Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

On the Use of Optimal Search Algorithms with Artificial Potential Field for Robot Soccer Navigation

DONG, Chen

Chief Supervisor

Reyes, Napoleon H., Ph.D

Co-Supervisor

Barczak, Andre L., Ph.D

Computer Science

Master of Science

January 23, 2018

Contents

1	Intr	oducti	on	1
	1.1	The P	roblem Domain: Robot Soccer Game	2
	1.2	Resear	ch Objectives	3
	1.3	Signifi	cance of the Research	4
	1.4	Struct	ure of the Thesis	5
2	Lite	erature	Review	7
	2.1	Optim	al Search Algorithms	7
		2.1.1	Dijkstra Algorithm	8
		2.1.2	A* Search Algorithm	13
		2.1.3	Object Representation in the 2D Gridworld	17
		2.1.4	Search in Vertex-Based and Cell-Based Worlds	20
		2.1.5	Any-Angle Search and the Line-of-sight	21
		2.1.6	Post-smoothing of the A [*] Search Algorithm	23
		2.1.7	Theta [*] Search Algorithm	23
		2.1.8	Limitations of the Optimal Search Algorithms	28
	2.2	The A	rtificial Potential Field Algorithm	29
		2.2.1	Artificial Potential Field for Navigation	29
		2.2.2	Simplification of the Artificial Potential Field	30
		2.2.3	Limitations of the Artificial Potential Field	31
		2.2.4	Related Works based on the Artificial Potential Field	32
	2.3	Robot	Soccer	34
		2.3.1	Dimensions of the Playing Field and the Agents	34
3	Pre	limina	ry Experiments	37
	3.1	Platfo	rm	37
		3.1.1	Terminologies and Statistical Measurements	37
		3.1.2	Search Field	38
	3.2	Optim	al Search: Case Studies	40
		3.2.1	One Big Obstacle in the Centre, Size 20x20	40
		3.2.2	Four Medium Obstacles, Size 20x20	42
		3.2.3	Five Small Obstacles, Size 20x20	44

CONTENTS

		3.2.4	Random Dots, Size $30x30$
		3.2.5	Four Walls with a Wiggled Lane, Size 20x20 48
		3.2.6	A Series of Walls with a Lane in the middle, Size $30x30$ 50
		3.2.7	Maze, Size 30x30
		3.2.8	Potential Well, Size 30x30
	3.3	Analy	sis
	3.4	Concl	usion
4	AP	F-Opti	mal Search 59
	4.1	Overv	iew
	4.2	Poten	tial Field with Optimal Search 59
		4.2.1	Safety Factor
		4.2.2	The Basic Artificial Potential Field Generator
		4.2.3	Linear Functions
		4.2.4	Hyperbola function
		4.2.5	Sigmoid Function
		4.2.6	Double Thresholds
		4.2.7	Comparison with Related Study 70
	4.3	Altern	native Heuristics $\dots \dots \dots$
		4.3.1	Sharp Bend Problem
		4.3.2	Dynamic Attractive Point of the Artificial Potential Field 73
		4.3.3	The Angular Factor in Optimal Search
		4.3.4	Involving the Angular Factor in the Search Algorithm 75
		4.3.5	The Second Key Value
		4.3.6	Unified Key with Separate Coefficients
		4.3.7	Alternative Heuristic Function
	4.4	Line-o	f-sight
		4.4.1	Simple Line-of-Sight Checking for Vertex-based Search 79
		4.4.2	Modified Bresenham's Algorithm for Line-of-Sight Detection 80
		4.4.3	Obstacle as Polygon
		4.4.4	Modified Cohen-Sutherland Algorithm
5	Bui	lding l	Robot Behaviours 89
	5.1	Gener	ic Strategies
		5.1.1	Target Pursuing89
		5.1.2	Obstacle Avoidance
	5.2	Attacl	xer Strategies
		5.2.1	Dynamic Attacking Position
		5.2.2	Finite State Machine for Attacker Intelligence
	5.3	Goal I	Keeper Strategies
		5.3.1	Defensive Blocking Position
		5.3.2	Parking

		5.3.3	Finite State Machine for Keeper Intelligence		95
6	Sim	ulation	n Platform		97
	6.1	Impler	nenting System Dynamics		97
		6.1.1	Collision Detection		99
		6.1.2	The Force and the Impulse Direction		102
		6.1.3	Applying the Artificial Potential Field		104
	6.2	Impler	nentation Details		105
		6.2.1	Grid mapping and Dynamic Cell Size		105
		6.2.2	Use of the Artificial Potential Field		106
		6.2.3	Multi-Linked List		106
	6.3	Archit	ecture Design		106
		6.3.1	Main-loop and FPS Limits		107
		6.3.2	Structure of the Rigid Body Management		108
		6.3.3	Messages and Event Handling		111
-	Б	•	· 4 -		110
1	Ехр 7 1	Europ	nts		119
	(.1	7 1 1	Pletform of the Search Algorithm Experiment	•	110
		719	Definitions and the Statistics	•	112
		713	Safety Factor of the Potential Field	•	117
	79	ΔPF_(Datimal Search	•	114
	1.2	791	Comparison Between the $APE-A^*$ and the Original A^*	•	115
		722	One Big Obstacle in the Centre Size 20x20	•	117
		723	Four Medium Obstacles Size 20x20	•	119
		724	Five Small Obstacles Size 20x20	•	121
		7.2.5	Random Dots. Size 30x30	•	123
		7.2.6	Four Walls with a Wiggled Lane. Size 20x20		125
		7.2.7	A Series of Walls with a Lane in the Middle, Size 30x30		127
		7.2.8	Maze, Size 30x30		129
		7.2.9	Potential Well, Size 30x30		131
		7.2.10	Trap, Size 30x30		133
		7.2.11	GNRON Case		135
		7.2.12	Summary		137
	7.3	APF (Generator		137
		7.3.1	The Distribution of the Magnitude Using Different Generators		138
	7.4	Compa	arison with Other Studies		142
		7.4.1	Experiments		142
	7.5	Robot	Behaviours		146
		7.5.1	Platform Introduction		146
		7.5.2	Experiments of the Performance		147
		7.5.3	Experiment Cases and Results		149

CONTENTS

		7.5.4	Summary	59
	7.6	Analys	is and Discussion	60
		7.6.1	The Performance of the APF-Optimal Search Algorithms 10	60
		7.6.2	The Performance of the Artificial Potential Field Generator 10 $$	60
		7.6.3	The Performance of the Line-of-sight Algorithms 10	61
		7.6.4	The Effects of Using the Safety Factor on Performance 10 $$	61
8	Con	clusion	n 16	35
8	Con 8.1	clusio r Future	۹ 16 Works	35 67
8	Con 8.1	clusion Future 8.1.1	Works	6 5 67 67
8	Con 8.1	clusion Future 8.1.1 8.1.2	Image: Marking Image: Marking Works 16 Alternate Optimal Search Algorithms 16 Decision Making 16	6 5 67 67 67
8	Con 8.1	Future 8.1.1 8.1.2 8.1.3	Works 16 Works 16 Alternate Optimal Search Algorithms 16 Decision Making 16 Use of Fuzzy System with Artificial Potential Field 16	6 5 67 67 68
8	Con 8.1	Future 8.1.1 8.1.2 8.1.3 8.1.4	Works16Works16Alternate Optimal Search Algorithms16Decision Making16Use of Fuzzy System with Artificial Potential Field16A* Search in Vector Space16	65 67 67 68 68

Bibliography

169

List of Figures

2.1	A directed map for dijkstra algorithm	8
2.2	Step 1 - Insert node A into S as initial	10
2.3	Step 2 - Pop A and insert B, C into S	10
2.4	Step 3 - Pop C which cost is 2, insert D, E	11
2.5	Step 4 - Pop E, insert F, but not end	11
2.6	Step 5 - Pop B, D is in S but no update \ldots \ldots \ldots \ldots \ldots \ldots \ldots	12
2.7	Step 6 - Pop D, F is in S which has new lower cost $\ldots \ldots \ldots \ldots$	12
2.8	The initial status of A* Search \ldots	15
2.9	Two successors of S	16
2.10	Only one new node, the other are blocked $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
2.11	Further step	17
2.12	A 2D-Plain with obstacle	18
2.13	The cell partly or totally covered by the obstacle are marked \ldots .	19
2.14	The marked cells are blocked after removing the obstacle \ldots	19
2.15	The original field that has not been divided by the grid \ldots .	20
2.16	Search based on the vertices	21
2.17	Search based on the cells	21
2.18	A path between A4 and D1 is valid \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	22
2.20	The same path of the figure 2.19 could be smoothed $\ldots \ldots \ldots \ldots$	22
2.19	The path found by A^* is wiggled \ldots	23
2.21	A possible path found by Theta [*] Search	24
2.22	Examine the vertex D2	25
2.23	Visit the successor of D2: C2 and D3	25
2.24	Examining the line-of-sight from E1 to the successors	26
2.25	Remove D2 on the path since there is a line-of-sight $\ldots \ldots \ldots \ldots$	26
2.26	Search has be advanced to D4	27
2.27	Checking the line-of-sight for the successors of D4	27
2.28	The line-of-sight examining for the successors of C5 is from D4 but not E1	28
2.29	Magnitude of the APF	31
2.30	Target is not reachable due to the obstacles around	32
2.31	Size of the field	35

3.1	Black cells are blocked, light green is the start cell and cyan is the goal	
	cell	39
3.2	A sample path found by a search algorithm $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfil$	39
3.3	Test map of a big obstacle in the centre $\hfill \ldots \hfill \ldots \hfil$	41
3.4	The path found by A* Search \ldots	41
3.5	The path found by Theta* Search $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	41
3.6	The map of 4 medium obstacles	43
3.7	The path found by A* Search	43
3.8	The path found by Theta* Search $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	43
3.9	The map of 5 small obstacles	45
3.10	The path found by A^* Search	45
3.11	The path found by Theta* Search $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	45
3.12	The ma of a set of dots \ldots	47
3.13	The path found by A^* Search	47
3.14	The path found by Theta [*] Search	47
3.15	The map of 4 walls with a wiggled lane	49
3.16	The path found by A^* Search	49
3.17	The path found by Theta [*] Search	49
3.18	The map of multiple walls with a lane in the middle	51
3.19	The path found by A^* Search	51
3.20	The path found by Theta [*] Search	51
3.21	The map of maze	53
3.22	The path found by A^* Search	53
3.23	The path found by Theta [*] Search	53
3.24	The map have a potential well	55
3.25	The path found by A^* Search	55
3.26	The path found by Theta [*] Search	55
		0.1
4.1	The shortest path vs. The safest path	61
4.2	The distance from s to the obstacles	63
4.3	The diagram of the margin function	64
4.4	Search with Margin function	64
4.5	The drawback of margin function	64
4.6	The gray scale illustrates the magnitude of the artificial potential field .	65
4.7	The diagram of the linear function	65
4.8	Manhattan Distance	66
4.9	Manhattan Distance plus artificial potential field magnitude	66
4.10	The diagram of the hyperbola function	67
4.11	The diagram of the sigmoid function	68
4.12	The gap where the robot cannot pass	69
4.13	Logistic sigmoid with two thresholds	70

4.14	According to the study in [51], the position relationship between the	
	robot, goal and obstacle in 1-D scenario	70
4.15	According to the study in [51], the magnitude distribution of the APF	
	in 1-D scenario.	71
4.16	The magnitude distribution by linear function	71
4.17	The magnitude distribution by hyperbola function $\ldots \ldots \ldots \ldots \ldots$	72
4.18	The magnitude distribution by Sigmoid function	72
4.19	The sharp bend in the path \ldots	73
4.20	Two paths have same fcost but different angular cost	74
4.21	Same node may have different angular heuristic from different parent	76
4.22	The same path of the figure 2.19 could be smoothed $\ldots \ldots \ldots \ldots$	79
4.23	An intermediate step when processing LOS checking	79
4.24	The light gray cells are where should be examined	81
4.25	The dark gray cells will not be found by the original algorithm but should	
	be examined	83
4.26	The intersection between a segment and a polygon $\ldots \ldots \ldots \ldots$	84
4.27	The flags of the Cohen-Sutherland Algorithm	85
F 1		00
5.1	The flow chat of path planning and re-planning	90
5.2	A possible path found by the A ^{**} Search	91
5.3	The distribution of the artificial potential field around the obstacle 2	91
5.4	The expected actual trail of the agent	92
5.5	The attacking position	93
5.6	The states and transition conditions of the attacker	93
5.7	Moving to the blocking position E for coming attacking	95
5.8	The states and transition conditions of the keeper	96
6.1	Use 5 parameters to describe a rectangle	98
6.2	Two rectangles are overlapped	99
6.3	The distance between a circle and a rectangle	100
6.4	Determine which quadrant the circle belongs to	101
6.5	The left object hits the right one	103
6.6	To determine if need to compute virtual force	105
6.7	The main-loop of the simulation	107
6.8	The class diagram of rigid body management	108
6.9	The procedure of poll event	112
7.1	The original A* Search	115
7.2	The APF-A* Search	115
7.3	The original A^* Search with one dot in the middle $\ldots \ldots \ldots \ldots$	116
7.4	The APF-A* Search with one dot in the middle	116
7.5	The magnitude distribution when the obstalce is placed in the middle $\ .$	116

7.6	A big obstacle in the centre of the field
7.7	Path found by APF-A* Search without SF
7.8	Path found by APF-A* Search with SF $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots 117$
7.9	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.10	Path found by APF-Theta* Search with SF \ldots
7.11	Four medium obstaces
7.12	Path found by APF-A* Search without SF
7.13	Path found by APF-A* Search with SF $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots 119$
7.14	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.15	Path found by APF-Theta* Search with SF \ldots
7.16	Five small obstacles $\ldots \ldots 121$
7.17	Path found by APF-A* Search without operator factor
7.18	Path found by APF-A* Search with operator factor $\ldots \ldots \ldots \ldots \ldots 121$
7.19	Path found by APF-Theta* Search without operator factor $\ldots \ldots \ldots 121$
7.20	Path found by APF-Theta* Search with operator factor $\ldots \ldots \ldots \ldots 121$
7.21	A set of dots placed randomly
7.22	Path found by APF-A* Search without SF
7.23	Path found by APF-A* Search with SF $\ldots \ldots 123$
7.24	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.25	Path found by APF-Theta* Search with SF \ldots
7.26	Four walls and a wiggled path
7.27	Path found by APF-A* Search without SF
7.28	Path found by APF-A* Search with SF $\dots \dots \dots$
7.29	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.30	Path found by APF-Theta* Search with SF \ldots
7.31	A series of walls with a lane in the middle \ldots
7.32	Path found by APF-A* Search without SF
7.33	Path found by APF-A* Search with SF $\dots \dots \dots$
7.34	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.35	Path found by APF-Theta* Search with SF \ldots
7.36	The maze which is the most complex terrian
7.37	Path found by APF-A* Search without SF
7.38	Path found by APF-A* Search with SF $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots 129$
7.39	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.40	Path found by APF-Theta* Search with SF \ldots
7.41	The potential well that the agent will be trapped in the middle $\ . \ . \ . \ 131$
7.42	Path found by APF-A* Search without SF
7.43	Path found by APF-A* Search with SF $\hfill \ldots \ldots \ldots \ldots \ldots \ldots \ldots 131$
7.44	Path found by APF-Theta* Search without SF $\hdotspace{1.5}$
7.45	Path found by APF-Theta* Search with SF \ldots
7.46	The trap where the goal is at the opposite direction of the exit \ldots . 133

7.47	Path found by APF-A [*] Search without SF	133
7.48	Path found by APF-A* Search with SF	133
7.49	Path found by APF-Theta* Search without SF	133
7.50	Path found by APF-Theta [*] Search with SF	133
7.51	Path found by APF-A* Search with SF	135
7.52	Path found by Original A [*] Search	135
7.53	Magnitude distribution	136
7.54	Distribution of the linear function	138
7.55	Distribution of the hyperbola function to the power of -2	139
7.56	Distribution of the hyperbola function to the power of -1	139
7.57	Distribution of the sigmoid function	140
7.58	Comparison between the functions	141
7.59	The scenario of GNRON problem from the study in [51]	142
7.60	The performance of the APF-A* Search without SF $\ldots \ldots \ldots$	143
7.61	The performance of the APF-A [*] Search with SF	143
7.62	The performance of the Theta* Search without SF \ldots .	143
7.63	The performance of the APF-Theta* Search with SF	143
7.64	The path planning demonstration from the study in $[5]$	144
7.65	The performance of the APF-A* Search without SF $\ldots \ldots \ldots$	144
7.66	The performance of the APF-A* Search with SF $\ldots \ldots \ldots \ldots$	144
7.67	The performance of the APF-Theta* Search without SF \ldots .	145
7.68	The performance of the APF-Theta* Search with SF	145
7.69	Sample performance of the Robots	147
7.70	The path found by the APF-A* Search with SF	149
7.71	The path found by the APF-Theta* Search with SF \ldots .	150
7.72	The attacking and the defense	151
7.73	The path found by the APF-A* Search with SF	152
7.74	The path found by the APF-Theta* Search with SF \ldots .	152
7.75	The path found by the APF-A* Search with SF	154
7.76	The path found by the APF-Theta* Search with SF \ldots .	154
7.77	The defense of the keeper	155
7.78	The path found by the APF-A* Search with SF	156
7.79	The path found by the APF-Theta* Search with SF \ldots	156
7.80	The re-planning of the attacker after the keeper push the ball away	157
7.81	50 Random obstacles and the path planned by the APF-Theta* Search .	158
7.82	The average running time and the obstacle count	159

List of Tables

2.1	gcost and heuristic of new search nodes	27
3.1	Statistics in the case of Big Obstacles	40
3.2	Statistics in the case of Four Medium Obstacles	42
3.3	Statistics in the case of Five Small Obstalces	44
3.4	Statistics in the case of Random Dots	46
3.5	Statistics in the case of Four Walls with a Wiggled Lane	48
3.6	Statistics in the case of Walls with a Lane in the Middle	50
3.7	Statistics in the case of Maze	52
3.8	Statistics in the case of Potential Well	54
3.9	Statistics of the Performance Ratios between the Optimal Searches	56
4.1	Search nodes at first step	77
4.2	Angular Factors	77
4.3	gcost and heuristic of all the nodes $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	77
7.1	Statistics of the Performances of APF-Optimal Searches with or without	
	SF, in the case of Big Obstacle	118
7.2	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Four Medium Obstalces	120
7.3	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Five Small Obstalces	122
7.4	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Random Dots	124
7.5	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Four Walls with a Wiggled Lane	126
7.6	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Walls with a Lane in the Middle	128
7.7	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Maze \ldots	130
7.8	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Potential Field	132

7.9	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Trap	134
7.10	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of Replicated Environment from the Study by Ge &	
	Cui in 2000	143
7.11	Statistics of the Performances of APF-Optimal Searches with and with-	
	out SF, in the case of the Replicated Environment from the Study by	
	Li, Yamashita, Asama & Tamura in 2012	145
7.12	Statistics of the Performances of APF-Optimal Searches with SF, in the	
	case of the Potential Well running on the Simulator	150
7.13	Statistics of the Performances of APF-Optimal Searches with SF, in the	
	case of the Multiple Walls with a Lane in the Middle running on the	
	Simulator	153
7.14	Statistics of the Performances of APF-Optimal Searches with SF, in the	
	case of the GNRON problem running on the Simulator	155
7.15	Statistics of the Performances of APF-Optimal Searches with SF, in the	
	case of the Cross Blocks running on the Simulator	157
7.16	Statistics of the Performances of APF-Optimal Searches with SF, in the	
	case of the Random Obstacles running on the Simulator \hdots	158
7.17	Comparison Between Original \mathbf{A}^* and APF-A* SF, in the case of One	
	Big Obstacle, according to the figures 3.4 and 7.8	161
7.18	Comparison Between Original \mathbf{A}^* and APF-A* SF, in the case of Four	
	Medium Obstacles, according to the figures 3.7 and 7.13 \ldots	162
7.19	Comparison Between Original \mathbf{A}^* and APF-A* SF, in the case of Five	
	Small Obstacle, according to the figures 3.10 and 7.18 \hdots	162
7.20	Comparison Between Original \mathbf{A}^* and APF-A* SF, in the case of Ran-	
	dom Dots, according to the figures 3.13 and 7.23 \ldots	162
7.21	Comparison Between Original \mathbf{A}^* and APF-A* SF, in the case of Four	
	Walls with a Wiggle Lane, according to the figures 3.16 and 7.28 \ldots .	163
7.22	Comparison Between Original A^* and APF- A^* SF, in the case of Walls	
	with a Lane in the Middle, according to the figures 3.19 and 7.33 \ldots	163
7.23	Comparison Between Original A^* and APF- A^* SF, in the case of Maze,	
	according to the figures 3.22 and 7.38	163
7.24	Comparison Between Original A [*] and APF-A [*] SF, in the case of Poten-	
	tial Well, according to the figures 3.25 and 7.43	164
8.1	Summary of the Algorithms Tested and Developed	167
	v · · · · · · · · · · · · · · · · · · ·	

Abstract

The artificial potential field (APF) is a popular method of choice for robot navigation, as it offers an intuitive model clearly defining all attractive and repulsive forces acting on the robot [3] [25] [29] [43] [50]. However, there are drawbacks that limit the usage of this method. For instance, the local minima problem that gets a robot trapped, and the Goal-Non-Reachable-with-Obstacle-Nearby (GNRON) problem, as reported in [51] [5] [23] [2] and [3]. In order to avoid these limitations, this research focuses on devising a methodology of combining the artificial potential field with a selection of optimal search algorithms. This work investigates the performance of the method when using different optimal search algorithms such as the A^{*} algorithm and the any-angle pathplanning Theta* Search, in combination with different types of artificial potential field generators. We also present a novel integration technique, whereby the Potential Field approach is utilized as an internal component of an optimal search algorithm, considering the safeness of the calculated paths. Furthermore, this study also explores the optimization of several auxiliary algorithms used in conjunction with the APF-Optimal search integration: There are three different methods proposed for implementing the line-of-sight (LOS) component of the Theta^{*} search, namely the simple line-of-sight checking algorithm, the modified Bresenham's line algorithm and the modified Cohen-Sutherland algorithm. Contrary to the studies presented in [5], [42], [48] and [40] where the APF and the optimal search algorithms were used separately, in this research, an integrative methodology involving the APF inside the optimal search with a newly proposed Safety Factor (SF) is explored. Experiment results indicate that the APF-A* Search with the SF can reduce the number of state expansions and therefore also the running time up to 19.61%, while maintaining the safeness of the path, as compared to APF-A^{*} when not using the SF. Furthermore, this research also explores how the proposed hybrid algorithms can be used in developing multi-objective behaviours of single robot. In this regard, a robot soccer simulation platform with a physics engine is developed as well to support the exploration. Lastly, the performance of the proposed algorithms is examined under varying environment conditions. Evidences are provided showing that the method can be used in constructing the intelligence for a robot goal keeper and a robot attacker (ball shooter). A multitude of AI robot behaviours using the proposed methods are integrated via a finite state machine including: defensive positioning/parking, ball kicking/shooting, and target pursuing behaviours.

Keywords : Artificial Potential Field, Optimal Searches, Robot Navigation, Multiobjective Behaviours.