Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Al-Bahadly IH"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Renewable energy harvesting for low power wireless monitoring networks
    (IACSIT Press, 1/11/2017) Rehman Z; Al-Bahadly IH; Mukhopadhyay S; Amir, HFA
    —Energy Harvesting Technologies for wireless electronics networks have undergone a tremendous development in the recent past. Several micro level energy generating units have been developed to convert variety of renewable energy sources to useable electrical energy. In order to integrate and exploit maximum benefits from renewable sources, an intelligent power electronics interface is mandatory. This paper presents a multiport power electronics circuitry to extract maximum energy from renewable energy sources and route it to power up wireless electronics networks. This new topology has ability to cope with different voltage level requirements and is capable of integrating several energy sources to satisfy the variable load demands. The sources can be utilized independently or concurrently. Surplus energy can also be stored and made available in case of absence of renewable energy sources. Analytical and simulation results in Continuous Conduction mode are presented and are validated by experimental results on a prototype model

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify