
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Emergency Stations in the Grand Mosque of

Mecca Using Wireless Sensor Network (WSN)

A Thesis Submitted in fulfilment of the requirement for the Degree of

Master of Engineering

By

MOHAMMED AMER AL NIZARI

School of Engineering and Advanced Technology (SEAT)

Massey University

Palmerston North,

September 2011

Emergency Stations in the Grand Mosque of

Mecca Using Wireless Sensor Network (WSN)

MOHAMMED AMER AL NIZARI

2011

i

Abstract

The Hajj is one of the five pillars of Islam. Every year Muslims from all over the world gather

in the two Holy Mosques, Mecca and Medina, in the Kingdom of Saudi Arabia to make the

pilgrimage. The kingdom of Saudi Arabia has therefore invested heavily over the years in the

security and emergency services for the comfort of pilgrims. While it is a great spiritual

experience for all the pilgrims, at the same time it poses a range of series challenges to the

authorities responsible for facilitating the Hajj. Security and emergency issues cause most

difficulties and challenges.

Today, there are more than 2.5 million pilgrims with different languages, different ages and

level of education gathering in a particular place at a specific time. A significant number of

pilgrims die due to both accidents and natural causes and a large number get lost in this

extremely crowded gathering. In fact, it is very common for some pilgrims to lose contact

with their groups or friends during the rituals and this situation may be critical for certain

pilgrims such as women children, the elderly, the sick, etc.

The use of recent technologies in the Hajj season could help in monitoring and tracking the

pilgrims. Specifically these technologies could help in congestion, tracking missing pilgrims,

discovering who is walking in reverse direction at peak times, re-detection etc. technologies

may be found in Wireless Sensor Networks (WSNs). However; Wireless Sensor Networks

(WSNs) are not easy to implement and some of them are costly.

This project to make the mission much easier, we made Wireless Sensors Network Stations

as emergency fixed stations. These stations will be spread around the holy mosque to

support local rescuers and aid the retrieval of missing pilgrims. Each emergency station has

a button switch to press if the pilgrims get lost or if they need to request services. The range

of the sensor, power consumption and the price are important in choosing the sensor. To

meet these criteria we have used RF Engines from Synapse there have a range of up to 5

Km, and the lowest power consumption (IEEE 802.15.4 module running 2.4GHz Frequency,

Up to 250 Kbps Data Rate).

ii

Acknowledgments

Firstly I would like to thank, Professor Dr. Subhas Mukhopadhyay, for giving me

an opportunity to do my Masters under his supervision. His wisdom,

knowledge and continued support has always inspired and motivated me.

Without his help, advice and expert guidance, this work would not have been

possible, and, above all, I thank him for his technical and emotional support.

I extend my sincere thanks to the Custodian of the Two Holy Mosques King

Abdullah bin Abdulaziz, for the support he gives to the scholarship program.

King Abdullah provided an opportunity for me and my brothers to get the best

level of education.

I will never forget the efforts of the Ministry of Higher Education in the

Kingdom of Saudi Arabia, represented in the Saudi Cultural Mission in New

Zealand in facilitating the process of scholarship and supervision on this

project.

Finally, words will not describe all of the sacrifices and emotional supports

made by my parents, my wife and my children as well as by my brothers and

sisters. Without them my success would have no meaning. Thank you from the

depths of my heart.

iii

Table of Contents

Abstract i

Acknowledgments ii

Table of Contents iii

List of Figures vii

List of Tables xi

CHAPTER 1 Introduction

1.1 Mecca and Hajj……………………………………………………………………………………………………….2

1.2 Problem definition…………………………………………………………………………………………………..4

1.3 Problem statement………………………………………………………………………………………………….5

1.4 The Objective……..7

1.5 Thesis organization………………………………………………………………………………………………….7

CHAPTER 2 Literature Review of Wireless Sensor Network

2.1 Existing WSN technologies and applications………………………………………………………….10

2.1.1 Bluetooth or IEEE 802.15.1…………………………………………………………………………….………10

2.1.2 UWB or IEEE 802.15.3……………………………………………………………………………….……………10

2.1.3 Wi-Fi or IEEE 802.11a/b/g………………………………………………………………………………………10

2.1.4 ZigBee or IEEE 802.15.4…………………………………………………………………………………………10

2.2 Exiting WSN Applications ………………………………………………………………………………………11

2.2.1 Recent WSN applications in health section …………………………………………………..........11

2.2.1.1 Monitoring System: Early Detection Of Alzheimer’s Disease…………........................11

iv

2.2.1.2 Wireless Patient Monitoring System……………………………………………………………………..13

2.2.2 Exiting WSN Project in Mecca and Hajj Season………………………………………………….14

2.2.2.1 Group of Pilgrims Monitoring (GPM) …………………………………………………………….14

2.2.2.2 An RFID-Based Pilgrim Identification System…………………………………………………………17

CHAPTER 3 Specification of the System and Design

3.1 Introduction………………………………………………..…………………………………………………………20

3.2 System structure……………………………………………………………………………………………………20

3.2.1 Station nodes…………………………………………………………………………………………………21

3.2.2 A bridge node…………………………………………………………………………………………………21

3.2.3 Graphical user interface (GUI) ……………………………………………………………………….21

3.3 RF Engine………..21

3.4 Evaluation kit ………………………………………………………………………………………………………24

3.4.1 SN132 SNAPstick……………………………………………………………………………………………24

3.4.2 Synapse Portal software…………………………………………………………………………………25

3.4.3 SN171 SNAP Node ProtoBoard………………………………………………………………………25

3.5 Station design………………………………………………………………………………………………………25

3.6 Station nodes’ Python scrip…………………………………………………………………………………26

3.7 SNAPconnect………………………………………………………………………………………………………28

3.8 Graphical user interface (GUI) ……………………………………………………………………………29

3.8.1 Events………30

3.8.2 Connect button………………………………………………………………………………………………30

v

3.8.3 Check station button…………………………………………………………………………………………31

3.8.4 Pull up menu……………………………………………………………………………………………..……..32

3.8.5 Messagess Box………………………………………………………………………………………….……….32

3.8.6 Statistics Frame………………………………………………………………………………………..……..33

3.8.7 Map……..……..34

CHAPTER 4 Simulation

4.1 Introduction………………………………………………………………………………………………………..…37

4.2 IEEE 802.15.4 Standard OPNET simulator …………………………………………………………..…38

4.3 Types of Wireless Sensor Network Topology…………………………………………………………38

4.3.1.1 Star Network Topology…………………………… …………………………………39

4.3.1.2 Cluster Tree Network Topology………………………………………………………39

4.3.1.3 M e s h N e t w o r k T o p o l o g y … … … … … … … … … … … … … … … … … … . 4 0

4.4 Node types……..40

4.5 Simulation setup………………………………………………………………………………………………….40

4.6 Simulation Results ………………………………………………………………………………………………41

4.6.1 Throughput………………………………………………………………………………………………………...41

4.6.2 The Average Delay and Packet loss…………………………………………………………………….42

4.6.3 Total number of received and sent packets……………………………………………………….43

4.7 Conclusion……..44

vi

CHAPTER 5 Experiment Set- up and results

5.1 Introduction……..46

5.2 Field Experiment……………………………………………………………………………………………………46

5.3 Positioning of the sensors (draw the map network) ………………………………………………47

5.4 Tools of the Experiment…………………………………………………………………………………………51

5.5 Distance VS. Signal Strength RSSI…………………………………………………………………………53

5.6 Signal Path………..56

5.6.1 Main Node………..57

5.6.2 Sensor Node One…………………………………………………………………………………………………..58

5.6.3 Sensor Node Two ………………………………………………………………………………………………….59

5.6.4 Sensor Node Three………………………………………………………………………………………………..60

5.6.5 Sensor Node Four………………………………………………………………………………………………….61

5.6.6 Sensor Node Five………………………………………………………………………………………………….62

5.6.7 Sensor Node Six………………………………………………………………………………………………….…63

5.6.8 Sensor Node Seven……………………………………………………………………………………………….64

5.6.9 Sensor Node Eighth…………………………………………………………………………………………..….65

5.6.10 Sensor Node Nine…………………………………………………………………………………………….…..66

5.6.11 Sensor Node Ten…………………………………………………………………………………………………..67

5.7 Discussion on the signal paths test …………………………………………………………………68

5.8 Battery life………70

5.9 Conclusion………71

vii

CHAPTER 6Summary of Findings and Discussion

6.1 Introduction……73

6.2 The Project's prototype ………………………………………………………………………………………73

6.3 Project’s hardware and Software…………………………………………………………………………74

6.3.1 Hardware ……….74

6.3.2 Software………..74

6.4 Field Experiment…………………………………………………………………………………………………75

6.5 Positioning of the sensors (draw the map network) ……………………………………..……75

6.6 Tools of the Experiment………………………………………………………………………………………75

6.7 Results and Discussion ………………………………………………………………… ………76

CHAPTER 7 Conclusion and Future work

7.1 Conclusion and Recommendation………………………………………………………………………78

CHAPTER 8 REFERENCES

APPENDIX A - Python script………………………………………………………………………....85

APPENDIX B – The GUI code ……………………………………………………………………….87

 Appendix C – SYNAPSE Data Sheets…………………………………………………………….98

viii

List of Figures

Figure1.1: Mecca location. ……....2

Figure 1.2: The Grand mosque. ……………………………………………………………………………………………….…....3

Figure 1.3: The Grand mosque doors. ……………………………………………………………………………………..…....3

Figure 1.4: Number of pilgrims ………………………………………………………………………………………………….....4

Figures 1.6: Use of Medical Services during 15 Day Period of Hajj 2010…………………………………………6

Figure: 2.1 Wireless sensor network……………………………………………………………………………………... ….….9

Figure 2.2: illustration of the proposed Bluetooth-enabled in-home patient monitoring system…..13

Figure 2.3: Remote Monitoring System………………………………………………………………………………….…...14

Figure 2.4: A base station and gateway board …………………………………………………………………………..… 15

Figure 2.5: Pilgrim Navigator indicates ………………………………………………………………………..……………...16

Figure 2.6: RFID-Based Pilgrim Identification System. …………………………………………………………………17

Figure 2.7: RFID tag……........18

 Figure 2.8: Wristband RFID tag. ……………………………………………………………………………….………………...18

Figure 2.9: GUI on the PC unit……………………………………………………………………………………...........18

Figure 3.1: System structure. ……………………………………………………………………………………............20

Figure 3.2 : RF Engine……………………………………………………………………………………........................21

Figure 3.3 Physical Dimensions of RF Engine……………………………………………………………………………22

Figure 3. 5: Evaluation kit……………………………………………………………………………………............................24

Figure 3. 6: SN132 SNAPstick [17] ……………………………………………………………………………………..............24

Figure 3.7 : The circuit structure of the station. ……………………………………………………………………………25

Figure 3. 8: start-up function code……………………………………………………………………………………............26

Figure 3. 9: (Set pin) Function………………………………………………………………………………………………………27

Figure 3. 10 : (onPin) function call. ……………………………………………………………………………………..........27

Figure 3. 11: check(),(checkstations) and (localAddr()) function call. …………………………………………..28

ix

Figure 3. 12: Message Exchange (SNAP node initiated) ……………………………………………………………….28

Figure 3. 13: Message Exchange (client application initiated) ……………………………………………………..29

Figure 3.14: Graphical user interface (GUI) of the system. ………………………………………………………….30

Figure 3.15: Connect button code. …………………………………………………………………….……………………….30

Figure 3.16: check station button example. ………………………………………………………………………………..31

Figure 3.17: Check station button code. …………………………………………………………………………………....31

Figure 3.18: Pull up menu. …………………………………………………………………………………………………..…....32

Figure 3. 19: messages box code. …………………………………………………………………………………….………....33

Figure 3. 20 : Statistics Frame……………………………………………………………………………………………….…...33

Figure 3. 21: statistics frame code. …………………………………………………………………………………………...34

Figure 3. 22 MedicalStations code……………………………………………………………………………………..……...35

Figure 3. 23 Security Stations code……………………………………………………………………………………..……..35

Figure 4.1: Opnet simulation environment………………………………………………………………………………..37

Figure 4.2: The structure of the IEEE 802.15.4 simulation model. …………………………………..…………38

Figure4.3: Types of Wireless Sensor Network Topology…………………………………………………….………39

Figure4.4: Simulation scenario layout……………………………………………………………………………….………..40

Figure 4.5: Average throughput of the network……………………………………………………………….…………42

Figure 4.6: Network average delay……………………………………………………………………………………………..42

Figure 4.7: Data loss rate……………………………………………………………………………………………….……………43

Figure 4.8: Network collision ratio………………………………………………………………………………………………43

Figure 4.9: Total number of received and sent packets……………………………………………….………………44

Figure 5.1: Dimensions of the Grand Mosque in Mecca………………………………………………………………46

Figure 5.2: Dimensions of the Victoria Esplanade Garden……………………………………………………………47

Figure 5.3: Positioning of the sensor nodes in Mecca……………………………………………………………………48

Figure 5.4 Positioning of the sensor nodes in Victoria Esplanade Garden………………………………………48

Figure 5.4: Distance from the main station node in Mecca……………………………………………………….…49

Figure 5.6: Distance between nodes…………………………………………………………………………………………...50

x

Figure 5.7: SYNAPSE Wireless, Inc…………………………………………………………………………….………………......51

Figure 5.8: A snapshot of Portal…………………………………………………………………………………….…………......51

Figure 5.9: RF Engine network address…………………………………………………………………..…………………......52

Figure 5.10: A snapshot of Link Quality………………………………………………………………………………..…………53

Figure 5.11 Signal Strength from Main node………………………………………………………………………….…..….55

 Figure 5.12: Distance from Main node…………………………………………………………………………..……….…....57

Figure 5.13: Signal Strength from Main node……………………………………………………………………….………..57

 Figure 5.14: Distance from node 1………………………………………………………………………………………….…….58

Figure 5.15: Signal Strength from node 1………………………………………………………………………………….....58

 Figure 5.16: Distance from node 2…………………………………………………………………………………………......59

Figure 5.17: Signal Strength from node 2…………………………………………………………………………….….…….59

 Figure 5.18: Distance from node 3………………………………………………………………………………………..…....60

Figure 5.19: Signal Strength from node 3……………………………………………………………………………….….....60

 Figure 5.20: Distance from node 4 ………………………………………………………………………………..……61

Figure 5.21: Signal Strength from node 4……………………………………………………………………………..………61

 Figure 5.22: Distance from node 5……………………………………………………………………………………………...62

Figure 5.23: Signal Strength from node 5…………………………………………………………………………………....62

Figure 5.24: Distance from node 6……………………………………………………………………………………………....63

Figure 5.25: Signal Strength from node 6……………………………………………………………………………………..63

Figure 5.26: Distance from node 7…………………………………………………………………………….…………….....64

Figure 5.27: Signal Strength from node 7…………………………………………………………………………….………64

Figure 5.28: Distance from node 8………………………………………………………………………………………........65

Figure 5.29: Signal Strength from node 8…………………………………………………………………………….………65

 Figure 5.30: Distance from node 9………………………………………………………………………………………..…...66

Figure 5.31: Signal Strength from node 9……………………………………………………………………………………66

Figure 5.32: Distance from node 10…………………………………………………………………………………….……...67

Figure 5.33: Signal Strength from node 10……………………………………………………………………………………67

xi

Figure 5.34: The Strongest Path…………………………………………………………………………………..…………...69

Figure 5.35: Battery Life during 24 hours…………………………………………………………………………………...71

Figure 6.1: The Project's prototype…………………………………………………………………….……………………...73

Figure 7.1: The four floors Map of The Grand Mosque ………………………………………………………………80

Figure 7.2: The four floors Map of The Grand Mosque………………………………………………………………80

xii

List of Tables

Table 2:1: Comparison of the Bluetooth, Uwb, Zigbee, and Wi-Fi Protocols [14] …………………………....11

Table 3.1: RF Engine Specifications ………………………………………………………………………………..… 23

Table 3.1: icons criteria………………………………………………………………………………………………….… 35

Table 4.1: Nodes parameters…………………………………………………………………………………………... 39

Table5.1: Distance from the main…………………………………………………………………………………………………. 49

Table 5.2: Distance between nodes ……………………………………………………………………………………………... 50

Table.5.3: the network address of each node……………………………………………………………………………….. 52

Table 5.4: Distance and signal from Main node…………………………………………………………………….…….... 54

Table 5.5: Distance and signal from Main node……………………………………………………………………………...57

Table 5.6: Distance and signal from node 1………………………………………………………………………………….…58

Table 5.7: Distance and signal from node 2…………………………………………………………………………………...59

Table 5.8: Distance and signal from node 3………………………………………………………………………….……......60

Table 5.9: Distance and signal from node 4…………………………………………………………………………………...61

Table 5.10: Distance and signal from node 5……………………………………………………………………………..……62

Table 5.11: Distance and signal from node 6…………………………………………………………………………………..63

Table 5.12: Distance and signal from node 7……………………………………………………………………………….....64

Table 5.13: Distance and signal from node 8…………………………………………………………………………………..65

Table 5.14: Distance and signal from node 9……………………………………………………………………………..…….66

Table 5.15: Distance and signal from node 10……………………………………………………………………..……….…67

Table 5.16: Number of paths……………………………………………………………………………………………..……….…..68

Table 5.17: Battery Life during 24 hours……………………………………………………………………………….……..….70

1

CHAPTER 1

 Introduction

2

CHAPTER 1 Introduction

1.1 Mecca and Hajj

Mecca is the holiest city for all Muslims since it is the Islamic spiritual centre and the

sacred city of Islam. It is called "Mother of cities” in the Qur'an. Mecca is located in

the western part of the Kingdom of Saudi Arabia, 75 km east Red Sea, at an altitude

of 300 meters, and in a valley surrounded by low mountains [1]. Figure 1.1

Figure1.1: Mecca location

Mecca has the largest mosque in the world, the Grand Mosque (Figure 1.2) which

accommodates 1.2 million worshippers at a time [2]. The mosque covers an area of

356,800 square meters, with 32 entry and exit doors, including 4 main doors, as

shown in Figure 1.3.

3

Figure 1.2: The Grand mosque

Figure 1.3: The Grand mosque doors

Two million people from over 100 countries assemble annually in Mecca to perform

the Hajj ritual [3]. The Hajj is one of the five fundamental pillars of Islam. It is a set of

acts of worship to be performed at least once in a lifetime. The Hajj is obligatory for

every Muslim who satisfies certain conditions imposed by Allah, namely being

healthy and financially able to do the Hajj.

4

The number of pilgrims is increasing dramatically every year, as shown in Figure 1.4.

In the last ten years the numbers have increased from one million to about 2 million

pilgrims. Hajj is considered as one of the largest and most long-standing annual mass

gathering events on earth. This continued increase in the number of people has

made the Hajj more difficult for both the pilgrims and the authorities in terms of

safety and security.

Figure 1.4: Number of pilgrims [4]

1.2 Problem definition

The exponential rise in the numbers of pilgrims attending the Hajj presents

enormous challenges to the Saudi Arabian authorities. Their role as Custodians of

the Holy Sites in Mecca is to provide extensive, multi-faceted services to these

‘Guests of God’. The authorities arrange free health care services, security services,

crowd control, transportation and accommodation to ensure that all aspects of the

pilgrimage rituals are conducted safely and without major incident throughout the

days of Hajj [1]. However, with all the developments and expansions of service to the

5

pilgrims at the Sacred Mosque congestion and communication between pilgrims and

services providers remain the biggest challenges facing pilgrims and the authorities

[5].

1.3 Problem statement

People get lost in Mecca and around the Grand Mosque every year [5]. The vast

majority of people who get lost are usually children, women, old men, and especially

those from overseas. These groups of pilgrims get lost when they are separated from

their families while walking among the crowd. Different nationalities and languages

make it difficult for some pilgrims to ask for help [26]. In most cases, people are

generally lost for a few hours but sometimes may be lost for an entire day.

In addition, according to the Ministry of Health in 2010, nearly half a million pilgrims

over the 15 day during Hajj period are provided with medical care. Figures 1.6 A, B,

C, D, E, and F clearly present the numbers of pilgrims who are in need of medical and

emergency help during the Hajj. Moreover, the total number of deaths among

pilgrims registered in the same period in Mecca was 646 cases [8].

The current system is ineffective in saving the lives of the pilgrims who are lost and

in need of medical help due to the size of the Mosque, and it takes a very long time

to provide emergency services. So there is a need for an accurate system to

communicate with the emergency services providers to address these problems.

6

Figures 1.6: Use of Medical Services during 15 Day Period of Hajj 2010

7

1.4 The Objective

The objective of this project is to design a Wireless Sensor Network using sensor

nodes based on the standard of IEEE 802.15.4 and RF technology, to respond to any

emergency alert inside the Grand Mosque of Mecca and the areas surrounding the

mosque. The design includes fixed stations containing two switches: one for medical

help, and the other for the people who get lost. It is designed to help the pilgrims in

need of medical assistance or security, for example, missing children, or elderly

people during the Hajj time, and inform appropriate authorities in a timely and cost

effective manner. The project further aims to enable faster and easier

communication with the providers of the security services or the emergency medical

services.

1.5 Thesis organization

The thesis is organized into eight chapters. After the introduction and the problem

background, chapter II is a literature review of Wireless Sensor Network. Chapter III

focuses on the design and specification of the system, showing the devices that have

been used in this system. Then, Chapter IV will present a network simulation and

results followed by experiments set-up and results in chapter V. Next, Chapter VI is a

summary of finding and discussion. Chapter VII is a conclusion and

recommendations.

8

CHAPTER 2

Literature Review of Wireless

sensor network (WSN)

9

CHAPTER 2 Literature Review of Wireless sensor

network (WSN)

Figure: 2.1: Wireless sensor network

The wireless sensor network (WSN) is a collection of nodes organized into a

cooperative network. The concept of WSN is that each node consists of the

processing capability for one or more microcontrollers, CPUs or DSP chips. There

may contain multiple types of memory program, data and flash memories. They have

a power source e.g., batteries and solar cells; and accommodate various sensors and

actuators [7]. WSN generally consists of a base station or gateway that can

communicate with a number of wireless sensors via a radio link. Data is collected at

the wireless sensor node, compressed, and transmitted to the gateway directly or, if

required, uses other wireless sensor nodes to forward data to the gateway. The

transmitted data is then presented to the system by the gateway connection. There

are no limitations regarding the number of nodes anticipated, so there can be

systems consisting of 1000 or even 10,000 nodes. The system can be used across

numerous application areas [8].

A wide range of applications for WSN has been conducted in different areas such as

health, military, factories, oil industries and home automation, entertainment, crisis

management, and homeland defense.

10

2.1 Existing WSN technologies and applications

There are a number of existing technologies and protocols that have been used

recently on the WSN. Bluetooth, UWB, Wi-Fi, and ZigBee protocols. There

correspond to the IEEE 802.15.1, 802.15.3, 802.11a/b/g, and 802.15.4 standards,

respectively. The IEEE defines only the PHY and MAC layers in its standards. [27]

2.1.1 Bluetooth or IEEE 802.15.1

Bluetooth, also known as IEEE 802.15.1 standard, is based on a system for wireless

devices designed for short ranges [27]. It is inexpensive to replace the cables for

computer peripherals, for example mice, keyboards, joysticks and printers. It defines

a suite of applications, and wireless personal area network (WPAN) [9]

2.1.2 UWB or IEEE 802.15.3

UWB has attracted considerable attention in recent times as an indoor short-range

high-speed wireless communications system [28]. It also acts as a replacement for

cable wireless high speed serial bus such as USB 2.0 and IEEE 1394 [10]

2.1.3 Wi-Fi or IEEE 802.11a/b/g

Wireless fidelity (Wi-Fi) and IEEE standards include as standard 802.11a/b/g for

wireless local area networks (WLAN) [27]. Wi-Fi enables users to browse the Internet

at broadband speeds when plugged to an access point (AFP) or in the custom mode

[30] [10]

2.1.4 ZigBee or IEEE 802.15.4

ZigBee or IEEE 802.15.4 defines specifications for low-rate WPAN (LR-WPAN) for

supporting simple devices that consume minimal power and typically operate in

personal operating spaces (POS) of 10m. ZigBee can also reach 100m in some

applications [11]. ZigBee provides self-organized, multi-hop, and reliable mesh

11

networking with a long battery lifetime [31]. The Table below shows the major

differences between the four protocols.

Table 2:1: COMPARISON OF THE BLUETOOTH, UWB, ZIGBEE, AND WI-FI PROTOCOLS [10]

12

2.2 Existing WSN Applications

This section provides a number of examples of WSN applications. First, examples of

WSN applications in healthcare are provided to understand the utilization of WSN

technology. Second, examples of WSN applications that have been conducted in

Mecca are given.

2.2.1 Recent WSN applications in health care

The impact of wireless technology in healthcare has proved to be enormous and its

usage is rapidly spreading [12]. Health care is probably the most demanding area in

terms of WSN application and further use. The variety of opportunities provided by

WSN in the area of remote patient care and monitoring systems cannot be

overestimated [29]. The following examples of WSN applications in healthcare show

how WSN technology may be used.

2.2.1.1 Monitoring System: Early Detection Of Alzheimer’s Disease

One of the recent WSN applications in the health care is found in “Monitoring

System: Early Detection of Alzheimer’s disease”. In 2010, Ho Ting Cheng and Weihua

Zhuang, from the University of Waterloo, conducted a study for facilitating the early

detection of Alzheimer’s disease [13]. They proposed that e-healthcare solutions are

expected to facilitate medical treatments, improve the quality of life of senior

people, and reduce healthcare costs. By using a Bluetooth-enabled in-home patient

monitoring system, they take advantage of short range Bluetooth communications

for in-home patient location tracking. The location of information can then be

recorded in a local database. With knowledge of the movement pattern of a patient

a medical practitioner is more likely to be able to determine whether a target patient

is developing Alzheimer’s disease or not. Early detection of Alzheimer's disease can

promote the best treatment for patients, and preserve time and money to find a

cure for Alzheimer's disease. The researchers also conducted a feasibility study, and

13

their study shows that the proposed in-home patient monitoring system is feasible

and can be applied in practice.

Figure 2.2: An illustration of the proposed Bluetooth-enabled in-home patient monitoring

system

2.2.1.2 Wireless Patient Monitoring System

Recently in Turkey Radosveta Sokullu, Mustafa Alper Akkaú from Ege University, and

Hüseyin Ertürk Çetin from Aselsan A.S. provided another WSN system example which

has been successfully implemented in the health sector. This is called the “Wireless

Patient Monitoring System” [12]. The project showed that WSN supported the

medical staff and doctors in monitoring the patient’s status continuously and

remotely by reading oxygen saturation (%SPO2), sphygmo (pulse) and

plethysmogram levels. The project also sets out the three main subsystems involved:

wireless network structure, data measurement subsystem and the base station with

its graphical interface, as shown in Figure 2.3.

14

Figure 2.3: Remote Monitoring System

The patient's status readings are transmitted wirelessly from the patient through

routing nodes to the base station. Then the base station is connected to a host

computer running Mote View to explain, store and view the gathered data.

2.2.2 Existing WSN Project in Mecca and Hajj Season

There are also examples of WSN applications and projects which are conducted in

Mecca and in the Hajj season. Recently, the numbers of WSN applications have been

increasing gradually. Interesting examples of applications are shown below to

develop the services that are provided in the Hajj season in Mecca include Group of

Pilgrims Monitoring (GPM), and an RFID-Based Pilgrim Identification System.

2.2.2.1 Group of Pilgrims Monitoring (GPM)

In 2010, Moaad Al-Salman from Imam Muhammad Bin Saud Islamic University [18]

aimed to develop the quality of services provided to the pilgrims. Al-Salman

conducted this project, by using WSN technology to manage a group of pilgrims in

the Hajj season. He had earlier studied the situation of the hajj extensively. His

15

system provided a reasonable solution for tracking pilgrims in the Hajj using fixed

wireless sensor nodes. The fixed nodes were placed in a consistent manner around

the Grand Mosque and an algorithm was used for predicting the nearest anchor to

the pilgrim. The system required a Pilgrim Node, Anchor node, Leader node, and

Personal computer (PC).

Figure 2.4: A base station and gateway board [18]

Al-Salman used an MICAz a 2.4 GHz, IEEE/ZigBee 802.15.4, as a base station and an

MIB520 as a gateway board as shown in Figure 2.4. Both were programmed via Mote

Works Software Platform which is fully compatible with the MICAz Module. The

actual system is works through three key processes involving the following tools:

1. Base Station Package: BaseStation is a basic TinyOS utility application with

some modification to read RSSI value. It acts as a bridge between the serial

port and the radio network. When it receives a packet from the serial port, it

transmits it on the radio; when it receives a packet over the radio, it

transmits it to the serial port. Because TinyOS has a tool chain for generating

and sending packets to a Mote over a serial port, using a BaseStation allows

PC tools to communicate directly with Mote networks.

16

2. Anchor Package: This application listens to the radio channel. When it

receives a Locate Message, the event received is signaled and the blue or yellow LED

flashes. In Receive Event the anchor package creates a new packet with a payload

equal to the Received Packet payload. Then the anchor field is set to anchor ID using

TOS NODE ID and to store the RSSI value using CC2420Packet.get Rssi() method in

the Rssi field. Finally, the packet is sent to the leader Mote (BaseStation) and the

green LED flashes [18].

3. Pilgrim Package: This application has a timer which fires periodically (by

default every second). When the timer fires it creates a packet (Locate Message) and

does the following:

 Set pilgrim Id field to pilgrim ID using TOS NODE ID.

 Set counter field to current counter value.

 Set txp field to an appropriate TXP value (depends on current distance between

the group leader and the pilgrim).

Figure 2.5: Pilgrim Navigator indicates [18]

Finally it sends the packet to the nearest anchor, and from there it will be forwarded

to Java GUI (Pilgrim Navigator) over the serial port and the blue or yellow LED

flashes, as shown in Figure 2.5. The screen of the Pilgrim Navigator indicates where

17

the nearest anchor to the pilgrim is (anchor 1) and nearest anchor to his leader is

(anchor 3). The arrow is pointing to anchor 3 and the distance between them is one

meter. A special sound occurs when the distance between them increases.

2.2.2.2 An RFID-Based Pilgrim Identification System

King Fahd University of Petroleum Minerals in Saudi Arabia supported the project of

Mohammed Mohandes, Maan Kousa and Ahmed A Hussain under the title of “An

RFID-Based Pilgrim Identification System” [15]. This project provides a solution to

help the Hajj authorities manage the overcrowding problem and the pilgrim

identification, using RFID technology.

Figure 2.6: RFID-Based Pilgrim Identification System [15]

The system that became a prototype Pilgrim Identification System uses a wristband

RFID tag, an RFID reader, and a Graphical User Interface application running on a PC.

The Graphical User Interface communicates with an RFID system that consists of an

RFID reader and a set of RFID wristband tags. The reader is used to read a unique ID

number (UID) stored in the wristband tag which is then sent to the PC as shown in

Figure 1.12.

18

Figure 2.7: RFID tag [15 Figure 2.8: Wristband RFID tag [15]

As shown in Figure 1.14 a waistband RFID is carried by the pilgrims all the time

during the Hajj, and includes the following data:

• Personal details like name, address, blood type, nationality, etc.

• Any Medical conditions.

• Contact information of the pilgrim’s Hajj group.

• An E-purse that can be loaded with an optional amount of money.

If the pilgrims pass a Wristband RFID tag in front the RFID reader the information

stored in the tag can be regained and presented on the GUI on the PC unit as shown

in Figure 2.9.

Figure 2.9: GUI on the PC unit [19]

19

CHAPTER 3

 Specification of the System and

Design

20

CHAPTER 3 Specification of the System and

Design

3.1 Introduction

This chapter will explore the fundamental properties of the project, including the

main components that have been used. This involves the System structure, the

Synapse RF Engine module, and the evaluation kit for the system. It also presents

how the system is built and how it works, and the system programs and data that

have been used. Various programs have been used in the project, including python

programming language, C# language in correlation with the XML\RPC function

library, Synapse Portal software, and SNAPconnect software, each with specific

objectives for system operation.

3.2 System structure

The system contains three main components: Station nodes, a Bridge node and

Graphical User Interface (GUI) as shown in Figure 3.1

Figure 3.1: System structure

21

3.2.1 Station nodes

The station nodes are connected together wirelessly. These station nodes have two

switches. When the switch is pressed, the bridge node will be informed wirelessly.

3.2.2 Bridge node

The bridge node is connected to the PC and it works as a receiver. When it receives a

signal from the stations, it forwards it directly to the PC.

3.2.3 Graphical user interface (GUI)

The GUI takes the data received from the bridge node and displays the results on a

friendly interface program.

3.3 RF Engine

The Synapse RF Engine module is the backbone of the system and it is an IEEE

802.15.4, low power, highly-reliable solution to embedded wireless control. The

monitoring network and wireless mesh network operating system has an integrated

transceiver radio data rate up to 2 Mbits/sec. The Synapse RF Engine module is a

low-cost module and can have a range of up to 5 Km with a power consumption as

low as 1.6 μA to enable a new generation of battery-driven systems [16]. The

physical dimensions of the RF Engine are 33.86mm in width and 46.66mm in height

as shown Figure 3.2.

Figure 3.2: RF Engine

22

Figure 3.3: Physical Dimensions of RF Engine

Each RF Engine combines a microcontroller, an 802.15.4 radio, and an antenna. It has

an on-board microcontroller with its own internal RAM and ROM. No external

components are required for operation. It is includes 19 General Purpose I/O (GPIO)

pins, which can be configured as digital inputs or outputs. Many of these same 19

GPIO pins can also be switched to alternate functionality:

 8 can be analog inputs

 4 can be serial data lines (2 TX pins, 2 RX pins)

 4 can be serial handshake lines (2 RTS pins, 2 CTS pins)

There are 19 Input/Output pins available to hook up the exact functionality required

by the application. The minimal hookup to an RF Engine consists of two wires, one

wire for VCC (2.7-3.4 volts DC) and the other wire for GND.

The RF Engines contain core code (written in C) that implements basic wireless

networking functionality. This core code also implements a virtual machine which

executes a subset of the Python programming language. Synapse has named this

subset Python SNAPpy.

23

Table 3.1: RF Engine Specifications [16]

Table 3.1 illustrates the specifications of the modules. These provide up to 16

channels of operation in the ISM 2.4 GHz frequency band. In addition it contains

both a power amplifier for transmission and a low noise amplifier in the receive path

for extended range. Where the networking is based on SNAP or ZigBee topology this

is the same as mesh networking topology.

24

3.4 Evaluation kit

Figure 3.5: Evaluation kit [17]

The evaluation kit has four main components [17]: SN132 SNAPstick, Synapse Portal

software and SN171 SNAP Node Proto Board as shown in Figure 3.5

3.4.1 SN132 SNAPstick

The Synapse SNAPstick as shown in Figure 2. 1 is a USB connector that connects the

RF engines to the PC. Once the RF engines are connected to the PC, the RF engine

can be easily programmed via Synapse Portal software [17].

Figure 3.6: SN132 SNAPstick [17]

25

3.4.2 Synapse Portal software

Synapse Portal software is a graphical user interface that enables users to access the

RF engines. Users can upload Python codes and monitor the activities of RF engines

via Synapse Portal.

3.4.3 SN171 SNAP Node ProtoBoard

The ProtoBoard exposes the RF Engine’s GPIO pins. In this system, ProtoBoard is very

important because it allows the connection of the switches to the RF engines.

3.5 Station design

The station components are: RF Module, ProtoBoard switches, 3V power adapter

and 2x1.5 AA batteries. Figure 3.7 shows the circuit structure of the station.

Figure 3.7: The circuit structure of the station

26

A 3V power adapter will power the station. However, the station is provided with

disposable 2x1.5 AA batteries in case of power failure. The RF module is

programmed to send pings to the bridge node when the switches are pressed. The

first switch will be for the medical support and it will be connected to GPIO3 on the

board. The second switch is for the security support and it will be connected to

GPIO4 on the board. The GPIOs are identified in the RF engine’s python code.

3.6 Station nodes’ Python scrip

In the station node, python programing language has been used to set up the codes

of the two switches for the medical and security switches. Switch one is defined as

input pin 3 and switch two is defined as input pin 4 by using the function called def

onStartup(): and def init(pin): as shown in Figure 3.8 below.

def onStartup():

 # Set pin 5 as a watched input

 init(3);

 init(4);

def init(pin):

 setPinDir(pin, False)

 setPinPullup(pin, True)

 monitorPin(pin, True)

Figure 3.8: start-up function code

27

Pin 1 was set as an output in the start-up function by using the function called # Set

pin 1 as an output as shown in Figure 3.9.

 # Set pin 1 as an output

 setPinDir(1, True)

 writePin(1, False)

Figure 3.9: (Set pin) Function

When switches one or two are pressed the station node calls (onPin) function to

sends RPC signals to the bridge node as shown in Figure 3.10.

def onPin(pin, isSet):

 if isSet:

 if pin == 3:

 rpc('\x00\x00\x01', "security", 1)

 elif pin == 4:

 rpc('\x00\x00\x01', "medical", 1)

Figure 3.10: (onPin) function call

28

In addition, the station node calls the function check() to confirm whether the sensor

node is working or not. When the function is triggered, it will send RPC to the server

to run checkstations function on the client (the node), with the network address of

the node localAddr() as a parameter.

def check():

 rpc('\x00\x00\x01', 'checkstations', localAddr())

Figure 3.11: check(),(checkstations) and (localAddr()) function call

3.7 SNAPconnect

SNAPconnect works as a middleware between the bridge and the GUI software [18].

It is used to allow a third party, who is the client, to easily access a SNAP wireless

network through GUI applications. It provides a terminal for the client programs to

interact with remote station nodes. SNAPconnect exposes the functions contained in

SNAPpy Scripts including the standard SNAP built-in functions. The following

diagrams outline the message exchange sequence between the SNAPconnect server

and the client application, as well as between the server and a remote SNAP node.

Figure 3.12: Message Exchange (SNAP node initiated) [18]

29

Figure 3.13: Message Exchange (client application initiated) [18]

Figure 3.12 shows a client connecting to SNAPconnect software, and then an

exchange initiated by a remote SNAP node while the client application waits. Figure

3.13 shows a similar setup and exchange initiated by the client application [18].

3.8 Graphical user interface (GUI)

The GUI was programmed with C# language in correlation with the XML\RPC

function library. The GUI is divided into four sections as shown in Figure 3.14

 Events.

 Message box.

 Statistics frame.

 Map.

30

Figure 3.14: Graphical user interface (GUI) of the system

3.8.1 Events

In the event box there are three buttons which are the Connect button, Check

station button, and Pull up menu button.

3.8.1.1 Connect button

The connect button is a button to connect the PC with the bridge node by

SNAPconnect server. The connect button calls the BeginConnectSerial function,

which is defined in XmlRpcInterface.cs file included in the XML\RPC function library.

Figure3.15 shows the connect button code.

proxy.BeginConnectSerial((int)SerialType.RS232,(int)4,false,this.SerialConnectCallbak

Figure 3.15: Connect button code

31

3.8.1.2 Check station button

The check station button was created to check all station nodes statues. For

example, figure 3.16 shows that only two stations are working and the rest of the

stations are disabled.

Figure 3.16: check station button example

Figure 2.16. Below shows the function: checkstations(byte[] netAddr), which is used

to call the stations for checking the statues of each node.

 public void checkstations(byte[] netAddr)

 {

 string statinNetAdress = HexStr(netAddr);

 string stationNum = whichstation(statinNetAdress);

 int StationInt = Convert.ToInt32(stationNum);

 checkStations[StationInt- 1] = 1;

 mapsignal(StationInt, "idle.gif");

Figure 3.17: Check station button code

32

3.8.1.3 Pull up menu

The pull up menu presents a list of the station nodes. When the station is activated,

and a appropriate action is taken by the authorities, the pull-up menu can be used to

reset the station to inactive status, as shown in Figure 3.18

Figure 3.18: Pull up menu

3.8.2 Messages Box

Figure 3.19: message box Frame

Figure 3.19 show the message box shows the station node that has been pressed,

the type of request, date and time by using functions below in Figure 3.20

33

 txtInfo.Text += "\r\n"+"Station " + stationNum +

 " Need medical help" + " on " + localZone.ToLocalTime(time).ToString();

Or

txtInfo.Text += "\r\n"+ "Station " + stationNum +

 " need security help" + " on " + localZone.ToLocalTime(time).ToString();

Figure 3.20: message box code

3.8.3 Statistics Frame

The Statistics frame shows the station number and the accumulative request

number of each station and whether a medical or security request, as shown in

Figure 3.21.

Figure 3.21: Statistics Frame

34

The message box presents all the data from the station node by using the function

below as shown in Figure 3.22.

for (int m = 0; m < 10; m++)

 {

 textBox1.AppendText("\r\n" + MedicalStations[m].ToString());

 }

Or

for (int m = 0; m < 10; m++)

 {

 textBox2.AppendText("\r\n" + SecurityStations[m].ToString());

 }

Figure 3.22: statistics frame code

3.8.4 Map

The map shown in figure 3.23 was drawn to represent the layout of the mosque, and

it shows the main entry doors of the mosque and where the station nodes will be

positioned in the real implementation as shown in Figure 3.23.

Figure 3.23: The map layout

35

When the function is executed it will translate the byte from python binary code to

Hexadecimal through (HexStr(byte[] p)) function. The station number will be

retrieved from (whichstation()) function. Then it will use (mapsignal()) function to

show the right status icon on the map (alert , idle, down). The criterion of the icon is

explained in table 3.1 below.

Table 3.1: icons criteria

When a buttons on the node is pressed it will send RPC calling (MEDICAL() or

SECURITY ()) functions to the client. As shown in Figures2.22, 2.23.

 {

 textBox1.AppendText("\r\n" + MedicalStations[m].ToString());

 }

Figure: 3.24 Medical Stations code

 {

 textBox2.AppendText("\r\n" + SecurityStations[m].ToString());

 }

Figure: 3.25 Security Stations code

36

CHAPTER 4

SIMULATION AND RESULTS

37

CHAPTER 4 SIMULATION AND RESULTS

4.1 Introduction

The simulation section in this thesis is very important for the development and

evaluation of the network. The simulation shows the expected behaviour of the

network under different conditions [20]. The OPNET Modeller simulator has been

used due to its accuracy and ease of use. Figure 4.1 shows the OPNET simulation

environment.

Figure 4.1: OPNET simulation environment

The OPNET Modeller also supports IEEE 802.15.4 Standard and all three types of

devices used (Coordinator, Router and End device) [21]. The results obtained from

the simulation are throughput, packet dropped, data traffic received and data traffic

sent for the project scenarios.

38

4.2 IEEE 802.15.4 Standard OPNET simulator

The OPNET Modeller simulator for IEEE 802.15.4 gives full access to change the

structure of the node to suit the system requirements [21]. Figure 4.2 shows the

model structure for a one node model including physical, MAC, network and

application layer beside the battery model. The PHY has a transmitter and a receiver

working at 2.4 GHz frequency. The MAC layer contains slotted CSMA/CA, generates

beacon frame and synchronizes nodes with a Coordinator. The APP layer generates

data using unacknowledged frames and a MAC command frame generator creating

acknowledged frames. The battery module is used for measuring the consumed and

remaining energy levels [22].

Figure 4.2: The structure of the IEEE 802.15.4 simulation model

4.3 Types of Wireless Sensor Network Topology

This section explains the topology model used in the OPNET Modeller simulator. In

particular the mesh networking topology which has been used in this project. The

IEEE 802.15.4 model in OPNET may operate in one of three topologies which are Star

topology, Cluster tree topology and Mesh networking topology as shown in Figure

4.3.

39

Figure 4.3: Types of Wireless Sensor Network Topology

Wireless sensor networks are typically organized in one of three types of network

topologies: star, cluster tree, or mesh as shown in Figure 3.3. Network topologies are

similar regardless of the areas of their application. WSN is still a network, so the

common network topologies work for it as well.

4.3.1.1 Star Network Topology

Star network topology is based on a single base-station that sends and/or receives a

message to or from a number of remote nodes. Therefore, the remote nodes are

able to send/receive messages to a base-station only, not to each other. The

simplicity of this type of network is the main advantage. Another advantage is the

ability to keep the power consumption of nodes at a minimum [8] as shown in Figure

4.3. Almost all Wi-Fi networks use a star network, where each client (sensor node) is

tied to a wireless access point (the gateway) [23].

4.3.1.2 Cluster Tree Network Topology

In a cluster tree network, each node connects to a node in the top of the tree until

the data reaches the gateway. These can be used by employing a

simple algorithm with any wireless technology [24]

40

4.3.1.3 Mesh Network Topology

The mesh network allows any node in the network to transmit to any other node in

the network that is within its radio transmission range. If one link is affected, and

cannot be passed then the data will reach the nearest available node, then the data

can go through another route to reach the gateway [25].

4.4 Node types

As mentioned before the node types in the IEEE 802.15.4 are Coordinator, Router

and End device. In this project we make use of the coordinators and routers, where

the coordinator acts as the main device. The main purpose of the coordinator is

initiating and synchronizing the network. It also acts as a router. The routers are the

reader nodes in this project and they can relay messages from one node to another.

4.5 Simulation setup

This simulation contains of ten routers and one coordinator and the simulation

scenario is 700m X 200m matching the ground mosque area as seen in Figure 4.3.

The simulation runtime is 5000 seconds. Some modifications were introduced to the

nodes parameters to meet the system requirements. The modified parameters are

shown in Table 1.1.

Figure4.4: Simulation scenario layout

41

Table 4.1: Nodes parameters

Physical layer

Data rate 250 kbps

Receiver sensitivity -102 dBm

Transmission band 2.4 GHz

Transmission Power 18 dBm

MAC parameters

ZCK Wait Duration 0.05

Number of Retransmission 5

CSMA Parameters

Minimum Back off Exponent 3

Maximum Back off Exponent 4

Channel Sense Duration 0.1

Topology type Mesh

Synchronization mode Beacon-enabled

Battery Module Parameters

Radio power in receiving 66 mA

Radio power in sending 110 mA

Radio power in idle 15 mA

Radio power in sleeping 2.5 μA

4.6 Simulation results

The obtained results for this simulation are average throughout, average data

dropped, average delay, network collision ratio and total number of received and sent

packets.

4.6.1 Throughput:

Throughput is related to the network capacity and the number of nodes has a direct

impact on the network capacity. Figure 4.5 shows the average throughput for this

scenario with the 10 nodes.

42

Figure 4.5: Average throughput of the network

The network capacity as seen in this figure is relatively high which will result in high

network performance.

4.6.2 The Average Delay and Packet loss:

The delay of a network specifies how long it takes for the packets to travel across the

network to reach their destination. Packet loss happens when the packets fail to

reach their destination. The Average delay and packet loss for this scenario are

shown in Figure 4.6 and 4.7.

Figure 4.6: Network average delay

43

Figure 4.7: Data loss rate

The results show low delay and packet loss rates. High network congestion usually

causes high delay and packet loss rates. Figure 4.8 shows the collision ratio in this

simulation which is 0.012%.

Figure 4.8: Network collision ratio

4.6.3 Total number of received and sent packets

The difference between the number of sent packets by the ten readers and received

packets by the coordinator can be clearly seen in Figure 5.9.

44

Figure 4.9: Total number of received and sent packets

4.7 Conclusion

This chapter has presented a simulation of the proposed system. The OPNET

modeller has been used to create a scenario of 10 nodes and one coordinator. The

obtained results have shown stability in sending and resaving packets with low rates

of delay and packet loss. According to these results and due to the small size of the

network, the system will be expected to achieve high performance.

45

CHAPTER 5

EXPERIMENT SET- UP AND RESULTS

46

CHAPTER 5 EXPERIMENT SET- UP AND RESULTS

5.1 Introduction

This chapter presents the actual field experiment conducted including the selecting

of a suitable area and the tools used to do the experiment. Several tests and results

have been gathered from each test. And each experiment has tested test of different

aspects. The major consideration in this test is the signal strength and the quality of

the signal when sending or receiving.

5.2 Field Experiment

The field of experiment was conducted at the Victoria Esplanade Garden located on

the Park Road in Palmerston North, New Zealand. The site was selected because it

has a similar area size to the Grand Mosque in Mecca, which has a length of

approximately 440 meters by 270 meters, as shown in Figures 5.1 and 5.2

Figure 5.1: Dimensions of the Grand Mosque in Mecca

47

Figure 5.2: Dimensions of the Victoria Esplanade Garden

5.3 Positioning of the sensors (draw the map network)

One of the primary stages of the experiment is nodes positioning including the main

station. The distance between each sensor node must be considered .Ten sensor

nodes have been placed on the map of the Mosque of Mecca based on the main

gates of the Mosque as shown in Figure 5.4. The location of the station nodes has

been carefully determined to insure a fully connected circle around the mosque. The

map of the Mosque was matched with the map of the Victoria Esplanade Garden,

showing the sensor node yellow, and the main station in red a receiver as shown in

Figure 5.3, 5.4. Each sensor node has a number from 1 to 10 to make them easy to

recognise and monitor.

48

Figure 5.3: Positioning of the sensor node in Mecca

Figure 5.4: Positioning of the sensor node in Victoria Esplanade Garden

49

Figure 5.5: Distance from the main node in Mecca

Table 5.1: Distance from the main node

Node Distance from the main station

Sensor node 1 108.89 M

Sensor node 2 142.61 M

Sensor node 3 190.96 M

Sensor node 4 270.82 M

Sensor node 5 273.78 M

Sensor node 6 258.45 M

Sensor node 7 312.34 M

Sensor node 8 319.00 M

Sensor node 9 381.89 M

Sensor node 10 506.23 M

50

Distances are assisted with a high consideration of the type of network topology

Figure 5.5 and the table 5.1 show clearly the distance from each sensor node to the

main sensor, measured in metres.

Figure 5.6: Distance between nodes

Table 5.2: Distance between nodes

Sensor node number Distance

From node 1 to 2 119.75 M

From node 2 to 6 121.86 M

From node 6 to 9 145.91 M

From node 9 to 10 128.48 M

From node 9 to 8 106.06 M

From node 8 to 7 106.79 M

From node 7 to 5 83.16 M

From node 5 to 4 113.64 M

From node 4 to 3 86.31 M

From node 3 to 1 145.37 M

51

The distances between the sensor nodes were selected to ensure a good quality of

the signal strength, as shown in Figure 5.6 and Table 5.2.

5.4 Tools of the Experiment

The sensor and the system which had been used in the project is RF ENGINE from

SYNAPSE Wireless, Inc as mentioned previously in chapter three.

Figure 5.7: SYNAPSE Wireless

Synapse Portal software, from SYNAPSE Wireless, has been used in this project to

become a graphical user interface (GUI) for the entire network [19]. Portal is used to

monitor the sensor nodes RF ENGINE which is a SNAP-based network application.

Once connected to the USB or RS232 interface, it connects to any node in the SNAP

Wireless Network, as shown in Figure 5.8

Figure 5.8: A snapshot of Portal

52

Each sensor node is programmed according to its network address and it’s position.

Table 5.3 below shows the number of the sensor node with the network address of

the sensor, which appears on the back of each node, as shown in Figure 5.9

Table5.3: The network address of each node

Node Number Network address

Node 1 03.EA.03

Node 2 03.EA.13

Node 3 03.EA.4C

Node 4 03.EE.C4

Node 5 03.EE.CC

Node 6 03.EB.B6

Node 7 03.EA.17

Node 8 03.EA.0F

Node 9 03.EA.15

Node 10 E6.00.A6.07

Figure 5.9: RF Engine network address

53

5.5 Distance VS. Signal Strength RSSI

The primary test of the experiment was designed to illustrate the signal strength of

each sensor node. This would help to know the criteria of the sensor, and the test

would determine the best distance to locate the sensors in the accurate position.

The first step is monitoring the column of the Link Quality on the Portal software to

record the signal strength. The Link Quality column shows a snapshot of the radio

receive level by default. It is expressed as a percentage, with 0% (-95 dBm)

representing the weakest possible signal and 100% (-18 dBm) representing a

maximum strength signal. Figure 5.10 shows the first reading of the link quality

column.

Figure 5.10: A snapshot of Link Quality

It is important to understand three things about the displayed Link Quality [19]:

1) Normally this field is not continuously refreshed – Portal does not “poll” nodes

unless told to. The Broadcast PING button is used to update the Link quality fields of

all active units. There is also a Refresh button that can be clicked to force a refresh of

a single node’s Link Quality. This button is on the Node Info toolbar. Finally, there is

a WatchNodes button that essentially turns on automatic broadcast pings.

2) The value shown is based on the received signal strength of the most recent

message from any other wireless node. It does not represent the signal strength

between Portal and the node.

54

3) It is possible that at the time the Link Quality field was read from the unit, it had

not yet received any radio messages from any other node. In this case, a value of 0

will be reported. This does not mean the unit has a faulty radio; it simply has not

done any radio communications yet. This is most often seen with the node that is

acting as a “bridge” for Portal, because Portal can be interacting with this directly

attached node without necessarily generating any radio traffic.

The second step was to install the ten sensor nodes in their location, and then this

would show on the portal interface, as shown in Figure 5.11.The data collected is

from the portal and presented on the table 5.4.

Table 5.4: Distance and signal from Main node

Node Number Distance From The

Main

Signal Strength

node 1 108.89 M 84%

node 2 142.61 M 80%

node 3 190.96 M 78%

node 4 270.82 M 72%

node 5 273.78 M 70%

node 6 258.45 M 61%

node 7 312.34 M 58%

node 8 319.00 M 45%

node 9 381.89 M 41%

node 10 506.23 M 36%

55

Figure 5.11: Signal Strength from Main node

By adding the data from the portal software to the distance of each sensor node, the

results shown in Table 4.4 and Figure 5.11 were gained. The result shows that the

sensor node number (1, 2, 3) are the nearest sensor node to the main system. As a

result of that they have a stronger signal strength than the rest of the sensor nodes.

56

5.6 Signal Path test

The signal Path test was used to investigate the impact of the network and the signal

strength for each sensor node, and if one sensor node was disabled, to locate the

maximum number of routing paths for each sensor. Monitoring the link quality of

each sensor node and considering the distance between each sensor node would

show the possible routing paths.

If one of the ten nodes is disabled, there will not be a problem because the network

topology of the RF model is based on the Mesh topology, so the signal will chose

another possible path to reach the nearest node.

The first step was to disable all the sensor nodes except the sensor being tested.

Then the neighbouring sensor nodes where activated respectively to see how many

sensor nodes were directly connecting and how many paths each sensor node would

route.

The experiment started with the main node, then node number 1 and 2 and so on

until node number 10 by reading the signal strength and the distance respectively.

57

5.6.1 Main Node

Figure 5.12: Distance from Main node

Table 5.5: Distance and signal from Main node

Node Number Distance From The Main Signal Strength

node 1 108.89 M 97%

node 2 142.61 M 90%

node 3 190.96 M 88%

Figure 5.13: Signal strength from Main node

58

5.6.2 Sensor Node One

Figure 5.14: Distance from node 1

Table 5.6: Distance and signal from node 1

Node Number Distance From Node 1 Signal Strength

Main 108.89 M 97%

Node 2 119.52 M 90%

Node 3 142.20 M 88%

Node 4 197.42 M 77%

Node 5 176.07 M 86%

Node 6 194.09 M 73%

Node 7 201.34 M 62%

Figure 5.15: Signal strength from node 1

59

5.6.3 Sensor Node Two

Figure 5.16: Distance from node 2

Table 4.7: Distance and signal from node 2

Node Number Distance From Node 2 Signal Strength

Main 142.61m 90%

Node 1 119.52 94%

Node 6 126.57 90%

Node 8 219.50 45%

Figure 5.17: Signal strength from node 2

60

5.6.4 Sensor Node Three

Figure 5.18: Distance from node 3

Table 4.8: Distance and signal from node 3

Figure 5.19: Signal strength from node 3

Node Number Distance From Node 3 Signal Strength

Node 1 142.20 M 88%

Main 190.96 M 79 %

Node 4 69.34 M 97 %

Node 5 157.61 M 93%

61

5.6.5 Sensor Node Four

Figure 5.20: Distance from node 4

Table 5.9: Distance and signal from node 4

Node Number Distance From Node 4 Signal Strength

Node 1 197.42 M 57%

Node 5 105 M 87%

Node 3 69.34 M 95%

Node 7 182.30 M 76%

Figure 5.21: Signal strength from node 4

62

5.6.6 Sensor Node Five

Figure 5.22: Distance from node 5

 Table 5.10: Distance and signal from node 5

Figure 5.23: Signal strength from node 5

Node Number Distance From Node 5 Signal Strength

Node 1 201.34 M 44%

Node 4 105.02 M 87%

Node 3 157.61 M 75%

Node 7 72.26M 94 %

Node 8 168.27 M 68%

63

5.6.7 Sensor Node Six

Figure 5.24: Distance from node 6

Table 5.11: Distance and signal from node 6

Node Number Distance From Node 6 Signal Strength

Node 1 149.09 M 63%

Node 2 126.57 M 76%

Node 9 132.30 M 74%

Node 8 119.71 M 88%

Node 7 187.45M 54%

Figure 5.25: Signal strength from node 6

64

5.6.8 Sensor Node Seven

Figure 5.26: Distance from node 7

Table 5.12: Distance and signal from node 7

Node Number Distance From Node7 Signal Strength

Node 1 201.34 M 24%

Node 5 72.26 M 96%

Node 4 182.30 M 42%

Node 6 187.45M 39%

Node 8 88.43 M 93%

Node 9 191.07 M 34%

Figure 5.27: Signal strength from node 7

65

5.6.9 Sensor Node Eighth

Figure 5.28: Distance from node 8

Table 5.13: Distance and signal from node 8

Node Number Distance From Node 8 Signal Strength

Node 10 201.36 M 27%

Node 9 98.84 M 89%

Node 6 119.52 M 68%

Node7 88.43M 93%

Node 5 168.27M 45%

Figure 5.29: Signal strength from node 8

66

5.6.10 Sensor Node Nine

Figure 5.30: Distance from node 9

Table 5.14: Distance and signal from node 9

Node Number Distance From Node 9 Signal Strength

Node 10 131.90 M 55%

Node 8 98.84 M 89%

Node 6 132.30 M 55%

Node 7 191.07 M 34%

Figure 5.31: Signal strength from node 9

67

5.6.11 Sensor Node Ten

Figure 5.32: Distance from node 10

Table 5.15: Distance and signal from node 10

Node Number Distance From Node 10 Signal Strength

Node 9 131.90M 55%

Node 8 201.36 M 28%

Figure 5.33: Signal strength from node 10

68

5.7 Discussion on the signal paths test

Table 5.16, below shows all the data collected starting with the main node through

to node number 10, and showing the number of routing paths of each sensor node

and which nodes they are connecting with.

The table also shows that the Main sensor has three paths to deliver or receive a

signal through Nodes number 1, 2, and 3.

The sensors one, two and three are considered as the key nodes in this network.

These three sensor nodes were selected in order to avoid any interruption in the

network, providing instant alternative paths to transmit the signal and ensure

delivery of the signal to the farthest node in the network.

Table 5.16: Number of paths

NODE How many Paths Nodes Connecting

Main Node 3 1, 2, 3

1 7 Main, 2, 3, 4, 5, 6, 7

2 4 Main, 1, 6, 9

3 4 Main, 1, 4, 5

4 4 3, 1, 5, 7

5 5 1, 3, 4, 8, 7

6 5 9, 7, 1, 8, 2

7 6 1, 8, 9, 5, 6, 4

8 5 10, 9, 6, 7, 5

9 5 2, 6, 10, 8, 7

10 2 9, 8

Total 50 50

69

It is clear that sensor nodes number 1 and 7 possess the largest number of paths to

connect with the rest of sensor nodes: sensor number 1e has seven paths and sensor

number 7 has six paths. There are two obvious reasons for node 1, and 7 to have

more paths than other nodes: Firstly, both nodes are lying directly with Main

Node.Secondly, they also situated in the middle of the network map.

The data from the table shows the remaining sensors, numbers 2, 3, 4, 5, 6, 8, 9, are

sharing the numbers four and five paths in connection within the network, because

it is located on the farthest point of the network map from the main sensor node,

sensor number 10 has only two paths to connect and access, either through sensors

eight or nine. Finally, data on the table presents a confident result which shows that

for network of ten sensor nodes has 50 paths to connect and transmit signals.

Figure 5.34: The Strongest Path

In conclusion Figure 5.34, show the network map of the experiment in Mecca , the

red line shows all the signal paths connection between nodes sending or receiving.

However; the blue line is the best signal path on the network.

70

5.8 Battery life

The sensor nodes are powered by electricity by using the power supplies cables with

input voltage AC 110--240V and output voltage DC 9V Output Current: 500mA. These

are connected to a protoboard, which also has a power regulator option and battery

connector. Tools for the experiment are: 2X (1.5 V) AA battery, AA Cell Battery

Holder, and Digital MultiMetre.

A 3V power adapter will power the station, however, the station also contains

disposable AA batteries as a backup power source in case of power failure. This test

investigated the power consumption by reading the power using a digital

MultiMetre. The battery life test has been done in two stages: the first stage was

collecting the voltage reading evrey 30 minutes and monitoring the signal quality

and the second stage was collecting the voltage reading each hour,.as shown in

Table 5.17 and Figure 5.35.

Table 5.17: Battery Life during 24 hours

Time 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30 6:00

Battery
Voltage

3 3 3 2.99 2.98 2.97 2.97 2.96 2.95 2.93 2.92

(A)

(B)

(C)

Time 6:30 7:00 7:30 8:00 8:30 9:00 9:30 10:0
0

10:30 11:00 11:30 12:00

Battery
Voltage

2.92 2.92 2.91 2.91 2.9 2.9 2.89 2.88 2.87

2.87 2.86 2.85

Time 13:0
0

14:0
0

15:0
0

16:0
0

17:0
0

18:0
0

19:0
0

20:0
0

21:0
0

22:0
0

23:0
0

24:0
0

Battery
Voltage

2.83 2.8 2.78 2.73 2.7 2.68 2.65 2.63 2.6 2.58 2.56 2.51

71

Figure 5.35: Battery Life during 24 hours

5.9 Conclusion

The experiment shows that during the 24 hours test the batteries are working very

well as a backup source of energy. The two stages of the experiment indicated that

the energy was consumed gradually, while the signal was retained in the same

normal level of quality, with all the sensor nodes consuming what they needed to

continue working.

72

CHAPTER 6

SUMMARY OF FINDINGS AND

DISCUSSION

73

CHAPTER 6 SUMMARY OF FINDINGS AND

DISCUSSION

6.1 Introduction

This chapter presents the final outcome and the main findings of the project and will

discuss the results obtained from the project’s experiments. Then it will summarise

and discuss the idea of the project, and its contribution to solving the problem of the

urgent need for a system to help missing people, particularly children, women,

elderly people, and patients who are in need of a medical or security services during

the Hajj season. Finally, it will discuss the actual implementation of the project in the

Grand Mosque in Mecca and its potential effectiveness.

6.2 The Project's prototype

Figure 6.1 present the Project's prototype. There are two switches. The red switch is

for the Medical alert, the green is for the security alert. The battery is included in the

box.

Figure 6.1: The Project's prototype

74

6.3 Project’s hardware and Software

6.3.1 Hardware

Choosing the hardware was the core of this project. The selection was based on four

main features which are the latest technologies, range, price, and power

consumption.

Therefore the Synapse RF Engine module was chosen to be the backbone of the

project. It is based on an IEEE 802.15.4 standard, low power, highly-reliable solution

to embedded wireless control, monitoring network, and wireless mesh network

operating system with an integrated transceiver radio data rate up to 2 Mbits/sec.

The Synapse RF Engine module is a low-cost module, with a range of up to 5 Km, and

a power consumption as low as 1.6 μA to enable a new generation of battery-driven

systems.

6.3.2 Software

Various levels of program have been used in the project, each with specific

objectives for the system operation including:

 Python programming language. This has been used to set up the codes in the

station nodes.

 C# language. This has been used to design a friendly a graphical user interface

(GUI) that enables users to access the network map of the project to monitor the

station nodes on the real implementation.

 Synapse Portal software. This is a graphical user interface that enables users to

access the RF engines. Via Synapse Portal, users can upload Python codes and

monitor the activities of RF engines.

 SNAPconnect software. This works as a middleware between the bridge and the

GUI software.

75

6.4 Field Experiment

The field experiment is considered to be the most important stage to do the rest of

the tests. It contributes to the initial planning to draw the network map.

Field Experiment sites were selected by considering the area of the Grand Mosque in

Mecca. Victoria Esplanade Garden in the city of Palmerston North, New Zealand, has

been determined using Google Earth and it was excellent site to test the system.

6.5 Positioning of the sensors (draw the map network)

Positioning the sensors is a key step for building the main form of the network

map. After selecting the field experiment, site images were dragged from

Google Earth to study and draw the network map and position the sensor nodes. The

distance between each sensor node is not more than 300 meters. Note that this trial

is based on ten sensors only. The network map has been matched with the map of

the Grand Mosque of Mecca, and the physical location of where the devices will be

placed has been identified. On this basis the system is ready for implementation in

Mecca.

6.6 Tools of the Experiment

Google Earth was used as a major tool to identify the places by tacking images

and meters measure also used for measuring the distances in the actual place of

execution, batteries have been used to provide energy to run the sensors.

76

6.7 Results and Discussion

After the sensor nodes were installed in the suitable site, the results were gained

from the tests as explained in chapter four. The following points summarise the

outcome of the tests:

 The sensor nodes are working steadily and smoothly according to the area of the

grand mosque of Mecca.

 The sensor nodes are installed and located at an appropriate distance according

to RF Engine’s technical features.

 There were no external effects on the sensor node signals, such as

electricity, mobile phone signals, or Wi-Fi signals surrounding the site.

 The results of the path signal present encouraging and a satisfactory result which

shows that a network of ten sensor nodes has 50 paths to connect and transmit

signals.

 All the sensor nodes are consumed what was needed to continue their work.

During the 24 hours the batteries worked well as a backup source of energy.

The overall outcomes suggest that the system is ready to provide the services to the

pilgrims in the Grand mosque of Mecca. The existence of adding more sensor

nodes in the mosque will increase the signal strength and provide a

better service to a larger number of pilgrims in the Grand mosque of Mecca.

77

CHAPTER 7

Conclusion and Future Work

78

CHAPTER 7 Conclusion and Future Work

The main problem that is faced by the pilgrims in Mecca every year is that the areas

of Mecca become overcrowded in the month of Hajj and the number of missing

people in the Grand Mosque area has increased. This overcrowding has

raised concerns over the safety and the security of pilgrims.

By exploring the WSN technology we can conclude that there are many different

WSN applications available. A wide range of applications for WSN have been

implemented in different areas such as health, military, factories, oil industries,

security and home automation. WSN technology also can be used to help solving the

overcrowding problem in Mecca during the Hajj season.

This thesis focuses on the problems of missing people and helping those in need of

urgent medical services.

The proposed solution is to take advantage of the modern technology by building a

fixed station nodes using WSN within the corridors of the Grand Mosque in Mecca to

help the pilgrims with security and medical services. The places for services are

known in advance and set out for the pilgrims in case he or she wants a help or to

make a query about any problem that could occur during Hajj time. It is a reliable

and affordable project to implement in the Grand Mosque of Mecca. This project is

very important and represents a solution for emergency support during Hajj.

The Synapse RF Engine module was targeted to be the main device of the project. Its

selection was based on four main features which are latest technologies, range,

price, and power consumption. Various levels of programs have been used in the

project each with specific objectives for the system operation, for example, python

programing language has been used to set up the codes of the two switches for the

medical and security switches on the RF Engine node, C# language in correlation with

the XML\RPC function library was used to design the GUI to monitor the status of the

79

station nodes and to obtain wide information from each station node. Also, the

simulation tools of OPNET Modeller simulator have been used to expect the network

behaviour under different conditions.

The field experiment was an excellent site to test the system, and the sensor nodes

were installed in suitable sites. The results were gained from the tests of the path

signal present a confidence and satisfactory results.

The backup source of energy of the entire sensor nodes has been supplied over 24

hours and the results show that the batteries are working very well, where the

sensor nodes are consumed what its need to continue its work.

It is recommended that the base station includes, the PC unit, situated in the

chamber of the security operations of the Grand Mosque, to follow-up the main

graphical user interfaces of the project by tracking the status of the station nodes

and to ensure effective communication with the security guards in the Grand

Mosque yards. This will increase the capabilities of quick responding to every alert,

and provide the right service to the situation, whether it is security or medical.

The external design of the stations in the real implementation is expected

to be equipped and prepared with the necessary signals and instructions in different

languages to help the pilgrims requesting the service.

Finally, it can be concluded that the system is ready for implementation in

Mecca. However, there is a consideration for real-life implementation, due to the

size of the Grand Mosque, including four floors with more than 70 exits and entry

doors, and the limited number of sensor nodes in this project. However, increasing

the number of sensor nodes will increase the validity and the reliability of the project

implementation. Figure 7.1 and 7.2 below present the over view maps of the

distribution of the sensor nodes after increasing the number in all the four floors:

80

Figure 7.1: The nodes distribution in the four floors Map of The Grand Mosque

Figure 7.2: The nodes distribution in the four floors Map of The Grand Mosque

81

CHAPTER 8 REFERENCES

[1] The Ministry of Hajj (2011). Location. Available:

http://www.hajinformation.com/main/h101.htm

[2] The Ministry of Hajj (2011). Largest ever expansion of the Haram in

Makkah (2008). Available: http://www.hajinformation.com/main/j103.htm

[3] S. A. Hameed, "ICT to serve Hajj: Analytical study," in Computer and

Communication Engineering (ICCCE), 2010 International Conference on, 2010,

pp. 1-7.

[4] Central Department Of Statistics & Information in SA (2010). The number of

pilgrims for the Years From (1995G.) to (2010G.) .. Retrieved from

http://www.cdsi.gov.sa/english/index.php?option=com_docman&Itemid=173

[5] T. Mantoro, A. D. Jaafar, M. F. M. Aris, and M. A. Ayu, "HajjLocator: A Hajj

pilgrimage tracking framework in crowded ubiquitous environment," in

Multimedia Computing and Systems (ICMCS), 2011 International Conference

on, 2011, pp. 1-6.

[6] The Ministry of Health of the Kingdom of Saudi Arabia (2009). Health Services

in Hajj Season. In Health Statistical Year Book. Saudi Arabia: Retrieved from

http://www.moh.gov.sa/en/Ministry/Statistics/book/Pages/default.aspx

[7] Stankovic, J. A. (2006). Wireless Sensor Networks. Department of Computer

Science, University of Virginia, 1-20.

[8] Townsend, C., & Arms, S. (2004). Wireless Sensor Networks: Principles and

Applications, MicroStrain, Inc., 439-449.

 [9] E. Ferro and F. Potorti, "Bluetooth and Wi-Fi wireless protocols: a survey and a

comparison," Wireless Communications, IEEE, vol. 12, pp. 12-26, 2005.

http://www.cdsi.gov.sa/english/index.php?option=com_docman&Itemid=173
http://www.moh.gov.sa/en/Ministry/Statistics/book/Pages/default.aspx

82

[10] J. S. Lee, Y. W. Su, and C. C. Shen, "A comparative study of wireless protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi," in 33rd Annual Conference of the IEEE

Industrial Electronics Society (IECON), Taipei, Taiwan, November 5-8, 2007 B2 -

33rd Annual Conference of the IEEE Industrial Electronics Society (IECON),

Taipei, Taiwan, November 5-8, 2007 (November 05, 2007-November 08, 2007),

ed, 2007, pp. 46-51.

[11] J. S. Lee, "Performance evaluation of IEEE 802.15.4 for low-rate wireless

personal area networks," Consumer Electronics, IEEE Transactions on, vol. 52,

pp. 742-749, 2006.

[12] R. Sokullu, M. A. Akkas, x, and H. E. etin, "Wireless Patient Monitoring System,"

in Sensor Technologies and Applications (SENSORCOMM), 2010 Fourth

International Conference on, 2010, pp. 179-184.

[13] C. Ho and Z. Weihua, "Bluetooth-enabled in-home patient monitoring system:

Early detection of Alzheimer's disease," Wireless Communications, IEEE, vol.

17, pp. 74-79, 2010.

[14] Al-Salman, M. (2010). Group of Pilgrims Monitoring by using Wireless Sensor

Networks. Imam Muhammad Bin Saud Islamic University College of Computer

and Information Sciences, Department of Computer Science, 4-62.

[15] M. Mohandes, "An RFID-based pilgrim identification system (a pilot study)," in

Optimization of Electrical and Electronic Equipment, 2008. OPTIM 2008. 11th

International Conference on, 2008, pp. 107-112.

 [18] "TECHNICAL MANUAL SNAP Connect v1.0," ed: SYNAPSE WIRELESS INC, 2008.

 [19] "REFERENCE MANUAL Portal for Version 2.2," ed: SYNAPSE WIRELESS INC,

2009.

[20] Y. Sunghyun and K. Young Boo, "A Design of Network Simulation Environment

Using SSFNet," in Advances in System Simulation, 2009. SIMUL '09. First

International Conference on, 2009, pp. 73-78.

83

[21] S. Lohier, A. Rachedi, E. Livolant, and I. Salhi, "Wireless Sensor Network

simulators relevance compared to a real IEEE 802.15.4 Testbed," in Wireless

Communications and Mobile Computing Conference (IWCMC), 2011 7th

International, 2011, pp. 1347-1352.

[22] Pes, x030C, ovic, x, U., J. Mohorko, uc, and Z. ej, "Upgraded OPEN-ZB 802.15.4

simulation model," in ELMAR, 2010 PROCEEDINGS, 2010, pp. 281-284

[23] C. Xianhui, D. K. Hunter, and I. D. Henning, "Switched optical star-topology

network with edge electronic buffering and centralized control," in

Communications and Networking in China, 2008. ChinaCom 2008. Third

International Conference on, 2008, pp. 243-246.

[24] H. Dilum Bandara and A. P. Jayasumana, "An enhanced top-down cluster and

cluster tree formation algorithm for Wireless Sensor Networks," in Industrial

and Information Systems, 2007. ICIIS 2007. International Conference on, 2007,

pp. 565-570.

[25] D. Stevanovic and N. Vlajic, "Performance of IEEE 802.15.4 in wireless sensor

networks with a mobile sink implementing various mobility strategies," in Local

Computer Networks, 2008. LCN 2008. 33rd IEEE Conference on, 2008, pp. 680-

688.

[26] A. M. Yasin, F. H. Yusoff, M. A. M. Isa, and N. H. M. Zain, "Avatar

implementation in virtual reality environment using situated learning for

“sa'i” (muslim hajj ritual)," in Educational and Information

Technology (ICEIT), 2010 International Conference on, 2010, pp. V2-286-V2-

290.

[27] S. Dhawan, "Analogy of Promising Wireless Technologies on Different

Frequencies: Bluetooth, WiFi, and WiMAX," in Wireless Broadband and Ultra

Wideband Communications, 2007. AusWireless 2007. The 2nd International

Conference on, 2007, pp. 14-14.

84

[28] D. Cassioli, R. Giuliano, and F. Mazzenga, "Performance evaluation of high data

rate UWB systems based on IEEE 802.15.3," in Ultra-Wideband, 2005. ICU

2005. 2005 IEEE International Conference on, 2005, pp. 678-683.

[29] H. Dae-Man and L. Jae-Hyun, "Smart home energy management system using

IEEE 802.15.4 and zigbee," Consumer Electronics, IEEE Transactions on, vol. 56,

pp. 1403-1410, 2010.

[30] I. V. Botsman, "Improvement in quality of coverage of 802.11a/b/g wireless

networks," in Microwave and Telecommunication Technology (CriMiCo), 2010

20th International Crimean Conference, 2010, pp. 445-446.

[31] A. El Oualkadi, L. Vandendorpe, and D. Flandre, "Notice of Violation of IEEE

Publication Principles
System-Level Analysis of O-QPSK Transceiver for 2.4-

GHZ Band IEEE 802.15.4 Zigbee Standard," in Mixed Design of Integrated

Circuits and Systems, 2007. MIXDES '07. 14th International Conference on,

2007, pp. 469-474.

85

APPENDIX A - Python script

@setHook(HOOK_STARTUP)

def onStartup():

 # Set pin 5 as a watched input

 init(4);

 init(3);

 # Set pin 1 as an output

 setPinDir(1, True)

 writePin(1, False)

def init(pin):

 setPinDir(pin, False)

 setPinPullup(pin, True)

 monitorPin(pin, True)

@setHook(HOOK_GPIN)

def onPin(pin, isSet):

 # Report that a watched input has been triggered

 if isSet:

 if pin == 4:

86

 rpc('\x00\x00\x01', "security", 1)

 elif pin == 3:

 #rpc(localAddr, 'medical', 1)

 rpc('\x00\x00\x01', "medical", 1)

 else:

 print 'UNKOWN PIN'

def check():

 initVm()

 rpc('\x00\x00\x01', 'checkstations', localAddr())

87

APPENDIX B – The GUI code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.IO;

using System.Windows.Forms;

using CookComputing.XmlRpc;

namespace xmlrpc_client1

{

 public partial class frmMain : Form

 {

 SnapConnector proxy = XmlRpcProxyGen.Create<SnapConnector>();

 Tracer tracer = new Tracer();

 private delegate void SetTextCallback(string text);

 private delegate object GetObjectCallback();

 private delegate void SetEnabledCallback(bool state);

 private delegate void InvokeDelegate(EventResponse response);

 byte[] netAddr = { };

 double timestamp = 0;

 int[] MedicalStations= new int[10]{0,0,0,0,0,0,0,0,0,0};

 int[] SecurityStations = new int[10]{ 0, 0, 0, 0, 0, 0, 0, 0,

0, 0 };

 int[] checkStations = new int[10];

 public frmMain()

 {

 InitializeComponent();

 //Log XML-RPC packets

 //tracer.Attach(proxy);

 }

 void EventCallback(IAsyncResult asr)

 {

 bool wait = true;

 XmlRpcAsyncResult clientResult = (XmlRpcAsyncResult)asr;

 SnapConnector snapConn =

(SnapConnector)clientResult.ClientProtocol;

 try

 {

 EventResponse resp = snapConn.EndWaitOnEvent(asr);

 if (resp.methodName != null)

 {

 //With XML-RPC.NET asynchronous responses come in

on a different thread than the GUI

88

 //We need to execute these calls in the GUI

thread

 InvokeInGuiThread(resp);

 }

 //SNAPconnect will return null on a disconnect if

there is a pending wait or if you use a timeout

 }

 catch (System.Net.WebException webEx)

 {

 switch (webEx.Status)

 {

 case

System.Net.WebExceptionStatus.ConnectFailure:

 SetInfoText("Unable to connect to

SNAPconnect");

 break;

 default:

 SetInfoText(webEx.Message);

 break;

 }

 wait = false;

 }

 catch (XmlRpcFaultException xmlrpcEx)

 {

 wait = false;

 // A fault was sent from SNAPconnect

 if (xmlrpcEx.FaultCode ==

SNAPconnectFaultCodes.MultipleWaitOnEvents)

 {

 //This will happen if you call waitOnEvent

multiple times

 //before receiving an event response back

 SetInfoText("Cannot have multiple outstanding

calls to waitOnEvent with the same network address");

 }

 else if (xmlrpcEx.FaultCode ==

SNAPconnectFaultCodes.ConnectionClosed)

 {

 SetInfoText("SNAPconnect's underlying connection

was closed");

 }

 else if (xmlrpcEx.FaultCode ==

SNAPconnectFaultCodes.NoConnection)

 {

 SetInfoText(xmlrpcEx.FaultString);

 }

 else

 {

 SetInfoText(xmlrpcEx.FaultString);

 }

 }

 catch (Exception ex)

 {

 // handle the exception

 }

89

 if (wait)

 {

 proxy.BeginWaitOnEvent(this.getSnapNetAddr(),

EventCallback);

 }

 }

 void InvokeInGuiThread(EventResponse response)

 {

 // InvokeRequired required compares the thread ID of the

 // calling thread to the thread ID of the creating

thread.

 // If these threads are different, it returns true.

 if (this.InvokeRequired)

 {

 if (Disposing == false)

 {

 try

 {

 this.Invoke(new

InvokeDelegate(InvokeInGuiThread), new object[] { response });

 }

 catch (ObjectDisposedException ex)

 {

 MessageBox.Show(" ObjectDisposedException

Error");

 //I hate to do this but I keep getting

objectdisposed exceptions even when checking above

 }

 }

 }

 else if ((this.Disposing == false) && (this.IsDisposed ==

false))

 {

 netAddr = response.netAddr;

 timestamp = response.timestamp;

 try

 {

 System.Reflection.MethodInfo info =

this.GetType().GetMethod(response.methodName);

 if (info == null)

 {

 MessageBox.Show("Node " +

HexStr(response.netAddr) + " called function " + response.methodName

+ " that does not exist");

 }

 else

 {

 try

 {

 info.Invoke(this, response.parameters);

 }

 catch (System.ArgumentException argEx)

 {

 MessageBox.Show("Node " +

HexStr(response.netAddr) + " called function " + response.methodName

+ " with parameter types that don't match");

90

 }

 }

 }

 catch (System.Reflection.AmbiguousMatchException

matchEx)

 {

 //Take the slower route

 foreach (System.Reflection.MethodInfo methInfo in

this.GetType().GetMethods())

 {

 if (methInfo.Name == response.methodName)

 {

 try

 {

 methInfo.Invoke(this,

response.parameters);

 break;

 }

 catch (System.ArgumentException argEx)

 {

 continue;

 }

 }

 }

 }

 }

 }

 void SerialConnectCallback(IAsyncResult asr)

 {

 XmlRpcAsyncResult clientResult = (XmlRpcAsyncResult)asr;

 SnapConnector snapConn =

(SnapConnector)clientResult.ClientProtocol;

 try

 {

 bool resp = snapConn.EndConnectSerial(asr);

 if (resp == true)

 {

 this.SetInfoText("Serial connection configured on

SNAPconnect");

 proxy.BeginGatewayInfo(GatewayInfoCallback);

 }

 else

 {

 this.SetInfoText("Unable to configure serial

connection on SNAPconnect");

 }

 }

 catch (System.Net.WebException webEx)

 {

 switch (webEx.Status)

 {

 case

System.Net.WebExceptionStatus.ConnectFailure:

 SetInfoText("Unable to connect to

SNAPconnect");

 break;

 default:

91

 SetInfoText(webEx.Message);

 break;

 }

 }

 catch (XmlRpcFaultException xmlrpcEx)

 {

 // A fault happend on the SNAPconnect side

 }

 catch (Exception ex)

 {

 // handle the exception

 }

 }

 void RpcCallback(IAsyncResult asr)

 {

 XmlRpcAsyncResult clientResult = (XmlRpcAsyncResult)asr;

 SnapConnector snapConn =

(SnapConnector)clientResult.ClientProtocol;

 try

 {

 bool resp = snapConn.EndRpc(asr);

 if (resp != true)

 {

 this.SetInfoText("Unable to send RPC");

 }

 }

 catch (System.Net.WebException webEx)

 {

 switch (webEx.Status)

 {

 case

System.Net.WebExceptionStatus.ConnectFailure:

 SetInfoText("Unable to connect to

SNAPconnect");

 break;

 default:

 SetInfoText(webEx.Message);

 break;

 }

 }

 catch (XmlRpcFaultException xmlrpcEx)

 {

 // A fault happend on the SNAPconnect side

 }

 catch (Exception ex)

 {

 // handle the exception

 }

 }

 private void SetInfoText(string text)

 {

 // InvokeRequired required compares the thread ID of the

 // calling thread to the thread ID of the creating

thread.

 // If these threads are different, it returns true.

 if (this.txtInfo.InvokeRequired)

92

 {

 SetTextCallback d = new SetTextCallback(SetInfoText);

 if (Disposing == false)

 {

 try

 {

 this.Invoke(d, new object[] { text });

 }

 catch (ObjectDisposedException ex)

 {

 //I hate to do this but I keep getting

objectdisposed exceptions even when checking above

 }

 }

 d = null;

 }

 else

 {

 if ((this.Disposing == false) && (this.IsDisposed ==

false))

 this.txtInfo.Text = text;

 }

 }

 public void myTest(int a)

 {

 //Needed so we can convert from UTC

 TimeZone localZone = TimeZone.CurrentTimeZone;

 //Convert from unix style time stamp

 DateTime time = new DateTime(1970, 1, 1, 0, 0,

0).AddSeconds(timestamp);

 SetInfoText("Success, " + a.ToString() +

 " from remote " + HexStr(netAddr) +

 " on " + localZone.ToLocalTime(time).ToString());

 }

 public void medical(int k)

 {

 //Needed so we can convert from UTC

 TimeZone localZone = TimeZone.CurrentTimeZone;

 //Convert from unix style time stamp

 DateTime time = new DateTime(1970, 1, 1, 0, 0,

0).AddSeconds(timestamp);

 string statinNetAdress = HexStr(netAddr);

 string stationNum = whichstation(statinNetAdress);

 int StationInt = Convert.ToInt32(stationNum);

 txtInfo.Text += "\r\n"+"Station " + stationNum +

 " Need medical help" + " on " +

localZone.ToLocalTime(time).ToString();

 MedicalStations[StationInt] += 1;

 mapsignal(StationInt, "alert.gif");

 for (int m = 0; m < 10; m++)

 {

 textBox1.AppendText("\r\n" +

MedicalStations[m].ToString());

 }

93

 }

 public void security(int k)

 {

 //Needed so we can convert from UTC

 TimeZone localZone = TimeZone.CurrentTimeZone;

 //Convert from unix style time stamp

 DateTime time = new DateTime(1970, 1, 1, 0, 0,

0).AddSeconds(timestamp);

 string statinNetAdress = HexStr(netAddr);

 string stationNum = whichstation(statinNetAdress);

 int StationInt = Convert.ToInt32(stationNum);

 txtInfo.Text += "\r\n"+ "Station " + stationNum +

 " need security help" + " on " +

localZone.ToLocalTime(time).ToString();

 SecurityStations[StationInt] += 1;

 mapsignal(StationInt, "alert2.gif");

 for (int m = 0; m < 10; m++)

 {

 textBox2.AppendText("\r\n" +

SecurityStations[m].ToString());

 }

 }

 public static string HexStr(byte[] p)

 {

 char[] c = new char[p.Length * 2];

 byte b;

 for (int y = 0, x = 0; y < p.Length; ++y, ++x)

 {

 b = ((byte)(p[y] >> 4));

 c[x] = (char)(b > 9 ? b + 0x37 : b + 0x30);

 b = ((byte)(p[y] & 0xF));

 c[++x] = (char)(b > 9 ? b + 0x37 : b + 0x30);

 }

 return new string(c);

 }

 private void btnSetupConn_Click(object sender, EventArgs e)

 {

 proxy.BeginConnectSerial((int)SerialType.RS232,

(int)4,false, this.SerialConnectCallback);

 }

 void GatewayInfoCallback(IAsyncResult asr)

 {

 XmlRpcAsyncResult clientResult = (XmlRpcAsyncResult)asr;

 SnapConnector snapConn =

(SnapConnector)clientResult.ClientProtocol;

 try

94

 {

 InfoResponse resp = snapConn.EndGatewayInfo(asr);

 SetInfoText(txtInfo.Text + "\r\nSNAPconnect is

running version " + resp.version);

 if (resp.connected)

 {

 SetInfoText(txtInfo.Text + "\r\nConnected via

type " + resp.portType.ToString() + " on port " +

resp.portNum.ToString());

 proxy.BeginWaitOnEvent(this.getSnapNetAddr(),

EventCallback);

 SetInfoText(txtInfo.Text + "\r\nConnected and

Waiting on response...");

 }

 else

 {

 SetInfoText(txtInfo.Text + "\r\nNOT Connected");

 }

 }

 catch (Exception ex)

 {

 }

 }

 private byte[] getSnapNetAddr()

 {

 return new byte[] { 0, 0, Convert.ToByte(1) };

 }

 private void btnPing_Click(object sender, EventArgs e)

 {

 //Send multicast PING ("vmStat") to multicast group 1

with a TTL of 5

 //use parameters 5 to node name and LQ and have responses

spread of 2 seconds

 proxy.BeginMcastRpc(this.getSnapNetAddr(), new byte[] {

0, 1 }, 5, "check", new object[] { }, RpcCallback);

 Array.Clear(checkStations, 0, checkStations.Length);

 clearmap();

 }

 public void clearmap()

 {

 foreach (Control tempCtrl in this.Controls)

 {

 PictureBox pic = tempCtrl as PictureBox;

 if (pic != null)

 {

 if (pic.Name != "pictureBox11")

 {

 pic.Load("down.gif");

 }

 }

95

 }

 }

 public void mapsignal(int a, string b)

 {

 string pictureBoxNum = "pictureBox" + a;

 foreach (Control tempCtrl in this.Controls)

 {

 PictureBox pic = tempCtrl as PictureBox;

 if (pic != null)

 {

 if (pic.Name == pictureBoxNum)

 {

 pic.Load(b);

 }

 }

 }

 }

 public string whichstation(string a)

 {

 switch (a)

 {

 case "03EA4B":

 a="1";

 break;

 case "03EA03":

 a="2";

 break;

 case "03EA13":

 a="3";

 break;

 case "03EA4C":

 a="4";

 break;

 case "03EEC4":

 a="5";

 break;

 case "03EECC":

 a="6";

 break;

 case "03EBB6":

 a="7";

 break;

 case "03EA17":

 a="8";

 break;

96

 case "03E9FB":

 a = "9";

 break;

 }

 return a;

 }

 public void checkstations(byte[] netAddr)

 {

 string statinNetAdress = HexStr(netAddr);

 string stationNum = whichstation(statinNetAdress);

 int StationInt = Convert.ToInt32(stationNum);

 checkStations[StationInt- 1] = 1;

 mapsignal(StationInt, "idle.gif");

 if (MedicalStations[StationInt - 1] == 0 &

SecurityStations[StationInt - 1] == 0)

 {

 mapsignal(StationInt, "idle.gif");

 }

 else if (MedicalStations[StationInt - 1] > 0 &

SecurityStations[StationInt - 1] > 0)

 {

 mapsignal(StationInt, "alert3.gif");

 }

 else if (MedicalStations[StationInt - 1] > 0 &

SecurityStations[StationInt - 1] == 0)

 { mapsignal(StationInt, "alert.gif"); }

 else if (SecurityStations[StationInt - 1] > 0 &

MedicalStations[StationInt - 1] == 0)

 { mapsignal(StationInt, "alert2.gif"); }

 }

 public void tellVmStat(int status, object arg)

 {

 byte statusCode = Convert.ToByte(status & 0xFF);

 byte statusVal = Convert.ToByte((status >> 8) & 0xFF);

 if (statusCode == 5) //Status code for PING response

 {

 //statusVal will equal the link quality and arg will

equal the SNAPpy script name

 txtInfo.Text += "\r\nGot PING Response From: " +

HexStr(netAddr);

 }

97

 }

 public void dataMode(byte[] data)

 {

 txtInfo.Text = "Received from data mode: " +

System.Text.Encoding.Default.GetString(data);

 }

 private void frmMain_FormClosing(object sender,

FormClosingEventArgs e)

 {

 proxy.disconnect(this.getSnapNetAddr(), true);

 }

 public Image alert { get; set; }

 private void frmMain_Load(object sender, EventArgs e)

 {

 }

 }

}

98

Appendix C – SYNAPSE Data Sheets

C1. SYNAPSE RF Engine

99

100

C2. SYNAPSE Evaluation Kit

101

	01Mohammed Alnizari'sTitel.pdf
	022012Moh'Abstract.pdf
	03Mohammed Alinzari'sThises.pdf

