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Abstract 

Protein is an important component of milk and it plays an essential role in all living 

organisms. β-casomorphins-7 (BCM-7) is derived from A1 β-casein and has been 

implicated in some human health issues. This A1 β-casein is produced by cows with the 

A1A1 or A1A2 genotype, whilst cows with the A2A2 genotype produce A2 β-casein, 

which has not been implicated in the same human health issues. Given the potential 

importance of A2 milk for public health and its apparent commercial potential, selection 

based on the A2 type and its impact on production and reproductive traits should be 

investigated. The objective of the current study was to compare the productive and 

reproductive performance of dairy cows based on A2 type in two different dairy farms. 

From July 2017 to May 2018, 206 cows (including 122 A2A2 genotype; “A2 cows”) 

were milked once a day at Dairy 1 and 451 cows (including 217 A2 cows) were milked 

twice a day at Dairy 4. Records of lactation yields of milk, fat and protein, fat 

percentage, protein percentage, days from start of mating to conception, pregnancy rate 

to first service, the submission rate at 21 days and the pregnancy rate at 21 and 42 days 

(PR42) after the start of mating from 642 cows in two herds were analysed. The effects 

of A2 type on productive and reproductive traits were not significant. The interaction 

between farm and β-casein genotype was significant for PR42 (P<0.05) but not for any 

other traits. The interactions between parity number and genotype were not significant 

for any of the traits. The results indicated that cows of different β-casein types have 

similar production and reproduction performance. 
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Proteins play an essential role in the formation, maintenance and repair of the body 

tissue in all living organisms. In addition to providing a source of energy, proteins are 

important because they also provide essential amino acids for the human body. Milk is 

an important food and source of protein for both infants and adults. Caseins and whey 

proteins are two major groups of milk protein. The four major caseins in cow’s milk 

are αs1-, αs2-, β- and κ-casein (Eigel et al. 1984) with β-casein comprising about 30% of 

total protein (Walstra et al. 1984). A1 and A2 types are two major genetic variants of 

β-casein proteins in bovine milk (Ng-Kwai-Hang et al. 1990; Caroli et al. 2009; 

Massella et al. 2017). Cows with homozygous alleles (A1A1 or A2A2) produce milk 

exclusively with A1 or A2 β-casein, whereas heterozygous cows (A1A2) produce milk 

with both types of β-casein. 

Food-derived peptides are cut away and released from protein molecules under the 

influence of enzymatic hydrolysis in the process of digestion (Kamiński et al. 2007). 

One of the bioactive peptides derived from β-casein digestion is known as β-

casomorphins-7 (BCM-7). There is a histidine at position 67 of the protein sequence in 

A1 β-casein and a BCM-7 can be cut off from it, whereas the proline residue in A2 β-

casein protects the bond between Ile66 and Pro67 from hydrolysis by digestive enzymes 

(Jinsmaa et al. 1999). A1 β-casein and BCM-7 have been implicated in some human 

health issues, as it has been suggested that bioactive BCM-7 may have detrimental 

impacts throughout the body, such as on the gastrointestinal tract, and the central 

nervous, cardiovascular and immune systems, by acting as an mu-opioid receptor 

agonist (Korhonen et al. 2006; Kamiński et al. 2007). 

The A2 Milk Company was founded in New Zealand in 2000 and markets milk and 

dairy products only with the A2 β-casein variant to New Zealand, Australian, US and 

Chinese markets. With the commercial success of the A2 Milk Company, a large 

number of dairy farms within New Zealand contain herds with a higher percentage of 

the A2 allele (Woodford 2007). According to the Livestock Improvement Corporation 

(LIC 2020), in the year 2019 about 30% of dairy cows in New Zealand produced milk 

containing only A2 β-casein.  
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Given the potential importance of A2 milk for public health and its apparent 

commercial potential, the influences of the A2 β-casein variant on production and 

composition of milk should be investigated before using A2 type as an additional 

criterion in bull selection. In addition, reproductive traits are also economically 

important. Poor fertility is the biggest cause of culling of dairy cows in New Zealand 

(Xu & Burton 2000; Martinez Rocha 2017), resulting in substantial economic losses to 

dairy farmers. Therefore, the effects of selection for certain β-casein types on cow 

fertility warrants investigation. The association of β-casein polymorphism with milk 

production (Ng-Kwai-Hang et al. 1986; Çardak 2005; Heck et al. 2009), milk 

composition (Aleandri et al. 1990; Winkelman et al. 1997; Ikonen et al. 1999) and 

fertility (Lin et al. 1987; Ruottinen et al. 2004; Demeter et al. 2010) in dairy cows has 

been investigated. However, the literature in relation to the productive performance and 

fertility of the cows with A2 type in New Zealand is scarce. The objective of this thesis 

was to compare the productive and reproductive performance of dairy cows with A1 

and A2 β-casein types in two different dairy farms. 
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2.1 The grazing system in New Zealand 

Around the world there are a number of different farming systems. In contrast to the 

majority of dairy systems in North America and Europe, New Zealand has a pasture-

based system which highly relies upon the growth of the pasture that is consumed by 

grazing cows. The major component of the diet is grazed pasture, and the quantities of 

feeds other than pasture (concentrate and silage) fed to cows are low. The use of pasture 

as a cheap source of feed throughout the year for dairy animals in pastoral system results 

in lower production costs (White et al. 2002) and high milk output per hectare as feed 

is always the largest cost in a milk production system. The typical pasture in New 

Zealand are predominantly composed of perennial ryegrass (Lolium perenne) and white 

clover (Trifolium repens) (Kemp et al. 1999). 

 

The synchrony between pasture growth and feed demand is of great importance for a 

pasture-based system. In order to maximise the pasture utilisation, New Zealand cows 

normally start calving in spring (July to August) before rapid pasture growth and are 

dried off in late autumn as the pasture growth gradually decreases. Peak pasture growth 

is coincided with peak feed demand in October (Roche et al. 2017). Surplus pasture is 

usually conserved as silage or hay and will be consumed during the periods of slow 

pasture growth to avoid production losses when the pasture fails to satisfied the energy 

requirements of the cows.  

 

Cows are typically milked twice a day (TAD) in the New Zealand grazing system. Once 

a day (OAD) milking in pasture-based systems can be tactically used as a management 

tool to reduce the energy requirement of the herd when feed supply is insufficient. 

Long-term OAD milking can increase the productivity and flexibility of the labour, 

improve life quality of farmer and their families, and reduce expenses on farm facilities 

(Bewsell et al. 2008; Stachowicz et al. 2014). Although the practice of OAD milking 

can lead to lower milk production per cow, shorter lactations and higher somatic cell 

count (SCC) (Holmes et al. 1992), some New Zealand farmers have switched to a full-
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lactation OAD system over the last decade as they believe that OAD herds can be as 

profitable as TAD herds (Edwards 2019). 

 

The typical breeds in New Zealand herds are Jersey (J), Holstein Friesian (F) and their 

crossbred (F×J). According to recent New Zealand dairy statistics, the crossbred was 

the predominant breed group (47.8%), whereas F and J accounted for 33.4% and 9.0% 

of the population, respectively (LIC and DairyNZ 2018). The rest of the population 

were Ayrshire (0.5%) and other breeds (9.2%).  

 

The study by Bryant et al. (1985) demonstrated that HF and Jersey cows had a similar 

efficiency of converting feed into profit. Some of the major difference between the two 

breeds in relation to productive traits are milk yield (MY), fat yield (FY), protein yield 

(PY), fat percentage (FP) and protein percentage (PP). HF cows had highest lactation 

yields of milk and Jersey cows produced milk with highest percentage of fat and protein 

(Table 2.1).  

 

Table 2.1 Breed composition (%), lactation yields of milk (MY), fat (FY) and protein 

(FY), and percentage of fat (FP) and protein (PP) from J, F and F×J cows in season 

2017/18 (LIC and DairyNZ 2018). 

Breed % MY (litres) FY (kg) PY (kg) FP (%) PP (%) 

J 9.0 3208 180.1 132.6 5.65 4.14 

F×J 47.8 4102 201.8 161.0 4.97 3.94 

F 33.4 4470 198.0 166.2 4.48 3.73 

 

Crossbreeding is a common practice in New Zealand dairy industry. Crossbred animals 

will have an additional genetic gain compared to the average genetic level of their 

parent breeds for a number of profit-related traits. Crossbreeding allows dairy farmers 

of New Zealand to take advantage of favorable heterosis effects to increase dairy cows’ 

performance. 
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2.1.1 The effects of productive performance on farm profitability 

In spite of the milking frequency and the types of breed used in a system, dairy farmers 

always aim for the maximum profitability. Farm profitability can be affected by many 

factors. In typical pasture-based dairy systems, the efficiency of milk production is 

often considered to have major impacts on profitability (Harris et al. 2007). It is 

associated with the production and utilisation of the grazed pasture, and the efficiency 

of milksolids production by each cow (Penno 1998).  

 

A cow will be more profitable if she produces more milk and uses the feed more 

efficiently. High-genetic-merit cows which have higher gross feed conversion 

efficiency and produce more milk per unit of feed consumed are used in New Zealand 

dairy farms (Holmes et al. 1987). Farm profitability can also be improved by increasing 

the sales price of the milk. Although milk price highly depends on the market, dairy 

farmers try to achieve higher profitability by improving the quality of the milk. The 

proportion of milksolids determines the quality and nutritional value of raw milk and 

its products (Kefford et al. 1995). The concentration of some particular milk proteins 

can also change the price of the milk.  

 

2.1.2 The effects of reproductive performance on farm profitability 

Profitability will be improved by increasing the longevity of cows because cows with 

more lactations are expected to be more profitable (Pritchard et al. 2013). Fertility is 

one of the major factors affecting the longevity of the cow and it is of critical importance 

to New Zealand dairy production system. Poor fertility is the biggest cause of culling 

of dairy cows in New Zealand (Xu & Burton 2000; Martinez Rocha 2017). Due to the 

request for synchronisation between pasture supply and animal energy demand, the 

breeding and calving are restricted to a very compact period of time (Holmes et al. 
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1987). Early culling of a cow due to reproductive failure means not only a waste of 

productivity but also the cost of animal rearing is diluted by fewer lactations. A high 

calving percentage are essential to maximising the profitability of a dairy farm. 

However, late calving caused by poor reproductive performance is still undesirable 

even if the cows were pregnant. It increases the calving to calving interval and shortens 

the lactation. A relatively earlier date of calving with a more compact calving period 

will result in a higher level of milksolids yield per cow since the lactation is actually 

prolonged (Dillon et al. 1995; Macmillan et al. 1996).  

 

Several fertility traits are measured on cows to assess their reproductive performance 

in New Zealand dairy herds. The submission rate at 21 days (SR21) is defined as the 

percentage of oestrous cows receiving at least one insemination in first three weeks of 

the mating period. The national goal for New Zealand herds for SR21 is 90% (LIC and 

DairyNZ 2018). Pregnancy rate at 21 (PR21) and 42 days (PR42) is the percentage of 

cows conceived at 21 and 42 days after the start of mating, whereas pregnancy rate at 

first service (PRFS) is the percentage of cows conceived after the first insemination. 

Start of mating to conception (SMCO) is defined as the days from the first day of 

breeding season to the date when the cow become pregnant.  

 

2.2 Milk as the source of bioactive peptides 

Proteins play an essential role in the formation, maintenance and repair of the body 

tissue in all living organisms. Proteins are polymer chains formed from different amino 

acids linked by peptide bonds. Proteins have the same energy density as carbohydrates 

and each gram of protein provides four calories. Despite providing a source of energy, 

proteins are of significant importance because they also provide essential amino acids 

which cannot be synthesised in the human body (Young 1994). Dietary proteins are 

broken down into polypeptide chains in the stomach, and then further broken down to 

amino acids and then absorbed by the small intestine. Proteins may also be cut into 

peptides by proteolytic enzymes during digestion or food processing (Neurath 1984). 
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Unlike proteins, peptides are a shorter chain of amino acid residues, ranging in size 

from 2 to 50 amino acids (McNaught et al. 1997).  

 

Milk is an important food and source of proteins for both infants and adults. Caseins 

and whey proteins are two major groups of milk protein, and the ratio of casein/whey 

protein is around 80:20 (Groenen et al. 1994). There are four major caseins in cow’s 

milk which are αs1-, αs2-, β- and κ-casein (Eigel et al. 1984). 

 

Milk and dairy products are the main source of β-casein, and β-casein families comprise 

about 30% of total milk proteins in bovine milk (Walstra et al. 1984). A1 and A2 types 

are two major genetic variants of β-casein proteins in bovine milk (Ng-Kwai-Hang et 

al. 1990). Genetic variation between herds and breeds determines the sequence of milk 

protein. For instance, a Proline residue is present at position 67 in A2 variant while it is 

replaced by a Histidine residue in the A1 variant in the same position (Ng-Kwai-Hang 

et al. 2003). This point mutation of one amino acid resulted in the original occurrence 

of A1 β-casein in European herds 5000-10000 years ago, and it eventually became 

widespread around herds in Europe and America (Ng-Kwai-Hang et al. 2003). Dairy 

cows from modern herds in a large number of western countries have a roughly similar 

gene frequency of A1 and A2 (1:1) due to the changes in herd composition over time 

(De Noni et al. 2009). By contrast, purebred cattle from other regions, such as Asia and 

Africa, produce milk only having A2 β-casein. Genetic polymorphism is also associated 

with cattle breeds, as Southern European breeds usually have a higher A2 allele 

frequency than Northern European breeds (Pal et al. 2015). A higher frequency of A1 

appears in Holstein-Friesian, Ayrshire and Red cows (McLean et al. 1984; Bech et al. 

1990), whereas A2 is most frequently observed in Jersey and Guernsey cows (Ehrmann 

et al. 1997). However, the distribution of allele frequency in various cattle breeds 

depends on the local breeding history of the dominant breeds (De Noni et al. 2009). It 

is unreliable to estimate the allele frequency of β-casein merely based on the 

information of cattle breed within any particular herds. Nowadays, it is commercially 

available to conduct herd testing for gene frequency with DNA analysis in many 
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countries. The different genetics of the individual cows dictate which type will be 

expressed in their milk. Cows with homozygous genes (A1A1 or A2A2) produce milk 

exclusively with A1 or A2 β-casein. In comparison, heterozygous cows (A1A2) 

produce milk with both types of β-casein. Milk containing solely A2 β-casein is 

generally called A2 milk, whereas milk with both A1 and A2 β-casein variants is 

commonly categorised into A1 milk. 

 

2.3 The formation of BCM-7 during digestion and milk processing 

Once food is ingested, some fragments will be cut away and released from the food 

protein molecules under the influence of enzymatic hydrolysis in the process of 

digestion (Kamiński et al. 2007). These protein fragments are known as food-derived 

peptides. Each peptide molecule contains 2-20 amino acid residues in most cases, but 

sometimes it could be longer than 20 amino acids. Some of these peptides are 

biologically active and have physiological effects such as regulation of peripheral blood 

pressure (Murray et al. 2007) and antibiotic activity (Clare et al. 2003). Some also 

involve the modulation of gastrointestinal (Chabance et al. 1998; Shimizu 2004) and 

immune system (Meisel 2004). Up to the present the biological property of milk 

protein-derived peptides has been widely studied while less work has focused on the 

pharmacology of bioactive peptides from other food sources.  

 

One of the bioactive peptides derived from β-casein digestion is known as β-

casomorphins-7 (BCM-7). The structure of BCM-7 is Tyr60-Pro61-Phe62-Pro63-Gly64-

Pro65-Ile66, with a molecular formula of C41H55N7O9 and molecular weight of 789.9 

g/mol. The enzymatic release of BCM-7 via digestion of β-casein is determined by the 

sequences of amino acid of this casein. It has been identified that the amino acid at 

position 67 of the protein sequence is of significance to the generation of BCM-7 

(Jinsmaa et al. 1999). As described above, there is a Histidine at this position in A1 β-

casein and a BCM-7 can be cut off from it, whereas the Proline residue in A2 β-casein 

protect the bond between Ile66 and Pro67 from hydrolysis by digestive enzymes (Figure 
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2.1). A3, H1, H2, I, J, K and L β-casein are sub-variants belong to A2 β-casein family. 

Some sub-variants within A1 group, including B, C, F and G β-casein, also have a 

Histidine residue at position 67 (Kamiński et al. 2007), which allows them to be cleaved 

enzymatically and release BCM-7 just like A1 β-casein. In fact, the generation of BCM-

7 from B variant could be even higher than that from A1 β-casein (De Noni 2008). The 

gastrointestinal digestion of yoghurt and cheese made from A1 milk will release BCM-

7 into human body (De Noni et al. 2010). In addition, BCM-7 will also be released and 

retained during the production and processing of dairy product like cheese 

(Sienkiewicz-Szłapka et al. 2009) but not yoghurt (De Noni et al. 2010). 

 

 

Figure 2.1 Release of β-casomorphins-7 with the breakdown of amino acid chain in A1 

β-casein (Woodford 2008). 

 

2.4 The significance of opioids systems and its interactions with BCM-7 

Endogenous opioids peptides, including endorphins, enkephalins, and dynorphins, are 

naturally produced by the human body and function as neurotransmitters (Brownstein 

1993). It is clear that some casein derived peptides have similar biological activities 

which involve the mediation of the opioid system (Korhonen et al. 2006). The term 

‘opioid’ refers to a class of substances that can elicit morphine-like effects via opioid 
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receptors in the body. Opioids peptides bind to different types of receptors which are 

capable of modulating the body reactions to pain.  

 

The opioid bioactive peptides derived from caseins during protein digestion or food 

processing (e.g., milk fermentation or cheese ripening) are exogenous ligands which 

have either agonistic or antagonistic action on opioid receptors. The interaction of 

exogenous opioid ligands (exorphins) or endogenous opioid ligands with their receptors 

can mediate various physiological effects (Clare et al. 2000; Teschemacher 2003). 

Opioid receptors are widely distributed throughout the central nervous system (CNS) 

and can be found in immune tissues (Wittert et al. 1996) and mammal’s gastrointestinal 

tract (Fickel et al. 1997).  

 

There are three different classes of opioid receptors, which are μ-, δ- and κ-opioid 

receptors. Opioid ligands can activate μ-opioid receptors, resulting in a variety of 

effects such as analgesia, depression of breathing, miosis, euphoria and reduction of 

gastrointestinal motility (Brownstein 1993; Waldhoer et al. 2004). There are some 

reports suggesting that the expression of μ-opioid receptors may be involved in autism 

(Wakefield et al. 2002; Sokolov et al. 2014) and schizophrenia (Volk et al. 2011). The 

opioid property of peptides isolated from casein peptone has been revealed for decades 

(Brantl et al. 1979; Henschen et al. 1979). It has been well established that bioactive 

BCM-7 can have various impacts throughout human physiology, such as on 

gastrointestinal tract, CNS, cardiovascular and immune system by acting as an μ-opioid 

receptor agonist (Korhonen et al. 2006; Kamiński et al. 2007).  

 

2.5 The possible health effects of milk-derived peptides 

Although some early researchers proposed that dairy proteins might have the possibility 

to increase the risk of some diseases (Popham et al. 1983; Dahl-Jørgensen et al. 1991), 

the moderate consumption of dairy products is not considered to be harmful to human 

health in most major studies. However, it has come to scientists’ notice later on that it 
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was milk protein polymorphism that could result in some negative health effects. The 

hypothesis that the A1 β-casein derived BCM-7 is an important contributor to type I 

diabetes in children was developed in late 1990s by Elliott et al. (1999). Two years later, 

another study by McLachlan (2001) suggested that there was a positive correlation 

between the consumption of A1 β-casein and the mortality of ischaemic heart disease 

(IHD). The comparative data from these studies has drawn considerable attention to the 

distinct physiological properties of different milk components and stimulated the 

extensive research into the health effects of some specific milk proteins – namely, A1 

β-casein. The majority of the research to date is associated with the potential effects of 

BCM-7 on the CNS, the cardiovascular and gastrointestinal function. 

 

2.5.1 The transport of milk-derived peptides 

Biologically active peptides must be delivered to the target sites in the first place. 

Following the breakdown of milk proteins, peptide molecules will be absorbed from 

the gastrointestinal tract into the blood circulation and transferred to their potential 

target tissues in the body. In order to maintain a bioactive form, the peptides have to 

first withstand the action of brush border peptidases and then be absorbed across the 

intestinal mucosa. The transepithelial transport of opioid peptides is usually difficult 

due to their hydrophobic character (Ganapathy et al. 2005). Enzymatic hydrolysis has 

been identified as the major limiting factor for the half-life of opioid peptides in human 

small intestine (Iwan et al. 2008). The poor intestinal absorption of oral administered 

peptides results not only from their instability against enzymatic degradation but also 

from low membrane permeability across the intestinal mucosa owing to their 

undesirable physicochemical property (Pauletti et al. 1996). Nevertheless, since there 

is no barrier or mechanism which can cormpletely prevent intestinal absorption of 

peptides (De Noni et al. 2009), it is still feasible for BCM-7 to penetrate human 

intestinal mucosa regardless of their inconsistent bioavailability. The possibility of 

transfer of food-derived opioid peptides though human intestinal epithelium has been 
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demonstrated in a number of studies (Iwan et al. 2008; Sienkiewicz-Szłapka et al. 2009; 

Vij et al. 2016). 

 

Milk-derived biofunctional peptides must have the ability to cross the blood-brain 

barrier (BBB) and still stay active so as to exert influences on the CNS. BBB is a 

physiological barrier that separates the peripheral circulation from the CNS due to the 

tight junctions between the endothelial cells. As the gatekeeper of the CNS, this highly 

selective border allows the blood vessels to regulate the movement of substance 

between the brain and blood, thus providing the neural tissue with a defence against 

disease-causing pathogens and toxins in the blood (Daneman et al. 2015). Opioid 

peptides include BCM-7 can be transported across BBB via the peptide transport 

system-1 (PTS-1) (Ermisch et al. 1985; Banks et al. 1986). Therefore, the delivery of 

opioid peptides in the blood to the possible target tissue in the CNS seems achievable. 

 

2.5.2 The possible effects of A1 β-casein on Type I diabetes mellitus 

Type I (insulin-dependent) diabetes mellitus (IDDM) is also known as juvenile diabetes, 

as it occurs mostly in childhood and adolescence. IDDM is generally considered to be 

an autoimmune disease which involves an incorrect attack and destruction of insulin-

secreting islet cells in the pancreas by T lymphocytes (Alberti et al. 1998). 

Consequently, very little or no insulin will be produced within the body to maintain 

normal blood glucose levels. The exact cause of IDDM is still unknown, but 

development of the disease results probably from both genetic and environmental 

factors (Association 2010). As the environment in which children are raised has been 

changed during the last several decades, the incidence of IDDM has been increasing 

remarkably worldwide (Wild et al. 2004). In order to explain the rising prevalence of 

IDDM, one hypothesis which involves the consumption of milk and dairy products has 

been suggested. 
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The relationship between dietary factors and the increased incidence of childhood 

diabetes has been widely investigated but the findings have been inconsistent. For 

instance, it was observed in many studies that the development of IDDM may be 

triggered by milk consumption in childhood (Dahl-Jørgensen et al. 1991; Fava et al. 

1994; Saukkonen et al. 1998; Thorsdottir et al. 2003), shorter duration of breast feeding 

(Borch-Johnsen et al. 1984; Gimeno et al. 1997) and early exposure to dairy products 

(Virtanen et al. 1993). Nevertheless, the connection between IDDM and consumption 

of cow’s milk is not demonstrated in some other studies (Thorsdottir et al. 2000; 

Strotmeyer et al. 2004). Furthermore, the study by Meloni et al. (1997) suggested that 

early introduction of cow’s milk has no effect on the development of IDDM, which is 

supported by Esfarjani et al. (2001) and Savilahti et al. (2009). A short breast-feeding 

period showed no significant effect on reducing the risk of IDDM (Esfarjani et al. 2001; 

Ziegler et al. 2003).  

 

Studies have looked into the role of gut-related immune function and A1 β-casein has 

been identified as a possible triggering factor of IDDM (Bell et al. 2006; Kamiński et 

al. 2007), which support the early study by Elliott et al. (1999). In fact, dairy proteins 

in conventional formula could induce an enhanced humoral immune response in infants, 

whereas those given hydrolysed formula expressed a reduced immunological response 

to proteins in cow’s milk (Åkerblom et al. 2005). A hypothesis has been proposed that 

BCM-7 exclusively derived from A1 β-casein impairs the development of 

gastrointestinal immune tolerance or inhibits the body defences against enterovirus by 

acting as an immune suppressant, which may lead to the development of IDDM in 

genetically predisposed individuals (Kamiński et al. 2007). 

 

Nevertheless, the finding reported by Elliott et al. (1999) that the positive correlation 

between the incidence of IDDM in infants and children (from 0 to 14-year-old) from 

10 countries or areas and the per capita consumption of A1 β-casein based on ecological 

and epidemiological data is controversial. For example, the measurement of A1 β-

casein consumption in this study is flawed. Most of the formulas used to feed infants 
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are based on the content of an increased whey protein and a reduced casein, there might 

be a difference between the adult per capita milk consumption and milk intake from 

formulas by infants in this case (Truswell 2005). Additionally, a more recent study 

showed that the gastrointestinal digestion of cheese also leads to the release of BCM-7 

into the body (De Noni et al. 2010). The correlation will be weakened as a result of 

incorporation of A1 β-casein derived from cheeses as an additional source of BCM-7 

(Lacroix et al. 2014). It is also worth considering that the robustness of the results in 

this study is limited by the dataset from a relatively small number of selected countries 

probably due to insufficient available data. One larger ecological study led to opposite 

conclusion as the increase in IDDM incidence (a 3% yearly increase) in 37 world areas 

from 1961 to 2000 was reviewed and its correlation with daily milk intake has not been 

confirmed (Muntoni et al. 2006). 

 

The biological evidence from animal experiments and human studies which support the 

supposition that A1 β-casein plays a causative role in the development of IDDM is weak 

and insufficient. One large, multi-centre animal experiment investigated the 

diabetogenic effect of A1 β-casein on biobreeding (BB) rats and non-obese diabetic 

(NOD) mice which are both genetically prone to develop IDDM (Beales et al. 2002). 

However, although the authors suggested that milk caseins could facilitate the induction 

of diabetes in some cases, the study did not support the previous results that A1 β-casein 

is more diabetogenic than A2 β-casein. In the human study, the levels of A1 β-casein 

antibodies in the serum of IDDM patients were compared with those of their siblings, 

parents and controls (Padberg et al. 1999). However, the results from this study 

suggested that the differences in the concentration of A1 antibodies were probably 

related to age rather than IDDM. 

 

In conclusion, the hypothesis that A1 β-casein in cow’s milk is a diabetogenic factor is 

yet to be supported by convincing evidence. A1 β-casein itself, however, does not seem 

to work as an exclusive contributing factor of IDDM, although it may enhance the 

outcome of the disease to some extent. 
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2.5.3 The possible effects of A1 β-casein on cardiovascular health 

The major cardiovascular disease is ischaemic heart disease (or coronary artery disease), 

which has underlying mechanisms involving atherosclerosis and thrombosis. High 

blood pressure, high blood cholesterol, obesity and smoking are some of the well-

known risk factors for cardiovascular disease. The significant relationship between 

consumption of A1 β-casein and cardiovascular disease has been established in several 

ecological studies (McLachlan 2001; Birgisdottir et al. 2002; Laugesen et al. 2003). 

The discovery of this possible risk factor for cardiovascular disease arouses 

considerable interest. 

 

In fact, some biofunctional peptides derived from milk proteins even have beneficial 

cardiovascular effects including the reduction of blood pressure (Murray et al. 2007). 

In regard to A1 milk protein, however, studies suggested that BCM-7 could lead to 

atherosclerosis (Tailford et al. 2003; Allison et al. 2006). The proatherogenic effect of 

BCM-7 involves the promotion of oxidation of human low-density lipoproteins (LDL) 

(Torreilles et al. 1995). The oxidation of LDL within artery walls can contribute to the 

development of atherosclerosis and cardiovascular disease. 

 

The animal study carried out by Tailford et al. (2003) demonstrated the detrimental 

effects of A1 β-casein on the progression of atherosclerosis. However, the methodology 

of the experiment is somewhat concerning. The sample groups given specific diet were 

very small (only 6 per group). The duration of the trial was relatively short (for only 6 

weeks), especially compared to natural development of atherosclerosis which usually 

takes years in man (De Noni et al. 2009). This single study in a rabbit model may 

provide only insubstantial evidence to support the causative role of A1 β-casein in 

human atherosclerosis. Extrapolating these results from animal experiments to human 

could be very problematic. 
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The study by Laugesen et al. (2003) failed to find the association between IHD and 

some well-recognised risk factors (e.g., the consumption of tobacco products and 

saturated fat), which reflects the fact that it is difficult to adjust for all the confounding 

factors and demonstrate a cause-effect relation in an ecological study. The proportion 

of A1 β-casein in milk was rising over the years, whereas the association between the 

A1 β-casein consumption and IHD was much weaker in the 1990s than in the 1970s 

(Hill et al. 2002). These findings obviously contradict the results from previous 

ecological studies suggesting the proatherogenic effect of A1 β-casein. Also, no 

evidence has been found to confirm the adverse effect of A1 β-casein on cardiovascular 

health in human studies (Chin-Dusting et al. 2006; Venn et al. 2006). Therefore, to 

support the role of A1 β-casein in the pathogenesis of cardiovascular disease in humans, 

more strong and convincing evidence is required. 

 

2.5.4 The physiological effects of A1 β-casein on CNS  

The μ-opioid receptors which bind to BCMs are highly expressed in the brain and spinal 

cord (Besse et al. 1990; Wittert et al. 1996). BCMs was reported to exert analgesic 

effects on experimental animals and the duration was much longer than that of 

endogenous peptides (Brantl et al. 1981). These analgesic effects of BCMs could be 

totally blocked by the opioid receptor antagonist naloxone. Other CNS-associated 

effects of BCMs were also reported in animal studies include stimulation of food intake 

(Lin et al. 1996) and dose-dependent modulation of memory and learning (Sakaguchi 

et al. 2006). 

 

Many opioids receptors are located in the nuclei which are also involved in regulation 

of active sleep (Aghajanian 1978). In fact, opioid peptides may play a role in induction 

and maintenance of the sleep (Wilson et al. 1984) and have a tonic effect on breathing 

(Santiago et al. 1985). The positive correlation between chronic opioid use for pain 
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management and sleep-disordered breathing has been found (Farney et al. 2003; 

Webster et al. 2007). It is suggested that long-term use of opioid may promote the 

development of central sleep apnea syndrome (CSAS) and ataxic breathing (Walker et 

al. 2007).  

 

It is clear that the binding of opioid with μ-opioid receptors at some particular neuronal 

sites in the CNS leads to opioids-induced respiration depression. Sudden infant death 

syndrome (SIDS) is the sudden and unexpected death of a seemingly heathy child less 

than one year old (Sun et al. 2003). The death usually happens during sleep and is 

unexplained even after a complete autopsy. Infants who later develop SIDS show an 

abnormality of respiratory center function (Valdes-Dapena et al. 1983). It has been 

hypothesised that BCMs are the possible etiological factors for SIDS (Ramabadran et 

al. 1988; Sun et al. 2003; Wasilewska et al. 2011). The accumulation of BCMs in 

immature CNS of the infants may depress brain-stem respiratory centers. The 

antibodies against BCMs have been found in the brain stem of the SIDS victims (Pasi 

et al. 1993), which validates that BCMs can pass through BBB and interact with their 

receptors in CNS. 

 

Autism spectrum disorder (ASD) refers to a group of neurodevelopmental disorders 

characterised by difficulties with social interaction, impaired communication and 

repetitive, restricted patterns of behaviour (Baio 2014). Autism is a spectrum condition 

and generally considered incurable. The etiology of autism remains unclear. However, 

there has been a growing interest lately in the role of gastrointestinal pathology in 

psychiatric disorders including autism and schizophrenia. Gastrointestinal symptoms 

are common in children with developmental disorders (Horvath et al. 2002; Wakefield 

et al. 2002). Studies found the urine concentrations of BCM-7 were significantly higher 

in children with autism (Reichelt et al. 2012; Sokolov et al. 2014). They claimed that 

early child development could be impaired by increased BCM-7 levels, leading to 

predisposition to autism. However, contradictory results have also been presented in 

other studies which failed to confirm the presence of opioid peptides in urine of autistic 
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children (Hunter et al. 2003; Cass et al. 2008). 

 

It has also been reported in some studies that BCM-7 may be implicated in 

schizophrenia (Sun et al. 1999; Severance et al. 2010). The possible link between 

elevated milk casein antibodies and the risk of schizophrenia has been suggested 

(Niebuhr et al. 2011). Casein-free diets seems to improve some neurological symptoms 

of schizophrenia (Okusaga et al. 2013). Nonetheless, the current evidence supporting 

the role of BCM-7 in schizophrenia is limited and weak. 

 

It is important to note that abnormal BCM-7 levels have never been found in the CNS 

of patients with autism or schizophrenia according to current literature. In summary, 

the association of BCM-7 with autism or schizophrenia is yet to be supported by 

stronger evidence, despite the fact that a casein-free diet may benefit a subgroup of 

individuals with these mental illnesses. 

 

2.5.5 The physiological effects of A1 β-casein on GI tract and milk intolerance 

Dietary proteins affect the release of gut hormones by stomach and small intestine, 

which in turn modulate gastrointestinal digestion and metabolic process (Lichtenberger 

1982). Research has shown that casein-derived peptides, including BCM-7 can 

stimulate the secretion of mucin and enhance gene expression in human intestinal 

goblet cells by direct interacting with endogenous opioid systems (Zoghbi et al. 2006; 

Martínez-Maqueda et al. 2013). Current evidence clearly indicates the regulatory 

effects of food-derived peptides on gastrointestinal function and digestive process. It 

has been demonstrated in different animal models that a casein meal decelerated gut 

motility and increased gastrointestinal transit time compared with a soy protein meal or 

a whey protein meal (Daniel et al. 1990; Defilippi et al. 1995; Crowley et al. 2013). 

Young rats fed hydrolysed casein have shown a faster gastrointestinal transit than those 

given normal casein due to no release of BCMs from hydrolysed casein during digestion 
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(Mihatsch et al. 2005). Likewise, Wistar rats fed A1 β-casein had significantly longer 

gastrointestinal transit time than A2 group (Barnett et al. 2014).  

 

Milk intolerance, which is a commonly reported gastrointestinal disorder, is generally 

considered to be caused by in sufficient lactase enzyme activity. However, there is 

increasing body of evidence in human studies that milk-derived BCM-7, rather than 

lactose per se, may play a causative role in milk intolerance. Adults humans consuming 

A1 β-casein milk were reported to have significantly higher Bristol Stool Scale than 

those consuming A2 β-casein milk, suggesting that A1 group had softer stools (Ho et 

al. 2014). The consumption of conventional milk was associated with delayed 

gastrointestinal transit times and significant increased gastrointestinal inflammation 

(Jianqin et al. 2015). Substituting conventional milk with milk containing only A2 β-

casein resulted in reduced gastrointestinal response caused by milk intolerance in 

Chinese preschool children (Sheng et al. 2019). However, these responses are direct 

gastrointestinal effects of BCM-7, or indirect effects caused by longer gastrointestinal 

transit times, is yet to be elucidated by further studies. 

 

2.6 The effects of milk protein variants on productive and reproductive 

performance of cows 

The A2 Milk Company was set up in New Zealand in 2000. It focuses on the selection 

of the cows that produce only A2 milk protein and markets milk and dairy products 

only with the A2 β-casein variant to New Zealand, Australian, US and Chinese markets. 

The A2 Milk Company also developed a method for identifying A1 and A2 types of the 

cows. After realising the commercial potential of the A2 milk in global market, a large 

number of dairy farms within New Zealand chose to develop their herds with a higher 

percentage of the A2 allele (Woodford 2007). According to the Livestock Improvement 

Corporation (LIC 2020), in the year 2019 about 30% of dairy cows in New Zealand 

produced milk containing only A2 β-casein. The A2 Milk Company is experiencing 

strong sales growth in China. 
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There is growing interest in using the A2 casein type as an additional criterion in bull 

selection for artificial insemination due not to the potential importance of A2 milk for 

public health but also to its apparent commercial potential. The effects of A2 β-casein 

type on milk production, milk composition warrants investigation. Furthermore, 

fertility is a major factor affecting the profitability of New Zealand dairy production 

systems as poor fertility is the biggest cause of culling of dairy cows in New Zealand 

(Xu & Burton 2000; Martinez Rocha 2017). Early culling of a cow due to reproductive 

failure can result in substantial economic losses to dairy farmers because it is not only 

a waste of productivity but also the cost of animal rearing is diluted by fewer lactations.  

Therefore, reproductive traits are also economically important and the effects of 

selection for certain β-casein types on cow fertility should also be investigated.  

 

The association of β-casein polymorphism with milk production (Ng-Kwai-Hang et al. 

1986; Çardak 2005; Heck et al. 2009), milk composition (Aleandri et al. 1990; 

Winkelman et al. 1997; Ikonen et al. 1999) and fertility (Lin et al. 1987; Ruottinen et 

al. 2004; Demeter et al. 2010) in dairy cows has been investigated. However, the 

literature in relation to the productive performance and fertility of the cows with A2 β-

casein in New Zealand is scarce.  

 

 

 

 

 

 

 

 

 

 

 



25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Material and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

3.1 Farms and animals 

The data was collected from Dairy 1 and Dairy 4 farms at Massey University, 

Palmerston North. Dairy 1 farm is 142.7 hectares with 65 paddocks, and is managed as 

a low input farm and has a spring-calving, once-a-day (OAD) milking system. It is 

pasture based with paddocks containing ryegrass with white and red clover mix (100 

ha), plantain and chicory with white and red clover mix (10 ha) and a lucerne crop (10 

ha). The number of cows in Dairy 1 was 249 in the season 2017/18. 

 

Dairy 4 farm is 224 hectares (effective grazable area) with 90 paddocks. It is managed 

as a high-input farm with a spring-calving and twice-a-day (TAD) milking system. 

Dairy 4 farm is pasture based and the pastures are predominantly perennial ryegrass 

and white clover. The number of cows in Dairy 4 was 593 in the season 2017/18. 

 

Cows in Dairy 1 farm were milked once daily at 6:30 am, whereas those in Dairy 4 

were milked twice a day at 5:30 am and 2:30 pm throughout lactation. Calving began 

in mid-July on both farms in 2017 and cows were milked until May the following year. 

The breeding season began on October 18th and ended on December 23th. 

 

3.2 Description and handling of the data set 

Animal information consisted of breed composition, liveweight (LW), lactation length 

and genotype. A radio frequency electronic identification system (Allflex New Zealand 

Ltd., Palmerston North, New Zealand) was used to identify each cow. The records for 

Daily LW were obtained with an automatic race walkover scale (WoW xR-3000, Tru-

Test Ltd. Auckland, New Zealand) after each milking in both farms (Correa-Luna et al. 

2018). The LW of each cow for the whole season was calculated as the average of all 

the LW measurements. Lactation length was calculated as the number of days in milk 

(DIM) between calving and drying off. The genetic test for the β-casein genotype of a 

cow has been developed by LIC, and can be either a test of the milk sample via herd 

testing (milk test), or a test of some hairs along with the skin follicle cells collected 
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from the animal (tissue test). In the current study, the A1/A2 status of cows in both 

farms was determined based on a tissue test. 

 

The productive traits comprised milk yield (MY), fat yield (FY), protein yield (PY), fat 

percentage (FP) and protein percentage (PP). The yield of milk solids (MSY) was 

calculated as the sum of MY and PY. The records of MY, FY, PY and somatic cell count 

(SCC) were obtained from monthly herd testing conducted by LIC. The SCC from herd-

test records was log-transformed to somatic cell score (SCS). The average SCS was 

calculated as the mean of SCS obtained in all herd tests over the lactation year. The 

reproductive traits measured on each cow include days from start of mating to 

conception (SMCO), pregnancy rate at first service (PRFS), the submission rate at 21 

days (SR21) and the pregnancy rate at 21 (PR21) and 42 days (PR42) after the start of 

mating. 

 

The objective of the current study was to investigate the productive and reproductive 

performance of cows with different β-casein types (A1 and A2) in two farms. However, 

genotypic information of all the first lactation cows in Dairy 4 were unavailable in the 

original data set. In order to keep an identical data structure for the comparison between 

two farms, the first lactation cows of Dairy 1 were also excluded from this study. As a 

result, only 733 cows of parity ≥2 were selected. Due to lack of complete individual 

information from some of these animals, complete records were available for 642 cows 

and these were used in this analysis. The final number of cows used for statistical 

analysis (642) accounts for approximately 88% of the total number of cows selected 

(733).  

 

3.2.1 Breed 

The cows used for data analysis were Holstein Friesian (F), Jersey (J) and crossbred 

(F×J). In general, a cow was considered purebred when she had ≥87.5% of F or J, 
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otherwise she was considered crossbred. There were 206 dairy cows in Dairy 1 farm in 

the season 2017/18. The breed structure of Dairy 1 was 49 F, 50J and 107 F×J. By 

comparison, there were 451 dairy cows in Dairy 4 including 139 F, 4J and 308 F×J. It 

is worth noting that proportion of Holstein-Friesian (pF) was used as a variable rather 

than cattle breeds in the current study when analysing the fixed effect of breed on milk 

production, milk composition and fertility. The summary of the number of cows and 

breed proportion in each farm is presented in Table 3.1. 

 

Table 3.1 Number of cows (N) and breed composition (%) of each herd. 

  Breed1  

Farm  F F×J J Total 

Dairy 1 N 49 107 50 206 

 % 23.8 51.9 24.3  

Dairy 4 N 139 308 4 451 

 % 30.8 68.3 0.9  

1F = Holstein Friesian, J = Jersey and F×J = crossbred. 

 

3.2.2 Parity 

The lactation number of the cows included in this study ranged from 2 to 6 as the first 

lactation cows were excluded in both farms. For statistical analysis, the cows were 

divided into two groups: (1) second parity and (2) third or greater than third parity. The 

summary of the parity of cows in each farm is presented in Table 3.2. 
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Table 3.2 Number of cows (N) in different parity group and its proportion (%) in each 

farm. 

  Parity  

Farm  2 ≥3 Total 

Dairy 1 N 57 149 206 

 % 27.7 72.3  

Dairy 4 N 48 403 451 

 % 10.6 89.4  

 

3.2.3 Genotype 

Due to the fact that both A1A1 and A1A2 cows produce A1 protein, cows were grouped 

by A1 cows (cows with either A1A1 or A1A2 genotypes) and A2 cows (cows with only 

A2A2 genotypes) to minimise the inaccuracy of statistical analysis caused by small 

sample size, as there were only six cows with homozygous A1A1 genotypes in Dairy 

1. The summary of the β-casein types of cows in each farm is presented in Table 3.3. 

 

Table 3.3 Number of cows (N) in different genotypes and its proportion (%) in each 

farm. 

  β-casein type  

Farm  A1 cows1 A2 cows2 Total 

Dairy 1 N 84 122 206 

 % 40.8 59.2  

Dairy 4 N 234 217 451 

 % 51.9 48.1  

1A1 cows = cows with either A1A1 or A1A2 genotypes. 

2A2 cows = cows with only A2A2 genotypes. 
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3.3 Statistical methods 

The data set was analysed using SAS version 9.4 software (SAS Institute Inc., Cary, 

NC, USA). Descriptive statistics were generated with the MEANS procedure. Analysis 

of variance for MY, FY, PY, FP, PP, SMCO, PRFS, SR21, PR21 and PR42 were 

performed using the MIXED procedure with the following mixed linear model: 

yijkm = μ + Fi + Lj + Gk + FGik + LGjk + β1p
F + β2hF×J + β3d + eijkm 

where yijkm is the dependent trait measured in a cow mth; µ is a general mean; Fi is the 

fixed effect of farm; Lj is the fixed effect of the parity; Gk is the fixed effect of the type; 

FGik is the interaction between farm i and type k; LGjk is the interaction between 

lactation number j and type k; β1 is the regression coefficient of the dependent variable 

on proportion of Holstein-Friesian (pF); β2 is the regression coefficient of the dependent 

variable on F×J heterosis (hF×J); β3 is the regression coefficient of the dependent 

variable on deviation from median calving date (d); eijkm is the random residual error 

associated with the observations of yijkm. Binominal variables (PRFS, SR21, PR21 and 

PR42) were analysed using the GLIMMIX procedure with the same mixed linear model 

described above after a logit transformation. Least squares means and standard errors 

were obtained and used for multiple mean comparisons using Fisher’s least significant 

difference as implemented in the LSMEAN option. Significant differences between 

means were declared at P<0.05. 
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4.1 Descriptive statistics 

Descriptive statistics for milk production and reproductive traits of total 642 cows (186 

F, 53 J, 403 F×J) from Dairy 1 and 4 in the season 2017/18 are shown in Table 4.1. The 

lactation milk yield in 2017 ranged from 1,491 kg to 7,371 kg with a mean value of 

4,696 kg. The means for yields of fat and protein were 223 kg and 179 kg, respectively. 

The range for FP was from 2.91 to 7.22% and was more than PP which ranged from 

3.13 to 4.94%. For fertility traits, the mean value of SMCO was 16 days with a range 

from 0 to 69 days. Pregnancy rate at first service was 50% on average. Submission rate 

at 21 days was high (>90%). The average pregnancy rates at 21 and 42 days were 54% 

and 77%, respectively. 

 

Table 4.1 Mean, standard deviation (SD), minimum and maximum values of lactation 

yields of milk (kg), fat (kg) and protein (kg), fat percentage, protein percentage, days 

from start of mating to conception (SMCO), pregnancy rate at first service (PRFS), 

submission rate at 21 days (SR21) and pregnancy rate at 21 (PR21) and 42 days (PR42) 

after the start of mating in Massey University Dairy 1 and 4 farms in 2017. 

Traits Mean SD Minimum Maximum 

Total milk yield 4696.3 1,063.6 1,491 7,371 

Total fat yield 222.5 46.7 59 353 

Total protein yield 179.4 38.2 56 278 

Fat percentage 4.81 0.69 2.91 7.22 

Protein percentage 3.85 0.32 3.13 4.94 

SMCO 16.8 14.1 0 67 

PRFS 50 50   

SR21 90 30   

PR21 54 50   

PR42 77 42   
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4.2 Analysis of variance 

Table 4.2 shows the least squares means, standard errors and P-values of the factors 

affecting the productive performance of the dairy cows in two farms. The MY and PY 

were both significantly greater (P<0.05) in Dairy 4 than in Dairy 1, whereas FY was 

not significantly different between two farms. The FP and PP were both significantly 

greater (P<0.05) in Dairy 1 than in Dairy 4. The milk composition was not affected by 

parity number, whereas the MY, FY and PY were all significantly greater (P<0.05) in 

parity ≥3. The difference of PP between β-casein variants was 0.0567 and its effect on 

PP tended to be significant (P<0.10). A2 cows had a greater PP than A1 cows. The effect 

of interaction between farm and β-casein type was not significant on any of the 

productive traits, although its effect on PP approached significance at P=0.106. The 

interaction between parity and β-casein type was not significant for any of the 

productive traits. The effect of pF was significant (P<0.05) for all the traits except for 

FY. Heterosis had no significant effect on any of the productive traits, whereas deviation 

from median calving date had a significant effect (P<0.05) on all productive traits. 
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Table 4.2 Least squares means (Mean), standard errors (SE) and P-values of factors 

affecting productive performance of cows in Massey University Dairy 1 and Dairy 4 

farms in 2017. 

 Trait1 

 MY  FY  PY  FP  PP 

Effect Mean SE  Mean SE  Mean SE  Mean SE  Mean SE 

Farm              

 Dairy 1  4,188b 71  210.3 3.4  165.4b 2.7  5.10a 0.04  3.97a 0.02 

 Dairy 4 4,639a 59  213.1 2.8  173.9a 2.2  4.67b 0.03  3.78b 0.02 

 P-value <0.0001  0.4860  0.0082  <0.0001  <0.0001 

Parity              

 2 4,110b 91  196.3b 4.4  157.3b 3.5  4.90 0.05  3.87 0.02 

 ≥3 4,717a 43  227.1a 2.1  182.0a 1.6  4.88 0.02  3.88 0.01 

 P-value <0.0001  <0.0001  <0.0001  0.7871  0.7082 

β-casein type              

 A1 4,444 76  212.4 3.6  169.7 2.9  4.87 0.04  3.85 0.02 

 A2 4,383 65  211.0 3.1  169.6 2.5  4.91 0.04  3.90 0.02 

  P-value 0.5407  0.7608  0.9861  0.4477  0.0567 

Interaction Farm×β-casein type 

 P-value 0.1270  0.5641  0.3208  0.1464  0.1055 

Interaction Parity×β-casein type 

 P-value 0.4381  0.7094  0.3856  0.4213  0.6877 

pF3              

 Effect 1,107.2 125.8  3.62 6.04  22.22 4.78  -1.21 0.07  -0.50 0.03 

 P-value <0.0001  0.5492  <0.0001  <0.0001  <0.0001 

Heterosis              

 Effect -82.7 121.1  6.21 5.82  2.51 4.60  0.09 0.07  0.05 0.03 

 P-value 0.4947  0.2860  0.5854  0.1783  0.1236 

dmcd4              

 Effect -15.50 2.23  -0.97 0.11  -0.76 0.08  -0.005 0.001  -0.004 0.001 

 P-value <0.0001  <0.0001  <0.0001  <0.0001  <0.0001 

1MY = milk yield, FY = fat yield, PY = protein yield, FP = fat percentage and PP = 

protein percentage. 

2β-casein type A1 = cows with either A1A1 or A1A2 genotypes, and A2 = cows with 

only A2A2 genotype. 
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3pF = proportion of Holstein-Friesian. 

5dmcd = deviation from median calving date. 

a, b Least squares means with different superscripts within column are significantly 

different (P<0.05). 

 

Table 4.3 shows the least squares means, standard errors and P-values of the factors 

affecting fertility traits of the dairy cows in two farms. The PRFS, PR21 and PR42 were 

all significantly higher (P<0.05) in Dairy 1 than in Dairy 4, whereas SR21 was 

significantly lower (P<0.05) in Dairy 1 than in Dairy 4. The SMCO was significantly 

greater (P<0.05) in second parity than in ≥3 parity cows, whereas the other reproductive 

traits were not significantly different between parity. The β-casein type had no 

significant effect on any other reproductive traits. The effect of interaction between 

farm and β-casein type was significant (P<0.05) on PR42 but not on any other 

reproductive traits. The interaction between parity and β-casein type was not significant 

for any of the reproductive traits. The SR21 was significantly affected (P<0.05) by pF, 

but the effect of pF was not significant for any other reproductive traits. Heterosis was 

not significant for any of the reproductive traits, whereas the effect of deviation from 

median calving date was significant (P<0.05) for all binomial reproductive traits. 
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Table 4.3 Least squares means (Mean), standard errors (SE) and P-values of factors 

affecting fertility traits of cows in Massey University Dairy 1 and Dairy 4 farms in 2017. 

 Trait1 

 SMCO  PRFS  SR21  PR21  PR42 

Effect Mean SE  Mean SE  Mean SE  Mean SE  Mean SE 

Farm              

 Dairy 1  16.8 1.2  58.2a 4.0  79.8b 3.4  67.7a 3.8  82.7a 3.2 

 Dairy 4 18.3 1.0  41.7b 3.3  93.4a 1.5  44.4b 3.4  73.8b 3.1 

 P-value 0.3582  0.0007  <0.0001  <0.0001  0.0375 

Parity              

 2 19.9a 1.5  45.7 5.1  86.4 33.6  52.9 5.3  76.8 4.5 

 ≥3 15.3b 0.7  54.3 2.5  89.8 1.5  59.9 2.6  80.3 2.1 

 P-value 0.0084  0.1334  0.3491  0.2271  0.4577 

β-casein type2              

 A1 17.4 1.3  50.6 4.3  87.9 2.6  60.0 4.4  81.3 3.6 

 A2 17.9 1.1  49.3 3.7  88.6 2.4  52.8 3.7  75.6 3.2 

  P-value 0.7476  0.8167  0.8367  0.2071  0.2460 

Interaction Farm×β-casein type 

 P-value 0.8840  0.9247  0.4704  0.2321  0.0360 

Interaction Parity×β-casein type 

 P-value 0.1322  0.2424  0.1259  0.2336  0.9286 

pF3              

 Effect 0.57 2.17  0.13 0.07  -0.09 0.04  0.05 0.07  -0.07 0.06 

 P-value 0.7934  0.0534  0.0446  0.4352  0.2809 

Heterosis              

 Effect -0.40 2.12  0.04 0.07  -0.02 0.04  -0.01 0.07  -0.02 0.06 

 P-value 0.8505  0.5682  0.7795  0.8762  0.6998 

dmcd4              

 Effect 0.17 0.04  -0.003 0.001  -0.002 0.001  -0.004 0.001  -0.003 0.001 

 P-value <0.0001  0.0227  0.0343  0.0017  0.0036 

1SMCO = days from start of mating to conception. 

2β-casein type A1 = cows with either A1A1 or A1A2 genotypes, and A2 = cows with 

only A2A2 genotype. 

3pF = proportion of Holstein-Friesian. 

5dmcd = deviation from median calving date. 

a, b Least squares means with different superscripts within column are significantly 

different (P<0.05). 
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5.1 Productive performance 

Productive and reproductive performance of cows based on A2 type in Massey 

University Dairy 1 and 4 farms in the season 2017/18 was analysed in the current study. 

Cows in Dairy 1 produced 4,188 kg of milk, 210.3 kg of fat and 165.4 kg of protein 

over the lactation, whereas those in Dairy 4 produced 4,639 kg of milk, 213.1 kg of fat 

and 173.9 kg of protein. Cows milked OAD in Dairy 1 produced 9.7, 1.3 and 4.9% less 

milk, fat and protein per lactation than cows milked TAD in Dairy 4, but cows in Dairy 

1 produced milk with higher percentages of fat and protein. The productive 

performance of these cows from two farms was higher than another study by Lembeye 

et al. (2015) who reported 2,950 kg of MY, 153.4 kg of FY and 118.0 kg of PY for 

cows milked OAD and 3,836 kg of MY, 188.0 kg of FY and 145.9 kg of PY for cows 

milked TAD from total lactation records for the period 2008 to 2012. Despite the 

difference in breed composition and feeding, selection within the herds over the years 

for cows with better genetic and ability to adapt well to their own OAD/TAD system 

contributed to the increase in milk and solids production. Lembeye et al. (2015) also 

reported 23.1, 18.4 and 19.1% less milk, fat and protein produced by cows milked OAD 

than cows milked TAD, which was larger than the differences of production between 

OAD and TAD cows in the current study. However, it is not possible to directly 

compare the milk and solids production by OAD and TAD cows in the current study 

due to the different feeding strategies. Cows in Dairy 1 farm were milked OAD with a 

low stocking rate and more pasture, whereas cows in Dairy 4 were milked TAD with a 

higher stocking rate and higher use of supplementary feed. Fat percentage and PP of 

the milk from cows milked OAD were significantly greater than the milk from cows 

milked TAD. 

 

5.2 Effect of β-casein type on milk and milk solid production 

Analysis of variance in the current study showed that β-casein type had no significant 

effect on total MY, FY or PY. The effects of β-casein polymorphism on milk productive 
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traits have been investigated in a number of studies, but the results from previous 

research conflict in relation to the significance and the size of genetic effects. For 

example, some studies reported that β-casein variants A1 and A2 did not significantly 

affect MY, FY or PY in Holstein Friesian cows (Ng-Kwai-Hang et al. 1986; Çardak 

2005), which was in agreement with the current study. In herds with a mixed population 

of Jersey and Friesian cattle, McLean et al. (1984) also reported that β-casein A1 and 

A2 types had no significant effect on total MY and FY over a complete lactation. The 

first study to examine the influence of protein phenotypes on productive performance 

in New Zealand dairy cows was carried out by Winkelman et al. (1997). In line with 

the present study, no relationship between β-casein variants and productive traits was 

reported. 

 

Conversely, the association between A1 and A2 β-casein types and MY during first 

three lactations in Holstein herds was demonstrated, and A2A2 cows produced more 

milk than A1A1 cows (Bech et al. 1990; Ng-Kwai-Hang et al. 1990). The increase in 

PY resulting from more milk production by cows with A1 allele has also been suggested 

(Heck et al. 2009). Although Lin et al. (1986) suggested that the loci of A1 and A2 β-

caseins had no significant effect on 308-day MY of first lactation cows, they found that 

the effect was significant on PY (P<0.05) and approached significance (P=0.09) for FY. 

The results suggested that the A2 type was superior to A1 type, and increasing A2 allele 

frequency over A1 would improve first lactation MSY. In New Zealand dairy cows, 

Morris et al. (2005) found that carriers of the A2A2 variant had significant higher FY 

(P<0.05) and PY (P<0.10) than those of the A1A1 variant. The productive advantage 

of the A2 allele over the A1 allele has been also reported by other published work (Ng-

Kwai-Hang et al. 1984; Bech et al. 1990; Ikonen et al. 1999).  

 

However, the results from those studies in relation to the influence of genetic variants 

of β-casein on MY and MSY were inconsistent. The reason for contradictory results 

might be gene linkage. Casein genes on bovine chromosome 6 are closely linked in the 

sequence of αs1-, β-, αs2-, and κ-casein (Threadgill et al. 1990; Rijnkels et al. 1997). 
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Therefore, sometimes it is difficult to distinguish whether the influence of the β-casein 

type is due to the effect of its linked gene or the loci of β-casein themselves. Some of 

the aforementioned studies were conducted in Friesian cows and others were in herds 

with a mixed-breed population. The difference between MY, FY and PY were 

significant for A1 and A2 β-casein types in Simmentaler cows but not in Friesian cows 

(Çardak 2005), which likely indicated the different effect of a linked gene in different 

breeds. 

 

5.3 Effect of β-casein type on milk composition 

The current study found no significant difference in fat concentration between β-casein 

variants, which was support by early studies (Ng-Kwai-Hang et al. 1986; Gonyon et al. 

1987). However, a significant relationship between the β-casein A2A2 genotype and 

milk fat content has been previously reported, but the results were less consistent. 

Several studies highlighted the association of β-casein A2A2 genotype with reduced FP 

in Friesian cows (Aleandri et al. 1990; Ng-Kwai-Hang et al. 1990) and Finnish Ayrshire 

cows (Ikonen et al. 1999), whereas one study reported the opposite results for a mixed 

population of Jersey and Friesian cows (McLean et al. 1984). 

 

In the present study, the difference in PP was reported for β-casein A1 and A2 types at 

P=0.0567, which was significant at P<0.10. Milk produced by A2 cows contained 3.90% 

protein, which was greater than the PP (3.85%) in the milk produced by A1 cows. In 

comparison, no association was found between β-casein A1 and A2 types and milk 

protein content in the previous studies with Friesian cows (Ng-Kwai-Hang et al. 1986; 

Ng-Kwai-Hang et al. 1990), Guernsey (Haenlein et al. 1987) and a mixed population 

(McLean et al. 1984). Çardak (2005) examined the effects of the β-casein genotype and 

reported a significant increase in protein concentration for A2A2 over the A1A2 

genotype in Simmentaler cows. However, the A1A1 genotype was not significantly 

different from A2A2 genotype (A2A2=A1A1>A1A2), and no significant effect was 

observed in Friesian cows in the same study. Only in one case that a negative association 
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between β-casein A2 type and PP was indicated (Gonyon et al. 1987). In addition, some 

studies reported that the A2 type had a detrimental effect on concentration of whey 

proteins (McLean et al. 1984) and milk casein (Ng-Kwai-Hang et al. 1986), but not on 

concentration of crude total protein. The conflicting observations in milk composition 

may partially explained by gene linkage in different breeds of the herds as discussed 

previously. 

 

5.4 Effect of interaction between farm and β-casein type and between parity and 

β-casein type 

The present study found no significant interaction between farm and β-casein type and 

between parity and β-casein type. However, the interaction between farm and β-casein 

type approached significance at P=0.1055. A2 cows in Dairy 1 farm produced 2% more 

milk than A1 cows, while A2 cows in Dairy 4 farm produced only 0.4% more milk than 

A1 cows. To the best of author’s knowledge, few studies published previously 

investigated the interaction of the β-casein genotype A1 and A2 with other effects. 

Among them there are only one paper reported the presence of a significant interaction 

between β-casein genotype and breed (Winkelman et al. 1997). Their results showed 

that about 2% more milk, fat and protein was produced by A2A2 Friesians than A1A1 

Friesians, whereas A2A2 Jerseys produced 3-4% less milk than A1A1 Jerseys.  

 

5.5 Effect of β-casein type on fertility 

The influence of β-casein type was not significant for all fertility traits in the current 

study. The effect of milk protein polymorphism on reproductive performance of the 

cows has been reported in limited literature (Hargrove et al. 1980; Lin et al. 1987; 

Demeter et al. 2010), but supporting the current study with respect to β-casein genotype 

A1 and A2. 

 

Pregnancy rate at 42 days after the start of mating of A1 and A2 cows in Dairy 1 were 

87.1±5.1 % and 75.3±4.1 % and corresponding values of the types in Dairy 4 were 
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72.0±4.0 % and 75.2±3.9 %, which explains the significant interaction between farm 

and β-casein type. The A1 cows had higher PR42 in Dairy 1 whereas the A2 cows had 

higher PR42 in Dairy 4. However, the association between β-casein type and fertility 

was examined by analysing a relatively small dataset, which could impair the 

consistency of the results from the present study. The major issue in determining the 

effect of the β-casein variant on fertility traits is that the majority of the variation in 

fertility traits is due to environmental factors (Hodel et al. 1995). Consequently, most 

of the fertility traits have very low heritability (Weigel et al. 2000). Therefore, for future 

studies on the effect of the A2 β-casein genotype on fertility traits, analyses of large and 

accurate data sets are necessary. 

 

5.6 Conclusion 

The results indicated that cows of different β-casein types have similar production and 

reproduction performance. A2 cows tended to produce milk with higher PP (P<0.10), 

and selection of animals based on the A2 type should have no negative impact on their 

fertility. 
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