Browsing by Author "Nicholls G"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEffects of bovine whey protein on exercise-induced gut permeability in healthy adults: a randomised controlled trial(Springer-Verlag GmbH, 2024-02-22) Ulluwishewa D; Nicholls G; Henderson H; Bernstein D; Fraser K; Barnett MPG; Barnes MJPURPOSE: Intestinal permeability is a critical component of gut barrier function. Barrier dysfunction can be triggered by certain stressors such as exercise, and if left unmanaged can lead to local and systemic disorders. The aim of this study was to investigate the effects of a specific whey protein fraction in alleviating exercise-induced gut permeability as assessed by recovery of lactulose/rhamnose (L/R) and lactulose/mannitol (L/M) urinary probes. METHODS: Eight males and eight females (aged 18-50) completed two arms of a double-blind, placebo-controlled, crossover study. For each arm participants performed two baseline intestinal permeability assessments, following which they consumed the treatment (2 g/day of milk powder containing 200 mg of whey protein) or placebo (2 g/day of milk powder) for 14 days, before performing a post-exercise permeability assessment. The exercise protocol involved a 20-min run at 80% of maximal oxygen uptake on a 1% incline. RESULTS: Mixed model analysis revealed an increase in L/R (23%; P < 0.001) and L/M (20%; P < 0.01) recovery following exercise. However, there was no treatment or treatment × exercise effect. CONCLUSION: The exercise protocol utilised in our study induces gut permeability. However, consuming whey protein, at the dose and timing prescribed, is not able to mitigate this effect.
- ItemThe dose-dependent effect of acute ozone exposure on lung function and the efficacy of a Boysenberry apple powder blend (BerriQi®) in reducing throat irritation and symptom recovery time in healthy adults(Elsevier B V, 2025-09-01) Lomiwes D; Barnes M; Nicholls G; Ngametua N; Sawyer G; Kanon AP; Vangala G; Shaw OUrbanization and industrialization have impacted air quality and health, with ozone exposure linked to reduced lung function and increased respiratory issues. This study characterised the dose-dependent effect of acute, controlled ambient ozone exposure in an environmental chamber on lung function, then investigated the effect of BerriQi® Boysenberry and apple powder (BerriQi) ozone-induced respiratory irritation symptoms. In an incremental dose study, healthy adults were exposed to 0.1, 0.2 or 0.3 ppm ozone for 2 h. Forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) were measured at designated timepoints up to 48 h after ozone exposure. This was followed by a randomised, double-blind, placebo-controlled crossover trial, with healthy adults (n = 20) who consumed either BerriQi or a placebo daily for 5 days before being exposed to 0.2 ppm ozone for 2 h. Respiratory irritation symptoms, including throat irritation (TI), soreness of cough (SOC), shortness of breath (SOB), and pain on deep inspiration (PODI), were assessed at designated timepoints up to 48 h after ozone exposure. Our results showed that 0.2 ppm ozone was the maximum tolerated dose that elicited a temporal decline in lung function in healthy participants and that BerriQi supplementation significantly reduced TI (p = 0.04), and may expedite the resolution of SOC, SOB and PODI after acute ozone exposure. These findings suggest that BerriQi may alleviate the severity and duration of ozone-induced respiratory irritation and highlights the potential of BerriQi as a dietary intervention for mitigating the respiratory effects of air pollution.