Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Monitoring liveweight to optimise health and productivity in pasture fed dairy herds

A dissertation presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University Ibrahim (John) Alawneh

Institute of Veterinary, Animal and Biomedical Sciences Massey University Palmerston North, New Zealand

2011

(Submitted April 12, 2011)

Institute of Veterinary, Animal and Biomedical Sciences Massey University Palmerston North, New Zealand

2011

— Abstract —

Technological advances now make it possible to continuously record and monitor a range of outcomes on dairy farms including individual cow milk yields, environmental temperature and rainfall. These facilities enhance the ability of herd managers to recognise deviations from what is accepted as normal, prompting timely corrective intervention. The objective of this thesis is to demonstrate how liveweights recorded using walkover weighing (WoW) technology can provide information that can be used to better-manage a range of activities on dairy farms, particularly reproduction and herd health.

Analysis of daily WoW recorded over the first 100 days of lactation have shown that the standard deviation of daily LW measurements across parities was 17 kg on average. A near perfect association between liveweights measured statically and WoWs (concordance correlation coefficient 0.99, 95% CI 0.99 to 1.0) was observed. After controlling for the effect of liveweight at calving and long term liveweight change using a mixed-effects linear regression model, the autocorrelation between WoWs recorded on successive days was 0.21, decaying to zero by eight days. This study showed that by using a standalone automatic WoW system positioned in the exit race of a rotary milking parlour, it was possible to record LWs of individual cows on a daily basis and, with controlled cow flow over the weighing platform (allowing for sufficient succession distance to prevent congestion), results were similar to those recorded using conventional, static weighing techniques.

Two observational studies were conducted to investigate the relationships between LW, LW change (Δ LW) and clinical lameness. In the first study, LW loss in the first 50 days in milk increased the risk of a lameness event being diagnosed after 50 days in milk by a factor of 1.80 (95% CI 1.00 to 3.17). The risk of lameness was greatest for high yielding cows that lost excessive LW (risk ratio 4.36, 95% CI 4.21 to 8.19). The second study quantified Δ LW immediately before and after the diagnosis of lameness events. For lame cows, liveweight decreased up to three weeks before the date of diagnosis and for up to four weeks after. The total liveweight loss arising from a single lameness episode was, on average, 61 kg (95% CI 47 to 74 kg). The results of this study show how liveweight records for individual animals can be used to enhance a herd manager's ability to detect lame cows and present them for treatment. Prompt detection and treatment of lame cows presents an opportunity to shorten recovery times, with positive follow-on effects in terms of animal welfare.

 Δ LW was assessed as a means for enahancing the sensitivity and specificity of oestrus detection. The sensitivity and specificity of detecting true oestrus events using Δ LW combined with tail paint and visual observation was 0.86 and 0.94, respectively. The effect of Δ LW in the first four weeks after calving (Δ LW_{long}) and LW change around the time of the Planned Start of Mating (Δ LW_{short}) on the time taken for cows to conceive relative to the Planned Start of Mating was quantified. Planned Start of Mating to conception intervals were influenced by LW change during both of these periods, though Δ LW_{short} had a greater effect compared with Δ LW_{long}. The findings of this study better define the impact of long- and short-term liveweight change on reproductive performance, providing the opportunity to design feeding programmes in pasture fed dairy herds that have positive effects on fertility.

The studies presented in this thesis contribute knowledge to the role of LW monitoring as a tool to better-manage seasonally calving, pasture fed dairy herds. While 'traditional' usage of walkover scales on dairy farms has involved the recording of LW and LW change as a means for monitoring and adapting changes to the herd feeding program, the studies presented here have shown how LW

records have the potential to provide information that can be used to better manage a range of herd level activities, particularly those related to reproductive management and health.

iv

Acknowledgements

To my chief supervisor, Mark Stevenson, deep from the heart I thank you. You have been a teacher, a colleague and above all a friend. Mark, in a nutshell without your contribution and support, this work would not have been possible. In the last few weeks of this journey I found out; in some ways, that we think completely differently. However, I would consider myself a lucky man if I could master some of those differences in the future.

To my co-supervisors, Norm Williamson, Nicolas Lopez-Villalobos and Tim Otley (Tru-Test Limited, New Zealand). It was an honour to have worked with you on this project. Thank you for your efforts and guidance. Also, many thanks to Cord Heuer, Scott Mc-Dougall, Daan Vink, Simon Verschaffelt, Christine Cunningham and Wendy Maharey and the staff and students of the EpiCentre for their many contributions.

This acknowledgement is not complete without thanking Denise Williamson, Cathy Stevenson and Silvia Lozano. You have been there for me and my family all the way. Thank you for your support and for making it easy on my family to put up with my partial absence from their daily life for the last two years. For that I am grateful.

I wish to thank the staff of Massey University Dairy Unit number 4 particularly the farm manager Conrad. I have worked on this farm since 2005 and I have to say Conrad you are the best thing that happened on this farm. Your efforts and assistance are highly appreciated. Thanks to the staff and management of Southern Rangitikei Veterinary Services (SRVS). Your support was overwhelming. I would like to also acknowledge Tru-Test New Zealand and Technology in Industry Fellowship for their funding contributions.

Leena, you never stop to amaze me with your strength, perseverance and above all believing in me. You are my rock. I will never be able to do what you have done for us as a family. For all of that and for much more I say I love you and I thank you for being there for me and the family. To my Sarah, Yamin, Hannah and Leena I dedicate this work to you.

Nomenclature

Δ	Change
$\Delta BCS.LW$	Change in body condition score and/or liveweight
ΔLW	Liveweight change
ACF	Autocorrelation function
AI	Artificial insemination
AIC	Akaike's Information Criterion
BCS	Body condition score
BW	Breeding Worth
BMSCC	Bulk milk somatic cell count
CI	Confidence interval
CL	Upgraded Irish Holstein-Friesian
DHF	Dutch Holstein-Friesian
DIM	Days in milk
EB	Energy balance
F1	Jersey \times Holstein-Friesian cross
GH	Growth hormone
Н	Holstein
HF	Holstein-Friesian
IGF-I	Insulin-like growth factor-I
JE	Jersey
JH	Jersey Holstein cross
LAMIDX	Lameness index
LIR	Lmeness incidence risk
LW	Liveweight
MB	French Montbeliarde
MJ	Megajoule
MS	Milksolids

NEB	Negative energy balance
NR	French Normande
NZHF	New Zealand Holstein-Friesian
NZHF70	High genetic merit Holstein-Friesian of New Zealand origin, 1975
NZHF90	High genetic merit Holstein-Friesian of New Zealand origin, 1998
OESTIDX	Oestrus index
OR	Odd ratio
PSC	Planned Start of Calving
PSM	Planned Start of Mating
REML	Restricted maximum likelihood
RR	Risk ratio
TPVO	Tail paint and visual observation
SE	Standard error
TR	Time ratio
USHD	North American High Durable Holstein-Friesian
USHP	North American High Producing Holstein-Friesian
USHP90	North American with high Breeding Worth, 1998
VFI	Voluntary feed intake
WLD	White line disease
WoW	Walk over weighing

List of Publications

Alawneh JI, Stevenson MA, Williamson NB, Lopez-Villalobos N, Otley T (2011) 'Automatic recording of daily walkover liveweight of dairy cattle at pasture in the first one hundred days in milk'. *Journal of Dairy Science* 94 (9), 4431 – 4440.

Stevenson MA, Alawneh JI, Williamson NB, Lopez-Villalobos N, Otley T (2011) 'The effects of liveweight loss and milk production on the risk of lameness in a seasonally calving, pasture fed dairy herd'. Submitted to *Preventive Veterinary Medicine* 25 November 2011.

Alawneh JI, Stevenson MA, Williamson NB, Lopez-Villalobos N, Otley T (2011) 'The use of liveweight change as an indicator of oestrus in a seasonally calving, pasture fed dairy herd'. Under review *Theriogenology* 15 March 2011.

Alawneh JI, Stevenson MA, Williamson NB, Lopez-Villalobos N, Otley T (2011) 'Long and short term effects of liveweight change on reproductive performance in a seasonal calving, pasture fed dairy herd'. Accepted in *Livestock Production Science, in Press* 2011.

Alawneh JI, Laven RA, Stevenson MA (2011) 'The effect of lameness on the fertility of dairy cattle in a seasonally breeding pasture-based system.'. *Journal of Dairy Science* 94 (11), 5487 – 5493.

Alawneh JI, Stevenson MA, Lopez-Villalobos N, Williamson NB, Otley T (2011) 'Liveweight data measures up'. New Zealand Dairy Business Conference, Rotorua Energy Events Center, Rotorua, New Zealand, 4 – 7 April 2011.

Alawneh JI, Stevenson MA, Williamson NB, Lopez-Villalobos N, Otley T (2011) 'The effects of liveweight loss and high milk production on the risk of lameness in a seasonally calving, pasture fed dairy herd'. 16th Symposium and 8th Conference Lameness in Ruminants, Millennium Hotel Rotorua, New Zealand, 28 February – 3 March 2011. Alawneh JI, Laven RA, Stevenson MA (2011) 'The impact of lameness on the fertility of dairy cattle in a seasonally breeding pasture-based dairy herd'. 16th Symposium and 8th Conference Lameness in Ruminants, Millennium Hotel Rotorua, New Zealand, 28 February – 3 March 2011.

Alawneh JI, Laven RA, Stevenson MA (2011) 'The use of survival analysis to evaluate farmer recognition of lameness'. 16th Symposium and 8th Conference Lameness in Ruminants, Millennium Hotel Rotorua, New Zealand, 28 February – 3 March 2011.

Alawneh JI, Stevenson MA, Lopez-Villalobos N, Otley T (2009) 'Automated daily bodyweight measurements in dairy cattle at pasture and its association with lameness in early lactation'. Proceedings of the 12th Symposium of the International Society for Veterinary Epidemiology and Economics, Durban, South Africa, 10 – 14 August 2009.

Alawneh JI, Stevenson MA, Lopez-Villalobos N, Otley T (2010) 'Automated daily bodyweight measurements in dairy cattle at pasture and its association with lameness in early lactation'. Annual meeting of the Epidemiology Chapter of the Australian College of Veterinary Scientists, Surfers' Paradise, Queensland, Australia, 1 - 3 July 2010.

Contents

Ad	eknow	ledgements							v
No	omeno	clature							vii
Li	st of I	Publications							ix
1	Gen	eral introduction							1
2	Lite	rature review							5
	2.1	Determinants of liveweig	ht change				•••	• •	5
		2.1.1 Dry matter intake	e, liveweight an	d productiv	vity .	•••	•••		7
		2.1.2 Breed and heredi	ty			•••	•••		13
		2.1.3 Parity and body c	condition at cal	ving		•••	•••		16
		2.1.4 Milk production				•••	•••		18
		2.1.5 Health and pregn	ancy				•••		20
		2.1.6 Summary					•••		23
	2.2	Animal welfare					•••		24
	2.3	Automated animal monited	oring systems			•••	•••		25
	2.4	Conclusions	•••••				•••		29
3	Auto	omatic recording of livew	eight in dairy	cattle					31
	3.1	Introduction				•••	•••		32
	3.2	Materials and methods					•••		34

	3.3	Results	39
	3.4	Discussion	46
	3.5	Conclusions	49
4	Live	eweight loss and milk production as a risk factor for lameness	51
	4.1	Introduction	51
	4.2	Materials and methods	52
	4.3	Results	57
	4.4	Discussion	64
	4.5	Conclusions	67
5	Live	eweight change as an indicator of oestrus	69
	5.1	Introduction	69
	5.2	Materials and methods	71
	5.3	Results	76
	5.4	Discussion	85
	5.5	Conclusions	89
6	The	effect of liveweight change on reproductive performance	91
	6.1	Introduction	91
	6.2	Materials and methods	93
	6.3	Results	98
	6.4	Discussion	104
	6.5	Conclusions	107
7	The	impact of lameness on liveweight	109
	7.1	Introduction	109
	7.2	Materials and methods	111
	7.3	Results	115
	7.4	Discussion	119
	7.5	Conclusions	121

xii

8	Gen	eral discussion	123	
	8.1	Overview	123	
	8.2	Implication of thesis findings and future work	128	
A	Appendix 1			
	A.1	Introduction	A-1	
	A.2	Materials and methods	A-2	
	A.3	Results and discussion	A-3	

xiii

xiv

List of Figures

1.1	Schematic diagram showing the application of the two different approaches	
	applied to investigate the correlations between LW change (Δ LW) and	
	lameness throughout a lactation.	4
2.1	The balancing act between the three main factors which determine the	
	actual feed intake by the cow	8
3.1	Diagram showing the hardware configuration used in this study	36
3.2	Daily liveweight records for a single cow as a function of days in milk	42
3.3	Scatterplot showing walkover liveweight measurements as a function of	
	static liveweight measurements for three groups of 50 cows weighed on	
	August, September and October of 2008	43
3.4	Scatterplot showing the observed difference between walkover and static	
	liveweights as a function of the average of walkover and static liveweights.	44
3.5	Autocorrelation function of the raw residuals from Equation 3.2	45
4.1	Risk ratios for lameness in the first 50 days of lactation	62
5.1	Lineplot showing estimated liveweight change as a function of the number	
	of days relative to the day of insemination for pregnant and non-pregnant	
	cows	81
5.2	Lineplot showing estimated liveweight change as a function of the num-	
	ber of days relative to the day of insemination for Holstein-Friesian and	
	crossbred cows.	82
6.1	Frequency histogram of days from Planned Start of Mating to conception	
	for 930 lactations from 595 cows in the 2008 and 2009 milking seasons.	99

6.2	Line plot showing the instantaneous hazard of pregnancy as a function of	
	the number of days from the Planned Start of Mating to conception	102
6.3	Predicted time to conception after the Planned Start of Mating based on	
	the accelerated failure time model presented Table 6.3	103
7.1	Scatter plot showing relative daily liveweights change recorded for a cow	
	diagnosed with lameness at 100 days in milk and line plot showing the es-	
	timated liveweight from the random slopes and random intercepts model	
	shown in Table 7.2.	118

List of Tables

1.1	Application of control electronics to the dairy and beef cattle industries.	2
2.1	Comparisons between North American Holstein cows and New Zealand Holstein-Friesian cows for milk production traits and liveweight	13
3.1	Descriptive statistics of daily liveweight measurements of dairy cattle stratified by parity groups.	41
4.1	Descriptive statistics of parity, liveweight at calving, relative liveweight change in the first 50 days in milk for the 2008 and 2009 milking seasons	59
4.2	Variables screened for inclusion in a multivariate logistic regression model of risk factors for lameness in dairy cattle.	60
4.3	Estimated regression coefficients and their standard errors from a multi- variate logistic regression model of risk factors for lameness in dairy cattle.	61
4.4	Incidence risk of lameness, PAF and PAR derived from the multivariate logistic regression model.	63
5.1	Numbers of cows, services, and liveweight records stratified by produc- tion season.	78
5.2	Estimated regression coefficients and their standard errors from a mixed- effects linear regression model of factors influencing liveweight in preg-	
	nant and non-pregnant dairy cattle.	79
5.3	2×2 contingency table showing the total number of true positive and true negative oestrus events detected using liveweight change	83

5.4	Sensitivities and specificities for a number of commercially available oestrus	
	detection tools and the expected sensitivities and specificities where these	
	tools are used in combination with liveweight change	84
6.1	Descriptive statistics of parity, liveweight at calving, ΔLW_{long} , ΔLW_{short} , milk production, breed and disease records for the 2008 and 2009 milking	
	seasons	100
6.2	Incidence risk of health disorders diagnosed from PSM to the end of mat- ing for the 2008 and 2009 milking seasons.	100
6.3	Estimated regression coefficients and their standard errors from an accel- erated failure time model of risk factors PSM to conception intervals in	
	dairy cattle.	101
7.1	Incidence risk and incidence rate of lameness for the 2008 and 2009 milk- ing seasons, stratified by lameness diagnosis.	116
7.2	Estimated regression coefficients and their standard errors from a mixed-	
	cattle	117
A.1	Numbers and proportions of cows correctly and incorrectly identified in their stalls by the DeLaval electronic identification system in use at Massey University Dairy 4 unit.	A-3
A.2	Numbers and proportions of cows where there was agreement and dis- agreement in cow stall placement after error self recognition by the DeLaval	ΛΛ
	electronic identification system in use at wassey University Dairy 4 unit.	A-4

xviii