Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Grimwood RM"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evidence for a Role of Extraintestinal Pathogenic Escherichia coli, Enterococcus faecalis and Streptococcus gallolyticus in the Aetiology of Exudative Cloacitis in the Critically Endangered Kākāpō (Strigops habroptilus)
    (John Wiley and Sons Ltd, 2025-04-19) French RK; Waller SJ; Wierenga JR; Grimwood RM; Hodgkinson-Bean J; Digby A; Uddstrom L; Eason D; Kākāpō Recovery Team; Argilla LS; Biggs PJ; Cookson A; French NP; Geoghegan JL
    The kākāpō is a critically endangered flightless parrot which suffers from exudative cloacitis, a debilitating disease resulting in inflammation of the vent margin or cloaca. Despite this disease emerging over 20 years ago, the cause of exudative cloacitis remains elusive. We used total RNA sequencing and metatranscriptomic analysis to characterise the infectome of lesions and cloacal swabs from nine kākāpō affected with exudative cloacitis, and compared this to cloacal swabs from 45 non-diseased kākāpō. We identified three bacterial species—Streptococcus gallolyticus, Enterococcus faecalis and Escherichia coli—as significantly more abundant in diseased kākāpō compared to healthy individuals. The genetic diversity observed in both S. gallolyticus and E. faecalis among diseased kākāpō suggests that these bacteria originate from exogenous sources rather than from kākāpō-to-kākāpō transmission. The presence of extraintestinal pathogenic E. coli (ExPEC)-associated virulence factors in the diseased kākāpō population suggests that E. coli may play a critical role in disease progression by facilitating iron acquisition and causing DNA damage in host cells, possibly in association with E. faecalis. No avian viral, fungal nor other parasitic species were identified. These results, combined with the consistent presence of one E. coli gnd sequence type across multiple diseased birds, suggest that this species may be the primary cause of exudative cloacitis. These findings shed light on possible causative agents of exudative cloacitis, and offer insights into the interplay of microbial factors influencing the disease.
  • Loading...
    Thumbnail Image
    Item
    Total infectome investigation of diphtheritic stomatitis in yellow-eyed penguins (Megadyptes antipodes) reveals a novel and abundant megrivirus.
    (Elsevier B.V., 2023-11-01) Wierenga JR; Grimwood RM; Taylor HS; Hunter S; Argilla LS; Webster T; Lim L; French R; Schultz H; Jorge F; Bostina M; Burga L; Swindells-Wallace P; Holmes EC; McInnes K; Morgan KJ; Geoghegan JL
    First identified in 2002, diphtheritic stomatitis (DS) is a devastating disease affecting yellow-eyed penguins (Megadyptes antipodes, or hoiho in te reo Māori). The disease is associated with oral lesions in chicks and has caused significant morbidity and mortality. DS is widespread among yellow-eyed penguin chicks on mainland New Zealand yet appears to be absent from the subantarctic population. Corynebacterium spp. have previously been suspected as causative agents yet, due to inconsistent cultures and inconclusive pathogenicity, their role in DS is unclear. Herein, we used a metatranscriptomic approach to identify potential causative agents of DS by revealing the presence and abundance of all viruses, bacteria, fungi and protozoa - together, the infectome. Oral and cloacal swab samples were collected from presymptomatic, symptomatic and recovered chicks along with a control group of healthy adults. Two novel viruses from the Picornaviridae were identified, one of which - yellow-eyed penguin megrivirus - was highly abundant in chicks irrespective of health status but not detected in healthy adults. Tissue from biopsied oral lesions also tested positive for the novel megrivirus upon PCR. We found no overall clustering among bacteria, protozoa and fungi communities at the genus level across samples, although Paraclostridium bifermentans was significantly more abundant in oral microbiota of symptomatic chicks compared to other groups. The detection of a novel and highly abundant megrivirus has sparked a new line of inquiry to investigate its potential association with DS.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings