Provider: DSpace RIS Export
Database: Massey Research Online (MRO) Production Instance
Content: text/plain; charset="UTF-8"
TY - THES
AB - Srinivasa Ramanujan (1887-1920) was one of the world's greatest mathematical geniuses. He work extensively in a branch of mathematics called "q-series". Around 1913, he found an important formula which now is known as Ramanujan's 1ψ1summation formula. The aim of this thesis is to investigate Ramanujan's 1ψ1summation formula and explore its applications to number theory and combinatorics. First, we consider several classical important results on elliptic functions and then give new proofs of these results using Ramanujan's 1ψ1 summation formula. For example, we will present a number of classical and new solutions for the problem of representing an integer as sums of squares (one of the most celebrated in number theory and combinatorics) in this thesis. This will be done by using q-series and Ramanujan's 1ψ1 summation formula. This in turn will give an insight into how Ramanujan may have proven many of his results, since his own proofs are often unknown, thereby increasing and deepening our understanding of Ramanujan's work.
N2 - Srinivasa Ramanujan (1887-1920) was one of the world's greatest mathematical geniuses. He work extensively in a branch of mathematics called "q-series". Around 1913, he found an important formula which now is known as Ramanujan's 1ψ1summation formula. The aim of this thesis is to investigate Ramanujan's 1ψ1summation formula and explore its applications to number theory and combinatorics. First, we consider several classical important results on elliptic functions and then give new proofs of these results using Ramanujan's 1ψ1 summation formula. For example, we will present a number of classical and new solutions for the problem of representing an integer as sums of squares (one of the most celebrated in number theory and combinatorics) in this thesis. This will be done by using q-series and Ramanujan's 1ψ1 summation formula. This in turn will give an insight into how Ramanujan may have proven many of his results, since his own proofs are often unknown, thereby increasing and deepening our understanding of Ramanujan's work.
M3 - Doctoral
M3 - Doctoral
PY - 2006
KW - Srinivasa Ramanujan
KW - Summation formula
KW - Elliptic functions
KW - Mathematical transformations
PB - Massey University
AU - Lam, Heung Yeung
TI - q-series in number theory and combinatorics : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand
LA - en
VL - Doctor of Philosophy (Ph.D.)
DA - 2006
UR - http://hdl.handle.net/10179/1477
ER -