Browsing by Author "Brightwell G"
Now showing 1 - 18 of 18
Results Per Page
Sort Options
- ItemAntibacterial efficacy and possible mechanism of action of 2-hydroxyisocaproic acid (HICA)(PLOS, 2022-04-01) Pahalagedara ASNW; Flint S; Palmer J; Brightwell G; Gupta TB; Nevárez-Moorillón GVThe exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.
- ItemAssessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand.(American Society for Microbiology, 2024-10-23) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Liu J; Brightwell G; Cookson ALAntimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems. IMPORTANCE: Antimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.
- ItemCulture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production(BioMed Central Ltd, 2021-12) Pahalagedara ASNW; Jauregui R; Maclean P; Altermann E; Flint S; Palmer J; Brightwell G; Gupta TBBACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods. RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes. CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.
- ItemCulture independent analysis using gnd as a target gene to assess Escherichia coli diversity and community structure.(12/04/2017) Cookson AL; Biggs PJ; Marshall JC; Reynolds A; Collis RM; French NP; Brightwell GCurrent culture methods to investigate changes in Escherichia coli community structure are often slow and laborious. Genes such as gnd (6-phosphogluconate dehydrogenase) have a highly variable nucleotide sequence and may provide a target for E. coli microbiome analysis using culture-independent methods. Metabarcoded PCR primers were used to generate separate libraries from calf faecal samples for high throughput sequencing. Although a total of 348 separate gnd sequence types (gSTs) were identified, 188 were likely to be due to sequencing errors. Of the remaining 160 gSTs, 92 did not match those in a database of 319 separate gnd sequences. 'Animal' was the main determinant of E. coli diversity with limited impact of sample type or DNA extraction method on intra-host E. coli community variation from faeces and recto-anal mucosal swab samples. This culture-independent study has addressed the difficulties of quantifying bacterial intra-species diversity and revealed that, whilst individual animals may harbour >50 separate E. coli strains, communities are dominated by <10 strains alongside a large pool of subdominant strains present at low abundances. This method will be useful for characterising the diversity and population structure of E. coli in experimental studies designed to assess the impact of interventions on the gut microbiome.
- ItemDraft Genome Sequence of Clostridium bowmanii DSM 14206T, Isolated from an Antarctic Microbial Mat.(American Society for Microbiology, 2022-01-20) Palevich FP; Palevich N; Maclean PH; Altermann E; Mills J; Brightwell G; Gill SRClostridium bowmanii type strain DSM 14206 (ATCC BAA-581) was isolated from a microbial mat sample retrieved from Lake Fryxell, Antarctica. This report describes the generation and annotation of the 4.9-Mb draft genome sequence of C. bowmanii DSM 14206T.
- ItemDraft Genome Sequence of Clostridium estertheticum subsp. laramiense DSM 14864T, Isolated from Spoiled Uncooked Beef.(American Society for Microbiology, 2019-11-21) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Newton ILGClostridium estertheticum subsp. laramiense type strain DSM 14864 (ATCC 51254) was isolated from vacuum-packaged refrigerated spoiled beef. This report describes the generation and annotation of the 5.0-Mb draft genome sequence of C. estertheticum subsp. laramiense DSM 14864T.
- ItemDraft Genome Sequence of Clostridium estertheticum-Like Strain FP3, Isolated from Spoiled Uncooked Lamb.(American Society for Microbiology, 2020-05-14) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Gill SRClostridium estertheticum-like strain FP3 was isolated from vacuum-packaged refrigerated spoiled lamb. This bacterium is psychrotrophic, Gram positive, spore-forming, and a strict anaerobe. Here, we report the generation and annotation of the 5.6-Mb draft genome sequence of C. estertheticum-like strain FP3.
- ItemDraft Genome Sequence of Clostridium estertheticum-like Strain FP4, Isolated from Spoiled Uncooked Lamb.(American Society for Microbiology, 2020-05-07) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Rasco DIn order to improve the phylogenetic resolution of the genus Clostridium and our limited knowledge of meat spoilage caused by Clostridium estertheticum, the genome of C. estertheticum-like strain FP4 was sequenced. Here, we describe the 4.1-Mb draft genome sequence of C. estertheticum-like strain FP4, isolated from vacuum-packaged refrigerated spoiled lamb.
- ItemDraft Genome Sequence of Clostridium sp. Strain FP1, with Similarity to Clostridium tagluense, Isolated from Spoiled Lamb.(American Society for Microbiology, 2020-04-30) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Hotopp JCDClostridium sp. strain FP1 was isolated from vacuum-packaged refrigerated spoiled lamb, and this article describes its 5.4-Mb draft genome sequence. The FP1 genome was sequenced to facilitate source tracking and attribution studies, adding to our understanding of the role of Clostridium species in premature spoilage of red meats.
- ItemDraft Genome Sequence of Psychrotolerant Clostridium sp. Strain M14, Isolated from Spoiled Uncooked Venison.(American Society for Microbiology, 2020-04-16) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Hotopp JCDClostridium sp. strain M14 was isolated from vacuum-packaged refrigerated spoiled venison, and this report describes the generation and annotation of its 3.9-Mb draft genome sequence.
- ItemNon-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species.(MDPI (Basel, Switzerland), 2023-02-09) Pahalagedara ASNW; Flint S; Palmer J; Brightwell G; Luo X; Li L; Gupta TB; Eisenreich WThis work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.
- ItemOccurrence of genes encoding spore germination in Clostridium species that cause meat spoilage.(2022-02) Burgess SA; Palevich FP; Gardner A; Mills J; Brightwell G; Palevich NMembers of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
- ItemPrevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments.(2022) Collis RM; Biggs PJ; Burgess SA; Midwinter AC; Brightwell G; Cookson ALAntimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.
- ItemThe epidemiology of AmpC-producing Escherichia coli isolated from dairy cattle faeces on pasture-fed farms.(2021-10) Burgess SA; Cookson AL; Brousse L; Ortolani E; Benschop J; Akhter R; Brightwell G; McDougall SIntroduction. Antibiotic use, particularly amoxicillin-clavulanic acid in dairy farming, has been associated with an increased incidence of AmpC-hyperproducing Escherichia coli.Gap statement. There is limited information on the incidence of AmpC-hyperproducing E. coli from seasonal pasture-fed dairy farms.Aim. We undertook a New Zealand wide cross-sectional study to determine the prevalence of AmpC-producing E. coli carried by dairy cattle.Methodology. Paddock faeces were sampled from twenty-six dairy farms and were processed for the selective growth of both extended-spectrum beta-lactamase (ESBL)- and AmpC-producing E. coli. Whole genome sequence analysis was carried out on 35 AmpC-producing E. coli.Results. No ESBL- or plasmid mediated AmpC-producing E. coli were detected, but seven farms were positive for chromosomal mediated AmpC-hyperproducing E. coli. These seven farms were associated with a higher usage of injectable amoxicillin antibiotics. Whole genome sequence analysis of the AmpC-producing E. coli demonstrated that the same strain (<3 SNPs difference) of E. coli ST5729 was shared between cows on a single farm. Similarly, the same strain (≤15 SNPs difference) of E. coli ST8977 was shared across two farms (separated by approximately 425 km).Conclusion. These results infer that both cow-to-cow and farm-to-farm transmission of AmpC-producing E. coli has occurred.
- ItemVirucidal Efficacy of Blue LED and Far-UVC Light Disinfection against Feline Infectious Peritonitis Virus as a Model for SARS-CoV-2(MDPI (Basel, Switzerland), 2021-08) Gardner A; Ghosh S; Dunowska M; Brightwell G; Tannock G; Kim HTransmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs through respiratory droplets passed directly from person to person or indirectly through fomites, such as common use surfaces or objects. The aim of this study was to determine the virucidal efficacy of blue LED (405 nm) and far-UVC (222 nm) light in comparison to standard UVC (254 nm) irradiation for the inactivation of feline infectious peritonitis virus (FIPV) on different matrices as a model for SARS-CoV-2. Wet or dried FIPV on stainless steel, plastic, or paper discs, in the presence or absence of artificial saliva, were exposed to various wavelengths of light for different time periods (1-90 min). Dual activity of blue LED and far-UVC lights were virucidal for most wet and dried FIPV within 4 to 16 min on all matrices. Individual action of blue LED and far-UVC lights were virucidal for wet FIPV but required longer irradiation times (8-90 min) to reach a 4-log reduction. In comparison, LED (265 nm) and germicidal UVC (254 nm) were virucidal on almost all matrices for both wet and dried FIPV within 1 min exposure. UVC was more effective for the disinfection of surfaces as compared to blue LED and far-UVC individually or together. However, dual action of blue LED and far-UVC was virucidal. This combination of lights could be used as a safer alternative to traditional UVC.
- ItemWhole genome sequence analysis of ESBL-producing Escherichia coli recovered from New Zealand freshwater sites.(2022-10) Burgess SA; Moinet M; Brightwell G; Cookson ALExtended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.
- ItemWhole-Genome Sequencing and Virulome Analysis of Escherichia coli Isolated from New Zealand Environments of Contrasting Observed Land Use(American Society for Microbiology, 2022-05-10) Cookson AL; Marshall JC; Biggs PJ; Rogers LE; Collis RM; Devane M; Stott R; Wilkinson DA; Kamke J; Brightwell G; Elkins CAGeneric Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.
- ItemWhole-Genome Sequencing of Clostridium sp. Strain FP2, Isolated from Spoiled Venison.(American Society for Microbiology, 2020-04-30) Palevich N; Palevich FP; Maclean PH; Jauregui R; Altermann E; Mills J; Brightwell G; Cuomo CAClostridium sp. strain FP2 was isolated from vacuum-packaged refrigerated spoiled venison in New Zealand. This report describes the generation and annotation of the 5.6-Mb draft genome sequence of Clostridium sp. FP2, which will facilitate future functional genomic studies to improve our understanding of premature spoilage of red meats.