Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kothalawala BW"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Learning to Bound for Maximum Common Subgraph Algorithms
    (Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany, 2025-08-08) Kothalawala BW; Koehler H; Wang Q; Garcia de la Banda M
    Identifying the maximum common subgraph between two graphs is a computationally challenging NP-hard problem. While the McSplit algorithm represents a state-of-the-art approach within a branch-and-bound (BnB) framework, several extensions have been proposed to enhance its vertex pair selection strategy, often utilizing reinforcement learning techniques. Nonetheless, the quality of the upper bound remains a critical factor in accelerating the search process by effectively pruning unpromising branches. This research introduces a novel, more restrictive upper bound derived from a detailed analysis of the McSplit algorithm's generated partitions. To enhance the effectiveness of this bound, we propose a reinforcement learning approach that strategically directs computational effort towards the most promising regions within the search space.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings