Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hong SW"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health
    (Frontiers Media SA, 26/04/2022) Hong SW; Teesdale-Spittle P; Page R; Ellenbroek B; Truman P
    Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson's Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
  • Loading...
    Thumbnail Image
    Item
    Outlier analyses and genome-wide association study identify glgC and ERD6-like 4 as candidate genes for foliar water-soluble carbohydrate accumulation in Trifolium repens.
    (Frontiers Media S.A., 2022-01-09) Pearson SM; Griffiths AG; Maclean P; Larking AC; Hong SW; Jauregui R; Miller P; McKenzie CM; Lockhart PJ; Tate JA; Ford JL; Faville MJ; Xie W; Rodriguez VM
    Increasing water-soluble carbohydrate (WSC) content in white clover is important for improving nutritional quality and reducing environmental impacts from pastoral agriculture. Elucidation of genes responsible for foliar WSC variation would enhance genetic improvement by enabling molecular breeding approaches. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) associated with variation in foliar WSC in white clover. A set of 935 white clover individuals, randomly sampled from five breeding pools selectively bred for divergent (low or high) WSC content, were assessed with 14,743 genotyping-by-sequencing SNPs, using three outlier detection methods: PCAdapt, BayeScan and KGD-FST. These analyses identified 33 SNPs as discriminating between high and low WSC populations and putatively under selection. One SNP was located in the intron of ERD6-like 4, a gene coding for a sugar transporter located on the vacuole membrane. A genome-wide association study using a subset of 605 white clover individuals and 5,757 SNPs, identified a further 12 SNPs, one of which was associated with a starch biosynthesis gene, glucose-1-phosphate adenylyltransferase, glgC. Our results provide insight into genomic regions underlying WSC accumulation in white clover, identify candidate genomic regions for further functional validation studies, and reveal valuable information for marker-assisted or genomic selection in white clover.
  • Loading...
    Thumbnail Image
    Item
    Potent inhibition of human monoamine oxidase A and B by phenolic compounds and polyunsaturated fatty acids in tobacco smoke
    (Elsevier B V, 2025-05-25) Hong SW; Heydari A; Watson PR; Teesdale-Spittle PH; Page R; Northcote PT; Keyzers RA; Vyssotski M; Truman P
    Smoking is a main cause of premature death and preventable disease in the world. Interestingly, animal studies indicate that inhibition of monoamine oxidase (MAO), key enzymes for the degradation of neurotransmitters, increased self-administration of nicotine. The purpose of this study was to identify and characterize the potential MAO inhibitors in tobacco smoke responsible for MAO inhibition in smokers. A bioassay-guided isolation from an extract of tobacco smoke showed that catechol, 4-methylcatechol, hydroquinone, α-linolenic acid, and linoleic acid all displayed potent human MAO inhibitory activity. Additionally, the tobacco catechols 4-ethylcatechol and 4-vinylcatechol were included to test their inhibitory potencies. Catechol, 4-methylcatechol, 4-ethylcatechol, and hydroquinone are potent and irreversible MAO inhibitors. Among the phenolic compounds tested, 4-methylcatechol and 4-ethylcatechol inhibited MAO A with IC50 values of 10.0 and 12.6 μM, respectively, reducing to 0.27 and 0.43 μM after 1 h preincubation. In addition, α-linolenic acid and linoleic acid competitively inhibited MAO A with Ki values of 10.50 and 6.95 μM, respectively. These results suggest that MAO inhibition by phenolics and polyunsaturated fatty acids in tobacco smoke may be important contributors to the MAO inhibition experienced by smokers and to the enhancement of nicotine dependence this MAO inhibition is believed to cause.
  • Loading...
    Thumbnail Image
    Item
    Smoking, coffee intake, and Parkinson's disease: Potential protective mechanisms and components.
    (Elsevier B.V., 2024-12-20) Hong SW; Page R; Truman P
    Parkinson's disease (PD) is a common progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Environmental and lifestyle factors, such as smoking and coffee drinking, have been associated with a decreased risk for PD. However, the biological mechanisms underlying protective effects on PD are still not fully understood. It has been suggested that non-nicotine components in cigarette smoke and non-caffeine components in coffee may contribute to this protective effect. The aim of this review was to explore candidate molecules and mechanisms behind the effects of smoking and coffee drinking on PD by integrating findings from previous studies. By cross-referencing an index of tobacco constituents and a list of coffee constituents with existing literature on natural compounds and their structural analogs that show inhibitory activities against monoamine oxidase B, catechol O-methyltransferase, and α-synuclein fibrillation, we have identified tobacco and coffee components that inhibit these targets. Furthermore, tobacco and coffee components potentially play roles in suppressing neuroinflammation, activating the Nrf2 pathway as natural activators, and altering the gut microbiome. This review suggests that the phenolic compounds from tobacco and coffee investigated may contribute to the low incidence of PD in smokers and coffee drinkers, showing moderate to strong potential as therapeutic interventions. The current review suggests that multifunctional molecules found in coffee and cigarette smoke may have potential neuroprotective effects, but none of the data indicates that multifunctionality is required for these effects. This review will deepen our understanding of how smoking and coffee drinking are linked to a reduced risk of PD and will also be important in elucidating the mechanisms underlying the protective effects of smoking and coffee drinking on PD.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings