Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

PURIFICATION AND PROPERTIES OF URACIL DEHYDROGENASE FROM Nocardia corallina

A thesis presented in partial fulfilment of the requirements for the degree of

> Doctor of Philosophy in Biochemistry at Massey University New Zealand

Taypin Payakachat 1976

ABSTRACT

Uracil dehydrogenase (EC 1.2.99.1), an enzyme which catalysed the oxidation of uracil or thymine to the corresponding barbituric acids, has been purified in a typical preparation, 85-fold with an 18% recovery of the initial activity present in a cell-free extract from Nocardia corallina. The enzyme was considered to be 95-98% pure by gel electrophoresis. It has a molecular weight of approximately 298 000, determined by both gel filtration and sedimentation equilibrium centrifugation and consists of two each of three dissimilar subunits, with molecular weights of 91 000, 36 000 and 21 000 as determined by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. The spectrum of the enzyme is similar to that of milk xanthine oxidase and rabbit liver aldehyde oxidase (Rajagopalan & Handler, 1964), and is typical of nonheme iron flavoproteins. The flavin prosthetic group was identified as flavin adenine dinucleotide. It was demonstrated that the enzyme contains, per mole of protein, 1 mole of FAD, 4 atoms of nonheme iron and 4 moles of labile sulphide. The amino acid composition of uracil dehydrogenase has been determined. Other properties reported for the enzyme include substrate and electron acceptor specificity, K_m for uracil and thymine, pH optimum, and the effect of various inhibitors on enzyme activity. In addition, the purified enzyme has been shown to exhibit 'aerobic dehydrogenase' activity.

ii

ACKNOWLEDGEMENTS

The subject for this thesis was suggested by my supervisors, Professor R.D. Batt and Dr. J.G. Robertson and I thank them for their guidance, advice and encouragement throughout the investigation.

I am also grateful to Dr. G.G. Midwinter for the amino acid analysis, Dr. R.D. Reeves for the atomic absorption spectrophotometric estimations and the late Dr. J.W. Lyttleton for the analytical ultracentrifugation data.

For helpful discussions and comments I am indebted to many people working in the Massey area, especially Dr. I.G. Andrew, Dr. J.W. Tweedie and Dr. A.R. Cashmore.

I thank my wife, Patraporn, for her assistance in the preparation of this manuscript and for her patience throughout this work.

I am indebted to the Government of New Zealand for a Colombo Plan Scholarship.

TABLE OF CONTENTS

			Page		
ABSTRA	CT ,		ii		
ACKNOWLEDGEMENTS					
TABLE OF CONTENTS					
LIST OF TABLES					
LIST O	F FIGU	JRES	xi		
CHAPTER	R 1.	INTRODUCTION	1		
1.1 Ge	eneral	l introduction	1		
1.	.1.1	Pyrimidine catabolism	1		
1.	.1.2	Uracil dehydrogenase	9		
1.2 A	im of	the investigation	11		
CHAPTER	R 2.	MATERIALS AND METHODS	12		
2.1 Sc	ource	of materials	12		
2.2 P	repara	ation of columns for enzyme purification	15		
2	.2.1	Sepharose-4B	15		
2	.2.2	DEAE-cellulose	16		
2	.2.3	Calcium phosphate gel deposited on	16		
		cellulose			
2	.2.4	DEAE-Sephadex A-50	17		
2	.2.5	Sephadex G-200	17		
2.3 An	nalyti	ical methods	17		
2	.3.1	Spectrophotometry	17		
2	.3.2	Fluorimetry	18		
2	•3•3	Protein estimation	18		
		2.3.3a Standard protein assay	18		
		2.3.3b Alternative assays	18		
2	•3•4	Estimation of pyrimidines	18		

		Page
2.3.5	Assays for uracil dehydrogenase	25
	activity	
	2.3.5a Spectrophotometric assay	25
	(i) Standard enzyme assay	25
	(ii) Alternative enzyme assay	26
	(iii) Anaerobic enzyme assay	27
	2.3.5b Assay of uracil dehydrogenase	27
	activity using an oxygen	
,	electrode	
2.3.6	Identification and estimation of FAD	29
	2.3.6a Identification of FAD	29
	(i) Paper chromatography	29
	(ii) Fluorescence analysis	30
	(iii) Reactivation of D-amino-	30
	acid oxidase apoenzyme	
	2.3.6b Estimation of FAD	30
	(i) Spectrophotometric assay	30
	(ii) Fluorometric assay	30
2.3.7	Metal analyses by atomic absorption	31
	spectrophotometry	
2.3.8	Amino acid analysis	32
2.3.9	Analysis of labile sulphide	33
2.3.10	Molecular weight estimation	33
	2.3.10a Ultracentrifugation analysis	33
	2.3.10b Sephadex G-200 gel filtration	34
	2.3.10c Electrophoresis	35
2.3.11	Polyacrylamide gel electrophoresis	35
_	2.3.11a Polyacrylamide gel electro-	35
	phoresis of the native enzyme	
		1.

•

v

			Page
		2.3.11b SDS-polyacrylamide gel electro-	37
		phoresis	
2.4	Bacter	iological methods	38
	2.4.1	Organism	38
	2.4.2	Growth in a liquid culture medium	39
	2.4.3	Preparation of cell-free extracts	40
CHAP	TER 3.	RESULTS: GROWTH OF <u>Nocardia</u> <u>corallina</u> AND PREPARATION OF CELL-FREE EXTRACTS	42
3.1.	Growth	of <u>N. corallina</u>	42
3.2	Prepar	ation of cell-free extracts	42
CHAP	TER 4.	RESULTS: PURIFICATION OF URACIL DEHYDRO-	48
		GENASE FROM N. corallina	
4.1	Determ	ination of specific activity of uracil	48
	dehydr	ogenase	
4.2	Purifi	cation of uracil dehydrogenase	48
4.3	Homoge	neity of the purified uracil dehydrogenase	65
CHAP	TER 5.	RESULTS: CHARACTERIZATION OF URACIL	72
		DEHYDROGENASE (CHEMICAL AND PHYSICO-	
		CHEMICAL PROPERTIES)	
5.1	Molecu	lar weight of the native enzyme	72
	5.1.1	Gel filtration on Sephadex G-200	72
	5.1.2	Analytical ultracentrifugation	72
5.2	Subuni	t structure	77
5.3	Amino	acid composition	78
5.4	Spectr	al characteristics	86
5.5	Identi	fication of flavin prosthetic group	97

vi

				Page
		5.5.1	Paper chromatography	97
		5.5.2	Fluorescence analysis	97
		5.5.3	Reactivation of D-amino-acid oxidase	98
			apoenzyme	
	5.6	Quanti	tative determination of FAD	102
		5.6.1	Spectrophotometric assay	102
		5.6.2	Fluorometric assay	105
	5.7	Metal	content	105.
	5.8	Labile	sulphide content	109
,	CHAP	TER 6.	RESULTS: CHARACTERIZATION OF URACIL	111
			DEHYDROGENASE (CATALYTIC ACTIVITY)	
	6.1	Validi	ty of the enzyme assay	111
	6.2	Linear	ity of the enzyme assays	120
	6.3	Effect	s of pH and ionic strength on enzyme	120
		activi	ty	
	6.4	Stabil	ity of the enzyme	127
		6.4.1	Storage	127
		6.4.2	рH	127
		6.4.3	Temperature	130
	6.5	Pyrimi	dine specificity	130
	6.6	Electr	on acceptor specificity	131
	6.7	Specif	ic activity and calculation of enzyme	140
		concen	tration	
	6.8	Effect	of substrate concentration	145
	6.9	Effect	s of miscellaneous inhibitors and	149
		activa	tors on enzyme activity	

vii

	viii
	Page
6.10 Stoichiometry of oxygen uptake for thymine	172
oxidation	
6.11 Anaerobic assay of uracil dehydrogenase activity	173
6.12 The oxidase activity of uracil dehydrogenase	185
CHAPTER 7. DISCUSSION AND CONCLUSIONS	190
7.1 Purification of uracil dehydrogenase	190
7.2 Structure of uracil dehydrogenase	192
7.3 Properties of uracil dehydrogenase	200
7.4 Future studies	204
REFERENCES	205

.

LIST OF TABLES

Table		Page
2.1	Molar extinction coefficients of pyrimidines	24
3.1	Uracil dehydrogenase released from N. corallina	45
	using various methods of cell disruption	
3.2	Level of uracil dehydrogenase released from	47
	N. corallina using a French pressure apparatus	
4.1	Purification of uracil dehydrogenase	54
5.1	Amino acid composition of uracil dehydrogenase	85
	from <u>N. corallina</u>	
5.2	Calculation of molar extinction coefficients	88
	for iron from the visible absorption spectrum	
	of uracil dehydrogenase	
5.3	${\tt R}^{}_{\rm F}$ values of the flavins and heated uracil	99
	dehydrogenase by descending paper chromatography	7
5.4	Fluorometric determination of FAD	106
5.5	Estimation of the iron, zinc, magnesium and	110
	copper content in the purified uracil	
	dehydrogenase	
6.1	Substrate specificity of uracil dehydrogenase	141
6.2	Specificity of uracil dehydrogenase for	144
	electron acceptors	
6.3	Kinetic parameters for uracil dehydrogenase	150
6.4	Effects of metal ions on the activity of	166
	uracil dehydrogenase	
6.5	Effects of miscellaneous compounds on the	171
	activity of uracil dehydrogenase	

ix

Table

- 6.6 Calibration of the oxygen electrode using 176 phenazine methosulphate and limiting concentrations of NADH
- 6.7 Stoichiometry of oxygen uptake for thymine oxidation

Page

177

Figure

1.1 Pathway of the reductive catabolism of uracil and thymine 1.2 Pathway of the oxidative catabolism of uracil and thymine 23 2.1 Absorption spectra of pyrimidines 3.1 44 Growth characteristics of N. corallina in the culture medium Sepharose-4B gel filtration of 30-60% ammonium 4.1 56 sulphate fraction from N. corallina

- 4.2 DEAE-cellulose chromatography of the uracil 58 dehydrogenase preparation from the Sepharose-4B column
- 4.3 Calcium phosphate chromatography of the uracil 60 dehydrogenase preparation from the DEAEcellulose column
- 4.4 DEAE-Sephadex A-50 chromatography of the uracil 62 dehydrogenase preparation from the calcium phosphate column
- 4.5 64 Sephadex G-200 gel filtration of the uracil dehydrogenase preparation from the DEAE-Sephadex A-50 column
- 4.6 Polyacrylamide gel electrophoresis pattern of 67 the native enzyme
- 4.7 Location of uracil dehydrogenase activity 69 after gel electrophoresis by enzyme assays on gel extracts

Page

4

6

			xii
F	igure		Page
	4.8	Location of uracil dehydrogenase activity	71
		after gel electrophoresis by activity staining	
	5.1	Molecular weight estimation of uracil dehy-	74
		genase by Sephadex G-200 gel filtration	
	5.2	Molecular weight determination of uracil	76
		dehydrogenase by sedimentation equilibrium	
	5.3	SDS-polyacrylamide gel electrophoresis of	80
		uracil dehydrogenase	
	5.4	Scanning of SDS-polyacrylamide gel of uracil	82
		dehydrogenase	
	5.5	SDS-polyacrylamide gel electrophoresis of	84
		oligomers of uracil dehydrogenase	
	5.6	Absorption spectrum of uracil dehydrogenase	90
	5.7	Visible absorption spectra of uracil dehydro-	92
		genase and aldehyde oxidase	
	5.8	Effect of dithionite on the absorption spectrum	n 94
		of uracil dehydrogenase	
	5.9	Difference spectrum of uracil dehydrogenase	96
	5.10	Effects of Crotalus atrox venom on flavins and	101
		heated uracil dehydrogenase	
	5.11	Reactivation of D-amino-acid oxidase apoenzyme	104
		by FAD and heated uracil dehydrogenase	
4	6.1	Absorption spectrum of methylene blue	115
	6.2	Absorbance changes during the oxidation of	117
		thymine by uracil dehydrogenase under aerobic	
		conditions in the presence of methylene blue	
21.1			

		xiii
Figure		Page
6.3	Spectral analysis to determine the absorption	119
	spectrum of reduced methylene blue	
6.4	Proportionality between enzyme concentration	122
	and the rate of enzyme reaction	
6.5	Linearity of the enzymic reaction with time	124
6.6	Effect of pH on the rate of the enzymic reaction	126
6.7	Effect of ionic strength on the rate of	129
	enzymic reaction	
6.8	Effect of storage on the stability of uracil	133
s:	dehydrogenase in cell-free extracts	
6.9	Effect of pH on the stability of the purified	135
	enzyme	
6.10	Temperature stability of the purified enzyme	137
6.11	Heat inactivation of the purified enzyme	139
6.12	Spectral changes during the oxidation of	143
	various pyrimidines	
6.13	Dependence of the rate of reaction of uracil	152
	dehydrogenase on the concentration of thymine	
	with methylene blue as the alternate substrate	
6.14	Dependence of the rate of reaction of uracil	154
	dehydrogenase on the concentration of uracil	
	with methylene blue as the alternate substrate	

6.15 Rates of oxidation of thymine and uracil at 156 fixed initial uracil concentration but varying thymine concentrations with methylene blue as the alternate substrate

Figure

- 6.16 Rates of oxidation of thymine and uracil at 158 fixed initial thymine concentration but varying uracil concentrations with methylene blue as the alternate substrate
- 6.17 Dependence of the rate of reaction of uracil 160 dehydrogenase on the concentration of methylene blue with thymine as the alternate substrate
- 6.18 Dependence of the rate of reaction of uracil 162 dehydrogenase on the concentration of methylene blue with uracil as the alternate substrate
- 6.19 Dependence of the rate of uracil dehydrogenase 164 on the concentration of phenazine methosulphate with thymine as the alternate substrate
- 6.20 Effects of metal ions on the activity of uracil 168 dehydrogenase
- 6.21 Effects of chelating agents on the activity of 170 uracil dehydrogenase
- 6.22 Calibration of the oxygen electrode by serial 175 additions of different amounts of NADH to the reaction vessel

6.23	Calibration curve of the oxygen electrode	179
6.24	Determination of the stoichiometry of oxygen	181
	uptake for thymine oxidation	1

6.25 Absorbance change (at 270 nm) during aerobic 184 and anaerobic oxidation of thymine

Figure

- 6.26 Ultraviolet spectra of the reaction mixture during the aerobic oxidation of thymine by uracil dehydrogenase
- 6.27 Ultraviolet spectra of the reaction mixture during the aerobic oxidation of thymine by uracil dehydrogenase in the presence of methylene blue

189

Page

187