Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Haverkamp, RG"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Collagen Fibril Intermolecular Spacing Changes with 2-Propanol: A Mechanism for Tissue Stiffness.
    (American Chemical Society, 2017-08-30) Wells, HC; Sizeland, KH; Kelly, S; Kirby, N; Hawley, A; Mudie, S; Haverkamp, RG
    Materials composed primarily of collagen are important as surgical scaffolds and other medical devices and require flexibility. However, the factors that control the suppleness and flexibility of these materials are not well understood. Acellular dermal matrix materials in aqueous mixtures of 2-propanol were studied. Synchrotron based small angle X-ray scattering was used to characterize the collagen structure and structural arrangement. Stiffness was measured by bend tests. Bend modulus increased logarithmically with 2-propanol concentration from 0.5 kPa in water to 103 kPa in pure 2-propanol. The intermolecular spacing between tropocollagen molecules decreased from 15.3 to 11.4 Å with increasing 2-propanol concentration while fibril diameter decreased from 57.2 to 37.2 nm. D-spacing initially increased from 63.6 nm to 64.2 nm at 50% 2-propanol then decreased to 60.3 nm in pure 2-propanol. The decrease in intermolecular spacing and fibril diameter are due to removal of water and the collapse of the hydrogen bond structure between tropocollagen molecules causing closer packing of the molecules within a fibril. We speculate this tighter molecular packing may restrict the sliding of collagen within fibrils, and similar disruption of the extended hydration layer between fibrils may lead to restriction of sliding between fibrils. This mechanism for tissue stiffness may be more general.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings