Benny Liew, DipSc(CompSc), TechDip(Elect Engg), MSIET

Master of Science(Computer Science) candidate,
Massey University,
Dept. of Computer Science,
Palmerston North,
New Zealand.

3/12/92

ii

Abstract

Recently development methodologies have been proposed which describe

themselves as "Object Oriented". While all of them offer approaches to extended data and

behavioural modelling, none of them seem fully adequate to address the total concept of

object-oriented development They often do not provide constructs which lead to the use

of databases, nor do they always recognise the shift from sequential to prototyping style

which is inherent in much object-oriented technology.

The objective of this thesis is to lay a framework for an object-oriented

methodology suitable for OODBMS. Details of conventional methods for developing

database applications, and of the recent 00 methods, have been examined and compared

in order to propose a coherent set of tasks and deliverables. Account has also been taken

of designing for re-use, which has been one of the main selling points of the 00

approach.

The proposed methodology attempts to address related side issues, with particular

focus on object concurrency, which seems particularly thinly covered in many of the

current proposals. Many other side issues are also mentioned, but due to time

constraints, they are not given any further discussion. The topic is an extremely multi­

disciplinary one, and a very wide range of expertise would be necessary to do justice to

all these aspects.

Mapping of the new methodology has been tried on two case study examples using

Postgres and Ontos. Postgres is an extended relational DBMS developed as a research

prototype at University of California, Berkeley. Ontos is the commercial object-oriented

DBMS marketed by Ontos Incorporated, Burlington, Massachusetts. Some details of

these implementation examples are included.

3/12/92

•

iii

Rationale for the Research

Object-oriented technology has gained much popularity recently, but methcxlologies

for its use are still at an immature stage. There are many proposed developments of the

00 paradigm by pioneers in this area. Examples are Booch[4], Coad & Yourdon[7,8],

Shlaer & Mellor[55], and Meyer[19]. These methodologies are often fairly general in

nature and do not specifically address the needs of the 00 paradigm to some special

areas, such as databases.

On the other hand, pioneers in OODBMS like Zdonik and Maier[30],

Stonebraker[56-58], Won Kim[15] and Lochovsky[14] and Rolland & Brunet[52]

concentrate more on the requirements and implementation of a specific kind of OODBMS.

The concepts of Object Repository and reusability of software have also been

subjects of discussion lately. There are many advantages associated with 00

prototyping[20].

So far, there has not been an 00 paradigm that covers the whole development cycle

of an OODBMS, although there exists many OODBMS tools. This thesis aims to

propose a total, unified paradigm applicable to OODBMS from feasibility through

analysis and design to implementation stage. It emphases particularly on prototyping and

reusability through the use of class libraries and repositories so as to support modern

practices.

One way of doing this is to review all the currently proposed 00 methodologies to

gain an understanding of each in terms of techniques and diagrams used. Sometimes,

different conventions and terms are used by different authors to represent the same

semantic meaning. It is necessary to understand why such individual approaches are

used.

An 00 methodology should also have stages of development just like conventional

software development using the functional approach. In addition, steps for each phase of

development is prescribed.

Extended relational and object-oriented databases are examined, and their common

features extracted. This is necessary for the formulation of an OODBMS methodology of

general applicability.

The topic of object-oriented prototyping as applied to application development in

OODBMS is also discussed. 00 prototyping enables quick development of 00 database

applications and this technique should be used

3/12/92

iv

Thesis structure

This thesis is made up of eight chapters.

The first chapter of the thesis takes a look at past methodologies for software

development and the evolution of present ones. It briefly describes the existing

methodologies that are well accepted and practised by current software houses. It then

describes the emerging methcxlologies of the 1990s such as RAD and the IBM AD/Cycle­

Repository. Finally, some of the better-known 00 approaches are briefly introduced and

summarised.

Chapter 2 discusses the required features of an OODBMS methodology. These

concepts are taken from various sources and each one is given a brief description. Later,

in Chapter 4, some of them are selected to be applied in the proposed methodology.

Chapter 3 gives a brief description of existing methodologies using the object­

oriented paradigm. It is important to note that not all of them are equally suitable for all

types of implementation. For instance, Rolland & Brunet's O* Model is particularly

suitable for OODBMS because it supports a lot of database concepts. A comparison is

made on the methodologies covered in the literature search. The similarities, differences,

strength and deficiency of each is pointed out in a matrix.

Chapter 4 is the proposal of a new methodology for OODBMS. The new proposal

stresses 4 stages of development and the exploitation of object-oriented prototyping for

object iteration. The techniques and diagrams adopted in each step have been described in

Chapter 3.

Chapter 5 examines the application of the proposed paradigm as applied to extended

relational database. Postgres is chosen as the extended relational database used to

illustrate a case study example.

Chapter 6 examines the application of the proposed paradigm as applied to

OODBMS. Ontos is used as the object-oriented database to illustrate a case study

example.

3/12/92

V

Chapter 7 offers some conclusions. It also comments on the application of the

proposed methodology to the two different types of DBMS. Further possible work on

the enhancement of the new methodology is also suggested.

Five sections are included in the Appendices.

Section A gives a brief description of existing fourth generation languages(4GL) for

OODBMS. Samples of the user interfaces of 02, GemStone, and GOOSE are shown.

GOOSE is a graphical interface for an 00 database schema environment created at

Georgia Institute of Technology.

Section B discusses concurrency control protocols in OODBMS.

Implementation details of Postgres Case Study example are provided in Appendix

C. Implementation details of Ontos Case Study example are provided in Appendix D.

Finally in Appendix E, current research areas relating to both types of DBMS are

discussed.

The bibliography contains all the books and journal articles used in the formulation

of the proposed methodology.

3/12/92

vi

Table of Contents

Chapters Page

1. Review of Software Development Methodology 1

1.1 Introduction 1

1.2 Mainstream Methodologies 1

1.2.1 STRADIS 1

1.2.2 Information Engineering 1

1.2.3 SSADM 2

1.2.4 JSD 3

1.2.5 MERISE 3

1.2.6 SSA 3

1.2.7 Deficiency of mainstream methodologies 3

1.3 Current Trend 4

1.3.1 Rapid Application Development(RAD) 4

1.3.2 IBM AD/Cycle - Repository 7

1.4 Object-Oriented Methodologies 8

1.4.1 Booch Methodology 9

1.4.2 Rolland & Brunnet O* Model 9

1.4.3 Coad & Yourdon OOA and 00D 9

1.4.4 GE Labs Object Modelling Technique 9

1.4.5 Bertrand Meyer 00 Methodology 9

1.4.6 Ivar Jacobson Object-Oriented Development 10

1.4.7 Henderson-Sellers Object-Oriented Life Cycle 11

1.4.8 Summary of Object-Oriented Methodologies 12

1.5 Conclusions 13

2 . Required Features of an OODBMS Methodology 14

2.1 Support for development in stages 14

2.2 Oass Identification 14

2.3 Relationships Identification 14

2.4 Behaviour modelling 14

2.5 User Interface Development 15

2.6 Digramming conventions 16

2.7 Object-Oriented CASE Tools 16

2.7.1 Tools for analysis and design(front-end) 16

2.7 .2 Tools for implementation(back-end) 16

3/12/92

vii

2.8 Object-Oriented Prototyping 17

2.9 Object Repository 17

2.10 Support for Reusability 17

2.11 Support for use of OOPL 19

2.12 Support for use of OODBMS features 19

3. Review of Current Object-Oriented Methodologies 20

3.1 Booch Methodology 20

3.2 The Database Object Model by Rolland & Brunet 23

3.3 Coad & Yourdon's Methodology 25

3.3.1 Object-Oriented Analysis 26

3.3.2 Object-Oriented Design 29

3.4 Object-Modelling Technique(OMf) 30

3.5 Comparison of Methodologies 32

4. A Proposed Object-Oriented Methodology for OODBMS 35

4.1 Feasibility Study 37

4.1.1 Overall application purpose 37

4.1.2 Statement of interactions 38

4.1.3 Performance requirements 38

4.1.4 Failure conditions 38

4.1.5 Cost/Benefit analysis 38

4.2 Object-Oriented Analysis 38

4.2.1 Generating a description of the problem domain 39

4.2.2 Constructing the Analysis Model 39

(a) Identify Classes 39

(b) Identify Relationships 41

(c) Structure the Static Aspect 41

(d) Structure the Dynamic Aspect 44

(e) Structure the Static/Dynamic Interaction 47

4.2.3 Object-Oriented Prototyping 47

4.3 Object-Oriented Design 49

4.3.1 Identification of supporting classes 49

4.3.2 Identification of reusable library classes 50

4.3.3 Tailoring the class structure for reusability 50

4.3.4 Choosing a concurrency control protocol 50

4.3.5 Iteration of classes 50

4.3.6 System Design 52

3/12/92

viii

4.4 hnplementation 52

4.4.1 Mapping to the target language 53

4.4.2 hnplementing the application 53

4.4.3 Querying the database 54

4.5 Maintenance of the application 54

4.6 Summary 54

5. Application of the proposed methodology to Postgres Case Study 55
5.1 Features of Postgres 55
5.2 Feasibility Study 55

5.2.1 Overall application purpose 55
5.2.2 Statement of interaction 56

5.2.3 Performance requirements 56

5.2.4 Failure conditions 56

5.2.5 Cost/Benefit analysis 56

5.3 Object-Oriented Analysis 57

5.3.1 Generating a description of the problem domain 57

5.3.2 Constructing the Analysis Model 57

5.3.3 Object-Oriented Prototyping 59

5.4 Object-Oriented Design 60

5.4.1 Identification of supporting classes 60

5.4.2 Identification of reusable library classes 60

5.4.3 Tailoring the class structure for reusability 60

5.4.4 Choosing a concurrency control protocol 60

5.4.5 Iteration of classes 61

5.4.6 System Design 61

5.5 hnplementation 61

5.5.1 Mapping to the target language 61

5.5.2 hnplementing the application 61

5.5.3 Querying the database 61

5.6 Summary 61

6. Application of the proposed methodology to Ontos Case Study 62

6.1 Features of Ontos 62

6.2 Feasibility Study 62

6.2.1 Overall application purpose 62

6.2.2 Statement of interaction 63

6.2.3 Performance requirements 63

3/12/92

6.2.4 Failure conditions

6.2.5 Cost/Benefit analysis

6.3 Object-Oriented Analysis

6.3.1 Generating a description of the problem domain

6.3.2 Constructing the Analysis Mcxlel

6.3.3 Object-Oriented Prototyping

6.4 Object-Oriented Design

6.4.1 Identification of supporting classes

6.4.2 Identification of reusable library classes

6.4.3 Tailoring the class structure for reusability

6.4.4 Choosing a concurrency control protocol

6.4.5 Iteration of classes

6.4.6 System Design

6.5 hnplementation

6.5.1 Mapping to the target language

6.5.2 hnplementing the application

6.5.3 Querying the database

6.6 Summary

7. Conclusion

7.1 Author's comment on the newly proposed methodology

7.2 Comparison of Development for Postgres and Ontos

Appendices

A. 00 Prototyping Tools

B. Concurrency Control in OODBMS

C. hnplementation details of Postgres Case Study

D. hnplementation details of Ontos Case Study

E. Future Directions of OODBMS

Bibliography

3/12/92

63

64

64

64

65

67

68

68

68

68

69

69

69

69

69

70

70

71

71

71

72

73

75

80

98

119

123

ix

X

List of Figures

Page

Fig. 1.1 Stage Framework of Information Engineering Methodology 2

Fig. 1.2 The Rapid Iterative Production Prototyping 6

Fig. 1.3 IBM AD/Cycle - Repository 8

Fig. 1.4 Oass/Module Life Cycle 10

Fig. 1.5 Object-Oriented Systems Development 11

Fig. 1.6 Fountain Model 12

Fig. 2.1 Model of Reuse in Object-Oriented Development 18

Fig. 3.1 Booch's Class Diagram 21

Fig. 3.2 Template for the class Alann 21

Fig. 3.3 State Transition Diagram for the class Alarm 22

Fig. 3.4 Booch's Object Diagram 23

Fig. 3.5 Overview of Rolland & Brunet's Object Definition 24

Fig. 3.6 A sample of the O* Model textual description 25

Fig. 3.7 Using a class as a generalisation 27

Fig. 3.8 Using a class object as a generalisation 27

Fig. 3.9 Person Gen-Spec structure, as a lattice 28

Fig. 3.10 "Part-of' structure of Aircraft & Engine 29

Fig. 3. 11 "Part-of' structure of Organisation & Clerk 29

Fig. 3.12 Four components and five layers 30

Fig. 3.13 Matrix for the comparison of the methodologies 34

Fig. 4.1 Development stages of the new methodologies 36

Fig. 4.2 Effort as a function of time 39

Fig. 4.3 Association Object 40

Fig. 4.4 Extended E-R diagram 42

Fig. 4.5 Oass Descriptor for the class Reservation 43

Fig. 4.6 Object Communication Diagram 44

Fig. 4.7 State Transition Diagram 45

Fig. 4.8 Event Trace Diagram 47

Fig. 4.9 Mapping Principles for Analysis 48

Fig. 4.10 Mapping Principles for Design 51

Fig. 4. 11 Module Diagram 52

Fig. 4.12 Mapping Principles for Implementation 53

Fig. 5.1 Class Diagram for Postgres Case Study 58

3/12/92

xi

Fig. 5.2 Class Descriptor for Postgres Case Study 59

Fig. 6.1 Oass Diagram for Ontos Case Study 66

Fig. 6.2 Oass Descriptor for Lakes 66

Fig. 6.3 State Transition Diagram for class Measuring_point 67

Fig. 6.4 Object Communication Diagram for Ontos Case Study 67

Fig. B.l Dynamic Interrelations Diagram 75

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 1

Chapter 1 : Review of Software Development Methodologies

I, I Introduction
Early 1960s' information systems were not built according to any formal

methodology[l,25,26). Analysis work was limited and the emphasis was towards

programming. Implementation of information systems was mainly restricted to

programming and was based on fixed file structures.

In the late 1960s and 1970s, software development was based largely on function­

oriented design, whereby the design is decomposed into a set of interacting units, each

having a clearly defined function. Large software systems have been built using this

technique and thus it has stood the test of practice. However, the need to develop and

maintain large complex software systems using advanced techniques such as databases in

a competitive and dynamic environment drove interest in better approaches to software

design and development. In the 1980s, this led to a batch of formal "methodologies",

which have incorporated some blend of function-oriented and data-oriented approaches.

1.2 Mainstream Methodoloeies Description
Some of the well-known methodologies that have gained widespread acceptance

for information systems development today are introduced below:

1.2.1 STRADIS : Structured Analysis, Design and Implementation of Information

Systems

This is based on the work of Gane & Sarson. The development of this structured

systems approach to analysis came as a result of the earlier development of a structured

approach to design. The structured design concepts were first proposed in 197 4 by

Stevens, Myers and Constantine (1974) and were later developed and refined by

Yourdon and Constantine (1978), and Myers(1975, 1978). Data flow diagrams are

constructed to represent the existing system and its interfaces.

1.2.2 Information Engineering

The term Information Engineering[17,18] originates from Clive Finkelstein who

described a data modelling methodology he developed in Australia in the late 1970s,

although the details have developed from a variety of sources including Ian Palmer of

CACI in the UK, and James Martin in the USA. Information Engineering is now a

comprehensive methodology covering all aspects of the software life cycle. It is evolving

in the area of automated tools and the development of the methodology to support 4GL.

The methodology is divided into four levels, within which there are seven stages, each

with different objectives as shown in Fig. 1.1.

3/12/92

Chapter 1 : Review of Software Development Methodologies

Planning

Analysis

Design

Construction

Stage Framework of Information Engineering Methodology

Business
Strategy
Plannin

1 Information
Strategy
Planning

-}-
1 · ""''""' Area

Analysis

- - } -

I
3 Business

System
Design

Business area
desaiption

4 Technical
Design I ..,. /Technical /

/ Specification . -_ t----_,c_ - -
I· eoo,~. I

+
6 Transition

1,---1
Fig. 1.1

1.2,3 Structured Systems Analysis and Desi~ Methodolo~<SSADM}

Page 2

SSADM[21] is a data-driven methodology developed originally by U.K.

consultants, Learmonth and Burchett Management Systems and the U .K.Central

Computing and Telecommunications Agency(CCT A). There are six phases in SSADM,

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 3

in which the first three phases are classified into systems analysis and the last three are

systems design. They are :

(a) analysis of the current system,

(b) specification of the required system,

(c) user selection of Service Levels, including technical options,

(d) detailed data design,

(e) detailed procedure design,

(f) physical design control.

Data flow diagrams and entity models are needed to represent the static views of the

system and a function/event matrix and an entity/event matrix are used to show the effects

of time on the system.

1.2.4 Jackson Structured Design{JSD)

JSD[l 1] emphasises on the developing of maintainable software systems, and less

on organisational need. Topics such as project selection, cost justification, requirements

analysis, project management, user interface, procedure design or user participation are

not addressed. JSD does not deal in detail with database design or file design. The

major phases of JSD are :

(a) entity step action,

(b) entity structure step,

(c) initial model step,

(d) function step,

(e) system timing step,

(f) implementation step.

1.2.5 MERISE

MERISE[21] supports four stages of information system development. It

combines an entity-relationship approach for data and a Petri-net based approach for

processes.

1.2.6 Structured Systems Analysis(SSA)

SSA[21] was developed by Exxon in 1978, combining functional decomposition,

data flow, relational data modelling and Jackson Structured Programming(JSP)

techniques. Some information systems planning capability is also included.

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 4

1.2. 7 Deficiency of mainstream methodolo~es
The 1980s have witnessed a growth in the number and variety of information

systems methodologies. This increase in number of methodologies has caused much

confusion. Many are the same(or very similar) and yet they have different 'brand

names' . Some of them emphase in the techniques, the role of the computer, the

documentation or the role of the people using the system. Some methodologies

emphasize the importance of data and the development of a database. Some concentrate

on analysis, others on design or implementation.

The classical waterfall software development life cycle, which is extensively used,

is sometimes treated as a process in which work proceeds from one phase to another. It

would be more difficult to return to the previous phase when the specification changes in

comparison with 00 development. Reasons why the traditional life cycle is inadequate

for software development are :

(a) It assumes a relatively uniform progression of discrete steps, which includes

little or no iteration,

(b) Due to the low cohesion and high coupling nature of program modules, it is

difficult for the software to accomodate change which is a very desirable

factor because each system is built from scratch and maintenance costs

account for a large share of development cost,

(c) It does not accomodate the sort of evolutionary development made possible

by rapid prototyping tools and 4GL,

(d) It does not allow future modes of software development like automatic code

generation, module code transformation and 'knowledge-based' software

development assistance,

(e) There is no emphasis on re-use of the software developed.

I. 3 Current trends
In the early 1990' s, there have been two new developments in the marketplace.

One is Rapid Applications Development(RAD); the other is the IBM AD/Cycle

applications development framework.

1. 3.1 Rapid Application Development<RAD}

RAD[18] may be defined as the process of building and refining a working model

or prototype of the final software system during the development process. The main

purpose of prototyping is to refine functions, inputs and outputs during the design phase

without having to wait for development to be completed. However, prototyping is not a

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 5

substitute for good analysis and design, but rather it is another way of producing results.

If used properly, prototyping can be an effective tool and an aid in developing systems

that allow closer user participation in the process, leading to information systems that

meet the needs of the business.

Prototyping has been an informal methodology for quite some time. However,

over the years, more experiences are gained in this area, and now it is possible to come

up with some form of requirements or standards. The reason for prototyping is that the

formal lifecycle is actually delaying the delivery of the final product It is becoming the

major cause of the application backlog. Moreover, the elapsed time between

requirements and a delivered product erodes a customer's confidence. Perhaps, people

are more impatient and pragmatic these days and would like to see some form of results

earlier on. Gladden[18] suggests delivering any form of a prototype as quickly as

possible. This approach is typified by Gilb[9] and Martin[l 7, 18].

An approach to making prototyping successful was developed by Du Pont in 1985,

called RIPP[3]. The approach was developed around the use of a CASE tool - CorVision

from Cortex. A proposal and definition report was drafted between 10 to 15 days before

proceeding to prototyping. The timebox is basically an iteration development process of

the prototype limited to a maximum of 90 days before being evaluated again. DuPont's

first project using RIPP was completed in 5 man months compared with the 28 to 36

months using traditional approaches. This approach has saved them $2.3 million over 3

years, in 15 systems at 9 sites.

The RAD lifecycle has 4 phases[3] as applied in RIPP :

(a) Requirements Planning

(b) User Design,

(c) Rapid Construction,

(d) Transition.

During the first phase, developers create an outline model of the chosen area and

define the scope of the planned system. Business executives, users, and developers take

part in workshops(called the Joint Requirements Planning Workshop - JRP) that

progress through a structured set of steps. All the results of the workshops are recorded

using an integrated CASE(I-CASE) tool. The I-CASE tool is a repository for

requirements and specifications. This stage usually takes one to three weeks.

3/12/92

Chapter 1 : Review of Software Development Methodologies

The Rapid Iterative Production Prototyping

Project
Request

,

Project
Definition

'
Project
Evaluation

,

~
~

r -
I
I -- -
I
I
L -

-

- - - - - -
Timebox

Step Step
- Evaluation ...

t I
90 Days - - - - - -

Fig. 1.2

Page 6

7
I
I Prototype -- Evaluation

I
I

_J ,
Prototype
Implementation

The User Design stage requires that end-users part1c1pate strongly in the

nontechnical design of the system under the guidance of an IS developer. User Design is

done in a Joint Applications Design(JAD) workshop, which completes the detailed

analysis of business activities and develops the outline design of the system. The

information recorded in the I-CASE tool is used as input and is further refined. This

stage usually lasts three to five weeks.

The third stage involves the design and implementation of the proposed system,

which was outline in the previous stage. The software is constructed using an iterative

technique. Finally this stage includes activities needed to prepare for cut over to

production status. The I-CASE tool is used to generate the application code from

database definitions.

When the system is cut over in the last stage, a variety of actions is needed,

including comprehensive testing, end-user training, organisationanal changes and

operation in parallel with the previous system until the new system settles in.

Prototyping approaches have the following advantages:

(a) improved developer user communications

(b) increased developer productivity

(c) working model versus a paper model

(d) model iterations

3/12/92

Chapter 1 : Review of Software Development Methodologies

(e) user specification is changeable at any st.age

(f) reduction in user training due to early participation

(g) production of error-free applications

However, the disadvantages are :

Page 7

(a) configuration management and version control of prototypes is more difficult

than with conventional development. Prototyping can result in many trial

systems. It is possible to get versions mixed or to be unable to recover an

earlier prototype version. Configuration management software can reduce

this problem

(b) keeping documentation up to date may be difficult because of its rapidly

changing and iterative nature

(c) maintaining discipline and objectives in the development team is difficult

because it is possible to become distracted from the legitimate goals of the

prototype due to the fluid nature and constant demands of prototyping

(d) Planning and allocating resource is difficult in an environment dealing with

uncertainty and unknown

(e) ultimate testing may be neglected and left to the users.

Incidentially, a RAD approach has also been integrated into Information

Engineering by Texas Instruments (James Martin Associates).

1.3.2 IBM AD/Cycle-Repository

In Sep 1989, IBM became a standard bearer for the computer-aided software

engineering(CASE) industry by laying out its plan for the software development process.

AD/Cycle-Repository[38,53,54] is an integrated framework intended for a CASE

environment, and compatible with a range of development tools and techniques from

many vendors. The goal is to vastly improve productivity in the applications

development process. The only way to achieve this is to automate code generation

through the use of models rather than conventional programming. Also it standardises

repository storage of development objects. All CASE tools from other vendors, in order

to link to AD/Cycle, must comply with certain IBM standards. However, no attempt has

been made to create a standard in the methodologies themselves.

The primary benefit of the open repository-based environment is that users should

be able to plug tools developed by CASE vendors complying with the repository standard

into the environment and then use them together. CASE tools supporting various

methodologies use the services of the Repository Manager to store user-defined

application knowledge. The information contained in these models is stored in standard

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 8

format within the Repository Manager, from which it will be ultimately used to drive a

code generator.

However, until now, it has not become popular due to a number of reasons. The

MVS Repository Manager is not a stable product Only a few CASE tools are compatible

and it is difficult for other vendors to plug their CASE tools into the Repository. There is

also problem with LAN configuration which is a important desired feature because

today's CASE tool is geographically dispersed. Vendors with CASE tools running under

MS-DOS and Unix have to rewrite them for OS/2EE for IBM PC and SAA compliance.

One problem is that until now OS/2EE has not been popular.

While IBM is promoting integrated CASE in a mainframe environment, Digital

Equipment Corp is following a more distributed path[53]. DECs integrated CASE

standard is known as A TIS(A Tool Integration Standard) and COD/Repository in the

VAX/VMS and Ultrix enviroments.

LAN

IBM AD/Cycle-Repository

u
Protocol

1 Pe« ID peer protocol
2 Life Cycle Transition Protocol

(Movem«1t ID Final Cocle)

Enterprise
Repository

3 Reposltorylllbraty Exchange Protocol

~
_c'°_A~_H_T''!_. G 1~1 G ~lienV ~

ardGUI L_)
Local
Reposik>ry

Local
Repository

Local
Repository

Fig. 1.3

1,4 Obiect-Oriented MethodoJ02ies
Recent suggestions[27] have been made that methods based on the paradigm of

functions acting on data should be superseded by object-oriented approach. Object-

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 9

oriented methodology is defined as an application development strategy that models both

requirements and software solutions as collections of objects that contain both data

structure and behaviour.

However, many software organisations have developed standards and methods

based on the functional approach and are understandably reluctant to embark on some

design techniques that are still immature and unproven. Hence, any migration to new

methods is likely to be a gradual one.

Current application of the 00 paradigm has been limited to Design and

Implementation due to the widespread use of C++ and Smalltalk in a small scale

environment. Less has been done on the Analysis, although this is crucial for the

construction of large and complex 00 Information Systems.

The Object-Oriented development cycle is covered, in particular, by Booch[4],

Budd[5], Henderson-Sellers[l0,40], Korson[43], Jacobson[l2,41], Bailin[31] and

Coad & Yourdon[7,8].

1.4.1 Booch Methodology

Early versions of the methodology, proposed by Grady Booch were centered

around Ada. In his most recent book, Booch introduces four models to capture 00

semantics, which are then mappable to several target 00 software environments.

1.4.2 Rolland & Brunet 0* Model

This metholodogy[52], by the two authors at the University of Paris, concentrates

on development for OODBMS, particularly the 02 system.

1.4.3 Coad & Yourdon OOA andOOD

This methodology[? ,8] has been widely published through two books, one each on

Analysis and Design, and a CASE tool has been developed.

1.4.4 GE Labs Object Modellin& Technique(QMT)

This technique[24] is developed by Rumbaugh, Blaha, Premerlani, Eddy and

Lorensen at General Electric R&D Center, Schenectady, New York. Originally, this

technique[34] was meant for use with relational database but has been modified to suit the

object-oriented one.

1.4.5 Bertrand MeyerOO Methodology

Meyer's object-oriented methodology is centered around his OOPL, Eiffel. Not

much is discussed about OOA. However, he claims that Eiffel language can both handle

00D and implementation[19]. The reason being the items of interest in each phase are

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 10

the same : objects. Objects and relationships between objects are identified in both the

analysis and design phases. The cluster model has been proposed by Meyer as a life

cycle for a tightly related group of classes, or cluster, in which three phases are

identified.

aass/Module Life Cycle

Ouster n

(SPEC HDESIMP)----->(VALGEN)

(SPEC)---,>{oESIMP)1-~>(VALGE0

Ouster 2

c SPEC)----,>(DESIMP H VALGE0

Ouster 1

Ouster model proposed by Meyer.
SPEC• specification; DESIMP .. design+implementation; VALGEN=validation+
generalisation

Fig. 1.4

First, a specification is written by the systems designer(SPEC), then this is

designed and implemented(DESIMP)(one process in a language like Eiffel) and finally it

is validated and generalised(V ALGEN). This life cycle occurs for different clusters of

classes at different times. For example, a window cluster and a graphics cluster of

classes could be specified, designed and implemented and then validated and generalised

at different times. These phases are also iterative with refinements added

1.4.6 Ivar Jacobson Object-Oriented Development

Ivar Jacobson come out with an early version of 00 systems development in 1987.

This technique originates from his work at Ericsson Telecom and since then has been

used extensively within the whole Swedish telecommunication industry.

Basically, this paradigm describes a system as a set of properly interconnected

blocks - each building block representing a packaged service of the system. A block may

itself be made up of other, low-level blocks or by components. Components are standard

modules which can be used for many different applications. The lowest-level blocks are

made up of components only. Blocks as well as components are naturally implemented

as classes using object-oriented programming. The designers are consequently provided

with a set of components when building applications by means of blocks.

There is one interesting assumption made in this paradigm with regards to object

concurrency. It is assumed that there is an infinite processor capacity, the execution

speed is immensely high and endless storage volume. In this way, parallelism can be

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 11

disregarded and the course of events may be serialised. This assumption may not be

adequate for the general case.

lysteffl

Fig 1.5

1.4.7 Henderson-Sellers 00 Life Cycle
This methodology is developed at the University of New South Wales, Australia

which describes the life cycle of 00 systems devleopment. It focuses more on the front­

end and high-level analysis. There are seven proposed steps to follow and earlier efforts

made by Coad & Yourdon, Shlaer & Mellor, Bailin, and Wirfs-Brock are applied in these

stages:

(a) Undertake object-oriented system requirements specification,

(b) Identify the objects and the services each can provide(interface),

(c) Establish interactions between objects in terms of services required and

services rendered,

(d) Analyse stage merges into design stage : use of lower-level entity data

flow diagrams/Information flow diagrams,

(e) Consider the bottom-up concerns and use of library classes,

(f) Introduce hierarchical inheritance relationships as required,

(g) Aggregate and/or generalise of classes.

The last step is illustrated using a fountain model rather than the traditional waterfall

model.

3/12/92

Chapter 1 : Review of Software Development Methodologies

Life cyde model for module
development, proposed by
Henderson-Sellers where
the mod.lie may relate to an
individual dass or a duster
of dasses.

Fig. 1.6 Fountain Model

1.4,8 Summazy of 00 Methodolo~es

Page 12

Booch and Henderson-Sellers have agreed that object-oriented design embodies an

incremental, iterative process in between successive stages. Both Jacobson and

Henderson-Sellers' ideas are particularly suitable for developing very large object­

oriented software systems(> 10 man-years). Another interesting point to note is that

boundaries of analysis, design and implementation stages in object-oriented software

development are blurred. Examples are Coad & Yourdon, who overlap between object­

oriented analysis and design. Booch combines design with implementation.

Henderson-Sellers has identified the iterative process and comes out with the

fountain model to replace the classical waterfall model. Development reaches a high level

only to fall back to a previous level if so needed, to begin the climb once again. This is a

better model of reality then the traditional waterfall model. Firstly, it provides a

diagrammatic version of the stages present in an software life cycle and a clearer

representation of the iteration and overlap made possible by object-oriented technology.

Secondly, since the foundation of a successful software development is its requirements

analysis and specifications, this stage has been placed at the base of the diagram. The

fountain model can also be extended to the life cycle of a module, as outlined in Section

1.4.5.

3/12/92

Chapter 1 : Review of Software Development Methodologies Page 13

are:

Some of the advantages of object-oriented paradigm at the Analysis level[7,43] are:

(a) It can handle more complicated problem domains; emphasing more on the

understanding of problem domains since it is based on objects, and not

just functions or processes alone,

(b) It can improve interaction between analyst and client since it organises

analysis and specification using the methods of organisation that pervade

people's thinking,

(c) It can increase the internal consistency of analysis results. Object-oriented

analysis introduced by several authors have consistent diagramming,

(d) The results obtained in Analysis can be reused on some similar projects.

Some of the advantages of object-oriented paradigm at the Design level[8,27 ,43]

(a) Object-oriented design is actually a continuation of the efforts made at the

Analysis stage,

(b) Results and experiences gained during the Analysis stage can be reused,

(c) Object-oriented prototyping is used which increases productivity,

(d) Low life cycle cost,

(e) Modularity,

(f) Maintenability.

l, 5 Conclusions
Most of the well-known 00 methodologies have been given a brief intrcxluction.

While all of them offer approaches to extended data and behavioural modelling, none of

them seem fully adequate to address the issues specifically related to 00 database

applications development They have also not mentioned the guidelines and the steps

involved in the prototyping process.

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 14

Chapter 2 : Required Features of an OODBMS Methodology

This chapter suggests and discusses what ingredients are necessary in an object­

oriented database methodology and how different each component needs to be from the

conventional counterpart. These ideas draw on many sources of existing 00

methodologies and the existing OODBMS methodology[52] covered during the literature

search.

2, 1 Support for development in sta2es
An OODBMS methodology should be developed in stages. In conventional

methodologies used with both functional and database approaches, there are discrete

steps that progress from one to another. In 00 development, the phases may be blurred

because the same objects are under study throughout. The only difference between

stages is the enrichment of information as the development progresses towards the

deliverable.

Nevertheless, it seems desirable that any 00 methodology should recognise not

only Analysis, Design and Implementation stages, but also a preliminary Feasibility stage

as included in most conventional methodologies.

2, 2 Class Identification
An OODBMS should have provisions for class identification. The inclusion of a

recommended approach to identifying suitable object classes is an important requirement.

The parallel stages in conventional methodologies are identification of entity types and

functions. The identification process needs to be defined in the form of guidelines as to

groups of object classes which should be looked for in some description of the problem

domain.

2, 3 Relationships Identification
Just as in a conventional database-oriented methodology, the next requirement is to

identify relationships, "is-a", "part-of', and "instance of'. This process would be similar

to the relationships identification in most 00 methodologies. Because of the importance

of inheritance in target 00 software environments, and because of the relationships

support many OODBMS give for complex data types, the "is-a" and "part-of'

relationships assume a greater role than in conventional methodologies. There is often

also a need to identify "instance of' relationships as individual object behaviour may be

related to class behaviour.

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 15

However, consideration of other types of relationships ought not to be discarded as

they represent an important part of the semantics of the problem domain.

A modelling structure is then required to cover the identified relationships (the

"static" part of the Analysis. The structure includes a range of diagrams and templates for

designer-user, designer-designer and designer-CASE tool interaction. Ideally, these

facilities should represent an evolutionary development of existing ones rather than totally

new concepts.

2, 4 Behaviour rnodelline
Behaviour modelling should be supported in the OODBMS methodology. This is

the area which appears to involve the most differences from a conventional approach,

since "procedures" are no longer independent elements in the modelling system, and must

be encapsulated with objects or object classes.

"CRUD" - Create, Read, Update, Delete - as used in many current methodologies -

represents the easy part of the problem, as these functions can be encapsulated relatively

simply to the objects(simple or complex) that they act upon.

The more critical requirement is for approaches to cover the following :

(a) multi-object transactions, where a unit of work can be identified in the

problem domain which requires all subtasks to be completed successfully

(b) asynchronous triggering and messsage passing, where actions on one object

lead over time to actions on other objects

(c) synchronisation of parallel threads of activity.

Modelling concepts in addition to the main class structure are needed, involving

such things as intra-object behaviour, inter-object message passing, state transition and

event dependency. Again it is desirable that existing concepts should be evolved

whenever possible.

2, s User Interface Development
In database-oriented methodologies, the user interface has tended to be peripheral to

the main analysis model, and is brought in at the design stage in a fairly separated

fashion. With an 00 approach, the user interface can be expressed as a set of objects and

classes at a number of levels of abstraction, in both the Analysis and Design.

The methodology should provide for such objects to be included in the main static

and behavioural mcxlels.

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 16

2, 6 Dia2rammim: conventions
A recommended diagramming notation covering all the features suggested for

object-oriented systems development should be enforced throughout to model both the

static and dynamic aspects of the system, i.e. the analysis and design results.

2,7 Obiect-Orieuted CASE Tools
It is desirable that the methodology is supported by an 00 CASE tool. Existing

tools can be classified into front-end and back-end. These are used to construct the model

which would at the same time checked for the semantics. At the present moment, very

few are widely marketed.

2. 7 .1 Tools for analysis and designffront-end)

One of the desirable characteristics of tools at the front-end is a graphics-based

system supporting object-oriented design notation. This will enforce the notational

conventions of OOA and 00D, and maintain control over the design products, and co­

ordinate activities of a team of developers. It can be used throughout the life cycle as the

design evolves into a production implementation. Such a tool is also useful in system

maintenance.

2. 7 .2 Tools for implementation{back--end)

Implementation normally requires the use of some language, usually but not

necessary an OOPL. A number of languages are accompanied by toolkits which support

the low level design and implementation process. Some of the desirable characteristics of

tools at the back-end are as follows:

(a) An object browser that knows about the class structure and module

architecture of a system. Class hierarchies can become so complex that it is

difficult even to find all of the abstractions that are part of the design or are

candidates for reuse.

(b) An incremental compiler to handle minor changes rather than to recompile

the whole program again which may be very time consuming for a large

development

(c) Debuggers that know about class and object semantics and support for

multiple threads of control processes. The tool should permit the developer

to exert control over the individual threads of control.

(d) Configuration management and versioning tools for large projects.

(e) Class library browser that allow developers to locate classes and modules

in the library as they are developed. This is essential as a project matures,

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 17

and the library grows as domain-specific reusable software components

are added over time.

2, 8 Obiect-Oriented Prototypine
The technique of 00 prototyping should also be incorporated as part of the

OODBMS development methodology because it is an inexpensive and quick way of

demonstrating the likely functionality of a final system[20]. This approach is especially

suitable with 00 paradigm. The prototyping tools therefore must be capable of

generating a demonstratable system before all system classes are fully defined.

A number of OODBMS prototyping tools are described in the Appendix A.

2,9 Ob iect Repository
An OODBMS methodology should support the concept of Object Repository. The

Object Repository[29] should be the foundation of any application development and is

vital for 00 prototyping.

It is a centrally controlled data store which contains all object components built-up

from both current Analysis and Design work, and past projects developed using different

prototyping tools across various platforms. Early in the lifecycle, information already in

the Repository is extracted and put to use. Information developed during planning is

stored in the Repository for later use in Design. Information produced in design is stored

in the Repository for use in the construction of the application. This technique enables

fast development by reusing existing templates, structures, models and designs.

The Repository ensures consistency among diagrams and helps to enforce technical

quality. It enables the integration of prototyping tools, code reuse and the automation of

00 software development process.

As more and more objects are added, a classification utility should be provided to

group similar objects together so that searching is made easier.

Local Repositories are called the Class Libraries and are built into the prototyping

tools used.

2, t Q Support for Reusability
Reusability can only be supported by utilising Class Libraries and Repositories.

The object-oriented paradigm combines design techniques and language features to

provide strong support for reuse of software modules[61]. A schematic view of this

process is shown in Fig 2.1.

This process, quite unlike traditional methodologies, involves reference to objects

created in other problem domains. There are two aspects :

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 18

(a) Designing objects in one domain with a view to their being reusable by other

domains. This typically involves the inclusion of higher-level generic

objects, which are not a strict requirement of this domain, but introduce a

level of generality which makes re-use possible.

(b) Finding suitable generic objects in the Object Repository which can be

specialised for use in the new problem domain.

Model of ReuN In Object-Oriented Development

Object Repository

Fig 2.1

Problem
Domain

To enable reuse the new application has to be analysed to establish the differences

between the generic objects in the Repository and the new applications, so that the

appropriate specialisation can be carried out Furthermore, some parts of the generic

objects may be inappropriate for the new application. In this case, attributes and methods

of the generic objects would need to be modified to suit the specialisation.

The advantages of re-use are discussed in more detail in [43]. The requirements on

an 00 methodology can be summarised under two headings :

3/12/92

Chapter 2 : Required Features of an OODBMS Methodology Page 19

(a) the use of an Object Repository as a central feature, with classification and

searching facilities (Section 2.9).

(b) the inclusion of sub-tasks, both to search for off-the-shelf objects, and to

create generic objects for later re-use.

2.11 Support for use of OOPL
In order to support OOPL, the methodology must be able to map the concepts it

deals with at the Analysis and Design stages into concepts used by the implementation

language which is normally an OOPL.

Although iteration, exception handling and pararneterised classes have not yet been

implemented in some OOPL languages, an 00 methodology should support such

features that might be implemented in later versions of the languages.

2.12 Support for use of OODBMS features
OODBMS, extended relational DBMS and other target environments are not

uniform in the concepts they directly support. Examples are :

(a) limited levels of encapsulation,

(b) explicit rule and trigger systems,

(c) explicit versioning.

These non-standard features occur primarily in the extended relational databases

like Postgres[56,57,58] and Starburst[46].

There are good arguments for including explicit rules and version relationships in

the 00 Analysis and Design model. However, if targeting an OODBMS, these concepts

have to be "mapped out" into methods or supporting classes.

Likewise, encapsulation that cannot be supported in a target DBMS needs to be

"mapped out" into an embedding software structure that could be regarded as belonging

to an aggregate "whole system" controller object

3/12/92

Chapter 3 : Introduction to Object-Oriented Methodologies Page 20

Chapter 3 : Introduction to Object-Oriented Methodologies

No single approach to Object-Oriented Methodology has yet reached widespread

acceptance[40]. A number of approaches can be considered as possible "leading

contenders", and this chapter provides a brief introduction to some of these:

(a) Grady Booch[4]

(b) The O* Model by Collete Rolland and Joel Brunet[52]

(c) Coad and Yourdon[7,8]

(d) GE Labs OMT[24]

Other proposals, not discussed in detail here, include Meyer[19], Shlaer &

Mellor[55], Jacobson[12,41], Wybolt[63], and Hayes & Coleman[39]. Also the Object­

Oriented System Development methodology proposed by Henderson-Sellers[l0,40] has

already been mentioned in Chapter I. Some of the above still favour having a functional

design as part of their object-oriented methodology[55,63,39,24]. A comparison of (a)

through (d) will be provided later in the chapter.

3. I Booch Methodoloi:r
Booch[4] defines a class as a set of objects that share a common structure and a

common behaviour while an object is an instance of a class. A method is an operation

upon an object, defined as part of the declaration of a class.

Booch does not say a great deal about object-oriented analysis, but concentrates

more on design and implementation issues. Booch introduces four diagrams which form

the basic notation of object-oriented design out of which the first two are most frequently

used and important They are the (i) class diagram, (ii) object diagram, (iii) module

diagram, (iv) process diagram. The first two forms the logical view of a system while

the last two are used to describe the physical structure of the system and the software and

hardware implementation. The static and dynamic semantics for the class and object

diagram are also represented.

In the class diagram, Booch uses chained cloud icons to represent abstractions of a

real-world class entities. There are also interface and implementation classes,

characteristic of OOPL concepts. Metaclass relationship is another type of relationship

which is used to represent a class of a class relationship. In the below example, timer

belongs to the metaclass of clocks. The clock metaclass is shown in shaded cloud.

Although this class is usually not explicitly mentioned in most problem domains, it is

3/12/92

Chapter 3 : Introduction to Object-Oriented Methodologies Page 21

required in real-time applications. Others include utility class which represents a single

free subprogram or a collection of such free subprograms.

The two important relationships, aggregation("is-part-of') and generalisation ("is­

a") are supported. Generalisation is represented by inheritance while aggregation is

represented in the attributes of classes.

For a simple example, fig 3.1 shows a security system which uses the class

monitoring interface for the interface part and classes sensor, camera, and alann for

implementation. Infra-red sensor is a subclass of class sensor which inherits attributes

and behaviour from the class Sensor and ACamera is an instantiation of the class Camera.

Cardinality of relationships is also shown.

Legend:

C::> Class

- - lnterboe

- ... Instantiation

/ n q/
\ I ~ / (.,...,)

\ \ / / \©1 /
1 Security

Controller l

Instantiation

Fig. 3.1

Here, security controller is viewed as a transaction object for the purpose of

separating direct visibility between classes and also to coordinate activities.

Notice that the attributes and operations are not demonstrated in the cloud icons.

Details are left to be defined in the class template to avoid untidiness. Below is an

example of templates used to define the classes.

Name:
Cardinality :
Hierarchy:

Superclass :
Public Interface :

Uses:
Operations :

Implementation :
Uses:
Attributes :

3/12/92

Alarm
n

Object

Security Controller
respondtoAlarmFault
activateAlann
resetAlarm

alarm_id

Chapter 3 : Introduction to Object-Oriented Methodologies

Operations :
Concurrency :

alann_location

active

Fig 3.2 Template for the class Alann

Page 22

A good approach is to review the list of key abstractions and select only those that

represent the largest conceptual chunks, that is elements at the highest level of

abstractions. Each of the cloud icon may be further decomposed to review more details

of the system structure if necessary. This is analogous to functional decomposition in

data flow diagrams.

State transition diagrams are used adjunct to the class diagram to model the dynamic

aspect of the system.

State Transition Diagram for the Class Alarm

Fig 3.3

The object diagram is used to show existence of objects and their relationships in

the logical design of a system, representing a time-lapse snapshot in time of an otherwise

transitory event Object visibility and synchronisation are also indicated inthe object

diagram. Object visibility is about how two objects communicate with one another in

their interface fields, lexical scope and passing parameters. Messages sent may be

classified as simple, asynchronous, synchronous, balking and timeout. Objects are

drawn in plain lines instead of chained lines as in class diagram. Nesting of object icons

within another to support aggregation is another supporting feature for OOPL to utilise

information hiding of operations belonging to a higher class. Individual object may be

further decomposed to show the structure of the constituent objects and the breaking up

of messages. This is analogous to data flow diagrams, but messages are used instead of

data.

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 23

Booch also uses timing diagrams to show the duration and sequence of the

operations of objects against time. It would not be elaborated here.

Booch's Object Diagram

respondloSensorf" ault
respondloSensorTrlgger

Legend:

C) Objed

[El parameter

Fig. 3.4

repo,tSensorSlatl.15
repo,tCameraSla!us

re~U&

respondloFaullAllsetSwttd1
respondtoActlYateAlarmSwltch
respondtoOeadlYateAlarmSwttch
respondtoAalvateCameraSwttch
respondtoOeadlvateCameraSwftch
raspondtoAdlvateSen&OrSwttch
respondto0eadlYateSe"60fSwttd1

A module diagram is used to show the allocation of classes and objects to modules

in the physical design of a system. Some object-based and object-oriented programming

languages support the concept of a module as separate from a class or object. This

construct may be as simple as separately compiled files in C++ or as sophisticated as the

idea of packages in Ada. It is the responsibility of the designer to decide how to allocate

classes, objects, and other declarations to physical modules. Languages that do not

support modules clearly do not require this notation. 1be two most important elements of

a module architecture are modules and module visibility.

The process diagram is used to visualise and then reason about the problem of

allocating processes to processors in the physical design of a system. The three most

important element of process architecture are processors, devices and connections. A

processor is a piece of hardware capable of executing programs; a device has no such

computing power. Processors and devices communicate with one another. Details of

each kind of element are again described in templates. The process diagram is more

about showing hardware configuration of a system.

3,2 Ibe Database Obiect Model by Rolland & Brunet
Collette Rolland and Joel Brunet's methodology for object database design is

presented in the Object model. In their definition, an object is fully described by an

object scheme, its life-cycle and its identity.

3/12/92

Chapter 3 : Introduction to Object-Oriented Methodologies

Over,lew of RollMd • Brunet'• Object o.ftnltlon

Object(o)

Sch(o) G

Pro

Fig. 3.5

Id

Sch(o) - object schema
Pro • propertiea
Ope · operations
Cns. constraints
Rel • relerencea
Evt • Event

G • o~ect ~le cycle
Id • o~ect identity

Page 24

The object scheme of an object is further described by its properties, a set of

possible operations on the object, constraints to be verified by the object, static links

consisting of a set of references of the object with other objects, a set of events which

may be stimulated by particular state changes of the object. The first three items,

Properties, Operations, and Constraints, characterise the local static aspect of the

object while Reference and Event specify the dynamic aspect of the object Properties,

operations, constraints, reference are shown using in a static interrelations diagram.

This is not very sophisticated as compared to OMT or Coad & Y ourdon' s class model for

analysis and hence it would not be illustrated here. The last item is shown using their

notation of a dynamic interrelations diagram. It shows to a certain extent of object

visibility but is not very helpful on message passing compared with Booch's object

diagram. An example of a dynamic interrelations diagram is shown in Appendix B.

A complete description of the object scheme is done on the template. An example

of a class descriptor for a generic object is shown in Fig 3.6. The state of the object is

the concatenation of all its properties and reference values at a given time. State changes

of an object are triggered by an internal or external event. This behaviour may be

represented by state transition diagrams and concurrency by Petri-nets although they are

not explicitly shown.

Every object is given an identifier. This is similar to the concept of a surrogate key .

for a relation in extended relational databases.

Rolland & Brunet also provide some guidelines on how to reach the object schemes

specification for the analyst However, these guidelines are not elaborated in their paper.

These refer to an inventory of initial objects, identification of final objects, identification

of operations and identification of events.

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies

A sample of the O* model textual description of Objects

object Object name

properties
Contain the names of all the attributes of the

object and the definition of the data type

operations
Contain the names of all the methods

constraints
These may be local constraints, a limiting value on
the fields or inter-object constraints

references
Refers to other objects

Fig. 3.6

Page 25

Rolland & Brunet's methodology is more suitable for object database design

particularly because it proposes a textual description of objects which contains

triggers(rules in Postgres) and operations(functions in Postgres). The concept of

references is also used, which is typical of OODBMS.

3, 3 Coad & Yourdon 's Methodoloi:y
Coad & Yourdon's 00 Methcxlology is divided into Analysis and Design. They

have introduced five steps in real-world abstraction. They are :

(a) Classes

(b) Structures

(c) Subjects

(d) Attributes

(e) Services

Some guidelines are used for identifying classes. The potential classes in a problem

domain are structures, other systems, devices, things or events remembered, roles

played, operational procedures, sites and organisational units. The first four are more

important

"Structures" are commonly used in data modelling. They are formed by the "is-a"

and/or "has-a" relationships among objects in a hierarchical manner.

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 26

"Other systems and devices" include a related system or single entity that the

system under present consideration interacts with. Examples are the user-interface

system or a sensor that forms part of a data logging system.

"Things or events remembered" over time are recorded in storage objects. These

storage objects may also be called data objects, and are usually persistent

"Roles played" by objects are termed as temporal objects which exist as a result of

relationships.

In their book, Object-Oriented Analysis, the above five steps are applied in the

problem domain component Besides the problem domain component, which is known

as the schema in database terms, there are also other components that need to be

examined which make up an object-oriented systems. The other three components

human interaction, task management and data management are further discussed in their

book, Object-Oriented Design. The book also demonstrates the implementation of all the

four components using OOPL.

3.3.1 Object-Oriented Analysis

Much work on OOA has been carried out by Coad and Y ourdon. In fact, the

authors acknowledge that OOA is a relatively new method of managing real-world

complexity, and that their recommendations should be tailored whenever to suit the

organisation or project needs.

It is essential to identify objects and their classes within the problem domain. Some

useful hints of finding objects occur in the client's summary like singular or adjective

noun, things that have a structure, things that interact with other systems, devices itself,

human or things that played a role, systems that require remembrance of particular

operations or excercise sequencing, physical location or sites, and organisation units.

Recognition of objects will become familiar with practice and a fair understanding of the

environment under consideration. Besides these, one would also need to consider the

behaviour, attributes, services offered by the identified objects. An object class contains

instances whereas an abstract class does not.

Three important concepts of identification of structures are Generalisation,

Specialisation and Whole-Part Structures. The directional notation for demonstrating

Generalisation-Specialisation is shown in the below example. The superclass is drawn

with a line outward from a semicircle midpoint to point to the subclass.

Consider a certain class of motor as an example. Assuming that there are two types

of motors, the standard motors(class A and B) and the submersible ones(Class E). For

the submersible ones, the operations are more critical and the standards more stringent.

The superclass is assumed to provide only the common attributes without having
instances itself. Hence, the class Submersible besides having all common attributes and

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 27

behaviour of the standard motor, will have other critical attributes of its own, shown in

Fig 3.7. This illustration may further be redrawn to Fig. 3.8.

Motor

Model
kVA rating
v'*-
Rlfing
P.-r Factor

p,- On
P.-=Olf
Jag

rl
I I

§
,

Sobnerst>le

Tolerance
Deplh "'~·Ion

Fig 3.7 Using a Class as a generalisation

r ' ' Motor

Model
kVA rating
Voltage
Rating
Power Fador

Power_On
Power_Off
Joo

""

~
I

'I
r

&bmersble "'

Toleranoe
Depth of ope<alion

~

"'

Fig 3.8. Using a Class Object as a generalisation

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 28

LegaName
Address

OwnerPerson
r .,

ClerkPerson

CitizenOf DateOf Birth
Userldentification
Password
Photo
TrombPrint ... ~

(__ Owne-rCle-rkP-ers-on __)

Fig 3.9. Person Gen-Spec structure, as a lattice

To consider whether an Object Class needs Generalisation or Specialisation check

whether it is in the problem domain, and if there is inheritance between different object

classes. In practice, the most common form of Gen-Spec structure is a lattice as shown

in fig. 3.9.

Whole-Part Structure is shown with a whole Object at the top, and then a part

Object below, with a line drawn between them. A triangle marking shown in Fig 3.10

and Fig 3.11 distinguishes Objects as forming a Whole-Part Structure. Each end of a

Whole-Part structure line is marked with an amount or range, indicating cardinality, at

any given moment in time.

In Fig 3.10, an aircraft is an assembly of possibly no engines (a glider) or at most

four engines(Boeing 747) and an engine is part of possibly no aircraft or at most one

aircraft In Fig 3.11, an organisation is a collection of possibly no clerks or at most

many clerks, and a clerk is a member of exactly one organisation.

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 29

r Aircraft
~ r ~

Organisation

\.. ~ \.. ~

0,1

r
Engine

~ r
Clerk

\.. ~

Fig 3.10 Fig 3.11

A subject is a mechanism for guiding a reader(analyst, problem domain expert,

manager, client) through a large, complex model. Having discovered so many objects,

there is a need to guide the analysts through the documentation of the project under

consideration.

An attribute is data(state information) for which each Object in a Class has its own

value.

A Service is a specific behaviour that an Object is responsible for exhibiting.

Services are called methods in Object-Oriented Programming Languages. It is best to

describe the services of each Object by a state diagram. This is in the form of conditions,

procedures, and loops for which algorithms for the program may be worked out.

Message connection models the processing dependency of an Object, indicating a

need for Services in order to fulfill its responsibities.

As mentioned above, Booch's modelling technique supports most important

features provided by conventional extended Entity-Relationship diagram.

3.3.2 Object-Oriented Desi~
Besides, the problem domain component, Coad & Yourdon also recognises that

there are other components. The five layers of real-world abstractions, subject, class,

structure, attribute and service are again applied to them.

Some of the concepts in the proposed methodology in Chapter four are analogous

to these three components. The human interaction component is similar to user-interface

object, the task management component is similar to the controller object, and the data

management component is similar to classes for data storage, which could be a container

class.

3/12/92

Chapter 3 : Introduction to Object-Oriented Methodologies

Subject layer
Class layer

Structure layer
Attribute layer

Service layer

Htman
Interaction
Component

Problem
Domain
Component

Task
Management
Component

Fig 3.12 Four components and five layers

3.4 Obiect-Modellin~ Technigue<OMT}

Page 30

Data
Management
Component

This software engineering methodology has been developed by staff at the General

Electric Research and Development Center and has proven its effectiveness[9]. One of

the interesting thing is that OMT covers all three stages of Object-Oriented Analysis,

Design and Implementation. In addition, there is also a System Design stage in between

the OOA and OOD stages.

Three models are needed to fully describe a system. They are the Object Model, the

Dynamic Model and the Functional Model. These models are built initially in the

Analysis stage and are made use of again in the Design and Implementation stages.

The Object Model of OMT is fairly similar to Coad & Yourdon' s OOA, the same

ideas being applied but at different places. However, OMT includes a Functional Model

which consists of data flow diagrams.

Like every methodology, the Analysis stage begins by drafting an initial description

of the problem. An Object Model is then built, together with the data dictionary for each

defined object. The idea of a data dictionary, which can be called class descriptor, is

present also in Booch. It is however, not explicity mentioned in Coad & Yourdon. The

steps involved in building the Object Model are :

a. Identify Object Classes,

b. Create a data dictionary describing classes, attributes, and associations,

c. Add associations between classes,

d. Add attributes for objects and links,

e. Organise and simplify object classes using inheritance,

f. Test access paths using scenarios and iterate the above steps as necessary,

and populate with some data,

g. Group classes into modules, based on close coupling and related function.

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies ~ 31

The notations used for semantic data modelling is slightly different from thst of

Coad and Yourdon. The Dynamic Model describes the dynamic behaviour of~ objects

once the Object Model is completed. The steps involved are :

a. Prepare scenarios of typical interaction sequences,

b. Identify events between objects and prepare an event trace for each

scenario,

c. Prepare an event flow diagram for the system,

d. Develop a state diagrams for each class that has important dynamic

behaviour,

e. Check for consistency and completeness of events shared among the- :-t:ite

diagrams.

The only feature that is worth a special comment is the preparation of a scen:uio and

the event trace diagram. This technique and convention is useful for modelling re.u-time

object-oriented systems in which the complete cycle of the system can be pre-derennined.

This concept of scenario and event trace diagram is also brought up by Jacobson.

The steps involved in constructing the Functional Model are :

a. Identify input and output values,

b. Use data flow diagrams as needed to show functional dependencies.

c. Describe what each function does,

d. Identify constraints,

e. Specify optimisation criteria.

Data flow diagrams may be constructed using Teamwork, Excelerntor or

Information Engineering Workbench(IEW).

After obtaining these three models, further iteration may be done on the attributeS,

operations and developing scenarios to further verify these three models. The Analysis

stage ends with preparing the document that describes the whole problem donHLin. the

proposed solution in terms of the three models.

After a problem is analysed, it must be decided how to approach the design.

System is the high-level strategy for solving the problem and building a solution. System

design includes decisions about the organisation of the system into subsystems, the

allocation of subsystems to hardware and software components, and major conceptual

and policy decisions that form the framework for detailed design. The System Design is

similar to Booch' s Process Diagram. This stage should discuss :

3/12/92

Chapter 3 : Introduction to Object-Oriented Methodologies Page 32

(a) the type of processors to be used,

(b) the selection of the different types of hardware or software,

(c) load balancing in a mult-processors environment,

(d) the type of user-interface like Sunview or X-Windows,

(e) hardware configuration,

(f) systems management

Once the Analysis stage and the Systems Design is planned out, it is almost ready

to implement the application. The OMT adds another stage called Object Design whereby

the analysis model is elaborated and provide a detailed basis for implementation. Object

design starts a shift away from the real-world orientation of the analysis model towards

the computer orientation required for a practical implementation. From the functional

model, every process name is identified with an operation. The exact definition of the

processes is obtained from the dynamic model through the algorithms. Data snuctures

are selected which are most appropriate to the algorithms. Classes and associations are

then packaged into modules which may be stored in the Class Library. Finally, the

completed Design Docwnent is prepared which consists of the detailed Object, Dynamic

and Functional Model.

The tail end of software development discusses the specific details for

implementing a system using OOPL, object-base languages, and DBMS. Writing code is

an extension of the design process. Once all difficult decisions have been made during

the design stage, writing code would be quite mechanical. The code should be a simple

translation of the design decisions into the peculiarities of a particular language.

Implementation of an object-oriented design is easiest using an object-oriented

language, but even object-oriented languages vary in their degree of support for object­

oriented concepts. Each language represents a compromise among conceptual power,

efficiency and compatibility with previous work.

When implementing using a database system, the main concern is access to

persistent data, rather than the operations on the data, a database is often the appropriate

form of implementation. Database operations are much less procedural than conventional

OOPL statements.

3, s Comparison of Methodolo2ies
The matrix provided below is for the comparison of the existing methodologies

examined in this chapter against the requirements defined in Chapter two.

Almost all methodologies described in this chapter recognise the need for stage

development just like conventional software development However, the feasiblity phase

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 33

was not mentioned in any of them. This phase is still worthwhile to consider because

object-oriented requirements need to be examined which might be different from the

traditional ones.

Class identification and class relationships are given very thorough treatment. Not

all of them agree with the type of diagrams that should be included in each stage of their

analysis with reference to their class identification, class relationship and behaviour

modelling. For instance, Coad & Y ourdon and OMT suggest the use of data flow

diagrams. This concept is absent in Booch and Rolland & Brunet. The notations used in

the class diagram of OMT and Coad & Y ourdon is recommended because these are more

familiar to database designers and closely resemble E-R diagrams.

Some 00 authors also support the use of data flow diagrams in their

methodologies. Shlaer, Mellor and Wybolt suggest that data flow diagrams are

constructed for each state in the state transition diagrams for each object. Hayes &

Coleman[39] propose that data flow diagrams are used to show the system behaviour

rather than the behaviour of individual objects. All the authors have agreed that data flow

diagrams are of less importance as compared with other diagrams.

The only time where data flow diagrams could be applied in the proposed

methodology might be in the overall function requirements represented at a high-level.

User-interface issues are not paricularly discussed by Rolland & Brunet because

their methodology concentrates on addressing the schematic aspects of OODBMS.

The idea of a controller object is essential in real-time 00 systems, particularly

those that are implemented using OOPL(although such concept can equally be applied in

real-time OODBMS). Without it, the system would be static. For database transaction

processing under normal circumstances, there might not be a need for a controller object.

This is taken over by the user instead. Hence, Rolland & Brunet do not mention such an

object in their 00 methodology.

Object Concurrency is given a thorough treatment by Booch. However, this is

from the OOPL point of view. Rolland & Brunet do provide hints on enforcing object

synchronisation on events where triggering occur at an extended relaitonal or OODBMS

perspective.

OMT comes with a prototyping tool that supports their methodology called

OMTool. Coad & Yourdon also have similar tools that supports each stage of 00

developments. They are OOWorkbench, OOATool, OODTool and OOCodeGen.

Very little is mentioned by the authors about using an Object Repository at this

stage. The same is true of the idea of a Class Library which entirely depends on the tool

used to support it.

Prototyping requires a CASE tool. Although Booch does not specifically have a

tool to support his methodology, the idea of 00 prototyping was supported. A number

3/12/92

Chapter 3 Introduction to Object-Oriented Methodologies Page 34

of design tools are available which facilitates some part of the OOA or 00D processes.

These tools can be divided into 2 categories: those that provide high-level analysis and

design tools and those that purely assist with low-level design.

Tools such as OMTool(used by GE Labs), OOATool(Coad & Yourdon),

TurboCase 4.0(StructSoft Inc.), MacAnalyst(Excel Software) provide some form of

support at the high-level stage.

Some methodologies, due to their features, are more suitable for using in OOPL or

OODBMS as compared with the others.

Matrix for the comparison of the methodologies

Booch C&Y OMT Rolland &
Brunet

Stage development X X X

Cass Identification X X X X

Class relationship X X X X

Behaviolr ModellirYJ X X X X

User Interface X X

Controller object X X

Diagramming X X X X

Conan-ercy Issue X - Little

Tools.CASE X X

Repository(Oass Library}
X X X

Prototyping X X X

Reusability X X X X

~rt for OOPl concepts X X X

~rt for OOOBMS X X X

Fig 3.13

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 35

Chapter 4: A Proposed Object-Oriented Methodology for OODBMS

This chapter introduces a proposed methodology for OODBMS, which draws on

those features and characteristics described in the previous chapter but includes a number

of new items.

So far, most 00 authors[4,5,6,7,8,24,27,39,40,41,55] have only discussed the

definition of 00 terms, suggest diagrams accompanying each stage of their

methodologies and provide implementation examples. None has yet explained the steps

involved in each stages, especially with regards to the use of Class Library and

Repository. This Chapter attempts to address these issues. However, it is not intended

to formalise conventions or notations of diagrams used in each stages.

Most 00 authors[? ,8,40] would agree that 00 development should consist at least

three stages : Analysis, Design, and Implementation that undergo iterative processes.

The proposed methodology must therefore consist of a number of stages. Each stage has

also a number of steps. Most 00 methodologies claim that the boundary between 00

Analysis and Design is blurred. However, in this proposal, an attempt is made to give a

clearer separation of the steps involved in Analysis and Design.

1 . Feasibility Study

(a) Overall application purpose

(b) Statement of interactions

(c) Performance requirements

(d) Failure conditions

(e) Cost/Benefit analysis

2. Object-Oriented Analysis

(a) Generating a description of the problem domain

(b) Constructing the Analysis Model

(c) Object-Oriented Prototyping

3. Object-Oriented Design

3/12/92

(a) Identification of supporting classes

(b) Identification of reusable library classes

(c) Tailoring the class structure for reusability

(d) Choosing a concurrency control protocol

(e) Iteration of classes

(f) Systems Design

Chapter 4 A Proposed Object-Oriented Methodology for OODBMS

3/12/92

4. Implementation

(a) Mapping to the target language

(b)

(c)

Implementing the application

Querying the database

A graphical representation of the developed methodology is given in Fig 4.1.

Development stages of the new methodology

Objects at Analysis stage
lndude data, association,
controller, and user interface
objects

Goal & feasibiity statement

GeneratwlQ a description of
the probem domain

Constructing the Analysis Model

Feasibility

Analysis

Al other requirements

Lege111

Mapping to the target lang.Jage
lmplementirg the application
Queryirg the database

uw.m Objects that undergo Iteration

Fig 4.1

Systems
Desisln

Implementation

Page 36

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 37

4, 1 Feasibility Study
This is the first phase of the proposed methodology. It includes formulating the

requirements and specifications for the system to be built People involve in this stage

are end-users, domain experts, business and system managers.

In most 00 methodologies, feasibility study is not mentioned. There are several

reasons why a feasibility stage is essential for developing 00 systems :

(a) system complexity,

(b) prototyping used in the analysis and design stages.

For small projects, feasibility study may not be needed. However, for larger

applications, a feasibility study is essential.

In the proposed methodology, prototyping is used thoroughout the Analysis and

Design stage. In this regard, the original goal of constructing the application can be

easily lost through the process.

Feasibility study results can lead to a conclusion that it is not necessary to follow an

00 approach in analysis, design and implementation stages. It will greatly depend on the

problem domain characteristics derived from the feasibility stage which approach (00 or

non-00) is more suitable, appropriate and efficient

4.1.1 Overall application pUil?Qse
User requirements are documented and should state precisely the goals of the

application, what overall functions it is to perform, the nature of its working context, and

how it is to interact with other applications at a high level.

1be application functions are services which are expected by the user of the system.

In general, the user is uninterested in how these services are implemented so that the

analyst should avoid introducing implementation concepts in describing these functions.

The description for these application functions must also be consistent and complete. All

services required of the application should be fully specified and no one requirement

should contradict any others. The description can be expressed using natural language,

tables and non-formal diagrams in the document

Normally, the purpose of building such an application or system is to automate

some or all of the tasks performed by an existing system. Present system responsibilities

should be recognised because these may be taken over by the proposed new system,

along with any new responsibilties that may be identified and incorporated into the new

system.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 38

4.1.2 Statement of interactions

This describes how the application would be made used of by users, other

associated systems and the outside world. If the application is intended to be multi-user,

then precautions must be taken to safeguard against concurrency conflicts. The authorised

groups which will use the system are identified.

If the application is a development of a database, which will be used by other

applications, i.e. the database has to export data, specifications of the data transfer

should be laid down also. Other physical subsystems like sensors, robots, terminals, 1/0

devices, processors etc, that interact with the application should also be noted.

4.1.3 Performance requirements

Performance requirements set out the restrictions under which the proposed system

must operate and the standards that must be met. At this stage, the performance measures

will be at the application or user-perceived level, for example :

(a) Response times - average and peak,

(b)

(c)

(d)

Throughput or overall transaction capacity,

Availability, MfBF/MlTR,

Error rates.

4.1.4 Failure conditions

From stages 4 .1.1 and 4.1 .2, the functions of the proposed application and its

interacting environment have been identified. These functions are assumed to execute

under normal situations. The failure conditions describe the exception conditons of these

functions, which it is a primary task of the system to handle.

4.1.5 Cost/Benefit analysis

The methods used for calculating the tangible benefits in monetary terms would

depend on the nature of the 00 systems. These methods are relatively unknown at

present and will not be further elaborated.

The intangible benefits for constructing such an application should also be

identified which might sometimes outweigh the tangible ones. The intangible benefits are

the conveniences which will arise as a result of having the proposed application that

cannot be measured in monetary terms.

4, 2 Obiect-Oriented Analysis
OOA is the first stage of the object-oriented paradigm. A typical feature of OOA is

that much effort is channelled into this stage to get a better understanding of the problem

domain, as outlined by Coad & Yourdon[7]. The proposed time and effort distribution

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 39

has been derived based on the developments applying the proposed methodology. If the

amount of effort is plotted against time, then the graph might look liked Fig 4.2.

4.2.1 Generatin~ a description of the problem domain

After deciding that a system should be built, the next step is to generate a formal

description of the problem domain. This should contain details regarding the structure

and behaviour of the domain. These details will typically be in the fonn of text

descriptions or transcripts derived from a brainstorming session. Diagrams showing the

flow of data and control etc would be used.

Effort

Implementation

000 step(e)-{t)

000 step(a)-{d)

OOA step(c)

OOA step(a)-{b)

Feasibility study

Effort as a function of time for various stages in the
newly proposed methodology

Fig 4.2

4,2,2 Constructine the Analysis Model

Tine

The Analysis Model[30] represents both the static and dynamic aspects of the

application. These two aspects are applicable to all the objects identified during Analysis.

In order to model the static aspect of the Analysis Model, the classes and their

relationships should be identified in the problem domain description and structured first.

The dynamic aspect can then be modelled after the static models are completed.

Ca} Identify Classes
The first step in constructing any model for Analysis is to identify relevant object

classes from the problem domain. The purpose of grouping object instances into classes

is to match the technical representation of a system more closely to the conceptual view of

the real-world.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 40

Class Identification involves the extraction of nouns from the problem domain.

The potential object classes candidates are :

(a) "things or events remembered",

(b) "roles played",

(c) "user-interface",

(d) "physical subsystems",

(e) "logical subsystems".

"Things or events remembered" refer to the records that need to be stored. These

are data objects that would appear in the traditional schema, and are generally passive.

"Roles played" refers to objects formed from associations between objects. An

associative object may be viewed as a temporal relationship[52] between referred objects

that play within this relationship a specific role. In other words, this object arises out of a

binary relationship and might cease to exist at some point of time.

I Employee!.,_ ---ti I ~gn~ntll .,_ ----P_ro_~e_c_t­

role : INVOLVED-EMPLOYEE

Fig 4.3 Association Object

An example is shown in Fig 4.3. For instance, the object Assignment is an

associative object and it refers to the object Employee and the object Project. The

Assignment object would only be created when the first employee is involved in a given

project and ends when there are no more employees involved in projects.

"User-interface" refers to those objects that the users interact with the system. A

terminal is an example of user-interface object In this way, the user-interface object may

be regarded as an active object in the system. The functionality of user-interface objects

can be conceptualised at two levels : one level using dummy procedures and other level

dealing with implementation details. The analysis should concentrate first on the

information flow and control. Output can be simulated with dummy procedures. Details

of the method functionality are left to the Design phase.

"Physical subsystems" include those entities that could interact with the system

other than the users. Examples are sensors, alanns, "required" physical processors and
robots. Normally, these are physical entities explicitly mentioned in the problem domain.

3/12/92

r

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 41

''Logical subsystems" are normally not explicitly mentioned in the problem domain.

Examples are servers, controllers, coordinators and manager objects. In 00 paradigm,

real-world entities are organised into classes. However, by themselves they are rather

static. For many real-time and other applications, one(or more) controller objects[4,22]

are needed to coordinate the activities between all objects. This object arises purely out of

·the need to support behavioural modelling.

The above mentioned are categories of class identification which are directly related

to the problem domain. Other classes which could be identified later for implementation

include iterators and exception handlers which are not explicitly related to the problem

domain.

An iterator is a temporal object[6,22] of its own, providing a method to produce the

next element of a collection, a method to close the iteration when complete, and some

internal state used to keep track of the current position in the collection.

The filtering, trapping and handling of errors is handled by a non-persistent object

called Exception Handler[6,22].

Cb} Identify Relationships

After identifying the potential classes, the next step is to identify relationships.

Relationships often correspond to verbs or verb phrases. Apart from generalisation and

aggregation, types of relationships may be identified under a number of broad groups.

The following are suggested as guidelines :

(a) physical location or ownership(e.g. next to, part of, contained in),

(b) directed action(e.g. drives),

(c) communication(e.g. talks to),

(d) satisfying some conditions(e.g. works-for, manages).

In the proposed approach, relationships are divided into three categories,

specialisation(is-a), aggregation(has-a), and association. Relationship (a) mentioned

above represents either "is-a" or "has-a". Relationships (a), (b), (c) and (d) all represent

associations.

It is sometimes worthwhile to represent an "instance-of' relationship between a

particular object instance and its class, so that special attributes or behaviour may be

modelled explicitly in the class diagram.

Cc) Structure the Static Aspect

The static part consists of the Class Diagram and Class Descriptors, which

forms the structure of all object classes modelled.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 42

After initial completion of the statement of the problem, and identification of the

object classes and relationships, the analyst builds a class diagram of the real-world

situation showing its important properties. The class diagram is thought of as the

application's schema in object-Oriented database and would show:

(1) classes,

(2) inheritance,

(3) other relationships.

No special graphical notation is necessary.

An example of a Class Diagram is shown in Fig 4.4 which resembles an extended

form of E-R diagram. In this example, object classes in an airport and their relationships

are identified. The class Airport is an aggregation of the classes Hangar and Control

Tower. The class Pilot is a specialisation of class Employee.

Although the full structure of the model would be stored in the CASE tool or

Repository, it is likely that, for usability reasons, the diagram would be presented and

interacted within a nwnber of different "aspects", e.g.

(a) "is-a" hierarchy of a specific generalisation structure,

(b) "part-of' hierarchy of a specific aggregation structure,

(c) basic E-R with generalisations and aggregations,

(d) subject area diagrams[reference: James Martin IE, IEF, JEW etc].

m

3/12/92

A ·11as--a·

Qty

has

Aa'port

Hangar

1 Depart

1 Am.te

Control
Tower

Air1ine

has
m

Flight is...assigned

Passensler

Fig 4.4 Extended E-R diagram

Employee

Pilot

Plane

Seat

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 43

The Class Descriptor of Rolland & Brunet is used in the proposed methodology

because it is more relevant for database application as compared with Booch's template

given in Fig 3.2. Each object is given a class descriptor which is a textual description of

each class. The Class Descriptor would show :

(1) class name,

(2) name of its superclass,

(3) names of properties and their data structures,

(4) names of services(operations) provided or required. A brief comment may

be added,

(5) constraints applicable to local fields or triggers that affect the state of other

objects,

(6) references to other objects if any.

Data objects can be implemented using container classes(collections). Container

classes[24] include arrays, lists, queues, stacks, and binary trees. In the case where an

object has collection attributes, the type of data structures to be chosen would be decided

in the Design stage. For example, an ordered list may be required for the diagram

elements in a picture to be drawn in the screen in some specific order because the ones

drawn last may overlap the ones drawn first.

The class descriptor is used to supplement additional details which are not shown in

the class diagram. The most outstanding rules and local constraints, if any, are defined in

the class descriptor and tested in initial prototyping if possible. All secondary ones will

be included during the Design phase. An example of a class descriptor for the associative

object, Reservation is shown in Fig 4.5. At the Analysis, only the most essential

information is provided in the Class Descriptor. This will facilitate information for

prototyping.

3/12/92

object Reservation
superclass
properties

flight no
booking_date
flight_date
passenger_name
seat_location
fare

nil

integer
DA'IE
DA'IE
longword
string
floating number

operations
confirm
browse

% confirms a reservation made by passenger
% search for passenger name

constraints
booking_date is not less than five days from flight_date

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS

references
passenger
flight
seat

Fig 4.5 Class Descriptor for the Class Reservation

(d) Structure the Dynamic Aspect

Page 44

In the object-oriented paradigm, external stimuli, state change of objects, message

passing and concurrency control, constitute the behavioural aspects of individual

components and the system as a whole. Therefore, diagrams should be drawn to capture

all these semantics where necessary.

Documentation of the dynamic part is made up of two main diagrams, the Object

Communications Diagram and State Transition Diagram.

The Object Communications Diagram is used to capture the following

semantics:

(1) the controller object(s) if any,

(2) message interaction among all objects defined in the schema,

(3) message interaction of the above objects with user-interface objects,

(4) indication of synchronous messages.

At the Analysis
level, objects
under consideration
are data,
associative,
user-interface,

~
/ '

/ '

and controller ____ __.., _______ __,

levels
of
refinement

J

Fig 4.6 Object Communication Diagram

The controller object(s) is added as part of the necessity of behavioural modelling.

Indication of synchronous messages in the diagram is optional if the OODBMS does not

have an implementation construct to support it

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS
Page 45

There are many objects in the problem domain for a large system. Therefore, it

must have a top-down decomposition of objects to handle the complexity of the problem

domain, as in Booch's object diagram[4](the equivalent of Object Communications

Diagram in Shlaer & Mellor[55] and Wybolt[63]).

A Context Object as in Fig 4.6 is needed to represent the highest view of the

problem domain and is analogous to the idea of a Context Diagram in Data Flow

Modelling. The shaded cloud is further decomposed to review finer details of object

communications at a lower level. The Context Object is decomposed into controller

object(s), objects belonging to the schema, user-interface objects and other objects

belonging to the problem domain. The level of refinement would be decided by the

designer of the system.

Object decomposition in this manner is helpful for the Design stage because a clear

picture of object interactions and concurrency can be built up early. The Object

Communications Diagram would follow a top-down decomposition as in Booch starting

from a Context Object An example of the Object Communications Diagram has already

been shown in Fig 3.1.

State Transition Diagrams are be used when there are many possible states

that need to be shown for an object It must show the following :

(1) start and end state of an object,

(2) state transition, represented by arrows in between object state, with the event

and action labels.

However, there is no strict requirement that every class should be accompanied by

a state transition diagram. This is because some classes may be inactive. If one is

needed, it would be helpful in formulating the algorithm of the procedures later on in the

Design stage.

Fig 4.7 State Transition Diagram

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 46

An example of a state transition diagram is shown in Fig 4.7. Here, a chemical

processor can accept two types of material, A or B. If Material A is accepted. it would

process the material straight away. However, if Material B is accepted. it needs to

undergo purification and drying processes before proceeding to actual processing. There

is a duration or time lapse before the chemical processor returns to its dormant state from

the processing state.

The Object Communications Diagram and State Transition Diagram mentioned so

far represent the dynamic behaviour of objects without the dimension of time scale. The

dynamic behaviour of the object-oriented system across time might be illustrated using

the event trace diagram derived from a scenario.

A scenario is a sequence of events that occurs during one particular execution of a

system[24]. The scope of a scenario varies; it may include all events in the system, or it

may include only those events impinging on or generated by certain objects in the system.

Exceptions are left out

An event trace diagram would be used to show the interaction of objects under

normal error-free conditions in sequence. This diagram is only used in real-time

automation processes where a complete life cycle of the application can be pre-detennined

and fixed, such as an ATM. It is also used in robotics, computer integrated

manufacturing(CIM) and similar areas involving routine tasks. Modelling of object

behaviour across time may not be required in non real-time applications.

Consider a simple robotics manufacturing environment consisting of an operator,

controller and robot as an example. A scenario may be prepared as follows :

The operator initialise the controller(software system).

The controller sends back an initialise OK message.

The operator starts the operations through the controller.

The controller sends operation instructions to the robot

The robot executes these instructions and then sends back a complete signal

to the controller.

The controller displays the results to the operator.

Fig 4.8 shows the event trace diagram for the above scenario.

Concurrency among objects, may be recognised at the Analysis stage. Some means

of identifying object concurrency on diagrams at an early stage should be sufficient as

given in Appendix B. Deciding what concurrency control protocol to use is a Design

issue because its enforcement would directly depend on the target computing environment

and their concurrency control protocol available.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 47

Event trace diagram

operator controller robot

initialise

-
initialise OK --

nme

start nnl'f"ation --
operation

-
operation completE
-

display result

--

Fig 4.8

(e) Structure the Static/Dynamic Interaction

In conventional methodologies, and in some of the proposed 00 ones, the use of

data flow diagrams is included, presumbly as a means of showing procedure-data

interactions. However, it is felt that the diagrams proposed above already capture the

required semantics.

In this proposed methodology, data flow diagrams are not introduced because the

intention is to move away from the conventional functional design into a more object­

oriented one so as to observe the principle of data encapsulation in 00 paradigm.

4.2.3 Object-Oriented Prototypin~

All objects that have been used in constructing the Analysis Model should now be

prototyped using an Object-Oriented prototyping tool which normally consists of a GUI

toolkit and Schema Form Designer that normally comes with most OODBMS. The

objects that can be prototyped using the existing OODBMS prototyping tools include the

data, controller, associative and user-interface objects created during Analysis.

This step can involve looking at the exisiting objects stored in the Class Library or

Repository for possible reuse in the prototyping process. The classes and their methods

derived in the earlier steps have to be mapped into a specific OODBMS environment

Depending on the tool available, not all the details identified at the Analysis stage can be

implemented directly. The default mapping principles for OODBMS and ERDBMS are

as follows:

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS

Oasses

Properties

Operations
1. CRUD

2. Asynchronous
message passing

3. Synchronised
concurrent
operations

Constraints

References
(relationships)

Versions

OODBMS
Classes or Types

Private Properties

Generated Public Member
Functions

Generated Public Member
Functions

Not implemented at this
stage

Generated <I dwnmy Member
Functions in Data or Controller
Classes

Private Properties of type
"reference"

Not considered at this
stage

Fig 4.9 Mapping Principles for Analysis

Page 48

ERDBMS
Relations or Classes

Attributes or Columns

Query Language only

Query Language with
Rules

Not implemented at this
stage

Rules or Triggers

Attributes of type defined
by the linked object class
or relation

Not considered at this
stage

Most Schema Form Designers of OODBMS will have entries for classes,

properties, operations and references. However, most of them do not have entries for

rules which otherwise, is an important feature to include in the prototyping process. All

mappings that could not be implemented now will be left to the Design stage. The

prototyping process should not involve any encoding so that a prototype can be

developed quickly.

Binary Large Objects(BLOBS) will only be incorporated as part of the properties of

the objects if they are essential to the prototyping process. This is because it is time­

consuming to construct and retrieve them during prototyping.

The analyst will ignore all failure modes and assume the correct condition of the

application.

User-interface objects are built using the GUI toolkit available. Their functionality

need not be implemented during this stage.

Results obtained during Analysis will be placed in the Repository and/or Class

Library. Objects prototyped here will undergo iterations and refinement through further

prototyping using the same tool in the Design stage.

After Analysis, it would be possible to decide whether the development will

proceed using the current OODBMS.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 49

4,3 Qbiect-Orieoted Desieo
This section attempts to explain the Design stage. The Design stage consists of

identification of supporting classes, identification of reusable library classes, tailoring the

class structure for reusability, choosing a concurrency control protocol, iteration of

classes and systems design. There are six aspects of the Design stage :

(a) Other objects that does not appear earlier must be added for efficiency and

completeness. Examples are exception handler and iterator objects.

(b) Not all objects involve in prototyping during Analysis would be reused.

Identification is needed for those that would be reused in the Design stage.

(c) Objects identified for possible reuse in future projects are then tailored as

generic classes and stored in the Class Llbrary.

(d) An object concurrency control protocol is selected for the application.

(e) Details or refinements would be further carried out to objects identified at the

Analysis stage.

(f) Lastly, the application performance and its environment are considered in

systems design.

A primary distinction between Analysis and Design is that Analysis is only

concerned with exploring the problem domain, while Design is concerned with finding a•

good solution. This means that one Design decision could be to choose the target

software environment, including OODBMS/ERDBMS and coding language. This

environment could be different from(or the same as) that used for OOA prototyping.

4.3.1 Identification of su12porting classes
The objects identified at the Analysis stage will not function fully on their own. In

addition, other classes of objects associated with the application may be needed. Coad &

Y ourdon recognise three other types of supporting components during 00 Design stage

besides the schema. These are the task management, human interaction, and data

management components. One or more controller objects are used to coordinate the

activities of the other objects for task management component. Further objects like

container and iterator objects, are used to satisfy the data management component User­

interface objects like windows and buttons are necessary for human interaction

component

In the proposed methodology, all the above three components have been considered

to some extent at both the Analysis stage, rather than left entirely to Design. This is

because they are also essential to the construction of a prototype. The remaining

supporting objects which are be added in Design are the exception handler and iterator

which are not explicitly described in the problem domain.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 50

4.3.2 Identification of reusable libnuy classes

Once the full set of objects at the design level is defined, a search is then made of

existing class libraries and repositories. No formal procedure is proposed here. The

facilities provided with such libraries or repositories will determine the pattern of tasks.

4.3.3 Tailoring the class structure for reusability

If new classes have been designed for the current application which offer

possibilities of reuse elsewhere, then adjustments should be made to class hierarchies or

other structural aspects at this stage, to create suitable generic library objects. Again, a

formal procedure for this is not proposed here.

4.3.4 Choosing a concurrency control protocol

A conflict response specifies how the application is to behave in the presence of

other agents which concurrently access some of the same objects. It is necessary to

examine in the application whether objects being read could at the same time, be updated

by some other agent- or vice versa This is assumed to be completed in Analysis.

During design, it is now necessary to select a policy whereby readers and writers of

an object do not conflict Concurrency may be enforced by both the user and the system.

If it is enforced by the user, then there must be methods in the requestor objects that

enforce the concurrency control. Another possible way is to introduce a separate

controller object that would serialise the execution of a certain group of messages.

The Reservation object in Fig 4.4 is a good example. Using the locking scheme, a

group of users that perform a global task can synchronise their view of data A notify

lock held by one user can make him or her aware that other users are accessing the locked

data

At the systems level, there are default mechanisms in OODBMS that handle

concurrency during normal transaction processing.

4.3.5 Iteration of Classes

Depending on whether the target environment is the same as or different from the

OOA prototyping environment, the prototype is transferred or converted into a new role

as the initial iteration of the working design of the system.

All objects prototyped during Analysis can now be further refined and their

implementation details considered. These include the data, user-interface, controller

objects brought down from Analysis; and exception handlers and iterators introduced

during Design. More than one pass may be required for the results obtained in the

Analysis.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 51

The Analysis Model forms a basis for modification and improvement However, it

may show inconsistencies and some constructs may be awkward and may not seem to fit

in. These inconsistencies are examined in the Design stage. It would be better to rectify

these inconsistencies then to let them carry through the Implementation.

For the data objects, all other rules, field constraints and versions are now added in

the class descriptor of each object Additional properties or operations can be added if

left out during Analysis. If the Schema Form Designer allows these rules and contraints

to be added, they will be done so at this stage. If not, then they will have to be

implemented using the provided database programming language of the OODBMS at the

next stage.

The method functionality of the user-interface and controller objects is now fully

defined and will be implemented at the next stage. Concurrency control methods with

asynchronous message passing or synchronous concurrent operations as in Fig 4.9 are

now defined for the controller objects. These will be implemented in the next phase. Fig

4.10 shows the list of items that needs iteration.

Oasses

Properties

Operations
1. CRUD

2. Asynchronous
message passing

3. Synchronised
concurrent
operations

Constraints

References
(relationships)

Versions

QODBMS
More~

More Private Properties

Modification only

Additional generated
Public Member Fwictions

Genented Member Functions in
Controller Classes

Additional generated methods

To be refined

Container Classes with
genezated methods

Fig 4.10 Mapping Principles for Design

ERDBMS
More Relations or Classes

More Attributes

Modification only

Modification only

Left to implementation

Secondary Rules or
Triggezs added

To be refined

Versioning facilities if
available

The model is then further iterated using objects in the Class Library or Repository

wherever possible, obviously within the limitations of Repository conversion if a new

environment is being used.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 52

4.3.6 Systems Desiw

The Systems Design stage would only be considered when building an entire

system from scratch. The hardware, software configuration and the operating system in

which the application resides would need to be considered. Another factor to consider is

the kernel configuration of the OODBMS which holds the schema. If an application is to

be built in an existing environment. these factors might be given less consideration.

Earlier in the Analysis phase, the subjects of overall function requirements, failure

requirements, statement of interactions, performance requirements are briefly discussed.

In the Design stage, they must now be closely examined, bearing in mind the

implementation details which can be supported by the chosen target OODBMS.

Ain:nitt Scheduing
Systems

ModlJe Diagram which is illustrated in Systems Design.
It shows higMevel interaction bet-, differMt software
components that made up the 00 systems

Fig 4.11 Module Diagram

Diagrams for Systems Design are not as crucial as those in the Analysis. They can

still be drawn to show the interconnection of various software components that made up

the 00 systems. This diagram would facilitate easy comprehension of the logical design

of the system. The notations can be adopted from Booch's Module Diagram.

An example is given in Fig 4.11. The modules Weather station and Runway

Management provide information to the Aircraft Controller module which will ultimately

determine its output The Aircraft Controller output is then processed by the Aircraft

Scheduling Systems mcxlule and stored in the Aircraft Scheduling Database module.

4, 4 Imotemeutatiou
The Implementation stage involves mapping to the target software environment,

implementing the application and querying the database. If the Analysis and Design

stages have been thorough study, then implemetation would be carried out with less

difficulty.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 53

4.4.1 Manping to the target language

Tcxlay's Schema Form Designers in most OODBMS do not necessarily support all

the default mapping principles. Some of the objects created during Analysis and Design,

therefore have to be coded in a host language in order that the remaining details can be

added. For example, rules are added into the codes. Implementation of functionality

using the host language is also carried out for controller and user-interface objects. Fig

4.12 provides the guidelines for the implementation.

Classes
Properties
Operations
1. CRUD

2. Asynchronous
message passing

3. Synchronised
concurrent
operations

Constraints

References
(relationships)

Versions

QODBMS

Completed earlier

Tailcxed Public Member
Functions using host language

Tailored Memrex Functions in
Controller Classes using host
language

Completed earlier

Completed earlier

Tailcxed Controller Classes
using host language

ERDBMS

Code modules invoked
by a main program •

Code modules invoked
by a main program •

Completed earlier perhaps
some code in host
language

* If the ERDBMS works with a non-persistent OOPL, associate temporary OOPL classes with each
relation, and invoke the ERDBMS from the methods of these classes.

Fig 4.12 Mapping Principles for Implementation

4.4.2 Imnlementing the smplication
This is merely defining a new physical and logical database before loading the

schema. The exact method of configuration varies under different platform of operating

systems that the OODBMS resides in. Most of the time, a database name must be created

first before loading of the schema can be carried out The appropriate operating system

directories should be chosen to hold the database's area files.

The database is populated with some test values and the object SQL is performed to

verify them. In the case of extended relational databases, it would depend on what the

built-in query language is.

3/12/92

Chapter 4 : A Proposed Object-Oriented Methodology for OODBMS Page 54

4.4.3 Oueiyin~ the database
The proposed methodology suggests building query objects to handle the query

processing of the application. Most extended relational DBMS and OODBMS should

have this facility for implementation. Concurrency must also be verified especially for

those objects that have triggers embedded in them.

4, s Maintenance of the application
This stage is not intended to be part of the proposed methodology. From time to

time, enhancements in terms of the functionality, user interface, systems performance,

tuning etc, will be required of the application. Users' inputs and requests for further

improvement are considered.

The nature of the 00 paradigm enables the application to be built resilient to

changes. This is because extra object classes may be added quite easily to the existing

program which has a low coupling.

4,6 Summary
The basic steps of the proposed methodology have been described. This

methodology serves as a guideline to the software development of OODBMS

applications. In the following two chapters, the proposed methodology is applied to two

Case Study examples, targeted for Postgres and Ontos respectively.

3/12/92

Chapter 5 Application of the proposed methodology to Postgres Case Study

Chapter 5 Application of the proposed methodology to
Postgres Case Study

Page 55

This chapter takes a look at applying the proposed methodology to the Case Study

example using Postgres, the extended relational database[6,23,56,57,58]. The features

of Postgres are described in the first section. The example given in this chapter is based

on a Case Study on a floor layout design. Complete description of the example is given

in Appendix C. Application of the proposed methodolgy to this Case Study is then

discussed.

s, 1 Features of Posteres
Postgres incorporates data, object and knowledge management in its modelling

constructs. Data management covers traditional transaction management and query

facilities. In Postgres, transaction are carried out by using Postquel or C commands,

whereas queries are carried out using Postquel. The main postquel commands used for

transaction are create for a relation; retrieve, append, replace and delete for a

tuple.

Object management entails efficiently storing and manipulating non-traditional data

types such as point, box, and polygon. These are built-in data types, but data types may

also be user-defined. Object management features arise out of the need to support

application areas such as CAD/CAM.

Knowledge management entails the ability to store and enforce a collection of rules

that are part of the semantics of an application. This feature enables the definition of

integrity constraints about the application, as well as allowing the derivation of data that

are not directly stored in the database. Definition of rules is expressed in Postquel.

Behavioural aspects can be implemented using C, CWS or Postquel. Postquel can

be used for standalone queries, or for defining functions, or can be embedded in host

language programs. Functions can also be implemented using C language and queries

can be embedded in a main.c program.

Further details about Postgres can be found in the manual[23].

s,2 Feasibility Study
Before this application is constructed, a preliminary feasibility study was carried

out to determine the objective, requirements and cost/benefit before Analysis. This stage

consisted of the following :

5.2.1 Overall application purpose

3/12/92

Chapter 5 Application of the proposed methodology to Postgres Case Study
Page 56

The purpose of constructing the application is to assist the designer of an office

layout to evaluate alternatives. It is also advantageous to have a graphical display of the

floor layout, provide space management, and the maintenance of records of employees

within the organisation. For this Case Study example, the purpose is :

(a) to evaluate versions of the floor plan design according to some measures,

(b) to check proposed variations for acceptability against certain rules,

(c) to provide a user interface to enable the designed layout to be varied and

feedback about it to be presented.

5.2.2 Statement of interaction

Basically, a standalone application is sufficient for this Case Study. There is no

need for multiple users at different locations or geographical sites.

The user will have to interact with the application through a screen, keyboard and a

mouse. The screen should display of a number of windows. These windows are for the

demonstration of the floor plan, performing queries and other commands etc.

The authorised users of the applications are mentioned here. There might also be

other applications sharing data from this application. For instance, one department might

"data-grab" and incorporate the acquired data in their spreadsheet

5.2.3 Performance requirements

Response time on failure due to a broken rule is required at less than two seconds.

The interactive response time for the notification of other unacceptability for a design

floor change or for the evaluation of a design should not exceed ten seconds. The

availability of the application should be as high as possible, preferably close to 99%

based on past experiences. In terms of robustness, the application should be able to

recover quickly when there is a systems failure and the stored data must not be corrupted.

5.2.4 Failure conditions

This section is not required for this Case Study, as there is no critical real-time

operation.

5.2.5 Cost/Benefit analysis

The tangible benefits might be the automatic maintenance of consistent records,

time savings on planning the floor space for each department(converted to cost) and

portability of the developed software to other subsidiaries or marketed as a product to

other organisations.

3/12/92

Chapler 5 Application of the proposed methodology to Postgres Case Study Page 57

s, 3 Obiect-Orieuted Analysis
Object-Oriented Analysis consists of generating a description of the problem

domain, constructing the Analysis Model, and 00 Prototyping. Although Postgres is

only an extended relational DBMS, all the steps in the OOA of the proposed methodology

can still be followed.

5.3.1 Generating a description of the problem domain

The Case Study is one that involves planning of a rectangular floor layout planning.

The floor has two long sides where the windows are located. It also has double door

entrance with a central aisle running through them. It is partitioned into open and

enclosed work spaces of various sires for the tenants depending on their status. Spaces

are also allocated for computer and communication equipment, kitchen, reception and

interview rooms. The database content is required to contain a chain of versions of the

planned layout and the company's organisation structure.

However, certain conditions are imposed for the planning of floor space. For

instance, the directors' offices must be adjacent to windows, no work spaces are to

overlap or to extend beyond the limits of the floor area.

The operations of the system will involve making changes to the layout while

checking feasibility, and calculation of average distances from one office to another and

the average distance from the fax and printer to each office.

For more details, refer to Appendix C for the Case Study description.

5.3.2 Constructing the Analysis Model

Firstly, all visible object classes of interests in the problem description were

identified. These objects would later form the relations of Postgres. In the exercise,

there were at least three subclasses of working_area. The floor plan includes

open_ area for ordinary staff up to section head level, closed_ area for directors, and

group_area for public. No user-interface and controller objects were identified in this

Case Study.

The organisation structure is relatively simple. The relation staff should have an

identifier staff_id, employee name, age, salary and manager. All people other than

directors would have a manager. It was assumed that directors do not report to anyone.

After identifying all objects, the attributes were identified and extracted :

working_area(location)

open_area(staff_id, dept, location)

group_area(purpose, location)

closed_area(name, staff_id, dept, location)

staff(staff_id, name, age, salary, manager)

3/12/92

Chapter 5 Application of the proposed methodology to Postgres Case Study

open....Area

staff _id : charl 6
dept : charl 6

dosed....Area

name : charl 6

working_Area

location : baK

notfloor
WWldow
0\/eriap

group_Area

pl.Wp(>Se:char16

staff

staff _id : charl 6
name : charl 6
age: int2
salary : int4
manager : charl 6

Fig 5.1 Class Diagram for Postgres Case Study

Page 58

reports to

Note that location is common to all classes and is unique to working_ area. This

provides a hint that working_ area would be the base class. Closed_ area has some

attributes in common with open_ area apart from having its unique attribute, name. This

implies that closed_area is a subclass of open_area. Group_area has only location

in common with the base class and nothing in common with both open and closed_area.

Some inheritable functions that were performed on the working_ area and its

subclasses would check that the values of the instances were within the constraints. The

function called Window would check for offices adjacent to the long side of the wall.

The function notFloor would check for offices that were outside the floor area.

Overlap would check for overlapping offices. Other functions were used for the

calculation of average distances as required in the Case Study.

After determining the object classes, attributes and functions, relationships between

classes were now identified. The classes were arranged in a supertype-subtype

relationship if any.

Note that in this exercise, the Coad & Youmon notation[?] for OOA had been used

because there are few classes in the problem domain. If there are many classes, it might

be advisable that attributes and functions be hidden. The class diagram for the Case

Study is shown in Fig 5.1.

3/12/92

Chapter 5 Application of the proposed methodology to Postgres Case Srudy Page 59

Details of attributes(and the type of data structures), methods, and constraints were

represented using a class descriptor. An example of the class descriptor in Rolland &

Brunet's O* Model, for the class open_area is shown in Fig 5.2 below:

object : open_area

superclass :

references :
attributes :

working_area

nil

staff_id : char 16

dept : char 16

functions:
constraints :

nil

locations must not overlap group area or closed_area location

Fig 5.2 Class descriptor for Postgres Case Study

The dynamic aspect of the system is modelled using the state transition diagram,

object communications diagram, scenario and event trace diagram at a high level of

abstraction. However, since this is not a real-time application, the dynamic model is

probably not important This is because only the user is an agent and the rest of the

entities are static data objects.

No preliminary object concurrency was identified for this Case Study.

5.3.3 Object-Oriented Prototypin~

At this stage, all visible objects identified would be implemented first In Postgres,

functions and rules are not encapsulated within the schema object(relation) and are

defined externally. This is also true for other types of extended RDBMS. The most

essential rules were used for prototyping. The less important ones would be considered

in the Design stage. However, since this is only a small exercise, the rules and functions

were totally prototyped during Analysis.

Strictly speaking, prototyping at both the Analysis and Design stage should not

involve coding. Since Postgres does not come with a Schema Form Designer,

prototyping was achieved by using Postquel which mapped the contents of the class

descriptor. Relations for working_area, open_area, closed_area, group_area

and staff were now created together with their attributes. Rules and constraints were

implemented using either Postquel or external C functions. For example, notFloor,

Window and Overlap were rules implemented using C functions instead of Postquel.

3/12/92

Chapter 5 Application of the proposed methodology to Postgres Case Study Page 60

From the recommended mapping list in Fig 4. 9, versions and synchronised

message passing were omitted during prototyping. References relationship was not used

in this Case Study but should be looked at if there was a requirement.

There is also an external GUI toolkit for Postgres called PICASSO. Unfortunately,

it was not available to be used in this exercise. Otherwise, user-interfaces could be built

rapidly.

A small number of instances were populated to test if the rules and functions

worked. Instructions on implementation details are fully explained in the Postgres

Manual[23].

5, 4 Obiect-Oriented Desi2n
The Design stage includes identification of supporting classes, identification of

reusable library classes, tailoring the class structure for re usability, choosing a

concurrency control protocol, iteration of classes and systems design.

5.4.1 Identification of supportim~ classes

Supporting classes such as iterators and exception handlers were not implemented

in this Case Study. Postgres has yet to support exception handlers.

5.4.2 Identification of reusable libnuy classes

Built-in abstract data types in Postgres class library such as box and point are

examples of types/classes defined previously and used in this Case Study.

5.4.3 Tailorim~ the class structure for reusability

There is a possibility that the classes staff and working_ area could be reused by

similar projects in the future. They could have been tailored into generic classes but it

was not attempted here.

5.4.4 Choosing; a concurrem~y control protocol

Concurrency was not explored in this exercise since the application is not real-time.

5.4.5 Iteration of classes

Additional attributes or functions of the above classes might be added if necessary.

Since there was no user interface and controller objects, only the data objects would need

iteration. However, since most of the implementation was carried out during

prototyping, there is little that can be said about this step.

Versioning of working areas such as open_area could be implemented at this

stage.

3/12/92

Chapter 5 : Application of the proposed methodology to Postgres Case Study Page 61

5.4.6 Systems Desiim

Since this exercise is a simple one, no special attention is needed for the systems

design.

5,5 Implementation
Implementation includes mapping to the target software environment, implementing

the application, querying the database, improving the application, and maintenance of the

application.

5.5.1 Mappin& to the target langua&e

This step had already been performed during prototyping during Analysis.

5.5.2 Implementim~ the application

The database should be properly configured to sit in the appropriate Unix directory.

Once the correct results for rules and functions had been verified in Analysis, all the

instances were now populated. The original prototype database would need to be

destroyed and a new one created. This is because Postgres does not check if an instance

has already existed in the database.

5.5.3 Oueryin~ the application

The relations created in the Case Study were populated with all the instances needed

in the application. Queries on the application were then performed again to ensure that

the results obtained were consistent with the ones obtained in the earlier stages.

5,6 Summary
The proposed methodology had been applied to a Postgres Case Study example as

outlined above.

It is noticeable that much of this Case Study could be implemented during OOA.

The OOA stage of the proposed methodology involves a great deal of capturing the most

essential semantics for the schema of the Case Study. A more complex example would

be required to fully test the methodology where host language cocling(other than for

implementation of functions) was required.

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study

Chapter 6 : Application of the proposed methodology to

Ontos Case Study

Page 62

This chapter examines the application of the proposed methodology in Chapter

Four to a Case Study targeted to use Ontos, the object-oriented DBMS.

6, 1 Features of Ontos
Ontos is a multi-user, distributed object DBMS with a C++ class library interface.

Its purpose is to provide a reliable persistent storage facilities for C++ objects. It also

allows C++ programs to retrieve these persistent objects(objects created by other

programs).

Ontos also provides other facilities like controlling concurrent access by multiple

users, providing ad-hoc query capabilities and allowing independent control over the

physical location of data by other Ontos database applications.

Ontos includes a class library of useful data and control abstractions, which

supports different kinds of aggregates, iterators, exception handling, and user interface

construction. These are important supporting features for an OODBMS.

In addition, Ontos comes with utilities that help in the production of a database

application. One of these is DB Designer, which is a visual schema browser and

designer. Others include the Ontos Studio and Shorthand which may be regarded as

4GLs. Further utilities include DBATool which helps in creating, configuring,

performance tuning, and database administration; the Classify schema compiler and the

Cplus preprocessor tool.

An application can be written using C++. Encapsulation is better enforced here as

compared to Postgres. However, definition of rules is not explicit and is usually

embedded in the body code of the classes.

Unfortunately, the Ontos software was not available for use in this Case Study and

hence some conclusions depend on assumptions based on the manuals.

6, 2 Feasibility Study
This stage consists of the following steps :

6.2.1 Overall a,pj}lication pUJ.l)Ose

The main goal for constructing this application is to provide early warning for low

water levels that might subsequently interrrupt hydroelectric power supplies. It is also

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 63

advantageous to have features in the application that provide the display and querying of

geographical data connected to the problem.

The application must be able to provide early warning to the users when the water

levels in the reservoirs reach critically low levels. The management should also be able to

simulate the critical condition by extrapolating graphs showing lake levels before these

fall to a given minimum.

6.2.2 Statement of interactions

The application can either be used as a simulation or as a real-time database used by

many users in different locations. The users are to interact with the system through

terminals in a WIMP environment. This interactive environment should include graphical

displays and maps.

The sensors located at the lakes and rivers can be polled periodically to obtain data

which is stored in the database.

6.2.3 Perfonnance reguirements

The system could be unduly slow due to the handling of graphics. Therefore a

guideline should be made regarding the response time of the application software, data

acquisition time, sensitivity specifications of sensors, compilation and run time. For

instance, the data sampling time of the sensors should be less than 1 millisecond.

Some of the performance requirements from the users' point of view are :

(a) Graphical display and interactions should give response time within 10

seconds,

(b) Other response times must not exceed a certain duration say, 3 seconds,

(c) Modifications or enhancement of the application must be provided for within

1 hour of user request.

6.2.4 Failure conditions

The failure conditions are :

(a) system power failure,

(b) system crash,

(c) for each condition there should be user indication and automatic recovery

where possible,

(d) malfunction of the associated hardware, like sensors and other equipment,

(e) unsuccessful execution of system functions.

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 64

6.2.5 Cost/Benefit analysis

Some of the tangible benefits in implementing such a system would be :

(a) saving of time in maintenance of facilities,

(b) saving of time in administration.

The intangible benefits are :

(a) more information, hence more effective resource management,

(b) better analysis with less field collection of data needed,

(c) ability to perlorm simulations, hence giving advance warning of problems,

(d) higher standards and accuracy of information,

(e) quicker access to information,

(f) better understanding and analysis of a complex system, leading to better

decisons and planning.

6,3 Object-Oriented Analysis
The analysis for the exercise includes generating a description of the problem

domain, constructing the Analysis Model, and 00 prototyping.

6.3.1 Generating a description of the problem domain

The application domain consists of lakes, reservoirs, rivers, streams, measuring

points, generating stations, and weather stations. Attributes of lakes include the lake's

name, the normal, actual and minimum water levels and the surlace area, together with a

polygonal boundary. Procedures are used to calculate the lake level rise per mm of

rainfall on the catchment Rivers and streams are to be plotted as a series of time

segments, allowing flows to be aggregated.

Sensors located at designated measuring points along rivers and lakes are used to

detect flow rate and lake levels respectively.

The generating stations are required to provide methods for calculating flow of

water required per one percent of generating capacity and flow of water actually reaching

the station.

Weather stations provide forecasting services such as rainfall, snowfall, and

temperature.

The application should be able to display maps and plot graphs in several forms.

A complete description of the Case Study is given in Appendix D.

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 65

6.3.2 Constructin2 the Analysis Model
The following diagrams were constructed for the Analysis Model of the Case

Study:

(a) class diagram,

(b)

(c)

(d)

class descriptor,

state transition diagram,

object communication diagram,

Types, properties, inheritance relationships, member functions and Ontos free

functions were identified in the class diagram. The candidate objects and their attributes

in this problem domain are :

The types of classes and their attributes are

Lakes [La.kename, normal_level, minimum_level, actual_level, surface_area]

Rivers [name, length]

Catchment [name, location]

Measuring_point [id, flow _rates]

Gen_Stations [name, capacity]

Weather_Stations [name, rainfall, snowfall, temp, windspeed]

City [name, location, population, daily power demand]

Clock[min, day, month, year]

Hydrographic_Object

User_Interface_Object

The Hydrographic_Object is a controller object. It receives messages from remote

sensors at measuring points. These messages will be passed on to other objects which

will cause the desired methods to execute at threshold values. The User_Interface_Object

is made up of other smaller user interface objects that the user can interact with the

system.

3/12/92

Chapter 6 Application of the proposed methodology to On1os Case Study

Meast.rirg
Point

meast.res height

Legend

4 ·11as~·

Weather
Station

provides tlme
Clock

interacts with

Generatirg
Stations

Fig 6.1 Class diagram for 0ntos Case Study

Page 66

A detail description for each class and their methods are described in Appendix D.

An example of the class descriptor for Lakes is shown in Fig 6.2.

object Lakes

3/12/92

properties

Lakename : char

priv _normal_level : integer

priv _actual_level : integer

priv_min_level: integer

priv _surface_area : integer

operations

%catchment

constrain ts
priv_normal_level > priv_min_level

references

Rivers

events
low water level : predicate

priv _nonnal_level >= priv _min_level

triggers

extrapolate_graph on user interface object

Fig 6.2 Oass descriptor for Lakes

Chapter 6 Application of the proposed methodology to Ontos Case Study Page 67

For the dynamic aspect, the State Transition Diagram and Object Communications

Diagram were shown. An example of a State Transition Diagram, for the class

Measuring_Point, is shown below.

Fig 6.3 State Transition Diagram for class Measuring_point

An example of an Object Communications Diagram, centred on

User_Interface_Object is shown above in Fig 6.4.

dsplay _city

Fig 6.4 Object Communications Diagram for Ontos Case Study

6,3,3 Object-Oriented Prototypin~
If Ontos Studio and Shorthand had been available, prototyping of the results

obtained during Analysis could have been carried out easily. The data objects include

Lakes, Rivers, Catchment areas, Measuring points, Generating stations, Weather

stations, City and Clock. The class descriptors of all the above objects constructed earlier

would be helpful. The names of the classes, values of attributes and names of functions

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 68

could be entered in the fields of the DB Designer. Take for instance, the operation

%catchment of the class Lake. A dummy procedure for this operation might be

implemented through Studio so that it could be invoked during Analysis.

Studio could also have provided for the construction of a "mocked-up" interface.

Otherwise, implementation of method functionality for User_Interface_Object would be

deferred. The group of messages interacting between the User_Interface_Object and the

other objects which need synchronisation were identified at this stage, and would be

included in the prototype.

Since rules are not explicitly defined in Ontos, and can be implemented only in

embedded functions using C++, they were not considered until the Design stage.

6,4 Obiect-Orieuted Desia:n
This stage includes :

6.4.1 Identification of su,pportin~ classes
Additional classes like exception handler and query iterator were now introduced.

Failing conditions of the data, controller and user interface objects were identified.

This would be handled by the class HydroException as in Appendix D, derived from the

class called Failure in the Ontos class library, defined by the user. It was not necessary

to consider its error handling functionality at this stage.

The query iterator object, Hydroiterator, as in Appendix D, was required to retrieve

instances stored in data classes. Again, the functionality was not considered.

Both the HydroException and Hydroiterator objects were incorporated into the

model for further prototyping.

6.4.2 Identification of reusable library classes

This was not attempted in the Case Study, but would have looked for previously

created objects suitable for modification. This might include graphical and map elements,

and simulation controller objects.

6.4.3 Tailorin~ the class structure for reusability
This step was not attempted. However, the class Gen_Stations might be tailored

into a generic object and placed in the Ontos Class Library. They might be reused by

future projects such as the construction of another application to simulate power

generation.

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 69

6.4.4 Choosing a concurrency control protocol
The synchronisation issues was addressed at this step. For instance, the type of

concurrency control protocol needed to enforce synchronisation between message

passing between User_Interface_Objects and the others, was chosen from the different

locking protocol available in Ontos.

NotifyNoLock was selected so that the DB Server could be directed to track

changes to all objects concerned revolving the User_Interface_Objects.

6.4.5 Iteration of classes

At this stage, most of the classes and properties of the Case Study were completed,

given in the mapping guidelines in Fig 4.10. The User_Interface_Objects were decided

to be made up of buttons, windows and icons in the Ontos Class Library.

The behaviour of the two supporting classes, Hydrolterator and HydroException

could now be determined.

In the class Lakes, there was a constraint that if the number of days before the lake

level reached their minimum level drop to less than a month, it would trigger off some

alarm. A dummy procedure was used to test out this condition.

6.4.6 System Design

This step was not examined in this application. Packaging into modules was not

required.

6,5 Implementation
This example was not implemented because the Ontos software is not available.

Therefore, it is only possible to describe the steps of implementation on paper.

The schema, control and main.c files were separated so that they could be compiled

using the DBATool.

6.5.1 Map_ping to the target language
The reusable objects in the Design were written into C++ source code. The class

descriptors refined during Design were now helpful in adding final details to the source

code for implementation of the application. However, only a small number of instances

were populated for querying and retrieval purposes.

The control files would contain the implementation code of methods as in Appendix

D. Rules were coded in the public section. For instance, in the class Lakes, if the

number of days before lakes reach their minimum level drops to less than 1 month, it

would trigger the method extrapolate_graph.

3/12/92

Chapter 6 : Application of the proposed methodology to Ontos Case Study Page 70

Methods enforcing concurrency would now be implemented using C++ for

User_Interface_Object and Hydrographic_ObjecL

6.5.2 Implementing the application

Details of C++ code which could be used for the implementation of the Case Study

is given in Appendix D.

6.5.3 Ouezying the database
A simple query using OSQL was set up in the main.c program to retrieve all the

instances belonging to the class Lakes which have a surface area of less than 50 square

metres. Details are given in Appendix D.

6,6 Summary
The proposed methodology is better suited to mapping problem domains into Ontos

than Postgres.

Firstly, many failing conditions can be identified during Feasibility stage since this

is a real-time application. More diagrams in the Analysis stage of the proposed

methodology can also be drawn for this Case Study. 00 prototyping is facilated by

using DB Designer and Studio which enables rapid development without writting code.

Objects created can also be stored in Ontos Class Library for possible reuse in the

future. Concurrency is also better supported by Ontos in this Case Study.

3/12/92

Chapter 7 Conclusions Page 71

Chapter 7: Conclusions

This concluding chapter provides comments on the results of the newly proposed

methcxiology as applied to Postgres and Ontos Case Study.

7. t Author's comment on the proposed methodoloev
The literature search has covered a very broad base. So far, there have not been

many journal articles written on the Analysis and Design of OODBMS[33,42,47]. The

proposed methcxiology has laid a general framework for further research towards a more

unified and coherent 00 methodology for object-oriented databases. It is not intended

for this thesis to provide detailed formats or for each stage/step. Rather, it aims to

incorporate all the relevant 00 techniques and extracts the essential ingredients that might

make up a general 00 methodology for the Analysis and Design.

Mapping has been tried on Postgres and Ontos to illustrate the new paradigm's

applicability. Object-Oriented Prototyping is also introduced as part of the main paradigm

to emphase on the reuse of objects throughout the whole development cycle and a

reduction of development time.

Of course, the new methodology may not be the only way of designing an 00

database application. However, it could provide object-oriented database designers with

a sound basic approach, as this is demonstrated in the two case study examples.

It should be noted that it is quite impossible to come out with one methcxiology that

totally supports all the features of both extended relational and object-oriented DBMS.

Summarising, the application of the proposed methodology for the development of

OODBMS has proved that :

(a) the use of Class Library and Repository intrcxiuced in Analysis and Design

stages make the development more efficient and less time-consuming,

(b) 00 prototyping introduced in Analysis stage helps to decide on the

applicability of the target DBMS,

(c) specific OODBMS features and DBMS techniques have been observed,

considered and applied in conjunction with 00 paradigm,

(d) the proposed methodology can be used as a general framework for

application development and utilisation of the existing ERDBMS and

OODBMS.

3/12/92

Chapter 7 : Conclusions Page 72

Extensions could still be carried out on this new methodology, particularly in the

Analysis and Design phase. Examples are :

(a) further proposals at the feasibility and analysis stages to support business

modelling and objectives.

(b) additonal object-oriented conventions to enforce semantic integrity,

(c) extending this paradigm to support parallelism,

(d) advanced object concurrency modelling,

(e) sub-methodology for 00 prototyping,

(f) search techniques for Repository and Class Library.

Subjects of current research[57] carried out internationally on object-oriented

databases are discussed in Appendix E.

7, 2 Comparison of its aooHcation to ERDBMS and OODBMS
As shown in the previous two Case Studies, the proposed methodology is more

applicable to true OODBMS. The Analysis and Design stages support two very

important concepts: prototyping and reusability. Unfortunately, most extended RDBMS

have yet to realise these features at present. It may be a possibility that in the future,

extended RDBMS will be provided with class libraries and a Schema Form Designer so

that the proposed methodology could fully support it

On the other hand, ()()DBMS are weak in the prototyping of rules at the Analysis

stage. In most OODBMS, they are usually coded as embedded functions rather explicitly

defined in the Schema Form Designer. Rules remain as an important feature and it is

desirable that Schema Form Designers will incorporate it in the future.

3/12/92

Appendix A : 00 Prototyping Tools Page 73

Appendix A ; oo Prototypin2 Tools

A.1 Smalltalk

Some authors have suggested using Smalltalk fa prototyping[8.20]. However, most users would

need to overcome a steep learning curve before able to prototype efficiently. Smalltalk is an OOPL

which is tightly integrated with its environment which is a WIMP interface[27]. Smalltalk is a good

prototyping language for four reasons :

(a) The object-oriented nature of the language means that systems are resilient to change.

(b) The Smalltalk system and environment is an inherent part of the language and all the

objects defined there are available to the Smalltalk programmer. Thus a large number of

reusable components are available which may be incorporated in the prototype under

development

(c) Objects created under the Smalltalk environment may be exported to the Gemstone

database[49].

(d) The Smalltalk browser allows a user to browse through the class inheritance hierarchy,

display instance variables and methods, and determine which classes send or receive a given

message.

A.2 Ingres windowing version

In the case of OODBMS environment, particularly those in commercial data processing, a

prototyping approach may supplant the conventional development model as so-called 4GL, are used for

system development However, object-oriented 4GL is a very new tool as compared to a great variety of

4GL for relational databases already in existence.

Ingres is a popular relational DBMS. It comes with a 4GL with prototyping capabilities. The

latest version has windowing facilities. The current version of the DBMS(6.4) includes methods and

triggers, which makes the existing INGRES DBMS start to resemble Postgres. However, this does not

mean that it would support object-oriented features like encapsulation, polymorphism and complex

objects.

Although prototyping clearly reduce systems development ~ts. the effect of 4GL on overall life­

cycle for large OODBMS is not yet clear. They are obviously to be recommended for prototyping but the

lack of standardisation may result in long term maintenance problems.

A.3 Gemstone

Recently, Servio Corp, the Gemstone OODBMS vendor based in Alameda. California, has come

up with GeODE[50], a 4GL for rapid object-oriented prototype applications development The idea is to

let end-users build full object-oriented applications-complete with GUI and multimedia without the need

3/12/92

Appendix A : 00 Prototyping Tools Page 74

to master an OOPL. It is made up of four components : the Form Designer, the Visual Program

Designer, the Application Designer, and Systems Programming Tools.

GeODE is originally developed for the use with GemStone. However, by using a gateway, it

could access Sybase Inc. 's SQL Server RDBMS. Soon, this facility would be extended to DEC's Rdb,

Informix Software's RDMS, Ingres and Oracle. It is now running on SunOS or OpenLook and will also

be extending to other platforms like MacIntosh, Microsoft Windows and OS/2 Presentation Manager by

the middle of this year. GeODE runs on a client/server distributed architecture. Many organisations are

happy with their existing relational database environment which is sufficient to do most of their work.

GeODE is designed to co-exist with relational database systems so that it could benefit organisations

which would like to have object-oriented development without replacing the old investments. Some of

the organisations experimenting with GeODE are the National Oceanic and Atmospheric

Administration(NOAA), and Texas Instruments Inc. in Dallas. GeODE could find a niche in the 4GL

business - especially in CAD and places where there is a need to deal with complex objects.

A.4 02

Another OODBMS which has an integrated application development is 02(48]. The environment

includes a query language(02query), a user interface generator(02 look), an object 4GL(02C), a graphic

programming environment including a debugger and a schema and database browser. Moreover, classes in

C++ can be created and imported in the database.

A.5 Ontos

Ontos DBDesigner, Studio and Shorthand[22] provide the users with rapid prototype development

due to their GUI in X windows where the application with its interface may be quickly built.

A.6 GOOSE

Another recent Schema Management and Prototyping Interface tool for an OODBMS has been

developed at Georgia Institute of Technology. It is called GOOSE (Qraphical Interface for an Qbject­

Qriented database Schema Environment) and can support schema evolution and schema versioning.

3/12/92

Appendix A 00 Prototyping Tools Appena1x La

Examples of windows in GS Designer in Gemstone

Claaa Name: I BasePatt (unmodiliable) Soperclua Name: I Part ~---------~
In.stance Variables

kiatance Variable Name lnatanc.. Variable Type

II
I cost 11 Smalllnteger

!mass 11 Smalllnteger

I supp[lers

Inherited Instance Variables

lnatan~ Variable Name

I! Supplier

I name I ! String :=========~
'~u_sed_ln _______ ~l!eorrpos

Glau 9_raph

@
SERVIO

'-----------------...E:=a New Classes

Default Collection aass :j~---------<=::o II ~:. II

= i:"--- -

~plication File Schema Claaa

- ~ 1,;;.IJ lit~ I Collections I IMagnitudesl

26/11/92

&
~ s

Cfil]
Relationahi~

~
~~
~--laA - -

*hold&
~

One Many

10
10
10
10

aau

0
0
0
<i>

:-:-:-:.:--_-__

V"tew Edit

j Pan j ~ component ~I
I name (Stnng) I ~I

usadln (Co~tePanSet) _ J
' ' 1 1 usedln

lsA: : lsA
' ' ' ' ' ' ;:..:i:.==~.:1:,;---usas

Base Pan
readonly

I ComposnePart I
II readonly ILL assembly-

II

,., ..

Appendix A 00 Prototyping Tools .M.ppenau :lo

Objects created in 02 schema designer

26/11/92

c;. ~ -

~
j Menu I Roma

name j Roma

I
Italia

country 1111
map I Hyp<ir

Ready-m
'City' an

ade presentations Of

d 'Hotel' objects

, I Menu I Roma

name I Roma
1-----1

country
Italia

1111
1-----1~ ~ -_ -_ -_ -_ ~--_ -_ -_ -_ -_ -_ -_ -_ -_ ~~

map Hyper

The object Roma. Its map, and
San Pietro's Basilica

!ill!iil

I

I
I

Q -· Iii

~
j Menu j Ritter

name Ritter

I
Address

I address G:I -
stars 3

facilities
I swimming-pool 11 air conditioning I
I bar I
breakfast II amount I I 210.000000

111

da:, price half board II amount I 1 350.000000
111

full board II amount 11 500.000000 I ii

Appendix A

26/11/92

0 0 Pro totyping Tools

GOOSE Schema browser showing an object through
its home class and its superclass

18) PhDStu<1,n1 ~

string~

ant Ag.

bool lsfu JIT1 -.e L ::CrRt{==========:
boo) 1.ti:i ~kFl.="========:
bool hRJlL ~nu:========:
f'ocult~ biscr (obJ.ct l ilbell :,,(&=========:
Cbj Kt J.ticJ!,...d ~~·--- ---~

!Nert oo; e:~ I

CO'JS£-.d1t.o--.s,9:

CCCS£ .,:,1to,-~ line ! (ioi •II obJect,

E]

CbJl!ICt 101 ~~-'------­

!Nert obJect l

B E]

Appendix Le

GOOSE templates showing (a) instance variable (b) method

18) GOOSE Graph/ell/ Schema Envfronm,nl ~

Lru:ttng_dl•

181 V,hlcle ~, 181 C4r ~I _,
l I

_,
L I

0--ltln : ~ehlcl • I 0- ltln : ~-- I
Do..,n c1 .. , : L I ,..--i.-. : L I
1Acct9t I

'""''"' a b

I~,,. I

Appendix B : Concurrency Control in OODBMS Page 75

Appendix B Concurrency Control in OODBMS

B , 1 Object Concurrency Identification at OOA

This section addresses the side issue of concurrency control at a high level during an early stage.

A diagrammatic convention to indicate message syncronisation is also required.

Dynamic Interrelations of Objects (Triggers)

Order Arrival

Order Annulation Order Delivery

Fig B.l Dynamic interrelations diagram

In extended relational database, such as Postgres(U. of California, Berkeley), Starburst(IBM),

SABRE, EX0DUS(U. of Wisconsin), GENESIS(U. of Texas, Austin), triggers that affect the internal

state of the object or the state of other objects may be explicitly declared in the class

descriptor(textual description). In object-oriented databases, rules are however, declared as embedded

functions(C++ codes).

Operations of classes could change local values (intra-object triggers) and values of other

objects(inter-object triggers) should certain circumstances arise. These operations are noted. Triggers are

required to make the database "active" so as to give the user some form of early warning so that actions

can be taken. It is because of these triggers that further contribute to the concurrency problem. Assume

a situation where several users enter values into the extended RDBMS. All of them are accessing the

same database. It could happen that while one user is modifying the values of a collection in object 0,

an external trigger takes place to modify the state of object 0. Therefore, a concurrency control protocol

would need to be worked out depending on the application. One way to specifically outline a group of

3/12/92

Appendix B Concurrency Control in OODBMS Page 76

messages that could cause inter-object triggers is by drawing a dynamic interrelations diagram.

This diagram should be used to demonstrate the trigger between objects only and is applicable for both

extended relatioanl and object-oriented DBMS.

During the Analysis stage, groups of messages that can trigger its own state or the states of other

objects are noted.

In the above example, the inter-object trigger is the out of stock condition in object class

Product. Once the quantity value falls below the minimum set quantity value, it would send an order

immediately to the class Supplier Order. This may be implemented by getting the operating system to

send an electronic mail order from the client to the vendor. Hence, the object, Product would need

concurrency attention at the Design and Implementation stage since it has inter-object triggering

capabilities. Synchronisation of normal transaction processing would be handled by the OODBMS.

Also a response to the message Order Delivery could not be carried out until the taking_out

function in Product and delivery function in Order has been sucessful. To indicate this, a syn symbol is

placed at the junction when the message Order Delivery branches out to other objects. Syn implies that

synchronisation is needed. Exact implementation would again depend on what facilities is provided by

the tool used.

B .2 Concurrency Handling in OODBMS

The way concurrency is handled in OODBMS is similar to that of a DBMS, apart from the fact

that it is now handling object instances rather than records or tuples. Much of the knowledge gained from

concurrency control in traditonal DBMS has been applied and modified to suit the object-oriented ones.

In a typical execution environment of a DBMS, transactions run concurrently. In other words, multiple

transactions will be active at the same time. These can access and update the same persistent databases or

the same persistent data objects. The DBMS would have to gurantee the consistency of the persistent

database and the transaction results. Actions should have the following three properties :

(1) Serialisability. Multiple actions that execute concurrently should be scheduled in such a

way that the overall effect is as if they were executed sequentially in some order.

(2) Atomicity. An action either successfully completes or has no effect

(3) Permanence. The effects of an action that successfully completes is not lost, except in the

effect of a catastrophic failure.

To guarantee database and transaction consistency, DBMS imposes a serialisable order of

execution. Serialisable order means that the results of the transactions are the same as if the transactions

were executed one after another (in a series), instead of being executed at the same time.

There are three ways of ensuring serialisability of transactions; time-stamping optimistic

synchronisation and pessismistic synchronisation or locking algorithms. Gemstone[49], Ontos[22], and

Postgres support either one or all of the below concurrency control strategies.

3/12/92

Appendix B Concurrency Control in OODBMS Page 77

B.2.1 Time-stamping

With this strategy, each transaction is given a time-stamp (in most cases the transaction start time

), and the system attempts to order the execution of transactions based on their time-stamp. For example,

assume that there are two transactions on object 0, denoted by Tl and TI and TI> Tl(T2 is older than

Tl). The DBMS will try to impose Tl before TI in a serial order. Assume that TI happens to update

object O first and then commits. Later on, Tl attempts to read O which has already been updated earlier

by TI. The system detects a conflict and Tl is aborted. The system would then send a message to the

user or changes made on O by TI is undone and recovery is made prior to the transaction by TI. In

Postgres, time-stamping are not used to force a strict transaction order but instead it uses normal two

phase locking using memory lock table.

B.2.2 ODtimistic synchronisation

These algorithms allow transactions to continue executing until they are done. An object does not

take steps to prevent conflicts from occurring while transactions are being processed. The transactions

update the persistent data in private workspaces. This approach is optimistic because if the transactions

aborts (e.g. due to conflicts) all its work will be wasted. When the transaction is done with updating or

retrieving from the persistent database, it enters a certification phase and attempts to commit If the data

it had read or updated does not conflict with reads and updates of other transactions, it is allowed to

commiL Optimistic synchronisation are best in applications where there are no heavy transactions on

data objects.

The major problem with the optimistic scheme is that some actions that successfully complete

may still be forced to abort. Furthermore, multiple copies of each object must be maintained in memory

to permit concurrency and the changes made by each committed action must be recorded in secondary

storage to enable the commit procedure to test for serialisability.

B.2,3 Pessismistic synchronisation or locking algorithm

Locking algorithms assume the worst and acquire locks on every persistent object that a

transaction accesses. Read/write locks are the most common mechanisms used by a pessimistic

synchronisation scheme. If a transaction reads an object, it must acquire a read lock. If a transaction

wants to write an object, it must first acquire a write lock on the object If an object is already locked,

the transactions must wait until the lock is released. Thus there is the potential of deadlocks and the

system must use some mechanism either to detect deadlocks and abort a transaction or to prevent an

imminent deadlock from occuring in the first place. Ontos supports this scheme of locking algorithms,

whereas the GemStone is an add-on to the optimistic scheme.

It is possible to have hybrid _schemes that combine the optimistic and pessimistic approaches.

Gemstone, for instance, supports both pessimistic and optimistic concurrency control mechanisms.

Ontos implements this hybrid scheme through the combination of types of lock and modes of transaction

commit i.e. Writeintent or ReadlntenL

3/12/92

Appendix B Concurrency Control in OODBMS Page 78

B.2.4 Granularity Locking

Concurrency between objects can be achieved through locking. To what extent should the objects

be locked? Should it be at the object level or instance record level? Different constructs of OODBMS

will have different mechanisms that can operate at different granularity of objects, i.e. page, segment,

object, record level. The granularity chosen for locking would affect the performance which might slow

down the requests of users in a multi-user environment

If locking is chosen at the object level, then requests should be made on individual OIDs. If the

OODBMS supports object replication and that these replicated objects could reside in various segments,

locking would only be done on these requested objects.

However, if locking at the segment level is chosen, then a large proportion of the OODBMS

might be locked which includes the requested and non-requested objects. Locking purely at the object

level allow clients to share segments which is more efficient from the user's point of view. However,

facilities should be provided to lock the required objects easily. Locking at segment level is easier

because only a single specification is needed.

There are many types of read/write locks. In Ontos, there are the read/write locks with or without

readers and writers conflict, and null locks. In GernStone, there are read, write and exclusive locks.

ENCORE has a very similar locking scheme as Ontos : restrictive and non-restrictive read/write locks and

null locks. However, the actual meaning of each type is different as compared to Ontos.

Null locks are called soft locks and the others are called hard locks in the pessimistic scheme. In a

client/server architecture supporting pessimistic segment locking scheme, all objects explicitly requested

in the segment are hard locked and the non-requested ones uses soft lock. The client does not know

exactly which objects would be successfully obtained. Hence, soft locks are viewed as a convenience

rather than a necessity. If a hard lock cannot be granted, it is queued; soft locks are not queued. The

client requesting a hard lock is notified whether the lock was granted or denied, but is only notified if the

lock was granted for soft locks. Using soft locks, the size of the lock queue can be reduced and thus

minimising the amount of information returned to the user.

B.2.5 Comparison of pessimistic and 012timistic scheme

A pessimistic scheme avoids the overhead of undoing and redoing requests at the expense of

reduced concurrency. For example, two actions that examine and modify different parts of the same object

are not able to execute concurrently, even when there is no problem of conflict However, some schemes

in ENCORE and Ontos provides a modified non-restrictive read/write conflict which allows a client to

read an earlier version of the object while it is currently being written by another client.

An optimistic scheme on the other hand, avoids the overhead of delaying requests at the expense of

undoing and redoing requests. Therefore, a pessimistic scheme performs better than an optimistic scheme

when conflicts are frequent resulting from heavy transactions from many users.

3/12/92

Appendix B Concurrency Control in OODBMS Page 79

B,2,6 Synchronisation issues in existing methodologies

All the methodologies that have been examined so far: Booch, OMT, Rolland & Brunet and Coad

& Yourdon, none has specifically mention techniques to tackle synchronisation between objects in their

high level diagrams.

Synchronisation would be required if objects operate concurrently. Concurrency refers to the

potentially parallel execution of parts of a computation. In a concurrent computation, the components of

a program may be executed sequentially, or they may be executed in parallel. Two objects are inherently

concurrent if they can receive events at the same time without interacting.

Booch has indicated synchronisation in his object diagram, by which messages can exist in five

different forms. However, synchronous messages are most frequently applied in OOPL. A synchronous

message is one resulting from an operation that commences only when the sender has initiated the action

and the receiver is ready to accept the messages; the sender and receiver will wait indefinitely until both

parties are ready to proceed. A message is said to be asynchronous if a sender can intiate an action

regardless of whether the receiver is expecting the message. In his example in the Smalltalk-80,

concurrency is handled by the component, semaphore, in the class library. For C++ running under Unix

System V, there is a similar technique used, called shared memory. Again, semaphores are used to control

the access to a resource. Apparently, during the design stage, the effects of concurrent events should be

noted. However, the use of shared memory (leaving it to the operating system to handle concurrency of

objects) is not part of the object-oriented paradigm.

Since the real-world entities is modelled in terms of objects with messages passing between them,

it is possible that an object might receive two messages simultaneously. This is particularly true in

object-oriented real-time systems. At the top level diagram, using Booch's notation in the object diagram

to show the type of message passing between objects should be sufficient. However, at the

implementation stage, the designer would need to consider the mechanisms for controlling

synchronisation between objects in detail.

In OMT, it is acknowledged that OOPL such as Smalltalk and C++ is inadequate to support the

concurrency inherent in objects. Concurrent objects are identified in the dynamic model. However, there

are concurrent versions of Smalltalk, Extended Eiffel, and C++(ACTOR version 3.0) which are suitable

for use in a parallel and distributed environment.

In Rolland & Brunet' s example, they have also suggested that the set of operations to be triggered

when a particular situation occurs should be grouped and examined for synchronisation. This should be

done at the Analysis stage after all classes and their attributes have been identified.

Coad & Yourdon do not explicitly address this issue. However, in their specification of real-time

analysis, they do mention allocating an overall thread budget across the participating Services and

Message Connections, which is not explicit.

3/12/92

Case Study Description

MASSEY UNIVERSITY

Department of Information Systems

57.ODB Object-Oriented Databases

First Assignment - Postgres

Moa Insurance is a new venture offering a service to executives wishing to protect themselves in the
case of early redundancy. The company collects premiums which are used to build up a fund to
provide a supplementary income.

Due to expansion, the company has just acquired new office space, whch consists of part of a single
floor of a half-empty tower block. The area is rectangular, 40 metres by 15 metres, with access
through a double door in the centre of the short side nearest to the lifts , stairs and toilets.

Moa wishes to use a computer to assist in finding an optimum layout for staff desk space, equipment
space and enclosed offices which ensures that staff are located near to the people and facilities they
neyd to communicate with.

Organisation Details

The company has a board of 5 directors and managers, each of whom must have a closed-off area Sm
x 3m adjacent to the windows (ie along the long sides). All other staff are to be allocated rectan2:ular
areas in the open plan. The 10 section heads are allowed 4m x 2.5m, and the 40 other staff 3m x 2m
each. The receptionist's are must be adjacent to the entrance door.

Other areas to be planned are as follows:
Board Room (5m x 4m , enclosed)
2 small meeting/interview rooms (Sm x 3m, enclosed)
Reception seating area (4m x 4m, open plan)
Kitchen (3m x 2m, enclosed, must be adjacent to short side nearest the door)
Central computer, file servers, communications boxes (4m x 4m, enclosed)
Line printer/ fax room (3m x 2m, enclosed)
Central aisle (35m x 2m, open plan, running down length of floor area from door)

The organisation structure is as follows:
Finance Director - 2 section heads, each with 3 other staff
Sales Director- 3 section heads, each with 2 ocher staff
Policy Admin Director - 4 section heads, with 2,3, 5 and 7 staff respectively
Marketin2: and Plannin2: Director - 2 staff
Company Secretary - 5~ staff including receptionist,

also controls IT (1 section head with 4 other staff)

Database Content

a) A chain of versions of the planned layout, with identification of the staff member
occupying each space. Include rules to ensure no space is placed in a position which
overlaps another space, and that all spaces are fully within the overall floor area.

b) The company's organisation structure.

Queries to be Demonstrated

a) Place or move a space to a location on the floor area
b) Add, amend or delete a staff member within the organisation structure
c) Display the average distance apart of staff who work in the same section
d) Display, for each department, the average distance of staff from the printer and fax

Appendix C lmplemenatation details of Postgres Case Study Page 80

Appendix C Implementation details of Postgres Case Study

This section of Appendix describes in detail, the actual implementation techniques and problems

encountered in the implementation of the sample database on a floor layout plan. Anyone who wishes to

develop a database with Postgres should go through the demo firsL

Postgres version 3.0 was used on the Sunsparc station platform running SunOS 4.1.1. There had

been great difficulty at first trying to get Postgres to work on Sun3 machines running on SunOS 4.1.1.

The C functions and inheritance worked but the rules did noL System crashes occurred very often. It is

recommended that Postgres should be installed on DEC stations 3100 & 5000 running Ultrix 4.0 or

higher, Sun4 and Sunsparc stations running OS4.0 or higher. Postgres version 3.0 has also numerous

bugs.

Since Postgres is still a research prototype, updates can be obtained from University of

California.Berkeley. The Internet address is 128.32.149.1. There is a public folder in which anyone

could login as anonymous and make a binary file transfer. Large files or executable files are normally in

tar Z form. These would need to be uncompressed and extracted from the storage device once a copy was

successfully obtained :

uncompress filename.tar

tar -xvf filename.tar

C. I lmDlementation of the samDle Database

There were two steps involved in the Implementation stage once the initial Analysis stage had

been completed.

Firstly, the database was created and populated using Postquel commands. Secondly, the database

was tested to see if the functions respond and rules fire.

C.2 Creating and Populating the Database

Emacs files were required for

(a) creating objects(relations),

(b) definition of abstract data types,

(c) definition of functions, and

(d) populating the database with object instances.

First of all, instructions using Postquel for step (a), (b) and (c) was coded in the emacs file

officedb. This file was tested at the asterisk prompt. If Postgres does not show a warning message,

this means the above has been successfully constructed. A retrieval was then made. Since there were no

object instances, only the tuple containing the object (relation) attribute names were shown.

3/12/92

Appendix C lmplemenatation details of Postgres Case Study Page 81

Secondly, some sample instances were appended It would be unwise to populate the database with

all the instances at this stage. The tracing, officedboutput shows the complete population of

instances. Note the messages to indicate successful transaction.

C,3 Testing the Rules

It was necessary to test the formulated rules one by one. 1bree working windows were needed to

carry this out in Sun View or Open Windows:

(a) the first one was for running postgres in a console window.

(b) the second one was an emacs window for defining the rule using Postquel commands, e.g.

floor .def.

(c) the third one was also an emacs window containing test values that

would and would not cause the rule to trigger.

After writing the rules in postquel in (b), it was tested out in the window running Postgres(a). If

a warning sign appeared instead of a DEFINE sign, it would imply that the syntax of the postquel rule

was incorrect and was rejected by Postgres. Once the correct syntax was cleared, testing of the semantics

was then proceeded. The test values used in the third window were instances desired to test out the

rules(those that would cause the rule to trigger and those that don't).

Upon appending the incorrect values to the database, the rules should trigger(c).

In this exercise, two rules overlap and contain were tested. Overlap was used to test whether two

boxes intersect each other. The built-in postquel function && had unexpected result. Results were

shown for overlap! and overlap2.

In overlapl, two boxes, (36,10,38,13) and (32,9,34,12) were appended that overlap with existing

floor spaces. This successfully blocked that entry of the above two incorrect values into the database.

However, attempting to append a correct value (37.5,10,39.5,13) that did not touch the side of existing

boxes had been blocked also. See overlap I tracings.

In overlap2, the values were appended again but the rule was removed. The correct value was

appended. See overlap2 tracings.

Implementation of overlapping function using Postquel was not satisfactory as demonstrated in

overlap 1 and overlap2. In testoverlap, a C function was embedded within a rule which produced the

desired results. See overlapoutput.

We may conclude that from the above listing that && works fine for doing a retrieval and has a

bug in it when incorporating it into the rules.

Postgres allows instances of the same identifier to be appended many times. As a result there

would be many repetitive tuples due to iterative testing, making the database very untidy. The database

would need to be destroyed and created occasionally to tidy up occasionally. This was a time consuming

process.

Using rules would safeguard against appending incorrect values.

3/12/92

Appendix C lmplemenatation details of Postgres Case Study Page 82

C.4 Testing the Functions

Another approach of ensuring correct values in the database was through the use of functions.

Initially, incorrect values were allowed into the database. They were then retrieved by using these user­

defined functions.

Just like testing the rules, functions should also be tested one by one. Preferably, four windows

were required :

(a)

(b)

(c)

the first one was for running postgres in a console window,

the second one was an emacs window for editing C functions,

the third one was for compiling the C file into an object file so that it could be loaded into

the database,

(d) the fourth one was an emacs file containing the definition of the function, load command

and the postquel retrieve command.

The first window would have the asterisk prompt for running postgres. Writing C functions

would be done on the second window. C functions would be compiled in the third window. An object

file could be obtained by using the unix command executed in the third window :

cc filename.c -c -o filename.o

In this case, it would be

cc window.c -c -o window.o

A loading path was then defined for the successfully compiled object file. It was important to note

that the C filename must not be the same as the C function name. As an example, the function for

retrieving those boxes along the longside of the wall would be Window which was contained in the C file

named window.c.

To test out the C function, the function and the path on which the object file could be loaded was

defined, presuming that the incorrect values had been populated into the database. This emacs test file

called window.def should also contain a postquel query to retrieve all the incorrect values. Once the

function was tested working, the definition could then be incorporated into part of the database officedb.

In the testwindow tracings, those open_area locations that were and not along the longside of

the wall were retrieved. It was also tried on closed_area. In this exercise, assume that there were many

windows along the longside of the wall to make it simple.

Note that C functions may be inherited_ down the hierarchy as shown in testwindow output.

The same function could be applied throughout the subclasses (page 19 of the Postgres manual). This is

however not possible through the use of rules.

C. 5 Creating versions of the relations

The concept of versioning is also important in CAD/CAM. The example query showed creating a

version out of the closed_area class.

create version cal from closed_area["now"]\g

3/12/92

Appendix C lmplemenatation details of Postgres Case Study Yage IS-'

"Now" is a representation of a timestamp on the newly created version. Right now, closed_area

becomes the base class and cal becomes the working copy. Changes made to the version will not

propagate to the base class as shown in versionoutput. The merge command is only supported in

Postgres version 4.0(page 4 7 of the Postgres manual) and hence would not work in this case.

C.6 Loading a picture file in Postgres

PICASSO is a GUI toolkit for use with Postgres.

The object management feature of OODBMS should enable it to handle large objects like bitmap

also. Bitmap can be defined as type map in Postgres. However, this feature is not implemented yet It

would be useful if a photo of an employee could be displayed by supplying the identifier of a Postquel

retrieval command

Since there was a choice to use Postgres in Open Windows, X-Windows utilities could be used to

load a picture file directly, bypassing Postgres. Loading of picture files would not work in Sun View.

Firstly, sis-server machine had to treat ms-suna as a host which would then return a message.

Assuming on machine sis-labl2 :

sis-labl2 BLiew > xhost ms-suna

ms-suna being added to control list

Then login to ms-suna in the sis-server machine :

sis-lab12 BLiew > rlogin ms-suna

(return message)

Once in ms-suna, set up the shared library correctly so that once the xv command is invoked, it

will search the correct path. This is best appended in the .login file to save the trouble of typing it every

time:

setenv LD_LIBRARY_PATH /usr/openwin/lib

/usr 1/local/bin/X 11/usr/lib

Instruct X-Window to load the picture file unto machine sis-labl2 when the xv command is

executed. Then type in the name of the picture file.

ms-suna BLiew > setenv DISPLAY sis-labl2:0

ms-suna BLiew > xv filename

A photo of the employee would then be displayed at the top right hand comer of the screen.

Since, ms-suna and sis-server are different nodes, this further demonstrates the distribution

capability of Postgres where you can retrieve information from a remote location.

The following pages were the tracings of this exercise.

3/12/92

Appendix C lmplemenatation details of Postgres Case Study

r officedboutput */

ms-suna Bliew : createdb OFFICE
ms-suna Bliew : monitor OFFICE
Welcome to the C POSTGRES terminal monitor

G,

* \i officedb \g

Page 84

Query sent to backend is • define function boxarea(language = ·c·, returntype=int4) arg is
(box) as • thome/ms-suna/postgres/o" •
LOAD
Query sent to backend
Query sent to backend is •Ioad "/home/ms-suna/Bliew/window.o• •
LOAD
Query sent to backend is • create working_area(location = box) •
CREATE
Query sent to backend is "create open_a (working_area)"
CREATE
Query sent to backend is "create closed_area(name=char16)inherits(open_area,workcreate
staff(staff_id=char16, name=char16, age=int4, salary=int4,manager=char16)"
CREATE
Query sent to backend is • append group_area(location=·(25,3,30, 7)",purpose="BoardRm")"
APPEND
Query sent to backend is "append group_area(location="(14,9, 19, 12)", purpose=
"lnterviewRm")"
APPEND
Query sent to backend is •append group_area(location="(19,9,24, 12)",purpose=
"lnterviewRm")"
APPEND
Query sent to backend is "append group_area(location="(10,9, 14, 13)",purpose="CenComT
APPEND
Query sent to backend is "append group_area(location="(12, 13, 15, 15)", purpose=
"LinePrint")"
APPEND
Query sent to backend is •append group_area(location=·(o,4,2,7)" ,purpose=·Kitchen•)"
APPEND
Query sent to backend is append closed_area(location="(20,0,25,3)",staff_id="PN,
dept=·PolicyAdmin", name=·Cattel")"
APPEND
Query sent to backend is •append closed_area(location="(25,0,30,3)",staff_id="MP1 ·,
dept="Market&Plan",name=·Zdonik") •
APPEND
Query sent to backend is "append closed_area(location=·(30,0,35,3)",staff_id="SA",
dept="Sales·, name=·Maier") •
APPEND
Query sent to backend is •append closed_area(location=·(15, 12,20, 15)" ,staff_id="CS",
dept="CompanySec" ,name=·Kim•)•
APPEND
Query sent to backend is •append closed_area(location="(20, 12,25, 15)",staff_id="FI",
dept=·Finance",name="Lochovsky")"
APPEND
Query sent to backend is "append open_area(location="{0,2,3,4)",staff_id="pa1 ",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is •append open_area(location="{0,0,3,2)",staff_id="pa2",dept=
"PolicyAdmin")"
APPEND

3/12/92

Appendix C lmplemenatation details of Postgres Case Study Page 85

Query sent to backend is "append open_area(location="(3,2,6,4)",staff_id="pa3",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(3,0,6,2)",staff_id="pa4",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(6,2,9,4)",staff_id="pa5",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(locatipn="(6,0,9,2)",staff_id="pa6",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(9,2, 12,4)" ,staff_id="pa7" ,dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(9,0, 12,2)",staff_id="pa8",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(12,2, 15,4)",staff_id="pa9",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(12,0, 15,2)",staff_id="pa1 O",dept=
"PolicyAdmin")"
APPEND
Query sent to backe nd is "append open_ area(location=• (2, 4, 4, 7)", staff_id= "pa 11 •, dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(4,4,6, 7)",staff_id="pa12",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(G,4,8, 7)",staff_id="pa13",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(8,4, 10,7)",staff_id="pa 14",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(12,4, 14, 7)",staff_id="pa 15",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(12,4, 14, 7)",staff_id="pa 16",dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(14,4, 16, 7)",staff_id="pa 17" ,dept=
"PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(15,0, 17 .5,4)" ,staff_id="pash1 ",
dept= "PolicyAdmin")"
APPEND
Query sent to backend is "append open_area(location="(17.5,0,20,4)",staff_id="pash2",
dept= "PolicyAdmin")"
APPEND
Query sent to backend is " append open_area(location="(16,4, 18, 7)",staff_id="mp1 ",dept=
"MarPolicy")"
APPEND
Query sent to backend is "append open_area(location="(35,0,37,3)" ,staff_id="s1 ",dept=
"Sales")"
APPEND

3/12/92

Appendix C Im plemenatation details of Postgres Case Study Page 86

Query sent to backend is "append open_area(location="(37,0,39,3)",staff_id="s2",dept=
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND
Query sent
"Sales")"
APPEND

to backend

to backend

to backend

to backend

to backend

to backend

to backend

Query sent to backend
"ComSec")"
APPEND
Query sent to backend
"ComSec")"
APPEND
Query sent to backend
"ComSec")"
APPEND
Query sent to backend
"ComSec")"
APPEND
Query sent to backend
"ComSec")"
APPEND
Query sent to backend
"infotech")"
APPEND
Query sent to backend
"infotech")"
APPEND
Query sent to backend
"infotech")"
APPEND
Query sent to backend
"infotech")"
APPEND
Query sent to backend
dept= "infotech")"
APPEND
Query sent to backend
"fin")"
APPEND

3/12/92

is "append open_area(location="(38,3,40,6)",staff_id="s3",dept=

is "append open_area(location="(35, 7,38,9)" ,staff_id="s4 • ,dept=

is "append open_area(location="(38, 7,40, 1 0)",staff_id="s5",dept=

is "append open_area(location="(38, 10,40, 13)",staff_id="sS",dept=

is "append open_area(location="(30,3,32.5, 7)",staff_id="ssh1 ",dept=

is "append open_area(location="(32.5,3,35, 7)" ,staff_id="ssh2" ,dept=

is "append open_area(location="(35,3,37 .5, 7)" ,staff_id="ssh3" ,dept=

is "append open_area(location="(0,9,4, 13)",staff_id="Recep",dept=

is "append open_area(location="(O, 13,3, 15)",staff_id="cs1 ",dept=

is "append open_area(location="(3, 13, 6, 15)",staff_id="cs2" ,dept=

is "append open_area(location="(6, 13, 9, 15)",staff_id="cs3" ,dept=

is "append open_area(location="(4, 11, 7, 13)",staff_id="cs4",dept=

is "append open_area(location="(4,9, 7, 11)",staff_id="it1 • ,dept=

is "append open_area(location="(7, 11, 10, 13)",staff_id="it2",dept=

is "append open_area(location="(7,9, 10, 11)",staff_id="it3",dept=

is "append open_area(location="(9, 13, 12, 15)",staff_id="it4",dept=

is "append open_area(location="(25,9,27.5, 13)",staff_id="itsh",

is "append open_area(location="(34,9,37, 11)",staff_id="f1 ",dept=

Appendix C lmplemenatation details of Postgres Case Study Page 87

Query sent to backend is "append open_area(location="(34, 11,37, 13)",staff_id="f2",dept=
"fin")"
APPEND
Query sent to backend is "append open_area(location="(34, 13,37, 15)",staff_id="f3",dept=
"fin")"
APPEND
Query sent to backend is "append open_area(location="(25, 15,28, 15)",staff_id="f4",dept=
"fin")"
APPEND
Query sent to backend is "append open_area(location="(28, 13,31, 15)",staff_id="fS",dept=
"fin")"
APPEND
Query sent to backend is "append open_area(location="(31, 13,34, 15)",staff_id="f6",dept=
"fin")"
APPEND
Query sent to backend is "append open_area(location="(25,9,27.5, 13)",staff_id="fsh1 ",
dept= "fin")"
APPEND
Query sent to backend is "append open_area(location="(27.5,9,30, 13)",staff_id="fsh2",
dept= "fin")"
APPEND
Query sent to backend is "append open_area(location="(30,9,32.5, 13)",staff_id="fsh3",
dept= "fin")"
APPEND
Query sent to backend is "append staff(staff_id="f1 ", name="john", age=34, salary=4500,
manager="elliot")"
APPEND
Gl

Query sent to backend is " "

r floor.def */
define function notFloor(language = "c",

returntype = bool)
arg is (box)

as "/home/ms-suna/Bliew/floor.o" \g
load "/home/ms-suna/Bliew/floor.o" \g

Gl
* \i notFloortest \g

Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

3/12/92

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38, 7)1

Appendix C Implemenatation details of Postgres Case Study

I ssh1

I ssh2

I ssh3

I s6

I Sales

I Sales

I Sales

I Sales

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

I (40,13,38,10)1

Query sent to backend is "delete open_area where open_area.staff_id="s6""
CB.ETE
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35, 7) I

I (40, 1 o,38, 7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

Query sent to backend is " append open_area(location="(40,0,43,2)",staff_id="s6",
dept="Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I s6

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38, 7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

I (43,2,40,0) I

Page 88

Query sent to backend is "append open_area(location="(38, 10,40, 13)", staff_id="s6",dept=
"Sales")"
APPEND

3/12/92

Appendix C Implemenatation details of Postgres Case Study Page 89

Query sent to backend is "retrieve (open_area.all) where notFloor(open_area.location) and
open_area.dept="Sales""

I staff_id I dept I location

I ss I Sales I (43,2,40,o) I

Query sent to backend is " "

/* overlap1 */

retrieve (open_area.all) where open_area.dept="Sales"\g
delete open_area where open_area.staff_id="s6"\g
retrieve (open_area.all) where open_area.dept="Sales"\g

define rule overlap is
on append to open_area where new.location &&
open_area.location
do instead nothing \g

r These are overlapping boxes */
append open_area(location="(36, 10,38, 13)",staff_id="s6",dept="Sales")\g

append open_area(location="(32,9,34, 12)",staff_id="s6" ,dept="Sales")\g

retrieve (open_area.all) where open_area.dept="Sales"\g

/* This box does not touch the side of existing one */
append open_area(location="(37.5, 10,39.5, 13)" ,staff_id="s6",dept="Sales")\g

retrieve (open_area.all) where open_area.dept="Sales"\g

* Output for overlap1 *\
* \i overlap1 \g

Query sent to backend is " retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

3/12/92

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38,7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

Appendix C : lmplemenatation details of Postgres Case Study

I ssh3

I s6

I Sales

I Sales

I (37.5, 7,35,3)1

I (40, 13,38, 1 0)I

Query sent to backend is "delete open_area where open_area.staff_id="s6H
IE.ETE
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,0) I

I (39,3,37,0) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 10,38,7)1

I (32.5, 7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

Page 90

Query sent to backend is "define rule overlap is on append to open_area where new.location
&& open_area.location do instead nothing •
Cfft,JE

Query sent to backend is • append open_area(location="(36, 10,38, 13)" ,staff_id="s6",dept=
"Sales")"
APPEND
Query sent to backend is "append open_area(location="(32,9,34, 12)",staff_id="s6",dept=
"Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38, 7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

Query sent to backend is "append open_area(location="(37.5, 10,39.5, 13)", staff_id="s6",
dept="Sales")"

3/12/92

Appendix C Implemenatation details of Postgres Case Study

APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38, 7)1

I (32.5, 7,30,3)1

I (35, 7,32.5,3)1

I (37.5,7,35,3)1

Query sent to backend is " "

/* overlap2 */

retrieve (open_area.all) where open_area.dept="Sales"\g
delete open_area where open_area.staff_id="s6"\g
retrieve (open_area.all) where open_area.dept="Sales"\g

define rule overlap is
on append to open_area where new.location &&
open_ area. I ocation
do instead nothing \g

/* These are overlapping box */
append open_area(location="(36, 10,38, 13)",staff_id="s6" ,dept="Sales")\g

append open_area(location="(32,9,34, 12)" ,staff_id="s6" ,dept="Sales")\g
retrieve (open_area.all) where open_area.dept="Sales"\g
remove rule overlap\g

/* This box does not touch the side of existing one */
append open_area(location="(37.5, 10,39.5, 13)",staff_id="s6",dept="Sales")\g

retrieve (open_area.all) where open_area.dept="Sales"\g

* \i overlap2 \g

Query sent to backend is " retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept I location

3/12/92

Page 91

Appendix C : hnplemenatation details of Postgres Case Study

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I s6

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38, 7)1

I (32.5, 7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

I (40, 13,38, 1 O)I

Query sent to backend is "delete open_area where open_area.staff_id="s6""
IE.BE
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales··

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,0) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 10,38, 7)1

I (32.5, 7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

Page 92

Query sent to backend is "define rule overlap is on append to open_area where new.location
&& open_area.location do instead nothing •
lxFt.JE
Query sent to backend is • append open_area(location="(36, 10,38, 13)",staff_id="s6" ,dept=
"Sales")"
APPEND
Query sent to backend is "append open_area(location="(32,9,34, 12)" ,staff_id="s6",dept=
"Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept=·Sales""

I staff_id I dept

I s1

I s2

I s3

3/12/92

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,0) I

I (40,6,38,3) I

Appendix C lmplemenatation details of Postgres Case Study

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I (38,9,35,7) I

I (40, 1 o,38,7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

Query sent to backend is "remove rule overlap"
FEM)VE

Page 93

Query sent to backend is • append open_area(location="(37.5, 10,39.5, 13)", staff_id="s6",

dept="Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I s6

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,0) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38,7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

I (39.5,13,37.5,10)1

Query sent to backend is " "

r overlap.c Test if two boxes overlap ·,

typedef struct {
double xh, yh, xi, yl ;

} BOX;

r high and low coords • 1

#define ABS(X) ((X) > 0 ? (X) : -(X))

int Overlap(box1, box2)
BOX *box1 , *box2;

int result;

result = (

3/12/92

Appendix C lmplemenatation details of Postgres Case Study

(box1 ->xi <= box2->xl && box1 ->xi < box2->xh &&
box1 ->Xh > box2->xl && box1 ->xh <= box2->xh &&
box1->yl <= box2->yl && box1 ->yl < box2->yh &&
box1 ->yh > box2->yl && box1 ->yh <= box2->yh) 11

(box2->xl <= box1 ->xi && box2->xl < box1->xh &&
box2->xh > box1 ->XI && box2->xh <= box1 ->xh &&
box2->yl <= box1 ->yl && box2->yl < box1->yh &&
box2->yh > box1 ->yl && box2->yh <= box1->yh)) ;

return result;

}r overlap */

* \i testoverlap \g

Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ss

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,0) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 1 o,38,7)I

I (40, 13,38, 1 O)I

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

Query sent to backend is "delete open_area where open_area.staff_id="s6""
OCl£TE
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales""

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

3/12/92

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,0) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40, 10,38,7)1

I (32.5,7,30,3)1

Page 94

Appendix C : Implemenatation details of Postgres Case Study

I ssh2

I ssh3

I Sales

I Sales

I (35,7,32.5,3)1

I (37.5,7,35,3)1

Query sent to backend is "define rule overlapping is on append to open_area where
Overlap(new.location, open_area.location) do instead nothing"
lxFtJE

Page 95

Query sent to backend is "append open_area(location="(36, 10,38, 13)",staff_id="s6", dept=
"Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales··

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,0) I

I (40,6,38,3) I

I (38,9,35,7) I

I (40,10,38,7)1

I (32.5, 7,30,3)1

I (35,7,32.5,3)1

I (37.5,7,35,3)1

Query sent to backend is "append open_area(location="(37.5, 10,39.5, 13)",staff_id="s6",
dept="Sales")"
APPEND
Query sent to backend is "retrieve (open_area.all) where open_area.dept="Sales··

I staff_id I dept

I s1

I s2

I s3

I s4

I s5

I ssh1

I ssh2

I ssh3

I s6

•

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I Sales

I location

I (37,3,35,o) I

I (39,3,37,o) I

I (40,6,38,3) I

I (38,9,35, 7) I

I (40, 1 o,38, 7)1

I (32.5,7,30,3)1

I (35,7,32.5,3)1

I (37.5, 7,35,3)1

I (39.5, 13,37.5, 1 O)I

Query sent to backend is • •

3/12/92

Appendix C lrnplemenatation details of Postgres Case Study

/*window.def */
define function Window(language = "c", returntype=bool)
arg is (box)
as "/home/ms-suna/Bliew/window.o" \g
load "/home/ms-suna/Bliew/window.o" \g

typedef struct {
double xh, yh, xi, yl;

} BOX;
/* high and low coords * /

#define ABS(X) ((X) > O ? (X) : -(X))
#define XMAX 40
#define YMAX 15
#define XMIN o
#define YMIN 0

int Window(box)
BOX *box;
{
int result= ((box->yh == YMAX) 11 (box->yl == YMIN)) ;

return result;

/*Window*/

/* testwindow */
retrieve (open_area.all) where Window(open_area.location)
and open_area.dept="fin"\g

retrieve (open_area.all) where not Window(open_area.location) and
open_area.dept="fin"\g

retrieve (closed_area.all) where not Window(closed_area.location)\g

/* wi ndowoutput * I
* \i testwindow \g

Page 96

Query sent to backend is "retrieve (open_area.all) where Window(open_area.location) and
open_area.dept="fin""

I staff_id I dept

I f3

I f4

I f5

I f6

I fin

I fin

I fin

I fin

I location

I (37, 15,34, 13)1

I (28, 15,25, 15)1

I (31,15,28,13)1

I (34,15,31,13)1

Query sent to backend is "retrieve (open_area.all) where not Window(open_area.location) and
open_area.dept="fin""

3/12/92

Appendix C : lmplemenatation details of Postgres Case Study

I staff_id I dept

I f1

I f2

I fsh1

I fsh2

I fsh3

I fin

I fin

I fin

I fin

I fin

I location

I (37, 11,34,9)1

I (37, 13,34, 11)I

I (27.5, 13,25,9)1

I (30, 13,27 .5,9)1

I (32.5, 13,30,9)1

Query sent to backend is "retrieve (closed_area.all) where not Window
(closed_area.location)"

I name I location I dept I staff_id

3/12/92

Page 97

MASSEY UNIVERSITY

Department of Information Systems

57 .ODB Object-Oriented Databases

Second Assignment - Alternative Ontos Case Study

Case Study Description

Due to problems with electricity generation caused by low water levels in reservoirs, a new group has
been set up to keep a Hydrographic database of water volumes at generating stations, levels in
reservoirs, and capacity in catchment areas. It is planned to have graphics displays to show the data
and predictions in map format. You have been asked to advise on the design of an Object-Oriented
Database (using Ontos in this case).

'

Data Content

a) Lakes and reservoirs - polygonal boundary and enclosed area. Arnibutes include levels: normal,
actual, minimum allowed; surface area; %catchment - if 1 mm of rain falls on the catchment area,
by how much does the lake level rise?; average delay - how many days before it does rise?

b) Rivers and streams - to be plotted as a series of line segments, allowing flows to be aggregated
c) Catchment areas - apply with respect to a lake or measuring point. Consist of a polygonal

boundary and an enclosed area. Artributes include water "locked up" (eg in snow, ground
water etc) by month.

d) Measuring points on rivers and streams - with flow rates for each day
h) Generating stations - flow of water required per 1 % of generating capacity, flow of water actually

reaching the station
i) Weather stations - points with daily rainfall, snowfall and temperature records and forecasts
e) Overall area of "The Mainland" as outlined by a polygonal boundary
f) Major topographical point features for map display orientation, ie cities, towns, peaks, each

with name to be displayed in characteristic font for each type of feature
g) Daily power demand (forecast and actual) in terms of% capacity at which generating stations

have to run

Behavioural Specification

The purpose of the system is to operate a model of the Hydro generation situation, so that better
decisions can be made about use of other (thermal) power sources.

1 Precipitation in catchment areas is convened to "locked up" water, river flow or lake level
increase (with appropriate delay).

2 Temperature niggers melting of snow, releasing "locked up" water
3 Power generation is convened to river flow requirement.
4 Actual river flow is subtracted and shonfall is taken from lakes by opening sluices
5 Lake level trends are exrrapolated and management alened if the number of days before lakes

reach their minimum level drops to less than 1 month.
6 Weather forecasts are ignored.

Tasks - all students to complete a), b) and c), then EITHER d) OR e)

a)
b)
c)

*** d)

*
*** e)

Define the structure of the database (Ontos Types, Propenies and Procedures)
Outline the logic required for the methods (Procedures) (pseudo-code, not C++)
Write a sample OSQL query, and show how the Ontos Query Iterator would be used to
handle the result
Outline the structure of funher objects representing user interfaces to the system
(eg a map of the area, a schematic diagram of water flows, graphs of lake levels etc)
Write a skeleton set of C++ classes to support the structure and behaviour of the system

57.0DB Assignment 2 (alternative) Version of 8/5/92

Appendix D : Implemenatation details of Ontos Case Study Page 98

Appendix D Implementation details of Ontos Case Study

The Ontos Assignment will show :

(a) The organisation of real-world objects into Ontos schematic and other

requirements.

(b) Skeleton set of C++ codes and brief description of each Type

(c) Application of concurrency control protocol in main.c program

(d) Population of some instances through the main.c program

(e) Perform a simple OSQL in the main.c program

D, I Schematic Objects

Class Hydrogrnphic Object

The type Hydrography was the context object by which all other objects, like Lakes, Rivers, etc

form an "is part of" inheritance relationship with iL One of the characteristics of the object-oriented

paradigm was polymorphism. Therefore, it was possible to define virtual functions which would then

determine the correct behaviour at run-time for each subclass. For example, the function

display(argument) would display the correct picture depending on the argumenL

In the private part, references were made to the other persistent data objects. These data objects

were stored in the form of collections(lists, dictionary, array, etc) and addressed by the primary key.

Imagine that these persistent objects were equivalent to relations in relational databases.

In the public part, there were standard functions required for a type. Every type must have a

special activation constructor, APL which loaded the object from the server cache into the client cache and

thus "activating" the objecL They would also require a special member function called getDirectType()

which was virtually defined by the Ontos class Entity. Since it had a destructor, it should also have a

function called Destroy(). Also since it was persistent, then the function putObject and deleteObject

should be included.

class Hydrographic_Object: public Object {

private:

Reference priv_catchment;

Reference priv _genstations;

Reference priv _ weatherstations;

Hydrolterator* getlterator();

public:

3/12/92

Hydrographic_Object (char* nameofregion);

Hydrographic_Object (APL* theAPL);

Appendix D lmplemenatation details of Ontos Case Study

};

class Time

- Hydrographic_Object();

virtual Type* getDirectTypeO;

virtual void Destroy (OC_Boolean aborted= FALSE);

virtual putObject (OC_Boolean deallocate= FALSE);

virtual deleteObject (OC_Boolean deallocate= FALSE);

void zoomRegion(nameofregion);

llcontam.s also procedures for coordinating message passing activities and signals

II from remote sensors.

Page 99

The class Time serves as an abstraction to data from the Measuring_Points at regular intervals. It

may also be set to trigger the objects to perform some required function. To save space in the database, it

is declared the class as non-persistent

The function interval sends a pulse at regular interval to request for sampled data from the

Measuring_Point class.

class Time {

private:

unsigned priv_minute;

unsigned priv_day;

unsigned priv _month;

unsigned priv_year;

public:

};

class Lakes

Time(int min, int day, int month, int year);

Time{ char* DateTimeString);

Time(APL* theAPL);

interval();

Class Lakes and Rivers were subclasses of Catchment When there was rainfall and snowfall,

water would go into the catchment area. Precipitation was converted into "locked-up" water, i.e. there

was no immediate rise in level of the rivers and lakes. The class Lakes contained the private attributes.

We could picture this as in the form of a relation and the constructor was used to instantiate objects. The

object instance created was then stored in aggregate type Dictionary. Since the spatial attribute of the

class Lake was in the form of polygonal boundary and enclosed area. it would have to be entered into the

3/12/92

Appendix D : lmplemenatation details of Ontos Case Study Page 100

database through STUDIO, the form designer of Ontos. It could be drawn or a picture scanned.

Referencing in the persistent store Dictionary was done by the primary key priv_lakename.

Data logging was done periodically by the Type Time and entered into the persistent store of each

respective data objects so that they might later be retrieved for statistical purposes. The member function

comp_nonnal_lake_level compared the sampled data entered to the persistent store with the threshold

value. Opening_sluices would regulate the flow of the river when the threshold level of the lake was

reached. This function satisfy the behavioural specification no. 4 in the problem domain.

The function Lakelevel appeared as a function in the STUDIO window. When this function could

also be invoked by clicking the mouse on the STUDIO double-click box in which a graphical display of

the lake would be invoked.

The function extrapolate_graph satisfy behavioural specification no. 5.

class Lakes : public Lakes {

private: // Dictionary ofhydrography objects indexed

// Primary key need not be integer

char* Lakename;

int priv _nonnal_level;

int priv_min_level;

int priv _surface_area;

Reference priv_lakename;

public:

class Rivers

Lakes (char* Lakename, int normal_level, int min_level, int surface_area);

Lakes (APL* theAPL);

-Lakes();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted= FALSE);

virtual putObject (OC_Boolean deallocate= FALSE);

virtual deleteObject (OC_Boolean deallocate= FALSE);

void comp_normal_river_level(int nrl);

void extrapolate_graph();

void display _lake();

void opening_sluices();

);

This class was a subclass of Catchment. It was also a persistent object type and contains the

required virtual functions.

class Rivers : public Catchment {

3/12/92

Appendix D Implemenatation details of Ontos Case Study

};

private:

public:

Reference priv _rivemame;

char* RiverName;

int priv_length;

II Dictionary of Hydrography objects

Rivers (char* RiverName, int length);

Rivers (APL* theAPL);

-Rivers();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted;: FALSE);

virtual putObject (OC_Boolean deallocate;: FALSE);

virtual deleteObject (OC_Boolean deallocate;: FALSE);

class Catchment

Page 101

The class Catchment was made up of subclasses Rivers and Lakes. Member functions

%catchment was used to calculate the percentage rise in water level when 1 mm of rain or snow fell on

the catchment area. The function average_delay was for calculating the time taken for the water level in

the catchment area to rise. This was dependent on the temperature. This function satisfied behavourial

specification no. 1.

class Catchment: public Hydrographic_Object {

};

private: II Dictonary of Hydrographic_Objects

Reference priv_catchmentname;

public:

Catchment (char* CatchmentName);

River (APL* theAPL);

-River();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted;: FALSE);

virtual putObject (OC_Boolean deallocate;: FALSE);

virtual deleteObject (OC_Boolean deallocate;: FALSE);

void %catchment();

void average_delay();

3/12/92

Appendix D Implemenatation details of Ontos Case Study Page 102

class Measuring Points

This was stored as a persistent object The member function cal_flow _rate obtained a value from

remote flow sensor on the river. Data logging was done periodically by the systems clock and the daily

flow rate was entered into the persistent store. The function aggregate_flow summed up all the flow rate

of the rivers.

class Measuring_points: public Hydrographic_Object (

private:

};

Reference priv_mp;

int priv_flow_rate;

public:

Measuring_Points (int MeasuringPoint, flow_rate);

Measuring_Points (APL* theAPL);

-Measuring_Points();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted= FALSE);

virtual putObject (OC_Boolean deallocate= FALSE);

virtual deleteObject (OC_Boolean deallocate= FALSE);

void cal_flow _rate();

void aggregate_flow();

void lakelevel();

Class Generating Stations

This was also a persistent object The member function %generating_capacity was for calculating

the flow of water needed for one percent of generating capacity (MegaWatt). This function satisfy

behavioural specification no. 3.

class Generating_Stations :: public Hydrographic_Object (

private:

Reference priv _gen_name;

int priv _capacity;

public:

3/12/92

Generating_Stations (int gen_id, char* gen_name, int capacity);

Generating_Stations (APL* theAPL);

-Generating_Stations();

virtual Type* getDirectType();

Appendix D lmplemenatation details of Ontos Case Study

};

virtual void Destroy (OC_Boolean aborted= FALSE);

virtual putObject(OC_Boolean deallocate= FALSE);

virtual deleteObject(OC_Boolean deallocate= FALSE):

void %generating_capacity();

class Weather Stations

Page 103

The member functions, display_rainfall, display_snowfall, and display_temperature would give a

graphical display when the mouse was double clicked in the STUDIO window.

The function weather_forcast provided weather information for the next 24 hrs. However, this

information was not to be taken seriously. It satisfied behavioural specification no. 6.

class Weather_Stations: public Hydrographic_Object {

};

private:

Reference priv _ wea_name;

int priv _rainfall;

int priv_snowfall;

int priv _temp;

char* priv _forcast;

public:

Weather_Stations (char* wea, int rainfall, int snowfall, int temp,

char* forcast);

Weather_Stations (APL* theAPL);

-Weather_Stations();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted= FALSE);

virtual putObject (OC_Boolean deallocate= FALSE);

virtual deleteObject (OC_Boolean deallocate= FALSE);

void display _rainfall();

void display _snowfall();

void display_temperature();

void weather_forcast();

class City:: public Hydrographic_Object {

private:

Reference priv_cityname;

3/12/92

Appendix D : lmplemenatation details of Ontos Case Study

};

public:

City (char* cityname);

City (APL* theAPL);

City();

virtual Type* getDirectType();

virtual void Destroy (OC_Boolean aborted:;:: FALSE);

virtual putObject (OC_Boolean deallocate:;:: FALSE);

virtual deleteObject (OC_Boolean deallocate:;:: FALSE);

void display_city();

enum MRI_Status { onLakes, onRivers, on

class Hydrolterator {

private:

Hydrographic_Object* priv_hydro;

MRI_Status priv_status;

Aggregatelterator priv _iterator;

public:

Hydrolterator (Hydrographic_Object* theHydrographic_Object);

-Hydrolterator();

void Reset();

OC_Boolean moreData();

DataObject* operator() (); } ;

class HydroException : public Failure {

private:

Hydrographic_Object* priv_hydro;

public:

Hydrographic_Object* Hydrographic_Object() { return priv_hydro; }

virtual void Report() :;:: O;

OC_STANDARD_FAILURE_MEMBER_DECLS; } ;

Control Files

// Implementation for class Time

Time:: Time(char* DateTimeString) {

int min, day, month, year;

3/12/92

Page 104

Appendix D : Implemenatation details of Ontos Case Study

sscanf(DateTimeString, "%d / %d / %d / %d, &min, &day, &month, &day);

priv_minute = min;

priv _day = day;

priv _month = month;

priv _year = year;

Time:: Time(APL* theAPL) (}

Time :: interval() (

// Sends regular pulse to sensors for datalogging

// Implementation for class Hydrographic_Object

Hydrographic_Object :: Hydrographic_Object (APL* theAPL): (theAPL) (}

Type* Hydrographic_Object :: getDirectType() (

return (Type*) OC_lookup ("Hydrographic_Object");

Hydrographic_Object :: -Hydrographic_Object() (

Destroy (FALSE);

void Hydrographic_Object :: Destroy (OC_Boolean aborted) (

Entity* ent;

ent = priv_catchmentBinding(this); delete ent;

ent = priv _genstations.Binding(this); delete ent;

ent = priv_weatherstations.Binding(this); delete ent;

if (aborted) Object :: Destroy {aborted); }

Hydrographic_Object :: Hydrographic_Object(char* NameRegion): (NameRegion) (

directType (getDirectType());

// Examples of how to initialise a Reference to an object

priv_catchmentlnit(new List((Type*) OC_lookup ("Catchment")), this);

priv_genstations.Init(new List((Type*) OC_lookup ("Generating_Stations")), this);

priv_weatherstations.Init(new List((Type*)OC_lookup("Weather_Stations")), this); };

void Hydrographic_Object :: putObject (OC_Boolean deallocate) (

// Saves structure of the Hydrographic_Object lists and arrays

((List*) priv_genstations.Binding(this)) -> putObject (FALSE);

((List*) priv_weatherstations.Binding(this)) -> putObject (FALSE);

((List*) priv_catchmentBinding(this)) -> putObject (FALSE);

// Saves Hydrographic_Object itself

3/12/92

Page 105

Appendix D : lmplernenatation details of Ontos Case Study

Object :: putObject (deallocate);

void Hydrographic_Object :: deleteObject (OC_Boolcan deallocate) {

// Deletes the list objects only, not contents of the lists

((List*) priv__genstations.Binding(this}) -> deleteObject (deallocate);

((List*) priv_weatherstations.Binding(this)) -> deleteObjecl (deallocate);

((List*) priv_catchmentBinding(lhis)) -> deleteObject (deallocate);

// Delete the Hydrographic_Object list itself

Object :: deleteObject (deallocate);

Hydrographic_Object :: void womRegion(nameofregion) {

// display the name of the region on the STUDIO window

Page 106

// The Hydrographic_Object also contains other procedures for coordinating activities which in this

// case is not further elaborated.

Hydrolterator :: Hydrolt.erator (Hydrographic_Object* theHydrographic_Object) (

priv _hydro= theHydrography;

priv _iterator= (Aggregatelterator*) NULL;

// Iterator conslructors usually call Reset

Reset();

Hydrolterator :: -Hydrolterator () (

if (priv_iterator) delete priv_iterator;

void Hydrolterator :: Reset() {

// This resets the iterator after use }

OC_Boolean.Hydrolterator :: moreData() (

// This retrieves more elements from the List

// Implementation for Type Lakes

// Lakes. an ordered dictionary keyed by string.

Lakes :: Lakes (char* Lakename, int norrnal_level. int min_level. int surface_area) (

sscanf (.. %s / %d / %d / %d ... &Lakename, nonnal_level, min_level. surface_area);

priv_Jakename = Lakename:

priv_normal_level = normal_level;

priv_min_level = rnin_level;

Jriv _surfoce_area = surface_area;

priv_lakename.Init (new Dictionary (OC_String (fype*) OC_lookup ("Lakes", WriteLock), IsOrdered))

;)

3/12/92

Appendix D : lrnplemenatation details of Ontos Case Study

II Activation constructor

Lakes :: Lakes (APL* theAPL) : (theAPL) { }

Lakes :: -Lakes () { Destroy(FALSE); }

void Lakes:: Destroy (OC_Boolean aborted) (

II If the Lake object is already in memory

if (priv_lakename.isActive(this)) {

Entity* Ike= (Entity*)priv_lakename.Binding(this);

II Delete it

delete Ike;

II Don't forget to call the base Destroy

if (aborted) Object:: Destroy (aborted);

Type* Lakes : : getDirectType() (

return (Type*) OC_lookup ("Lakes"); }

void Lakes:: putObject (OC_Boolean deallocate) {

((Object*)priv_lakename.Binding(this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void Lakes:: deleteObject (OC_Boolean deallocate) {

((Object*)priv_lakename.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

int Lakes :: comp_nonnal_lake_level(arguments) (

II 1be system would compare water level data coming from

II Type Measuring_point with the set value. If it is lower than the set

// value, it would call extrapolate_graph function and sound an alann

II in the user interface object }

void Lakes :: extrapolate_graph(arguments) (

II Calls a graph plotting function to extrapolate a graph on the STUDIO

II window. Display a warning sign if the number of days before lakes level

II reach their minimum drops to less than 1 month. This function can be

II called by the user or when the minimum water level is reached.

void Lakes:: display_lake() (

II Display the picture of Lakes on the STUDIO window

II Implementation for Type Catchment

II Catchment, an ordered dictionary keyed by string.

Catchment:: Catchment (char* Catchmentname) {

3/12/92

Page 107

Appendix D : lrnplemenatation details of Ontos Case Study Page 108

sscanf ("%s ", &Catchmentname);

priv _catchmentname = Catchmentname;

priv _catchmentname.Init(new Dictionary (OC_String{Type*) OC_Iookup ("Catchment"),

lsOrdered));

// Activation constructor

Catchment:: Catchment (APL* theAPL): {theAPL) { }

Catchment:: -Catchment () { Destroy{ FALSE); }

void Catchment :: Destroy (OC_Boolean aborted) {

// If the Catchment object is already in memory

if (priv_catchmentname.isActive(this)) {

Entity* catch= (Entity*)priv_catchmentname.Binding(this);

// Delete it

delete catch;

II Don't forget to call the base Destroy

if (aborted) Object:: Destroy (aborted);

Type* Catchment :: getDirectType() {

return {Type*) OC_lookup ("Catchment");

void Catchment:: putObject (OC_Boolean deallocate) {

((Object*)priv_catchmentname.Binding(this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void Catchment:: deleteObject (OC_Boolean deallocate) {

((Object*)priv_catchmentname.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

Catchment:: void %catchment() {

II Calculate the percentage rise in water level when 1 mm of rain or snow falls on

II the catchment area

Catchment:: void average_delay() {

II 1be function average_delay calculates the time taken for the water level in the

I I catchment area to rise. This function must also access the temperature field

II of the object type Weather_Stations to calculate the amount of released water

II from the melting of snow

II Implementation for Type Rivers

II Rivers, an ordered dictionary keyed by string.

Rivers :: Rivers (char* river, int length) {

3/12/92

Appendix D : lmplemenatation details of Ontos Case Study

sscanf ("%s I %d ", rivec, length);

priv_rivername = river;

priv_length = length;

Page 109

priv_rivecname.Init(new Dictionary (OC_String(Type*) OC_lookup("Rivers"), lsOrdered));

II Activation constructor

Rivers :: Rivers(APL * theAPL) : (theAPL) { }

Rivers:: -Rivers() { Destroy(FALSE); }

void Rivers :: Destroy (OC_Boolean aborted) {

II If the Rivers object is already in memory

if (priv_rivername.isActive(this)) {

Entity* river= (Entity*)priv_rivemame.Binding(this);

II Delete it

delete rive.r;

II Don't forget to call the base Destroy

if (aborted) Object:: Destroy (aborted);

Type* Rivers :: getDirectType() {

ren.un (Type*) OC_lookup ("Rivers"); }

void Rivers:: putObject (OC_Boolean deallocate) {

((Object*)priv_rivemame.Binding(this))-> putObject (FALSE);

Object:: putObject (deallocate);

void Rivers :: deleteObject (OC_Boolean deallocate) {

((Object*)priv_rivemame.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

II Implementation for Type Measuring_Points

II Measuring_Points, an ordered dictionary keyed by string.

Measuring_Points :: Measuring_Points (char* mp) {

sscanf ("%s ", mp);

}

priv _mp = mp;

priv_flow_rate = flow_rate;

priv_mp.Init(newDictionary(OC_String(Type*)OC_lookup("Measuring_Point), IsOrdered));

II Activation constructor

Measuring_Points :: Measuring_Points (APL* theAPL): (theAPL) { }

Measuring_Points :: -Measuring_Points () { Destroy(FALSE); }

void Measuring_Points :: Destroy (OC_Boolean aborted) {

3/12/92

Appendix D : Implemenatation details of Ontos Case Study

// If the Measuring_Points object is already in memory

if (priv_mp.isActive(this)) {

Entity* measuringpoint = (Entity*)priv_mp.Binding(this);

II Delete it

delete measuringpoint;

II Don't forget to call the base Destroy

if (aborted) Object :: Destroy (aborted);

Type* Measuring_Points :: getDirectType() {

return (Type*) OC_lookup ("Measuring_Points");

void Measuring_Points :: putObject (OC_Boolean deallocate) {

((Object*)priv_mp.Binding(this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void Measuring_Points :: deleteObject (OC_Boolean deallocate) {

((Object*)priv_mp.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

void Measuring_Points :: cal_flow _rate() {

Page 110

II Cal_flow_rate gets a value from remote flow sensor on the river. Data logging is done

periodically by the systems clock and the daily flow rate is entered into the persistent store.

void Measuring_Points :: aggregate_flow() {

II aggregate_flow sums up all the flow rate of the rivers. This value is then

II send to the Type Rivers)

void Measuring_Points :: lakelevel() {

II Sends the water level of the lake to the Type Lakes }

II Implementation for Type Generating_Stations

II Generating_Stations, an ordered dictionary keyed by string.

Generating_Stations :: Generating_Stations (char* gen) {

sscanf ("%s / %d", gen, capacity);

priv_gen_name = gen;

priv_capacity = capacity;

priv_gen_name.Init(newDictionary(OC_String(Type*)OC_lookup

("Generating_Stations''), lsOrdered));

3/12/92

Appendix D : Irnplemenatation details of Ontos Case Study

// Activation constructor

Generating_Stations :: Generating_Stations{APL * theAPL) : (theAPL) {)

Generating_Stations :: -Generating_Stations() { Destroy(FALSE);

void Generating_Stations :: Destroy (OC_Boolean aborted) {

II H the Generating_Stations object is already in memory

if (priv__gen_name.isActive(this)) (

Entity* generatingstation = (Entity*)priv__gen_name.Binding(this);

II Delete it

delete generatingstation;

II Don't forget lo call the base Destroy

if (aborted) Object :: Destroy (aborted);

Type* Generating_Stations :: getDirectType() {

return (Type*) OC_lookup ("Generating_Stations'');

void Generating_Stations :: putObject (OC_Boolean deallocate) (

((Object*)priv__gen_name.Binding(this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void Generating_Stations :: deleteObjecl (OC_Boolean deallocate) (

((Object*)priv_gen_name.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

float Generating_Stations :: %generating_capacity(argument) (

II calculates the river flow to generate the required amount of Mega-Wan

II Implementation for Type Weather_Stations

II Weather_Stations, an ordered dictionary keyed by string.

Weather_Stations :: Weather_Stations (char* wea) {

sscanf ("%s I %d I %d I %d / %s", wea, rainfall, snowfall, temp, forcast);

priv_wea_name = wea;

priv _rainfall = rainfall;

priv_snowfall = snowfall;

priv_temp = temp;

priv_forcast = forcast;

priv _ wea_narne.lnil(newDictionary(OC_String(Type*)OC_lookup

("Weather_Stations"), faOrdered));

II Activation constructor

Weather_Stations :: Weather_Stations(APL* theAPL) : (theAPL) { }

Weather_Stations :: -Weather_Stations() { Destroy(FALSE); }

3/12/92

Page 111

Appendix D : Implemenar.ation details of Ontos Case Study

void Weather_Stations :: Destroy (OC_Boolean aborted) {

// If the Weather_Slations object is already in memory

if (priv_wea_name.isActive(this)) {

Entity* weatherstation = (Entity*)priv_wea_name.Binding(this);

II Delete it

delete weatherslation;

II Don't forget to call the base Destroy

if (aborted) Object :: Destroy (aborted);

Type* Weather_Stations :: getDirectType() {

return (Type*) OC_lookup ("Weather_Stations");

void Weather_Stations :: putObject (OC_Boolean deallocate) {

((Object*)priv_wea_name.Binding{this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void Weather_Points :: deleteObject (OC_Boolean deallocate) {

((Object•)priv_wea_name.Binding(this))-> deleteObject(FALSE);

Object:: deleteObject(deallocate);

void display _rainfall() {

II show on the STUDIO window, the daily rainfall in quadtree graphics

void display _snowfall() {

II show on the STUDIO window, the snowfall in quadtree graphics

void display_temperature() {

II show on the STUDIO window, the snowfall in quadtree graphics

void weather_forcasl() {

II display the latest information on the weather for the next 24 hours

II Implementation for Type City

II City, an ordered dictionary keyed by string.

City :: City (char* city) {

sscanf ("%s ",city);

priv_cityname = city;

priv_cityname.lnil(newDictionary(OC_String{Type*)OC_lookup("City"), IsOrdered));)

II Activation consbUctor

City:: City(APL* theAPL): {theAPL) {)

City :: --City() { Destroy(FALSE);)

void City :: Destroy (OC_Boolean aborted) {

II If the City object is already in memory

3/12/92

Page 112

Appendix D : lmplemenatation details of Ontos Case Study

if (priv_cityname.isActive(this)) {

Entity* city_nam == (Entity*)priv_cityname.Binding(this);

II Delete it

delete city _nam;

II Don't forget to call the base Destroy

if (aborted) Object:: Destroy (aborted);

Type* City:: getDirectType() {

return (Type*) OC_lookup ("City");

void City:: putObject (OC_Boolean deallocate) {

((Object*)priv_cityname.Binding(this)) -> putObject (FALSE);

Object:: putObject (deallocate);

void City :: deleteObject (OC_Boolean deallocate) {

((Object*)priv_cityname.Binding(this)) -> deleteObject(FALSE);

Object:: deleteObject(deallocate);

void City:: display_city() {

// Display a map of city on the STUDIO window

Configuring the database

Page 113

Firstly, an empty database called Hydrography was created. This could be done using DBATool.

The Ontos kernel is the area supporting the schema of the application. It might also be shared with other

different database applications. The OntosSchema is in the Unix directory, /usr/local/ONTOS/ONTOS

DB/db.

Let's say, all Ontos applications would be put in the subdirectory, OODB already created. A copy

of the Ontos Schema is needed and was renamed as HydroKern to be registered with the database Hydro in

the subdirectory OODB. DBATool was then invoked and the prompt will change. Hydro was registered

with HydroKern, which held the logical name of the kernel area Type syn and then quit from DBATool.

Once the above steps were done, the database Hydro could now be accessed.

> cd /home/ms-suna/OODB

> cp /usr/local/ONTOS/ONTOSDB/db/OntosSchema myKemel

>DBATool

>> register kernel Hydro Kem on ms-suna at /home/

rns-suna/OODB/myKemel

>> register database Hydro with kernel HydroKern

>> syn

>> quit

>

3/12/92

Appendix D : lmplemenatation details of Ontos Case Study Page 114

Implementing the application

1be schema was coded in the header file named "Hydrography.h". The definition of all methods of

all the different classes was done in Hydrography.ctl file, which would direct classify to provide an

explicit list of all other objects.

To classify the Hydrography schema in a UNIX environment, execute the command :

> classify +cHydrography.ctl +DHydrography_db

\+-dHydrography Directory -1/usr/local/ONTOS/h Hydrography .h

The +c switch identifies the control file; the +D switch identifies the database; the +d switch tells

classify to create a name directory called HydrographyDirectory and to record the names of schema objects

there; the -I switch locates the operating system directory containing ONTOS DB class definition files

that were included by Hydrography.h.

All methods of the application were contained in the control file, Hydrography .ctl. To compile

this file with cplus utility, type :

> cplus -c -g -1/usr/local/ONTOS/h Hydrography.ctl

As for the spatial characteristics of the application, they are displayed using STUDIO. Basically,

graphics or maps might be electronically scanned and stored as a bitmap file. It could then be stored as

persistent objects using the OC_XBitmap utility. These codes could be written in the control file :

OC_XBitmap *newXBitmap(char *bitmapfileNarne) {

OC_XBitmap *aBitmap = new OC_XBitmap();

aBitmair>eonstruct(bitmapfilenarne);

aBitmap->putObject();

return aBitmap;

In this case study example, several samples of the DBDesigner forms of object type Lakes and

several output maps of STUDIO windows were illustrated.

Ouezying the database

Ordinary SQL is not sufficient to query the database[37]. Visual query language is needed as an

alternative to query spatial attributes. This matter would not be examined further because it is beyond the

scope of this exercise.

To access the database, the application opened the database and started a transaction. The intial

transaction might involve populating the database with sample data. This piece of code was defined in

the main.c file of the database. It would then be possible to access the objects in the database, made

changes to them, and wrote them back. When the application had completed a consistent piece of work,

it would commit the transaction, and actually caused the database to be updated with the changes it had

3/12/92

Appendix D Implemenatation details of Ontos Case Study Page 115

made. Alternatively, it might decide to back out of the changes by aborting the transaction. The general

format of the main.c file is :

void main()

OC _ open ("databasename");

OC_transactionStart();

II do your transaction, i.e. add. delete, modify here

if (doSomething())

OC_transactionCommit();

else

OC_transactionAbort();

II do your query here to verify the results

OC_startQuerySession();

ExceptionHandler sql_handler ("SQLProblem");

Query Iterator* m yQiter,

if (sql_handler.doesNotOccur())

II do your OSQL coding here

else (

II do your coding to handle OSQL query error

delete myQiter;

OC_endQuerySession();

OC_close{) II for database

Ontos provides Object SQL to make queries over the database. A Query Iterator must also be set

up to process all programmatic queries, which is the required context for the Query Iterator. The session

begins with OC_startQuerySessionO and ends with OC_endQuerySession(). The session should always

include an exception handler. The Query Iterator is deleted at the end of the session.

The main.c program

The main.c program should perform two tasks. One was to populate instances into the database

and the other was to perform some queries to verify the results. The Ontos header files were enclosed in

angle brackets whereas the one containing the schema of the Hydrography was in inverted commas. It

was assumed earlier that the database had been created using the DBATool.

Transaction processing could only be done when the database was opened. The command

OC_open connects the client application to the server of the database and the opens the database for

access. As mentioned earlier, when the lake level fell to its minimum value, it would trigger an alarm.

Our methodology earlier on recommends that the objects that had the potential to trigger itself and other

3/12/92

Appendix D lmplemenatation details of Ontos Case Study Page 116

objects should have synchronisation mechanisms built into them. There could arise a situation when the

type Lakes would trigger when a new instance is writting to it To safeguard this, locking was applied to

this type by specifying WriteLock as one of the arguments of OC_lookup. This was shown in the

control file.

OC_transactionStart(XAConflictResponse = OC_waitOnConflict, BFP buffering =

OC_defaultBuffering) was chosen as one of the available concurrency control protocol available in Ontos

to handle conflict situation. Transaction would wait until the lock was relinguished by the locking

process to complete the database operation. The buffering was to optimise the overhead incurred between

the link communications between the client and the server. The OC_transactionCommit

(OC_cacheDisposition = OC_cleancache) would delete all the objects activated during the transaction in

the client cache once they were stored in the server. The last command OC_close closed the database and

cleaned up the client cache completely in preparation for opening up another database. This command

also killed all servers started by this client and the server cache was deallocated only if there are no other

clients using the server.

The Exception Handler object handled all the failures during transaction and query processing. The

comments associated with each step was fairly descriptive.

In the transaction part, aLake was a template of type Lake. It was used for the instantiation of

values of Lakes and stored as persistent objects in the database.

In the query part, a Query Iterator was set up, myQiter. In this simple OSQL example, the surface

area of lakes smaller than 50 square miles were retrieved. There were only two qualifying instances as

shown, Tamaki and Awatea. The heading was copied into the title string using the member function in

the Query Iterator object, yieldHeaderString. This member function would accept as its argument the title

string and the size of the buffer that holds this title string. The title string is then displayed using the

cout function specified in stream.h file. Next, all qualifying values were retrieved using the function

yieldRowString and displayed. This function placed the results in buf and the size of buf is specified in

maxlength.

// main program for Hydrography database

#include < Database.h >

#include< Directory.h >

#include < Exception.h >

#include < Object.h >

#include< Queryiterator.h >

#include < Type.h >

#include < stream.h >

#include "Hydrography.h"

3/12/92

Appendix D : Implemenatation details of Ontos Case Study

main(int argc, char** argv)

if (argc != 2) {

printf ("Usage: %s <database name> \n", argv[0]);

exil(l);

// dbName is the first argwnent

char* dbName = argv[l];

II Open the specified database

if(! OC_open(dbName)) {

// Issued error message if unsuccessful

printf (" Could not open %s \n" dbNarne);

exit(l);

OC_Boolean shouldCommit;

ExceptionHandlec itFailed ("Failure");

II Trap all failures

if (itFaileddoesnotOccur())

II Start a transaction

OC_transactionStart(XAConflictResponse = OC_waitOnConilict,

BFP buffecing = OC_defaultBuffering));

II Do application processing. Populate with some instance of Type Lakes

Lakes *aLake;

II Create instances of Lake and save them in the database

Lakes al...ake("Waitea", 50, 10, 60, 12:00);

al..ake->putObject;

Lakes al...ake("Avalon", 90, 20, 100, 12:00);

al..ake->putObject;

Lakes al...ake("Tamaki", 58, 22, 30, 12:00);

al..ake->putObject;

Lakes al...ake("Awatea", 33, 10, 45, 12:00);

al...ake->putObject;

II Commit a ttansaction

OC_transaction Commit(OC_cacheDisposition = OC_cleancache);

else

II Handle any failures, prevent recursive failures

itFailedremoveFromStack ();

printf ("\n \n \t !! Failure: %s: %s \n ",

3/12/92

Page 117

Appendix D : Implemenatation details of Ontos Case Study

itFailed.handled_exception -> failureName ();

itFailed.handled_exception -> message ());

II Rollback any changes

OC_transaction Abort (OC_doNothing);

// do your query here to verify the results

OC_startQuerySession();

}}

ExceptionHandler sql_handler ("SQLProblem'');

char Titles[128];

char buf{80];

int maxlength = 128;

Querylterator* myQiter;

if (sql_handler.doesNotOccur()) II handle all OSQL exceptions

II create the Query Iterator

myQiter = new Query Iterator("select name, priv _normal_level,

priv_min_level from Lakes where priv_surface_area < 50 ");

strcpy(Titles, " NameofLake, Norm Level, Min Level'');

myQ Iter->yieldHeaderS tring(Titles, maxlength);

cout << Titles << '\n";

while (myQiter->moreData()) II retrieve all values if not exhausted

myQiter->yieldRowString(buf, maxlength);

cout << buf << '"'n";

II get the results as one character string of text and print them

else {

itFailed.handled_exception -> failureName ();

itFailed.handled_exception -> message ());

delete myQiter;

OC_endQuerySession();

OC_close(dbName, cleanAll= FALSE);

exit(O);

3/12/92

Page 118

Appendix E : Future Directions of OODBMS Page 119

Appendix E ; Future Directions of OODBMS
OODBMS is still a very new area. Until now, it is not known if any organisation in New

Zealand uses OODBMS although in United States, they are highly marketed. The current research area

into OODBMS may broadly be classified into :

(1) Formalisation of Object-Oriented Methodology

(2) Query Processing

(3) Architectures for Object Data Management

(4) Rule Management

(5) Distributed Extended RDBMS and OODBMS

(6) Visual Query Language

(1) Concurrency Control Techniques

(8) Indexing and Clustering

(9) Crash Recovery

(10) Access Methods

The above topics would be briefly discussed, the problems these research would address and the

institutions involved.

E. l Formalisation of Object-Oriented Methodology

As mentioned earlier in chapter 3, there is yet a universally accepted object-oriented data model.

The existing OODBMS, including extended relational databases, places a lot of emphasis on the usage

and programming part. Little has been described on the Analysis and Design. Our proposed

methodology in chapter 5 attempts to address this issue.

What can be done to strengthen the connection between theory and system builders in object­

oriented development? As OODBMS theory is relatively new, support will increase only if more object

database theory is seen to impact actual systems. For example, tool builders would like the developers of

new database design algorithms to examine how the algorithm will behave if users should supply

erroneous or incomplete input.

There are also numerous research effort in this area coming from universities like Stanford and

Texas and also software houses like Object Design Inc, Data Integration Inc, and the MITRE Corp.

E.2 Query Processing:

The decreasing cost of computing hardware makes it economically viable to reduce the response

time of today's commercial database systems by using parallel execution. Parallel execution is one

source of high performance. This is done by optimising Select-Project-Join (SPJ) queries for parallel

execution. The need to reduce response time is evident in decision support applications in which human

beings pose complex queries and demand interactive responses. For example, a system for stock portfolio

3/12/92

Appendix E : Future Directions of OODBMS Page 120

managers is capable of running a query at the click of a button and getting a graphical results of many

categories of stocks. Achieving a reasonable response time is vital. In some cases, it is so important

that the response time is at most two seconds.

Many query languages for object-oriented database management systems have been proposed in the

last few years. Currently, a serious problem exists in their optimisation. The implementation of a query

optimiser is still an awkward and delicate operation. The essence of a query optimisation is to find an

execution plan that minimises a cost function. An optimisation process traditionally involves two

deeply connected levels that are qualified as logical and physical. The logical level uses the semantic

properties of the language in order to find expressions equivalent to the one given by the programmer

(query rewriting done by the DBMS). The physical level uses a cost model based on system informations

to choose the best algorithm for the evaluation of a given expression. Since a lot of knowledge regarding

this area has been derived from the relational database systems, much effort has been done to adapt the

techniques developed for the RDBMS to the OODBMS environmenL However, the characteristics of the

object-oriented environment had lead to consider entirely new techniques. Current investigation is to

integrate in a common simple framework the different techniques that have been proposed to support the

object-oriented model. XSQL is one such proposal put forward by Michael Kifer, Won Kim, and

Yehoshua Sagiv.

E.3 Architectures for Object Data Management

An OODBMS provides persistence and transaction management for objects. Inter-object references

are typically represented by 32-bit pointers in programming language implementations. However, this is

too restrictive for database systems. For this reason, OODBMS typically use objects oids of 64 to 96

bits. The choice of an architecture is highly relevant to the users, as the selected architecture influences

the performance characteristics, ease of use in the application development, the size of an application's

executable, and both source and compatibility of existing libraries. This area of research examines the

problem of representing inter-object references using a greater number of addressing bits.

E.4 Rule Management

Designers of traditional database management systems have long wanted to transform databases

from passive repositories for data into active systems that can respond immediately to a change in state of

the data, an event, or a transition between states. Many problems need to look into such as :

(1) Design of a suitable language for expressing active rules

(2) Design of a condition-testing mechanism for rules that is efficient enough to keep track of

fast transaction processing

(3) integration of rule condition testing and execution with the transaction processing system

3/12/92

Appendix E : Future Directions of OODBMS Page 121

Besides Postgres, there are also other efforts to provide extensions to relational database.

Examples are Ingres and Ariel. The Ariel system is an implementation of a relational DBMS with a

built-in rule system developed by the Database Systems Research and Development Center at the

University of Florida.

E.5 Distributed Extended RDBMS and OODBMS

There have been growing research efforts in the area of parallel database systems during the past

few years. XPRS is a multi-user parallel database management system that is currently under

development at the University of California, Berkeley based on Postgres. It is implemented on a shared­

memory multiprocessor and a disk array.

Objectivity/DB has delivered to production use a fully distributed OODBMS architecture, where

full distribution includes distribution of data and control. Distribution of data allows object to reside and

execute anywhere on the network, and to be used anywhere on the network, transparently, by users and

applications that need not be aware of the object's actual location and without any server bottlenecks.

E,6 Visual Query Language

Besides be able to query the OODBMS by object SQL, there is current research on a new visual

and declarative language. An example is DOODLE (Draw an Object-Oriented Database LanguagE). The

main principle behind the language is that it is possible to display and query the database with arbitrary

pictures. The users are allowed to tailor the display of the data to suit the application at hand or their

preferences. The user-defined visualisations are to be stored in the database, and the language to express

all kinds of visual manipulations. The semantics of the language is given by a deductive query language

for object-oriented databases.

SNAP is a graphics-based Schema Manager developed at the University of Southern California

where visual query language is supported.

E,7 Concurrency Control Techni<wes

Commercial OODBMS generally claim to have very fast data access. Some benchmarks have

shown that OODBMS perform very well in certain single-user application areas. But many commercial

database applications have challenging concurrent, multi-user performance requirements. Traditional

concurrency control protocols can slow down the overall system performance of an OODBMS to the

point where it has no real performance advantages over non-OODBMS products. New concurrency

control protocol need to be develop whic;h are appropriate to justify performance goals. Ontos Inc. is

carrying out research in this area.

E,8 Indexing and Oustering

The support of the superclass-subclass concept in OODBMS makes an instance of a subclass also

an instance of its superclass. As a result, the access scope of a query against a class in general includes

3/12/92

Appendix E : Future Directions of OODBMS Page 122

the access scope of all its subclasses. To support the hierarchical relationship efficiently, the index must

achieve two objectives. Firstly, the index must support efficient retrieval of instances from a single

class. Secondly, it must also support efficient retrieval of instances from classes in a hierarchy of

classes. A new index called H-trees has been proposed at the National University of Singapore to support

retrieval for the relationship. A performance analysis is conducted and both experimental and analytical

results indicate that H-tree is an efficient indexing structure for OODBMS.

In recent years a number of clustering algorithms for OODBMS have appeared to improve the

performance by placing on the same page related sets of objects, thus facilitating fast access. More of

such clustering algorithms are under exploration from the Dept of Computer Science, University of

Wisconsin, Madison.

E .9 Crash Recovery

Networks of powerful workstations and servers have become the computing environment of choice

in many applications. As a result, most recent commercial and experimental DBMS have been

constructed to run in such environments e.g. Sybase. These systems are referred to as client-server

DBMS. Recovery has long been studied in centralised and decentralised database systems, and more

recently in architectures such as shared-disk systems and distributed transaction facilities. However, little

has been published about recovery issues for client-server database systems especially object-oriented

ones. Research is carried out by the Dept. of Computer Science, University of Wisconsin, Madison in

this area using EXODUS.

E. IO Access Methods

One of the requirements for the object database is the ability to handle spatial data. Spatial data

arise in many applications, including cartography, CAD, computer vision and robotics. The University

of Maryland is currently researching into the use of parallelism to accelerate the performance of spatial

data access methods. To do this, the hardware architecture would need to be re-arranged and the physical

data structure stored in the form of multiplexed R-tree. A nwnber of forms ofR-tree are created and their

performance studied in terms of response time and load balancing.

3/12/92

Bibliography Page 123

Bibliography

Books

1. Avison D.E., Fitzgerald G. Information Systems Development : Methodologies, Techniques and

Tools. Blackwell Scientific Publications 1988.

2. Bancilhon, Francois & Delobel, Claude & Kanellakis, Paris. Building an Object-Oriented

Database System : The Story of 02. Morgan Kaufmann Publishers 1992.

3. Batezael, Daniel. Du Pont RIPP Presentation. Information Engineering Associates 1988.

4. Booch, Grady. Object-Oriented Design with Applications. Benjamin/Cummings 1990.

5. Budd, Timothy. An Introduction to Object-Oriented Programming. Addison-Wesley 1991.

6. Cauell,RickG. Object Data Management. Addison-Wesley 1991.

7. Coad, Peter & Yourdon, Edward. Object-Oriented Analysis. Prentice-Hall 1991.

8. Coad, Peter & Yourdon, Edward Object-Oriented Design. Prentice-Hall 1991.

9. Gilb, Tom. Principles of Software Engineering Management. Addison-Wesley 1988.

10. Henderson-Sellers, Brian. A Book of Object-Oriented Knowledge. Prentice-Hall 1991.

11. Jackson Michael. System Development. Prentice-Hall 1983.

12. Jacobson, Ivar & Christensen, Magnus. Object-Oriented Software Engineering. Addison-Wesley

1992.

13. Kaehler, Ted & Patterson, Dave. A Taste of Smalltalk. W.W. Norton & Company 1986.

14. Kim, Won & Lochovsky, Frederick. Object-Oriented Concepts, Databases, and Applications.

ACM Press 1989.

15. Kim, Won. An Introduction to Object Oriented Databases. MIT Press.

3/12/92

Bibliography Page 124

16. Lippman, Stanley. The C++ Primer. Addison-Wesley 1992.

17. Martin, James and Palmer, Ian. An Introduction to Information Engineering Methodology.

James Martin & Company 1991.

18. Martin, James. Rapid Application Development. Macmillan 1991.

19. Meyer, Bertrand. Object-Oriented Software Construction. Prentice-Hall 1988.

20. Mullin, Mark. Rapid Prototyping for 00 Systems. Addison-Wesley 1990.

21. Olle, T. William. Information Systems Methodologies: A framework of understanding.

Addision-Wesley 1992.

22. Ontos Manuals: Developer's Guide, First-Time Users Guide, OSQL Guide, and Tools & Utilities

Guide. Ontos Incorporated 1991.

23. Postgres Manual. University of California, Berkeley.

24. Rumbaugh, Blaha, Premerlani, Eddy, Lorensen. Object-Oriented Modelling and Design.

Prentice-Hall 1991.

25. Silver, Gerald A., Silver, Myrna L. Systems Analysis and Design. Addison- Wesley 1989.

26. Skidmore, Steve, Wroe, Brenda. Introducing Systems Design. NCC Blackwell 1990.

27. Sommerville, Ian. Software Engineering. Addison-Wesley 1989.

28. Stroustrup, Bjame. The C++ programming language. Addison-Wesley 1992.

29. Van Assche, F & Moulin, B & Rolland, C. Object-Oriented Approach in Information Systems.

North-Holland 1991.

30. Zdonik, S & Maier, D. Readings in object-oriented database systems. Morgan Kaufmann(1990).

3/12/92

Bibliography Page 125

Journal Articles

31. Bailin, S.C. An object-oriented requirements specification metlwd. Comm ACM, Vol 32 No 5,

1989, pp 608-623.

32. Barclay, P. J. & Kennedy, J. B. Semantic integrity for persistent objects. Journal of Information

and Software Technology. Vol 34 No 8 Aug 1992. pp 533-541.

33. Beynon-Davies, P. Entity models to object models: object-oriented analysis and database design.

Journal of Information and Software Technology. Vol 34 No 4 Apr 92.pp 225-262.

34. Blaha, Michael & Premerlani, William & Rumbaugh, James. Relational Database Design using

an Object-Oriented Metlwdology. Comm of ACM, April 1988, Vol 31 No 4. pp 414-427.

35. Bloom, Toby & Zdonik, Stanley. Issues in the Design of Object-Oriented Database Programming

Languages. OOPSLA '87. pp 441-450.

36. Dickenson, Holly & Calkins, Hugh. The economic evaluation of implementing a GIS.

International Journal Geographical Information Systems, 1988 vol 2 no. 4. pp 307-327.

37. Egenhofer, Max. Why not SQL? International Journal Geographical Information Systems.

International Journal Geographical Information Systems, 1992 vol 6 no. 2. pp 71-85.

38. Fosdick, Howard. Ten Steps to AD/Cycle. Datamation. 1 Dec 1990. pp 59-64.

39. Hayes, Fiona & Coleman, Derek. Coherent Models for Object-Oriented Analysis. OOPSLA '91

pp 171-183.

40. Henderson-Sellers, Brian & Edwards, Julian. The Object-Oriented Systems Lifecycle. Comm

ACM, Vol 33 No 9, 1990, pp 142-159.

41. Jacobson, Ivar. Object-Oriented Development in an Industrial Environment. OOPSLA '87

Proceedings pp 183-191.

42. Khoshafian, S. Insight into object-oriented databases. Journal of Information and Software

Technolgy. Vol 32 No 4 May 1990. pp 274-289.

43. Korson, Tim & McGregor, John. Understanding Object-Oriented : A Unifying

Paradigm. ACM, Vol 33 No 9, 1990, pp 41-60.

3/12/92

Bibliography Page 126

44. Lamb, Landis, Orenstein, Weinreb. The ObjectStore Database System. Comm of ACM Oct

1991 Vol 34 No 10. pp 51-63.

45. Lee, The. Borland' s Bridge to OOP. Datamation, 15 Jan 1992.

46. Lohman, Lindsay, Pirahesh, Schiefer. Extensions to Starburst: Objects, Types, Functions and

Rules. Comm of ACM Oct 1991 Vol 34 No 10. pp 95-109.

47. McLeod, D. Perspective on object databases. Journal oflnformation and Software Technology.

Vol 33 No I Feb 1991. pp 13-21.

48. 0 . Deux. et al. The 02 System. Comm ACM, Vol 34 No 9, Oct 1991, pp 35-48.

49. Otis, Allen & Stein, Jacob & Butterworth, Paul. The Gemstone Object Database Management

System. Comm ACM, Vol 34 No 9, Oct 1991, pp 65-77.

50. Ricciuti, Mike. The Easy Way to OOPS. Datamation, 1 Feb 1992. pp 24-27.

51. Roberts, S.A. & Gahegan, M & Hogg, J. & Hoyle, B. Application of object-oriented databases

to geographical information systems. Journal of information and software technology vol 33 no 1

Jan 1991. pp 38-46.

52. Rolland, Colette & Brunet, Joel. Object Database Design. Object Management, BCS Data

Management Specialist Group, 1992. pp 97-108.

53. Schussel, George. The Promise and the Reality of AD/Cycle. Datamation. 15 Sep 1990.

pp 69-73.

54. Semich, J. William. Open CASE Emerges as AD/Cycle Lags. Datamation. I Mar 1992.

pp 30-38.

55. Shuter, Sally & Mellor, Stephen. An 00 Approach to Domain Analysis. ACM SIGSOFT

Software Engineering Notes Vol 14 no 5, Jul 1989, pp 66-77.

56. Stonebraker, Michael & Hanson, Eric & Potamianos, Spyros. The Postgres Ru.le Manager.

IEEE transactions on Knowledge and Data Engineering. Vol 14 No 7 July 1988, pp 897-906.

3/12/92

Bibliography Page 127

57. Stonebraker, Michael & Kemnitz, Greg. The Postgres Next-Generation Database Management

System. Comm of ACM Oct 1991, Vol 34 No 10. pp79-92.

58. Stonebraker, Michael & Rowe, Lawrence & Hirohama, Michael. The Implementation of

Postgres. IEEE transactions on Knowledge and Data Engineering. Vol 2 No 1, Mar 1990,

pp 125-141.

59. Stonebraker, Michael. Proceedings of the 1992 ACM SIGMOD International Conference on

Management of Data, 2-5 June 1992, San Diego, California. Vol 21, Issue 2.

60. Tagg, Roger. Integrating database systems - is 'object-oriented' the answer? Database Technology

1990 Vol 3 No2-4. pp 47-54.

61. Wirfs-Brock, Rebecca J & Johnson, Ralph E. Surveying current research in object-oriented design .

Comm of ACM Sep 1990 Vol 33 No 9. pp 104-124.

62. Worboys, Michael & Shaw, Hilary & Maguire, David. Object-Oriented Modelling/or Spatial

Database. International Journal Geographical Information Systems, 1990 vol 4 no 4, pp 369-383.

63. Wybolt., Nicholas. Experiences with C++ and Object-Oriented Software Development. ACM

SIGSOFf Software Engineering Notes vol 15 no 2, Apr 90 pp 31-39.

3/12/92

