Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
    Communities & Collections
    All of MRO
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anema, Skelte G"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tuning heat-­‐induced colloidal aggregation of whey proteins, sodium caseinate and gum arabic: effect of protein composition, preheating and gum arabic level
    (ELSEVIER SCI LTD, 2014) Loveday, SM; Ye, Aiqian; Anema, Skelte G; Singh, Harjinder
    Heating can drive the colloidal complexation of negatively-­‐charged proteins and polysaccharides by strengthening hydrophobic interactions and denaturing proteins, thereby exposing reactive sites for covalent and noncovalent bonding. We have previously shown that stable colloidal aggregates comprising whey protein, sodium caseinate and gum arabic can be produced by careful selection of heat treatment, pH and protein type. Here we tested how the size, composition, charge and morphology of colloidal aggregates are affected by the amounts of whey protein, sodium caseinate and gum arabic, as well as the thermal history of the proteins. Increasing amounts of whey protein resulted in larger particles, which were more prone to precipitate. Preheating whey protein slightly enhanced aggregation, and this effect was mitigated when sodium caseinate was present during preheating (chaperone effect). Increasing amounts of gum arabic produced larger particles with less charge, but the gum arabic effect was statistically confounded with ionic strength. We believe that both covalent (disulphide) and noncovalent interactions among protein molecules are required to overcome electrostatic repulsion at pH 7 and form stable aggregates.

Copyright © Massey University  |  DSpace software copyright © 2002-2026 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings
Repository logo COAR Notify