Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
Repository logo
    Info Pages
    Content PolicyCopyright & Access InfoDepositing to MRODeposit LicenseDeposit License SummaryFile FormatsTheses FAQDoctoral Thesis Deposit
  • Communities & Collections
  • All of MRO
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register using a personal email and password.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Thakur SS"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    OCT-based dynamic mechanical analysis of vitreous humour
    (Elsevier Ltd, 2024-01) Urbańska MA; Thakur SS; Kolenderska SM
    The vitreous humour plays an important role in shock absorption, i.e. the damping of the mechanical movement, to protect the delicate tissues within the eye. However, this damping is different for movements with different frequencies/velocities. While the collective low-frequency (below 100 Hz) damping behaviour of the vitreous humour associated with the saccadic and lens movements is well-studied, to the best of our knowledge, the high-frequency damping behaviour of the vitreous humour, which represents the response of the microstructural components, is not exhaustively documented. Here, we utilise a non-destructive testing method called Optical Coherence Tomography (OCT) to measure the high-frequency (100–350 Hz, waves able to probe approximately 500 µm distances) biomechanical behaviour of the vitreous humour. We parametrise this behaviour by calculating the shear storage modulus, shear loss modulus and phase angle. We compare these parameters to their low-frequency counterparts obtained with a rheometer, providing a comprehensive mechanical spectrum of the vitreous humour behaviour. The processing method developed in this study and the data collected help better understand the vitreous humour shock absorption properties. Consequently, they could allow a development of better vitreous humour substitutes. The local probing of the high-frequency regime and the non-invasive character of the OCT method provide new qualities in mapping the damping behaviour.

Copyright © Massey University  |  DSpace software copyright © 2002-2025 LYRASIS

  • Contact Us
  • Copyright Take Down Request
  • Massey University Privacy Statement
  • Cookie settings