Browsing by Author "Roy NC"
Now showing 1 - 20 of 70
Results Per Page
Sort Options
- ItemA Mathematical Model for the Hydrogenotrophic Metabolism of Sulphate-Reducing Bacteria.(Frontiers Media S.A., 2019-07-17) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Greening CSulphate-reducing bacteria (SRB) are studied across a range of scientific fields due to their characteristic ability to metabolise sulphate and produce hydrogen sulphide, which can lead to significant consequences for human activities. Importantly, they are members of the human gastrointestinal microbial population, contributing to the metabolism of dietary and host secreted molecules found in this environment. The role of the microbiota in host digestion is well studied, but the full role of SRB in this process has not been established. Moreover, from a human health perspective, SRB have been implicated in a number of functional gastrointestinal disorders such as Irritable Bowel Syndrome and the development of colorectal cancer. To assist with the study of SRB, we present a mathematical model for the growth and metabolism of the well-studied SRB, Desulfovibrio vulgaris in a closed system. Previous attempts to model SRB have resulted in complex or highly specific models that are not easily adapted to the study of SRB in different environments, such as the gastrointestinal tract. We propose a simpler, Monod-based model that allows for easy alteration of both key parameter values and the governing equations to enable model adaptation. To prevent any incorrect assumptions about the nature of SRB metabolic pathways, we structure the model to consider only the concentrations of initial and final metabolites in a pathway, which circumvents the current uncertainty around hydrogen cycling by SRB. We parameterise our model using experiments with varied initial substrate conditions, obtaining parameter values that compare well with experimental estimates in the literature. We then validate our model against four independent experiments involving D. vulgaris with further variations to substrate availability. Further use of the model will be possible in a number of settings, notably as part of larger models studying the metabolic interactions between SRB and other hydrogenotrophic microbes in the human gastrointestinal tract and how this relates to functional disorders.
- ItemA period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial(Cambridge University Press on behalf of The Nutrition Society, 2020-07-02) Mitchell SM; McKenzie EJ; Mitchell CJ; Milan AM; Zeng N; D'Souza RF; Ramzan F; Sharma P; Rettedal E; Knowles SO; Roy NC; Sjödin A; Wagner K-H; O'Sullivan JM; Cameron-Smith DDiet has a major influence on the composition and metabolic output of the gut microbiome. Higher-protein diets are often recommended for older consumers; however, the effect of high-protein diets on the gut microbiota and faecal volatile organic compounds (VOC) of elderly participants is unknown. The purpose of the study was to establish if the faecal microbiota composition and VOC in older men are different after a diet containing the recommended dietary intake (RDA) of protein compared with a diet containing twice the RDA (2RDA). Healthy males (74⋅2 (sd 3⋅6) years; n 28) were randomised to consume the RDA of protein (0⋅8 g protein/kg body weight per d) or 2RDA, for 10 weeks. Dietary protein was provided via whole foods rather than supplementation or fortification. The diets were matched for dietary fibre from fruit and vegetables. Faecal samples were collected pre- and post-intervention for microbiota profiling by 16S ribosomal RNA amplicon sequencing and VOC analysis by head space/solid-phase microextraction/GC-MS. After correcting for multiple comparisons, no significant differences in the abundance of faecal microbiota or VOC associated with protein fermentation were evident between the RDA and 2RDA diets. Therefore, in the present study, a twofold difference in dietary protein intake did not alter gut microbiota or VOC indicative of altered protein fermentation.
- ItemA protocol combining breath testing and ex vivo fermentations to study the human gut microbiome(Elsevier Inc, 2021-03-19) Payling L; Roy NC; Fraser K; Loveday SM; Sims IM; Janssen PH; Hill SJ; Raymond LG; McNabb WCThis protocol describes the application of breath testing and ex vivo fermentations to study the association between breath methane and the composition and functionality of the gut microbiome. The protocol provides a useful systems biology approach for studying the gut microbiome in humans, which combines standardized methods in human breath testing and fecal sampling. The model described is accessible and easy to repeat, but its relative simplicity means that it can deviate from human physiological conditions.
- ItemAcute effects of fresh versus dried Hayward green kiwifruit on sleep quality, mood, and sleep-related urinary metabolites in healthy young men with good and poor sleep quality(Frontiers Media S.A., 2023-03-14) Kanon AP; Giezenaar C; Roy NC; McNabb WC; Henare SJ; Scholey ABackground and aims: Daily kiwifruit (KF) consumption has been associated with improved sleep quality, but underlying physiological mechanisms are unknown. This study examined acute effects of fresh and dried green KF, compared with a water control, on sleep quality, mood, and urinary serotonin and melatonin metabolite concentrations. Methods: 24 men (age: 29 ± 1 years, body mass index: 24 ± 1 kg/m2) with poor (n = 12) or good (n = 12) sleep quality participated in a randomized, single-blind crossover study. One of three treatments was consumed with a standardized evening meal; (1) the flesh of two fresh green KF, (2) dried green KF powder (including skin; equivalent to dry matter of two fresh KF) mixed with water, or (3) a water control, in their own home. Subjective and objective sleep quality, mood, waking urinary 5-hydroxyindoleacetic acid (5-HIAA), 6-sulfatoxymelatonin (aMT6s), vitamin C and B-vitamin concentrations were determined. Results: Regardless of sleep quality group, compared to control, morning sleepiness, alertness upon awakening, and vigor were improved (p < 0.05) after dried KF consumption. Compared to control, both fresh and dried KF treatments tended (p < 0.1) toward improved esteem and total mood disturbance. Both KF treatments increased (fresh +1.56 ± 0.4 ng/g, p = 0.001; dried: +1.30 ± 0.4 ng/g, p = 0.004) urinary concentration of the serotonin metabolite 5-HIAA compared to the control (4.32 ± 0.4 ng/g). In poor sleepers, ease of awakening improved by 24% after dried KF consumption (p = 0.005) and tended to improve by 13% after fresh KF intake (p = 0.052) compared to the control. Good sleepers tended toward 9% improved ratings of getting to sleep with fresh KF (p = 0.053) compared to the control. Poor sleepers had lower amounts of some B-vitamins compared to good sleepers (p < 0.05). Conclusion: Consumption of dried or fresh KF with a standard evening meal, was associated with improved aspects of sleep quality and mood, possibly mediated through changes in serotonin metabolism. Clinical trial registration: [www.anzctr.org.au], identifier [ACTRN12621000046808].
- ItemAdaptation of the infant gut microbiome during the complementary feeding transition(PLOS, 2022-07-14) McKeen S; Roy NC; Mullaney JA; Eriksen H; Lovell A; Kussman M; Young W; Fraser K; Wall CR; McNabb WC; xia YThe infant gut microbiome progresses in composition and function during the introduction of solid foods throughout the first year of life. The purpose of this study was to characterize changes in healthy infant gut microbiome composition, metagenomic functional capacity, and associated metabolites over the course of the complementary feeding period. Fecal samples were obtained at three 'snapshot' timepoints from infants participating in the 'Nourish to Flourish' pilot study: before the introduction of solid foods at approximately 4 months of age, after introducing solid foods at 9 months of age, and after continued diet diversification at 12 months of age. KEGG and taxonomy assignments were correlated with LC-MS metabolomic profiles to identify patterns of co-abundance. The composition of the microbiome diversified during the first year of life, while the functional capacity present in the gut microbiome remained stable. The introduction of solid foods between 4 and 9 months of age corresponded to a larger magnitude of change in relative abundance of sequences assigned to KEGG pathways and taxonomic assignments, as well as to stronger correlations with metabolites, compared to the magnitude of changes and number of correlations seen during continued diet diversification between 9 and 12 months of age. Changes in aqueous fecal metabolites were more strongly correlated with KEGG pathway assignments, while changes in lipid metabolites associated with taxonomic assignments, particularly between 9 and 12 months of age. This study establishes trends in microbiome composition and functional capacity occurring during the complementary feeding period and identifies potential metabolite targets for future investigations.
- ItemBiotransformation of Rutin in In Vitro Porcine Ileal and Colonic Fermentation Models(American Chemical Society, 2023-08-23) Ulluwishewa D; Montoya CA; Mace L; Rettedal EA; Fraser K; McNabb WC; Moughan PJ; Roy NCQuercetin, a polyphenol antioxidant, is widely distributed in food in the form of glycoside rutin, which is not readily absorbed in the gastrointestinal tract. The microbiota of the colon is known to biotransform rutin, generating quercetin aglycones that can be absorbed. We investigated the role of the ileal and colonic microbiota in rutin biotransformation using established in vitro fermentation models. Overall, a higher rate of rutin biotransformation was observed during colonic fermentation compared with ileal fermentation. The colonic microbiome showed higher potential for rutin conversion to quercetin through an increased abundance of α-rhamnosidase- and β-glucosidase-encoding genes compared to the ileal microbiome. Nonetheless, rutin metabolism occurred rapidly during ileal fermentation (∼20% rutin disappearance after 1 h). The appearance of quercetin varied depending on the ileal inoculum and correlated with an increased abundance of Firmicutes, suggesting that quercetin absorption could be improved via modulation of the ileal microbiota.
- ItemBovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity(PLOS, 2018-01-05) Anderson RC; MacGibbon AKH; Haggarty N; Armstrong KM; Roy NC; Brandner JMAppropriate intestinal barrier maturation is essential for absorbing nutrients and preventing pathogens and toxins from entering the body. Compared to breast-fed infants, formula-fed infants are more susceptible to barrier dysfunction-associated illnesses. In infant formula dairy lipids are usually replaced with plant lipids. We hypothesised that dairy complex lipids improve in vitro intestinal epithelial barrier integrity. We tested milkfat high in conjugated linoleic acid, beta serum (SureStart™Lipid100), beta serum concentrate (BSC) and a ganglioside-rich fraction (G600). Using Caco-2 cells as a model of the human small intestinal epithelium, we analysed the effects of the ingredients on trans-epithelial electrical resistance (TEER), mannitol flux, and tight junction protein co-localisation. BSC induced a dose-dependent improvement in TEER across unchallenged cell layers, maintained the co-localisation of tight junction proteins in TNFα-challenged cells with increased permeability, and mitigated the TEER-reducing effects of lipopolysaccharide (LPS). G600 also increased TEER across healthy and LPS-challenged cells, but it did not alter the co-location of tight junction proteins in TNFα-challenged cells. SureStart™Lipid100 had similar TEER-increasing effects to BSC when added at twice the concentration (similar lipid concentration). Ultimately, this research aims to contribute to the development of infant formulas supplemented with dairy complex lipids that support infant intestinal barrier maturation.
- ItemCharacterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders.(MDPI (Basel, Switzerland), 2024-12-16) Fraser K; James SC; Young W; Gearry RB; Heenan PE; Keenan JI; Talley NJ; McNabb WC; Roy NC; Fukui HThere is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
- ItemCompetition for Hydrogen Prevents Coexistence of Human Gastrointestinal Hydrogenotrophs in Continuous Culture.(Frontiers Media S.A., 2020-05-29) Smith NW; Shorten PR; Altermann E; Roy NC; McNabb WC; Kappler UUnderstanding the metabolic dynamics of the human gastrointestinal tract (GIT) microbiota is of growing importance as research continues to link the microbiome to host health status. Microbial strains that metabolize hydrogen have been associated with a variety of both positive and negative host nutritional and health outcomes, but limited data exists for their competition in the GIT. To enable greater insight into the behaviour of these microbes, a mathematical model was developed for the metabolism and growth of the three major hydrogenotrophic groups: sulphate-reducing bacteria (SRB), methanogens and reductive acetogens. In batch culture simulations with abundant sulphate and hydrogen, the SRB outcompeted the methanogen for hydrogen due to having a half-saturation constant 106 times lower than that of the methanogen. The acetogen, with a high model threshold for hydrogen uptake of around 70 mM, was the least competitive. Under high lactate and zero sulphate conditions, hydrogen exchange between the SRB and the methanogen was the dominant interaction. The methanogen grew at 70% the rate of the SRB, with negligible acetogen growth. In continuous culture simulations, both the SRB and the methanogen were washed out at dilution rates above 0.15 h-1 regardless of substrate availability, whereas the acetogen could survive under abundant hydrogen conditions. Specific combinations of conditions were required for survival of more than one hydrogenotroph in continuous culture, and survival of all three was not possible. The stringency of these requirements and the inability of the model to simulate survival of all three hydrogenotrophs in continuous culture demonstrates that factors outside of those modelled are vital to allow hydrogenotroph coexistence in the GIT.
- ItemComplementary foods in infants: an in vitro study of the faecal microbial composition and organic acid production(Royal Society of Chemistry, 2025-05-07) Geniselli da Silva V; Mullaney JA; Roy NC; Smith NW; Wall C; Tatton CJ; McNabb WCThe transition from breastmilk to complementary foods is critical for maturing the colonic microbiota of infants. Dietary choices at weaning can lead to long-lasting microbial changes, potentially influencing health later in life. However, the weaning phase remains underexplored in colonic microbiome research, and the current understanding of how complementary foods impact the infant's colonic microbiota is limited. To address this knowledge gap, this study assessed the influence of 13 food ingredients on the in vitro microbial composition and production of organic acids by the faecal microbiota in New Zealand infants aged 5 to 11 months. To better represent real feeding practices, ingredients were combined with infant formula, other complementary foods, or both infant formula and other foods. Among the individual food ingredients, fermentation with peeled kūmara (sweet potato) increased the production of lactate and the relative abundance of the genus Enterococcus. Fermentation with blackcurrants, strawberries, or raspberries enhanced acetate and propionate production. Additionally, fermentation with blackcurrants increased the relative abundance of the genus Parabacteroides, while raspberry fermentation increased the relative abundance of the genera Parabacteroides and Eubacterium. When combined with infant formula or with blackcurrants, fermenting black beans increased butyrate production and stimulated the relative abundance of Clostridium sensu stricto 1. These foods are promising candidates for future clinical trials.
- ItemComplete Annotated Genome Sequence of Limosilactobacillus fermentum AGR1487.(American Society for Microbiology, 2021-01-07) Bailie MA; Altermann E; Young W; Roy NC; McNabb WC; Putonti CLimosilactobacillus fermentum is a probiotic species; however, L. fermentum AGR1487 increases colon inflammation in germfree mice and decreases barrier integrity in Caco-2 cells. The AGR1487 genome was sequenced to explore these phenotypes. The genome is a single, circular, 1,939,032-bp chromosome with a G+C content of 52.17% and no plasmids.
- ItemComplete Genome Sequence of Lactobacillus fermentum Strain AGR1485, a Human Oral Isolate.(American Society for Microbiology, 2020-09-03) Bailie MA; Altermann E; Young W; Roy NC; McNabb WC; Gill SRLactobacillus fermentum is found in food products and is generally considered safe. L. fermentum AGR1485 promotes barrier integrity in Caco-2 cells and has genetic similarities to other known probiotic L. fermentum strains. L. fermentum AGR1485 has potential as a probiotic and was sequenced to explore these probiotic properties. The genome is a 2.2-Mbp circular chromosome with no plasmids and a GC content of 51.15%.
- ItemComplete Genome Sequences of Eight Faecalibacterium sp. Strains Isolated from Healthy Human Stool(American Society for Microbiology, 2023-01-24) Fraccascia D; Chanyi RM; Altermann E; Roy NC; Flint SH; McNabb WC; Dunning Hotopp JCEight Faecalibacterium sp. strains were isolated from feces of healthy human volunteers. Here, we describe their genome sequences. The genome sizes ranged from 2.78 Mbp to 3.23 Mbp, with an average GC content of 56.6% and encoding 2,795 protein-coding genes on average.
- ItemConcentration of milk oxylipins after heat and homogenization treatments(Frontiers Media S A, 2023-05-26) Thum C; Cirelli A; Otoki Y; Ozturk G; Taha AY; McNabb WC; Roy NC; de Moura Bell JMLN; Hebishy EHeat treatment and homogenization of milk are common processing steps intended to reduce microbial load for safe human consumption, and to avoid creaming, respectively. Although the effects of combined pasteurization and homogenization on free fatty acids (FFA) and lipid oxidation markers such as hydroperoxides, and thiobarbituric acid reactive species (TBARS) have been well characterized, their effects on primary oxidized fatty acids known as oxylipins have not yet been determined. This study aimed to determine the effects of two heat treatments: milk pasteurization [high-temperature short time, 72°C for 15 s (HTST)] and sterilization [ultra-high temperature, 135°C for 3 s (UHT)] with or without homogenization (10, 17 or 24 MPa) on FFA (%), primary (hydroperoxides and oxylipins) and secondary oxidation compounds (TBARS). Heat treatments alone significantly reduced most oxylipins compared with raw milk, but did not alter % FFA, hydroperoxide, and TBARS levels. The combination of UHT and homogenization at 24 MPa increased % FFA, hydroperoxide value, and some oxylipins, compared to raw milk and other treatments. Overall, the combination of heat treatment and homogenization significantly increased oxylipin formation compared with heat treatment alone.
- ItemConcentrations of Fecal Bile Acids in Participants with Functional Gut Disorders and Healthy Controls(MDPI (Basel, Switzerland), 2021-09-09) James SC; Fraser K; Young W; Heenan PE; Gearry RB; Keenan JI; Talley NJ; Joyce SA; McNabb WC; Roy NC; Apidianakis Y; Agapiou ABile acids are metabolites involved in nutrient absorption and signaling with levels influenced by dietary intake, metabolic processes, and the gut microbiome. We aimed to quantify 23 bile acids in fecal samples to ascertain if concentrations differed between healthy participants and those with functional gut disorders. Fecal bile acids were measured using liquid chromatography-mass spectrometry (LC-MS) in the COMFORT (The Christchurch IBS cohort to investigate mechanisms for gut relief and improved transit) cohort of 250 participants with Rome IV IBS (IBS-constipation (C), IBS-diarrhea (D), IBS-mixed (M)), functional gut disorders (functional constipation (FC), functional diarrhea (FD)) and healthy controls (FC n = 35, FD n = 13, IBS-C n = 24, IBS-D n = 52, IBS-M n = 29, and control n = 97). Dietary information was recorded to ascertain three-day dietary intake before fecal samples were collected. Fecal bile acid concentrations, predominantly primary bile acids, were significantly different between all functional gut disorder participants and healthy controls (CDCA p = 0.011, CA p = 0.003) and between constipation (FC + IBS-C) and diarrhea (FD + IBS-D) groups (CDCA p = 0.001, CA p = 0.0002). Comparison of bile acids between all functional groups showed four metabolites were significantly different, although analysis of combined groups (FC + IBS-C vs. FD + IBS-D) showed that 10 metabolites were significantly different. The bile acid profiles of FD individuals were similar to those with IBS-D, and likewise, those with FC were similar to IBS-C. Individuals with a diarrhea phenotype (FD + IBS-D) had higher concentrations of bile acids compared to those with constipation (FC + IBS-C). Bile acid metabolites distinguish between individuals with functional gut disorders and healthy controls but are similar in constipation (or diarrhea) whether classified as IBS or not.
- ItemConcentrations of Plasma Amino Acids and Neurotransmitters in Participants with Functional Gut Disorders and Healthy Controls(MDPI (Basel, Switzerland), 2023-02-20) James SC; Fraser K; Cooney J; Günther CS; Young W; Gearry RB; Heenan PE; Trower T; Keenan JI; Talley NJ; McNabb WC; Roy NC; Jang CAmino acids are important in several biochemical pathways as precursors to neurotransmitters which impact biological processes previously linked to functional gastrointestinal disorders (FGIDs). Dietary protein consumption, metabolic host processes, and the gut microbiome can influence the plasma concentration of amino acids and neurotransmitters, and their uptake by tissues. The aim of this analysis was to quantify 19 proteogenic and 4 non-proteogenic amino acids and 19 neurotransmitters (including precursors and catabolites, herein referred to as neurotransmitters) to ascertain if their circulating concentrations differed between healthy participants and those with FGIDs. Plasma proteogenic and non-proteogenic amino acids and neurotransmitters were measured using ultra-performance liquid chromatography and liquid chromatography-mass spectrometry, respectively, from 165 participants (Rome IV: irritable bowel syndrome (IBS-constipation, IBS-diarrhea), functional constipation, functional diarrhea, and healthy controls). There were significant differences (p < 0.05) in pairwise comparisons between healthy controls and specific FGID groups for branched-chain amino acids (BCAAs), ornithine, and alpha-aminobutyric acid. No other significant differences were observed for the neurotransmitters or any other amino acids analyzed. Multivariate and bivariate correlation analyses between proteogenic and non-proteogenic amino acids and neurotransmitters for constipation (constipation (IBS-C and functional constipation) and phenotypes diarrhea (IBS-D and functional diarrhea)) and healthy controls suggested that associations between BCAAs, 5-hydroxytryptophan, and kynurenine in combination with tyrosine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylacetic acid and associations with gamma-aminobutyric acid, glutamate, asparagine, and serine are likely disrupted in FGID phenotypes. In conclusion, although correlations were evident between some proteogenic and non-proteogenic amino acids and neurotransmitters, the results showed minor concentration differences in plasma proteogenic and non-proteogenic amino acids, amino acid-derived metabolites, and neurotransmitters between FGID phenotypes and healthy controls.
- ItemCulture media and format alter cellular composition and barrier integrity of porcine colonoid-derived monolayers(Taylor and Francis Group, 2024-04-02) Barnett AM; Mullaney JA; McNabb WC; Roy NCIntestinal organoid technology has revolutionized our approach to in vitro cell culture due in part to their three-dimensional structures being more like the native tissue from which they were derived with respect to cellular composition and architecture. For this reason, organoids are becoming the new gold standard for undertaking intestinal epithelial cell research. Unfortunately, their otherwise advantageous three-dimensional geometry prevents easy access to the apical epithelium, which is a major limitation when studying interactions between dietary or microbial components and host tissues. To overcome this problem, we developed porcine colonoid-derived monolayers cultured on both permeable Transwell inserts and tissue culture treated polystyrene plates. We found that seeding density and culture format altered the expression of genes encoding markers of specific cell types (stem cells, colonocytes, goblets, and enteroendocrine cells), and barrier maturation (tight junctions). Additionally, we found that changes to the formulation of the culture medium altered the cellular composition of colonoids and of monolayers derived from them, resulting in cultures with an increasingly differentiated phenotype that was similar to that of their tissue of origin.
- ItemDietary format alters fecal bacterial populations in the domestic cat (Felis catus)(John Wiley and Sons, 2013) Bermingham EN; Young W; Kittelmann S; Kerr KR; Swanson KS; Roy NC; Thomas DGThe effects of short-term (5-week) exposure to wet or dry diets on fecal bacterial populations in the cat were investigated. Sixteen mixed-sex, neutered, domestic short-haired cats (mean age = 6 years; mean bodyweight = 3.4 kg) were randomly allocated to wet or dry diets in a crossover design. Fecal bacterial DNA was isolated and bacterial 16S rRNA gene amplicons generated and analyzed by 454 Titanium pyrosequencing. Cats fed dry diets had higher abundances (P < 0.05) of Actinobacteria (16.5% vs. 0.1%) and lower abundances of Fusobacteria (0.3% vs. 23.1%) and Proteobacteria (0.4% vs. 1.1%) compared with cats fed the wet diet. Of the 46 genera identified, 30 were affected (P < 0.05) by diet, with higher abundances of Lactobacillus (31.8% vs. 0.1%), Megasphaera (23.0% vs. 0.0%), and Olsenella (16.4% vs. 0.0%), and lower abundances of Bacteroides (0.6% vs. 5.7%) and Blautia (0.3% vs. 2.3%) in cats fed the dry diet compared with cats fed the wet diet. These results demonstrate that short-term dietary exposure to diet leads to large shifts in fecal bacterial populations that have the potential to affect the ability of the cat to process macronutrients in the diet.
- ItemDietary patterns influencing the human colonic microbiota from infancy to centenarian age: a narrative review(Frontiers Media S A, 2025-06-04) Geniselli da Silva V; Roy NC; Smith NW; Wall C; Mullaney JA; McNabb WC; Benítez-Páez AOur dietary choices not only affect our body but also shape the microbial community inhabiting our large intestine. The colonic microbiota strongly influences our physiology, playing a crucial role in both disease prevention and development. Hence, dietary strategies to modulate colonic microbes have gained notable attention. However, most diet-colonic microbiota research has focused on adults, often neglecting other key life stages, such as infancy and older adulthood. In this narrative review, we explore the impact of various dietary patterns on the colonic microbiota from early infancy to centenarian age, aiming to identify age-specific diets promoting health and well-being by nourishing the microbiota. Diversified diets rich in fruits, vegetables, and whole grains, along with daily consumption of fermented foods, and moderate amounts of fish and lean meats (two to four times a week), increase colonic microbial diversity, the abundance of saccharolytic taxa, and the production of beneficial microbial metabolites. Most of the current knowledge of diet-microbiota interactions is limited to studies using fecal samples as a proxy. Future directions in colonic microbiota research include personalized in silico simulations to predict the impact of diets on colonic microbes. Complementary to traditional methodologies, modeling has the potential to reduce the costs of colonic microbiota investigations, accelerate our understanding of diet-microbiota interactions, and contribute to the advancement of personalized nutrition across various life stages.
- ItemDifferences in Compositions of Gut Bacterial Populations and Bacteriophages in 5-11 Year-Olds Born Preterm Compared to Full Term(Frontiers Media S.A., 2020-06-16) Jayasinghe TN; Vatanen T; Chiavaroli V; Jayan S; McKenzie EJ; Adriaenssens E; Derraik JGB; Ekblad C; Schierding W; Battin MR; Thorstensen EB; Cameron-Smith D; Forbes-Blom E; Hofman PL; Roy NC; Tannock GW; Vickers MH; Cutfield WS; O'Sullivan JM; Shkoporov APreterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.
